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Abstrakt 
Hlavním cílem bakalářské práce je prozukoumání růzých metod sémantické segmentace 
snímků z off-road terénu. V rešeršní části jsou popsány základní principy sémantické 
segmentace, různé přístupy k tomuto problému, metody sémantické segmentace a různé 
datové sady. Dále je popsán proces evaluace a trénování několika modelů s rozdílnými 
parametry a vytvoření nového evaluačního datasetu. Získané výsledky jsou porovnány s 
výsledky z rešeršní části a jsou navrhnuty další kroky pro zvýšení přesnosti modelů. 

Summary 
The main focus of the bachelor's thesis is to explore different semantic segmentation meth­
ods of off-road terrain images. In the theoretical survey are described the basic principles 
of semantic segmentation, multiple approaches to the problem, the methods of seman­
tic segmentation and different datasets. The process of evaluating and training multiple 
models with various parameters and the creation of a new evaluating dataset are described 
next. The attained results are compared to the results from the theoretical survey and 
the next steps for improving the accuracy of the models are proposed. 
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1 Introduction 

Semantic segmentation is a process used in image recognition where the objects in an 
image are classified pixel-wise. It is used mostly in autonomous driving and medicine. 
The state-of-the-art of semantic segmentation is advanced in the field of autonomous 
driving, however, most of the existing models and datasets are created and specifically 
tailored for urban environments. 

This work includes a theoretical survey which introduces the concept of semantic seg­
mentation and its differences from other types of image recognition. The next two parts 
of the survey are focused on the two different approaches used in this field - the traditional 
approach, which takes advantage of the architectures using machine learning and the neu­
ral network approach, where the architectures of segmentation models depend on various 
types of neural networks. Next are introduced common key performance indicators used 
for evaluation based on the performance of the models, existing models and methods of 
semantic segmentation from off-road terrain and various datasets which differ in captured 
environments and number of classes. 

The experiments were performed based on the findings from the theoretical survey, 
where two different pretrained models were chosen for further evaluation on three datasets, 
also chosen based on the theoretical survey. It is described how the datasets had to be 
adjusted for proper evaluation. 

Next, six models with various training parameters - different number of epochs, batch 
sizes and backbone architectures - were chosen, again based on the theoretical survey, and 
trained. Some of these parameters were chosen as close to those of the models described 
in the research as possible for proper comparison of the results. A l l models are compared 
based on their speed of segmentation of one image (also referred as latency) and their 
accuracy of the segmentation. 

Finally, a new evaluation dataset was created and the model with one of the lowest 
values of latency and highest values of mean accuracy was used to perform semantic 
segmentation on this dataset. A l l of the findings and results were then analyzed and 
further steps for improvement were proposed. 
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2 Theoretical survey 

The theoretical survey is focused on the basics of semantic segmentation and introducing 
important concepts in this field (chapter 2.1). Semantic segmentation with the use of 
the traditional approach is described in chapter 2.2, neural network approach in chapter 
2.3. Another part of the research is on key performance indicators (chapter 2.4), various 
datasets with off-road terrain images (chapter 2.5) and different methods and models 
(chapter 2.6) 

2.1 Semantic segmentation 
Image recognition is a process of identifying objects in an image. There are many types 
of image recognition, but the most common are semantic segmentation, object detec­
tion, image classification and instance segmentation. Each type of image recognition can 
be used for different purposes, for example, object detection is commonly used for au­
tonomous driving [1], instance segmentation in medicine. The main focus of this work is 
on semantic segmentation, which is typically used for terrain mapping, either from terrain 
or from satellite images. A comparison of semantic segmentation, object detection, image 
classification and instance segmentation is shown in Figure 2.1. 

(a) Semantic segmentation (b) Object detection 

(c) Image classification (d) Instance segmentation 
Figure 2.1: Comparison of semantic segmentation, object detection, image classification, in­
stance segmentation [2] 

Semantic segmentation is a task where an image is divided into areas that can be 
assigned different object classes based on certain criteria. In semantic segmentation, the 
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whole image is classified, as opposed to instance segmentation, where only some objects 
are segmented. It is a pixel-wise operation, the neighbouring pixels are grouped and are 
given a class. These classes are usually known beforehand. A simple example of semantic 
segmentation can be seen in Fig. 2.2. 

(a) Original image (b) Segmented image 
Figure 2.2: Example of semantic segmentation 

A computer with a glass of water in front of it can be seen in the original image 
(Figure 2.2a). Figure 2.2b shows the original image segmented into areas that have 
assigned classes. A dataset containing pairs of these original images and labelled images 
is required for the training and evaluation of semantic segmentation models. 

2.2 Traditional approach 
Semantic segmentation algorithms applying traditional methods are machine learning 
(ML) algorithms. These methods can be used individually or in combination [1]. Nowa­
days are not used for tasks requiring fast segmentation, only smaller applications, but 
these principles are still used as a part of more complicated algorithms using neural net­
works. It is important to note that algorithms using a traditional approach can be faster 
than neural networks, depending on the given task. 

2.2 .1 Sliding Window approach 

Semantic segmentation mostly applies a Sliding Window pipeline (Fig. 2.3). The classifier 
is trained on images that are all the same size. It is given rectangle-shaped patches of 
images that are called windows. This process can classify only the central pixel [1]. 

Training —> Preprocessing -> Data - > 
/ * 

Window -> Window-wise Post-processing 
[Prediction J—• Feature extraction augmentation extraction classification > 

Post-processing 

Figure 2.3: Sliding window approach 

2.2.2 Markov Random Fields 

Markov Random Fields (MRFs) is an undirected probabilistic model that assigns a ran­
dom variable to every pixel of an image and every feature. For example, an image with the 
size of 224px x 224px that gets its variables according to R G B has 224-224-3 +224-224 = 
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200704 random variables. MRFs assume that the probability of a variable depends only 
on its neighbouring variables. This method requires a large amount of computation due 
to a complicated structure [1, 3]. 

2.2.3 Conditional Random Fields 

Conditional Random Fields (CRFs) is a machine learning method created for labelling 
and segmentation, it is an undirected discriminative graphic model. This method focuses 
not only on the distribution of the data but also on possible label sequence [1, 3]. C R F 
with 4-neighbourhood where each node X j represents a pixel and node i/i represents a label 
can be seen in Fig. 2.4. 

Figure 2.4: CRF with 4-neighbourhood [1] 

2.2.4 Random decision forests 

Random decision forests (RDFs) apply the ensemble learning technique, meaning that 
more than one class is trained and their hypotheses are combined. Every class is trained 
on a random subspace and the training is done on a random subset of training data. The 
classifier is called a decision tree. Every node uses one or more features to decide which 
branch of the algorithm to pass on (Figure 2.5). Nodes are added to the decision tree 
until every part of the tree consists only of nodes of the same class or until the branch 
can't be separated further. Training and predictions with RDFs are faster compared to 
previous methods [1]. 

2.2.5 Support Vector Machines 

Support Vector Machines (SVMs) are binary classifiers. The data is described as 
where X j is the feature vector and i/i e { — 1,1} is the binary label. SVMs separate data 
linearly in feature space, if the dataset is not linearly separable it is transformed into a 
higher dimensional space. The detailed principles of SVMs are explained in [4]. 
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Tree 1 - class A Tree 2 - class A Tree 3 - class B 

' I ' 
Majority voting - class A 

Figure 2.5: Example of simple RDF 

2.3 Neural network approach 
Neural networks are classifiers inspired by biological neurons. A weighted input is created 
and then goes through an activation function. Then the input is processed and we get an 
output that is compared with true values. The loss score is calculated, which represents 
how much was the prediction accurate compared to the true values. This value of the 
loss score is put through an optimizer, input weights are updated and the process starts 
again. The algorithm iterates until the loss score is minimized enough [5, 6, 7]. 

In semantic segmentation, the input is the original image and its corresponding mask 
or label and the output is a segmented image. 

2.3 .1 Artificial Neural Network 

Artificial Neural Network (ANN), also known as Feed-Forward Neural Network is a learn­
ing machine which processes data only forward. It is a very simple algorithm, but it is 
dependent on hardware and computational power. A N N has its given topology based on 
the connections between its elements and it has to have at least one start element (SE), 
one end element (EE) and one processing element (EE). A N N with only one P E is called a 
Perceptron. Elements are sometimes referred to as nodes [5, 7]. A n example architecture 
of A N N can be seen in Fig 2.6. 
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2.3.2 Convolutional Neural Network 

Convolutional Neural Network (CNN) is a type of neural network commonly used for 
image recognition. CNNs input signal only forward, which in most cases is an image, 
but has a hierarchical architecture. It consists of one or more convolutional layers where 
feature maps are created for each convolution and then subsampled. This process is 
repeated as many times as needed, and then a full connection of all feature maps is 
connected into a flattened layer (Fig. 2.7). This element goes through a classification 
process and the output is a probabilistic distribution (e.g. probability that this pixel is 
black is 90%, probability that it is white is 10%). CNNs have a disadvantage due to their 
requirement for a large amount of training data. [8, 9] 

Intput 
Feature maps 

Feature maps Feature maps 
Output 

1 1 

Convolution Subsampling 

• 

Convolution Full connection 

Figure 2.7: Example of a simple CNN 

2.3.3 Recurrent Neural Network 

Recurrent Neural Network (RNN) works the same as A N N . The difference is that R N N 
saves the output of processing elements (nodes) and "feeds" the output back to the model. 
Every node serves as a memory cell, if a prediction is not correct, the model learns the 
right output and continues in its iterations. It doesn't operate only in one direction, this 
process is called recurrence (Fig. 2.8). 

R N N is very hard to train. If the algorithm is given badly dimensioned true values, it 
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can cause a failure in the training process and incorrect predictions. It is mostly used in 
text-to-speech conversions. 

Input r 

Hidden layers 
A Output 

Reccurence 

Figure 2.8: Example of RNN architecture 

2.3.4 Most common types of architectures 

There are many different types of architecture used for semantic segmentation. Below 
will be mentioned three backbone architectures - ResNet, U-Net and DeepLabV3+. A l l 
of these are a CNN-type architecture or are based on C N N . 

Input 
Image 

tile 

Output 
Segmentation 
map 

copy and crop 

up-con volution 

pooling 2x2 

Figure 2.9: U-Net architecture 

U-Net is an encoder-decoder architecture. First, the image goes through convolutions 
and pooling (left side of Fig. 2.9). The image is downsampled and feature maps are 
created. This part is called contracting. Then the feature maps are again upsampled 
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(up-convolutions), and they go through convolutions again. This is called the expansion 
(right side of Fig. 2.9). Different operations are made for every pooling and corresponding 
up-convolution of a feature map. That helps preserve spatial information. 

weight layer 

F(x) 

weight layer 

F(x)+x 0* 

Figure 2.10: ResNet building block 

ResNet [10] is used for training neural networks with many layers (deep neural net­
works). It was created to address the problem of vanishing gradients - the values used 
to update the weights during training can be very small. It adapts residual learning to 
every few stacked layers, residual blocks, meaning it has shortcut connections between 
them (see Figure 2.10) where the input to the residual block is added to the output. The 
residual block then learns the residual mapping F(x) = H(x) — x, where H(x) is the 
actual mapping, and the output is F(x) + x. Adding these skip connections ensures that 
the gradient goes through the connections between layers without lowering its value. 

Figure 2.11: DeepLabv3+ architecture [11] 

DeepLabV3+ [11] is a C N N , usually with the ResNet backbone and it was created 
specifically for semantic segmentation. It uses an encoder-decoder architecture, where the 
encoder is used to gain contextual information from the image. The decoder module finds 
the boundaries of objects. Simplified architecture is shown in Figure 2.11. 
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2.4 Key performance indicators 
Segmentation models are evaluated based on Key Performance Indicators (KPIs). Those 
can be measures of accuracy, speed of segmenting a single image (latency) or memory 
usage. Below are the most used KPIs for evaluating how precise the segmentation is and 
their calculations [1]. 

1. Per pixel rate 

PPR= ^ = l U i i , (2.1) 
V t-

where k is the number of classes, riu is the number of predicted pixels of one class 
and ti is the number of pixels that belong to this class. 

2. Mean accuracy 

MA 
t 

= i 

mean accuracy shows how many of the pixels belonging to each class in the predicted 
image were labelled correctly. 

MIoU (Mean Intersection over Union) 

MIoU is calculated as the area where predicted pixels of one class overlap with 
the ground truth label divided by the union of predicted pixels and ground truth 
label. A combination of mean accuracy and MIoU is common for the evaluation 
of semantic segmentation models. Their values should be close to each other, if 
for example, the value of mean accuracy is much higher than MIoU, it gives us a 
warning, that the segmentation is probably done wrong. 

MIoU 7 -E —k • (2-3) 
k

 i = 1 U - na + J2i=i nji 

Other variations of MIoU are shown in the equations 2.4 and 2.5. 

4. Frequency weighted MIoU 

FW MIoU = ( J > ) - X • 5> • - _ 1% • (2-4) 
i = i i = i tt ritt + 2 ^ i = i

 n3i 

5. F-measure 
TP 

F ß = { 1 + ß ) 2 ' (l + ßi).TP + ßi.FN + FP ( 2 - 5 ) 

where TP is true positive, FN false negative, FP false positive, ß — 1 is chosen in 
most cases. 
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2.5 Datasets 
The correct choice of the dataset used for training a semantic segmentation model is 
essential for creating a reliable model. In the case of segmentation of off-road terrain, 
it is important to use a dataset with images from the right environment, with variable 
weather and light conditions to achieve the best results. 

Commonly used annotation formats are R G B masks, JSON (JavaScript Object No­
tation) or C O C O (Common Objects in Context) format labels. JSON and C O C O anno­
tations typically contain information about the segmented objects, e.g. their class labels 
and the coordinates of their boundaries. COCO annotation format is JSON-based and is 
designed for image recognition [12]. R G B masks are mostly used for semantic segmenta­
tion. 

Every dataset should be split into three parts - train, validation and test. The ratio 
for the split is most commonly 70-80% for training, 10-15% for validation and 10-15% for 
testing. Each set contains pairs of corresponding images and their annotations. Train and 
validation sets are used when training a model, test for predictions and final evaluation 
of the model. 

Below are mentioned three datasets created specifically for semantic segmentation of 
off-road terrain. A l l of them have R G B mask annotations but vary in the number of 
classes and the location where the photos were taken. 

2.5 .1 Rellis3D 

Rellis3D dataset [13] is created by researchers from Texas A & M University. Annotations 
consist of ground truth R G B labels for images and point-wise labelled masks for L i D A R 
scans. There are 20 different classes - void, dirt, grass, tree, pole, water, sky, vehicle, 
object, asphalt, building, log, person, fence, bush, concrete, barrier, puddle, mud and 
rubble. A l l of the images were taken at the Ground Research facility on the Rellis Campus 
of Texas A & M University. 

2.5.2 R U G D 

Images in R U G D dataset [14] have only ground truth R G B masks with 24 classes - dirt, 
sand, grass, tree, pole, water, sky, vehicle, container, asphalt, gravel, mulch, rockbed, log, 
bicycle, person, fence, bush, sign, rock, bridge, concrete, table, building. 

2.5.3 Yamaha-CMU Off-Road Dataset (YCOR) 

The Y C O R dataset [15] contains 1076 images split only into train and validation sets with 
a ratio of 931 images for training and 145 images for validation. Photos were taken in 
Western Pensylvania and Ohio during three different seasons. Images were labelled with 
polygons and then converted to R G B masks with 8 classes - sky, rough trail, smooth trail, 
traversable grass, high vegetation, low vegetation, non-traversable, obstacle. 
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2.6 Methods 
2.6 .1 GA-Nav 

GA-Nav models [16, 17] are created with a Mixed Transformers backbone, which serves 
as an alternative to ResNet architecture. GA-Nav architecture is shown in Fig. 2.12. The 
model is created for navigation in off-road terrain and is trained on R U G D and Rellis3D 
datasets. GA-Nav models use coarse-grained labels and compute binary masks for each 
group. The authors provide pretrained models on both datasets. GA-Nav is heavily 
based on MMSegmentation [17], which is a semantic segmentation toolbox based on the 
PyTorch library. 

Multi-scale Feature Extractor 

1 Main Flow 

• Loss 
Attention 

Map 

IV, 
EC, 

Spatial Alignment ot 
Multi-scale Patches 

Hf x Wf 
Flattening 

Seit-Attention 
Heads 

Safe 

Bumpy 

Forbidden 

Multi-scale Fusion 
with group-wise attention 

• * 
Cross-Entropy 

Loss 

Figure 2.12: GA-Nav architecture [17] 

2.6.2 YOLOv8 (You Only Look Once) 

Ultralytics YOLOv8 segmentation models [18] are pretrained on COCO dataset [10] and 
its architecture is inspired by GoogLeNet (Fig. 2.13). Y O L O label format is required for 
training and prediction on different datasets. It is important to note, that these models 
are for instance segmentation and not for semantic segmentation. 
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Figure 2.13: YOLOv8 detailed architecture [19] 
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2.6.3 Semantic segmentation using DeepLabv3+ by Haddad and Mulay 

Semantic segmentation models by N . M . Haddad and A . V . Mulay [20] depend on PyTorch 
libraries utilizing DeepLabv3+ [11]. Provided pretrained model is trained on C O C O and 
Yamaha-CMU Off-road dataset with MobileNetV3-Large backbone [21]. It is possible to 
train and finetune models using three different backbones - ResNet50, ResNetlOl and 
MobileNetV3-Large. 

The authors have created three models with the backbones ResNetlOl, ResNet50 and 
MobileNetV3-Large, trained on 50 epochs with a batch size of 8. These models were 
trained on the Y C O R dataset. Table 2.1 shows the results from training the models and 
examples of their experiments are shown in Figure 2.14. 

Original Mask Ours 

Figure 2.14: Example of the authors output from MobileNetV3-Large after 10 epochs [20] 

Model Backbone Training time Best 
number architecture [HH:MM:SS] validation MIoU 
1 MobileNetV3-Large 01:02:01 85.53% 
2 ResNet50 03:09:18 84.81% 
3 ResNetlOl 04:12:56 85.81% 

Table 2.1: Experiments with DeepLabv3+ network performed by Haddad and Mulay 
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3 Experiments 

Four tasks needed to be done during the experiments. The first was to test all chosen 
pretrained models on different datasets which is described in chapter 3.2. The second task 
was to train different models with various training parameters and again test all models 
on different datasets (chapter 3.3). The third part of the experiments was to create a 
dataset (chapter 3.4) and test the best model on it (chapter 3.5). The final results of the 
experiments are described in chapters 3.3.7 and 3.6. 

3.1 Preparations 
Semantic segmentation requires high computation power, especially G P U , and the re­
sults of training and prediction are highly hardware-dependent. It was necessary to in­
stall NVIDIA C U D A Toolkit [22], which enables the creation of high-performance, G P U -
accelerated applications. Nvidia C U D A 12.2 and Nvidia C U D A Toolkit 11.5 were used. 
A l l of the experiments were done on a computer with the following parameters: 

A l l of the code used and written was in Python 3.11.5, with the use of Conda [23] or 
VSCode [24] environments. Pytorch, numpy, Pillow, matplotlib and os were libraries that 
were used in almost every part of the experiments. 

Methods and datasets used for experiments were chosen in the final part of the prepa­
rations. The methods chosen were GA-Nav and models by Haddad and Mulay. Both 
of these are tailored for semantic segmentation of off-road terrain, compared to Y O L O 
segmentation models, they have R G B mask labels as an input, which is the most common 
annotation format for semantic segmentation. The datasets were selected to match the 
ones used to train the models - R U G D , Rellis3D and Y C O R . 

3.2 Testing pretrained models 
3 .2 .1 GA-Nav 

The first step when testing GA-Nav pretrained models was to prepare all the datasets. 
Rellis3D and R U G D datasets were downloaded and put in a repository structure according 
to the instructions provided by the authors [17]. 

Then it was necessary to install the required libraries and packages. There were issues 
when installing the requirements files. The provided installation files were not up to 
date and changes in package and library versions had to be made during the installation 

Operation system 
C P U 
G P U 

Linux, Ubuntu 22.4 
13th Gen Intel(R) Core(TM) i9-13900HX 
NVIDIA GeForce RTX4080 

Table 3.1: System and hardware parameters 
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process. The biggest issue occurred when installing the MMCV toolbox, which at the 
time went through a version update and GA-Nav models have not yet been adapted to 
it. 

The next step was dataset processing, where the ground truth labels were processed 
and grouped labels were created. Other problems have occurred while running training 
and prediction of the models. Errors were mostly related to the MMSegmentation toolbox. 
It was decided that GA-Nav models are inconvenient to use in their current state. Progress 
with GA-Nav can be made when the authors update their work according to new library 
and package versions. 

3.2.2 Models by Haddad and Mulay 

The model was trained with Mnv3 backbone and 50 epochs on the Y C O R dataset. It 
was not possible to evaluate the model on the Y C O R dataset due to its structure. As 
was mentioned before (2.5.3), the Y C O R dataset is split only in train and validation sets, 
predictions on the dataset as it is would not be relevant. For this reason, the model was 
tested only on the R U G D and Rellis3D datasets. 

The R U G D and Rellis3D datasets had to be relabeled corresponding to the classes 
used in Y C O R . Class mapping was created (table 3.2) and used on test sets of both 
datasets. Visualization of the relabeling can be seen in Figures 3.1 and. 

(a) Rellis3D original mask (b) Rellis3D relabeled 

(c) RUGD original mask (d) RUGD relabeled 

Figure 3.1: Example of mask relabeling on RUGD and Rellis3D datasets 

The authors of the model created only a function for calculating MIoU, the mean 
accuracy function was added to the code. Images used for testing were chosen based on 
list files provided with both datasets, their file structure had not been changed. This 
pretrained model has performed with MIoU and mean accuracy over 70% and latency 11 
ms, exact results can be seen in Table 3.3. These results can not be compared with the 
authors' results, because they did not test their models on other datasets. 
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class ID Y C O R class R U G D class Rellis3D class 
0 low vegetation bush bush 
1 sky sky sky 

void 
2 high vegetation tree tree 
3 rough trail mulch puddle 

rock-bed rubble 
rock 

4 non-traversable void water 
water 

5 traversable grass grass grass 
6 smooth trail dirt dirt 

sand asphalt 
asphalt concrete 
gravel mud 
concrete 

7 obstacle pole pole 
vehicle vehicle 
object object 
building building 
log log 
bicycle person 
person fence 
fence barrier 
sign 
bridge 
picnic-table 

Table 3.2: Class mapping between YCOR, RUGD and Rellis3D datasets 

Problems occurred with segmenting buildings and objects that were further away in 
the images. Most of these objects were classified as low or high vegetation. Reflection 
of the sky in a body of water was segmented as the sky and not water, which is a very 
common issue for many semantic segmentation models. 

The example of the model's predictions on the Rellis3D dataset is shown in the first row 
in Figure 3.2. It recognized rough terrain but sometimes classified it as high vegetation. 
A n example of predictions on the R U G D dataset is shown in Figure 3.2. 

Dataset MIoU Mean accuracy Latency 
R U G D 72.2983% 72.1856% 0.0110 s 
Rellis3D 71.3578% 71.2378% 

Table 3.3: Evaluation of the Mnv3-50-pretrained model 
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inpu: image mask segmentation overlay 

| Low vegetation | Sky | High vegetation | Rough trail Q Non-traversable Traversable grass Smooth trail | Obstacle 

Figure 3.2: Predictions with Mnv3-pretrained model 

3.3 Training models 
Six models with different backbones and other parameters were trained and tested. The 
parameters were chosen corresponding to the previous work of Haddad and Mulay [20]. 

Our parameters for training were chosen as close to the original parameters provided 
by the authors as possible. Three models with ResNetlOl, ResNet50 and MobileNetV3-
Large backbones were trained on 50 epochs. The batch size differs (see chapters 3.3.4, 
3.3.3 for further details). Additionally, three other models were trained on 10 epochs for 
comparison with the models trained on 50 epochs. 

A l l of our models have been trained on the restructured version of the Y C O R dataset 
which has been changed so that models could be properly evaluated. A test set has been 
added and a new split was created with the ratio 2629 train, 435 validation and 165 test. 
Images for the new split were chosen randomly. 

A l l models were then tested on test sets of restructured Y C O R dataset, R U G D and 
Rellis3D datasets. Relabeled masks of images from R U G D and Rellis datasets were used 
again. Models are named as follows: [backbone]-[number of epochs]. A l l training parame­
ters are summarized in Table 3.4. 

Model Epochs Backbone Batch size Training time Best 
[HH:MM:SS] MIoU 

Mnv3-10 10 MobileNetV3-Large 8 00:06:56 86.01% 
Mnv3-50 50 MobileNetV3-Large 8 00:34:47 83.35% 
Resl01-10 10 ResNetlOl 2 00:45:26 86.77% 
Resl01-50 50 ResNetlOl 2 03:49:21 86.78% 
Res50-10 10 ResNet50 3 00:30:54 87.15% 
Res50-50 50 ResNetöO 3 02:34:56 86.90% 

Table 3.4: Training parameters of all models 
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3 .3 .1 Mnv3-50 

The first model was trained with the MobileNetv3Large backbone on 50 epochs and batch 
size 8. The training was finished in 10 minutes. A l l training parameters are shown in the 
Table 3.4. 

Predictions on the Y C O R dataset had reached the value of mean accuracy below 62%. 
on the Rellis3D and R U G D datasets around 68%. The latency of this model was 12.4 ms. 
Exact results are shown in Table 3.5. The model had problems segmenting objects, sand 
roads and recognizing bushes as low vegetation. Examples of predictions on all datasets 
are shown below in Figure 3.3. 

Dataset MIoU Mean accuracy Latency 
R U G D 68.6628% 68.2317% 0.0124 s 
Rellis3D 69.2031% 67.6891% 
Y C O R 61.5430% 61.3518% 

Table 3.5: Evaluation of the Mnv3-50 model 

input image mask segmentation overlay 

| Low vegetation | Sky | High vegetation | Rough trail ^ Non-traversable Traversable grass Smooth trail | Obstacle 

Figure 3.3: Testing Mnv3-50 model 

The first row shows predictions in the Rellis3D dataset. This model could segment 
sky and high vegetation correctly on the Rellis3D dataset but was not able to segment the 
rough trail well. The second row of the image shows predictions on the R U G D dataset 
where the model classified the rock bed as a smooth trail and not a rough trail. The third 
row shows predictions on the Y C O R dataset. 
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3.3.2 Mnv3-10 

The Mnv3-10 model was trained with 10 epochs. The batch size had to be lowered to 2 
due to the incapability of the G P U to process the training with a higher value. Training 
took 45 minutes with the best validation MIoU of 86.77%. 

The model performed similarly on the Y C O R dataset as the Mnv3-50 model. The 
best mean accuracy has been reached when testing the model on Rellis3D with a value 
of almost 71%. The latency of this model was 10.6 ms. A l l results can be found in Table 
3.6 below. 

Dataset MIoU Mean accuracy Latency 
R U G D 68.4727% 68.2543% 0.0106 s 
Rellis3D 71.1870% 70.9124% 
Y C O R 62.1549% 61.9316% 

Table 3.6: Evaluation of the Mnv3-10 model 

A n example of predictions on the Rellis3D dataset can be found in the first row in 
Figure 3.4, on the R U G D dataset in the second row, and on the Y C O R dataset in the 
third row. The model classified most of the high vegetation correctly but was not able to 
classify low vegetation or traversable grass. 
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3.3.3 Resl01-50 

The third model was trained with the variation of ResNet architecture ResnetlOl. This 
model was trained on 50 epochs with batch size 2. Due to insufficient G P U computational 
power, the batch size had to be lowered again. The training took nearly 4 hours with the 
best validation MIoU of 86.78% (see Table 3.4). 

The model could not classify non-traversable terrain correctly and had issues segment­
ing parts of low vegetation and traversable terrain as an obstacle. It also classified parts 
of the smooth trail as non-traversable when evaluated on the Y C O R dataset. Examples 
of predictions are shown in 3.5, where each consecutive row represents an example from 
Rellis3D, R U G D and Y C O R datasets. Predictions on the Y C O R dataset had the worst 
results of all models with little over 61%. Contrary to that, the predictions on the Rel-
lis3D dataset reached the best values of mean accuracy, nearly 72%. This model had the 
highest latency of 86.5 ms. The exact values are shown in Table 3.7 below. 

Dataset MIoU Mean accuracy Latency 
R U G D 69.4481% 69.3576% 0.0865 s 
Rellis3D 72.0036% 71.8967% 
Y C O R 61.2914% 61.1644% 

Table 3.7: Evaluation of the Resl01-50 model 

input image mask segmentation overlay 

| Low vegetation | Sky | High vegetation | Rough trail ^ Non-traversable Traversable grass Smooth trail | Obstacle 

Figure 3.5: Testing Resl01-50 model 
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3.3.4 Resl01-10 

This model was trained on 10 epochs with a batch size of 2, ResNetlOl was used as a 
backbone. The training was finished in 45 minutes. For all training parameters see Table 
3.4. 

Predictions of rough terrain and traversable grass in the R U G D dataset were inaccurate 
(first row in Figure 3.6). The Resl01-10 model had issues when tested on the Rellis3D 
dataset and achieved a mean accuracy of 68%. It was not able to correctly classify bodies 
of water, which were predicted as rough terrain (see the second row in Figure 3.6), and 
rough terrain as smooth terrain. When tested on the Y C O R dataset the model segmented 
parts of the terrain, such as traversable grass or low vegetation, as rough terrain (third row 
in Figure 3.6). Predictions on the Y C O R dataset reached the best values of all models, 
all results are summarized in Table 3.8. 

Dataset MIoU Mean accuracy Latency 
R U G D 69.5141% 69.3339% 0.0863 s 
Rellis3D 69.3168% 67.9990% 
Y C O R 65.0408% 64.9108% 

Table 3.8: Evaluation of the Resl01-10 model 

input image mask segmentation overlay 

| Low vegetation | Sky | High vegetation | Rough trail ] Non-traversable Traversable grass Smooth trail | Obstacle 

Figure 3.6: Testing Resl01-10 model 
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3.3.5 Res50-50 

The fifth model was trained with the backbone ResNet50, which is another variation of 
ResNet architecture. The G P U was able to perform the training of the model with a 
batch size of 3 of 50 epochs. Training of the model was finished in over two and a half 
hours with the best validation MIoU of 86.8%. 

Predictions on the Rellis3D dataset reached a mean accuracy of 71.5%, on the R U G D 
dataset 70.5% and the Y C O R dataset 62.1% with a latency of 57 ms. The model had issues 
segmenting obstacles, which were classified as low vegetation. Examples of predictions 
are shown in Figure 3.7, where the first row represents evaluation on the Rellis3D dataset, 
the second row on the R U G D dataset, and the third row on the Y C O R dataset. Exact 
training parameters are in Table 3.4 and results of testing the model are in Table 3.9. 

Dataset MIoU Mean accuracy Latency 
R U G D 70.6128% 70.5438% 0.0570 s 
Rellis3D 71.5969% 71.4655% 
Y C O R 62.2076% 62.1174% 

Table 3.9: Evaluation of the Res50-50 model 

input image mask segmentation overlay 

| Low vegetation | Sky | High vegetation | Rough trail ^ Non-traversable Traversable grass Smooth trail | Obstacle 

Figure 3.7: Testing Res50-50 model 
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3.3.6 Res50-10 

The last model was trained with the backbone ResNet50 on 10 epochs with a batch size 
of 3. The training was performed in 30 minutes with the best validation MIoU of 87.15%. 
A l l training parameters are specified in Table 3.4. 

The model performed the most accurately on the R U G D dataset with a value of mean 
accuracy of 71.6%, but it classified parts of rough terrain and traversable grass as high 
vegetation (see the first row in Figure 3.8). Issues occurred when segmenting objects and 
the Res-50-10 model classified parts of traversable terrain as obstacles (second row in 
Figure 3.8). When tested on the Y C O R dataset, the model was inaccurate in segmenting 
traversable grass and low vegetation (see the third row in Figure 3.8). Results of testing 
are shown in Table 3.10. 

Dataset MIoU Mean accuracy Latency 
R U G D 71.6493% 71.6129% 0.0546 s 
Rellis3D 71.0637% 71.0120% 
Y C O R 63.2410% 63.3029% 

Table 3.10: Evaluation of the Res50-10 model 
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3.3.7 Final results 

A l l results of testing the semantic segmentation models are summarized in Table 3.11 
below. Comparison of the models based on accuracy can be seen in Figure 3.9, on MIoU 
in Figure 3.10 and on latency in Figure 3.11. 

Model Dataset MIoU Mean accuracy Latency 
Mnv3-preterained R U G D 72.2983% 72.1856% 0.0110 s 

Rellis3D 71.3578% 71.2378% 
Mnv3-50 R U G D 68.6628% 68.2317% 0.0124 s 

Rellis3D 69.2031% 67.6891% 
Y C O R 61.5430% 61.3518% 

Mnv3-10 R U G D 68.4727% 68.2543% 0.0106 s 
Rellis3D 71.1870% 70.9124% 
Y C O R 62.1549% 61.9316% 

Resl01-50 R U G D 69.4481% 69.3576% 0.0865 s 
Rellis3D 72.0036% 71.8967% 
Y C O R 61.2914% 61.1644% 

Resl01-10 R U G D 69.5141% 69.3339% 0.0863 s 
Rellis3D 69.3168% 67.9990% 
Y C O R 65.0408% 64.9108% 

Res50-50 R U G D 70.6128% 70.5438% 0.0570 s 
Rellis3D 71.5969% 71.4655% 
Y C O R 62.2076% 62.1174% 

Res50-10 R U G D 71.6493% 71.6129% 0.0546 s 
Rellis3D 71.0637% 71.0120% 
Y C O R 63.2410% 63.3029% 

Table 3.11: Final results of testing all models 
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• YAMAHA • RUGD • RELLI5 

7 4 % 

Mnv3-pretra ined Mnv3-10 Mnv3-50 Resl01-10 Resl01-50 Res50-10 Res50-50 

Figure 3.9: Comparison of the models based on accuracy 
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Figure 3.10: Comparison of the models based on MIoU 
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0.10 

0.09 

Mnv3-pretra ined Mnv3-10 Mnv3-50 Resl01-10 Resl01-50 Res50-10 Res50-50 

Figure 3.11: Comparison of the models based on latency 

3.4 Creating an evaluation dataset 
The third part of the experiments was to create a dataset. This dataset was further used 
for testing the best semantic segmentation model. Collecting much data was unnecessary 
because the images were not meant for training the models, only to show how the best 
model performed in various situations. 

The dataset consists of 205 images in total. The photographs in this dataset were 
selected to include as diverse weather conditions, seasons, and types of environments as 
possible. The main focus was to create a set that best represents the environment in 
which the semantic segmentation models will be used. 

The first part of the dataset named moravia contains 33 images taken in South Moravia 
during spring. The images were taken on a GoPro camera with good visibility and light 
conditions. High vegetation, objects, smooth trail, rough trail and non-traversable terrain 
can be seen in all images. 

The second part, bikepark, is divided into four sections based on the location and 
season when the photos were taken. Section vidl contains 37 images from the bike park 
Dolní Morava taken in summer, section vid2 72 images from the same location in spring. 
Sections vidS and vid4 include images from the bike park Haypark Tošovice taken in 
winter and autumn. Both sections contain 48 images each. A l l photos were taken on a 
GoPro camera positioned on the rider's helmet. Rough trail, low and high vegetation and 
obstacles can be seen in the images from different angles. 

3.5 Testing the best model 
The final part of the experiments was to choose the model that performed the best based 
on its accuracy and speed of the segmentation and test it on the created dataset. The 
MnvS-pretrained model performed the best on the R U G D dataset and well on the Rellis3D 
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dataset. The best value of mean accuracy of the prediction on the Rellis3D dataset was 
achieved by model Resl01-50. 

The best MIoU value when testing the models on the R U G D dataset was reached again 
by the MnvS-pretrained model, on the Rellis3D dataset by the Resl01-50. A comparison 
of all results can be seen in Figure 3.9 and 3.10. 

A l l models achieved mean accuracy and MIoU of 65% and lower when tested on the 
restructured Y C O R dataset, which is noticeably lower than their performance with other 
dataset s. 

Models were also compared based on their latency. The MnvS-pretrained, Mnv3-50 and 
Mnv3-10 models have achieved the fastest latency under 15 ms. The rest of the models 
were noticeably slower with the latency around 86 ms of the Resl01-10 and Resl01-50 
models and 56 ms of the Res50-10 and Res50-50 models. Models with ResNet backbone 
were slower because this type of architecture is more complicated than MobileNetV3-
Large. A comparison of all models based on their speed is visualized in Figure 3.11. A l l 
results are summarized in Table 3.11, chapter 3.3.7. 

MnvS-pretrained was chosen as the best model. It performed well when predicting on 
both Rellis3D and R U G D datasets. Its latency was the second lowest with 11 ms. 

The last task was to test the best model. Predictions on the moravia set of images 
were sufficient. The model was able to segment roads, high vegetation and obstacles 
well. There were issues with segmenting parts of rough terrain and objects further away. 
Examples of predictions on the moravia set are in Figure 3.13. The model had issues 
segmenting the bikepark set, where it could correctly segment only parts of roads and 
high vegetation, segmentation of the images taken in winter was not inadequate (Figure 
3.12). 

Figure 3.12: Predictions on the bikepark part of the dataset 
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nput image segmentation overlay 

| Lowvegetation | Sky | High vegetation H R o u 9 n t r a i l ZD Non-traversable Traversable grass Smooth trail B Obstacle 

Figure 3.13: Predictions on the moravia part of the dataset 

3.6 Results analysis, discussion 
A l l models had issues segmenting dirt or sand roads when tested on the Yamaha-CMU 
Off-Road dataset. After reviewing the images in train, validation and test sets, it was 
noted that the split of the images was done poorly. There were a few images containing 
dirt roads in train set and most of them were put in the test set. This caused the model to 
perform the prediction of said dirt roads inaccurately. Because of that and the relatively 
small size of the dataset, the mean values were much lower. Rellis3D and R U G D datasets 
do not include many images with this type of terrain, their mean values were higher and 
the predictions were more accurate. 

The predictions on the R U G D dataset were performed the best by the Mnv3-pretrained 
model which had the highest mean accuracy and MIoU score. The most precise predictions 
on the Rellis3D dataset were achieved with the Res 101-50 model and on the Y C O R 
dataset with Resl01-10. The fastest predictions were performed by the Mnv3-10 model. 

Most models could not segment bodies of water and objects such as buildings correctly. 
The bodies of water were usually segmented as sky due to the reflection of it in the water. 
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Objects and buildings were segmented as low vegetation. This was probably caused by 
the size of the training dataset (YCOR) and its insufficient variability of environments. 

The MnvS-pretrained was chosen as the best model overall. Its latency reached only 
16 ms and the model performed well on the R U G D and Rellis3D datasets. When tested 
on the moravia part of the created dataset, it managed to predict smooth trails, high veg­
etation and rough trails. It had issues segmenting parts of low vegetation and rough trails 
and instead predicted these areas as high vegetation. When tested on the bikepark set, it 
could only segment images where the camera was on the rider's head facing the horizon. 
Images where the rider was looking down were not segmented well. The predictions were 
also performed poorly on images from dense forests and on images taken in winter. 
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4 Conclusion 

This work was focused on semantic segmentation of off-road terrain which is a task of 
classifying areas of images. The first goal was to perform a theoretical survey on semantic 
segmentation. The basics of semantic segmentation have been summarized. After that 
were explored algorithms using traditional approaches and algorithms using neural net­
works, basic principles of neural networks and their different architectures were explained. 
The examples of the most common key performance indicators for evaluating semantic 
segmentation models were given, and their calculation was included. At the end of the 
theoretical survey, the possibilities of different data used for training and the various 
methods themselves were explored. 

The second goal was to perform experiments. Testing of pretrained segmentation 
models on various datasets was the first task. The model by Haddad and Mulay was 
evaluated on two different datasets. The second task was to train segmentation models 
with diverse parameters and test them again on multiple datasets. Six models with 
three different backbone architectures and various training parameters were trained and 
then evaluated on three datasets. The evaluations of all models were compared and the 
pretrained model with MobileNetVS-Large backbone was chosen as the best according to 
its precision and speed. The other models had higher values of the Mean Intersection 
over Union in the training and validation phase, but their mean accuracy and Mean 
Intersection over Union values were lower when tested on different datasets. 

The third task of the experiments was to create an evaluation dataset. Photos from 
off-road terrain in South Moravia and two different bike parks in the Czech Republic were 
collected. These images were sorted in two parts according to the location where the 
photos were taken, and a dataset consisting of 205 images was created. The best model 
that was chosen was then used for predictions on this dataset. 

The model performed well on the images taken in South Moravia, it was capable of 
segmenting high vegetation, roads and surrounding terrain, but had issues segmenting 
buildings and obstacles. It was not able to perform sufficiently on the images taken 
in the bike parks. The images taken in spring and summer were classified only partly 
correctly - the model was capable of recognizing parts of smooth trails, sky and parts of 
high vegetation. The images taken in winter were not sufficiently segmented. This was 
caused by the different environment compared to the training dataset and the fact, that 
the images from bike parks were taken on a GoPro camera located on the driver's helmet 
- the images were taken from various angles. 

The next steps for improving this work would be creating a training dataset with var­
ious environments in different weather conditions and fine-tuning the training parameters 
to gain better results. The possibilities of other architectures could be explored and a 
new semantic segmentation model created. 
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A N N Artificial Neural Network 

C N N Convolutional Neural Network 
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39 



List of Figures 

2.1 Comparison of semantic segmentation, object detection, image classifica­
tion, instance segmentation [2] 10 

2.2 Example of semantic segmentation 11 
2.3 Sliding window approach 11 
2.4 C R F with 4-neighbourhood [1] 12 
2.5 Example of simple R D F 13 
2.6 A N N with 2 hidden layers - 2 SE, 6 P E , 2 E E , 10 nodes in total 14 
2.7 Example of a simple C N N 14 
2.8 Example of R N N architecture 15 
2.9 U-Net architecture 15 
2.10 ResNet building block 16 
2.11 DeepLabv3+ architecture [11] 16 
2.12 GA-Nav architecture [17] 19 
2.13 YOLOv8 detailed architecture [19] 20 
2.14 Example of the authors output from MobileNetV3-Large after 10 epochs [20] 21 

3.1 Example of mask relabeling on R U G D and Rellis3D datasets 23 
3.2 Predictions with MnvS-pretrained model 25 
3.3 Testing Mnv3-50 model 26 
3.4 Testing Mnv3-10 model 27 
3.5 Testing Resl01-50 model 28 
3.6 Testing Resl01-10 model 29 
3.7 Testing Res50-50 model 30 
3.8 Testing Res50-10 model 31 
3.9 Comparison of the models based on accuracy 33 
3.10 Comparison of the models based on MIoU 33 
3.11 Comparison of the models based on latency 34 
3.12 Predictions on the bikepark part of the dataset 35 
3.13 Predictions on the moravia part of the dataset 36 

40 



References 

[1] T H O M A , Martin. A Survey of Semantic Segmentation [online]. 2016 [visited on 

2024-05-20]. Available from DOI: https://doi.org/10.48550/arXiv.1602.06541. 

[2] LIU, L i ; O U Y A N G , Wanli; W A N G , Xiaogang; F I E G U T H , Paul; C H E N , Jie; LIU, 

Xinwang; PIETIKÁINEN, Matti. Deep Learning for Generic Object Detection: A 

Survey. International Journal of Computer Vision [online]. 2019, vol. 128, no. 2020, 

pp. 261-318 [visited on 2024-05-21]. Available from DOI: https://doi.org/10. 

1007/sll263-019-01247-4. 

[3] LI, Yixin; LI, Chen; LI, Xiaoyan; W A N G , Kai; R A H A M A N , M d Mamunur; SUN, 

Changhao; C H E N , Hao; W U , Xinran; Z H A N G , Hong; W A N G , Qian. A Comprehen­

sive Review of Markov Random Field and Conditional Random Field Approaches 

in Pathology Image Analysis. Arch Computat Methods Eng [online]. 2021, vol. 29, 

pp. 609-639 [visited on 2024-05-20]. Available from DOI: https://doi.org/10. 

1007/sll831-021-09591-w. 

[4] H E A R S T , Marti A . Support vector machines. IEEE Intelligent Systems [online]. 

July-Aug. 1998, vol. 13, no. 4, pp. 18-28 [visited on 2024-05-21]. Available from 

DOI: 10.1109/5254.708428. 

[5] A G G R A W A L , Charu C. Neural Networks and Deep Learning. 2nd ed. Springer, 

2023. ISBN 978-3-031-29641-3. 

[6] C H O L L E T , Frangois. Deep learning v jazyku Python: knihovny Keras, Tensorflow. 

Praha: Grada Publishing. Knihovna programátora (Grada), 2019. ISBN 978-80-247-

3100-1. 

[7] G U R E S E N , Erkam; K A Y A K U T L U , Gulgun. Definition of artificial neural networks 

with comparison to other networks. Procedia Computer Science [online]. 2011, vol. 3, 

pp. 426-433 [visited on 2024-05-21]. ISSN 1877-0509. Available from DOI: doi: 10. 

1016/j.procs.2010.12.071. 

41 

https://doi.org/10.48550/arXiv.1602.06541
https://doi.org/10
https://doi.org/10


R E F E R E N C E S R E F E R E N C E S 

[8] KOUSHIK, Jayanth. Understanding Convolutional Neural Networks [online]. 2016 

[visited on 2024-05-21]. Available from DOI: https://doi.org / 1 0 . 4 8 5 5 0/arXiv. 

1605.09081. 

[9] M A L L A T , Stephane. Understanding Deep Convolutional Networks [online]. 2016 

[visited on 2024-05-21]. Available from DOI: https://doi.org / 1 0 . 4 8 5 5 0/arXiv. 

1601.04920. 

[10] HE, Kaiming; Z H A N G , Xiangyu; R E N , Shaoqing; SUN, Jian. Deep Residual Learn­

ing for Image Recognition [online]. 2015 [visited on 2024-05-21]. Available from DOI: 

https://doi.org /10.48550/arXiv .1512.03385. 

[11] C H E N , Liang-Chieh; ZHU, Yukun; P A P A N D R E O U , George; SCHROFF, Florian; 

A D A M , Hartwig. Encoder-Decoder with Atrous Separable Convolution for Semantic 

Image Segmentation. 2018. Available from DOI: https : / / d o i . org/10 . 48550/ 

arXiv.1802.02611. 

[12] LIN, Tsung-Yi; M A I R E , Michael; B E L O N G I E , Serge; B O U R D E V , Lubomir; GIR-

SHICK, Ross; HAYS, James; P E R O N A , Pietro; R A M A N A N , Deva; ZITNICK, 

C. Lawrence; D O L L A R , Piotr. Microsoft COCO: Common Objects in Context. 

Computer Vision - ECCV 2014 [online]. 2014, vol. 8693, pp. 740-755 [visited on 

2024-05-21]. Available from DOI: https://doi.org /10.1007/978-3-319-10602-

1_48. 

[13] J IANG, Peng; O S T E E N , Philip; WIGNESS, Maggie; SARIPALLI , Srikanth. RELLIS-

3D Dataset: Data, Benchmarks and Analysis [online]. 2022 [visited on 2024-05-21]. 

Available from DOI: https://doi.org /10.48550/arXiv .2011.12954. 

[14] WIGNESS, Maggie; E U M , Sungmin; III, John G. Rogers; H A N , David; K W O N , 

Heesung. A R U G D Dataset for Autonomous Navigation and Visual Perception in 

Unstructured Outdoor Environments. IEEE/RSJ International Conference on In­

telligent Robots and Systems (IROS) [online]. 2019, pp. 5000-5007 [visited on 2024-

05-21]. Available from DOI: 10.1109/IR0S40897.2019.8968283. 

[15] M A T U R A N A , Daniel; CHOUR, Po-Wei; U E N O Y A M A , Masashi; S C H E R E , Sebas­

tian. Real-time Semantic Mapping for Autonomous Off-Road Navigation. Proceed-

42 

https://doi.org/10.48550/arXiv
https://doi.org/10.48550/arXiv
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1007/978-3-319-10602-
https://doi.org/10.48550/arXiv.2011.12954


R E F E R E N C E S R E F E R E N C E S 

ings of 11th International Conference on Field and Service Robotics (FSR '17). 

2017, pp. 335-350. 

[16] G U A N , Tianrui; K O T H A N D A R A M A N , Divya; C H A N D R A , Rohan; S A T H Y A M O O R -

T H Y , Adarsh Jagan; W E E R A K O O N , Kasun; M A N O C H A , Dinesh. GA-Nav: Effi­

cient Terrain Segmentation for Robot Navigation in Unstructured Outdoor Environ­

ments. IEEE Robotics and Automation Letters [online]. 2022, vol. 7, no. 3, pp. 8138-

8145 [visited on 2024-05-21]. Available from DOI: 10.1109/LRA.2022.3187278. 

[17] GANav-offroad [online]. 2022. [visited on 2024-05-21]. Available from: https :// 

github.com/rayguan97/GANav-offroad. 

[18] DIWAN, Tausif; A N I R U D H , C ; T E M B H U R N E , Jitendra V. Object detection using 

Y O L O : challenges, architectural successors, datasets and applications. Multimedia 

Tools and Applications [online]. 2023, vol. 82, pp. 9243-9275 [visited on 2024-05-21]. 

Available from DOI: https://doi.org/10.1007/sll042-022-13644-y. 

[19] Yolov8 Architecture vs Yolov5. 2023. Available also from: https://medium.com/ 

@EG_Johnson/yolov8-architecture-vs-yolov5-49d23b462ea6. 

[20] H A D D A D , Nathaniel M . ; M U L A Y , Amit Vijaykumar. Semantic segmentation of 

off-road images using transfer learning and DeepLabv3+ [online]. 2022. [visited 

on 2024-05-21]. Available from: https : / /github . com/nmhaddad/ semantic-

segmentation/tree/master. 

[21] HOWARD, Andrew; S A N D L E R , Mark; C H U , Grace; C H E N , Liang-Chieh; C H E N , 

Bo; T A N , Mingxing; W A N G , Weijun; ZHU, Yukun; P A N G , Ruoming; V A S U D E -

V A N , Vijay; L E , Quoc V. ; A D A M , Hartwig. Searching for MobileNetV3. ICCV. 

2019. Available from DOI: https://doi.org/10.48550/arXiv.1905.02244. 

[22] CUDA Toolkit [online]. 2024. [visited on 2024-05-21]. Available from: https:// 

developer.nvidia.com/cuda-toolkit. 

[23] CONDA [online]. 2017. [visited on 2024-05-21]. Available from: https : / /docs . 

conda.io/en/latest/%5C#. 

[24] Visual Studio Code [online]. 2024. [visited on 2024-05-21]. Available from: https: 

//code.visualstudio.com/. 

43 

https://doi.org/10.1007/sll042-022-13644-y
https://medium.com/
https://doi.org/10.48550/arXiv.1905.02244


Appendix 

final Folder with example output images from the final testing 

R E A D M E ReadMe file with additional information 

conf-rellis A n example of a configuration file for testing on the Rellis3D dataset 

rellis-relabel Code for relabeling the datasets 

test-yamaha-v2 Example code of testing the models 

training-demo Code used for training the models 
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