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Vypracoval: Mgr. Miroslav Ježek, Ph.D.
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Abstrakt

Interference světla je d̊uležitým faktorem v mnoha optických aplikaćıch. Umožňuje

přesná interferometrická měřeńı, ale současně omezuje dosažitelné rozlǐseńı. Tato fun-

damentálńı vlnově optická limita byla překonána využit́ım kvantových entanglovaných

v́ıcefotonových stav̊u a nebo komplikovanými neklasickými detekčńımi metodami. Do-

sažené superrozlǐseńı je bohužel extrémně citlivé na nedokonalosti detekčńıho zař́ızeńı

či optické ztráty samotného měřeného vzorku. Tyto kvantové detekčńı metody tak

vesměs vykazuj́ı citlivost horš́ı než prosté intenzitńı měřeńı silným optickým signálem.

V předložené práci ukážeme, že klasické koherentńı stavy světla a běžná koherentńı

detekce umožňuje superrozlǐseńı s citlivost́ı škáluj́ıćı se dle 1/
√
N , kde N je středńı

počet foton̊u použitého laserového zářeńı. Experimentálně demonstrujeme v́ıce než de-

setinásobné zúžeńı proužku interferenčńıho obrazce a superrozlǐseńı dosahuj́ıćı osmi

interferenčńıch proužk̊u připadaj́ıćıch na jednu vlnovou délku. Současně analyzujeme

citlivost prezentované metody a jej́ı škálováńı s intenzitou použitého světla. Dále dis-

kutujeme možnost využit́ı stlačeného světla pro interferometrické superrozlǐseńı při

současném vylepšeńı citlivosti pod standardńı kvantovovou limitu.
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Abstract

Interference of light fields plays an important role in various high-precision mea-

surement schemes. It has been shown that super-resolving phase measurements beyond

the standard coherent state limit can be obtained either by using maximally entangled

multi-particle states of light or using complex detection approaches. In addition to

their high technical complexity, these methods lack robustness against imperfections

rendering the sensitivity performance above the shot noise limit. Here we show that

super-resolving phase measurements at the shot noise limit can be achieved without

resorting to non-classical optical states or to low-efficiency detection processes. Using

robust coherent states of light, high-efficiency homodyne detection and a determinis-

tic binarization processing technique, we show a narrowing of the interference fringes

that scales with 1/
√
N where N is the mean number of photons of the coherent state.

Experimentally we demonstrate a more than 10-fold narrowing at the shot noise limit

and up to 8 fringes per wavelength. Further, the phase super-resolution technique is

extended to squeezed states of light. Preliminary experimental demonstration shows

both the super-resolution and super-sensitivity beyond the shot noise limit using solely

Gaussian resources—coherent and squeezed states and homodyne tomography.

Keywords

optical phase, super-resolution, sensitivity, coherent state, squeezed state, homo-

dyne detection
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Chapter 1

Introduction

Wave property of light is crucial for many metrological applications as well as in litog-

raphy and imaging. A change of a physical quantity coupled to the optical signal can be

detected by counting the number of fringes when superimposed with a reference wave.

When two coherent electromagnetic waves interfere as in a common Mach-Zehnder

interferometer or in Young’s double slit experiment, an oscillatory interference pattern

arises with a periodicity governed by the wavelength, λ, of the field. The period is given

by λ/2 and is often referred to as the standard resolution limit of interferometers or

as the Rayleigh resolution criterion of optical imaging, which represents the minimum

resolvable structure in microscopy, lithography, and other applications [1]. Further

decreasing the structure size renders the observed feature virtually undetectable. Us-

ing a variety of classical image restoration and reconstruction methods the resolution

can be partially improved at the expense of excess noise added as for apodization

or Fourier deconvolution [2, 3]. Advanced techniques employing tomography synthe-

sis and statistical inference offer several-fold improvement over the Rayleigh limit but

they require an excessive data offline processing and do not assure excess noise free

operation [4]. Alternatively, approaches based on 4-π stimulated emission depletion [5]

and other nonlinear interactions were developed to beat the Rayleigh bound by some

fixed amount down to the resolution of about 10 nm. Unfortunately, the nonlinear in-

teraction requires high power density of optical radiation which can cause degradation

or destruction of the sample. It seems, that the only scalable way how to decrease the

resolution limit using classical optics is to decrease the wavelength of the light.

Quantum metrology developed in last two decades has overcome the classical

Rayleigh limit by exploiting non-classical states of light with the prominent example of

multiphoton path entangled states, (|N, 0〉+ |0, N〉)/
√

2, known as NOON states [6,7].

The effective de Broglie wavelength of NOON state is N times smaller than the opti-

cal wavelength of the corresponding unentangled light, which enables super-resolution
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of phase measurement—that is the resolution beyond the standard λ/2 limit. Super

resolution with NOON states has been demonstrated with ions [8], nuclear spins [9],

atoms [10] and photons [11–15]. In addition to the super-resolution, NOON states can

in principle also beat the quantum shot noise limit (SNL) in phase estimation ulti-

mately reaching the optimal estimation known as the Heisenberg limit [16]. The SNL

yields the sensitivity scaling of 1/
√
N , where N is the mean number of photons in the

optical signal, whereas for Heisenberg limit it goes as 1/N . Anything beyond the SNL

is called super-sensitivity.

Entangled states and especially NOON states with higher number of photons are

prepared and detected with very low efficiency [17] and they are extremely susceptible

to losses. The probability that NOON state with N photons survives the non-unity

transmittance η scales with ηN . As the result of this unfavourable scaling the per-

formance of NOON states decreases and ultimately reaches SNL for N high enough

and a sample with arbitrarily low non-zero losses [18]. For losses higher than 79% the

sensitivity of phase measurement with NOON states actually decreases for any number

N > 1 of photons. It is important to stress that the losses are unavoidably implied

by the causality. For any physical system the imaginary part of a response function,

which causes the absorption, is related to the real part responsible for phase changes

induced by the system [19]. It means that only completely lossless vacuum retains the

performance of path entangled states better than the SNL for any number of photons

but, in this case, there is no phase shift to measure. Carefully engineered entangled

states improve the phase measurement performance for intermediate level of losses and

low number of photons but this approach converges again to the SNL in the regime of

high losses typical for real-life applications [20]. Biological and other interesting sam-

ples typically possess a high degree of losses or scattering and non-classical states do

not bring us any improvement over the classical strategy. A more promising approach

to deterministically beat the SNL (and eventually reaching the Heisenberg Limit) is

the one based on single photons in a multiple-pass interferometer with adaptive phase

evaluation, although its performance will be ultimately limited by the extended time

of flight of the photons [21,22].

Coherent states of light have also been used to obtain super-resolution. The idea

is to detect a nonclassical state (such as the NOON state) via state projection as

opposed to nonclassical state preparation [23]. Examples of projections of coherent

states that lead to phase super-resolution are photon counting, coincidence counting,

and parity detection [15, 24–32]. Although this method largely reduces the complex-

ity of the preparation stage, the detection part remains complex (ideally requiring

photon-number-resolving detectors) and the efficiency in projecting out the desired
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non-classical state is often very low [26].

A common trait of the presented methods is that their Wigner functions (quasi prob-

ability distributions in phase space) associated with the non-classical state preparation

or detection are non-Gaussian and negative. Recently, it was realized for Gaussian

states that the parity detector could be substituted with a homodyne detector com-

bined with a fast feedback control system [32]. Such features have been shown to be

a necessary condition for many quantum information protocols such as entanglement

distillation and quantum computing.

For a local phase estimation the super-sensitivity is typically seen as a crucial

paramater—an arbitrarily small change of phase response can be, in principle, sensed

by the detector if the noise is small enough. It was shown by Caves [33] that the noise

can be reduced and the sensitivity of the phase estimation enhanced by injecting a

suitable squeezed state of light into the measurement device. Though being nonclassi-

cal, the squeezed states belong to Gaussian states together with coherent and thermal

states of light. The degradation of squeezed states in the presence of losses is more

pronounced than for coherent states but it is not as extreme as for non-Gaussian states

with negative Wigner function. Unfortunately, there are only few real-world applica-

tions of phase measurement where the sub-SNL sensitivity is actually reached [34–36],

or the SNL scaling sensitivity for a broad range of frequencies for that matter. Tech-

nical imperfections, such as an excess noise of the detector and discretization of its

analog-to-digital converter, obfuscate the signal and render the sensitivity far from the

SNL. We can, in this case, improve the phase measurement by increasing the slope

of the phase response function. The fundamental quantum noise of the optical signal

would stay, of course, the same and the corresponding sensitivity would be increased

(worsened) by the same factor. However, this “fundamental” part of the sensitivity

would be negligible when compared to the sensitivity penalty due to the dominant

classical excess noise.

In this Thesis we discuss a simple and efficient scheme to obtain super-resolution at

the SNL without the need of complex nonclassical states in preparation or projectors in

detection. We use coherent states of light and a high-efficiency homodyne detector to

achieve phase super-resolution beyond what has been achieved with any non-Gaussian

resources or detectors. The method is deterministic and we show that it operates close

to the shot noise limit. Furthermore, we employ squeezed states of light to improve

the sensitivity of super-resolution phase measurement beyond the SNL. We present the

detailed theoretical description as well as preliminary experimental demonstration of

the measurement.
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The first part of the Thesis is based on the work: E. Distante, M. Ježek, and

U.L. Andersen, Deterministic super-resolution with coherent states at the shot noise

limit, Phys. Rev. Lett. 111, 033603 (2013). I undertook this project during my

postdoc in the group of prof. U.L. Andersen at Technical University of Denmark in

2009-2010. Simultaneously, I co-supervised the Master’s theses Super-resolution with

coherent states by E. Distante, which was successfully defended at Universita degli

Studi di Milano in 2011. The theory in the second part of the Theses (squeezed states)

has been done by me, the preliminary experimental test was performed by L.S. Madsen,

M. Lassen, and me in the group of U.L. Andersen.
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Chapter 2

Phase super-resolution with

classical resources

In this Chapter we show the basic idea of super-resolution phase measurement using

coherent states of light, Mach-Zehnder interferometer, and homodyne detector com-

plemented by a suitable data processing. We demonstrate theoretically as well as

experimentally the interference fringe narrowing and the sensitivity scaling according

to the SNL.

2.1 Theory

The proposed super-resolution method follows the standard interferometric scheme as

illustrated in Fig. 1 (a). A coherent state of light, |α〉, with amplitude α > 0 and mean

photon number N = α2 enters the interferometer at the input balanced beam splitter

described by the unitary B̂,

B̂|α〉|0〉 = | α√
2
〉| α√

2
〉. (2.1)

The resulting state acquires a phase shift, φ, in one arm of the interferometer, and

the final state at the output is produced by interference at the second balanced beam

splitter,

|Ψ(φ)〉 = B̂|eiφ α√
2
〉| α√

2
〉 = | cos(φ/2)α〉| sin(φ/2)α〉. (2.2)

The coherent states at the outputs of the interferometer follow circular paths in the

phase space (x, p) as depicted on the insets of Fig. 1 (a).

The observed phase resolution and sensitivity crucially depend on how this output

state is detected. By describing the detection process with a measurement operator Π̂,
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the response function of the setup is the mean value of that operator, 〈Π̂〉. Using, for

example, a common intensity detector described by the observable Π̂ = N̂ , the detector

response is given by

〈N̂〉 = 〈Ψ(φ)|N̂ |Ψ(φ)〉 = N cos2(φ/2), (2.3)

which is an oscillating function with a period of λ/2, thus coinciding with the standard

resolution limit. The resolution can be characterized by the full-width at half maxi-

mum (FWHM) of the response function which for the standard intensity detector is

FWHM ∝ π.

Figure 1: (a) Schematic of the experimental setup. A product of a coherent state, |α〉,
and a vacuum state, |0〉, is transformed through an interferometer and measured with
a homodyne detector described by the ideal projector 〈p|. The evolutions in phase
space of the two states are illustrated by the insets. (b) The phase response function
〈Π〉 for the standard interferometer scheme (dashed curve) and for the super-resolving
scheme (solid curve).

To beat the standard Rayleigh resolution limit, a special homodyne detector is used

in replacement of the intensity detector. A homodyne detector measures the eigenvalues
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of a quadrature operator x̂ cos θ + p̂ sin θ, where θ is the phase of the local oscillator

intrinsic to the detector; x̂ and p̂ are the canonically conjugated amplitude and phase

quadrature operators related to the bosonic field operator, â = x̂ + ip̂, and obey the

commutation relation [x̂, p̂] = i/2. The main idea of our approach is to measure the

phase quadrature p̂ (setting the phase of the local oscillator to π/2) and subsequently

divide the measurement outcomes into two bins associated with |p| ≤ a and |p| > a.

Such a measurement strategy is described by the two projectors

Π̂0 =

∫ a

−a
dp |p〉〈p|, Π̂1 = Î− Π̂0 (2.4)

and the measurement observable can thus be written as

Π̂ =
∑
k=1,2

λkΠ̂k, (2.5)

where λ0 = 1/erf(
√

2a) and λ1 = 0 are the values associated with the two measurement

outcomes. The detector response function 〈Π̂〉 of this dichotomic strategy is

〈Π̂〉 = 〈Ψ(φ)|Π̂|Ψ(φ)〉 =
1

erf(
√

2a)

∫ a

−a
dp |〈
√
N cos(φ/2)|p〉|2. (2.6)

Let us discuss first the idealized case of a→ 0, corresponding to binning the results

for which p = 0 and p 6= 0. The mean value of the detection operator Π̂ = |p = 0〉〈p = 0|
yields the response

〈Π̂〉 = exp

(
−1

2
N sin2 φ

)
, (2.7)

which is illustrated in Fig. 1 (b). FWHM of this fringe is

FWHM = 2 arcsin
√

(2 ln 2)/N (2.8)

and by comparing it to the FWHM of the fringe associated with a standard Rayleigh

limited intensity detection system, we see that super-resolution is obtained for N >

2 ln 2, and for N →∞ we find a 1/
√
N improvement of the resolution with respect to

the Rayleigh limit. Let us note that for a → 0, the operator Π̂0 corresponds to the

projection on the eigenstate |p = 0〉 that can be associated with the projection onto

squeezed vacuum state in the limit of infinitely high squeezing parameter r,

|p = 0〉 = lim
r→∞

1√
cosh r

∑
k

(
tanh r

2

)k √
2k!

k!
|2k〉, (2.9)

12



which is somewhat reminiscent of one of the projectors of a parity measurement [27,

32,40].

In addition to being super-resolving, our approach also exhibits a phase sensitivity

at the SNL. The sensitivity is defined as

∆φ =
∆Π∣∣∣d〈Π̂〉dφ

∣∣∣ (2.10)

and by inserting eq. (2.7), we find

∆φ =

√√√√ 2
√

2π
(
e

N
2

sin2 φ −
√

2
π

)
N2 sin2 (2φ)

. (2.11)

The sensitivity reaches its minimum

∆φmin =

√√√√√
π

2

e
1
4(2+N−

√
4+N2) −

√
2
π√

4 +N2 − 2
(2.12)

near the phase points

φmin = ± arccos

√1

2
− 1

N
+

√
4 +N2

2N

 (2.13)

corresponding to the maximum of the derivative in the denominator of (2.10). For

mean photon number N →∞ the sensitivity approaches the limit of

∆φmin =

√√
eπ
2
− 1

√
N

≈ 1.03√
N
, (2.14)

thus being close to the SNL. Actually, the remaining 3% discrepancy is effectively

equivalent to a 3% loss or detector inefficiency—the sensitivity 1/
√
N would be reached

using a coherent state with 3% higher amplitude.

In the limit of a→ 0 the measurement is not physically sound as it requires infinitely

high energy. However, both the resolution and sensitivity properties are preserved even

for a finite value of a. Indeed, for a general value of a the response function can be

evaluated as

〈Π̂〉 =
1

2erf(
√

2a)

[
erf
(√

2g−

)
+ erf

(√
2g+

)]
, (2.15)
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where g± = a± 1
2

√
Nsinφ and erf(·) denotes the error function. The response function

and its width are illustrated by the solid curves in Fig. 5 (a) and (c) for two different

mean photon numbers. The scaling of the response width is again found to be

FWHM ∝ 1√
N
. (2.16)

Finally, the sensitivity for a finite a reads

∆φ =

√√√√π

2

e(2a+
√
Nsinφ)

2

k(2− k)

N cos2 φ
(
e4a
√
Nsinφ − 1

)2 , (2.17)

where k = erf
(√

2g−
)

+ erf
(√

2g+

)
. For a = 1/2 and N � 1 the sensitivity follows

the SNL scaling,

∆φmin ≈
1.37√
N
. (2.18)

Here we pay the price for super-resolution of about 37% of coherent amplitude by which

the sensitivity is effectivelly worsened. As in the case of a → ∞, the imperfection is

effectively equivalent to the loss or detector inefficiency and we can overcome it by

a suitable increase of coherent state amplitude. The value of a = 1/2 represents a

trade-off between the sensitivity and resolution. For higher value of a the sensitivity is

closer to the exact SNL bound but the resolution FWHM increases and vice versa.

2.2 Multiple-fringe phase super-resolution

As we have now seen, the binary binning of quadrature measurements leads to a nar-

rowing of the interference fringe. However, the number of fringes in an 2π period

remains unchanged as opposed to interferometry with NOON states where the num-

ber of fringes increases with the photon number. It is, however, also possible with

coherent states to increase the number of fringes in a period by employing a multiple

binning approach instead of the binary binning strategy described above. Continuous

quadrature measurement outcomes are discretized into several bins described by the

projectors

Π̂k =

∫ bk+a

bk−a
|p′〉〈p′|dp′, Π̂n+1 = Î−

n∑
k=1

Π̂k. (2.19)

This corresponds to dividing the outcomes into n equidistant intervals with width 2a.

By setting the eigenvalues λk = 1/erf(
√

2a) for k ∈ {1, . . . , n} and λn+1 = 0, we find
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the resulting response function

〈Π̂〉 =
n+1∑
k=1

λk〈Πk〉 = (2.20)

=
1

2erf(
√

2a)

n∑
k=1

{
erf
[√

2(g− − bk)
]

+ erf
[√

2(g+ + bk)
]}

,

where bk is the central position of the intervals on the p-quadrature line. If the distance

among the intervals is b > 2a, the projectors are orthogonal and we can straightfor-

wardly find the variance

〈∆Π̂2〉 = 〈Π̂〉
(

1

erf(
√

2a)
− 〈Π̂〉

)
(2.21)

and thus the sensitivity (2.10).

2.3 Experimental realization in pulse regime

We implement the phase super-resolution protocol using attenuated pico-second pulses

from Ti-sapphire laser Tiger-PS by Time-Bandwidth Products with repetition rate of

815 kHz and central wavelength of 830 nm spatially filtered by a single mode fiber. The

coherent beam is divided at a highly unbalanced beam splitter consisting of half-wave

plate (HWP) and polarizing beam splitter (PBS) and further attenuated by neutral

density filters and another polarization attenuator, see Fig. 2 This signal with a con-

trollable mean photon number is sent through a balanced Michelson interferometer

(MI) in which the relative phase φ is continuously varied by a piezo driven mirror.

The phase quadrature of the interferometer output state is then measured with a high-

efficiency homodyne detector (HD). It is based on overlapping the output state with

the reference laser mode—local oscillator with relative phase set to π/2. The output

intensity is measured by two photodiodes (Hamamatsu S3883), the resulting photo-

currents are subtracted and the difference signal is amplified, shaped, and acquired by

an oscilloscope. The photo of the experimental setup is shown in Fig. 3

The interference contrast of the MI has a visibility level of 99.5%, the interference

between the signal and the local oscillator of the HD exceeds a visibility of 98.5%

and the total efficiency of the HD reaches η = 90%. It means that the MI phase φ

was effectively probed by a coherent state with the amplitude of approximatelly 5%

higher. We follow the general practice and do not rescale accordingly the amplitude of

the coherent state in the presented experimental results or, equivalently, we consider
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an ideal detector. The mean photon number N is estimated by directing the input

signal (bypassing the MI interferometer) to the homodyne detector and measuring the

amplitude α of the state (N = |α|2). The reading is calibrated against the vacuum

trace (shot noise).

The homodyne detector was custom-built for single-photon subtraction from squee-

zed light [37] using the Amptek-based charge-sensitive design [38] with some minor

changes, particularly a better bias filtering and balancing. The detector exceeds 30 dB

signal-to-noise ratio for several tens µW of local oscillator power and works very stable

at 25 dB for 20 µW local oscillator with repetition rate of 815 kHz (100× 106 photons

per pulse), see Fig. 4. The electronic bandwidth of the detector spans the interval

from approximately 100 Hz to 2 MHz. For the super-resolution experiment in pulse

regime the parameters of the homodyne detector were modified slightly to reach higher

dynamic range, which enabled us to measure the signals with high mean number of

photons (N > 100). The modified detector possesses the gain of 0.462 mV2 per 106

photons in a pulse of the local oscillator and the electronic noise of 0.498 mV2.

Figure 2: Experimental setup. Light from a pico-second pulsed Ti:Sapphire laser
operating at 830 nm and with a repetition rate of 815 kHz is controllably divided
into two beams using a half-wave plate (HWP) and a polarizing beam splitter (PBS)
thereby creating a signal and a local oscillator (LO) beam for homodyne detection
(HD). The power of the signal beam is controlled by a neutral density filter (NDF), a
HWP and a PBS, and subsequently sent into a Michelson interferomter (MI). A piezo-
crystal (PZT) attached to one of the interferometer mirrors scans the phase, φ, and
the resulting output is measured by means of homodyne detection (HD).

2.4 Experimental results and discussion

We subject the homodyne detector outcomes to the binning procedure with the interval

set to a = 1/2. This value is chosen as a good compromise for obtaining significantly
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Figure 3: Photo of the experimental setup.

Figure 4: Linearity (a) and signal-to-noise ratio (b) of the time-domain homodyne
detector. Black points represent the measured data, blue solid line (linearity) and
logarithmic curve (signal-to-noise ratio) show the corresponding theoretical model, and
the black solid line represents the electronic noise level.

high super-resolution and sensitivity performance close to the quantum limit. The

experiment is repeated 400 times for each realization of a phase value, and the fre-

quencies at which the measurement outcomes fall within the two quadrature intervals

(described by the projectors (2.4)) are found. The resulting response functions are

plotted in Fig. 5 (a)-(b) for two different power levels (red dots). A clear narrowing

of the fringe with respect to the fringe for the standard approach (dashed curve) is

observed, thus proving the super-resolution capabilities of our scheme [39]. We also

note that the visibility of the new interference fringes is basically unchanged and close

to unity. We repeat the experiment for several different mean photon numbers and the

results of the FWHM are summarized in Fig. 5 (c). We also estimate the sensitivity
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from the measurements and the results for two different mean photon numbers are

presented by the insets of Fig. 5. These results demonstrate that the measurements

possess a phase sensitivity very close to the SNL (dashed line) for certain phases. In

Fig. 5 (d) we present a summary of the optimal phase sensitivities for several different

mean photon numbers and compare it to the SNL (dashed curve).
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Figure 5: Performance of the super-resolving interferometer. (a) and (b) show the
experimental results (dots) and the theory (solid curve) for the response function with
a = 0.5 for two different mean photon numbers N = 19 and N = 132, respectively.
The dashed curves represent the standard Rayleigh limited strategy. The insets of (a)
and (b) are the results of the sensitivity as a function of φ for the same values of N .
The dashed curves represent the SNL. (c) The resolution in terms of FWHM of our
scheme as a function of the mean photon number (red dots) together with theory for
our approach (solid blue curve) and for Rayleigh limited strategy (dashed line). (d)
Minimum value of the sensitivity for our scheme for different mean photon numbers
(red dots). The solid blue curve represents the theoretical curve, ∆φmin ≈ 1.37/

√
N ,

and the dashed line stands for the SNL. Error bars of (c), (d) and the insets are smaller
than the data points.

Using multiple binning as opposed to binary one, we demonstrate multiple fringes

within one period. An example is shown in Fig. 6 for M = 8 fringes per period
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obtained by binning the measurement outcomes along 5 intervals for a coherent state

with N = 139 and the window width of a = 1/2. The central points of these intervals

are located at p = b · k where k ∈ [−2,−1, 0, 1, 2] and b = 3.17. The average fidelity of

all fringes within a period is 95%.

The multiple fringe approach gives rise to a slightly lower visibility of the interfer-

ence fringes, thus rendering a trade-off between the number of fringes within a period

and the visibility of the resulting pattern for a given average photon number. This

means that the phase sensitivity of the multi fringe approach operates at the SNL (like

the two bin approach) as long as the number of fringes is adjusted according to the

mean number of photons. For a fixed number of photons N, the number of fringes M

depends on the choice of the parameter b as well as on the required visibility. For a

given set of N, M and a there is an optimal value of b that maximizes the visibility.

Fig. 7 reports two examples of the number of fringes as a function of the number of

photons for two different visibilities. In this example, for each N, b as been chosen such

as to maximize M and to keep the visibility above 95% or above 90%. It is clear that

for higher visibility the number of fringes for a given N is lower. The points in the

figure are evaluated numerically and the curves are fits that scale as M ∝
√
N .

In the above investigations we have considered only the measurement of the phase

quadrature among all other quadratures. For the binary binning approach, this is in-

deed the optimal quadrature measurement (for the input state considered in Fig. 1

(a)) although super-resolution with reduced quality can be also obtained for any other

quadrature measurement. This is clearly seen from the results of the multiple-bining

approach in Fig. 9 which shows that the fringes are narrowest at φ = 0 and broadest

at φ = π/2 effectively corresponding to a phase and an amplitude quadrature measure-

ment, respectively. The fact that super-resolution can be obtained for any quadrature

measurement suggests that we may relax the stringent phase reference in our homodyne

detector thus measuring a random quadrature and thereby attaining super-resolution

with a simplified strategy.

Furthermore, the performance of our method is basically unaltered in the pres-

ence of loss since the loss can be ideally compensated by increasing the mean number

of photon of the input state, which is the benefit of using only classical states and

classical detector. For example, for 50% transmittance of the sample it is sufficient

to increase the intensity of the coherent state by factor of two to completely recover

super-resolution as well as the sensitivity, whereas such the loss would be highly detri-

mental for a measurement employing nonclassical ligh and, particularly, the NOON

states.
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Figure 6: Results for the multiple binning approach. (a) Response function with 8
fringes per period for a coherent state with N = 139. The average fidelity of all fringes
within a period is 95%. The data (red dots) fit well with theory (blue line) and the
uncertainty for each point lies inside the theoretically predicted uncertainty, represented
by the shaded area. Interference fringe corresponding to the Rayleigh limited approach
is shown by the dashed curve. (b) Phase sensitivity for the multiple binning approach
associated with the experimental results (dots) and the theory (solid curve). Near SNL
performance (represented by the dashed line) is obtained for several phases.
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Figure 7: Plot of the number of fringes M for which the visibility is larger than 0.95
(red solid trace and dots) and 0.90 (blue dashed trace and squares) as a function of the
average photon number, N , of the coherent state. The dots and squares correspond to
numerical estimates whereas the curves are theoretical fits.
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Chapter 3

Phase super-resolution beyond

shot noise level with coherent

and squeezed states

Using squeezed states of light in addition to coherent states, we are able to improve the

sensitivity of the super-resolution measurement scheme to be exactly at or even beyond

the shot noise limit. The phase can be measured in super-resolving and super-sensitive

regime which was thought to be possible only using quantum non-Gaussian states, e.g.

NOON states. The obvious drawback of this extension is twofold: first, the increased

sensitivity to optical losses; and second, more stringent requirements for local oscillator

phase stability. Thus, the squeezed light injection is suitable for purely phase samples

and low loss measurement setups. In this Chapter, we derive the basic theoretical

description, show the limitations, and demonstrate preliminary experimental test of

the method.

3.1 Theory

The presented measurement scheme follows Caves’ proposal [33] where the squeezed

vacuum is injected into an unused input port of the interferometer, see Fig. 8. The

input state of optical signal described by the Wigner function

Win(x1, p1, x2, p2) = W|α〉(x1, p1)W|r〉(x2, p2) =
2e−2((x1−α)2+p21)

π
· 2qe

−2

(
q2s2x22+

p22
s2

)
π

(3.1)

enters the interferometer with the phase shift φ in one arm. Here α is amplitude of the

coherent state, s = e−r, where r denotes the squeezing parameter, and q represents the
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Figure 8: A product of a coherent state, |α〉, and a squeezed vacuum state, |r〉, is
transformed through an interferometer and measured with a homodyne detector. The
evolution in phase space is illustrated by the insets.

purity of the squeezed state. One output port of the interferometer is not observed,

thus traced out. The Wigner function at the remaining port,

W (x, p) =
4s

π
√

(s2 + 1)2 − (s2 − 1)2 cos2(φ)
exp
([

2((s2 +1)(α2 +2p sinφ(α−s2x+x)+

2αx+ (s2 + 1)(p2 + x2)) + (s2 − 1) cos2 φ(α2 + 2αx−
(
s2 + 1

)
(p− x)(p+ x))−

2 cosφ(p(s2 − 1) sinφ(α + s2x+ x) + s2(α− sx+ x)(α + sx+ x) + p2(s2 − 1)))
]/

[(
s2 − 1

)2
cos2(φ)−

(
s2 + 1

)2
])
, (3.2)

evolves around the similar circular path in the phase space (x, p) as in the case of

input coherent state only. The variance of phase quadrature, however, changes from

the minumum value corresponding to the squeezed state (for phase φ = 0) to the

maximum one corresponding to the shot noise level (φ = π). The total mean number

of photons employed is

〈N̂〉 =
1

4

(
1

q2s2
+ s2 + 4|α|2 − 2

)
= α2 + sinh2(r). (3.3)

In the idealized case of Π̂ = |p= 0〉〈p= 0| measurement (a → 0) and pure input

state (q = 0) the response

〈Π̂〉 =
2
√

2s2 exp
(
− 2s2x2 sin2 φ

(s2−1) cosφ((s2+1) cosφ+2s2)+(s2+1)2

)
√

(s4 − 1) cos(2φ) + 4 (s2 − 1) s2 cosφ+ 3s4 + 4s2 + 1
(3.4)
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shows the 1/|α| resolution improvement with respect to the Rayleigh bound in the

limit of |α| → ∞. For no squeezing, s = 0, (3.4) coincides with (2.7). For a general

value of a the response function reads

〈Π̂〉 =
1

2erf(
√

2a/s)

[
erf

(√
2

C
g−

)
+ erf

(√
2

C
g+

)]
, (3.5)

where g± = a± 1
2
|α| sinφ and

C =
q2s2 (s2(1 + cosφ)2 + 2(1− cosφ))− cos2 φ+ 1

4q2s2
. (3.6)

The resolution gain scaling is preserved for a finite a, fringe FWHM ∝ 1/|α|. See

Fig. 9(a) for an example of the phase response function under realistic conditions of

partially mixed squeezed state.

Figure 9: (a) The phase response and (b) the sensitivity of the the proposed protocol
employing coherent and squeezed states and homodyne detection. The bin size is set
to a = 1/2 and the amplitude of injected coherent state |α| = 5. A squeezed state
with squeezing of -6 dB and antisqueezing of 9 dB: q = 0.7, s = 0.5 (red) and the
measurement without squeezing: q = 1, s = 1 (blue) are compared. Gray line in (b)
denotes the SNL.

The variance of the measurement operator Π̂ is given by Eq. (2.21) and the phase

sensitivity is evaluated using Eq. (2.10),

∆φ =

√
π
2
C3/2

√
(2− k)k

e−
2g2−
C (C ′g− + αC cosφ) + e−

2g2+
C (C ′g+ − αC cosφ)

. (3.7)

Here k = erf(g−
√

2/C)+erf(g+

√
2/C) and C ′ = dC/dφ. The sensitivity, shown in the

Fig. 9(b), beats the standard quantum limit for finite range of phase values. Without

squeezing, s = 1 and for pure state, q = 1, the formulas simplify (C = 1, C ′ = 0)
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and the resolution as well as the sensitivity coincide with results obtained for clasical

resources, see Sec. 2.1. Particularly, the sensitivity reads

∆φ =

√
π
2

√
(2− k)k e2(a+ 1

2
x sinφ)

2

x cosφ (e4ax sinφ − 1)
. (3.8)

Super-sensitivity multiple-fringe case can be derived as a straightforward extension

of the previous theory employing the multiple binning approach in the same way as it

was done in the Sec. 2.2 for coherent states.

3.2 The ultimate limit of phase sensitivity

Previous results can be compared with the original Caves’ work [33] assuming the

intensity detection at the output of the interferometer. Contrary to our homodyne

detection and binarization, there is no fringe narrowing. On the other hand, the Caves’

protocol allows for optimum sensitivity. The minimum attainable sensitivity reads

∆φmin =

√
s2

|α|2
+

(
1
s
− s
)2

4|α|4
=

√
e−2r

|α|2
+

sinh2r

|α|4
, (3.9)

where |α| � | cot(φ/2) sinh r| is assummed. For r = 1
4
ln(1 + 4|α|2) the sensitivity

reaches its optimum of

∆φmin =
1√
2

√√
1 + 4|α|2 − 1

|α|2
(3.10)

which scales as 1/|α| 32 in the limit of N →∞.

The resolution of our protocol improves with increasing the coherent state ampli-

tude. We would like to use the highest possible optical power which does not corrupt

the sample and does not saturate the detector. For each amplitude, the optimum

squeezing should be adjusted and then optimum value a of the bin size and the phase

with best sensitivity should be found. However, the optimum squeezing required is of

about 13 dB already for |α| = 10 and increases quickly. Taking into account the maxi-

mum squeezing available, we can fix this particular value and run the optimization only

for parameters a and φ. For example, having the squeezing of −4 dB and antisqueez-

ing of 8 dB, s = 0.63 and q = 0.63, the optimum value of a depends slightly on the

amplitude. For the range of |α| ∈ [3, 21], it lies within the interval of a ∈ [0.524, 0.587]

which is close to 1/2. The best attainable sensitivity of our protocol is shown in the

Fig. 10 and compared with the SNL and Caves’ ultimate bound.

25



Figure 10: The sensitivity of the super-resolving protocol using −4 dB of squeezing
with purity of 63% (antisqueezing of 8 dB) as a function of the coherent state amplitude
(red). The bin size a as well as the phase φ are optimized for the best sensitivity for
each amplitude |α|. Our protocol is compared with the SNL (gray) and with Caves’
minimum sensitivity (blue). Both the limits are correctly evaluated using the total
mean number of photons, including the squeezing contribution.

3.3 Preliminary experimental test in continuous-

wave regime

Quantum states of light, coherent and squeezed, are prepared at 4.9 MHz sideband of

a continuous-wave optical carrier signal with the central wavelength of 1064 nm. The

ampolitude squeezing is generated by means of optical parametric oscillator with peri-

odically poled KTP crystal placed in bow-tie cavity pumped by the second harmonic

of the fundamnetal wavelength. The detected squeezing variance exceeds 3 dB. The

coherent state is prepared by electro-optic modulator and its amplitude is adjusted by a

power of radio-frequency driving signal. The modulation is locked to the antisqueezing

direction.

The measurement interferometer is implemented in polarization degree of freedom

using waveplates and polarizing beam splitters. Two copropagating orthogonal polar-

ization modes acquire the relative phase proportional to the angle of the waveplate

placed in between of the polarizing beam splitters [41].

The continuous-wave homodyne detector at the output port of the interferometer

projects the signal to the phase quadrature. The homodyne electronic signal is then

down mixed from 4.9 MHz to DC, low passed with approximately 90 kHz, and sampled

at 500 kHz by analog-to-digital converter card in personal computer. The quadrature

data are processed and binarized using the same method as in the pulsed experiment

described in the previous chapter.
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The resulting phase response and sensitivity for two values of mean number of

photons, N = 7.24 and N = 50.4, are shown in the Fig. 11. We can clearly observe

the narrowing of the fringe similar to the measurement using only coherent states.

However, the small noise penalty (2.18) we have to pay for the super-resolution is

compensated here by a lower variance of the employed squeezed light. Actually, the

squeezing level is high enough to demonstrate super-sensitivity for sufficiently strong

coherent state. Indeed, for the total mean number of pohotons N = 50.4 the sensitivity

goes beyond SNL for several phases.

Figure 11: The phase response (a,c) and sensitivity (b,d) of our measurement (blue
circles) and the corresponding theoretical model (solid red curve) shown for two distinct
values of mean number of photons. The least-square fit of the sensitivity (dashed black
curve) is plotted for the comparison. Statistical uncertainty is comparable with the
size of data symbol.
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Chapter 4

Conclusion

In the Thesis we have shown surpassing the Rayleigh resolution limit using only clas-

sical resources while keeping the sensitivity close to the SNL. The theory as well as

the experimetal verification have been presented. We have discussed the connection

between resolution and sensitivity. Furthermore, we have applied squeezed light to

push the sensitivity beyond the SNL.

More specifically, in the first part of this Thesis, we have demonstrated the nar-

rowing of an optical phase response function and compression of interference fringes

by factor of
√
N with the sensitivity scaling 1/

√
N employing coherent states of light

and homodyne measurement. Both the phase resolution and the phase sensitivity was

found to scale inversely with the coherent state amplitude.

In contrast to the previous super-resolution schemes based on NOON states or pho-

ton counters, the measurement presented here is intrinsically deterministic. It means

that we keep every single measurement outcome and do not perform a post selection

of the outcomes to extract the desired super-resolving feature as done in previous im-

plementations [12–15, 26, 28, 41]. Due to this common post selection procedure, which

significantly reduces the number of available resource states, all these experiments ex-

hibit a phase sensitivity that is lower than the one obtained here if the actual number

of photons passing through the sample is taken into account. Likewise, the resolution

of previous implementations is practically limited by the number of entangled photons

in the NOON state or by the number of photons that can be resolved in a photon

counter, both of which are presently limited to approximately eight. Using the scheme

outlined here the resolution limit can in practice be arbitrarily small. For example,

using 1 pW of visible laser radiation, we find a FWHM phase resolution of the order of

0.1 nm. A similar resolution can be obtained by using an experimentally unfeasible 500

photon NOON state. Moreover, using such a state in the presence of just 0.2% loss,

it is impossible to attain sensitivity operation at the SNL due to the extreme fragility
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of high NOON states [18]. In contrast, the performance of our method is basically un-

altered in the presence of loss since the loss can be ideally compensated by increasing

the mean number of photon of the input state.

In the second part of the Thesis, we have found theoretically that the interferometric

scheme with a squeezed state and a dichotomic homodyne detector will in addition to

the super-resolving capabilities exhibit a phase sensitivity that beats the SNL. The

preliminary experimental test has been presented with a significant narrowing of the

interference fringe and with the sensitivity slightly below the SNL. This is the first

demonstration of the super-resolution and super-sensitivity measurement using only

Gaussian resources: the coherent and squeezed states and the homodyne detector.

The work presented in this Thesis is based on the paper: E. Distante, M. Ježek,

and U.L. Andersen, Deterministic super-resolution with coherent states at the shot

noise limit, Phys. Rev. Lett. 111, 033603 (2013). I undertook this project during my

postdoc in the group of prof. U.L. Andersen at Technical University of Denmark in

2009-2010. Simultaneously, I co-supervised the Master’s theses Super-resolution with

coherent states by E. Distante, which was successfully defended at Universita degli

Studi di Milano in 2011. The theory in the second part of the Theses (squeezed states)

has been done by me, the preliminary experimental test was performed by L.S. Madsen,

M. Lassen, and me in the group of U.L. Andersen.
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