
T 
B R N O U N I V E R S I T Y O F 

T E C H N O L O G Y 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

F A C U L T Y OF MECHANICAL ENGINEERING 
F A K U L T A STROINÍHO INŽENÝRSTVÍ 

INSTITUTE OF MATHEMATICS 
ÚSTAV M A T E M A T I K Y 

VISUALIZATION OF S C A L A R FIELDS B Y 
BACK-TO-FRONT M E T H O D 
V I Z U A L I Z A C E SKALÁRNÍCH POLÍ M E T O D O U BACK-TO-FRONT 

MASTER'S THESIS 
DIPLOMOVÁ PRÁCE 

AUTHOR Ing. Hana Gurecká 
A U T O R PRÁCE 

SUPERVISOR doc. PaedDr. Dalibor Martišek, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2020 





S p e c i f i c a t i o n M a s t e r ' s T h e s i s 

Department: 

Student: 

Study programme: 

Study branch: 

Supervisor: 

Academic year: 

Ing. Hana Gureckä 

Applied Sciences in Engineering 

Mathematical Engineering 
doc. PaedDr. Dalibor Martisek, Ph.D. 

2019/20 

Institute of Mathematics 

Pursuant to Act no. 111/1998 concerning universities and the BUT study and examination rules, you 

have been assigned the following topic by the institute director Master's Thesis: 

Concise characteristic of the task: 

In this work, method back-to-front and possibilities of its use for three-dimensional scalar data in 

fixed data grid will be described. 

Goals Master's Thesis: 

In this work, methods suitable for visualization of scalar data in fixed data grid wil be described and 

software implemented. 

These methods will be tested on the data from fluorescent confocal microscope. 

Software solution will be a part of the work. 

Recommended bibliography: 

ŽÁRA, J . a kol. Moderní počítačová grafika, Computer Press Praha, 1998. 

MARTIŠEK, D. Matematické principy grafických systémů, Littera Brno, 2002. 

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / 

Visualization of scalar fields by back-to-front method 



Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2019/20 

In Brno, 

L. 3. 

prof. RNDr. Josef Šlapal, C S c 

Director of the Institute 
doc. Ing. Jaroslav Katolický, Ph.D. 

FME dean 



ABSTRAKT 
Diplomová práce je zaměřena na metody zobrazování skalárních dat v pevné datové 
mřížce, konkrétně dat získaných užitím fluorescenčního konfokálního mikroskopu. 
Teoretická část textu začíná představením fungování konfokálních mikroskopů a 
zasazení problematiky zkoumaných grafických metod do matematického kontextu. 
Následující kapitola se věnuje odvození integrálu pro zobrazování objemů a z n ě j 
vyplývající back-to-front metodu. Teoretická část je zakončena představením metod 
vhodných pro zobrazování trojrozměrných skalárních dat při použití back-to-front 
algoritmu. V praktické části je pak popsán implementovaný algoritmus. 

ABSTRACT 
This master's thesis is focused on scalar data in rigid data mesh imaging. In particular 

the data are acquired from fluorescent confocal microscope. The theoretical part begins 

with introduction to confocal microscopy followed by putting the subject of examined 

graphical methods in mathematical context. Next chapter is devoted to volume 

rendering integral derivation and consequent back-to-front method. The theoretical part 

is finalized by introduction of methods suitable for rendering 3D scalar fields using 

back-to-front algorithm. In the practical part the implemented algorithm is described. 
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1 INTRODUCTION 

A t the beginning of this thesis we wi l l describe the general design of confocal 
microscopes and mention their advantage over standard widefield microscope. We wi l l 
explain how simulated fluorescence works followed by the explanation of two basic 
principles of confocal microscopy: point to point illumination and rejection of out of 
focus light. These principles ensure that we can scan one particular point in a focal 
plane at the time. In the last subchapter we w i l l focus rather on confocal microscopy 
limitations, particularly light detection limitations and scanning speed limitations. 

Chapter three w i l l be devoted to covering the mathematical background of the 
graphical algorithms and methods described further in the text. We w i l l start with a 
quick recapitulation of the basic spaces used in computer graphics in general such as 
linear spaces, normed linear spaces, unitary spaces, affine spaces and Euclidean spaces. 
A t the end of the first subchapter we w i l l put the spaces and related terms to context 
with analytic geometry. Second subchapter w i l l introduce one of the foundations for 
future back-to-front algorithm implementation: the projective space with parallel and 
perspective projections. 

Equipped with the mathematical foundations chapter four w i l l focus on the 
direct volume rendering as a suitable approach to imaging of data with inner structures 
and back-to-front algorithm in particular. First we w i l l shortly discuss possibilities of 
volumetric data representation particularly for 3D scalar field. Most methods for direct 
volume rendering are based on some version of approximation of the volume rendering 
integral which models propagation of light through participating media. Taking that in 
mind the thesis w i l l continue with introduction of basic radiometric quantities defining 
light and its transmission. Following subchapter w i l l make use of radiometric properties 
in volume rendering integral derivation. Last subchapter of the fourth chapter w i l l 
introduce discretization of the volume rendering integral denoted as back-to-front 
visualization method, short notion on transfer functions and projection methods suitable 
for visualization by the back-to-front method. 

The fifth chapter w i l l describe the practical implementation of algorithms 
introduced in the theoretical part of the thesis. In particular we w i l l describe loading the 
sets of bitmap images generated by scanning of a specimen by confocal microscope and 
their representation in the computer. We w i l l follow by description of user defined 
projective and graphical inputs and their influence on the generated image. As we wi l l 
have loaded data and defined all variables we w i l l start the description of the 
computation part of the algorithm. In particular we w i l l derive a method for output 
window generation and describe fast methods for axis aligned bounding box with ray 
intersection and Bresenham's line segment rasterization algorithm. The last subchapter 
wi l l sum up the practical implementation of the back-to-front methods. 

In the sixth chapter we w i l l discuss achieved results. 
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2 CONFOCAL MICROSCOPY 

This chapter is based on [1] [2] and [3]. Confocal microscope was introduced by Marvin 
Minsky in 1955 as a great improvement in observing thick 3D specimen. It is based on 
two essential principles: point to point illumination and rejection out of focus light. In 
this chapter we w i l l describe one general design of such microscopes with laser light 
source. Confocal microscopes can image a specimen by reflected or transmitted light or 
by simulated fluorescence from fluorophores (fluorescent dyes). The simulated 
fluorescence is the most common one and even our dataset is acquired using such dyes. 
Therefore, we w i l l describe the functioning of a confocal microscope with respect to 
this specimen illuminating method. 

Fluorophores are chemical compounds which upon excitation by photon of a 
given wavelength can emit light of longer wavelength e.g. a fluorophore excited by blue 
light emits green light. This effect is known as fluorescence. Many different kinds of 
fluorophores are available with very specific properties. For example they are able to 
bond to macromolecules of specific parts of a cell (mitochondria, Golgi apparatus, etc.). 
Then, upon excitation, we are able to see the stained part of the cell glowing by emitted 
color (Fig . l ) . 

2.1 Fluorescence microscopy 

Classical fluorescence (epifluorescence/widefield) microscope consists of a light source 

objective and dichroic mirror. Dichroic mirror can transmit a specific part of 

1 Pictures acquired from: https://www.olympus-lifescience.com/en/microscope-
resource/primer/techniques/confocal/confocalintro 
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wavelength spectra and reflect the rest of it. In the (Fig.2) we can see that the light from 

source (blue) is reflected by a dichroic mirror through the objective onto the specimen. 

The dyed parts of specimen are excited and emit (green) light. This light with source 

light travels back through the objective and the dichroic mirror filters the original blue 

light away by reflecting it back to the source. On the other hand the light emitted by 

fluorophore with longer wavelength travels through the mirror onto the photodetector. 

The wide field microscopy has a significant disadvantage which is an illumination of 

the whole specimen at once. This causes that onto one point of the image plane 

(camera) falls light not only from the corresponding point of the focal plane but also 

light scattered from points in other layers of specimen. As a consequence the image 

from the widefield microscope is blurred (Fig. l ) . 

Fig. 2: Widefield microscope scheme 

2.2 Confocal fluorescence microscopy 

A s we mentioned previously, confocal microscopy addresses the problem of secondary 

fluorescence emitted by not in focus parts of the specimen. Confocal microscope does 

not take the image at one instance but rather focuses on one specific point in the focal 

plane at the time. This is achieved by replacing standard objective with two lenses and a 

screen with a pinhole. The lenses are set up so they transmit light from the focus point 

of one to the focus point of the other (from here the name "confocal"). Obviously the 

lenses transmit also out of focus light as well so pinhole is put around the focal point of 

the second lens in order to let all of the light of point in focus through and significantly 

attenuate the out of focus light (Fig.3a). 
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Fig. 3: a) Confocal lenses b) Confocal microscope scheme 

Considering this two lenses setting, most of the intensity of the light source is naturally 
centred in the focus point of the first lens. However, there is still a significant amount of 
light reaching other parts of the specimen causing excitation and consequently the out of 
focus light. Another performance improvement can be done i f we don't illuminate the 
whole specimen but instead we focus the excitation light to the point of interest in the 
focal plane. This is achieved by introducing another pinhole aperture in front of the light 
source (Fig.3b). In the figure we can observe that such illumination restricts the 
excitation area to the cone above and below the focus point. Most of the light emitted 
from this cone area is not confocal with the lens pinhole and therefore is filtered away. 

In previous text we described how we scan one exact point in the focal plane. In 
order to scan the whole plane we need to add two extra motor driven mirrors to the 
construction. B y rotating the mirrors we may reach any point on the focal plane. 

Another part of the confocal microscope is the light source. Up to now we have 
spoken about a light source of given wavelength in general. B y filtering away all the 
redundant light by the screens with pinholes, we are left with very few photons that 
make it through the whole system. Solution to this is either longer exposure time, which 
would significantly increase the scanning time of the specimen, or source of very high 
intensity. Given that the laser source is used in modern confocal microscopes. 

The problem of too low light intensity coming to a light detector is addressed 
also by so called photomultiplier tube detectors ( P M T detectors) which replaced 
standard C C D chips used in widefield microscopy. These detectors are transforming 
incident light to electric current. Such current is multiplied in the tube and is interpreted 
as high intensity light. The P M T is connected to a computer, which from incoming 
information builds up a raster image pixel by pixel. The whole setup of fluorescent 
confocal laser scanning microscope is shown in (Fig.4). 

Thanks to the level of elimination of out of focus light it is possible to acquire 
sharp images of different depths through specimen. Making a series of cuts in short 
regular step size along z-axis (optical axis) is referred to as optical sectioning. From 
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these cuts using visualization algorithm we are able to reconstruct the specimen (this 

wi l l be discussed in greater detail in chapter 4 of this thesis). 
Laser 

Confocal lenses 

Specimen 

Fig. 4: Fluorescent confocal laser scanning microscope scheme 

2.3 Confocal microscopy limitations 

Although confocal microscopy offers many advantages, there are some considerations 
that have to be taken into account. First there are light concerning limitations that are 
related to how much light can reach the light detector. Another concern is scanning 
speed regarding the limit of mirror rotation speed. 

Light detection limitations 
First issue that should be mentioned is the resolution of the image which is a limitation 

for microscopes in general. In the theory we suppose that a point light source generates 

point illumination of the specimen. In praxis, due to diffraction of the light, that is not 

the case. Diffraction phenomena causes that ideal light point generated by circular 

aperture with a perfect lens is projected onto the image plane in the shape of A i r y 

pattern. The A i r y pattern is in two dimensions viewed as a bright central region (disc) 

with concentric rings around. The radius rA of A i ry disc is dependent on wavelength of 

the light and aperture of the microscope: 

r A = 0 ' 6 1 m a ) 
where X is the wavelength and NA is numerical aperture of objective. Aperture is given 

by: 

NA = n • sinG 
(2) 

with n as index of refraction of the medium in which the lens is situated and 6 is half 
angle from which the light can approach the lens. The Ai ry pattern limits maximal 
resolution of the image. According to Rayleigh criterion the two points are 
distinguishable i f they are at least their radius of A i ry disc away from each other. 
Maximal resolution for confocal microscopes is typically about 200nm. As we are 
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interested in optical cuts through the specimen we have to take into consideration the z-

axis. Such generalization of A i ry disc into 3 r d dimension is called point-spread function 

and is ellipsoid shaped rather than a sphere as optical axis resolution tends to be poorer, 

typically around 500nm. 

Another consideration, that has to be taken, is about the pinhole size. It is 

desirable to minimize the pinhole and consequently make the resolution along the 

optical axis smaller. Although, i f the pinhole size is too small, then very few photons 

can make it to the detector and signal-to-noise ratio w i l l decrease. As a fairly good 

approximation of pinhole size is A i ry disc radius as a smaller pinhole doesn't bring 

much further improvement. 

Further question is how intensive laser should be used. The obvious answer 

would be as intensive as possible as the signal-to-noise ratio would be increased. 

However, high intensity laser may damage the specimen and degrade the fluorophore as 

it gets saturated. 

Finally the amount of photons that reach the P M T detector can be influenced by 

concentration of fluorophore coloring the specimen. This signal enhancement has a 

limit too as the molecules can quench each and limit the fluorescence from deeper parts 

of the specimen as the fluorophores in the shallower parts absorb most of the exciting 

photons. 

Scanning speed 
As we mentioned before, the point scanning in confocal microscopes is achieved by two 
rotating mirrors for x and y axis. Originally two galvanometers were used as motors for 
the rotation. B y this method it was possible to acquire one image in 0,1-Is. However, 
this rate is not sufficient for observation of dynamical processes. Moreover the long 
relatively exposure to the intensive laser may cause damage to the specimen. A s a 
consequence two main methods were developed for enhancing the scanning speed. 

First method is based on replacing the galvanometer scanning horizontally (fast) 
by acousto-optic deflector (AOD) . A O D deflector is a crystal which changes its 
refractive index depending on sound frequency input. B y fast altering the input 
frequencies it is possible to steer the laser with great precision and make around 30 
images per second. Disadvantage of using A O D deflectors is that they are deflecting 
different wavelengths differently. Meaning that we may point the source light with great 
precision but the fluorescence from the specimen of longer wavelength is not reflected 
to the source direction, as in the case of a mirror. So instead of the pinhole it is used as a 
slit for descanning fluorescence from the vertical scanning (slower) galvanometer 
driven mirror. As a consequence the resulting image is distorted but still high quality. 

Second method replaces two mirrors and an excitation light pinhole by a 
spinning disc (Nipkow disc) with a mask of thousands of pinholes in order to scan 
multiple pixels at once. The pinholes are arranged so every pixel in the image is reached 
and scanning of one image can take about 1/15 of the spin. Wi th 40 revolutions per 
second it is possible to acquire up to 600 images per second. The first drawback to using 
Nipkow disc is that a few hundreds of points are illuminated at once and therefore 



background fluorescence is increased which is especially significant in the thick 

specimen. Also , as the disc rotates quickly, the light coming from the specimen through 

pinholes and to the detector is weakened and stronger fluorophores need to be applied. 

8 



D FAKULTA E^D^^H 
STROJNÍHO liifeyjjO^IlI 
INŽENÝRSTVÍ I 

3 MATHEMATICAL BACKGROUND 

In this chapter we w i l l state the basic mathematical foundations for computer graphics 
and back-to-front algorithm in particular. First we w i l l review the linear algebra 
structures supporting the notion of Euclidean space and analytic geometry. Further we 
wi l l continue with basic projection methods in the context of analytic geometry terms. 

3.1 Spaces 

This subchapter w i l l recapitulate linear, unitary and affine spaces and basic concepts 
related to them in order to introduce Euclidean space and analytic geometry. The 
information and definitions in this chapter are taken from [4] [5]. As the purpose of this 
chapter is not meant to be a full introduction to algebra but rather brief recapitulation, 
the proofs of the basic notions are omitted and can be found in the cited literature. 

Linear space 

Def.: 1: Linear (vector) space over a field (F; +;.) is a set V together with operations 
0 : V X V -> V and ® : V X F -> V such that for each u,v,w G V and scalars a, b G F 
the following axioms hold: 

i . ( u e i?) e w = u © o e w) 
i i . 3 O : O 0 M = M 0 O = u 

i i i . 3u*:u* © U = M © M * = 0 
iv. U © V = V © U 
V. a ® (Ď ® u) = (a • b) ® u 

vi . 1 ® u = u 
v i i . (a + b) ® u = (a ® u) © (b ® ú) 

v i i i . a ® ( u © v) = (a ® u) © (a ® v). 

Elements of the linear space are called vectors and operation © is vector addition, ® is 
multiplication of a vector by scalar, • is scalar multiplication and + is scalar addition. 
The symbols 0 and u*denote neutral vector {zero vector) and opposite vector, 
respectively. 

Def.: 2: Normed linear space is linear space equipped with mapping || ||: V -> F such 
that for each a G F and u, v G V it satisfies: 

i . | | u | | > 0; | | u | | = 0 <-» u = 0 
i i . | |a ® u | | = | a | | | u | | 

i i i . | |U©17| | < | | u | | + ||v||. 

The mapping || || is called norm. 

Def.: 3: Linear space V equipped with mapping *: V x V -> F such that for each a G F 
and u,v,w G V it satisfies: 
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i . w * w > O ; w * w = 0<->w = O 
i i . u * v = v * u 

i i i . (u 0 v) * w = (u * w) + (y * w) 
iv. (c ® u) * v = c ® (w * v) 

is called unitary space and the mapping is called scalar product. 

Further in the text we w i l l denote the operations w 0 v as u + v, a (£>v as a - v or av 

keeping in mind that those are vector operations in the sense of (Def 1). Also opposite 

vector u* w i l l be replaced b y - u. 

Note that unitary space V equipped with mapping || \\:V -> F satisfying for 

Vu G V: 

= (3) 

is also a normed linear space. Moreover both normed linear space and unitary space 

have metrics p: V X V -> F induced by norm and scalar product, respectively, defined 

for each, v G V : 

p(u,v) = \\u - v\\ (4) 

p(u,v) = yj(u - v) * (u - v). (5) 

Def.: 4: A subset {uj (= V; i = 1. . n of a vector space is called linearly dependent i f 
there exist ct G F; t = 1. . n such that £ f = 1 CjMj = 0 and at least one ct 0. Otherwise, 
the subset is called linearly independent. 

Def.: 5: A vector v G V is called //near combination of nonempty set {uj c V; i = 
l..n i f and only i f there exist q G F; i = l..n such that Y^t=iciui = v. A linear 
combination of empty set is the neutral vector 0. 

Def.: 6: A linear space L formed as set of all linear combinations of a set M c V is 
called (linear) span and denoted as (M). 

Def.: 7: A subset B c V is called //rate b a m o/ //near space V i f and only i f it is 
linearly independent and its span is equal to V. 

Remark: Although the basis of given linear space V is obviously not unique, it is 
possible to show, that for arbitrary choice of the base vectors for V, the cardinality|5| 
remains the same. 

Def.: 8: Let a linear space have a finite base B. Then the number n of vectors in B is 
called dimension of the linear space and the space is denoted as Vn. 

Remark: Particularly interesting is the case, when we want to determine dimension of 

the trivial vector space V = {0}. The only vector in the space is clearly linearly 

dependent by (Def.:4). In order to determine dimension, we have to find some basis of 

V. As the base vectors are expected to be linearly independent the base 5 = 0. Using 

(Def.:5) we can say that the empty set really generates the zero vector space: (0) = {0} 
and because |0|=O the trivial vector space has zero dimension. 

10 



Def.: 9: Let Vn be a linear space with a base B . Then for any v G Vn we call the 
coefficients ct satisfying the equation v = £ f = 1 qWj; i = 1. . n coordinates of the vector 
v in basis B and we write v = ( c 1 # . . , c n ) s . 

Def.: 10: Let V be a unitary space. Then the vectors u, v G V satisfying u * v = 0 are 
called orthogonal. If in addition the vectors satisfy ||w|| = ||v|| = 1 they are called 
orthonormal. 

Def.: 11: A subset of unitary space G = {wj c V; i = 1.. n is called orthogonal system 
i f each pair of vectors where £ / it satisfies Uj * w; = 0. If in addition VUj G 
G: ||Mj || = 1 we call the set G orthonormal system. 

Affine space 

Def.: 12: Let An be a nonempty set with associated linear space Vn over a field F and 
with a mapping (p: An X An -> with following properties: 

i . W l G i 4 n and V u G l ^ : 3! 5 G 4 n such that ^ ( A B) = u 
i i . VA,B,C EAn : <p(AC) = <p(AB) + <^(B,C) . 

Such a set is called an affine space with dimension n. Elements of affine space are 

called points. A n ordered pair [A,B] is called the location of vector u. We denote: 

u = (p(A, B) = AB = B - A or analogically 5 = u + A. 

A t this point it is convenient to highlight that without the associated linear space, the set 

of points has neither relation between two points nor neutral element (origin), therefore 

no way to uniquely specify points in the terms of coordinates. 

Def.: 13: Let An be an affine space with associated linear space Vn and with point 
0 G An called origin. Let B = {elt.., en} be a base of the Vn. Then the ordered (n+1)-
tuple (0,e1,..,en) is called a linear coordinate system. Moreover for A G An where 
A — 0 = a1e1+..+anen we denote A = [alt..,an] where the ordered coefficients 
a^t.., ciji are called affine coordinates of point A. 

Def.: 14: Let u G Vn be a nonzero vector, A G An a point and a constant. Then the set 
p = {B E An \ B = Xu + A; X G E } is called {affine) line. Moreover all the points in the 
set p are called collinear. 

Fig. 5: Affine spaces 
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Def.: 15: Let B,C,D G An collinear and mutually different points, u, v G Vn be defined 
as u = B — D,v = C — D. Then the number X such that u = Xv. is called affine ratio of 
the points B,C,D (in this order). 

With affine spaces arises the concept of affine transformations which preserves 
collinearity, parallelism, affine ratio and convexity. These transformations are 
particularly relevant in graphical systems as all operations on geometric objects are 
accomplished by composition of affine transformations. 

Def.: 16: Let Vn, V'n be linear spaces. A mapping ß: Vn -> V'n is called linear i f for 
each u, v G Vn and a ET satisfies: 

i . ß{u + v)=ß{u)+ß{v) 

i i . ß (aw)= aß (u). 

Def.: 17: Let An,A'n be an affine spaces with associated linear spaces Vn,V'n. The 
mapping a: An -> A'n is called affine mapping/affine transformation i f there exist an 
associated linear transformation ß: Vn -> V'n such that for each A G An and u £ K n 

equation: 

a(A + u) = « 0 4 ) + /?(u) 
(6) 

holds. 

Note that the affine transformation is a combination of linear map and translation. 

Consequently the affine transformation can be expressed as: 

B=MA + t 

where a(A) = MA represents linear map, ß(u) = t associated map, A G An, B G A'n, 
M is n x n matrix and t G V'n. In the (Fig.6) are shown some examples of affine 

transformations and their matrices. 

Rotation Translat ion 

lcos(0) - s i n ( 0 ) l m i 
[sin(0) cos(e) J [a2 

Resize 

sx 0 j ran 
0 sy\[a2\ 

Fig. 6: Examples of affine transformations in 2D 

Moreover it is also possible to represent affine transformations between n-dimensional 

spaces using single (n + 1) X (n + 1) augmented matrix: 
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til (0..0 l)[J-
(8) 

Such representation is admissible because of existence related projective space. 
Projective spaces w i l l be discussed further in this chapter. 

Euclidean space 

Def.: 18: Let En be an affine space with associated unitary space Vn of ordered n-tuples 
over the field of real numbers E with a base B = {e±, ..,en} and with point 0 G En. 
Then we call En the Euclidean space and the ordered (n+l)-tuple (0,e±,..,en) the 
Cartesian coordinate system. Moreover for X E En where X — 0 = xxex+.. +xnen we 
denote X = [xlt.., xn] where the ordered coefficients called Cartesian 
coordinates of point X. 

Remark: Euclidean space is obviously equipped with scalar product: u * v = 

Yi=iuiVt- In this case, metric is given as \X, Y\ = •j'Yi=i(yi ~ x d 2 a n d norm ||w|| = 

^1if=iui for each u,v G Vn and X, Y G En. In the following text, Euclidean space wi l l 

be understood in this sense. 
Note that in preceding text we dealt with linear spaces over some unspecified 

field equipped with a norm and a scalar product. Euclidean space is a special case of 
affine space where the underlying field is a field of real numbers but more importantly 
the associated space is unitary space with a uniquely defined metric and scalar product. 
Such definition allows us to compute angle 6 between two vectors u,v G Vn as: 

which is essential for geometry. 

Analytic geometry 

Geometry in general studies figures in the n-dimensional spaces of different types. As 
we suggested earlier, in the field of computer graphics we are particularly interested in 
analytic geometry as it studies figures, their properties and manipulation with them in 
the terms of algebraic equations and therefore in the form suitable for computer 
algorithms. For such a description it is necessary to have an associated space with a 
coordinate system where each object can be described as set of points of dimension n. 
The most common such space is the above described Euclidean space of dimension two 
or three (plane and solid geometry respectively) with the Cartesian coordinate system. 
B y means of analytic geometry we are able for example to determine relative positions, 
intersections or apply affine transformations of points, lines and other geometrical 
objects defined by equation (or system of equations). 

Further in the thesis all the described theory, formulas and implementation of 
back to front algorithm w i l l assume Euclidean space in accordance with all the 
definitions and notions stated above. 

(9) 
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3.2 Projections 

In computer graphics we often visualize three dimensional data on two dimensional 

output device, usually the computer screen. In order to do that, we use various types of 

projection methods. The projection methods and their capability to preserve geometric 

properties of objects (lengths, angles, ratios, parallelism etc.) are addressed by also 

called projective geometry. In this subchapter we w i l l first introduce projection space 

and homogeneous coordinates which are widely used in computer graphics for 

projection computations. After that we wi l l introduce two main types of projections. 

Chapter is supported by knowledge from [4] [6] [7]. 

Projective space 
The projective space and homogeneous coordinates is an extension of the Euclidean 
space and Cartesian coordinates which makes computation of geometric transformations 
easier. 

Def.: 19: Let Vn+1 be a linear space over the field of real numbers E . Then the set of 
one dimensional subspaces of Vn+1 is called projective space and denoted as P n . 

A n alternative (and more intuitive) definition of projective space is based on the fact, 

that any one dimensional subspace of a vector space is just a multiplication of a nonzero 

vector Xu where u G Vn+1 and X G E . 

Def.: 20: Let Vn+1 be a linear space over the field of real numbers E and ~ an 
equivalence defined as: 

u~v <-> v = Xu 

for any u,v EVn+1 — {0} and some A G E — {0}. Then we define the associated 

projective space Vn as a set of equivalence classes on Vn+1 : Vn+1 — {0}/~. 

Although the projective space is in literature introduced as in (Def.: 19), we wi l l 

continue with the more elegant version (Def.: 20) 

Def.: 21: Let Pn be a projective space and [w]_ G Pn. Then the equivalence class 
X = [u]^. is called geometric point of projective space and when u = (ult ..,un+1) then 
the ut,i G 1,.. (n + 1) are called homogeneous coordinates of X and we denote 
X = [uv.., un+1]. 

Def.: 22: Let Vn+1 be a linear space, Pn be associated projective space and u,v G 
Vn+i ~ {0}. We say, that two points X1,X2 G Pn where Xx = [u]^,X2 = [v]~ are 
linearly independent i f the vectors u,v are linearly independent. Moreover a pair of 
independent points defines projective line p = { X i , ^ } a n d a triplet of independent 
points is called projective plane n = {X1,X2,X3}. 

Note that the projections in general are transformations from n dimensional spaces to 

spaces with dimension lower than n and of various shapes. In the following we wi l l 
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consider only the special case where each point of a 3D geometric object in Euclidean 

space is mapped to its image in the Euclidean projection plane. 

For points in Euclidean space X = [x1,x2,x3] G E3 there is isomorphism to the 

projective subspace EP3 given as X = [Xx1,Xx2,Xx3,X\ where A G E — {0}. Moreover 

we can normalize homogeneous coordinates of points in EP3 to the form [xlt x2, x3,1] 

as: [Xx1,Xx2,Xx3,X~\~[x1,x2,x3,1]. 

Although we have excluded the possibility of A = 0 the result of computing, for 

example intersection of two parallel lines, in the projective space can result in the fourth 

coordinate of the point being equal to zero. These points indicate the ideal points i.e. the 

points at infinity. See that such representation brings up a great advantage of projective 

spaces for computer graphics as infinity is represented by finite real coordinates. 

Another noteworthy remark is that any transformation (including projections) in 

projective space can be achieved solely by matrix multiplication. A t this point we can 

highlight that affine transformations represented by augmented matrix (as introduced in 

the previous subchapter) are achieved by affine space extension to projective space. 

Perspective and parallel projections 
Now that we have introduced the projective space, we may move forward to the 
projections. Having the 3D object (set of points) in Euclidean space and (Euclidean) 
projective plane, the projections are defined as intersection of lines passing through the 
points of the object with the projection plane. Such lines are called projectors and by 
the arrangement of the projectors we distinguish two major types of projections: 
parallel and perspective. 

Def.: 23: Let us have a projection plane n G EP3 defined by its normal vector n = 
(71^^,^,71^) and a viewpoint V G EP3 but V g n. Let P,P' G EP3 and V P. Then 
the transformation p:P -> P' which maps P onto P'such that P' En and P' G pVP, 
where pVP is projector line defined by P and V, is called projection. Moreover i f P is 
ideal point we say p is parallel projection. Otherwise p is called perspective projection. 

Fig. 7: a) Perspective projection b) Parallel projection 

The general projection with viewpoint V and projection plane n as defined above can be 

expressed by 4x4 projection matrix: 

M = nTV - (nV)I (10) 
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where / is 4x4 identity matrix and n, V are row vectors. 

In literature we can often find further classification of the above projections (Fig.8). 

PROJECTIONS 

PARALLEL PERSPECTIVE 

ORTHOGRAPHIC O B L I Q U E ONE POINT TWO POINT T H R E E POINT 

uzwz 
MULTIVIEW AXONOMETRIC 

Fig. 8: Classification of Perspective and parallel projections 

Considering the perspective projection, each line not parallel to the projective plane is 
projected converging to some vanishing point which represents projection of an ideal 
point. In addition i f a line is parallel to some of the coordinate axes it converges to 
principal vanishing point. On the projective plane there can be up to three principal 
vanishing points depending on the position of the projective plane with respect to 
coordinate axes. In particular the parallel is called one/two/three point i f the projective 
plane intersects one, two or three coordinate axes respectively. 

In the case of parallel projection we distinguish orthographic and oblique 
projections. Orthographic projection is typical by the projectors being orthogonal to the 
projective plane. Moreover i f the projective plane is parallel to two of coordinate axes 
then we speak about multiview projection. Otherwise the orthographic projection is 
axonometric. On the other hand oblique projection has no right angle between 
projectors and projective plane. 

Now that we have introduced both major types of projections it is appropriate to 
discuss their suitability. Because in the perspective projection the size of the projected 
objects varies with distance from the viewpoint, it is being used widely in computer 
graphics as it reflects human visual perception and therefore creates more a realistic 3D 
impression. On the other hand in general it does not preserve parallelism nor angles. On 
the contrary the parallel projection does not form a realistic view of objects but 
preserves parallelism, relative proportions and in some cases even angles and distances. 
Therefore parallel projection is more suitable for scientific purposes when we are 
interested in objective measurement of data. 

16 



D FAKULTA E^D^^H 
STROJNÍHO liifeyjjO^IlI 
INŽENÝRSTVÍ I 

4 BACK-TO-FRONT ALGORITHM 
This chapter is devoted to the introduction of a back-to front algorithm. In the first short 

subchapter we w i l l introduce direct volume rendering and how are the volumetric data 

represented in the computer. As the back-to-front algorithm is based on the physical 

model of light propagation we w i l l continue with definition of basic radiometric 

quantities needed for derivation of the volumetric integral which exactly describes the 

propagation of the light through volume. In the last subchapter we w i l l discretize the 

volume rendering integral and obtain the back-to-front algorithm. 

4.1 Direct volume rendering and volumetric data representation 

This subchapter is based on [6] [8] [9]. B y volume rendering we denote a set of methods 

invented to visualize 3D data on 2D images by simulating light transport across the 

volume. These procedures are used for imaging data from computed tomography (CT), 

magnetic resonance imaging (MRI) or as in our case confocal microscopy. Volume 

rendering methods are generally used when the visualized data contain inner structures. 

The cost of precision and detail in volume rendering are large datasets that need to be 

processed. On the other hand, by using less space demanding surface rendering methods 

like triangular surface meshes or boundary representation of objects, on such data, we 

would have lost a significant amount of information. 

In volume rendering it is usually worked with a set D of physical data (velocity, 

density, temperature...) assigned to discrete points in space [x,y,z,v] = VeD where v 

is the value of the observed quantity. The value v may be binary (observed phenomenon 

is or is not present) or single valued (measured value of observed phenomenon). Note 

that v may be of higher dimension i f there are more types of information observed at the 

point. In some applications it is advantageous to include also time component so that 

V = [x, y, z, t, v] and observe the dynamic change of the data over a time period. 

The assignment of the observed data to the points in space can be either 

completely random or more often arranged to regular or irregular grid structures. The 

basic structures for volumetric data are shown in (Fig.9). 

Fig. 9: From left: Cartesian, rectangular, rectilinear, structured, unstructured grid 

The first three data arrangements in the figure are based on axis aligned rectangles, 

more precisely: Cartesian (isotropic) grid is made of cubical cells, rectangular grid is 
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composed of homogenous rectangles and rectilinear grid is axis-aligned but the spacing 

along axis is arbitrary. The structured grid is achieved by application of non-linear 

transformation to a rectangular grid. In the case of unstructured the grid cells don't have 

to be implicitly connected to their neighbours. Note that depending on the type of 

represented data, the grids have arbitrary dimension. 

Since our data samples are raster images with square pixels with constant 

distance between each slice, it is convenient to organize them into 3D rectangular grid, 

where v is triplet R,G,B G (0,255) of colour components of each pixel. The basic 

element of a regular volumetric grid is called voxel (volume element) which is a 3D 

analogy for 2D pixel. In literature there are two possibilities how to estimate the value 

of observed phenomena using voxels. Either the assigned value is constant in the whole 

volume of voxel or is considered valid in the voxel centre. In the latter case any value at 

a point that is not the centre of the voxel is interpolated from two closest voxel centres. 

Further in the text we w i l l use the first voxel interpretation. 

a) 

o s; n t i 
v \ — 

s 
's — 

- i 
\ — 

s 
— 

- i 

S -A 
s — \ 

p i 
b) 

Fig. 10: a) Binary pixel grid, b) binary voxel grid. 

4.2 Basics of lighting theory 

This section we w i l l deal with the theory of light transmission which is crucial to 

realistic rendering of objects. Information in this part is based on [6][10][11]. Even in 

real life we are able to see objects because of the light falling to our retina. The 

discipline in physics dealing with light and its properties is called radiometry and 

discipline dealing with human perception of light is photometry. These two topics are 

quite close. Actually the radiometric quantities are convertible to photometric and vice 

versa. In this chapter we w i l l introduce basic terms of these disciplines in order to be 

able to derive volume rendering integral further in the text. 

The light has dual nature, it behaves as waves as well as particles. In computer 

graphics we mostly neglect the wave nature, polarization and dispersion and we 

consider the light as rectilinear rays of infinite velocity which are not affected by 

gravity or electromagnetic fields. Basic element of light is called photon which 

represents the smallest emittable energy of light of wavelength l [ n m ] . The energy of a 

photon qx [Joule] is determined by equation: 
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he 
q x = T (11) 

where h « 6.63 • 1 0 - 3 4 is Planck constant and c = 299 792 4 5 8 m s _ 1 is the velocity 

of the light in vacuum. 

Radiation universally indicates propagation of energy through space. Radiant 

energy Q[Joule] refers to an amount of energy of all photons in specific area: 

- f 
Jo 

where represents number of photons of wavelength A. In general physics an integral 

for the whole wavelength spectrum or for the visible spectrum is used. In computer 

graphics we are typically using R G B model (or in that matter any colour model with 

finite number of wavelengths) so we are only interested in the three corresponding 

scalar wavelengths. For such case we introduce spectral radiant energy QxVJoule • 
n m " 1 ] representing radiant energy per unit wavelength 

_ dQ 
Q a ~ ~dX (13) 

In literature regarding computer graphics the subscript A is often omitted as the interest 
in just three basic colours is a matter of course. Further in the text we w i l l omit this 
subscript as well keeping in mind that any mentioned quantities are meant for specific 
wavelength and for the general case we only need to integrate a given equation over the 
desired spectrum. 

The time rate of spectral radiant energy (received or emitted) is defined as 
spectral radiant flux {power) <J> [/ • s _ 1 • n m - 1 = Watt • n m - 1 ] 

(j) = — 
dt' (14) 

The spectral radiant flux per unit of area in a surface that is incident on (density 

of radiant flux) is called spectral irradiance E [Watt • nm'1!!!'2]: 
d®i 

E = dA" (15) 
where A represents illuminated surface and <J>; is incident radiant flux. The irradiance 
leaving considered surface (either emitted or reflected) is called radiant excitance 
(radiosity) M 

M = 
dA (16) 

where subscript o in <£>0 means outgoing. In most computer graphic related literature the 

irradiance and radiosity are not distinguished as there is no difference in their equations 

from the mathematical point of view, and both terms are called irradiance. Further in the 

thesis, we w i l l as well , merge these two terms as distinction is not important for us. 

Note that irradiance is a function of position on a surface therefore in general case, 

when we can't assume that the radiant flux is constant over a considered portion of 

surface, we have to consider radiant flux from/to any direction in hemispherical solid 

angle (Fig. 11a)). 
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Sometimes it may be more suitable to consider the density of radiant flux in 

solid angle rather than on the unit of area. Then we are speaking about radiant intensity 

I [Watt • nm^sr'1] defined as: 

da) 
(17) 

where a) is solid angle in specific direction defined by (p,ip (Fig. l lb)) .This function of 
direction and point is useful, when we deal with point sources of radiation. 

a) b) 

Fig. 11: a) Irradiance- radiant flux per unit area dA incident to a point x at object surface, b) 
Radiant intensity- radiant flux per element of solid angle do) defined by point x and 

direction a). 

Finally we are getting to the most important radiometric quantity called radiance 
L[Watt- nm~1sr~1m~2]. Radiance is a function of position (point), area and direction. 

More precisely it states absorbed or emitted power on unitary solid angle per unitary 

area projected perpendicularly to the given direction. The defining equation is: 

d2<J> 
L= (18) 

cosipdAda) 
where cosipdA represents projected area of unitary area dA to the surface containing the 

point of interest (this follows from Lambert law), do) is element of solid angle in 

specified direction and ip is the angle between the given direction and normal to the 

surface. 

The importance of radiance lies in the fact that what we described in terms of 

physic is actually what human eye, cameras etc. detect as color and what we have stored 

in pixels of our raster image dataset. Moreover from radiance equation (18) we may 

derive all the radiometric quantities described above. 

In most algorithms regarding computer graphics the radiance is considered 

constant on the whole trajectory (ray). This is not our case though. We want to render 

our data so they appear semi-transparent. We may achieve this by considering the 3D 

data matrix as participating media which w i l l be elaborated in the next subchapter. 
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4.3 Volume rendering integral 

Most of the image order methods are based on approximation of volume rendering 
integral (VRI) which considers volume as a participating medium. Participating 
medium is a cloud consisting of small particles where each particle can absorb, emit or 
scatter light (for example water, fog or smoke are rendered as participating media) (Fig. 
12). In our case we w i l l consider low-albedo particles meaning that reflectivity of the 
particles is negligible and the light passing through volume is considered to be a single 
ray (hence the name "ray casting methods"). The idea of volume rendering integral was 
first described by Bl inn [12] and formally derived by M a x in [13]. This section is cited 
from [6] [8] [13]. 

Particles 

Incoming light 
t> :t> 

Participating media 

ľ&% t> ••>\i3řtfŘ,>*..l>°'%" 
Outgoing light 

O O 

Fig. 12: Participating medium 

V R I is in general integrated over visible spectrum of wavelengths. As we mentioned in 
the previous subchapter while dealing with raster data we are interested only in 
wavelengths of red, green and blue colour. In the following we w i l l derive the V R I for 
one scalar wavelength with validity for each particular colour. In the next subsections 
we w i l l consider the absorption and emission components of the equation separately and 
later we w i l l combine them to form V R I . 

4.3.1 Absorption of the light 

Absorption only participating medium consists of perfectly black particles which do not 

emit any light. We w i l l consider a very thin cylindrical layer of volume with area of 

base B and thickness As (Fig. 13). In the volume we consider medium with spherical 

particles of identical radius r and with density of particles per unit volume p. Let the 

light flow through the layer perpendicularly to the base. Then each particle casts a 

shadow (projection) of area A = nr2 to the base B. Consequently the volume contains 

Fig. 13: Absorption of fight 
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N = pAsB particles. If we take A s small enough so we can suppose that the particles 

are not overlapping each other, then the area of B overshadowed by the particles is 

approximately NA = pABAs. Relatively speaking the occluded fraction of the light 

flow is NA/B = pAAs. Taking A s -> 0 the probability of overlapping particles tends to 

zero and we get differential equation: 

^ = -p(s)AI(s) = - T ( S ) / ( S ) (19) 

where s is a length parameter, I(s) is light intensity at distance s. Coefficient T ( S ) = 

p(s)A is called extinction coefficient and expresses the rate of decline of light intensity 

along a ray. Solution to (19) is 

/ ( s ) = / 0 e - / o T ( t ) d t (20) 

where 70 is intensity of light at distance s=0 (at point where the ray intersects the 

volume) (Fig. 14) and 

r ( s ) = e - / o T ( t ) d t (2i) 

is called accumulated transparency or simply transparency. Complementary element to 

transparency on voxel of length / is opacity 

a = l- 7YJ) = l - e - ' o T ( t ) d t . (22) 

Moreover i f the extinction coefficient is constant in voxel T(Z) = T then we can also 

express opacity by Taylor expansion: 

a = 1 
,-Tl _ Tl + (23) 

For small voxels we may approximate (23) as min(l,Tl). 

Fig. 14: Intensity function 7(s) 

A mapping that assigns value to scalar function f(X) is called transfer function. 
Depending on the chosen transfer function we distinguish different optical models. For 

example the simplest optical model is thresholding, given by 

T = 
oo if f(X) > K 
0 if f(X) < K 

where K is a constant threshold. 
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4.3.2 Emission of the light 

Now we consider a situation when each particle of the participating medium adds some 

portion of intensity to the light flow. We w i l l use the same cylindrical layer model as in 

the derivation of the absorption component of V R I . For elimination of the absorption 

we w i l l now consider the particles to be completely transparent so no light intensity is 

lost traversing through volume. 

Let C be an intensity emitted by each particle per unit of area. Then similarly to 

the absorption approach we can deduce that intensity added to particle projection to the 

base is approximately CpABAs and for unit area we get intensity CpAAs. B y sending 

A s -> 0 we get equation 

dl 

— = C(s)p(s)A = C(s)t(s) = g(s) (24) 

where g(s) is called the source term. Solution to the equation (24) is 
Ks) =I0+( g(t) dt (25) 

Jo 

4.3.3 Emission and absorption combined 

For a more realistic view we have to consider particles as intensity emitters as well as 
attenuation source. Corresponding relation is obtained by combination of equations (19) 
and (24): 

fs = g(s) - T ( S ) / (S ) (26) 

A n d the solution to the equation (26) for 7(s) is: 

/ ( s ) = / 0 e - ' o T ( t ) d t + f g(s')e-&^t)dtds' (27) 
Jo 

Or alternatively for 7(0) 

7(0) = / s e - ^ ° T ( t ) d t + g{s')e-SsT{-t)dtds' (28) 

where 0 represents edge of the volume and s a point in the eye (or image frame). As we 
can see the first term in (27) is the light intensity of background multiplied by 
transparency T(s) (21) and the second term is intensity contribution of each particle on 
the ray multiplied by transparency between 0 and s : 

r ' ( s ) =e-&mdt (29) 
A n d we can rewrite equation (27) as 

/ ( s ) = I0T(s) + fSg(s')T'(s')ds'. (30) 

The equation (30) is known as volume rendering integral. Note that for the simplicity 

we have set the length interval as (0, s ) but it can be written more generally as ( s 0 , st). 
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4.4 Back-to-front algorithm 

The volume rendering integral cannot be computed analytically. Therefore we have to at 

least approximate it. We employ discrete Riemann sum over the casted ray with discrete 

samples at distances spaced apart by As. B y such discretization we get 

/ (s) = / 0 e - ' o T ( t ) d t + f g ( s ' ) e - £ T m t d s ' 
Jo 

« /oe-2f=1TCA5)A5 + V 7 1
 g(iAs^e-?t=i+1T(jAs)As 

= / 0 f T e - T a A 5 ) A 5 + y n ^ ( j A ^ r i " e - T ( ; A 5 ) A 5 

I -l-i=l ^—H=l * ±j=i+l 
where n = \st — s0\/As. Using equation (21) we have transparency T(s) « t( tAs) = tt 

and g(iAs) = gt hence nTl X—iTl -i rTl 

i=l ^- i t=l -I- J-;=t+l (31) 

Equation (31) is currently known as back-to-front visualization method. However, the 

phrase "back-to-front" does not describe data processing itself but direction of data 

processing only. Data in this direction may be processed in different ways. In the 

following we w i l l introduce basic options for these different solutions and output image 

generation. 
Transfer functions 

Note that having a scalar field, i f we combine all the information stored, some of the 

properties of imaged data can get attenuated. For example i f we scan a cell and apply 

the back to front algorithm the nucleus w i l l be partially overshadowed by the cell 

membrane. Although this approach produces fairly realistic output, sometimes we may 

prefer to highlight particular parts of the imaged object and inhibit or even hide others. 

For a such purpose it is possible to apply transfer functions. 

Transfer functions in general are mappings from a 3D scalar field to optical 

properties. For example in case of magnetic resonance imaging it is of the form 

/:/->/?, G, B, a where / is intensity, R, G, B represent colour and a is opacity (Fig. 15). 

A s we w i l l render data from confocal microscope we have the colours assigned so the 

mapping is rather / : R,G,B -> a. 

L / " L r - , 
1 1 > I 

125 255 
Fig. 15: An example of a transfer function for a grey scale set of images where the color of 

the graph determines color for pixels with given intensity. 

1 -
0,5 -
0 L 
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In the implementation of the back to front algorithm we w i l l consider: 

• Constant transfer function with a = constant for all values of R G B intensities 

• Piecewise constant transfer function with f(JJi) = at where Ut is subset of the 

RxGxB color space. 

In our implementation the transfer function is user defined piecewise constant. Note that 

it is possible to define the function differently. There are even some semi-automated 

methods for their determination based for example on dataset histograms, frequency 

distributions, gradient methods etc. The topic of transfer functions is extensive and far 

beyond the limits of this thesis, but a brief summary in case of interest can be found for 

example in [19]. 

Back-to-front methods 

Along with transfer functions, which assign opacity to the individual voxels and the 

basic back to front compositing equation (31) we have alternative projective methods 

for generation final image out of scalar field: 

• Maximal intensity projection where the voxel with highest intensity on the ray is 

taken as an output. 

• Average intensity projection computes output pixel as average of all voxels 

intersected by the ray. 

• Constant transparency method iterates over voxels on the ray and each step i 

computes: 

Inew ~ TIprevi0US + ^[(1 — 71) (32) 

where the T is constant transparency, gt is intensity of processed voxel and (1-T) 

represents constant opacity. Term gt(l — T) models emission of processed voxel. 

• Volume Rendering integral method iterates over voxels on the ray and each step i 

computes an approximation to volume rendering integral as: 

I-new ~ tilprevious 9i (33) 

tj is assigned transparency given by transfer function and gt represents intensity of 

processed voxel which is considered to be its emission. 
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5 SOFTWARE SOLUTION 

In the following chapter the software implementation of the scalar field imaging 

methods w i l l be described. The algorithm is implemented in C++ language within Visual 

Studio 2019 integrated development environment. Consequently the following text w i l l 

be written with respect to C++17 standard. In the attachment of this thesis the 

implementation can be found in two versions. First version is an algorithm written as a 

console application giving faster results. Second version is the algorithm running in 

intuitive graphical user interface for a price of noticeably increased computing time. 

Note that in the two attached versions there is no other difference, than graphical 

appearance and way of entering the variables. In this chapter we w i l l introduce the 

algorithm step by step as it is implemented in attached files. 

The idea of software application is founded on a projection method combined 

with a back to front algorithm described in the preceding chapters. More precisely we 

are projecting the data matrix onto a projective plane (output window) where the final 

projected value is a function of voxels hit by the projection line (Fig. 16). 

Fig. 16: The main idea of the implementation 

5.1 Loading data from file 

The first step is to load data that are going to be visualized. Recall that we have data 

acquired by confocal microscope i.e. set of images. In the application the set of images 

is supposed to be in the B M P file format and with equal resolution. Moreover each 

image name needs to end with a decimal number starting from zero and indicating its 

position in the scanned specimen. From such a set the algorithm reads each image 

incrementally by its number, pixel by pixel. The read scalar values (R, G , B) are then 

represented by a 3D matrix (Fig. 17). For further computations we also create integer 

array variable representing dimensions of the created matrix 

dim=[number of loaded images, width, height]. 
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Fig. 17: Data representation 

In the following text we w i l l denote the dimensions as [IM, W, H]. In the console 

implementation the path to the images has to be defined manually in the code with the 

slash direction as backslash in the strings is reserved for special pattern characters. 

5.2 Input variables 

In this part we w i l l introduce the user defined variables. Thoughtful alteration of them 

wi l l more or less significantly influence the output and can produce relevant 

computation results. We can split the variables into two categories: projective variables 
for definition of geometrical properties of the view (most of them can be seen on 

Fig. 16) and graphical variables representing coefficients for computation resulting 

colour for output pixels. In the console version of the algorithm the input variables can 

be set on the lines 1071-1088. 

a) Projective variables 

• Camera position P = [Px, Py, Pz] is an array of doubles representing a point from 

which we are looking at a data matrix. Due to further computations Px, Py, Pz 0,0. 

Convenient choice of values might be e.g. consistent with: 

| |P | | > max{IM + (IM - 1) * optDist; W; H} + dist 

• Distance dist representing the distance between the camera position and projective 

plane. Due to further computations dist > 0,0. 

• In the implementation we can decide about the projection method using boolean 

variable perspective. If the variable is set to true the output image is computed as a 

result of perspective projection. False value sets projection method to parallel. 

Depending on choice of projection we need one of the following variables in order 

to determine size of output window: 

o If we are imaging by perspective projection, we need a double variable angle 
that determines the angle under which we want to see the data matrix (optic 

angle) in degrees. Due to further computations angle G (0; 180) — {90} 
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o In the means of parallel projection double variable mag is coefficient by 

which we magnify the output window or alternatively it is the inverse of 

magnification of data matrix. Clearly mag =£0,0. 

As we have discussed in the chapter about confocal microscopy the resolution in the 

optical axis is typically worse than the resolution in focal plane. If we neglected the 

fact we would get the resulting image disproportionately flatter in the optical axis. 

In order to get realistic result we define optDist integral variable which determines 

the optical distance between the individual images. In the terms of application we 

virtually expand the data by inserting spaces of size optDist in between the actual 

images (Fig. 18). The optical distance is typically given by the microscope. The 

dimension of expanded matrix in optical axis is given by: IM + (IM — 1) * optDist. 
Note that we haven't excluded the case of optDist = 0 as for some cases it can 

provide the same output at less computational cost as any other value. 

Data voxels Empty voxels 

Height 

> Optical axis 
Fig. 18: Optical distance representation in data matrix 

• Closely related to the optical distance is a boolean variable called spaces. It 

determines how to cope with empty space generated by optDist 0. If the value is 

set to false it approximates the empty space with weighted average of the right and 

left nearest data voxels. It is an especially convenient setting for perspective 

projection as it creates a visually more realistic impression of the data without 

intensity jumps due to the gaps. On the other hand the variable set to true leaves the 

space empty, which is a more suitable setting for performing measurements. 

Moreover for the average and maximal intensity method the spaces are 

automatically assumed empty as computing approximations would be redundant or 

even distorting. 

b) Graphical variables 

• BTFmethod is an integral variable representing the method applied on the data. 

0: Maximal intensity projection method, 

1: average projection method, 

2: constant transparency method, 
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3: volume rendering interval method with constant transfer function, 
4: volume rendering interval method with user defined piecewise constant 

transfer function. 

• Transparency is integral value in the interval <0;100>, which in the case of the 

method with constant transparency defines the coefficient T in the equation (32), in 

the case of volume rendering integral method coefficient tt in equation (33). 

• For volume rendering integral method with user defined transfer function there is: 

o Vector called TF of seven integer arrays representing the upper and lower 

bound for each of R,G,B intensities and assigned transparency. These 

intervals should not overlap and obviously the lower bounds need to be 

lesser or equal to upper bounds. 

o Opacity constant called op which is used for multiplication of each voxel 

intensity value in the given interval. 

o Default opacity dop which is used as opacity constant outside of the defined 

interval. 

• Threshold is integral variable from interval <0;254> determining whether to include 

a given voxel in the computation of output pixel intensity. More specifically i f the 

voxel doesn't exceed a given threshold by any value of intensity (R,G,B) it is 

skipped. Thoughtful choice of threshold can significantly accelerate computation or 

even filter away some noise. 

• Brightness is integral coefficient from <-255,255> that is added to each intensity 
(R,G,B) of output pixels up to intensity = 255 or down to intensity=0 in order to get 
brighter result. 

• Contrast is double variable multiplying each intensity (R,G,B) of output pixels up to 
intensity = 255 in order to get a more contrasting result. 

5.3 Generation of output window 

As we have loaded the data and acquired the user defined variables it is possible to 

continue within the algorithm. We wi l l proceed by definition of the output data window. 

Although the definition differs by the projection method used, the variation in fact 

manifests only in one parameter and therefore can be implemented as a single function. 

The output window position and rotation in the coordinate system w i l l be 

defined by vectors r = (r0,r1,r2) and s = (s0,s1,s2). The vectors can be determined 

by posing six requirements: 

1. The distance of the output window from the camera position is equal to the dist 

variable: Taking the direction of view d = O — P and making its length equal to 

dist: d = dist, then we acquire the centre of the output window 0' = P + d. 
\\d\\ 

2. Vector r is parallel to the xy plane. Therefore r 2 = 0. 
3. Vector r is perpendicular to the direction of view d: 
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r * d = r0d0 + rtdt + r2d2 = 0 
and with r 2 = 0.0 we acquire: 

_ ~rodo 
1 dx 

4. In the case of perspective projection the last restriction is given by the user defined 
optic angle transformed to radians and for parallel projection it is given by the mag 
variable. In fact both given variables determine the length of the vector r: 

!

(angle\ 
c = ||d|| tan y—-—J perspective projection 

c = mag * width = mag * W parallel projection 
Then: 

2 

| |r| | = ^ r p

z + r-r + r / = 

from which we can compute: 

J r 0

2 + r x

2 + r 2

2 = r 0

2 + ( - ^ ) = c 

r 0 = 

and we acquired all coordinates of vector r. 

5. Vector s is perpendicular to both d and r thus we can compute it as cross product of 

d and r and acquire: 

s' = {-r1d2,rQd2,r1dQ - rQd{i. 
6. The output window size proportionally corresponds to the input/output image size: 

llrll W 
— = —. This fulfils the s computed as: 
||s|| H F 

s = H  

Note that our task w i l l be to go through the output window pixel by pixel and shoot a 

ray through it in order to compute the projection of the data matrix. Previously in the 

theoretical part of the thesis we have chosen the notation, where the voxel (or now in 

the case of output window pixel) has the constant value in its whole volume (area). 

Bearing that in mind we can represent each pixel by a point. Setting: 

Q00 = P + d + s + r 
as starting point and 

2 r 
A i = — 

W 
2s 

vectors representing distance between the nearest two pixels in the directions of r and s. 
Then value of each output pixel can be estimated as: 

Qij = QQQ-M*i-Aj*j 

where i G< 0; W — 1 > and j G< 0; H — 1 > are integers. 
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This part of the algorithm is implemented as function outputWindowGen() 

which returns (saves to referenced variable) point Q00 and vectors A i , Ay, d. 

5.4 A A B B ray intersection 

In this subchapter we w i l l look into the algorithm for finding the intersection of the 

projective line with the data matrix (box). Naive approach would be to find intersections 

of the line with all six planes forming the block separately. Then we would check 

whether the intersection point lies within the rectangle boundaries in the plane. 

Although functional, this approach has a lot of special cases that have to be handled 

which make the algorithm relatively slow. Since ray-box intersection is very widely 

used in computer graphics, several much more effective and robust algorithms had been 

developed. In the software solution there is implemented the axis aligned bounding box 

( A A B B ) algorithm introduced in [14]. This subchapter w i l l be based on the information 

form [6] [14]. 

The algorithm is based on comparison of parameters t £ (—00,00) of the 

parametric line equations: 

x = Px + projLinxt 

y = Py + projLinyt 

z = Pz + projLinzt 

where the point P is the position of the camera and vector projLin direction of view. 

The box is defined by two points on its space diagonal. These points are called lower 
and upper bound where the lower bound has the minimal and the upper bound maximal 

coordinates on the axes (Fig. 19). In our case we also have consider the distance 
• y 

(34) 

Fig. 19: Upper and lower bounds representing a box 

in-between the samples in the optical axis optDist so our bounds are determined as: 

-(IM + optDist(\M - 1)) - W —H 
Bmin ~ 

Bmax ~ 

2 ' 2 ' 2 

IM + optDist(\M - 1) W H" 

2 'H'2 

(35) 

Since the box is axis aligned, each coordinate of the bounds represents one of the six 
boundary planes of the box and we can acquire the intersections of them with the 
viewing ray as: 

31 



Btj = Pj + projLirijtij (36) 

where the meaning of subscripts is: i G {min,max} and j G {x,y,z}. From the above 

equation we express t^: 

= (• 
B 

\projLirij/ 

(37) 

Now that we have the intersections with all six planes we want to determine which two 

of them (if any) are placed on the box. First we w i l l explain the logic behind the 

parameters comparison on the 2D space with a viewing ray increasing in both axes. 

Next we w i l l generalise the algorithm to all directions of the ray and finally we wi l l 

make a simple extension onto 3D space. 

So the first question to be asked is i f the viewing ray intersects the box at all. 

From the (Fig. 20a)) we can see, that i f either tmiriiX > tmaxy or tminy > tmaxx the ray 

doesn't intersect the box. In that case we terminate the algorithm and we assign (0,0,0) 

value to the related pixel on the output screen. Otherwise, the ray intersects the box and 

we need to figure out which two of the four points lie on it. Looking at (Fig. 19b) we 

can see that any ray intersecting the box intersects first the lines defined by Bmin and 

then the lines of B^, whilst the points lying on the box are those defined by tmax = 
Tnin.(trnax x , tmaxy) and t m i n — max^t^ 

Xmin Xmax Xmin Xmax 

Ymax 

Ymin 
min,y 

Fig. 20: a) Case of the viewing ray missing the box; b) the viewing ray intersecting the box. 

A s we mentioned this parameter comparison is only valid for the viewing ray increasing 

in both axes. We can generalize the approach by switching B^j and Bminj coordinates 

for all j-axes in which the viewing ray is decreasing. For extension to the 3 r ddimension 

we only need to compare acquired tmax, tmin to the values tminz, tmaxz the same way 

as we did in x,y comparison. 

In this algorithm there is one special case that needs to be handled. That is i f a 

coordinate of the ray direction projLin is 0. In C++ division by zero is possible for 

float/double data type and by I E E E standard [15] it yields +oo for positive and negative 

numerator respectively so the algorithm works correctly. However, i f the numerator is 

equal to 0.0 the result would be N a N (not a number) so we have to set the result to 
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±infinity. Closely related to this problem is that i f we determined the increase/decrease 

of the ray in an axis based on whether the corresponding coordinate is > 0, by the same 

standard it is defined that 0.0=-0.0 which would be lethal for the intersection 

determination. Therefore it is convenient to compute rather with the ray 
( 1 1 I ) 

inversion invq = ] , , \. 
(projLinx projLin-y projLinz) 

Pseudocode for the A A B B vs. ray intersection algorithm: 

c D \-(\M+optDist(\M-l) -W —H~\ 
1. Set B m i n - [ — — J 

_ HM+optDistQM-l W H] 

f 1 1 1 ) 

invq = \ ——, ——, — \ 
(projLinx projLin-y projLinz) 

2. If {invqt < 0) swap (Bmin>i, BmaXfi) i G {x,y,z} 
3. Initialize: 

If ((Bminii - Pt) = 0.0 and invqt = ±oo) : tmini = invqt 

else: tmin:i = (Bmin:i - * invqt 

If ((BmaXii - Pt) * 0.0 and invqt = ±oo) : tmaxi = invqt 

else: tmaxX = {BmaxX - P{) * invqt 

4. If ( j t m i n x > tmaxy) or ( t m i n y > t m a x x ) y . return no intersection 

else Set. tmax ~ TniTl(tmax,x> tmax,y) 

tmin ~ TfUlx(tmin,x> ^min,y) 

5. If 
((j-min ̂  ̂ max,z) o r {pmin.z ^ ̂ max)) : return no intersection 

else Set. t-max ~ TniTl(tmax> tmax,z) 

tmin ~ Wax(tmin, t m i n z ) 
6. Set: A = P + projLin * tmin 

B = P + projLin * tmax 

7. Return A, B 

In the software solution the intersection of the ray with box is implemented as a 

function which returns boolean data type valued true for the ray intersecting and false 

for missing the box. Moreover i f the ray intersects the box the function saves the 

intersection points to referenced Point structures A, B. 

5.5 Bresenham algorithm 

As follows from the previous description of the back to front algorithm we w i l l need to 

compute thousands of rays going through our 3D data grid and hence the rays 

determining algorithm should be very fast. Suitable one is a line segment rasterization 
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algorithm which takes two boundary points of a line segment and generates a sequence 

of integer voxel coordinates representing a line segment in a raster image. In this 

subchapter we wi l l introduce the Bresenham line segment rasterization algorithm and its 

extension to the 3 r d dimension based on [6] [16] [17]. The Bresenham algorithm is an 

incremental algorithm based on integer arithmetic. Using only integer computations 

results in significant speed acceleration. 

5.5.1 Basic Bresenham algorithm in 2D 

A s said above for two integer input points A = [xi , yi] and B = [x2, V2] we are looking 
for integer line segment representation. The algorithm is derived from the line equation: 

y = mx + b 
(38) 

where m = — = ——- is the slope of the line segment and b is translation. Knowing 

the slope m we can determine main axis to which given line segment leans to: 

(m G (—1,1) main axis x 
[otherwise main axis y. (39) 

In the rasterization algorithm we are iteratively moving along the main axis with the 

unit step and for each such step we decide whether to make a step along the secondary 

axis as well (Fig.21a)). 

y 

1 — > 

a) 1') 

Fig. 21: a) Rasterization of line segment with main axis x. b) Closer pixel determination. 

For simplicity the algorithm w i l l be explained assuming: 

i . Input points lie in the first quadrant of the plane. 
i i . Input points are ordered from left to right. (x x < x2). 

i i i . The slope m G (0,1) —> the main axis is x. 

Other cases w i l l be discussed in the next subchapter. 

Let pixel [x i ?yi] be processed. Now we have to make a decision whether to move the 

next pixel up in the y axis [xj+1, yj+1] or stay on the same level [x;+L y j . The decision 

is based on distances dj, J2 of the two possible pixels from the real line segment 

(Fig.21b). The pixel closer to the real line segment wi l l be picked and processed next. 

The real line segment coordinate in the y-axis is: 

34 



FAKULTA F t f l f f M 

STROJNÍHO EEsnncj 
INŽENÝRSTVÍ 

y = m(Xi + 1) + b (40) 

and the distances from each pixel: 

di = J-Ji =m(xt + l)+b-yt (41) 

d2= y i + l - y = y i + l- m(Xi + l)-b. (42) 

If we subtract the distances: 

Ad = d 1 - d 2 = 2m{x{ + 1) + 2b - 2yt - 1 (43) 

we can determine which pixel to choose only by the sign of the result. If the A d < 0 the 

closer pixel is [xi+1, y ] and wi l l be processed next, in the other case we process pixel 

[xi+l ,yi+l] . 

In order to make the calculation faster it is desirable to transform equation (43) 

to integer form. First we substitute b=yi-mxi and get: 

A d = 2m(Xj + 1) + 2(3/! — mxt ) — 2yt — 1 

= 2g(z, + l ) + 2 ( y 1 - g z 1 ) - 2 y , - l . 

Next we multiply the equation by positive member A x so we eliminate the fraction and 

we get decision parameter pt for i-th step of the algorithm in the form: 

Pi = A d A x = 2Ay(Xj + 1) + 2 ( y x A x — A y x x ) — 2y jAx — Ax 

= 2AyXj — 2yjAx + 2 ( y 1 A x — A y x x ) + 2Ay — Ax 

= 2 A y x ; - 2 y A x + c (44) 

where c = 2 ( y x A x — A y x x ) + 2Ay — A x is a constant. B y expressing of the subsequent 

decision parameter: 

pt+1 = 2 A y x i + 1 - 2 y i + 1 A x + c = 2Ay(xt + 1) - 2 y i + 1 A x + c (45) 

and subtracting equations (44) and (45) we can express the subsequent decision 

parameter from pt: 

Pi+i ~Pi = 2Ay - 2 y i + 1 A x + 2y ;Ax 

Pi+i =Pi + 2Ay - 2 A x ( y + 1 - y ) (46) 
where 

TO for pt<0 
Vi+i -Ji = 

hence 
1 for Pi > 0 

_( P i + 2Ay forPi<0 
P l + 1 [pi + 2 A y - 2 A x for P i > 0 . K } 

The first decision parameter in the sequence is stated by inserting initial point [xi , y j to 

the equation (47): 

P i = 2Ay - Ax . (48) 
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Pseudocode for the basic version of the Bresenham algorithm: 

1. Set: Ax = x 2 - xlt Ay = y 2 - yx 

2. Initialize p = 2Ay — Ax 
3. Set [x, y]=[xi, yi] 
4. Process point [x, y] 
5. While x < x 2 

a. x = x + 1 
b. If p > 0 then 

y = y + i 
p = p + 2(Ay — Ax) 

else 

p = p + 2Ay 
c. Process point [x, y] 

6. End. 

5.5.2 Bresenham algorithm for all directions in 3D 

In the previous subchapter we concentrated on the principle of Bresenham algorithm 

and we considered one specific case of algorithm in two dimensions. In this subchapter 

we w i l l extend the algorithm to a general form in the three dimensional space along 

with an introduction to how the algorithm is implemented in the software solution. 

A t first we considered x as the main axis. In order to generalize the algorithm we 

first have to decide, which of the three axes the main one is. We determine it easily by 

comparing the absolute values of input points A[x i , y i , z i ] , B[x2,y2,Z2] differences |x2 — 

\yi ~ ViV \z2 ~ z i l where the greatest difference determines the main axis along 

which there w i l l be a constant unit step. 

Moreover in the subchapter 5.5.1 we have considered one specific direction 

given by the input points A , B (increasing in both x and y axis). But there are four 

possible directions of line rasterization in the plane and eight directions in the 3D space. 

Some of the cases can even result in sign alterations in (47). Although, i f we realize that 

the line segment increases/decreases in the secondary axes symmetrically with respect 

to the centre of the line segment, we may omit the alterations using absolute values of 

Ax, Ay, Az. 

Even when the computation of decision parameters pt is now generalized, we 

still need to acknowledge the direction of rasterization. This may be expressed by three 

coefficients cx, cy, cz 6 {—1,1} where value 1 represents ascending and -1 descending of 

the line segment in the considered axis. As a result we move along the main axis with 

step +1 and for each secondary axis we keep its own decision coefficient given by: 

P l = 2A S - A m (49) 
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Pi+1 = 
Pi + 2 A S for Pi<0 

Pi + 2 A S - 2 A m for pt > 0. 
(50) 

where A m s = | A x y z | and subscripts m and 5 indicate main and secondary axis, 

respectively. 
Pseudocode for the 3D general Bresenham algorithm: 

1. 
2. 

4. 
5. 
6. 
7. 
8. 

Set A x = | x 2 - x j , A y = | y 2 - y x | , A z = | z 2 - z j 
If x x < x 2 : c x = 1 else: c x = —1 
If y-i < y2- cy = 1 else: c y = — 1 

If z x < z 2 : c z = 1 else: c z = — 1 

If A x > A y and A x > A z : main axis is x 
else i f A y > A x and A y > Az : main axis is y 
else: main axis is z 
L ink main axis as m, secondary axes as sj, S2 

Initialize px = 2Asl - A m p 2 = 2 A s 2 - A m 

Set [x, y, z]=[xi, y i , zi] 
Process point [x, y, z] 
For i=l:(Jm+l) 

a. m = m + cm 

b. If P i > 0 then 
s l = s l + c s l 

P i = P i + 2 A S 1 - 2 A m 

else 

P i = P i + 2 A S 1 

c. If p 2 > 0 then 
5 2 = 5 2 + cs2 

p2=p2 + 2 A s 2 - 2 A m 

else 

p 2 = p 2 + 2 A s 2 

d. Process point [m, si , S2] 
End. 

In the software solution the Bresenham algorithm is implemented as two nested 
functions. The first function takes the two border integer points as an input, determines 
the main axis and coefficient for each secondary axis (1.-4. in the pseudocode). The 
second function is then called with differences, coefficients and related positions in the 
point structure (linking m,si, S2 to the corresponding axes) ordered so that the main axis 
coefficients are on first positions. Then the line 5.- 9. in the pseudocode is executed and 
the processed points are saved in the Line structure for later use in back to front 
algorithm. 
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5.6 Back to front method implementation 

A t this point we are getting to the core of the algorithm. As it was outlined at the 
beginning of this subchapter for each pixel of the output window we wi l l : 

1. Cast a ray through it. 
2. Compute intersection of the ray with data matrix. ( A A B B - r a y intersection) 
3. Determine the set of voxels lying on the intersection. (Bresenham) 

4. Perform one of the methods suitable for back to front application. 

A s for the first step the casted ray (projection line) is represented as a point and 

direction vector. In the case of perspective projection the point is camera position P and 

the vector is computed as: 

projLin = P — Qij 

where Qtj is a point representing the processed output pixel. In the case of parallel 

projection the point is Qtj and the direction projLin is simply equal to the direction of 

view d as it is perpendicular to the output window. 

The algorithm proceeds with a function intersection which takes the point and 

direction defining ray, dimensions dim and constant optDist as input. If there exist an 

intersection with a data matrix it returns bool value true, the intersections are saved to 

referenced points A,B and the algorithm proceeds. On the other hand i f there is no 

intersection the current output pixel value is set to zero and the program proceeds with 

processing the next output pixel. 

In the next step (if the intersections exist) the points A, B are rounded to integral 

values and taken as input to the Bresenham function. This function generates the array 

AB of coordinates of the voxels lying on the intersection of the ray with the data matrix 

from the furthest to nearest. In the implementation there are two versions of the 

Bresenham function. One is for the choice of weighted average for the spaces between 

the images in the data matrix and returns coordinates of all the voxels on the 

intersection. Second returns only intersected voxels with data as it is unnecessary to 

involve void voxels in the computation. 

The fourth step applies one of the imaging methods, considered in the theoretical 

part, on the voxels intersected by the ray. As the methods are straightforward we wi l l 

describe their implementation in terms of short pseudocodes. 

• Maximal intensity method 

1. Initialize voxel Output R G B = 0, intensity Sum = 0, maxIntensitySum = 0, 
2. For each voxel P in AB: 

If (PR > threshold O R PG > threshold O R PB > threshold) 
intensitySum=PR + PG + PB 

If (intensitySum > maxIntensitySum) 
maxIntensitySum= intensitySum 
OutputRiGiB = PRIGIB 

else continue with next voxel; 

3. End. 
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Averages 

1. Initialize voxel Output R G B = 0 
2. For each voxel P in AB: 

If (PR > threshold O R PG > threshold O R PB > threshold) 
OutputRiGiB = P R i G i B + OutputRiGiB 

else continue with next voxel; 

OutputRGB 3. Output^ = s i z e o f ( A B ) 

4. End. 

• Constant transparency method: 

1. Initialize voxel OutputRG B = 0 
2. For each voxel P in AB: 

If (PR > threshold ORPG > threshold ORPB > threshold): 
OutputRG B = PRfGfB * (1 — transp) + OutputRG B * transp 

else continue with next voxel; 

3. End. 

• Volume rendering integral with constant transfer function 

1. Initialize voxel OutputRGB = 0 
2. For each voxel P in AB: 

If ((PR > threshold O R PG > threshold O R PB > threshold): 
OutputRGB = PRfGfB + OutputRGB * transp 

else continue with next voxel; 

3. End. 

• Volume rendering integral with user defined transfer function 

1. Initialize voxel OutputRGB = 0 
2. For each voxel P in AB: 

If ((PR > threshold O R PG > threshold O R PB > threshold) A N D 
(PR,G,B is within defined boundaries): 

OutputRiGiB = P R i G i B * tf(PRIGIB) + transp * OutputRiGß 

else continue with next voxel; 

3. End. 
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When the computation of either method is done the resulting pixel values are modified 

by the user setting of brightness and contrast: 

pixOutRG B = pixOutRG B * contrast + brightness 

and the algorithm continues with processing the next pixel. When all the output pixels 

are processed the result is saved in the folder with project as Output.bmp. 
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6 RESULTS AND DISCUSSION 

The implementation of methods for scalar data visualization described in the chapter 5 
was tested on the following three datasets acquired by confocal microscope as series of 
B M P images with dynamic range 8 bits per colour component: 

• Datasetl: two speciments of protozoan Paramecium caudatum, real size cca 300 \im 
No of Images: 57 
Width: 1600 
Height: 1600 
(relatively high resolution, relatively small noise) 

• Dataset2: tobacco cell, real size cca 200 \im 
No of Images: 100 
Width: 800 
Height: 800 
(suitable small resolution, heavily degradated by noise) 

• Dataset3: tobacco cell, real size cca 350 \im 
No of Images: 96 
Width: 954 
Height: 638 
(suitable resolution, slightly degradated by noise) 

Note that in the ZIP attachment to the thesis, there is only Datasetl provided with half 
of the original resolution due to size restrictions. On the attached C D there are all three 
datasets in full resolution. In the attached files there are also two versions of application. 
One is pure algorithm where the manipulation with input data has to be done in the 
actual code. The second is implemented as a graphic user interface where the inputs can 
be entered and changed intuitively. 

In the appendix of the thesis you can find the examples of images generated by 
the algorithm. Particularly there are three examples from each set and each set is shown 
from different points of view generated by back to front method with constant 
transparency in order to give an idea how the original specimen looked. Moreover there 
are results of average projection, maximal intensity projection and volume rendering 
integral with constant transfer function and user defined transfer function method with 
two versions transfer function for each dataset. Further there is shown an impact of 
optical distance setting and difference between parallel and perspective view. 

From chapter 5, where the algorithm functionality is described is obvious, that in 
general the parallel projection is faster than projective, as we don't have to compute the 
viewing ray direction. With the same clarity we can say that treating optical distance in-
between the voxels as an empty space rather than estimating weighted average of 
incident voxels is exceptionally faster. In fact, depending on the defined optical distance 
variable, this artificial stuffing of the void voxels quickly becomes the heaviest process 
in the algorithm. Looking at the implemented methods, we can observe that the 
maximal intensity and average projections are very similar and relatively fast in terms 
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of processing time. On the other hand these methods are quite rigid when it comes to 

output information. On the contrary, back to front method with constant transparency 

and volume rendering integral provide more flexibility in the image output definition 

and consequently in the amount of information obtainable at the cost of longer 

computation time. Naturally the constant transfer function for volume rendering integral 

is faster than the method with user defined transfer function as in the latter we need to 

check whether the value of a voxel lies in the interval for each voxel in the data matrix 

and each interval defined. 

Note that we may only need to reconstruct the frontal 3D view of the scanned 

specimen (in the direction of optical axis x). Then it is not needed to f i l l the void 

between the voxels, as those empty spaces won't be visible. Moreover in this case when 

we apply a parallel projection method the optical distance becomes redundant, as it 

won't result in change in the output. Knowing this, we can significantly reduce the 

runtime of the algorithm. 
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7 CONCLUSION 

The first theoretical chapter in this thesis is devoted to confocal microscopy. In 

particular we have described how simulated fluorescence from fluorophores serves in 

widefield and confocal microscopy. We have continued with explanation how confocal 

microscopes focus on one particular point in a focal plane and they filter out of focus 

light using two pinhole aperture and two confocal lenses. Further we discussed the 

whole microscope setup. The chapter continues with introduction of limitations 

regarding confocal microscopy. We have mentioned light detection limitations - the 

resolution limitation caused by diffraction phenomena, pinhole size, laser intensity and 

amount of fluorophore and scanning speed limitations followed by description of 

acousto-optic deflectors and Nipkow discs addressing the speed limitation issues. 

Chapter three sets the mathematical background for computer geometry and 

back-to-front algorithm in particular. In this chapter we have quickly recapitulated the 

basic definitions regarding linear, normed, unitary, affine and Euclidean spaces and put 

them in context with analytic geometry. The second subchapter brings up projective 

space definitions followed by introduction of parallel and perspective projections and 

ends with a short discussion on their suitability. 

The fourth chapter leads toward the back-to-front algorithm. First we have 

introduced a direct volume rendering concept which is advantageous for data with inner 

structures imaging and possibilities of representation of such volumetric data in the 

computer with accent to 3D scalar fields. In order to create realistic rendering of objects 

the direct volume rendering methods are mostly based on volume rendering integral, 

which describes the light propagation through the participating media. In the second 

subchapter we have introduced the basic radiometric quantities used for describing the 

transmission of light: photon energy, radiant energy, radiant flux, irradiance, radiant 

intensity and most importantly radiance. Based on the theory we have described the 

derivation of the volume rendering integral by combination of absorption and emission 

of light by particles in participating media. The theoretical part of the thesis culminates 

in the fourth subchapter, where the back-to-front visualization method is obtained by 

discretization of volume rendering integral followed by brief introduction of transfer 

functions and methods suitable for imaging scalar data fields by back-to-front method: 

maximal intensity projection, average intensity projection, constant transparency 

method and volume rendering integral method. 

The fifth chapter is dedicated to step by step description of the back-to-front 

algorithm implementation. We have mentioned the loading of the images from the given 

dataset and continued with introduction of the user defined projective and graphical 

variables, their possible ranges meaning in the algorithm. Having the input variables 

defined we approached the output window generation where we determined its exact 

position in the coordinate system based on the camera position, distance of the window 

from camera position, optic angle or magnitude (depending on the projection) and 
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resolution of the input/output images. As subsequent parts of the algorithm are repeated 

up to millions times (depending on images resolution) we have implemented fast 

methods of their computation. The first algorithm is used for finding intersection of a 

ray with axis aligned bounding box using comparison of parameters from parametric 

line equation. Another fast implemented method is Bresenham algorithm for line 

segment rasterization. The algorithm is based on integer arithmetic where a simple 

decision parameter is compared to zero. The last section of the practical part describes 

implementation of the back-to-front methods introduced in chapter four. 

In the sixth chapter we have discussed the results of implemented methods in the 

terms of computational complexity and their suitability for different result purposes. For 

the end we can summarize, that the maximal intensity projection, average projection, 

constant transparency method and volume rendering integral method with constant 

transfer function can be used for getting an overall idea about given data whereas 

volume rendering integral method with user defined transfer function is more suitable 

for specific information extraction. Furthermore the parallel projection with void in-

between the data is better for measurement purposes where the precision is required, 

while perspective projection and filling the optical distance with weighted average 

provides a more realistic impression. 
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LIST OF ATTACHEMENTS 

C D . 

Compressed ZIP file with implementations, datasets and example outputs. 
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I a 
E j > 4 

Fig. 24: DATASET2: constant transparency method, parallel projection, mag=1.3, 
distance=300, optical distance=2, empty spaces approximation on, transparency=85%, 

threshold=40, brightness=0, contrast=5. 

Fig. 25: DATASET3: constant transparency method, parallel projection, mag=1.0, 
distance=300, optical distance=2, empty spaces approximation on, transparency=85%, 

threshold=50, brightness=0, contrast=2.0. 
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28: a) Optical distance^ 0 b) optical distance=5 with weighted average approximation 
c) optical distance=5 without weighted average approximation with parallel projection 

d) close-up view of c). 



Fig. 29: a) Parallel projection b) perspective projection with optical distance^ 20. 
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