
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

VISUAL PROGRAMMING TOOLKIT BASED ON
MICROPYTHON FOR ESP32 PLATFORM
NÁSTROJ PRO VIZUÁLNÍ PROGRAMOVÁNÍ PLATFORMY ESP32 V JAZYCE MICROPYTHON

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. DANIEL PAUL
AUTOR PRÁCE

SUPERVISOR Ing. VÁCLAV ŠIMEK
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Computer Systems (DCSY)

Student: Paul Daniel, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Information Systems and Databases

Category: Web applications

Academic year: 2023/24

Assignment:

1. Study the principles of the so-called visual programming concept and the existing software tools
used for that purpose.

2. Explore the contemporary technology and approaches suitable for implementing web-based
applications. Prepare a short review on that topic.

3. Make yourself acquainted with the domain of embedded systems with a special emphasis given to
the ESP32 platform, its hardware features, and means of programming.

4. Outline the well-structured architecture of a visual programming toolkit tailored for the ESP32
platform with the capability to generate a MicroPython code.

5. Develop a proof-of-concept example to showcase the feasibility and viability of the proposed
architecture from point 5) of the assignment.

6. Implement the proposed concept into a fully-fledged visual programming toolkit. Try to pay attention
to the modular structure of the code.

7. Rigorously test the toolkit in diverse scenarios to validate its functionality, robustness, and
performance under various conditions.

8. Evaluate the functionality of the complete tool. Assess the achieved results and try to propose
further directions for the development.

Literature:
• According to the instructions of the supervisor.

Requirements for the semestral defence:
• Fulfillment of points 1 to 5 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Šimek Václav, Ing.

Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 30.10.2023

Master's Thesis Assignment
155806

Visual Programming Toolkit Based on MicroPython for ESP32 PlatformTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This thesis presents the development of a Visual Programming Toolkit designed for pro-
gramming the ESP32 platform using MicroPython. The toolkit leverages the intuitive
nature of the visual programming paradigm to simplify the process of programming micro-
controllers for users without extensive coding experience. The core of the toolkit is built
on a web-based interface that utilizes the ReactFlow library to enable drag-and-drop func-
tionality with flow-based diagrams, allowing users to assemble code through visual blocks
that represent MicroPython commands and structures. Furthermore, it covers the backend
hosted on the ESP32 device itself, allowing communication with the frontend client.

Abstrakt
Táto diplomová práca predstavuje vývoj Vizuálneho Programovacieho Nástroja určeného
na programovanie platformy ESP32 pomocou MicroPythonu. Nástroj využíva intuitívnu
povahu paradigmy vizuálneho programovania na zjednodušenie procesu programovania
mikrokontrolérov pre používateľov bez rozsiahlych skúseností s programovaním. Jadro pro-
gramovacieho nástroju je postavené na webovom rozhraní, ktoré využíva knižnicu React-
Flow na umožnenie funkcie "tahaj a pusť" s diagramami založenými na toku, čo umožňuje
používateľom zostavovať kód prostredníctvom vizuálnych blokov, ktoré predstavujú príkazy
a štruktúry jazyka MicroPython. Ďalej pokrýva backend umiestnený na samotnom zari-
adení ESP32, ktorý umožňuje komunikáciu s frontendovým klientom.

Keywords
Visual programming, ESP32, MicroPython, Flow-Based programming, Hardware program-
ming, Web-Based applications, React

Klíčová slova
Vizuálne programovanie, ESP32, MicroPython, Programovanie založené na toku, Pro-
gramovanie Hardvéru, Webové aplikácie, React

Reference
PAUL, Daniel. Visual Programming Toolkit Based on
MicroPython for ESP32 Platform. Brno, 2024. Master’s thesis. Brno University of Tech-
nology, Faculty of Information Technology. Supervisor Ing. Václav Šimek

Rozšířený abstrakt
V dnešnom svete, ktorý nás na každom kroku obklopuje modernými technológiami, je
potrebné držať krok s dianím okolo nás. Všade, kam sa pozrieme, sa nachádzajú snímače,
kamery, mikrofóny a ďalšie periférne zariadenia, ktoré sú prostredníctvom riešení internetu
vecí (IoT) neoddeliteľnou súčasťou nášho života. Táto prepojená sieť zariadení mení spôsob,
akým komunikujeme so svetom, a ponúka efektivitu, konektivitu a pohodlie. Snímače
sú prítomné v našich smartfónoch, nositeľných zariadeniach, domácich spotrebičoch alebo
dokonca v mestskej architektúre a výrazne nám uľahčujú život tým, že šetria drahocenný
čas, zhromažďujú a analyzujú údaje a prenášajú ich tam, kde sú potrebné. To sú dôvody,
prečo by malo byť porozumenie a programovanie mikrokontrolérov dostupnejšie pre ľudí,
ktorí sa v týchto úlohách dobre nevyznajú.

Preto sa táto diplomová práca zaoberá vývojom nástroja pre vizuálne programovanie,
ktorý je určený pre platformu ESP32 a využíva jazyk MicroPython. Cieľom práce je poskyt-
núť nástroj, ktorý uľahčí programovanie mikrokontrolérov aj používateľom bez rozsiahlych
skúseností s kódovaním. Vizuálne programovanie umožňuje používateľom vytvárať pro-
gramy prostredníctvom intuitívneho rozhrania, ktoré používa metódu "tahaj a pusť" na
manipuláciu s vizuálnymi blokmi reprezentujúcimi príkazy a štruktúry jazyka MicroPy-
thon. Hlavnou zložkou nástroja je webové rozhranie založené na knižnici ReactFlow, ktoré
podporuje funkcionality ako sú "tahaj a pusť" a vytváranie diagramov založených na toku
čo umožňuje užívateľom ľahko zostaviť kód.

Práca sa podrobne venuje integrácii nevyhnutných knižníc MicroPythonu ako je ma-
chine modul obsahujúci GPIO, SPI, I2C, ADC a Timer a asynchrónnemu spracovaniu
operácií. Nechýba ani podpora riadiacich štruktúr, premenných, práca s kolekciami ako
sú zoznam, množina, ntica a slovník, vykonávanie matematických, logických operácií a op-
erácií na sekvenciách, ako je dĺžka sekvencie, usporiadanie, alebo počet výskytu prvku.
Ďalším významným prínosom je podpora integrácie periférnych zariadení, čo robí tento
nástroj všestranným prostriedkom pre vývoj interakcií s hardvérom. Nástroj taktiež pod-
poruje komunikačné protokoly ako MQTT a HTTP, pre možnosť prijímania a odosielania
informácií. V neposlednom rade nástroj podporuje aj konštukcií, ako je pridanie časového
razítka, naformátovanie reťazca, alebo aj vlastný Python kód. Významná časť vývoja bola
venovaná jednoduchosti použitia, škálovateľnosti a schopnosti nástroja efektívne zvládať
rôzne programovacie scenáre. Nástroj umožňuje komunikáciu s backendom na základe počí-
tačového komunikačného protokolu WebSocket, prostredníctvom ktorého vie užívateľ vyex-
portovať program na ESP zariadenie a nadviazať s ním spojenie pre spätný výpis odozvy.
Na výpis odozvy v nástroji slúži konzola, ktorá zobrazuje informácie zo zariadenia. Nástroj
taktiež umožňuje ukladať a načítať klientskú reprezentáciu programu pre prenositeľnosť a
znovupoužiteľnosť.

Testovanie nástroja ukázalo jeho efektívnosť v zjednodušení programovania pre vstavané
systémy, čím sa stáva cenným zdrojom pre začiatočníkov, ktorí sa chcú v tejto oblasti vzdelá-
vať a hobby programátorov. Práca tiež natieňuje možné budúce vylepšenia na rozšírenie
jeho schopností, ako sú podpora väčšieho množstva periférií, podpora viac možností komu-
nikácie a napríklad možnosť zapúzdrenia časti toku pre jeho jednoduchšie použitie. Tento
výskum prispieva do oblasti poskytovaním praktického riešenia, ktoré premošťuje medzeru
medzi komplexnými programovacími konceptami a prístupnosťou technológií pre užívateľov.

Hoci je textové programovanie omnoho bežnejšia metóda programovania, ktorá ponúka
väčšiu kontrolu a slobodu pri písaní inštrukcií, ktoré sa majú vykonať, vizuálny nástroj
umožňuje prekonať bariéru bežných programátorov, ktorú mikrokontroléry môžu predstavo-
vať.

Visual Programming Toolkit Based on
MicroPython for ESP32 Platform

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Václav Šimek. The supplementary information was provided
by Sergei Silnov. I have listed all the literary sources, publications and other sources, which
were used during the preparation of this thesis.

. .
Daniel Paul

May 14, 2024

Acknowledgements
I would like to express my profound gratitude to my supervisor Ing. Václav Šimek, for
his academic mentorship and insightful, constructive, and valuable feedback. I am also
deeply thankful to Sergei Silnov for his technical expertise and his generous, encouraging
spirit. Lastly, my heartfelt appreciation goes to my family and friends for their unwavering
support.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 What will this thesis discuss . 3

2 Brief Survey of Visual Programming Approaches 4
2.1 Visual Programming Paradigm . 4
2.2 Comparison of Visual Programming and Traditional Programming 4
2.3 Elements of Visual Programming Languages 5
2.4 Cognitive Effects of Visual Languages . 5
2.5 Model of Visual Language . 6
2.6 Spatial Relations . 7
2.7 Types of Visual Programming Languages 9

3 Modern Technology for Web-Based Applications 13
3.1 Single-page vs. Multi-page Applications . 13
3.2 Javascript Frameworks . 14

4 Using Python on ESP32 Platform 19
4.1 Espressif Microcontrollers . 19
4.2 Means of Programming the ESP32 Platform 21
4.3 MicroPython . 23

5 Design of Visual Programming Toolkit 28
5.1 Used Technologies . 28
5.2 Architecture . 28

6 Technical Aspects of the Implementation 32
6.1 Elements of ReactFlow Frontend . 32
6.2 Nodes for Visual Programming Flow . 37
6.3 Principles Behind Micropython Backend . 44

7 Testing and Evaluation 49
7.1 Problems and Challenges . 49
7.2 Experiments and Testing . 51

8 Conclusion 59
8.1 Possible Extensions . 59

Bibliography 60

1

A Contents of the included storage media 65

B Manual 69
B.1 Prerequisities . 69
B.2 Installation . 69
B.3 Usage . 70

C Detailed Description of Nodes 71
C.1 Control Structures . 71
C.2 Mathematics . 72
C.3 Sequence Operations . 72
C.4 Collection Operations . 74
C.5 Memory/Data . 77
C.6 Communication . 77
C.7 Machine . 79
C.8 Peripherals . 82
C.9 Miscellaneous . 85

2

Chapter 1

Introduction

1.1 Motivation
In today’s world, which surrounds us at every step with modern technology, it is necessary to
keep up with what is happening around us. Everywhere we look there are sensors, cameras,
microphones, and other peripherals that are integral parts of our lives via Internet of Things
(IoT) solutions. This interconnected web of devices is transforming the way we interact
with the world, offering efficiency, connectivity, and convenience. Sensors are present in
our smartphones, wearables, home appliances, and even in urban architecture, making our
lives much easier by saving precious time, collecting and analyzing data, and transmitting
it to where it is needed. These are the reasons, why understanding and programming
microcontrollers should be more available for people, who are not well acquainted with this
task. The motivation behind this thesis is to create a lightweight, understandable entry
point for people, who want to get into programming microcontrollers. The visual aspect of
the toolkit serves the purpose of helping ease the reasoning and visualization of information.
My motivation for this thesis is rooted in a belief, that the beauty of programming lies within
the creativity of a person behind the computer and the enjoyment of creating and learning
new things while avoiding the pitfalls of frustration and continuous disappointment.

1.2 What will this thesis discuss
Firstly, in chapter 2, this thesis will discuss what is visual programming paradigm, its prop-
erties, why it is useful, compare visual programming with traditional text-based program-
ming, and compare a few types of visual programming languages. Secondly, the chapter 3
will look into modern technologies and approaches for web-based applications, comparing
single-page and multi-page applications, different JavaScript frameworks and how they im-
plement the key concepts of modern web application development. Thirdly, chapter 4 will
look at Espressif chips, MicroPython, and some of its notable libraries for IoT development
and means of programming the ESP32 platform. Consequently, in chapter 5 this thesis
will propose a solution for implementing a web-based toolkit for programming the ESP32
platform in MicroPython, define technologies used, and clarify the design. In chapter 6 this
thesis will discuss technical aspects and details of the implementation. Chapter 7 will out-
line what problems were faced during implementation, what solutions were used for these
obstacles, and in what ways was the toolkit tested. Lastly, chapter 8 will summarize the
results of the thesis and propose possible extensions.

3

Chapter 2

Brief Survey of Visual
Programming Approaches

This chapter serves as an overview of visual programming concepts. Firstly, it will explore
their key characteristics and how they facilitate the creation of software in comparison
to text-based programming languages. Lastly, it will cover specific examples of visual
programming languages, offering a detailed description of their approach.

2.1 Visual Programming Paradigm
Visual programming is an intuitive method of developing software applications without the
need for traditional coding. It involves a graphical representation of the interaction between
various components, enabling developers to efficiently and expediently create sophisticated
programs. Visual programming languages (VPLs) consist of systems in which icons, sym-
bols, charts, and forms are used to specify a program [36]. These visual elements are used
as a more intuitive representation of programming structures and allow users to implement
their ideas in a more graphical and accessible manner.

2.2 Comparison of Visual Programming and Traditional Pro-
gramming

The traditional approach to writing software consists of writing code in a text-based pro-
gramming language. The main stumbling block is the necessity of a strong understanding of
syntax, semantics, and concepts of programming, including algorithms and data structures.
Visual programming, on the other hand, emphasizes the usage of visual elements such as
flowcharts, icons, and symbols in typically drag-and-drop interfaces, which are in general
more user-friendly [56]. Table 2.1 shows the comparison and the main differences between
visual programming and traditional programming.

4

Aspect Visual Programming Traditional Programming

Coding Approach
Utilizes graphical elements, drag-
and-drop interfaces to design soft-
ware

Writing text-based code in program-
ming language

Suitability for Beginners Beginner-friendly, suitable for peo-
ple without a coding background

Requires a strong understanding of
programming concepts and syntax

Education Focus Widely used in education to teach
programming concepts

Less commonly used for education
purposes due to text-based com-
plexity

Development Speed Accelerates development for simple
applications and automation tasks

Offers more control and flexibility,
but slower for simple tasks

Complexity Ideal for simple to moderately com-
plex applications

Suited for complex software devel-
opment, requiring advanced coding
skills

Control vs. Ease of Use Emphasizes ease of use and visual
design over fine-grained control

Offers fine-grained control, but
comes with a steeper learning curve

Use Cases Suitable for prototyping, automa-
tion, user-friendly interfaces

System-level software, complex ap-
plications, performance-critical soft-
ware

Table 2.1: Comparison of Visual and Traditional Programming. Obtained at [56].

2.3 Elements of Visual Programming Languages
Icons are designed to represent specific actions within a program, for example, mathe-
matical operations like addition or subtraction, or they can correspond to a control flow
statement such as the if-else condition.

Symbols denote specific data types or variables within a program.

Charts are used to visualize the flow and structure of a program, commonly taking the
form of flowcharts, where arrows are used to represent program logic and control flow.

Forms in VPLs are graphical user interfaces (GUIs) that allow users to input data into
their programs. They are generally represented as input fields, buttons, checkboxes, or
other interactive elements.

2.4 Cognitive Effects of Visual Languages
The graphic nature of visual languages enhances pattern recognition and spatial reasoning,
both of which are crucial in visual programming. This is due to reduced syntax complexity
as graphical elements eliminate the need for precise syntax rules. This can be encouraging
for beginners who find traditional programming intimidating or non-intuitive. In addition,
VPLs operate at higher levels of abstraction, allowing users to work with a more conceptual
representation of code, which can help them focus on the logic and structure of the program
instead of being slowed down by low-level details.

2.4.1 Direct manipulation

Direct manipulation allows users to execute actions by directly interacting with visually
displayed objects instead of having to describe the action. For instance, marking a file for

5

deletion in a graphical user interface can often be done by dragging the file’s icon into an
icon depicting a trash can. This executes the command (move <file> trash-folder).
With direct manipulation, users can ”depict“ the operations they desire; without it, they
would have to describe the command to an interpreter which then translates the command
into the actual action [5].

2.4.2 Visualization of information

A graph of a function makes its characteristics more explicit than a table of values of the
same function, even though informationally, they are equivalent. Printed textual descrip-
tions are frequently illustrated with pictures that serve to exemplify the ideas contained in
the text, to provide different representations of the same information, or to complement
what the text describes. In these cases, visual views of descriptive representations allow
the viewer to discover relations that are hidden in textual representations [5].

2.4.3 Diagrammatic representation and reasoning

Many visual relations and properties are implicit in propositional representations and re-
quire extensive reasoning to be deduced, whereas visual representations such as diagrams
display them explicitly at all times. These visual representations facilitate situated reason-
ing because they make serendipitous inferences, inferences by recognition, predictions by
mental visualization, and cueing prior knowledge possible. This makes such representations
especially suitable for reasoning by mental simulation [5].

2.5 Model of Visual Language
Considering visual languages usable by both computers and humans, there are three objects
of interest to any theoretical or practical investigation of such languages. A Computational
system, a cognitive system, and the visual language itself. The language is embodied by
the visual representations used for communication. This visual representation encodes
and conveys information that appears in the interface, the visual display. Communication
requires comprehension, inference, and feedback. On the computational side, it requires
parsing, interpretation or compilation, and program execution. Due to these reasons, the
success of a visual language in this model rests on two criteria: its computational tractability
(feasibility of solving a problem using an algorithm within a reasonable amount of time)
and cognitive effectiveness (how well a representation method aligns with human cognitive
processes). The model illustrated in Figure 2.1 provides a top-level understanding of the
use of visual languages for human-computer interaction [5].

Figure 2.1: Model of visual language.

6

2.6 Spatial Relations
Spatial relations refer to relationships or interactions between spatial objects in a given
space. These relations describe how objects are positioned oriented or connected to each
other in a geometric space.

2.6.1 Objects and topology

The definition of basic geometric objects usually relies on topology which is itself a basis for
defining relationships between objects. In the current context, the usual concepts of point-
set topology with open and closed sets are assumed. The interior of a set 𝜆𝑖 (denoted by
𝜆∘
𝑖) is the union of all open sets in 𝜆𝑖. The closure of 𝜆𝑖 (denoted by 𝜆𝑖) is the intersection

of all closed sets containing 𝜆𝑖. The complement of 𝜆𝑖 (denoted by 𝜆−1) with respect to the
embedding space R𝑛 is the set of all points of R𝑛 not contained in 𝜆𝑖. The boundary of 𝜆𝑖

(denoted by 𝜕𝜆𝑖) is the intersection of the closure of 𝜆𝑖 and the closure of the complement
of 𝜆𝑖. It follows from these definitions that 𝜕𝜆𝑖, 𝜆∘

𝑖 , and (𝜆−1
𝑖)∘ are mutually exclusive and

𝜕𝜆𝑖 ∪ 𝜆∘
𝑖 ∪ (𝜆−1

𝑖)∘ is R𝑛. [5]

The following restrictions apply to every pair of sets:

1. 𝜆𝑖, 𝜆𝑗 be n-dimensional and 𝜆𝑖, 𝜆𝑗 ⊂ R𝑛

2. 𝜆𝑖, 𝜆𝑗 ̸= ∅

3. All boundaries, interiors, and complements are connected

4. 𝜆𝑖 = 𝜆∘
𝑖 and 𝜆𝑗 = 𝜆∘

𝑗

2.6.2 Spatial relations model

One formalized, systematic way to define and reason about spatial relations is Egenhofer’s
model. His approach distinguishes eight mutually exclusive relations. The 9-intersection is
defined as a matrix shown in Formula 2.1 [5].

𝐼𝑛(𝜆𝑖, 𝜆𝑗) =

⎛⎝𝜕𝜆𝑖 ∩ 𝜕𝜆𝑗 𝜕𝜆𝑖 ∩ 𝜆∘
𝑗 𝜕𝜆𝑖 ∩ 𝜆𝑗

𝜆∘
𝑖 ∩ 𝜕𝜆𝑗 𝜆∘

𝑖 ∩ 𝜆∘
𝑗 𝜆∘

𝑖 ∩ 𝜆𝑗

𝜆𝑖 ∩ 𝜕𝜆𝑗 𝜆𝑖 ∩ 𝜆∘
𝑗 𝜆𝑖 ∩ 𝜆𝑗

⎞⎠ (2.1)

With this definition, the eight cases (disjoint, meet, overlap, equal, covers/coveredBy, con-
tains/inside) can be easily characterized by the distinction between empty and non-empty
intersections. For instance, the contains relation shown in Formula 2.2 is specified by the
9-intersection as follows [5].

𝐼5(𝜆𝑖, 𝜆𝑗) =

⎛⎝ ∅ ∅ ¬∅
¬∅ ¬∅ ¬∅
∅ ∅ ¬∅

⎞⎠ (2.2)

These eight cases of spatial relations mentioned above are called primitive spatial relations.
Their description is shown in Table 2.2 and visual representation is shown in Figure 2.2.

7

Spatial relation Description
Disjoint Objects have no point in common
Touches Objects have at least one point in common, but no part of

one object is completely inside the other
Intersecting Objects share some but not all points
Containing/Inside One object contains another if all points of the second ob-

ject are part of the first object, but interiors do not over-
lap

Covering/Covered_by One object covers another if the interiors overlap and the
exterior of covering is within the exterior of the covered
object

Equal Objects occupy the same space

Table 2.2: Description of primitive spatial relations.

Disjoint Touching Intersecting Containing Covering Equal
A A A A A AB B B

B B

B

Figure 2.2: Primitive Relations Between A and B.

Primitive spatial relations can be used to build higher-level spatial relations. These include
directly_contains, pointing_to, starting_from, linked_with and part_of. Their Description
of mentioned higher level relations is shown in Table 2.3 and visual representation is shown
in Figure 2.3 [5].

Spatial relation Description
Directly_contains A subset of the containing/inside relation
Linked_with Connectivity of any two-dimensional object touching a line

or arrow that connects, possibly through a chain, to an-
other two-dimensional object.

Starting_from\Pointing_to The direction of line segments (applies only to arrows)
Part_of Describes partonomy of objects

Table 2.3: Description of higher-level spatial relations.

A
A A

B B

C

Directly contains(C,A)

Pointing to(C,B)
Starting from(C,A)
Linked with(A,B)

Part of(EP,A)
SP

EP

Figure 2.3: Visual representation of higher-level spatial relations

8

2.7 Types of Visual Programming Languages
There is no clear way to define a type of visual programming language as most of them
include multiple paradigms. The most common are Block-based Programming, Flowcharts,
State Machines.

2.7.1 Block-based programming

Block-based programming refers to a programming language and integrated develop-
ment environment that separates executable actions into modular portions called blocks.
These blocks are generally represented with icons that can be clicked and dragged to reorder
them. Editable fields, like drop-down menus, allow developers to provide further input. The
graphical representation of the code can demonstrate the process to new users who may
be unfamiliar with programming. This approach can be easier to learn than traditional
text-based programming based on languages, like Python or Java. However, block coding
is far more limited than text languages, which require more specific instructions from the
programmer to complete actions [26].

MPY Blockly

MPY Blockly is a free visual programming tool for MicroPython on ESP32. By stacking
colored blocks on top of each other a control program can be rapidly generated. This simple
click’n’drag programming method allows developers to rapidly develop control sequences
for real life microcontroller projects. MPY Blockly also supports standard ‘text’ program-
ming for those who prefer to use a text editor for programming [35].

It implements blocks for conditions and loops, mathematical functions, variables, string
operations, functions, network communication, storage, sensors, actuators, buses, audio,
Bluetooth, NeoPixel LEDs, and many more [35]. An example of a program defined in
MPYBlockly can be seen in Figure 2.4.

Figure 2.4: Example of a program in MPYBlockly. Obtained at [35].

9

2.7.2 Flowcharts

A flowchart is a diagram that depicts a process, system, or computer algorithm. They are
widely used in multiple fields to document, study, plan, improve, and communicate often
complex processes in clear, easy-to-understand diagrams. Flowcharts use rectangles, ovals,
diamonds, and potentially numerous other shapes to define the type of step, along with
connecting arrows to define flow and sequence [31].

The most common flowchart symbols are depicted in Figure 2.5.

Figure 2.5: Visual representation of common flowchart symbols. Obtained at [31].

Flowcode

Flowcode is an advanced graphical programming IDE for electronic and electromechanical
system development. It enables the user to quickly and easily develop complex electronic
and electromechanical systems for control and measurement based on microcontrollers [43].
Flowcode supports Arduino, Espressif ESP32, Raspberry Pi, ARM family, and Microchip
PIC devices [30]. Creating a program with flowcode involves connecting components into
a flowchart, which is then compiled to C code, afterward to assembler, and flashed to a chip.

Icons represent the control flow of the flowchart. Flowcode common icons include Input,
Output, Delay, Decision (if statement), Switch, Loop, C code or Interrupt icons.

Macro represents a subroutine that can be executed upon a certain event or in the control
flow. Every macro has a name, description, parameters, variables, constants, and return
type.

Functions are built-in routines designed to help with operations such as mathematical
operations or string manipulation.

A component is essentially a library controlled by a Flowcode program extending the
flowcode interface. It can be anything that is self-constrained like an electronic device, a
measuring instrument, or a library of macros. Some built-in components include analog
input, keypad, analog output, audio output, LED, graphical library for displays, sensors
for audio, force, light, magnetic interaction, air sensors, storage, communication interfaces,
networking, etc. An example of a flowcode flowchart can be seen in Figure 2.6.

10

Figure 2.6: Example of flowcode flowchart showing information on the display from the
thermometer. Obtained at [25].

2.7.3 State machines

A state machine is a behavior model. It consists of a finite number of states and is therefore
also called a finite-state machine (FSM). Based on the current state and a given input the
machine performs state transitions and produces outputs. The basic building blocks of a
state machine are states and transitions. A state is a situation of a system depending on
previous inputs and causes a reaction on following inputs. One state is marked as the initial
state; this is where the execution of the machine starts. A state transition defines for which
input a state is changed from one to another. Depending on the state machine type, states
and/or transitions produce outputs [29].

Moore machines are characterized by their states and transitions. These states can gener-
ate outputs, and most importantly, the output is exclusively influenced only by the present
state, without any dependence on the input. An example of Moore machine is shown in
Figure 2.7.

Figure 2.7: Example of Moore machine describing the light switch.

11

Mealy machines consist of states and transitions, where states are producing outputs.
Unlike Moore machines, the output in Mealy machines is dependent on the current state
and the input. An example of the Mealy machine is shown in Figure 2.8.

Figure 2.8: Example of Mealy machine describing the light switch.

Stateflow

Stateflow is a software that provides a graphical language that includes state transition di-
agrams, flow charts, state transition tables, and truth tables. Developers can use Stateflow
to describe how MATLAB algorithms and Simulink models react to input signals, events,
and time-based conditions. Stateflow lets model combinatorial and sequential decision logic
that can be simulated as a block within a Simulink model or executed as an object in MAT-
LAB [28].

Stateflow chart is a graphical representation of a finite state machine consisting of states,
transitions, and data. Symbols are used, to add new data, events, or messages to the chart
canvas. After a state is added to the canvas its properties need to be defined, such as name
and state action. Two states can be connected with a transition that needs to meet some
defined condition [54]. An example of a stateflow chart can be seen in Figure 2.9. There
are two ways to use Stateflow charts. The first one involves designing logic by using state
charts and executing that logic as MATLAB programs. The second one is using the state
Stateflow chart as blocks in Simulink models.

Figure 2.9: Example of Stateflow chart controlling water temperature. Obtained at [55].

12

Chapter 3

Modern Technology for Web-Based
Applications

This chapter serves as an overview of contemporary technologies and approaches used in
development of web-based applications. It explores commonly used paradigms for web
development and the differences between different modern JavaScript frameworks.

3.1 Single-page vs. Multi-page Applications
One of the important things to note when developing a web-based application is the signif-
icance of layout, as it affects the overall user experience of users. This is why it is critical
to understand the concept of navigation, so the user is not confused while working with
the application. Beyond the visual structure, the quantity of pages within the application
is also a crucial factor. The most common approaches for navigation are Single-page and
Multi-page application [27].

3.1.1 Single-page application (SPA)

Adopting a single-page design for web applications requires keeping in mind simplicity and
cleanliness. Using this approach, the home page serves as the only container for all infor-
mation, contributing to a unified and straightforward user experience. The main idea lies
within the minimalistic structure and cohesive interface, allowing users to access informa-
tion easily without the need to navigate through multiple pages [27].

Advantages

• Easy navigation and clean layout

• Mobile friendly

• Easy to build and update

Disadvantages

• Limited space

• Hard to share or track

13

3.1.2 Multi-page application (MPA)

The multi-page design revolves around having a home page serving as a hub for general
information with a navigation bar leading to multiple internal pages. Unlike SPA, which
loads a single HTML file and updates the content dynamically, MPA is based on loading
different HTML files and the page reloads when navigating to the content [27].

Advantages

• Scalability

• Better search engine optimization

• Usability

• Navigation

Disadvantages

• Maintenance

• Less user-friendly on mobile

• More distracting

3.2 Javascript Frameworks
Javascript is known for its large, rich, and dynamic ecosystem of frameworks and libraries.
The key classes of these systems are frameworks for building the frontend of web-based sys-
tems, such as React or Svelte. These frameworks are built with the intention of implement-
ing modern, dynamic, and responsive web interfaces, also called single-page applications
[23].

Key concepts of javascript frontend frameworks include:

Component-Based architecture - UI is broken into modular, reusable components.
State management - handling user interactions and dynamic updates.
Virtual DOM - lightweight of real DOM, optimizing the rendering process.
Data Binding - synchronization between the application’s data model and the UI.
Tooling and Development Workflow - development tools and build systems.

This section will discuss various modern JavaScript framework approaches to these key
concepts and cover some libraries suitable for implementing visual applications.

3.2.1 React

React is a library developed by Facebook to help developers build user interfaces as a tree
of pieces called components. A component in the context of React is a mixture of HTML
and JavaScript that captures the logic required to display a small section of a larger UI.
Multiple of these are combined to build a complex web application [4].

14

JSX

JSX is an XML-like syntax extension to ECMAScript without any defined semantics. It is
intended to be used by various preprocessors (transpilers) to transform these tokens into
standard ECMAScript. The purpose of JSX is to specify concise and familiar syntax for
defining tree structures with attributes [32].

React components and props

Components are independent and reusable bits of code. They serve the same purpose as
JavaScript functions, but work in isolation and return HTML. React components have two
variations, Class components and Function components [57].

Class components inherit from React.Component, which gives them access to React.Component’s
functions. They also need to implement render() method, returning HTML.

The function component also returns HTML and behaves the same way as the Class com-
ponent, but requires much less code. Components can be passed as props, which stands
for properties. Props are similar to function arguments and they can be sent to components
as attributes.

React state

React components have built-in state object. The state object stores property values that
belong to the component. Changes in the state are triggered in response to user input.
When the state object changes, the component re-renders [58].

React hooks

Hooks allow to use of different React features from components. There are different types
of built-in hooks or users can define custom ones [45].

State hook lets a component remember information like user input. Such hook is often
used to update the variable and it is defined with useState() method.

Context hook lets a component receive information from distant parent components with-
out passing it as props. It reads and subscribes to a context. This is especially useful when
passing information from the app’s top-level component to the deepest ones. Context hook
is defined with useContext() method.

Ref hook lets a component hold some information that is not used for rendering, like DOM
node or timeout ID. Unlike the state, updating a ref hook does not re-render a component.
They are useful when working with non-React systems such as built-in browser API. Ref
hook is defined with useRef() method.

Effect hook lets a component connect to and synchronize with external systems, usch as
network, browser DOM, animations, widgets, and other non-React code. Effect hook is
defined with useEffect() method.

15

Other hooks include performance hooks for optimizing re-rendering performance, re-
source hooks for reading values from resources such as promises or contexts, or a devel-
oper can define their own hooks.

3.2.2 ReactFlow

ReactFlow is a fully-fledged library designed for the React framework, providing developers
with a tool for creating interactive and dynamic flow-based diagrams [59]. Its core consists
of creating nodes, placing them on the canvas, and interconnecting them with other nodes.
The nodes can be manipulated, moved around, connected to other nodes, or deleted and
they can have modified properties based on the user’s actions. Furthermore, ReactFlow’s
modular design and customizable components allow developers to adjust the appearance
and data contained in the node and the edges. The library provides many features such as
drag-and-drop capabilities, styling options, sub-flows, and additionally the canvas with flow
minimap, zooming, and panning out of the box. All the details of the library are contained
in well-written API documentation. All of these features make it a well-tailored choice for
implementation of a visual programming toolkit.

Node

Node is a React component encapsulated in a ReactFlow wrapper that allows the component
to provide functionality like selecting and dragging. The wrapper also provides properties
like position and data. The data property of a node is important because it provides
developers with a way to create their custom nodes with specific functionality. A ReactFlow
node can contain several handles. A handle is a point representing a connection from/to
a node and can be either target (input) or source (output). An example node containing
source and target handles and text input can be seen in Figure 3.1.

Figure 3.1: An example of ReactFlow custom node with text input.

Edge

Edge is a React component enclosed in a ReactFlow wrapper similar to node, that allows
an edge to connect to node handles and renders it as a curve. It contains information
about the IDs of nodes that are connected by this edge and it also contains properties like
labels and data allowing it to implement tailored functionality. Edges can also be styled to
further clearly imply the purpose of the connection between the nodes. An example of an
edge connecting to nodes is depicted in Figure 3.2.

16

Figure 3.2: An example of ReactFlow custom edge with a button connecting two nodes.

Subflows

Subflows in ReactFlow represent a flow inside a node. A flow is encapsulated in the parent
node, effectively creating a hierarchy of interconnected child nodes. The primary goal of
utilizing subflows is to create a container for a set of interconnected child nodes, forming a
single unit within the larger flow diagram. An example of a subflow can be seen in Figure
3.3.

Figure 3.3: An example of ReactFlow subflows.

3.2.3 Zustand

A small, fast, and scalable barebones state management solution. It leverages React Hooks,
such as useReducer and useState, to provide an imperative or functional approach to state
updates, reducing boilerplate code and making it developer-friendly [37].

Zustand serves as an alternative to more complex state management solutions like Redux.
Developers can use it to efficiently manage the state in React applications while keeping
their codebase clean and concise.

17

3.2.4 Svelte

Svelte provides a different approach to building web applications than some other frame-
works. While frameworks like React and Vue do the bulk of their work in the user’s browser
while the application is running, Svelte shifts the work into a compile step that happens
only when the application is built. The compiler generates optimal JavaScript code without
any runtime overhead [34].

Svelte components and props

Components are building blocks of Svelte applications. They are written as a superset of
HTML. Svelte uses export keyword to mark a variable declaration as a property, which
means it becomes accessible to parent components. It is possible to specify a default value
of the prop variable in case the parent element does not provide any.

Runes

Runes are symbols that influence the Svelte compiler. These symbols offer developers a
more straightforward and explicit way to manage reactive variables in their code [1].

State rune marks values as reactive. This approach aims to make the reactivity more
explicit and predictable.

Derived rune ensures, that derived values are recalculated lazily and kept in sync. This
approach aims to make the framework more type-safe and maintain consistent behavior
across component logic.

Effect rune offers an alternative to handle side effects in response to reactive changes. It
is designed to replace lifecycle methods like onMount.

3.2.5 SvelteFlow

SvelteFlow is a Svelte implementation of ReactFlow library. It provides tools to create
interactive and dynamic flowcharts using nodes and edges. Its main downside is that it
does not support all the features that ReactFlow provides such as custom edges or plugins
as it is at the time of writing of this thesis in alpha version [60].

18

Chapter 4

Using Python on ESP32 Platform

This chapter will cover the AIoT devices and their variants developed by the company
Espressif Systems (Czech) s.r.o. [53]. Additionally, it will examine the integration of Mi-
croPython, clarifying its implications for embedded systems development.

4.1 Espressif Microcontrollers
Espressif microcontrollers are a series of low-cost, low-power system-on-a-chip (SoC) mi-
crocontrollers developed by Espressif Systems [52]. They are known to be running under
ultra-low power consumption, supporting various communication protocols like Wi-Fi and
Bluetooth via their SPI/SDIO or I2C/UART interfaces, along with GPIO pins for an abil-
ity to connect a variety of peripherals, making them useful devices for IoT integration or
smart home infrastructure.

4.1.1 ESP32 specification

ESP32 is a low-cost system on a chip used in the development of IoT solutions. Full speci-
fication can be found in ESP32-Datasheet [51]. A picture of the ESP32 microcontroller can
be seen in Figure 4.1 and its functional block diagram is shown in Figure 4.2.

Some notable features include:

• Wi-Fi (2.4 GHz), up to 150 Mbps

• Bluetooth v4.2 and Bluetooth Low Energy (BLE)

• Xtensa single/dual-core 32-bit LX6 microprocessor(s)

• 520 KB SRAM

• 34 programmable GPIOs

• Two 8-bit DAC and one 12-bit ADC

• Four SPI, two I2C, two I2S, three UART interfaces

• One host (SD/eMMC/SDIO), One slave (SDIO/SPI)

19

Figure 4.1: ESP32 development board.
Obtained at [46].

Figure 4.2: ESP32 functional block diagram.
Obtained at [51].

4.1.2 ESP32-S3 specification

ESP32-S3 is a low-power MCU-based system on a chip with higher performance than its
predecessor ESP32. Full specification of the microcontroller can be found in ESP32S3-
Datasheet [50]. A picture of the ESP32S3 microcontroller can be seen in Figure 4.3 and its
functional block diagram is shown in Figure 4.4.

Some notable features include:

• Wi-Fi (2.4 GHz)

• Bluetooth v5.0, BLE and Bluetooth Mesh

• Xtensa® dual-core 32-bit LX7 microprocessor

• 512 KB SRAM

• 45 programmable GPIOs

• Two 12-bit SAR ADCs

• Three UART, two I2C, two I2S interfaces

• LCD interface

• One temperature sensor

• 14 touch sensing IOs

• One USB Serial/JTAG controller

• One SD/MMC host controller with 2 slots

20

Figure 4.3: ESP32S3 development board.
Obtained at [47]. Figure 4.4: ESP32S3 functional block dia-

gram. Obtained at [50].

4.2 Means of Programming the ESP32 Platform

4.2.1 ESP-IDF

ESP-IDF is Espressif’s official IoT Development Framework for the ESP32, ESP32-S and
ESP32-C series of SoCs. It provides a self-sufficient SDK for any generic application de-
velopment on these platforms, using programming languages such as C and C++. [48] To
develop with ESP-IDF framework it is required to install a toolchain to compile code for
ESP32 chips, build tools such as CMake and Ninja to build a full application, and install
all ESP-IDF dependencies [49]. The workflow of ESP-IDF is shown in Figure 4.5.

Figure 4.5: ESP-IDF workflow.

4.2.2 Rust

Rust programming language provides dependencies for programming Espressif chips. There
are two approaches that can be chosen for development: The std library, also called as
Standard Library, or the core library, also called no_std (bare metal development) [38].
The rust official ESP-related crates (dependencies) and build tools are managed by the

21

organization esp-rs [41]. In order to flash an ESP project written in Rust, the utilization
of espflash project is required. [42]

Standard Library

Espressif provides the previously mentioned C-based development framework ESP-IDF. It
provides a newlib environment with enough functionality to build the Rust standard
library on top of it. The std crate provides a rich set of functionality that can be used
to build applications quickly and efficiently, without worrying, too much, about low-level
details [39].

Core Library

No_std rust uses the Rust core library for the bare-metal approach. As this library is part
of the Rust standard library, a no_std crate can be compiled in a std environment. Bare
metal allows more customization and fine-grained control over the behavior of an applica-
tion. Another benefit of this approach is a small memory footprint and direct hardware
control, such as low-level device drivers or access to specialized hardware features [40].

4.2.3 MicroPython

MicroPython can easily run on the ESP32 platform. In order to install MicroPython on a
particular ESP32 microcontroller, it is required to download the MicroPython binary file
specifically designed for that ESP32 model and then flash the firmware using the esptool
software [22]. It is also recommended to erase the entire flash from the device before
doing this procedure [7]. Afterward, a MicroPython code can be run from REPL or by
writing a MicroPython program using, for example, Thonny IDE shown in Figure 4.6
[2]. Additionally, the Python files can be transferred to the ESP device with the use of
mpremote. It is a command line tool used to interact with serial ports. It can be used to
transfer files to the ESP device or run the Python files [9].

Figure 4.6: Thonny IDE. Obtained at [3].

22

4.3 MicroPython

4.3.1 Overview

MicroPython is an open-source, compact, and effective implementation of the Python
3 programming language, designed to run on microcontrollers and in limited contexts. It
is a full Python compiler and runtime that runs on the bare-metal, with an interactive
prompt (the REPL) to execute commands immediately, along with the ability to run and
import scripts from the built-in filesystem. However, it comes only with a limited subset of
the Python standard library. MicroPython also includes advanced capabilities, including
an interactive prompt, arbitrary precision integers, closures, list comprehension, genera-
tors, exception handling, and more [24]. Initially, MicroPython was created for specially
designed microcontroller Pyboard, but the community has created implementations for
ESP32 microcontrollers.

4.3.2 Libraries in MicroPython

MicroPython provides built-in modules that mirror the functionality of Python standard
library (os, time) as well as MicroPython-specific modules (e.g. Bluetooth, machine). Most
Python standard library modules implement a subset of the functionality of the equivalent
in Python module due to RAM constraints [10].

Some notable Python standard libraries and micro-libraries include:

array - Arrays of numeric data
asyncio - Asynchronous I/O scheduler
builtins - Builtin functions and exceptions
collection - Collection and container types
gc - Control of the garbage collector
hashlib - Hashing algorithms
json - JSON encoding and decoding
math - Mathematical functions
os - Basic operating system services
random - Pseudo-random number generator
select - Wait for events on a set of streams
ssl - SSL/TLS module
sys - System specific functions
time - Time related functions
_thread - Multithreading support

Some notable MicroPython libraries include:

btree - Simple BTree database
cryptolib - Cryptographic ciphers
machine - Functions related to the hardware
micropython - Control of MicroPython internals
neopixel - Control of WS2812/NeoPixel LEDs
network - Network configuration

23

And finally some libraries specific to ESP32 include:

esp32 - functionality specific to ESP32 (RMT, ULP co-processor...)
espnow - support for ESP-NOW wireless protocol

4.3.3 Microdot

Microdot is a minimalistic Python web framework inspired by Flask. Given its size, it can
run on systems with limited resources, such as microcontrollers. Both standard Python
(CPython) and MicroPython are supported [33]. Microdot framework is used to run an
HTTP server, providing decorators for defining routes to endpoints, defining HTTP meth-
ods, and handling requests and responses.

4.3.4 Asyncio

Asyncio is a CPython library designed to write concurrent code using async/await syntax
(its MicroPython equivalent is called uasyncio). This allows to control the execution of
Python concurrent coroutines, performs network IO and interprocess communication, con-
trol subprocesses, distribute tasks via queues, create and manage event loops, handle
OS signals and bridge callback-based libraries and code. [11]

Coroutines

At the heart of async IO are coroutines. In Asyncio, a coroutine is a specialized version of a
Python generator function. It can suspend its execution before reaching return statement,
and it can indirectly pass control to another coroutine for some time. The syntax async def
introduces either a native coroutine or an asynchronous generator. The asynchronous
generator-based coroutine is defined with decorator @asyncio.coroutine and by yield from
func() syntax, meanwhile, native coroutine uses the keyword await. Furthermore, when
await is used, it hands over control of the function back to the event loop, essentially
pausing the execution of the surrounding coroutine. [44]

Chained Coroutines

It is an async IO design pattern which is composed of chained coroutines, as a coroutine
object is awaitable, so another coroutine can await it. This allows to break programs into
smaller, more managable, reusable coroutines [44].

Queue

The asyncio package provides queue classes designed to facilitate asynchronous communica-
tion and coordination between different parts of a program. Their primary use is intended
for coordinating multiple producers and consumers without direct association. Unlike the
chaining approach, individual producers add items to the queue at varying times. Con-
sumers without signals pull items from the queue as they are added. This design eliminates
the need for direct connections between consumers and producers, which are asynchronous,
and the queue acts as a communication channel between them [44].

24

Event loop

Event loop is a mechanism used to monitor coroutines, take feedback on what’s idle, and
look for things that can be executed in the meantime. It is capable of reactivating an idle
coroutine upon the fulfillment of the awaited condition, effectively resuming the execution
of coroutine when the required resource or event becomes accessible. Management of the
event loop is handled by asyncio.run() function, which handles getting the event loop,
running tasks until they are all marked as complete and then closing the event loop. The
important thing to note is that coroutines are most effective when associated with an event
loop, because an event loop serves as a central coordinator, enabling efficient handling of
multiple asynchronous operations and maximizing program responsiveness by scheduling
tasks [44].

Tasks

Scheduling the execution of a coroutine on the event loop creates a task. This is achieved
by calling asyncio.create_task(coroutine) followed by asyncio.run(). The problem with this
pattern is that if the coroutine is not awaited within the asyncio.run() callback, it may finish
before the callback itself signals that it is complete [44].

4.3.5 Machine

Machine is a MicroPython module containing specific functions related to the hardware on
a particular board. Most functions allow for direct and unrestricted access to hardware
blocks on a system, like CPU, timers, buses, etc. All callbacks used by functions and class
methods in machine module should be considered as executing in an interrupt context for
both physical devices with IDs >= 0 and ”virtual devices“ with negative IDs like -1 [12].

Class Pin - Control of I/O pins

A pin object is used to control I/O pins (also known as GPIO). Pin objects are associated
with physical pins that can drive an output voltage and read an input voltage. The pin
object can be controlled with multiple class functions, namely Pin.on() to set pin to ”1“
output level, Pin.off() to set it to ”0“ output level or Pin.irq() to configure interrupt handler
to be called when the trigger source of the pin is active. Possible triggers for triggering
interrupts are Pin.IRQ_FALLING - on falling edge, Pin.IRQ_RISING - on rising edge,
Pin.IRQ_Low_LEVEL - on low level, Pin.IRQ_HIGH_LEVEL - on high level. You can
also set wake parameter when setting interrupt handling which defines the power mode in
which interrupt can wake up systems. Possible options are machine.IDLE, machine.SLEEP
or machine.DEEPSLEEP [13].

Class Signal

The signal class is an extension of the Pin class. Unlike the Pin class, the signal allows
the pin to have an asserted or deasserted state, and it introduces the concept of logical
inversion, enabling the signal to be active-low or not based on the configuration. Signal
should be used for controlling simple on/off devices like LEDs, multi-segment indicators,
relays, buzzers, or read simple binary sensors. A signal constructor takes a pin object as an
argument and invert - if True, the signal will be inverted (active low) [14].

25

Class ADC

The ADC class provides an interface to analog-to-digital converters and represents a
single endpoint that can sample a continuous voltage to a discretized value. The ADC
constructor takes a pin object as an argument. Raw analog value can be read by the
read_u16() function, and value in microvolts can be read by the read_uv() function. [15]

Class PWM

The pulse with modulation class provides a way to generate and control pulse-width mod-
ulated signals on pin, allowing users to adjust the frequency and duty cycle of the signal,
making it useful for tasks like controlling motor speed or LED brightness [16].

Class UART

The UART class provides a UART/USART duplex serial communication protocol. The
unit of communication is a character-wide 8 or 9 bits. It can have set baudrate, parity
bits and number of stop bits. For reading the number of bytes from the UART bus the
UART.read(nbytes) function is defined. Similarly, in order to write the buffer of bytes to
bus the UART.write(buf) function is defined. Lastly, for creating a callback to be triggered
when data is received on the UART a UART.irq() function can be used [17].

Class SPI

SPI is a synchronous serial protocol that is driven by a controller. At the physical level, a
bus consists of 3 lines: SCK, MOSI, MISO. Multiple devices can share the same bus. Each
device should have a separate, 4th signal, CS (Chip Select), to select a particular device on
a bus with which communication takes place. Management of a CS signal should happen in
user code (via machine.Pin class). In order to perform read/write operations, it is required
to initialize a machine.PIN as a chip select, set it to desired value to select a peripheral, and
read a number of bytes using the SPI.read(nbytes) function or write the bytes contained in
the buffer using SPI.write(buf) [18].

Class I2C

I2C is a two-wire protocol for communicating between devices. At the physical level, it
consists of two wires: SCL and SDA, the clock and data lines, respectively. To write
the bytes from buffer to the peripheral specified by address, the I2C.writeto(addr, buf) is
used. The function check that an ACK is received after each transfered byte and stops
transmitting the remaining bytes if NACK is received. To read the number of bytes from
the peripheral specified by address the function I2C.readfrom(addr, nbytes) is used [19].

Class Timer

Hardware timers deal with timing of periods and events. Timers are perhaps the most
flexible and heterogeneous kind of hardware in MCUs and SoCs, differently greatly from
model to model. The timer class defines an object executing a callback with a given period,
either once or periodically [20].

26

Class SDCard

SD cards are one of the most common small-form factor removable storage media. They
come in a variety of physical form factors. MMC cards are similar to removable storage
devices, while eMMC devices are electrically similar storage devices designed to be embed-
ded into other systems. All three forms share a common protocol for communication with
their host system, and high-level support looks the same for them all. In machine module
they are implemented in a class machine.SDcard. The ESP32 provides two channels of
SD/MMC hardware and also supports access to SD cards through either of the two SPI
ports that are generally available to the user. As a result the slot argument can take a value
between 0 and 3, inclusive. Slots 0 and 1 use the built-in SD/MMC hardware, while slots
2 and 3 use the SPI ports. Slot 0 supports 1, 4 or 8-bit wide access while slot 1 supports 1
or 4-bit access; the SPI slots only support 1-bit access [21].

27

Chapter 5

Design of Visual Programming
Toolkit

This chapter describes used technologies for the implementation of the visual toolkit for
programming the ESP32 platform in MicroPython. It covers the underlying architecture
and explores approaches considered for its implementation.

5.1 Used Technologies
Prior to diving into the architecture, it is necessary to define the underlying technologies
used for the implementation. The frontend will utilize the ReactFlow library for defining
flow-based flowcharts and Zustand library for state management of the flowchart. To im-
plement the backend on the ESP32 platform, several MicroPython libraries are necessary.
The Microdot library will establish a communication channel between the React applica-
tion and MicroPython backend through a lightweight HTTP server. Asyncio will manage
coroutines, handling the logic of nodes implemented in the visual toolkit. Finally, the Ma-
chine library will be used to handle peripheral control and manipulation. While additional
libraries will contribute to the complete implementation, these are the most notable ones
required for seamless operation of the backend.

5.2 Architecture
Implementing a web-based visual toolkit that will provide the functionality to build a flow
that will represent a MicroPython program for the ESP32 platform is a challenging task
and requires a well-defined architecture. My approach is to first implement a frontend
based on a flow-based interactive dynamic environment with a drag-and-drop interface
and configurable nodes and edges for the representation of a MicroPython program. The
second step is to choose a data interchange format and design a well-defined structure for
serialization of the MicroPython program defined by nodes and edges. The last step is to
deserialize it and make it runnable by MicroPython interpreter on ESP32 platform.

5.2.1 Visual toolkit

The interface of the visual toolkit must be simple and easy to comprehend by a user. For
this purpose, I have designed an interface that will contain a sidebar containing an input

28

field for the IP address of an ESP32 device, a section with drawer components containing
drag-and-drop nodes that a user will be able to place on the canvas, and an export flow
button, which will send the serialized version of the flow to the ESP32 device. Each drawer
will have a descriptive name for the nodes that are contained inside, e.g., the control drawer
will contain control flow nodes such as conditional statements. At the bottom of the page
will be a console component, which will have an informative purpose and will either inform
the user about errors, such as empty configuration fields for some nodes or display feedback
information from the ESP32 itself. The rest of the web interface will be filled with the
canvas containing the visual flowchart itself.

Node

Each node in a visual toolkit will be a custom React component consisting of its unique
identifier, type and its own properties defined by input fields inside its boundaries and
handles. These properties will be either HTML input fields or selection boxes for options.
Every node will need to be an exclusive React component, and it will need to be treated
differently. For example, some nodes, such as conditional statement node will contain dif-
ferent number of source handles in order to redirect the flow of the program based on the
output of the condition. Each change in the input field will trigger a callback which sets
the new state of the node according to user input. After each change of the node state the
node will be synchronized with the whole flow.

To break it down even further, presume a design of a Timer node. In MicroPython, the
Timer class needs to define the timer period in milliseconds, a mode, which can take in
values either Timer.PERIODIC for periodic repetition or Timer.ONE_SHOT for singular
execution and a callback. The Timer node will contain a number type input field for
defining period in milliseconds, select input field containing choices ”Periodic“ and ”Once“
representing their equivalents in MicroPython implementation and the callback will be the
execution of the connected node to the output of the Timer node.

Edge

Edges will consist of a unique identifier a node that they connect to and a type labeling
for example branching result. Their main purpose will be to represent connections between
nodes and they will describe the flow of the program. They will be connecting to the
handles of nodes.

Loops

Loops will be represented by a node which will define a variable and iterate over an iterable
with respective iterable values being available in the variable. The body output handle of
the loop will be colored blue for clear distinguishability.

Conditions

Conditional statements will be implemented as a node with two operands and one operation.
This node will have two outputs, one will represent the True outcome of the condition and
the latter will represent false. These outputs will be distinguishable by the color of the
output handle.

29

Data

The data node will be represented by its value and data type, which will be one of the
primitive types. Other types of data like objects will be the direct output of the specific
nodes.

Variables

The variable node will be a special object which will contain a certain value specified by
the input handle. Variables will be treated in a unique way as the flowchart will need to
track what variables are available in order to use them as inputs in other nodes. This will
be achieved, by modification of the global state of variables via the Zustand library.

Custom Python Code

There is an idea of implementing the custom Python code node, which would be used to
specify the internal logic of the node with MicroPython code itself by the user. This ap-
proach is debatable, as it is not in the spirit of the visual programming language, but allows
users to integrate some functionality, that might not be possible in the visual programming
toolkit. It will be represented as a node, which would take one input parameter called code,
and if the function returns any value it would need to be assigned to the variable called
_output. This would allow to use exec() function in MicroPython to interpret the text
as a MicroPython code which takes as parameters local variables. These variables would
be used as a communication channel between the backend internal representation and the
custom code itself.

5.2.2 Integration

It is crucial to define a means of communication between the web application and the
ESP32 microcontroller. A flow-based representation will be serialized into a list of JSON
objects, which will be sent via WebSocket connection to the microcontroller which will
save the file into its internal storage as a flow.json file for repeatable builds. Afterward, the
microcontroller will restart and deserialize the JSON object into the MicroPython program.
A JSON object representing a node with edges will consist of a template shown on Listing
5.1.
{

"id": "Node identifier",
"type": "Type of the node",
"outputs": [

{
"id": "Edge identifier",
"type": "Type of the edge",
"target_id": "Target node identifier"

}
]

}

Listing 5.1: Example JSON Object.

30

5.2.3 Backend

The backend will be running on the ESP32 microcontroller itself in MicroPython at it will
consist of an HTTP server upgrading the HTTP connection to WebSocket, receiving a JSON
representation of flow from the frontend side, and loading it into internal representation.
The internal representation will consist of classes that encapsulate the black-box behavior
of the nodes. These classes will be the fundamental part of the execution logic and they will
contain specific properties which will be used to alter their MicroPython functionality and
execute function which will perform the instructions that are equivalent in the MicroPython
and trigger the execute function of the next object in the flow with the output from the
current object. They will be initialized by deconstructing the JSON input from the frontend
application and saved to a dictionary, where id of the node will be the key and the value
will be to instance of the object. After initialization, the edges will be resolved to Output
classes and set to the respective objects representing nodes. Subsequently, starting nodes
will be executed as starting coroutines. After the internal logic of the starting node is
executed, the output will be sent to another node and this procedure will happen to all the
connected nodes in a flow effectively creating a chain of coroutines.

5.2.4 Summary

In summary, the workflow consists of a frontend interface, where user defines IP address
of his ESP32 microcontroller, drag-and-drops nodes on the canvas, sets their properties,
connects them together, and defines starting nodes. Afterward, the flowchart can be ex-
ported onto the ESP32 device via WebSocket request, where it is saved in a JSON format
in the microcontroller storage for reproducible runs, the JSON is deconstructed into the
MicroPython classes, where each class represents a specific implementation of the internal
logic of the node. Afterward, the Output objects are initialized and put into the node
objects as properties. Finally, the flow is executed by coroutines, which are initiated from
the starting nodes and the program is executed as a linked list of chained asynchronous
coroutines. The architecture of a whole workflow can be seen in Figure 5.1.

Figure 5.1: An architecture of the development workflow.

31

Chapter 6

Technical Aspects of the
Implementation

This chapter describes the implementation details of the proposed architecture. It will cover
elements of the ReactFlow frontend, available nodes in the visual programming toolkit and
backend execution as well as communication via WebSockets.

6.1 Elements of ReactFlow Frontend

6.1.1 Canvas

ReactFlow component essentially represents a canvas. It is an interactive dynamic envi-
ronment containing all the information and handling the interaction between nodes and
edges. The library itself contains control elements allowing manipulation of zoom and also
provides a minimap. The component needs to be provided with properties nodes, edges
which are state variables representing the actual nodes and edges on the canvas, callback
functions, which handle changes of nodes, edges, and drag-and-drop functionality, and a
custom dictionary containing nodeTypes of custom nodes. To clarify, nodeTypes is a spe-
cial keyword property that takes in a dictionary where the key is the text representation of
the type of the node and the value is the reference to the custom React component object
representing the node. Figure 6.1 illustrates how the ReactFlow canvas looks.

Figure 6.1: Visualisation of ReactFlow canvas with a node.

32

6.1.2 Sidebar

The sidebar is a custom React component consisting of drawers and node templates. Each
drawer is an expandable and retractable section with a descriptive name containing nodes
that resemble its description. It consists of name, expanded flag, and nodes which is a list of
dictionaries containing the name and the type of the node. Nodes are HTML div elements
that a user can drag-and-drop by simply clicking on the name of the node and dragging
the mouse cursor on the canvas. Additionally, it includes a field for the IP Address of the
ESP Device in case the user wants to connect to the backend.

Menu

The sidebar also contains a collapsible menu for operations to export flow to the ESP
device, load the flow from the file, save the flow to the file (see 6.1.11), clear the logs and
display debug information to the console component (see 6.1.12). The Figure 6.2 depicts
the sidebar of the toolkit and Figure 6.3 shows the sidebar menu.

Figure 6.2: Illustration of a Sidebar compo-
nent.

Figure 6.3: Illustration of Sidebar Menu.

33

6.1.3 Drag-and-drop functionality

When a user clicks on the node it initiates a callback event that sets the global state of
the drag event to the type of the node. In case the node is dragged and dropped into
the interface of the canvas another callback function is called which gets the type of the
node from the global state of the drag event, gets the current position of the mouse, and
initializes the node object by creating a new identifier, setting the default properties and
getting the node component constructor from the nodeTypes dictionary by using the value
from the global state of the drag event (the type of the node) as a key and updates the
global application state with the new node.

6.1.4 Custom nodes

Each node has a unique design in terms of HTML composition, but what they all have
in common is the properties dictionary which uses the state hook to keep the integrity of
the application intact. This dictionary holds the information about the data that the node
contains and displays it to the user. This data is set by the user by filling out the input
fields or selecting an option from HTML select elements. Each input field has attached
onChangeEvent handler which updates the state of the node properties. After this change
is applied, useEffect hook is triggered, which in turn updates the global state (see 6.1.7) of
the node in the entire application.

6.1.5 Selection field

With the aim of making custom nodes more modular and less repetitive (following DRY
principle - don’t repeat yourself), I have created a common React component called Select
Field. This component is used as a property input field and provides the ability for
a component property value to be set up with different options. These options include
input, which represents the input value passed by the predecessor node output, variable
selection, which requires a Define Variable node connected as a predecessor somewhere
in the flow, and data, which represents a type and value pair with type being a list of types
passed by the parent React component as a prop. This approach allows to easily add a
dynamic input to any property, which can acquire the value from different sources, that a
user specifies.

Values of Data

Understanding the actual format of the data in the Selection Field can be unclear. Since
the input field type for data is text, it’s essential to clearly define the format used by each
data type. The description for each data type is shown in description 6.1.5.

34

String: Any text written will be interpreted as string (Text)
Integer: Any integer written will be interpreted as integer (42)
Float: Any floating point number will be interpreted as float (3.14)
Complex: Any text containing number, operation, and number followed by ”j“ will

be interpreted as a complex number (5+3j)
Boolean: Any Python expression convertible to boolean will be interpreted as

boolean (True, False, 1, 0, None...)
List: Any text surrounded by brackets and having the same number of opening and

closing brackets while having comma-separated values will be interpreted as a
list ([1,2,”Abc“])

Dictionary: Any text surrounded by braces and having the same number of opening
and closing braces while containing keys and values separated by a colon ({1:2,

”a“:”b“, ”l“: [1,2,3]}
Set: Any text surrounded by braces while having comma-separated values will be

interpreted as set ({1,2,3})
Tuple: Any text surrounded by parentheses while having comma-separated values

will be interpreted as a tuple ((1,2,3,”a“))
𝑁𝑜𝑛𝑒: Any text will be interpreted as 𝑁𝑜𝑛𝑒
Range: Any text surrounded by parentheses with two integers inside separated by

a comma will be interpreted as a range ((1,100))

6.1.6 Update hook

To reduce code duplication I created a custom hook called useComponent. Almost every
custom node implements this hook as it updates the internal state of the node (properties).
It also encapsulates the useEffect hook which takes care of updating the global state. Lastly,
this hook returns the state of properties and a callback that handles the change of a property.

6.1.7 Managing the global state

Although the ReactFlow component instance encapsulates the whole workflow with the
data of the nodes, it is essential to have some kind of global state management of the en-
tire application in order to have access to the information anywhere, easily and effectively.
For this purpose, Zustand Library has been chosen. It has been briefly covered in 3.2.3.
The library provides store object, which holds information about all the nodes and edges
present on the canvas and implements functions for handling the changes related to nodes
and edges, like changes of their properties, addition and deletion of nodes and edges, and
changes to their position. Additionally, it is used to store information about defined vari-
ables and provides utility functions such as depth-first search for finding whether some type
of node is present in the previously connected nodes and returns the requested property
of nodes, which match the requested type. Lastly, it implements a function that inserts a
property to a node indicating that it is a starter node - a node that starts the flow.

6.1.8 Context menu

To interact with nodes a user can drag them on the canvas with a mouse, and fill out the
input fields to set their properties, but there needs to be an option how to conveniently do
other operations. For this purpose, the context menu has been created. It is activated by

35

right-clicking the node and offers options to toggle the node as a starter node, delete the
node, or duplicate it. Setting the node as a starter will mark it with a green border to visually
emphasize the property and this will be reflected on the backend as the property of the
node is also set. Deleting it simply removes the node from the canvas while synchronizing
the global state and duplicating it will create a copy of the node with all the properties a
user has defined. This can be handy, because some nodes require a lot of setup steps and
there may arise a situation, where the node needs to be reused later in the flow, with the
same, or very similar configuration of properties. The context menu is shown in Figure 6.4

Figure 6.4: Representation of context menu in the visual toolkit.

6.1.9 Removal of the edges

It is essential to allow users to simply remove edges when they want to make changes to
the flow, otherwise, the source/target node would have to be deleted and recreated again
while making the correct connection. Removing of the edge can be done by simply clicking
on either end of the edge and dragging it on the canvas.

6.1.10 Export

After the flow is built, it can be exported by clicking on the export button. Afterward, a
callback is called, which accesses the store object containing all the nodes and edges that
make connections between them and subsequently calls a serializing function, effectively
creating a JSON object that is sent by the javascript fetch method to the ESP32 device.
This serialization function is specially designed, to make the most compact representation
of the flow, so the file only contains data, that the backend needs. Each node will be sent
with ID, properties, and outputs representing the IDs of connected nodes and the source
handle name, which represents the type of edge (this is especially important when dealing
with nodes, that have two outputs like for loop or if condition, to differentiate the outputs).

6.1.11 Save and Load

It is essential to have some way to save the frontend flow as a file for the purposes of perma-
nently storing the program, reusability, sharing, collaboration, or primitive version control.
This is done by keeping a reference to the ReactFlow component instance and serializing it
as a Blob object into JSON format, which fundamentally contains all the information about
the nodes and edges - their properties, position, etc. Additionally, the current state of the
identifier number is saved to have information from which number the application needs to
identify the new nodes correctly, when the flow program is loaded and new nodes are added.

36

In order to load the JSON and recreate the state of the application, the data must be
deserialized correctly and loaded into the ReactFlow instance. This is partially being done
by the ReactFlow library itself. The global state of the application is recreated as the
loaded nodes are instantiated because when any custom node is created, it automatically
fills in the data into the global store by its useEffect hook which depends on the properties
of the React component.

6.1.12 Console

Receiving feedback from the backend is crucial for effective monitoring of events happen-
ing on the backend. In this context, the console serves as an essential tool. It provides
notifications to the user regarding the successful export of the flow, confirms the backend’s
readiness to send feedback messages to the frontend, and displays messages sent from the
Logger block.

6.2 Nodes for Visual Programming Flow
There is a variety of nodes present in the application. This section will discuss each available
node in more detail in order to get a better understanding of what each individual node
actually does and what is possible to create with the current state of the application.

6.2.1 Control structures

The execution of the program is directed by the connections made between nodes, but
sometimes there is a need to manage the control flow explicitly by evaluating a certain
condition or executing a set of nodes in a loop. For this purpose two nodes were created -
If Statement and For Loop. For detailed description refer to C.1.

If statement serves as a branching node. It evaluates a condition and based on whether
the result is true or false continues to execute the flow from that point of connection.

For loop iterates over the provided iterable and executes the body with provided iterable
elements.

Figure 6.5 illustrates the visual representation of the If statement and For loop nodes in
the visual toolkit.

Figure 6.5: Representation of Control Structure nodes.

37

6.2.2 Mathematics

Mathematical/logical operations are often used in programming to calculate the values of
expressions. This subsection covers nodes responsible for doing mathematical operations
on non-sequence inputs - Absolute value and Operation. For detailed description refer to
C.2.

Absolute value takes a parameter and returns its absolute value.

Operation in essence returns calculated mathematical or logical expression based on used
operands and operator.

Figure 6.6 portrays the visual representation of Absolute value and Operation nodes in the
visual toolkit.

Figure 6.6: Representation of Mathematics nodes.

6.2.3 Sequence operations

Working with sequences often requires operations to manipulate the data efficiently. To
aid this process, specific sequence operation nodes have been developed serving a distinct
purpose - Length, Sorted, Sum, and Count. For a detailed description refer to C.3.

Length calculates the length of an iterable.

Sorted sorts all elements of an iterable.

Sum adds up all the elements of an iterable.

Count counts all occurrences of an element in an iterable.

In Figure 6.7 are all mentioned sequence operations with some example values they could
contain.

38

Figure 6.7: Representation of Sequence Operations nodes.

6.2.4 Collection operations

Manipulating and managing collections is a common task in programming, especially with
data structures like dictionaries and lists. To make this process effective, specific nodes
have been created, each addressing a unique requirement - Set in/Get from/Remove from
Dictionary, Get Dictionary Items/Values/Keys, Get/Set/Remove value on index and Ap-
pend to list. For detailed description refer to C.4.

Set Dictionary Value sets a value for some key in the specified dictionary.

Get Dictionary Value gets a value of some key in the specified dictionary.

Remove by Dictionary Key removes a key-value pair specified by a key in a dictionary.

Get Dictionary Values gets values of specified dictionary and returns them in a list.

Get Dictionary Keys gets the keys of the specified dictionary and returns them in a list.

Get Dictionary Items gets items of specified dictionary and returns them in a list.

Get Index Value gets a value of a data structure specified by index.

Set Index Value sets a value of a data structure specified by index.

Remove Index Value removes a value of a data structure specified by index.

Append to List Appends a specified value to a list.

Figure 6.8 illustrates collection operation nodes with some example values.

39

Figure 6.8: Representation of Collection Operations nodes.

6.2.5 Memory/Data

It is essential to have the option to store values in variables with an aim to use them later
in the program or define certain values of data types ourselves. For this purpose, I designed
nodes - Define Variable, Assign Variable, and Data. For detailed description refer to C.5.

Define variable defines a variable with a specified identifier. This identifier can contain
any value that is representable in string format, but the validation functionality will au-
tomatically strip the value of any spaces. This node expects input as variables in Python
cannot be declared, only defined.

Assign variable assigns an input to a selected variable.

Data node creates a constant value of specified type.

Each defined variable name needs to be unique, as each node needs to know which spe-
cific Define variable node has been chosen when a variable has been selected in the Se-
lection Field, due to the integrity of data represented on the backend. In this context,
the redefinition of variables or assigning values is handled by Assign To Variable node.
Representation of Data/Memory nodes can be seen in Figure 6.9.

Figure 6.9: Representation of Memory/Data nodes.

40

6.2.6 Communication

A substantial part of programming IoT is the communication of the device. This is why
it is essential to provide some means of communication with other services - mainly by
utilizing HTTP and MQTT protocol. This is being achieved with the use of the following
nodes Logger, MQTT Server, MQTT Publish, MQTT Subscribe, HTTP Get, and HTTP
Post. For detailed description refer to C.6.

Logger serves as a node, which sends feedback of values in the program to the frontend
client console.

MQTT Server serves for configuration of MQTT server parameters. It is being used in
connection with MQTT Publish and MQTT Subscribe nodes.

MQTT Publish publishes a message to a specified topic.

MQTT Subscribe subscribes to a specified topic and calls connected target nodes as a
callback when a message is received.

HTTP Get Request sends an HTTP GET request to a specified endpoint and outputs
the response.

HTTP Post Request sends an HTTP POST request to a specified endpoint and outputs
a response (for example to check the status code).

The communication nodes with example configuration are depicted in Figure 6.10.

Figure 6.10: Representation of Communication nodes.

41

6.2.7 Machine

For the sake of having control over individual components of the microcontroller it is es-
sential to implement nodes to interact with GPIO pins, Analog-digital converter, SPI, I2C
or Timer. For detailed description refer to C.7.

Pin represents a configuration of GPIO pin, with mode (Input, Output, Open-Drain) and
specification of whether the pin has the pull resistor attached.

Set Pin sets the pin to High or Low.

Analog-digital converter converts the analog input to a digital value based on selected
reading type and selected Pin ID.

Write to SPI configures the SPI bus to write and writes to the bus a value based on the
configuration.

Read from SPI reads data from the SPI bus based on the configuration and outputs it.

Write to I2C writes data to I2C based on the configuration.

Read from I2C reads data from I2C based on configuration.

Timer configures a timer for either one-time or periodical execution after some period.

In figure 6.11 are shown all machine nodes with some example configuration of properties.

Figure 6.11: Representation of Machine nodes.

42

6.2.8 Peripherals

In general, it should not be complicated to interact with peripherals connected to IoT de-
vices. Therefore the implementation supports several drivers for commonly used sensors
and peripherals. These include DHT sensors (DHT11, DHT22), Led Matrix 8x8, LED Dis-
play, NeoPixel LED, Barometric (Environment) Sensors (BMP180, BMP280, BME280),
Ultrasonic distance sensor. For detailed description refer to C.8. It is important to note
that open-source third-party libraries were used to integrate these peripherals with the
backend. The authors of these libraries are acknowledged in the respective library files.

DHT Sensors reads a temperature and humidity from a selected DHT sensor and outputs
it in a dictionary.

LED Matrix displays text on LED matrix.

Character display displays text on the backlit character display.

NeoPixel LED lights up an LED with the specified color.

Barometric Sensors measures values (mixture of temperature, humidity, and pressure,
depending on selected sensor) from a selected barometric sensor and outputs it in a dictio-
nary.

Ultrasonic Distance Sensor reads a distance from the ultrasound distance sensor. Sup-
ported sensors are specified in C.8 and there is no need to select them as both of them work
the same way.

Peripheral nodes with example values of properties are illustrated in Figure 6.12.

Figure 6.12: Representation of Periperals nodes.

43

6.2.9 Miscellaneous

There are various essential tasks and utilities that do not fall into specific categories. This
concerns nodes Format String, Convert, Random Number Generator, Python Code, Times-
tamp. For a detailed description refer to C.9.

Format String formats a value to a string.

Convert casts a parameter to the specified type.

Random Number Generator generates a random number in the specified interval.

Python Code executes a custom Python code written by the user. This node leverages
the ability to execute code in a text format. All variable names defined prior to this node,
by Define Variable (they need to be connected before this block) can be used in the code.
Output can be specified by assigning value to _output variable in the code.

Figure 6.13: Representation of Miscellaneous nodes.

6.3 Principles Behind Micropython Backend
This section will discuss the setup of the ESP device, backend, communication, receiving,
loading, and execution of the flow in more detail.

6.3.1 Setup

To run MicroPython on an ESP device, it needs to be flashed with MicroPython binary
with the use of flashing software, for example esptool. To run the backend the device needs
to contain provided main.py - containing configuration loading and HTTP Server setup,
models.py - containing the code for the interpretation of the flow from JSON, config.py -
containing configuration for Wi-Fi credentials and DEBUG flag and all the libraries required
for sensors, communication, and utilities. These files can be transferred to the ESP device
with the use of Thonny IDE (see 4.2.3) or mpremote (see 4.2.3).

44

6.3.2 Main

After the ESP device is set up the main program can be run by running the main.py
file. To enable an ESP32 device to interact with a frontend application, it first needs to
connect to Wi-Fi by loading credentials from the configuration file and calling a function
that establishes an internet connection. After that, it creates a Microdot instance to run
an HTTP server. This server can then upgrade HTTP connections to WebSockets upon
request. In this state, the flow can be received from the frontend via WebSocket. When
the device receives the request with the flow, it is saved to the ESP32’s internal storage,
and the program is restarted to load the new flow. In case the DEBUG flag is set to True,
the program will wait, until the user clicks the connect button on frontend in the sidebar
to add its connection to the list of WebSocket connections for feedback purposes.

6.3.3 Representing the flow

Two base classes are important for encapsulating the information about the nodes - The
BaseNode class and Output class shown on Listings 6.1 and 6.2. The BaseNode class
contains the id of the node, its properties as a Python dictionary, and outputs as a list of
Output objects. Output object consists of the id of the edge, type of the edge, and the
object which is the target of the connection.

class BaseNode:
def __init__(self, id, properties, outputs):

self.id = id
self.properties = properties
self.outputs = outputs

Listing 6.1: BaseNode class.

class Output:
def __init__(self, id, type, obj):

self.id = id
self.type = type
self.obj = obj

Listing 6.2: Output class.

The specific nodes are each represented by a unique class that will inherit from BaseNode
and implement its own unique behavior. In the constructor of the class, the properties will
be unpacked for more readable code. The execution logic is handled by the asynchronous
execute function, which takes arguments containing the possible input, variables and code
for the logic itself. It then creates asynchronous coroutines by calling instances of objects
contained in the output property with the output value and passes variables in the process.
For instance let’s presume a node responsible for generating random numbers from interval
< 𝑠𝑡𝑎𝑟𝑡; 𝑒𝑛𝑑 >. Its class representation is shown at Listing 6.3.

45

class RandomNumberNode(Base):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.start = self.properties["start"]
self.end = self.properties["end"]

@deep_copy_params
async def execute(self, *args, variables):

random_number = randrange(self.start, self.end)
for output in self.outputs:

asyncio.create_task(output.obj.execute(random_number, variables=
variables))

Listing 6.3: Random number generator node.

So in summary, the initialization of attributes is handled by the superclass, and the ex-
ecute method will contain instructions for the execution of the logic of the node. After
the completion of the internal logic, all nodes connected to the random number generator
node have their own execute methods called with asyncio.create_task() effectively creating
asynchronous coroutines, which are handled by Asyncio library and their results via event
loop.

Loading of the flow has been intentionally skipped so far in order to clarify the functionality
of the nodes itself. When loading the flow from the JSON, the class of each node is
determined by using the type of the JSON node object as a key to the dictionary with class
values. An example of such a dictionary can be seen on listing 6.4.
NODES = {

’timer’: _Timer,
’logger’: Logger,
’random_number’: RandomNumberBlock,
’if’: _If,
...

}

Listing 6.4: Example of dictionary classifying JSON object nodes to MicroPython classes.

Afterward, the object is initialized with the properties stored in the JSON object and added
to the dictionary of the flow, where node id represents a key and the object itself represents
a value while checking the isStarter property of each node and adding to the list of starting
nodes. Subsequently, the Output instances are created by iterating over the input JSON
flow and the outputs of each node, getting the objects by using the target_id as key in the
dictionary of the flow and setting them as an argument for the obj property together with
id and type of the edge. Finally, the last iteration over the list of starting nodes initiates the
flow by creating coroutines with the objects execute method as the input. This starts the
execution of the flow by creating chained coroutines, which are handled by asyncio library.

6.3.4 Variables

Variables are represented by a simple Python Dictionary. The key represents the name
of the variable and the value is the actual value the variable contains. Upon start, the
flow is initialized with an empty dictionary and this dictionary is being passed from node
to node. Variables are added when a Define Variable is executed and modified when

46

Assign Variable, or some other nodes interacting with the variables are being executed.
When they are passed as an argument, they are being deep-copied, so each node has its
own snapshot of the variables (approach explained in 7.1.3).

6.3.5 Feedback messages

When a client on the frontend connects to an ESP device, the connection is added to a list
of active connections. If the WebSocket connection becomes inactive, it is removed from
this list, which helps in tracking currently active connections to the microcontroller. This
active connection is then used to send feedback messages back to the frontend, and these
messages eventually appear in the console component. The backend informs the user on
the frontend if the flow has been received successfully and if the user has been added to the
list of active connections. It is also important to have a feature which helps user to debug
whether the flow is being executed as he expects. This functionality is a responsibility of
the Logger node (see C.6).

6.3.6 Type mapping

In the case of handling data in the Selection Field which consists of type and value, it
is important to define a mapping of types in order to cast the value correctly. This is
being achieved by using the type defined on frontend as key, where the value will be the
MicroPython function, which will be able to convert the value to the desired data type. For
more complex data structures the eval function evaluates the expression to be for example
a list, a dictionary, or a set. An example of such a dictionary can be seen on Listing 6.5.
type_mapping = {

"String": str,
"Integer": int,
"Float": float,
"Boolean: bool,
"List": eval,
"None": lambda x: None,
...

}

Listing 6.5: Example of dictionary responsible for type mapping.

6.3.7 Operations

Evaluation of mathematical and logical expressions is handled by defining a dictionary,
where the key is an operation in string representation and the value is a lambda function,
which takes two parameters and evaluates the result according to the provided operation.
An example can be seen on Listing 6.6.
operations = {

"+": lambda x, y: x + y,
"-": lambda x, y: x - y,
"*": lambda x, y: x * y,
"in": lambda x, y: x in y,
"not in": lambda x, y: x not in y, ...

}

Listing 6.6: Example of dictionary responsible operations.

47

6.3.8 Convert field

The Selection Field (see 6.1.5) offers a handful of possible values for a property, so it needs to
be handled carefully. Each option in the selection field must be well-defined on the backend
to reflect the choices provided on the frontend. This is the purpose of convert_field
function. It takes a field that represents either ”input“, dictionary {”variable“: ”<name>“}
or {”type“: ”<type>“, ”value“: ”<value>“}, _input which is the input of the node and
variables dictionary and returns the value of the property based on the field. The function
can be seen on Listing 6.7.
def convert_field(field, _input, variables):

if isinstance(field, str):
if _input and field == "input":

return _input[0]
elif "variable" in field:

return variables[field["variable"]]
elif "type" in field:

return type_mapping.get(field["type"])(field["value"])
raise UndefinedFieldError

Listing 6.7: Function for returning Selection Field value.

6.3.9 Asynchronous execution

It is important to mention that the node output can be connected to multiple inputs of
other nodes. This results in asynchronous execution of both ”sub flows“, which improves
the overall performance on the backend, as the code is interpreted in MicroPython. This
behavior is being achieved with the use of Asyncio library, which executes each node as a
task. An example of flow utilizing asynchronous execution is shown in Figure 6.14

Figure 6.14: An example of asynchronous flow.

48

Chapter 7

Testing and Evaluation

This chapter will discuss how were the frontend visual toolkit and MicroPython backend
tested, what approaches were taken in the development, what obstacles appeared and how
were they solved.

7.1 Problems and Challenges
During the development, I encountered several challenges and problems that I needed to
deal with. These obstacles ranged from technical difficulties and design flaws to unexpected
bugs and errors that required thorough troubleshooting.

7.1.1 Synchronization of global state

The first challenge I faced was related to getting the most recent state of the application as
React framework works in cumbersome ways. To explain the problem, I will have to tackle
a little bit, of how React components work. Each component consists of a state and its
HTML which is shown in the browser. When certain events happen by user interaction, the
state changes and is re-rendered (e.g. changing the property of the node). However, this
is being done asynchronously, so while the code changing the state has been executed and
the UI has been re-rendered in the browser, the state variable may not contain the most
recent information. This is why I had to use the global state management library Zustand
as mentioned in 6.1.7. When the information of the state finishes updating I use useEffect
hook to update the global state of the whole flow with the most recent data.

7.1.2 Saving and loading of the flow

It is vital to save all the information about the flow into the file, as it has to be reconstructed
in the same way when loaded. Saving has been an easy part. The trouble I encountered
was with the loading of the flow. When the nodes were being reconstructed from the JSON
file, the data had not been passed to the properties, so the information had not reached the
actual nodes. This has been solved by passing data as a prop, setting the properties state
on initialization to the provided data, and setting the default value for each property of
the node from the state. When testing, I found out about another problem. When a node
is created, an ID counter for the node is incremented to uniquely identify each node and
keep track of their number. This information is not contained in the ReactFlow component
instance so it had to be added to the file explicitly. Previously, when the application was

49

restarted and the flow was loaded, everything was working correctly, until the user tried to
add a new node to the flow. When this happened, the node from the saved file with the
same ID was overwritten and deleted.

7.1.3 Variables handling in backend

Initially, the variables were implemented as a global dictionary with the key being the
variable name and the value being the variable value. This has shown to work in practice
unless there was a Timer node involved with periodic execution. The main problem with
this approach was, that the Timer node executes the rest of the flow periodically while
there may be some coroutines finishing their execution, which concludes in a race condition
and other nodes not obtaining the required value from the variable. The first attempt to
solve this problem was to initialize each flow with an empty variables dictionary, which
is being modified in Define variable and Assign Variable nodes (there are also other
nodes, that modify variables). These variables are then passed down the chain of coroutines,
essentially creating a situation, where each node has it’s own snapshot of variables. This
would essentially work, if the variables were not passed by reference. The last piece of the
puzzle is to create a @𝑑𝑒𝑒𝑝_𝑐𝑜𝑝𝑦_𝑝𝑎𝑟𝑎𝑚𝑠 decorator which handles the deep copying of
parameters and used it, to decorate execute function of each node. This has successfully
achieved the desired result and the integrity of variables has been accomplished.

7.1.4 Memory management

As stated in 4.1.1 and 4.1.2 the ESP microcontrollers have a limited amount of memory. As
it turns out, all the libraries required to support every node implemented on the frontend
take up a lot of memory space when loaded. When I was testing on an ESP32 device, this
problem escalated to such a point, that there was no memory left for Wi-Fi initialization
and the device could not function as intended. One approach that worked really well was
precompiling the libraries. MicroPython provides a tool called mpy-cross which is capable
of converting regular Python module into a pre-compiled version. Further optimization can
be achieved by freezing the pre-compiled bytecode into the firmware image as a part of the
main firmware compilation process, meaning that the bytecode will be executed from ROM
[8]. With models of ESP microcontrollers such as ESP32-C3 with external PSRAM there
is no need to do such optimizations as 8 megabytes is a decent memory size for everything
to run perfectly without any pre-compilation.

Another thing to keep in mind is that memory usage can become an issue during runtime
in MicroPython. To prevent memory overflow, MicroPython provides a garbage collector
library called gc. In my backend implementation, I am calling garbage collector periodically
every 10 seconds, to ensure that objects no longer needed are removed from memory, freeing
up space for new objects.

7.1.5 Execution speed

Although MicroPython combines the bytecode execution with the interpretation of the code,
the fact that some code is being interpreted implies a slower execution speed compared to
compiled languages. To improve the speed as much as possible, most of the code is being
executed asynchronously with the help of Asyncio library. This means, that some tasks can
be executed concurrently, resulting in faster performance.

50

7.2 Experiments and Testing
This section will describe what experiments were performed and what was their outcome.
It further explains what methods and metrics were chosen and what was the performance
of the toolkit.

7.2.1 Visual programming toolkit

In order to properly test the visual programming toolkit, I decided to simulate the worst
possible scenario. In the browser development tools, I chose the option of a slow mobile
device, which should result in emulating a very slow CPU. The visual programming toolkit
handled this really well and I have not experienced any performance issues regarding the
functionality or user interface (even animations were smooth). Furthermore, I placed focus
on the WebSocket communication with the ESP device. This turned out to be functioning
the same as with no simulated restrictions to the performance of the browser. For further
frontend testing, I decided to use the core web vitals metrics, which are the metrics defined
by Google. Values for these metrics have been acquired by web vitals browser extension.

Largest Contentful Paint (LCP)

LCP metric defines the loading performance of the website. It tries to measure when a
website is visible to the user and shows the largest content element visible within the user’s
viewport [6].

The largest contentful paint in the visual programming toolkit has proved to be on a very
good level. As shown in Figure 7.1, the website loads within one second, which is considered
a good result. Additionally, the element that takes the longest to load is a label, suggesting
that the website is free of performance-impeding elements such as images, which typically
require more time to display.

Figure 7.1: Depiction of LCP in visual programming toolkit.

Time to First Byte

Time to First Byte (TTFB) is the time that it takes for a user’s browser to receive the first
byte of page content [6]. It is a measurement used as an indication of the responsiveness of
a webserver or other network resource.

The visual programming toolkit demonstrated effective performance in terms of time to
first byte metric. As illustrated in figure 7.2, the most significant portion of time was spent
establishing a connection to the website. Meanwhile, the durations for waiting time, DNS
lookup, and request time were comparatively negligible.

51

Figure 7.2: Depiction of TTFB in visual programming toolkit.

Cumulative Layout Shift

CLS measures the sum total of all individual layout shift scores for every unexpected layout
shift that occurs during the entire lifespan of the page. A layout shift occurs any time a
visible element changes its position from one frame to the next [6].

As shown in Figure 7.3, there is absolutely no cumulative layout shift present in the visual
programming toolkit. This means that while the website is being loaded, no elements are
being moved or shifted. Please note, that dynamic actions such as expanding of a drawer in
the sidebar or moving the node on the canvas are not considered as the cumulative layout
shift, as these are supposed to be functioning by changing the layout on user actions, not
when the page is loading.

Figure 7.3: Depiction of CLS in visual programming toolkit.

7.2.2 Experiments

This subsection will cover experiments. They will utilize the visual programming toolkit to
create a representation deserializable and interpretable by MicroPython. The used models
of microcontrollers will be ESP32, ESP32-S3 and ESP32-C3.

First experiment

In the first experiment, I chose to create a simple flow utilizing MQTT communication with
the use of an LED Matrix display. The program sets up the MQTT server configuration
to a HiveMQ testing MQTT broker and subscribes to a topic _test_subscribe. If string

”HELL“ is received from the MQTT, it displays a string ”Yeah“ on the LED Matrix,
otherwise, the program writes ”NAH“ to the console. The flow is illustrated in Figure
7.4 and sent messages via the MQTT Broker are depicted in Figure 7.7. As can bee seen
from results of the flow depicted in Figures 7.5 and 7.6 the program has executed correctly.
When the message received from the broker was anything other than the expected string,
the ”NAH“ message was logged to the frontend console and when the string was ”HELL“,
the Matrix displayed the string ”Yeah“.

52

Figure 7.4: Depiction of the first experiment flow.

Figure 7.5: Depiction of the first experiment console feedback.

Figure 7.6: Illustration of the LED Matrix showing expected output.

Figure 7.7: Picture of messages published to the MQTT broker.

53

Second experiment

For a second experiment, I decided to choose a more complex example but stick to the

”Pythonic“ program as I wanted to test the Python constructions. The aim was to find
out, how the visual toolkit handles a considerable amount of different nodes. The goal of
the program was to generate random numbers and append them to the list until the length
of the list was larger than 20. I could have used a simple for loop for this, but I decided
to test the Length node and use for loop later. After the list containing 21 numbers has
been generated, the flow continues to sort the list and in one continuation it prints them
to the console via the Logger node. In the other continuation, it iterates over the list and
sends to the console component each number with the statement, whether it is odd or even.
The flow is shown in Figure 7.8. As can be seen from the console output shown in Figure
7.9, the program has indeed generated 21 random numbers based on the condition that the
length of the list must be greater than 20, appended them to a list, sorted the list, iterated
over the list and displayed the sorted list in the console, while iterating over the list and
assessing whether each number is even or odd.

Figure 7.8: Flow program of the second experiment.

Figure 7.9: Console output of the second experiment.

Third experiment

The third experiment tests work with collection operations, DHT sensor, and NeoPixel
LED. The program periodically triggers DHT sensor to read temperature and humidity.
Afterwards, the measured values are stored in a variable and the items of the dictionary are
displayed in the frontend console. Additionally, if the temperature value is bigger than 20,

54

the LED will light up with red color signaling that the temperature is warm. In case the
measured temperature is below 20, the LED lights up blue signaling that the temperature
is low. On the Figure 7.10 is shown the frontend representation of the program. For the
purpose of this testing, the sensor has been measuring temperature in a room with standard
temperature and later has been cooled down with ice cubes wrapped in a plastic bag. This
can be seen in Figures 7.11 and 7.12. The results of the measurements in the console can
be seen in Figure 7.13 for the temperature measurement above 20 degrees Celcius and in
Figure 7.14 for measurement of temperature below 20 degrees Celcius.

Figure 7.10: Flow program of the third experiment.

Figure 7.11: Image of an ESP device with the
temperature above 20 degrees Celsius.

Figure 7.12: Image of an ESP device with the
temperature below 20 degrees Celsius.

Figure 7.13: Console displaying measurements when the temperature was above 20 degrees
Celsius.

55

Figure 7.14: Console displaying measurements when the temperature was below 20 degrees
Celsius.

Fourth experiment

The final experiment was to create a program, that will use ultrasonic distance sensor. If
the measured distance is greater than 20, it will put a timestamp on it and publish it via
MQTT to topic disttest. In case the distance is lower than 20, it will utilize a custom
Python node, which will specify in the _output variable, how close the object is to the
sensor. The custom Python node contains Python’s elif construction which is not created
as a standalone node in the current implementation of the visual programming toolkit, so
this is the convenient use case. Afterwards, the text with a specified distance is displayed
on the backlit character display. The frontend program flow can be seen in Figure 7.15.
The MQTT Output is illustrated in Figure 7.16. Output of the distance on the display has
been converted to grayscale as the character display has not been very bright and it was
hard to see the text from the photos. The outputs of the display can be seen in Figures
7.17, 7.18 and 7.19. The console output of the program is depicted in Figure 7.20.

Figure 7.15: Illustration of fourth experiment program.

Figure 7.16: Delivered messages via MQTT Publish.

56

Figure 7.17: Very close distance shown on character display.

Figure 7.18: Close distance shown on character display.

Figure 7.19: Medium distance shown on character display.

Figure 7.20: Distance output in the frontend console.

57

7.2.3 Assessment

As shown by the results of experiments, the visual programming toolkit has been thoroughly
tested. While using the toolkit, the browser has been set to emulate a slow CPU and weak
internet connection. The metrics - Largest Contentful Paint, Time to First Byte and
Cumulative Layout Shift - all had excellent results. The created programs tested both

”Pythonic“ programming, while placing focus on the IoT part of the testing as the code is
being interpreted on ESP devices, which commonly have some peripherals attached. The
flows were deserialized and interpreted on ESP32, ESP32-S3 and ESP32-C3. Each program
performed very well on all three devices without any performance issues. All nodes in the
visual programming toolkit were properly tested under various scenarios, the provided
experiments only illustrate, what were the approaches and how approximately complex
were the flows being tested. In these experiments I proved, that this toolkit works without
a problem with the common MicroPython programming regarding work with common data
structures, control flow, loops and variables. Additionally, communication protocols work
as expected together with supported sensors and peripherals like DHT, Matrix Display,
Character Display, NeoPixel LEDs, Ultrasonic Distance sensor and handful of more. The
programming toolkit is quite robust as it does not allow for user to work with variables
which are not connected to the flow and do not start with a starter node, making exceptions
for dead code impossible.

58

Chapter 8

Conclusion

To summarize, the goal of this thesis is to implement a visual toolkit, which will be able to
create programs interpretable by MicroPython for ESP32 platform. I studied theory and
approaches of various visual programming languages, their cognitive effects in comparison
to text-based programming language with the aim to create the best visual representation of
a toolkit for programming ESP32 platform. Furthermore I gathered information about nu-
merous techniques and technologies used to implement web-based applications and studied
means of programming of ESP32 devices with focus placed specifically on MicroPython.
I designed and implemented a visual toolkit capable of creating a flow-based programs,
which run asynchronously on the backend. The nodes contained in the toolkit contain
control structures, mathematical/logical expressions, sequence operations, collection oper-
ations, support of common data and variables, communication for debug logging, HTTP
Requests and MQTT Subscribe/Publish, support of GPIO pins, ADC, I2C, SPI, Timer, a
handful of sensors and miscellaneous nodes, such as timestamp, random number generator,
or custom Python code. The toolkit is able to export the flow locally.

Above the requirements of the thesis, the visual toolkit is able to export the flow to the
ESP device via WebSocket, it is able to save the client-side representation and load it from
the file. I also implemented a console component which serves as a display element for
feedback to the client in the browser about what is happening on the backend device. In
addition, the current implementation contains drivers for a handful of common sensors and
peripherals, which are not natively supported by MicroPython.

8.1 Possible Extensions
There are many ways the visual programming toolkit could be improved and extended.
First of all the I see a room for UI improvement in terms of how the nodes are shown
and possibly sidebar UI improvement, although I think the current implementation is user
friendly and sufficient. The second thing that is a thing to consider is adding support for
more sensors - mainly more models of sensors. Thirdly I think it should be possible to make
use of more communication protocols like BLE and ESP-NOW. Lastly, the toolkit could
have a functionality to encapsulate the part of already configured flow into a single node
which could be reusable.

59

Bibliography

[1] Allington, M. Introducing svelte 5 - what’s new [online]. Oct 2023 [cit. 2024-01-21].
Available at: https://marcallington.com/blog/introducing-svelte5-whats-new.

[2] Annamaa, A. Introducing Thonny, a Python IDE for learning programming.
In: Proceedings of the 15th Koli Calling Conference on Computing Education
Research. ACM, November 2015. Koli Calling ’15. DOI: 10.1145/2828959.2828969.
Available at: http://dx.doi.org/10.1145/2828959.2828969.

[3] Annamaa, A. Learn to code with Thonny - A Python IDE for Beginners [online].
Fedora magazine, 19. Feb 2018 [cit. 2024-01-25]. Available at:
https://fedoramagazine.org/learn-code-thonny-python-ide-beginners/.

[4] Baer, E. What react is and why it matters [online]. O’Reilly Media, Inc. [cit.
2024-01-21]. Available at:
https://www.oreilly.com/library/view/what-react-is/9781491996744/ch01.html.

[5] Bottoni, P., Costabile, M. F., Levialdi, S. and Mussio, P. Specification of
Visual Languages as Means for Interaction. In: Visual Language Theory. Springer
New York, 1998, p. 353–375. DOI: 10.1007/978-1-4612-1676-6_13. ISBN
9781461216766. Available at: http://dx.doi.org/10.1007/978-1-4612-1676-6_13.

[6] Chandak, V. Web Vitals Metrics – What you should know [online]. 4. jun 2020 [cit.
2024-04-29]. Available at:
https://www.virendrachandak.com/techtalk/web-vitals-metrics/.

[7] Damien, G. P. and Sokolovsky, P. 1. getting started with MicroPython on the
ESP32 [online]. George Robotics Limited, 2014. 2024-05-07 [cit. 2024-01-21]. Available
at: https://docs.micropython.org/en/latest/esp32/tutorial/intro.html.

[8] Damien, G. P. and Sokolovsky, P. Optimizations. MicroPython Internals [online].
2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/develop/optimizations.html.

[9] Damien, G. P. and Sokolovsky, P. MicroPython remote control: mpremote.
MicroPython language and implementation [online]. 2014. 2024-07-05 [cit. 2024-05-04].
Available at: https://docs.micropython.org/en/latest/reference/mpremote.html.

[10] Damien, G. P. and Sokolovsky, P. MicroPython libraries [online]. George Robotics
Limited, 2014. 2024-05-07 [cit. 2024-01-21]. Available at:
https://docs.micropython.org/en/latest/library/index.html.

60

https://marcallington.com/blog/introducing-svelte5-whats-new
http://dx.doi.org/10.1145/2828959.2828969
https://fedoramagazine.org/learn-code-thonny-python-ide-beginners/
https://www.oreilly.com/library/view/what-react-is/9781491996744/ch01.html
http://dx.doi.org/10.1007/978-1-4612-1676-6_13
https://www.virendrachandak.com/techtalk/web-vitals-metrics/
https://docs.micropython.org/en/latest/esp32/tutorial/intro.html
https://docs.micropython.org/en/latest/develop/optimizations.html
https://docs.micropython.org/en/latest/reference/mpremote.html
https://docs.micropython.org/en/latest/library/index.html

[11] Damien, G. P. and Sokolovsky, P. asyncio-aynchronous I/O scheduler.
MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/asyncio.html.

[12] Damien, G. P. and Sokolovsky, P. machine — functions related to the hardware.
MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.html.

[13] Damien, G. P. and Sokolovsky, P. class Pin – control I/O pins. MicroPython
libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.Pin.html.

[14] Damien, G. P. and Sokolovsky, P. class Signal – control and sense external I/O
devices. MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available
at: https://docs.micropython.org/en/latest/library/machine.Signal.html.

[15] Damien, G. P. and Sokolovsky, P. class ADC – analog to digital conversion.
MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.ADC.html.

[16] Damien, G. P. and Sokolovsky, P. class PWM – pulse width modulation.
MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.PWM.html.

[17] Damien, G. P. and Sokolovsky, P. class UART – duplex serial communication
bus. MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.UART.html.

[18] Damien, G. P. and Sokolovsky, P. class SPI – a Serial Peripheral Interface bus
protocol (controller side). MicroPython libraries [online]. 2014. 2024-07-05 [cit.
2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.SPI.html.

[19] Damien, G. P. and Sokolovsky, P. class I2C – a two-wire serial protocol.
MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.I2C.html.

[20] Damien, G. P. and Sokolovsky, P. class Timer – control hardware timers.
MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.Timer.html.

[21] Damien, G. P. and Sokolovsky, P. class SDCard – secure digital memory card.
MicroPython libraries [online]. 2014. 2024-07-05 [cit. 2024-01-24]. Available at:
https://docs.micropython.org/en/latest/library/machine.SDCard.html.

[22] Espressif, S. Espressif SOC serial Bootloader Utility [online]. 2016 [cit. 2024-01-16].
Available at: https://docs.espressif.com/projects/esptool/en/latest/esp32/.

[23] Ferreira, F., Borges, H. S. and Valente, M. T. On the (un-)adoption of
JavaScript front-end frameworks. Software: Practice and Experience. Wiley. october
2021, vol. 52, no. 4, p. 947–966. DOI: 10.1002/spe.3044. ISSN 1097-024X. Available
at: http://dx.doi.org/10.1002/spe.3044.

61

https://docs.micropython.org/en/latest/library/asyncio.html
https://docs.micropython.org/en/latest/library/machine.html
https://docs.micropython.org/en/latest/library/machine.Pin.html
https://docs.micropython.org/en/latest/library/machine.Signal.html
https://docs.micropython.org/en/latest/library/machine.ADC.html
https://docs.micropython.org/en/latest/library/machine.PWM.html
https://docs.micropython.org/en/latest/library/machine.UART.html
https://docs.micropython.org/en/latest/library/machine.SPI.html
https://docs.micropython.org/en/latest/library/machine.I2C.html
https://docs.micropython.org/en/latest/library/machine.Timer.html
https://docs.micropython.org/en/latest/library/machine.SDCard.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/
http://dx.doi.org/10.1002/spe.3044

[24] George, D. MicroPython [online]. George Robotics Limited, 2014 [cit. 2024-01-18].
Available at: https://micropython.org/.

[25] Gevv. Flowcode examples [online]. 15. october 2016. 2019-08-04 [cit. 2024-01-13].
Available at: https://320volt.com/en/flowcode-examples/.

[26] Hope, C. What is block-based programming? [online]. 16. Nov 2019 [cit. 2024-01-10].
Available at: https://www.computerhope.com/jargon/b/block-based-programming.htm.

[27] ICDSoft. One-page vs. Multi-page website. which one is better? [online]. 28. Mar
2022 [cit. 2024-01-20]. Available at: https:
//www.icdsoft.com/blog/one-page-vs-multi-page-website-which-one-is-better/.

[28] Itemis. Model and simulate decision logic using state machines and flow charts.
Stateflow [online]. [cit. 2024-01-13]. Available at:
https://www.mathworks.com/products/stateflow.html.

[29] itemis. What is a state machine? [online]. [cit. 2024-01-13]. Available at:
https://www.itemis.com/en/products/itemis-create/documentation/user-guide/
overview_what_are_state_machines.

[30] Limited, M. M. Hardware Supported by Flowcode [online]. [cit. 2024-01-13]. Available
at: https://www.flowcode.co.uk/hardware/.

[31] Lucidchart. What is a flowchart? What is a Flowchart [online]. [cit. 2024-01-13].
Available at: https://www.lucidchart.com/pages/what-is-a-flowchart-tutorial.

[32] Meta Platforms, I. JSX Definition. JSX [online]. 4. Aug 2022 [cit. 2024-01-21].
Available at: https://facebook.github.io/jsx/.

[33] Miguel, G. Microdot [online]. 2021 [cit. 2024-01-26]. Available at:
https://microdot.readthedocs.io/en/latest/.

[34] MozDevNet. Getting started with Svelte - learn web development: MDN [online].
2023-10-05 [cit. 2024-01-21]. Available at:
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-
side_JavaScript_frameworks/Svelte_getting_started.

[35] mpyblockly. What is MPY Blockly? Mpyblockly [online]. 2022 [cit. 2024-01-26].
Available at: https://mpyblockly.github.io/.

[36] NAVARRO PRIETO, R. and CAÑAS, J. J. Are visual programming languages
better? The role of imagery in program comprehension. International Journal of
Human-Computer Studies [online]. Elsevier BV. june 2001, vol. 54, no. 6, p. 799–829,
[cit. 2024-01-11]. DOI: 10.1006/ijhc.2000.0465. ISSN 1071-5819. Available at:
https://www.sciencedirect.com/science/article/pii/S1071581900904658.

[37] Poimandres. Introduction. Zustand [online]. [cit. 2024-01-26]. Available at:
https://docs.pmnd.rs/zustand/getting-started/introduction.

[38] rs esp. Overview of Development Approaches. The Rust on ESP Book [online]. [cit.
2024-01-23]. Available at: https://esp-rs.github.io/book/overview/index.html.

62

https://micropython.org/
https://320volt.com/en/flowcode-examples/
https://www.computerhope.com/jargon/b/block-based-programming.htm
https://www.icdsoft.com/blog/one-page-vs-multi-page-website-which-one-is-better/
https://www.icdsoft.com/blog/one-page-vs-multi-page-website-which-one-is-better/
https://www.mathworks.com/products/stateflow.html
https://www.itemis.com/en/products/itemis-create/documentation/user-guide/overview_what_are_state_machines
https://www.itemis.com/en/products/itemis-create/documentation/user-guide/overview_what_are_state_machines
https://www.flowcode.co.uk/hardware/
https://www.lucidchart.com/pages/what-is-a-flowchart-tutorial
https://facebook.github.io/jsx/
https://microdot.readthedocs.io/en/latest/
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Svelte_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Svelte_getting_started
https://mpyblockly.github.io/
https://www.sciencedirect.com/science/article/pii/S1071581900 904658
https://docs.pmnd.rs/zustand/getting-started/introduction
https://esp-rs.github.io/book/overview/index.html

[39] rs esp. Using the Standard Library (std). The Rust on ESP Book [online]. [cit.
2024-01-23]. Available at:
https://esp-rs.github.io/book/overview/using-the-standard-library.html.

[40] rs esp. Using the Core Library (no_std). The Rust on ESP Book [online]. [cit.
2024-01-23]. Available at:
https://esp-rs.github.io/book/overview/using-the-core-library.html.

[41] rs esp. Rust on ESP Community [online]. [cit. 2024-01-23]. Available at:
https://github.com/esp-rs.

[42] rs esp. ESP-rs/espflash: Serial flasher utility for ESPRESSIF socs and modules
based on esptool.py [online]. 1. sep 2020. 2024-01-09 [cit. 2024-01-23]. Available at:
https://github.com/esp-rs/espflash.

[43] Solidoworks. Flowcode [online]. Jan 2024 [cit. 2024-01-13]. Available at:
https://www.solidworks.com/partner-product/flowcode.

[44] Solomon, B. Async IO in python: A complete walkthrough [online]. Real Python,
Jan 2019 [cit. 2024-01-24]. Available at: https://realpython.com/async-io-python/.

[45] Source, M. O. Built-in React Hooks [online]. [cit. 2024-01-21]. Available at:
https://react.dev/reference/react/hooks.

[46] s.r.o., E. Vývojová deska ESP32 2,4GHz Dual-Mode Wi-Fi + Bluetooth modul
antény. IOT Vývojové platformy [online]. [cit. 2024-01-24]. Available at:
https://dratek.cz/arduino/1581-esp-32s-esp32-esp8266-development-board-2.4ghz-
dual-mode-wifi-bluetooth-antenna-module.html.

[47] Systems, E. ESP32-S3-DevKitC-1 v1.1. ESP-IDF Programming Guide [online]. [cit.
2024-01-24]. Available at: https://docs.espressif.com/projects/esp-idf/en/latest/
esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html.

[48] Systems, E. Welcome to Espressif IoT Development Framework! [online]. [cit.
2024-01-24]. Available at: https://idf.espressif.com/.

[49] Systems, E. Get Started. ESP-IDF Programming Guide [online]. 2016 [cit.
2024-01-24]. Available at: https:
//docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html.

[50] Systems, E. ESP32-S3 series Datasheet [online]. 1.8th ed. 2023 [cit. 2024-01-17].
Available at: https://www.espressif.com/sites/default/files/documentation/esp32-
s3_datasheet_en.pdf.

[51] Systems, E. ESP32 series Datasheet [online]. 4.5th ed. 2024, 2024 [cit. 2024-01-17].
Available at: https:
//www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.

[52] Systems, E. A feature-rich MCU with integrated Wi-Fi and Bluetooth connectivity
for a wide-range of applications [online]. 2024 [cit. 2024-01-15]. Available at:
https://www.espressif.com/en/products/socs/esp32.

63

https://esp-rs.github.io/book/overview/using-the-standard-library.html
https://esp-rs.github.io/book/overview/using-the-core-library.html
https://github.com/esp-rs
https://github.com/esp-rs/espflash
https://www.solidworks.com/partner-product/flowcode
https://realpython.com/async-io-python/
https://react.dev/reference/react/hooks
https://dratek.cz/arduino/1581-esp-32s-esp32-esp8266-development-board-2.4ghz-dual-mode-wifi-bluetooth-antenna-module.html
https://dratek.cz/arduino/1581-esp-32s-esp32-esp8266-development-board-2.4ghz-dual-mode-wifi-bluetooth-antenna-module.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html
https://idf.espressif.com/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/products/socs/esp32

[53] Systems, E. Your Complete AIoT Solution Provider [online]. 2024 [cit. 2024-01-15].
Available at: https://www.espressif.com/.

[54] Systems, S. Construct and Run a Stateflow Chart. Stateflow charts [online]. [cit.
2024-01-13]. Available at:
https://www.mathworks.com/help/stateflow/gs/stateflow-charts.html.

[55] Systems, S. Stateflow Integration [online]. [cit. 2024-01-13]. Available at:
https://sparxsystems.com/enterprise_architect_user_guide/16.0/model_simulation/
stateflow_integration.html.

[56] Team, Q. E. Innovating with Ease: How Visual Programming Transforms Software
Development? [online]. Oct 2023 [cit. 2024-01-10]. Available at:
https://quixy.com/blog/visual-programming-in-software-development/.

[57] W3Schools. React Components [online]. [cit. 2024-01-21]. Available at:
https://www.w3schools.com/react/react_components.asp.

[58] W3Schools. React State [online]. [cit. 2024-01-21]. Available at:
https://www.w3schools.com/react/react_state.asp.

[59] xyflow. Wire Your Ideas with React Flow. React Flow [online]. [cit. 2024-01-26].
Available at: https://reactflow.dev/.

[60] xyflow. Quickstart. Svelte Flow [online]. 2023 [cit. 2024-01-26]. Available at:
https://svelteflow.dev/learn.

64

https://www.espressif.com/
https://www.mathworks.com/help/stateflow/gs/stateflow-charts.html
https://sparxsystems.com/enterprise_architect_user_guide/16.0/model_simulation/stateflow_integration.html
https://sparxsystems.com/enterprise_architect_user_guide/16.0/model_simulation/stateflow_integration.html
https://quixy.com/blog/visual-programming-in-software-development/
https://www.w3schools.com/react/react_components.asp
https://www.w3schools.com/react/react_state.asp
https://reactflow.dev/
https://svelteflow.dev/learn

Appendix A

Contents of the included storage
media

VUT_FIT_Diploma_Code
frontend

index.html
.eslintrc.cjs
package.json
vite.config.js
yarn.lock
public

vite.svg
src

App.jsx
App.css
main.jsx
store.js
index.css
assets
components

static
common.css

shared
SelectField.jsx

common
Console

Console.jsx
Console.css

SidebarComponent
Sidebar.jsx
Sidebar.css

ContextMenu
ContextMenu.jsx
ContextMenu.css

blocks (Custom Nodes)

65

AssignVariable
AssignVariable.jsx

SPI
SPIWrite.jsx
SPIRead.jsx

ForLoop
ForLoop.jsx

LedMatrix
LedMatrix.jsx

BuiltIn
Append

Append.jsx
GetDictKeys

GetDictKeys.jsx
Format

Format.jsx
Sum

Sum.jsx
Sorted

Sorted.jsx
GetDictItems

GetDictItems.jsx
SetInDict

SetInDict.jsx
Abs

Abs.jsx
GetIndex

GetIndex.jsx
SetIndex

SetIndex.jsx
DeleteFromDict

DeleteFromDict.jsx
Convert

Convert.jsx
GetDictValues

GetDictValues.jsx
GetFromDict

GetFromDict.jsx
Len

Len.jsx
RemoveIndexValue

RemoveIndexValue.jsx
Count

Count.jsx
Timestamp

Timestamp.jsx
Timer

Timer.jsx

66

LiquidLed
LiquidLed.jsx

Data
Data.jsx

Operation
Operation.jsx

DefineVariable
DefineVariable.jsx

HYSRF05
HYSRF05.jsx

Python
Python.jsx

DHT
DHT.jsx

ADC
ADC.jsx

I2C
I2CWrite.jsx
I2CRead.jsx

Pin
Pin.jsx
SetPin.jsx

If
If.jsx

RandomNumber
RandomNumber.jsx

NeoPixel
NeoPixel.jsx

BME
BME.jsx

MQTT
MQTTSubscribe.jsx
MQTTServer.jsx
MQTTPublish.jsx

Logger
Logger.jsx

HTTP
HTTPGet.jsx
HTTPPost.jsx

hooks
useComponent.jsx

mpy_libs
hysrf05.mpy
models.mpy
umqttsimple.mpy
BME280.mpy
protocol.mpy
websocket.mpy

67

client.mpy
i2c_api.mpy
i2c_lcd.mpy
max7219.mpy
microdot_new.mpy
bmp280.mpy
bmp180.mpy
boot.mpy
utils.mpy

src
bmp280.py
umqttsimple.py
main.py
hysrf05.py
max7219.py
websocket.py
protocol.py
models.py
microdot_new.py
BME280.py
bmp180.py
boot.py
config.py
i2c_api.py
i2c_lcd.py
client.py
utils.py

setup_microcontroller.sh
VUT_FIT_Diploma_Text

Diploma_Thesis.pdf
Diploma_Thesis_Text_Source.zip

68

Appendix B

Manual

B.1 Prerequisities
The following software versions are required:

• Python ≥ 3.8

• Node ≥ v18.10.0

• Yarn ≥ 1.22.19

B.2 Installation

B.2.1 Frontend

The first step is to navigate to the frontend directory and install the dependencies via

yarn install

After the dependencies are installed the frontend can be run via

yarn dev

This will run the local server on localhost:5173.

B.2.2 Backend

The first step is to flash MicroPython on the ESP device. For this purpose esptool.py
can be used. It can be installed via pip install esptool. The next step is to down-
load the MicroPython binary for the ESP device. The binaries are available at https:
//micropython.org/download/. Download the latest version for the ESP device. First,
use the esptool.py to erase flash on the ESP device via

esptool.py --chip <chip> --port /dev/ttyUSB0 erase_flash

and then flash the downloaded binary onto the ESP device via

69

https://micropython.org/download/
https://micropython.org/download/

esptool.py --chip <chip> --port /dev/ttyUSB0 write_flash -z <starting address>
<binary name>,

where the chip is the ESP chip being used, the starting address is either 0x1000 for ESP32 or
0x0000 for other ESP chips and the binary name is the name of the MicroPython binary file.

Now that the ESP device has been flashed with MicroPython, the next step is to put the
MicroPython files on the ESP file system. For this, either Thonny IDE or mpremote CLI
tool can be used (the latter is recommended).

To use mpremote, first install it via pip install –user mpremote.

Subsequently, it is required to set the config in src/config.py. The SSID and password of
the Wi-Fi connection are required. Additionally, the DEBUG flag can be set to False, but
this is not recommended, as it will turn off the ability to display feedback in the frontend
console, as the ESP device won’t wait for the connection and start executing the flow right
away. The Wi-Fi should be running at 2.4 GHz. When the configuration is set up, the
script setup_microcontroller.sh can be executed in the root directory. This script will copy
MicroPython libraries compiled to the bytecode required to run the backend together with
the config to the ESP device file system. Finally the program can be run via python -m
mpremote run ./src/main.py.

The user will be greeted with the ”Connecting...“ string and when the ESP device connects
to the Wi-Fi, the IP Address of the ESP device will be displayed. This address is necessary
to be used in order to connect to the ESP device from the frontend.

B.3 Usage
In order to use the visual programming toolkit, the user needs to open it in the browser.
The next step is to copy the IP Address of the ESP device printed when running the
main.py into the frontend field found on the sidebar. Afterward, the user can create a flow
by clicking on the drawers to open them and drag-and-dropping the nodes onto the canvas.
At the start of making a flow, a user should always pick a starting node by right-clicking
the node on the canvas and clicking ”Toggle starter“. When creating the flow, connect
the nodes before filling out their properties, so the information from the previous nodes is
transferred (in the case of defined variables for example). If the nodes are connected by
mistake, the connection can be removed by hovering over either the start of the connection
and dragging it on the empty canvas. When a user finishes a flow, he can click the menu
and export it on the ESP device via WebSocket. Confirmation about receiving the JSON
will be displayed in the console and the ESP device will be restarted. Afterward, the user
can close the menu and connect to the ESP device, as in DEBUG mode, it will wait for a
WebSocket connection before trying to execute the flow on the frontend.

70

Appendix C

Detailed Description of Nodes

In Appendix A I will describe nodes in more detail - their description, properties and
outputs. I will often refer to the value of some parameter being Selection Field, please see
section 6.1.5.

C.1 Control Structures

Name: If Statement
Description: Directs the flow of the program based on a condition.
Properties:

1. Operand - Selection Field with Constant types: String, Integer, Float,
Boolean, List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Operation - set of operations (<, >, <=, >=, ==, !=, in, not in)
2. Operand - Selection Field with Constant types: String, Integer, Float,

Boolean, List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Nothing
Control: True (marked green), False (marked red)

Name: For Loop
Description: Iterates over provided iterable and executes body with values of that

iterable being available.
Properties:

Variable - Variable name representing individual values of iterable
Iterable - Selection Field with Constant types: String, List, Dictionary, Set,

Tuple, Range, Enumerate
Outputs:

Data: Nothing
Control: Body (marked blue), Continue

71

C.2 Mathematics

Name: Absolute Value
Description: Calculates absolute value.
Properties:

Parameter - Selection Field with Constant types: Integer, Float, Complex
Outputs:

Data: Integer, Float, Complex (Returns magnitude of the complex number)
Control: Next node

Name: Operation
Description: Evaluates mathematical or logical expression based on operation.
Properties:

1. Operand - Selection Field with Constant types: String, Integer, Float,
Boolean, List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Operation - Set of operations (+,−, *, /, //,%, **,&, |,,<<,>>,==, ! =, >
,<,>=, <=, in, not in, is, is not)

2. Operand - Selection Field with Constant types: String, Integer, Float,
Boolean, List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: String, Integer, Float, Boolean, List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒
Control: Next node

C.3 Sequence Operations

Name: Length
Description: Evaluate the length of the provided parameter.
Properties:

Parameter - Selection Field with Constant types: String, List, Dictionary,
Set, Tuple

Outputs:
Data: Integer
Control: Next node

72

Name: Sorted
Description: Sort the provided parameter into the list.
Properties:

Parameter - Selection Field with Constant types: String, List, Dictionary,
Set, Tuple

Outputs:
Data: List
Control: Next node

Note: If the parameter is dictionary, the sorted keys will be returned.

Name: Sum
Description: Calculate the sum of the provided input.
Properties:

Parameter - Selection Field with Constant types: List, Dictionary, Set, Tuple
Outputs:

Data: Integer, Float
Control: Next node

Note: If the parameter is a dictionary, the sum of keys will be returned.

Name: Count
Description: Counts occurrences of a value in a data structure.
Properties:

Data Structure - Selection Field with Constant types: String, List, Dictio-
nary, Set, Tuple

Value - Selection Field with Constant types: String, Integer, Float, Boolean,
List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Integer
Control: Next node

73

C.4 Collection Operations

Name: Set Dictionary Value
Description: Sets the value of a key in a dictionary.
Properties:

Dictionary - Selection Field with Constant type Dictionary
Key - Selection Field with Constant types String, Integer, Float, Boolean, List,

Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒
Value - Selection Field with Constant types String, Integer, Float, Boolean,

List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Provided Dictionary
Control: Next node

Note: If the key does not exist, it will be created

Name: Get Dictionary Value
Description: Gets the value of a key in a dictionary.
Properties:

Dictionary - Selection Field with Constant type Dictionary
Key - Selection Field with Constant types String, Integer, Float, Boolean, List,

Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Value of a dictionary - String, Integer, Float, Boolean, List, Dictionary,

Set, Tuple, 𝑁𝑜𝑛𝑒
Control: Next node

Note: If the key does not exist, the output will be 𝑁𝑜𝑛𝑒

Name: Remove from Dictionary
Description: Removes the value of a key in a dictionary.
Properties:

Dictionary - Selection Field with Constant type Dictionary
Key - Selection Field with Constant types String, Integer, Float, Boolean, List,

Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Provided Dictionary with the removed value of provided key
Control: Next node

Note: If the key does not exist, nothing will be deleted.

74

Name: Get Dictionary Values
Description: Gets values of a dictionary.
Properties:

Dictionary - Selection Field with Constant type Dictionary
Outputs:

Data: Dictionary Values in a List
Control: Next node

Name: Get Dictionary Keys
Description: Gets keys of a dictionary.
Properties:

Dictionary - Selection Field with Constant type Dictionary
Outputs:

Data: Dictionary Keys in a List
Control: Next node

Name: Get Dictionary Items
Description: Gets items of a dictionary.
Properties:

Dictionary - Selection Field with Constant type Dictionary
Outputs:

Data: Dictionary items in a List of tuples, where each tuple is key:value pair
Control: Next node

Name: Get Index Value
Description: Gets value on the index of a data structure.
Properties:

Data Structure - Selection Field with Constant types String, List, and Tuple
Index - Selection Field with Constant type Integer representing the index of

a data structure
Outputs:

Data: Value on the index - String, Integer, Float, Boolean, List, Dictionary,
Set, Tuple, 𝑁𝑜𝑛𝑒

Control: Next node

75

Name: Set Index Value
Description: Sets value on the index of a data structure.
Properties:

Data Structure - Selection Field with Constant types String, List and Tuple
Index - Selection Field with Constant type Integer representing index of a data

structure
Value - Selection Field with Constant types String, Integer, Float, Boolean,

List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Provided Data Structure - String, List, and Tuple
Control: Next node

Name: Remove Index Value
Description: Removes value on the index of a data structure.
Properties:

Data Structure - Selection Field with Constant types String, List and Tuple
Index - Selection Field with Constant type Integer representing index of a data

structure
Outputs:

Data: Provided Data Structure - String, List, or Tuple with removed value on
the provided index

Control: Next node

Name: Append to list
Description: Appends a value to a list.
Properties:

List - Selection Field with Constant type List, List for value to be appended
to.

Value - Selection Field with Constant types String, Integer, Float, Boolean,
List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Provided List with appended value
Control: Next node

76

C.5 Memory/Data

Name: Define Variable
Description: Defines a variable and sets it to an input value.
Properties:

Name - Text name for a variable
Outputs:

Data: Nothing
Control: Next node

Name: Assign Variable
Description: Selects a variable and sets it to an input value.
Properties:

Variable name - Select for variable name (Requires a connected Define Vari-
able node)

Outputs:
Data: Nothing
Control: Next node

Name: Data
Description: Creates a value of selected data type.
Properties:

Data Type - Select for data type - String, Integer, Float, Boolean, List, Dic-
tionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Value - Input for value
Outputs:

Data: Nothing
Control: Next node

C.6 Communication

Name: Logger
Description: Sends feedback messages to the frontend console.
Properties:

Text - Selection Field with Constant types String, Integer, Float, Boolean,
List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Nothing
Control: Nothing - Logger’s use is only to send messages to frontend.

77

Name: MQTT Server
Description: Sets up MQTT Server for Publishing/Subscribing to a topic.
Properties:

Name - Text input, unique name to identify the server in the flow.
SSID - Text input, username credential for the MQTT server
Password - Text input, password credential for the MQTT server
Server Address - Text input, Address of the MQTT server in format

[IP|DomainName]:[Port] (e.g. 192.168.1.1:1883)
Outputs:

Data: Nothing
Control: Next node

Name: MQTT Publish
Description: Publishes message to a topic.
Properties:

Server name - Selection input, MQTT server (Requires connected MQTT
Server Node)

Topic - Text input, topic to publish to
Message - Selection Field with Constant types String, Integer, Float, Boolean,

List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Nothing
Control: Next node

Name: MQTT Subscribe
Description: Subscribes to a topic.
Properties:

Server name - Selection input, MQTT server (Requires connected MQTT
Server Node)

Topic - Text input, topic to publish to
Message - Selection Field with Constant types String, Integer, Float, Boolean,

List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Received message
Control: Next node

78

Name: HTTP Get
Description: Sends a GET request to the HTTP endpoint.
Properties:

URL - Text input, URL of a website with endpoint
Outputs:

Data: Received response in a Dictionary
Control: Next node

Name: HTTP Post
Description: Sends a POST request to the HTTP endpoint.
Properties:

URL - Text input, URL of a website with endpoint
Data - Selection Field with Constant types Dictionary and None, Data to be

sent with the request
Outputs:

Data: Received response in a Dictionary
Control: Next node

C.7 Machine

Name: Pin
Description: Configures a I/O pin (GPIO).
Properties:

Pin ID - Number field, identification number of GPIO pin
Mode - Select with options of setting the pin as an output, input, or open-

drain
Pull Up/Down - Select specifying whether the pin has a pull resistor attached

Outputs:
Data: Nothing
Control: Next node

Name: Set Pin
Description: Sets pin to High/Low
Properties:

Pin ID - Select (Requires connected Pin node), Select a Pin to set a value on
State - Select with options of setting pin on or off

Outputs:
Data: Nothing
Control: Next node

79

Name: Analog-digital converter (ADC)
Description: Converts analog input to a digital value
Properties:

Pin ID - Number field, identification number of GPIO pin
Reading Type - Select with values Raw (u16) and Microvolts, represents a

type of reading from ADC
Outputs:

Data: Measured value - Integer
Control: Next node

Name: Write to SPI
Description: Writes data to SPI bus
Properties:

SPI Channel - Number field, specifies an SPI channel
Pin ID (CLK) - Number field, identification number of GPIO connected to

Clock
Pin ID (CS) - Number field, identification number of GPIO connected to

Chip Select
Pin ID (MOSI) - Number field, identification number of GPIO connected to

Master Out Slave In
Pin ID (MISO) - Number field, identification number of GPIO connected to

Master In Slave Out
Baudrate - Number field, represents the rate at which information is trans-

ferred
Data to write - Selection Field with Constant types String, Integer, Float

Outputs:
Data: Nothing
Control: Next node

80

Name: Read from SPI
Description: Reads data from SPI bus
Properties:

SPI Channel - Number field, specifies an SPI channel
Pin ID (CLK) - Number field, identification number of GPIO connected to

Clock
Pin ID (CS) - Number field, identification number of GPIO connected to

Chip Select
Pin ID (MOSI) - Number field, identification number of GPIO connected to

Master Out Slave In
Pin ID (MISO) - Number field, identification number of GPIO connected to

Master In Slave Out
Baudrate - Number field, represents rate at which information is transferred
Number of bytes to read - Number field, represents the number of bytes to

read from a bus
Outputs:

Data: Bytes, data read from SPI bus
Control: Next node

Name: Read from I2C
Description: Reads data from I2C bus
Properties:

I2C Channel - Number field, specifies an I2C channel
Pin ID (SDA) - Number field, identification number of GPIO connected to

Synchronous data line
Pin ID (SCL) - Number field, identification number of GPIO connected to

Serial clock line
Frequency - Number field, represents maximum frequency for SCL
Number of bytes to read - Number field, specifies the number of bytes to

read from the bus
Address of Peripheral - Text field, specifies the address of the peripheral

Outputs:
Data: Bytes, data read from I2C bus
Control: Next node

81

Name: Write to I2C
Description: Writes data from I2C bus
Properties:

I2C Channel - Number field, specifies an I2C channel
Pin ID (SDA) - Number field, identification number of GPIO connected to

Synchronous data line
Pin ID (SCL) - Number field, identification number of GPIO connected to

Serial clock line
Frequency - Number field, represents maximum frequency for SCL
Address of Peripheral - Text field, specifies the address of the peripheral
Data - Selection Field with Constant type String, specifies data being written

to I2C
Outputs:

Data: Nothing
Control: Next node

Name: Timer
Description: Sets a timer to execute a flow
Properties:

Period (ms) - Number field, represents the timer period in milliseconds
Mode - Select with options Periodic and Once, specifies whether the timer

should trigger periodically or only one
Outputs:

Data: Nothing
Control: Next node

C.8 Peripherals

Name: DHT Sensors
Description: Reads from DHT Sensor
Properties:

Pin ID - Number field, identification number of GPIO connected to the data
bus

Type - Select with options DHT11 and DHT22, specifies sensor type
Outputs:

Data: Dictionary in a format {”temperature“: <value>, ”humidity“:
<value>}, where <value> is integer value measured by the sensor

Control: Next node

82

Name: LED Matrix
Description: Displays text on LED matrix
Properties:

Pin ID (DIN|MOSI) - Number field, identification number of GPIO con-
nected to the data bus (MOSI)

Pin ID (CS|SS) - Number field, identification number of GPIO connected to
the card select (SS)

Pin ID (CLK|SCK) - Number field, identification number of GPIO con-
nected to the clock (SCK)

Number of Matrices - Number field, represents the number of matrices con-
nected in a row

Text - Selection Field with Constant type String, represents text to be dis-
played

Outputs:
Data: Nothing
Control: Next node

Name: Character Display
Description: Displays text on the backlit character display
Properties:

Pin ID (SDA) - Number field, identification number of GPIO connected to
the Synchronous Data pin (SDA)

Pin ID (SCL) - Number field, identification number of GPIO connected to
the Synchronous Clock pin (SCL)

Number of Columns - Number field, represents the number of columns on
the display

Number of Rows - Number field, represents the number of rows on the dis-
play

Cursor Position - Selection Field with Constant type Tuple, represents x and
y coordinates to display the text from

Text - Selection Field with Constant type String, represents text to be dis-
played

Outputs:
Data: Nothing
Control: Next node

83

Name: NeoPixel LED
Description: Lights up an LED with specified color
Properties:

Pin ID - Number field, identification number of GPIO connected to the LED
Number of Pixel - Number field, represents the number of pixels that the

LED contains
RGB Color - Selection Field with Constant type Tuple, represents RGB color

to be shown in format (R, G, B)
Outputs:

Data: Nothing
Control: Next node

Name: Barometric Sensors
Description: Reads from Barometric (environment) Sensor
Properties:

Pin ID (SDA) - Number field, identification number of GPIO connected to
the Synchronous Data pin (SDA)

Pin ID (SCL) - Number field, identification number of GPIO connected to
the Synchronous Clock pin (SCL)

Type - Select with options BMP180, BMP280 and BME280, representing the
type of the sensor

Outputs:
Data BMP180, BMP280: Dictionary in a format {”temperature“:

<value>, ”pressure“: <value>}, where <value> is integer value
measured by the sensor

Data BME280: Dictionary in a format {”temperature“: <value>,

”pressure“: <value>, ”humidity“: <value>}, where <value> is in-
teger value measured by the sensor

Control: Next node

Name: Ultrasonic Distance Sensor
Description: Reads from Ultrasound Distance Sensor (HY-SRF05/HC-SR04)
Properties:

Pin ID (Trigger) - Number field, identification number of GPIO connected
to the Trigger

Pin ID (Echo) - Number field, identification number of GPIO connected to
the Echo

Outputs:
Data: Distance in centimeters - Float
Control: Next node

84

C.9 Miscellaneous

Name: Format String
Description: Formats a value into a string
Properties:

Formatted String - Text field, specifying the formatted string. This field has
to contain {} which represents the place where the value is going to be
formatted.

Parameter - Selection Field with Constant types String, Integer, Float,
Boolean, List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Formatted string - String
Control: Next node

Name: Convert
Description: Casts a parameter to the specified type.
Properties:

Data type - Select with options String, Integer, Float, Boolean, List, Dictio-
nary, Set, Tuple, specifies the casting data type

Parameter - Selection Field with Constant types String, Integer, Float,
Boolean, List, Dictionary, Set, Tuple, 𝑁𝑜𝑛𝑒

Outputs:
Data: Parameter converted to a specified type
Control: Next node

Name: Random Number Generator
Description: Generates a random number from the specified interval.
Properties:

Start - Number input, specifies the lower bound of the interval
End - Number input, specifies the higher bound of the interval

Outputs:
Data: Random number - Integer
Control: Next node

Name: Python Code
Description: Executes a custom Python code
Properties:

Code - Text input, specifies the Python code to be executed
Outputs:

Data: Specified by user in _output variable or 𝑁𝑜𝑛𝑒
Control: Next node

85

Name: Timestamp
Description: Adds a timestamp before a parameter
Properties:

Parameter - Selection Field with Constant type String, specifies the parame-
ter before which the timestamp will be added

Outputs:
Data: Parameter with prefixed timestamp - String
Control: Next node

86

	Introduction
	Motivation
	What will this thesis discuss

	Brief Survey of Visual Programming Approaches
	Visual Programming Paradigm
	Comparison of Visual Programming and Traditional Programming
	Elements of Visual Programming Languages
	Cognitive Effects of Visual Languages
	Model of Visual Language
	Spatial Relations
	Types of Visual Programming Languages

	Modern Technology for Web-Based Applications
	Single-page vs. Multi-page Applications
	Javascript Frameworks

	Using Python on ESP32 Platform
	Espressif Microcontrollers
	Means of Programming the ESP32 Platform
	MicroPython

	Design of Visual Programming Toolkit
	Used Technologies
	Architecture

	Technical Aspects of the Implementation
	Elements of ReactFlow Frontend
	Nodes for Visual Programming Flow
	Principles Behind Micropython Backend

	Testing and Evaluation
	Problems and Challenges
	Experiments and Testing

	Conclusion
	Possible Extensions

	Bibliography
	Contents of the included storage media
	Manual
	Prerequisities
	Installation
	Usage

	Detailed Description of Nodes
	Control Structures
	Mathematics
	Sequence Operations
	Collection Operations
	Memory/Data
	Communication
	Machine
	Peripherals
	Miscellaneous

