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Rewriting Systems and If-Then
Rules in Fuzzy Setting

Dissertation Thesis

Olomouc, 2013





Address of the author

Tomáš Kühr
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Abstract

This thesis consists two main parts which are dealing with quite different fuzzy relational
systems. In the first part, the foundations for fuzzy rewriting systems are presented. The
fuzzy counterparts of the notions of reducibility, convergence, divergence, convertibility,
confluence, Church-Rosser property, termination, well-foundedness, inductive property,
and normal form are introduced for a given fuzzy relation which serves as a reduction
relation in this approach. Moreover, the ordinary notions are left as a particular case
when the underlying structure of truth degrees is the two-valued Boolean algebra. Some
essential properties of these generalized notions are also investigated in the first part of
this thesis.
There are also considered two ways of possible deeper generalization of the notions men-
tioned above which can be seen as foundations for rewriting on similarity and metric
spaces. A given fuzzy equivalence or a generalized pseudometric serves as an additional
knowledge representing the indistinguishability of elements which can be specified by an
expert in a particular domain. Basic similarity issues as well as research on derived fuzzy
reductions are also described in the first part.
The second part of this thesis describes a link between two types of logic systems for
reasoning with graded if-then rules: the system of fuzzy logic programming (FLP) in
sense of Vojtáš and the system of fuzzy attribute logic (FAL) in sense of Bělohlávek and
Vychodil. The main result in this part is that each finite theory consisting of formulas
of FAL can be represented by a definite program so that the semantic entailment in FAL
can be characterized by correct answers for the program and a query. Conversely, for each
definite program there is a collection of formulas of FAL so that the correct answers can be
represented by the entailment in FAL. Using this link, someone can transport results from
FAL to FLP and vice versa. Research focused on reducing entailment in FLP to reasoning
with Boolean attribute implications as well as investigation of properties of least models
are also included.
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Chapter 1

Introduction

In our everyday lives, we are being encountered with various kinds of information. Some
pieces of information are precisely formulated and one usually can immediately say if a
given statement or observation is true or not. For example, the sentence “Washington is
the capital of the USA.” is true without any doubts. On the other hand, there are plenty of
equally simple propositions which can not be easily tagged as true or false. Sentences like
“It will be sunny tomorrow.” or “John is a tall person.” show us fundamental limitations
of the classical bivalent logic [43]. Usually, we can deal with them using some sort of
intuition but there are situations (e.g. in scientific exploration) when precise dealing
with somehow uncertain statements or data is needed. For this reason, a large scale of
various mathematical theories for dealing with different types of uncertainty was developed
recently and is still being intensively investigated. The most important and well-known
examples are the probability theory [32], the rough sets theory [49], the theory of quantum
mechanics [22, 45], and plenty of multi-valued logics [3, 27, 29].

One of the most famous theory for dealing with vague statements is the fuzzy logic [29]
which is based on the fuzzy set theory [55, 56]. Let us return now to the example sentence
about John. What is the problem which the classical logic is not able to solve satisfactorily?
Even if we know John well or have measured exactly his height, we sometimes can’t
determine whether the sentence should be true or not. Clearly, if John’s height is for
example 190 cm he will be considered to be a tall person, and the sentence should be true
of course. Contrarily, a person who is 150 cm tall is usually not considered to be tall at
all, i.e. the corresponding statement is simply false. However, what decision should we
make if John’s height is not so extremal, e.g. 165 cm. While using the classical bivalent
logic, we always need to have a strict border between elements (e.g. persons) which have
some property (e.g. being tall) and the elements which don’t have it. In our example, we
can determine that anyone who has 170 cm or more is a tall person and anyone smaller
than 170 cm is not tall. This approach works theoretically well, but from the practical
point of view, it is quite unpleasant to possibly handle with two people who have almost
the same height (e.g. 170 cm and 169.9 cm) and one of them is considered fully to be tall
whereas the other is not tall at all.

Fuzzy logic (in the broad sense) [5, 13, 29] solves this discontinuity in a quite simple way.
Statements in fuzzy logic are allowed to be not only fully true (usually denoted by truth
value 1) or fully false (denoted by 0), but they can be evaluated also to intermediate truth
degrees from a given structure of truth values. These structures have to be partially ordered
with 0 being the least and 1 the greatest element. Sometimes, additional properties of the
structures of truth degrees are required. In various theories and applications based on the
fuzzy logic, the most common structure of truth values is the real unit interval. Return to
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our example last time. Assuming that John’s height is exactly 165 cm, we can assigned the
degree 0.3 to the sentence “John is a tall person.” whose meaning will be that it is almost
not true that John is tall. Due to its ability to deal sensible with vague propositions and
data, fuzzy logic has plenty of applications in industry automation, control and analytical
systems.

This thesis summarizes our results in the field of three different systems based on the
fuzzy logic. In particular, Chapter 3 of this thesis introduces the crucial notions for
theoretical foundations of fuzzy rewriting systems. Our motivation is the fact that the
phenomenon of substitutability may not be bivalent. It is a common practice of everyday
life to substitute y for x whenever x is too complex or expensive to handle and y does the job
of x sufficiently well. For example, instead of working with a whole article, one may work
with its summary only which is sufficiently informative; or instead of using an expensive
option poll based on survey of a sample of 10, 000 persons, one may use a cheaper option
poll based on a few hundreds of persons which will give sufficiently similar result. The
common characteristic of these examples is that one works with a substitutability relation
which is a fuzzy relation rather than a bivalent one. In Chapter 3, we have focused on
the two most important properties of a reduction relation – confluence and termination,
developed their fuzzy counterparts and studied their properties. We have also introduced
some notions related to confluence which will respect a given fuzzy reduction as well as a
given indistinguishability fuzzy relation (formalized by fuzzy equivalence).

Confluence and termination are properties of binary relations related to the idea of per-
forming substitutions specified by the respective binary relation. The notions have been
introduced in the theory of abstract rewriting systems [2, 47, 54] which deal with the idea
of substituting elements by other elements which are indistinguishable from the original
ones from a certain point of view. Particularly, in a term rewriting system, complex terms
are substituted by simpler ones that have the same meaning according to a predefined se-
mantics. As an example, x+x+x can be replaced by an equivalent but simpler term 3×x
considering the usual interpretation of + and × as arithmetic operations. The fact that
elements can be equally substituted by other elements is formalized by a binary relation
 on a universe set X of all elements, x  y is interpreted so that one may substitute
y for x. An element x ∈ X is called reducible if x  y for some y ∈ Y ; otherwise, x is
called irreducible. By a reduction we mean any sequence x1, x2, . . . , xn of elements from
X such that x1  x2  · · ·  xn. In that case, we say that x1 is reducible to xn. A
reduction is called terminating if xn is irreducible. Relation  is called terminating if it
has only terminating reductions. Furthermore, relation  is called confluent whenever x

is reducible to both y and y ′ then there is some z such that both y and y ′ are reducible
to z. Therefore, if  is confluent we always end up with the same result if we apply
substitutions in different order until no more substitutions can be applied. So, there is
a synergy between termination and confluence—a relation which is both terminating and
confluent has normal forms, i.e. each element is reducible to a unique irreducible element.

There were also many applications of abstract rewriting systems evolved. For instance,
term rewriting systems can be used as a theoretical background for functional program-
ming, various logical deductive systems can be formalized by rewriting systems, simplifica-
tion of mathematical expressions can be seen as a reduction, rewriting plays an important
role in the theory of formal grammars, etc. A good overview of rewriting systems and
their applications can be found in [2, 47].

Chapter 4 of the thesis summarizes the results of our research focused on establishing
a link between two logic systems that have been proposed and studied independently in
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the past. Namely, we have investigated the relationship between fuzzy logic programming
(shortly FLP) in sense of [53] and fuzzy attribute logic (FAL) presented in [12]. Note
that there are also more general approaches to FLP, e.g. [21]. We have chosen [53] for
its simple and straightforward form. Although the systems are technically different and
were developed to serve different purposes, they share common features: (i) they are
based on residuated structures of truth degrees, (ii) use truth-functional interpretation of
logical connectives, (iii) both the systems can be used to describe if-then dependencies in
problem domains when one requires a formal treatment of inexact matches, (iv) models
of theories form particular closure systems and semantic entailment can be expressed by
means of least models. Both the systems play an important role in computer science and
artificial intelligence as they can be used for approximate knowledge representation and
inference, description of dependencies found in data, representing approximate constraints
in relational similarity-based databases, etc. It is therefore appealing to look closer at
their mutual relationship. Furthermore, a possible link between the two systems can bring
forth new results.

Fuzzy attribute logic [12] was developed primarily for the purpose of describing if-
then dependencies that hold in object-attribute relational data where objects are allowed
to have attributes to degrees. The formulas of FAL, so-called fuzzy attribute implications
(FAIs) can be seen as implications A i B between two graded sets of attributes, saying
that if an object has all the attributes from A, then it has all the attributes from B.
The fact that A and B are fuzzy sets allows us to express graded dependencies between
attributes. As an example{

0.7/lowAge, 0.9/lowMileage
}
i
{
0.6/highFuelEconomy , 0.9/highPrice

}
(1.1)

is an attribute implication saying that cars with low age (at least to degree 0.7) and low
mileage (at least to 0.9) have also high fuel economy (at least to 0.6) and high price (at
least to 0.9). Formulas of this form can be prescribed by an expert or inferred from object-
attribute relational data [28]. FAIs have also an alternative interpretation as similarity-
based functional dependencies [11] in relational databases [19, 41].
The main results on FAL include syntactico-semantically complete axiomatization with
ordinary-style and graded-style (Pavelka style, see [48]) notions of provability and results
on descriptions of nonredundant bases of FAIs describing dependencies present in object-
attribute data and ranked data tables over domains with similarities [11, 12, 16].

Fuzzy logic programming [21, 42, 53] is a generalization of the ordinary logic pro-
gramming [40] in which logic programs consist of facts and complex rules containing a
head (an atomic predicate formula) and a tail (a formula composed from atomic predicate
formulas using connectives and aggregations interpreted by monotone truth functions)
connected by a residuated implication. In addition, each formula in a program is assumed
to be valid to a degree, i.e., programs are theories in sense of Pavelka’s abstract fuzzy
logic [29, 48]. As a consequence, fuzzy logic programs are capable of expressing graded
dependencies between facts.
As an example, we can consider the following rule:

suitable(X)
0.8iwa

(
near(X, stadium) c near(X, center), quality(X), cost(X)

)
, (1.2)

which expresses how much a hotel (variable X) is suitable for a sport fan. This rule
describes the degree of hotel suitability (atomic formula suitable(X)) as weighted average
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(aggregator wa) of degrees of being conveniently located, having high quality (quality(X))
and having low prices (cost(X)). The convenience of hotel location is specified here as a
conjunction (c) of being near to the stadium (near(X, stadium)) and being near to the city
center (near(X, center)). The rule is valid to degree 0.8, that can be understood so that
we put almost full emphasis on the rule.
The basic result of FLP is the completeness which puts in correspondence the declarative
and procedural semantics of logic programs [53, Theorem 1 and Theorem 3] represented
by correct answers and computed answers.



Chapter 2

Preliminaries

In this chapter, I will briefly recall basic notions from the fuzzy set theory, similarity spaces,
generalized pseudometric spaces, fuzzy attribute logic and fuzzy logic programming. I will
also mention some properties of these notions which are necessary for understanding the
results in Chapters 3 and 4.

2.1 Structures of Truth Degrees

In the following chapters, I will use residuated structures based on complete lattices.
Recall that a complete lattice is an algebra L = 〈L,∧,∨, 0, 1〉 with L representing a set
of degrees (bounded by 0 and 1). The corresponding lattice order ≤ is induced so that
a ≤ b iff a = a ∧ b (or equivalently, a ∨ b = b). As usual, 0 and 1 are interpreted as
degrees representing the full falsity and full truth. In order to express truth functions of
general logical connectives, I assume that L is equipped by a collection of pairs in the form
〈⊗,→〉 such that 〈L,⊗, 1〉 is a commutative monoid, and ⊗ and → satisfy the adjointness
property:

a⊗ b ≤ c iff a ≤ b→ c (2.1)

for any a, b, c ∈ L. As usual, ⊗ (called a multiplication) and→ (called a residuum) serve as
truth functions of binary logical connectives “fuzzy conjunction” and “fuzzy implication”.
The mutual relationship of ⊗ and → posed by (2.1) has been derived from a graded
counterpart to the classic deduction rule modus ponens. This seminal observation due to
J. Goguen [26] was later elaborated by Pavelka [48] in his general logic with graded semantic
and syntactic entailments, see also an important monograph [25] devoted to this particular
branch of multiple-valued logics. If ⊗ and → satisfy (2.1), then L = 〈L,∧,∨,⊗,→, 0, 1〉 is
called a complete residuated lattice. A thorough information about the role of residuated
lattices in fuzzy logic can be obtained from monographs [27, 29].

Note that the two-element Boolean algebra is a particular case of a complete residuated
lattice where L = {0, 1}, ∧ and ∨ being the minimum and maximum, respectively, ⊗ = ∧,
and→ being truth function of the two-element implication. In the sequel, the two-element
Boolean algebra will be denoted by 2. The class of complete residuated lattices includes
also structures of truth degrees on the real unit interval with ⊗ and → being a left-
continuous t-norm and its corresponding residuum, respectively. Three most important
pairs of adjoint operations on the unit interval are:  Lukasiewicz: a⊗ b = max(0, a+ b−1),
a → b = min(1, 1 − a + b); Gödel: a ⊗ b = a ∧ b, a → b = b for a > b and a → b = 1 for
a ≤ b; Goguen: a⊗ b = a · b, a→ b = b

a for a > b and a→ b = 1 for a ≤ b.
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In this thesis, I will also use some properties of a complete residuated lattice L as well as
properties of a particular truth degree a ∈ L. Recall that a ∈ L is called idempotent if
a⊗ a = a. Furthermore, 0 6= a ∈ L is called a zero-divisor of ⊗ if there is 0 6= b ∈ L such
that a⊗ b = 0. A t-norm ⊗ is called Archimedean if 0 and 1 are its only idempotents. A
complete residuated lattice L is called a chain if it is linearly ordered. If for any ai ∈ L
(i ∈ I) there is a finite subset I ′ ⊆ I such that

∨
i∈I ai =

∨
i∈I′ ai then L is called a

Noetherian residuated lattice [18]. In the sequel, I am going to use the following laws
which directly follow as properties of complete residuated lattices:

a⊗ (a→ b) ≤ b, (2.2)

(a⊗ b)→ c = a→ (b→ c), (2.3)

a→ (b→ c) = b→ (a→ c), (2.4)

a⊗ (b→ c) ≤ b→ (a⊗ c), (2.5)

(a→ b)⊗ (c→ d) ≤ (a⊗ c)→ (b⊗ d), (2.6)⊗
i∈I(ai → bi) ≤

⊗
i∈I ai →

⊗
i∈I bi, (2.7)

a⊗
∨
i∈I bi =

∨
i∈I(a⊗ bi), (2.8)

a⊗
∧
i∈I bi ≤

∧
i∈I(a⊗ bi), (2.9)

a→
∧
i∈I bi =

∧
i∈I(a→ bi), (2.10)∨

i∈I ai → b =
∧
i∈I(ai → b), (2.11)∨

i∈I(ai → b) ≤
∧
i∈I ai → b, (2.12)∨

i∈I(a→ bi) ≤ a→
∨
i∈I bi, (2.13)∧

i∈I(ai → bi) ≤
∨
i∈I ai →

∨
i∈I bi, (2.14)

(a↔ b)⊗ (c↔ d) ≤ (a→ c)↔ (b→ d), (2.15)∧
i∈I(ai ↔ bi) ≤

∧
i∈I ai ↔

∧
i∈I bi, (2.16)∧

i∈I(ai ↔ bi) ≤
∨
i∈I ai ↔

∨
i∈I bi. (2.17)

Further properties of complete residuated lattices can be found in [5, 23, 27, 29].

2.2 Fuzzy Sets and Relations

I will now recall basic notions of fuzzy sets and fuzzy relations. Let L be a complete
residuated lattice. An L-set in a universe set X is any map A : X → L, A(x) ∈ L being
interpreted as the truth value of “x belongs to A”. The set of all L-sets in X will be
denoted by LX . Analogously, an n-ary L-relation on a universe set X is an L-set in the
universe set Xn. For instance, a binary L-relation R on X is a map R : X × X → L.
Binary L-relations will be denoted by capital letters R,R′, . . . or symbols ⇀,↽, . . . in
which case I will write for example u ⇀ v instead of ⇀(u, v).
For an L-set A in X its strong 0-cut is defined by A+ ⊆ X by A+ = {x ∈ X |A(x) > 0}.
For binary L-relations R1, R2 on X the ◦-composition of R1 and R2 is a binary L-relation
R1 ◦R2 on X defined by

(R1 ◦R2)(x,y) =
∨
z∈X

(
R1(x, z)⊗R2(z,y)

)
. (2.18)

For L-sets A and B in X one can define degrees S(A,B) ∈ L and A ≈ B ∈ L as follows:

S(A,B) =
∧

x∈X(A(x)→ B(x)), (2.19)

E(A,B) =
∧

x∈X(A(x)↔ B(x)). (2.20)
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S(A,B) is called a degree of subsethood of A in B; E(A,B) is called a degree of equality
of A and B. Note, that a↔ b in (2.20) is an abbreviation for (a→ b) ∧ (b→ a). Clearly,
E(A,B) = S(A,B) ∧ S(B,A). Furthermore, I will write A ⊆ B if S(A,B) = 1, i.e. if
A(x) ≤ B(x) is true for each x ∈ X.

For an L-set A in X and an element a ∈ L, I define an a-multiple a⊗ A of A and a-shift
a→ A of A as L-sets given by

(a⊗A)(x) = a⊗A(x) (2.21)

(a→ A)(x) = a→ A(x) (2.22)

for all x ∈ X. In words, the degree to which x belongs to a ⊗ A is equal to the degree
to which x is in A multiplied by a, analogously for a → A. Replacing an L-set A by
an L-relation R, we can define a-multiples and a-shift as derived L-relations in the same
ways. Further details on fuzzy structures and their properties can be found in [5, 13, 27].

2.3 Similarity Spaces

A binary L-relation ≈: X × X → L is called an L-equivalence (L-similarity or shortly
a similarity) if it is (i) reflexive, i.e., x ≈ x = 1 for each x ∈ X, (ii) symmetric, i.e.,
x ≈ y = y ≈ x for each x,y ∈ X, and (iii) ⊗-transitive, i.e., x ≈ y ⊗ y ≈ z ≤ x ≈ z

for each x,y, z ∈ X. A set X with an L-similarity ≈: X × X → L, denoted 〈X,≈〉, is
called a similarity space, see [5]. A binary L-relation R on X is called compatible with ≈
(or ≈-extensional) if, for each x1, x2,y1,y2 ∈ X:

x1 ≈ x2 ⊗ y1 ≈ y2 ⊗R(x1,y1) ≤ R(x2,y2). (2.23)

Recall that systems of all reflexive, symmetric, ⊗-transitive, and ≈-extensional L-relations
in X are closed under arbitrary intersections, i.e., they form closure systems. For each
L-relation, I will denote by 
 the symmetric closure of ⇀ which can obviously be ex-
pressed as 
 =⇀ ∪↽=⇀ ∪⇀−1. Analogously, I will denote by ⇀∗ the reflexive and
⊗-transitive closure of ⇀ which can be expressed by ⇀∗ =

⋃∞
n=0 ⇀

n, where ⇀0 is the
identity L-relation (i.e., x ⇀0 x = 1 and x ⇀0 y = 0 for all x 6= y) and ⇀n = ⇀n−1 ◦⇀.
In case of ⇀ defined on 〈X,≈〉, the ≈-extensional closure of ⇀, i.e., the least L-relation
containing ⇀ which is compatible with ≈, is equal to ≈ ◦⇀ ◦ ≈, see [6, 13, 33].

2.4 Generalized Pseudometric Spaces

Now, I will recall basic notions related to generalized pseudometric spaces and to the
link between pseudometrics and similarities, see [5, 4] for more details. A generalized
pseudometric space is a pair 〈X, δ〉, where X is a nonempty set and δ : X ×X → [0,+∞]
is a mapping (so-called generalized pseudometric) satisfying the following properties: (i)
δ(x, x) = 0, (ii) δ(x,y) = δ(y, x), (iii) δ(x, z) ≤ δ(x,y) + δ(y, z).

If L=[0, 1] and ⊗ is a continuous Archimedean t-norm on L, then one can represent ⊗
by a continuous additive generator of ⊗ and its pseudoinverse. Recall that a continuous
additive generator f is a strictly decreasing continuous mapping f : [0, 1]→ [0,+∞] with
f(1) = 0 such that a ⊗ b = f (−1)(f(a) + f(b)) for all a, b ∈ L, where f (−1) denotes the
pseudoinverse of f defined by f (−1)(x) = f−1(x) if x ≤ f(0) and f (−1)(x) = 0 otherwise.

Let L be a complete residuated lattice on the real unit interval and its conjunction ⊗ be
a continuous Archimedean t-norm with an additive generator f . For given similarity ≈
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on X, a mapping δ≈ : X ×X → [0,+∞] defined by δ≈(x,y) = f(x ≈ y) is a generalized
pseudometric. Conversely, let δ be a generalized pseudometric on X. Then ≈δ: X ×X →
[0, 1] defined by (x ≈δ y) = f (−1)(δ(x,y)) is a similarity on X.

2.5 Fuzzy Attribute Logic

Fuzzy attribute logic (shortly FAL) was developed for the purpose of describing if-then
dependencies that hold in object-attribute relational data where objects are allowed to
have attributes to degrees, see [12] for details. Assume here that L is a complete resid-
uated lattice and let Y be a nonempty set of attributes. A fuzzy attribute implication
(shortly FAI) is an expression A i B, where A,B ∈ LY . Note that FAIs serve as for-
mulas in FAL. For example, (1.1) can be seen as a FAI with A ∈ LY being an L-set in
Y = {lowAge, lowMileage, highFuelEconomy , highPrice, . . .} such that A(lowAge) = 0.7,
A(lowMileage) = 0.9 and A(· · · ) = 0 otherwise, analogously for B. The intended mean-
ing of A i B is: “if it is (very) true that an object has all attributes from A, then it
has also all attributes from B”. Formally, for an L-set M ∈ LY of attributes, a degree
||Ai B||M ∈ L to which Ai B is true in M is defines by

||Ai B||M = S(A,M)∗ → S(B,M), (2.24)

where S(· · ·) denote subsethood degrees (2.19), → is the residuum from L and ∗ is an
additional unary operation on L satisfying the following conditions: (i) 1∗ = 1, (ii) a∗ ≤ a,
(iii) (a → b)∗ ≤ a∗ → b∗, and (iv) a∗∗ = a∗ for all a, b ∈ L. An operation ∗ satisfying
(i)–(iv) shall be called an idempotent truth-stressing hedge (shortly hedge). The require-
ments (i)–(iv) have appeared as parameters of interpretations of if-then rules in fuzzy
Horn logic [14, 15] and have been later used in FAL and formal concept analysis [24] with
linguistic hedges [17]. Similar conditions (without the idempotency and with an additional
axiom of linearity) appear in [30] where hedges serve as truth functions of logical connec-
tives “very true”. In (2.24), ∗ is used as a parameter of the interpretation of A i B in
a similar sense as in [14, 15]. Namely, if ∗ is set to identity, then ||A i B||M = 1 means
that S(A,M) ≤ S(B,M), i.e. B is contained in M at least to the degree to which A is
contained in M . On the other hand, if ∗ is defined as a globalization [51]:

a∗ =

{
1, if a = 1,
0, otherwise.

(2.25)

then ||A i B||M = 1 means that if A is fully contained in M , then B is fully contained
in M . Thus, two different important ways to interpret ||· · ·||M = 1 are obtained from
the general definition (2.24) by different choices of ∗ and can be approached in a single
theory instead of having two separatre theories dealing with both the possibly interesting
interpretations independently.

Two types of entailment of FAIs are usually considered: (i) semantic entailment based
on satisfaction of FAIs in systems of models, and (ii) syntactic entailment based on the
notion of provability. Recall the semantic entailment first. M is a model of an L-set T
of FAIs if T (A i B) ≤ ||A i B||M for all A,B ∈ LY . Denoting the set of all models of
T by Mod(T ), a degree ||A i B||T to which A i B semantically follows from T can be
defined as follows:

||Ai B||T =
∧
M∈Mod(T ) ||Ai B||M . (2.26)
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Now, I will recall also a syntactic characterization of ||· · ·||T for FAIs, see [12]. The
following deduction rules are usually considered:

(Ax):
A∪B i A

, (Mul):
Ai B

c∗⊗Ai c∗⊗B
, (Cut):

Ai B, B∪C i D

A∪C i D
,

where A,B,C,D ∈ LY , and c ∈ L. The meaning of these rules is “infer A∪B i A”,
“from Ai B infer c∗⊗Ai c∗⊗B” and “from Ai B and B∪C i D infer A∪C i D”.
Note also that if the L-sets in (Ax) and (Cut) are replaced by ordinary sets, then the rules
become rules from [31] which are equivalent to the well-known Armstrong rules [1]. Notice
that the axiom infers exactly all FAIs which are true to degree 1 in all M ∈ LY . The
results on graded completeness of FAL (in sense of Pavelka’s abstract logic [29, 48]) can
be also found in [12]. In addition, there is an alternative characterization of entailment
degrees using least models, see [17].

2.6 Fuzzy Logic Programming

I recall here the standard notions of fuzzy logic programming (shortly FLP) used in [40,
46, 53] and depart from the standard notation only in cases when it simplifies formulation
of the subsequent results. According to [53], consider a complete lattice L with L being
the real unit interval with its genuine ordering ≤ of real numbers. The approach in [53]
uses multiple adjoint operations on L.
Programs are considered as particular formulas written in a language L which is given by
a finite nonempty set R of relation symbols and a finite set F of function symbols. Each
r ∈ R and f ∈ F is given its arity denoted by ar(r) and ar(f), respectively. Furthermore,
I will assume that F contains at least one symbol for a constant (i.e., a function symbol
f with ar(f) = 0) and R is nonempty or that R contains at least one propositional symbol
(i.e., a relation symbol p with ar(p) = 0). Moreover, assume a denumerable set of vari-
ables which will be denoted by X,Y,Xi, . . . As usual, terms are defined recursively using
variables (as the base cases) and function symbols. An atomic formula is any expression
r(t1, . . . , tk) such that r ∈ R, ar(r) = k, and t1, . . . , tk are terms. Moreover, formulas are
defined recursively using atomic formulas (as the base cases) and symbols for binary logi-
cal connectives c1,c2, . . . (fuzzy conjunctions), d1,d2, . . . (fuzzy disjunctions),i1,i2, . . .
(fuzzy implications), and symbols for aggregations ag1, ag2, . . . I accept the usual rules on
the omission of parentheses and write ϕ iψ to denote ψ i ϕ as it is usual in logic
programming [40]. Since quantifiers are not used in FLP, all occurrences of variables in
formulas are free.
Each atomic formula is called a head. Each formula that is free of symbols for fuzzy
implications is called a tail. According to [53], a theory is a map which assigns to each
formula of the language L a degree from [0, 1]. Moreover, a definite program is a theory
such that

(i) there are only finitely many formulas that are assigned a nonzero degree,

(ii) all the assigned degrees are rational numbers from the unit interval,

(iii) each formula which is assigned a nonzero degree is either a head (a fact) or a formula
of the form ψ iϕ (a rule), where ψ is a head, ϕ is a tail, and iis an symbol for
arbitrary implication.

The declarative meaning of programs is defined using substitutions and models. A sub-
stitution θ is a set of pairs denoted θ = {X1/t1, . . . ,Xn/tn} where each ti is a term and
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each Xi a variable such that Xi 6= ti and Xi 6= Xj if i 6= j. Term/formula ψ results by
application of θ from ϕ if ψ is obtained from ϕ by simultaneously replacing ti for every free
occurrence of Xi in ϕ. Then, denote ψ as ϕθ and call it an instance of ϕ. An instance ϕθ
is called ground if ϕθ does not have any (free) occurrences of variables. For substitutions
θ = {X1/s1, . . . ,Xm/sm} and η = {Y1/t1, . . . ,Yn/tn}, the composition θη is a substitution
obtained from η∪{X1/s1η, . . . ,Xm/smη} by removing all Xi/siη for which Xi = siη and by
removing all Yj/tj for which Yj ∈ {X1, . . . ,Xm}. Obviously, the composition is a monoidal
operation on the set of all substitutions [46] with the neutral element being the identity
substitution ∅.
Let P be a definite program formalized in language L. The set of all ground terms of
L is called a Herbrand universe of P and denoted by UP . The set of all ground atomic
formulas of L is called a Herbrand base of P and denoted by BP . Due to my assumptions
on L, BP is nonempty. A structure for P is any L-set in BP . If M is a structure for P ,
M(χ) is interpreted as a degree to which the atomic ground formula χ is true under M .
The notion of a formula being true in M can be extended to all formulas. Let M ] be an
L-set of ground formulas defined by

(i) M ](ϕ) = M(ϕ) if ϕ is a ground atomic formula;

(ii) M ](ψ iϕ) = M ](ϕ)→M ](ψ), where both ϕ and ψ are ground and → is a truth
function (a residuum) interpreting i; analogously for the other binary connectives
c1,c2, . . . and d1,d2, . . . and the corresponding truth functions;

(iii) M ]
(
ag(ϕ1, . . . , ϕn)

)
= ag

(
M ](ϕ1), . . . ,M

](ϕn)
)
, where all ϕi are ground and ag

is an n-ary symbol for aggregation which is interpreted by a monotone function
ag : [0, 1]n → [0, 1] which preserves {0}n and {1}n.

Furthermore,M ]
∀ is defined to extend the notion for all formulas:

M ]
∀(ϕ) =

∧
{M ](ϕθ) | θ is a substitution such that ϕθ is ground}. (2.27)

Structure M is called a model for theory T if T (χ) ≤ M ]
∀(χ) for each formula χ of the

language L. The collection of all models of T will be denoted by Mod(T ). A pair 〈a, θ〉
consisting of a ∈ (0, 1] and a substitution θ is called a correct answer for a definite program

P and an atomic formula ϕ (called a query) if M ]
∀(ϕθ) ≥ a for each M ∈ Mod(P ).



Chapter 3

Confuence and termination of
fuzzy relations

This chapter summarizes our results in development of the notions related to the idea of
rewriting with respect to a given fuzzy relation. The graded counterparts of the notions
of reducibility, convertibility, convergence, divergence, confluence, and the Church-Roser
property are introduced in Section 3.1. Furthermore, basic properties of these notions are
also investigated in that Section. In Section 3.2, we focus on a reformulation of the notions
mentioned above, which will respect not only a given reduction (fuzzy relation) but also
a given indistinguishability relation (fuzzy equivalence). Moreover, Section 3.3 presents a
collection of inequalities which provide us estimations of degrees of the investigated prop-
erties while a reduction and/or an indistinguishability relation is replaced by a similar one.
We have also established estimation formulas for the properties of derived fuzzy relations
(a-multiples and a-shifts), these can be found in Subsection 3.3.3. Finally, Section 3.4
describes a possible fuzzification of the notions of termination, well-foundedness, Noethe-
rian property, and normal form for a given fuzzy reduction relation. Properties of the
introduced notions are also investigated there.

3.1 Confluence and Related Properties of Fuzzy Relations

This section aims on developing notions related to the confluence of fuzzy relations and
investigating their properties. Since we have been strongly inspired by the classical no-
tions, the properties of fuzzy relations introduced in this section can be seen as direct
generalizations of the classical ones.

The results summarized in this section have been published in [8].

3.1.1 Reducibility

In the following, we denote by ⇀ a binary L-relation on X. Given ⇀, we define a degree
to which a sequence of elements from X is a reduction with respect to ⇀:

Definition 1. For x0, . . . , xn ∈ X we define a degree re(x0, . . . , xn) ∈ L by

re(x0, . . . , xn) =

{
1, if n = 0,
re(x0, . . . , xn−1)⊗ xn−1 ⇀ xn, otherwise.

re(x0, . . . , xn) is called a degree to which x0, . . . , xn is a reduction (w.r.t. ⇀).
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〈X1, ⇀1〉

x0 x1 x2 x3 x4 x5
0.8 1 0.6 0.8 0.2

0.8
0.4

0.2
0

〈X2, ⇀2〉

x0 x1 x2 x3 x4 x5
0.8 1 0.6 0.8 0.2

0.8
0.6

0.6
0.2

〈X3, ⇀3〉

x0 x1 x2 x3 x4 x5
0.8 1 0.6 0.8 0.2

0.8
0.48

0.384
0.0768

Figure 3.1: Reductions.

Remark 2. Using Definition 1, re(x0, . . . , xn) = x0 ⇀ x1 ⊗ x1 ⇀ x2 ⊗ · · · ⊗ xn−1 ⇀ xn.
Thus, if x ⇀ y is interpreted as a degree to which x reduces to y then re(x0, . . . , xn) can
be seen as a degree to which “x0 reduces to x1 and x1 reduces to x2 and, . . . , and xn−1
reduces to xn”. Clearly, if L = 2, re(x0, . . . , xn) = 1 iff x0, . . . , xn is a reduction in the
usual sense.

Example 3. We are going to use weighted oriented graphs to depict L-relations. In
Fig. 3.1, a solid arrow from an element xi to an element xj means that these two elements
are in the L-relation represented by the corresponding graph to a nonzero degree. The
degree is represented by the weight of the xixj edge. Weights of dotted arrows in Fig. 3.1
represent the degrees re(x0, . . . , xi) to which the element x0 can be reduced to the element
xi. These values are computed according to the definition as conjunctions of weights of all
edges in the reduction. Obviously, the values depend also on the used complete residuated
lattice. In our case, we assume that ⇀1 uses the standard  Lukasiewicz algebra of truth
degrees and that ⇀2 and ⇀3 use the Gödel and Goguen conjunctions, respectively. The
degree re(x0, . . . , x5) = 0 which appears in the graph of ⇀1 means that the element x0
cannot be reduced to the element x5, i.e. the element x5 cannot substitute the element
x0 to a nonzero degree. If we use Gödel or Goguen conjunctions, re(x0, . . . , xi) = 0 iff
xj ⇀ xj+1 = 0 for some j ∈ {0, . . . , i− 1}. When using  Lukasiewicz conjunction, which
has zero-divisors, there may be reductions with re(x0, . . . , xi) = 0 and xj ⇀ xj+1 6= 0 for
each j ∈ {0, . . . , i− 1} as shown in Fig. 3.1 (top).

Definition 4. For x,y ∈ X, the degree to which x is reducible to y is defined by x ⇀∗ y
where ⇀∗ denotes the reflexive and transitive closure of ⇀.

Sometimes, it may be useful to expressed the reducibility degree by

x ⇀∗ y =

{
1, if x = y,∨
〈z1,z2,...,zk〉∈X∗ re(x, z1, . . . , zk,y), otherwise,
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〈X, ⇀〉

x0

x1

x2

x3

x4

x5

x6

x7

a0
a1

a2 a3
a4

a5

a6

Figure 3.2: Illustration of Graded Convertibility.

where X∗ =
⋃
n∈N0

Xn, i.e. X∗ is a union of all Cartesian powers of the set X (recall that
X0 = {∅}, i.e. X∗ = {∅} ∪X ∪ (X ×X)∪ (X ×X ×X)∪ · · · ). Alternatively, we can also
write ⇀∗=

⋃∞
n=0 ⇀

n, where ⇀n is defined by ⇀n = ⇀ ◦ ⇀n−1 (n ≥ 1), ⇀0 being the
identity L-relation.

3.1.2 Convergence and Church-Rosser Property

In this subsection, we define convergence of elements and Church-Rosser property of bi-
nary L-relations. These notions will be defined directly as graded generalizations of their
classical counterparts. Recall that in the classical case, elements x and y are convergent if
they are reducible (according to a binary relation  ) to a common element. That means
there is z such that x  ∗ z and y  ∗ z. The graded Church-Rosser property will be
based on graded convergence and convertibility:

Definition 5. For x,y ∈ X we define degree x � y ∈ L by

x � y =
∨
z∈X(x ⇀∗ z ⊗ y ⇀∗ z).

x � y is called the degree of convergence of x and y. We also say that x and y are
convergent to degree x � y. If x � y = 1 we say that x and y are convergent. For
x and y, x 
∗ y is called the degree to which x and y are convertible. The degree
CR(⇀) to which ⇀ has the Church-Rosser property is defined by CR(⇀) = S(
∗, �).
If CR(⇀) = 1 we say that ⇀ has the Church-Rosser property.

Remark 6. Directly from definitions, � = ⇀∗ ◦ ↽∗ i.e. � is a ◦-composition of ⇀∗ and
↽∗, see (2.18). By definition, x � y is a degree to which there is z such that x ⇀∗ z and
y ⇀∗ z. According to the definition of the degree of subsethood, we have

CR(⇀) =
∧

x,y∈X(x 
∗ y → x � y).

Note that if L = 2 then (i) x � y = 1 iff x and y are convergent in the usual sense and
(ii) CR(⇀) = 1 iff ⇀ has the (ordinary) Church-Rosser property.

The converbility is illustrated in Fig. 3.2. In this particular case, the degree x0 
∗ x7
to which the elements x0 and x7 are convertible is computed as a conjunction of weights
of all arrows on the only path from x0 to x7 regardless of directions of the arrows, i.e.
x0 
∗ x7 = a0 ⊗ a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5 ⊗ a6.

The following assertion shows that degrees to which a binary L-relation ⇀ has the Church-
Rosser propery equals to the degree to which the convertibility L-relation 
∗ equals the
convergence L-relation �.

Theorem 7. CR(⇀) =E(
∗, �).
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Proof. Since CR(⇀) =S(
∗, �) and E(
∗, �) =S(
∗, �) ∧ S(�,
∗), in order to prove
CR(⇀) =E(
∗, �), we have to check that S(�,
∗) = 1, i.e. � ⊆
∗.
First, observe that ⇀ ⊆ 
 and ↽ ⊆ 
, i.e. x ⇀ y ≤ x 
 y and x ↽ y ≤ x 
 y are
true for every x,y ∈ X. The latter inequalities and the monotony of the reflexive and
transitive closure ∗ yield ⇀∗ ⊆
∗ and ↽∗ ⊆
∗.
Furthermore, since 
∗ is transitive, we have 
∗ ◦ 
∗ ⊆ 
∗. Using � = ⇀∗ ◦ ↽∗ (see
Remark 6) we get � = ⇀∗ ◦↽∗ ⊆
∗ ◦
∗ ⊆
∗, proving the claim.

Remark 8. Theorem 7 generalizes the classical theorem which is well known in the theory
of abstract rewriting systems [2, 54] in the following way. If we let L = 2, Theorem 7 is
equivalent to saying that CR(⇀) = 1 iff 
∗ = �, i.e. ⇀ has the Church-Rosser property
iff the convertibility and convergence relations 
∗ and � coincide.

3.1.3 Divergence and Confluence

In this subsection, we first introduce a graded divergence and then a graded confluence
of binary L-relations and investigate their properties. The main goal of the subsection is
to show a correspondence between the graded confluence and the graded Church-Rosser
property.

Definition 9. For x,y ∈ X we define degree x � y ∈ L by

x � y =
∨
z∈X(z ⇀∗ x ⊗ z ⇀∗ y).

x � y is called the degree of divergence of x and y. We also say that x and y are
divergent to degree x � y. If x � y = 1 we say that x and y are divergent. The degree
CFL(⇀) to which ⇀ is confluent is defined by CFL(⇀) = S(�, �). If CFL(⇀) = 1 we
say that ⇀ is confluent.

Remark 10. Analogously as in case of convergence, we have � = ↽∗ ◦ ⇀∗, i.e. � is a
◦-composition of ↽∗ and ⇀∗. The degree x � y can be interpreted as a degree to which
there is z such that z ⇀∗ x and z ⇀∗ y. Using graded subsethood,

CFL(⇀) =
∧

x,y∈X(x � y → x � y).

As a consequence, if ⇀ is confluent then x � y ≤ x � y for all x,y ∈ X, i.e. � ⊆ �.
Described verbally, the degree of confluence is a degree to which the following is true: “if
any x and y are divergent then x and y are convergent”.

The following assertion says that under an additional condition of idempotency, the degree
CFL(⇀) to which ⇀ is confluent equals to the degree CR(⇀) to which ⇀ has the Church-
Rosser property.

Theorem 11. If CFL(⇀) is an idempotent element of L then CR(⇀) = CFL(⇀).

Proof. “CR(⇀) ≤ CFL(⇀)”: We have to show S(
∗, �) ≤ S(�, �). This follows easily
from the antitony of the graded subsethood (2.19) in its first argument and from � = ↽∗

◦⇀∗ ⊆
∗.
“CFL(⇀) ≤ CR(⇀)”: We have to show S(�, �) ≤ S(
∗, �) which is true due to the
adjointness iff for each x,y ∈ X we have x 
∗ y ⊗ S(�, �) ≤ x � y. By definition of 
∗,
the latter is true iff for each z1, . . . , zk ∈ X we have

x 
 z1 ⊗ z1 
 z2 ⊗ · · · ⊗ zk 
 y ⊗ S(�, �) ≤ x ⇀∗ ◦↽∗ y.
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Due to the definition of 
 we have∨
∗1∈{⇀,↽}(x ∗1 z1)⊗

∨
∗2∈{⇀,↽}(z1 ∗2 z2)⊗ · · · ⊗

∨
∗k+1∈{⇀,↽}(zk ∗k+1 y)⊗ S(�, �) ≤

≤ x ⇀∗ ◦↽∗ y

which is equivalent to∨
∗1,...,∗k+1∈{⇀,↽}

(
(x ∗1 z1)⊗ (z1 ∗2 z2)⊗ · · · ⊗ (zk ∗k+1 y)

)
⊗ S(�, �) ≤ x ⇀∗ ◦↽∗ y

which holds true iff for every ∗1, . . . , ∗k+1 ∈ {⇀,↽} we have

(x ∗1 z1)⊗ (z1 ∗2 z2)⊗ · · · ⊗ (zk ∗k+1 y)⊗ S(�, �) ≤ x ⇀∗ ◦↽∗ y. (3.1)

We verify this inequality for ∗1 being ↽ and ∗k+1 being ⇀ (the other cases are either
analogous or easy extensions of our case). Indicating the consecutive sequences of ↽’s and
⇀’s in the left-hand side of inequality (3.1), we can write

(x ∗1 z1)⊗ (z1 ∗2 z2)⊗ · · · ⊗ (zk ∗k+1 y)⊗ S(�, �) =

=
(
(x ↽ z12)⊗ · · · ⊗ (z1l1 ↽ z21)

)
⊗
(
(z21 ⇀ z22)⊗ · · · ⊗ (z2l2 ⇀ z31)

)
⊗

⊗
(
(z31 ↽ z32)⊗ · · · ⊗ (z3l3 ↽ z41)

)
⊗ · · · ⊗

(
(z2m,1 ⇀ z2m,2)⊗ · · · ⊗ (z2m,l2m ⇀ y)

)
⊗

⊗ S(�, �),

where 2m is the number of the sequences and li (for i ∈ {1, 2, . . . , 2m}) is the length of
the i-th sequence. Notice that since we have initially assumed that ∗1 is ↽ and ∗k+1 is ⇀,
we indeed have an even number of sequences therefore the notation 2m. So, the left-hand
side of the inequality (3.1) is less than or equal to

(x ↽∗ z21)⊗ (z21 ⇀
∗ z31)⊗ (z31 ↽

∗ z41)⊗ · · · ⊗ (z2m,1 ⇀
∗ y)⊗ S(�, �).

Using the definition of the ◦-composition, the latter is less than or equal to

(x ↽∗ ◦⇀∗ z31)⊗ (z31 ↽
∗ ◦⇀∗ z51)⊗ · · · ⊗ (z2m−1,1 ↽

∗ ◦⇀∗ y)⊗ S(�, �).

Therefore, in order to show the required inequality, it is enough to verify that

(x ↽∗ ◦⇀∗ z1)⊗ (z1 ↽
∗ ◦⇀∗ z2)⊗ · · · ⊗ (zn ↽

∗ ◦⇀∗ y)⊗ S(�, �) ≤ x ⇀∗ ◦↽∗ y

is true for any z1, z2, . . . , zn ∈ X. We show this by induction over n.

For n = 0 we have to show

(x ↽∗ ◦⇀∗ y)⊗ S(�, �) ≤ x ⇀∗ ◦↽∗ y.

According to the definition of the degree of subsethood (2.19) and using (2.2), we have

(x ↽∗ ◦⇀∗ y)⊗ S(�, �) =

= (x ↽∗ ◦⇀∗ y)⊗
∧
x,y∈X((x ↽∗ ◦⇀∗ y)→ (x ⇀∗ ◦↽∗ y)) ≤

≤ (x ↽∗ ◦⇀∗ y)⊗ ((x ↽∗ ◦⇀∗ y)→ (x ⇀∗ ◦↽∗ y)) ≤
≤ x ⇀∗ ◦↽∗ y,

which proves the inequality for n = 0.
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For n+ 1, provided the assertion is valid for n and using the idempotency of CFL(⇀) =
S(�, �), we have

(x ↽∗ ◦⇀∗ z1)⊗ · · · ⊗ (zn ↽
∗ ◦⇀∗ zn+1)⊗ (zn+1 ↽

∗ ◦⇀∗ y)⊗ S(�, �) =

= (x ↽∗ ◦⇀∗ z1)⊗ · · · ⊗ (zn ↽
∗ ◦⇀∗ zn+1)⊗ S(�, �)⊗ (zn+1 ↽

∗ ◦⇀∗ y)⊗ S(�, �) ≤
≤ (x ⇀∗ ◦↽∗ zn+1)⊗ (zn+1 ↽

∗ ◦⇀∗ y)⊗ S(�, �).

Using the definition of the ◦-composition,

(x ⇀∗ ◦↽∗ zn+1)⊗ (zn+1 ↽
∗ ◦⇀∗ y)⊗ S(�, �) =

=
∨
u∈X

(
(x ⇀∗ u)⊗ (u ↽∗ zn+1)

)
⊗
∨
v∈X

(
(zn+1 ↽

∗ v)⊗ (v ⇀∗ y)
)
⊗ S(�, �) =

=
∨
u,v∈X

(
(x ⇀∗ u)⊗ (u ↽∗ zn+1)⊗ (zn+1 ↽

∗ v)⊗ (v ⇀∗ y)
)
⊗ S(�, �) ≤

≤
∨
u,v∈X

(
(x ⇀∗ u)⊗ (u ↽∗ v)⊗ (v ⇀∗ y)

)
⊗ S(�, �) =

=
∨
u∈X

(
(x ⇀∗ u)⊗

∨
v∈X

(
(u ↽∗ v)⊗ (v ⇀∗ y)

))
⊗ S(�, �) =

=
∨
u∈X

(
(x ⇀∗ u)⊗ (u ↽∗ ◦⇀∗ y)

)
⊗ S(�, �).

Using properties of the subsethood and the facts that ⇀∗ is transitive and (2.2),∨
u∈X

(
(x ⇀∗ u)⊗ (u ↽∗ ◦⇀∗ y)

)
⊗ S(�, �) =

=
∨
u∈X

(
(x ⇀∗ u)⊗ (u ↽∗ ◦⇀∗ y)⊗ S(�, �)

)
≤

≤
∨
u∈X

(
(x ⇀∗ u)⊗ (u ↽∗ ◦⇀∗ y)⊗ ((u ↽∗ ◦⇀∗ y)→ (u ⇀∗ ◦↽∗ y))

)
≤

≤
∨
u∈X

(
(x ⇀∗ u)⊗ (u ⇀∗ ◦↽∗ y)

)
=

=
∨
u∈X

(
(x ⇀∗ u)⊗

∨
w∈X

(
(u ⇀∗ w)⊗ (w ↽∗ y)

))
=

=
∨
u,w∈X

(
(x ⇀∗ u)⊗ (u ⇀∗ w)⊗ (w ↽∗ y)

)
=

=
∨
w∈X

(∨
u∈X

(
(x ⇀∗ u)⊗ (u ⇀∗ w)

)
⊗ (w ↽∗ y)

)
≤

≤
∨
w∈X

(
(x ⇀∗ w)⊗ (w ↽∗ y)

)
= (x ⇀∗ ◦↽∗ y).

Altogether, (x ⇀∗ ◦ ↽∗ zn+1) ⊗ (zn+1 ↽
∗ ◦ ⇀∗ y) ⊗ S(�, �) ≤ x ⇀∗ ◦ ↽∗ y which

concludes the proof.

Corollary 12. If in L we have ⊗ = ∧, then CR(⇀) = CFL(⇀).

Proof. Directly by Theorem 11 using the fact that if ⊗ = ∧ then each a ∈ L is idempotent.

Theorem 13. ⇀ has the Church-Rosser property iff it is confluent.

Proof. Directly by Theorem 11 using the fact that 1 is idempotent in each L.

Example 14. Fig. 3.3 contains diagrams of three L-relations ⇀1, ⇀2, and ⇀3. Let L be
the standard Goguen algebra of truth degrees. Then, one can show that CFL(⇀1) = 1,
i.e. that ⇀1 is confluent. In case of ⇀2, we have CFL(⇀2) = 0.75, i.e. we can say that ⇀2

is “more or less confluent”. On the other hand, CFL(⇀3) = 0.084, i.e. ⇀3 is practically
not confluent at all.
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〈X1, ⇀1〉
x1 x2

x3 x4 x5 x6

x7 x8

x9

0.1
0.2

0.8
0.2

0.9
0.5

1
0.3

0.5

1 0.5

〈X2, ⇀2〉
x1 x2

x3 x4 x5

x7 x8

x9

0.9
0.8

0.7
0.2

0.9
0.6

0.8
0.9

1 0.7

〈X3, ⇀3〉
x1 x2

x3 x4 x5 x6

x7 x8

x9

0.8
0.7

0.5
0.8

0.6

0.2
0.3

0.1
0.7

0.3

0.6 0.4

Figure 3.3: Relations with different degree of confluence values.

3.2 Confluence on Similarity and Pseudometric Spaces

Let us further generalize the notions related to rewriting which were introduced in Sec-
tion 3.1. The main motivation is the fact that the universe of discourse is often equipped
with an indistinguishability relation (an equivalence in the crisp or similarity in the fuzzy
setting). This relation represents some background knowledge which should not be ignored
in a rewriting process. This idea leads straightforward to introducing new notions which
will respect a given reduction as well a given similarity. Moreover, it is a well-known fact
[4] that the indistinguishability can be also expressed by means of a given pseudometric.
Subsection 3.2.2 proposes a possible way of defining confluence and the related properties
with a respect to a generalized pseudometric. We also present a link between the properties
of reductions on similarity and pseudometric spaces.

The results summarized in this section have been published in [37].

3.2.1 Confluence of Fuzzy Relations over Similarity Spaces

In this subsection, we develop a theory of confluence of fuzzy relations over similarity
spaces. We start by introducing a generalization of the notion of a reduction and in-
vestigate its properties. Then, we present graded versions of divergence, convergence,
and convertibility which will respect a given similarity relation. Using these notions, we
generalize two important properties related to rewriting: confluence and Church-Rosser
property. The main result in this subsection shows a relationship between the degrees of
confluence of a fuzzy relation and the degrees to which the fuzzy relation possesses the
Church-Rosser property.
In what follows, 〈X,≈〉 is an L-similarity space representing a universe X of all elements
that can be used for substitution together with the indistinguishability relation ≈. In
addition to that, we consider a binary L-relation on X which represents the substitutability
relation. Given ⇀ and ≈, we define a degree to which a element from X can be reduced
to another element from X with respect to ⇀ and ≈:

Definition 15. Given ⇀ and ≈, we define an L-relation ⇀∗≈ by

x ⇀∗≈ y =
∨
〈z1,z2,...,z2k〉∈X2N0

(
x ≈ z1 ⊗ z1 ⇀ z2⊗ z2 ≈ z3 ⊗ · · · ⊗ z2k−1 ⇀ z2k ⊗ z2k ≈ y

)
,

where x,y ∈ X and X2N0 =
⋃
n∈N0

X2n, i.e. X2N0 is a union of all even Cartesian powers
of X. The L-relation ⇀∗≈ is called reducibility (induced by ⇀ and ≈). The degree
x ⇀∗≈ y ∈ L is a degree to which x can be reduced to y with respect to ≈.



18 Chapter 3. Confuence and termination of fuzzy relations

According to Definition 15, the degree x ⇀∗≈ y can be seen as a degree to which “there
are some elements z1, z2, . . . , z2k in X such that x is similar to z1 and z1 reduces to z2 and
z2 is similar to z3 and, . . . , and z2k−1 reduces to z2k and z2k is similar to y”.

Note that Definition 15 generalizes the notion of reducibility ⇀∗ that has been introduced
in Section 3.1. Namely, if one considers a trivial L-similarity space 〈X,≈〉 where ≈ is the
crisp equality (i.e., the identity) then obviously x ⇀∗≈ y = x ⇀∗ y, where ⇀∗ is a reflexive
and transitive closure of ⇀. Moreover, if L = 2 and if ≈ is the crisp equality relation then
x ⇀∗≈ y = 1 iff x = z1, z2 = z3, . . . , z2k =y is a reduction in the usual sense, see [2].

Let us stress that “ ∗≈” can be seen as an operator ∗≈ : LX×X → LX×X which maps
each binary L-relation ⇀ on X to the corresponding reducibility L-relation ⇀∗≈. Next, we
investigate properties of such operator and conclude that it is a particular closure operator.

Theorem 16. For any ⇀, ≈ and the corresponding ⇀∗≈, the following are true:

(i) ≈ ⊆⇀∗≈,

(ii) ⇀∗ ⊆⇀∗≈,

(iii) ⇀∗≈ ◦⇀∗≈ ⊆⇀∗≈,

(iv) ⇀∗≈ is compatible with ≈.

Proof. (i): Directly from Definition 15, using the fact that X0 ⊆ X2N0 , we can see that
x ≈ y ≤ x ⇀∗≈ y for all x,y ∈ X. Thus, ≈ ⊆⇀∗≈.

(ii): Due to the reflexivity of ≈, for arbitrary x = z1, z2, . . . , zk = y from X, we have

z1 ⇀ z2 ⊗ z2 ⇀ z3 ⊗ · · · ⊗ zk−1 ⇀ zk =

=z1 ≈ z1 ⊗ z1 ⇀ z2 ⊗ z2 ≈ z2 ⊗ z2 ⇀ z3 ⊗ z3 ≈ z3 ⊗ · · ·
· · · ⊗ zk−1 ≈ zk−1 ⊗ zk−1 ⇀ zk ⊗ zk ≈ zk ≤ z1 ⇀

∗
≈ zk = x ⇀∗≈ y.

Since x = z1, z2, . . . , zk = y have been taken arbitrarily, we get x ⇀∗ y ≤ x ⇀∗≈ y for all
x,y ∈ X, showing ⇀∗ ⊆⇀∗≈.

(iii): Analogously as in the previous case, for any z1, . . . , z2k and z ′1, . . . , z
′
2l from X, the

⊗-transitivity of ≈ yields(
x ≈ z1 ⊗ z1 ⇀ z2 ⊗ · · · ⊗ z2k ≈ w

)
⊗
(
w ≈ z ′1 ⊗ z ′1 ⇀ z ′2 ⊗ · · · ⊗ z ′2l ≈ y

)
=

=
(
x ≈ z1 ⊗ · · · ⊗ z2k−1 ⇀ z2k

)
⊗
(
z2k ≈ w ⊗w ≈ z ′1

)
⊗
(
z ′1 ⇀ z ′2 ⊗ · · · ⊗ z ′2l ≈ y

)
≤

≤
(
x ≈ z1 ⊗ · · · ⊗ z2k−1 ⇀ z2k

)
⊗ z2k ≈ z ′1 ⊗

(
z ′1 ⇀ z ′2 ⊗ · · · ⊗ z ′2l ≈ y

)
≤ x ⇀∗≈ y

for each x,y,w ∈ X. Therefore, x ⇀∗≈ w⊗w ⇀∗≈ y ≤ x ⇀∗≈ y, proving ⇀∗≈ ◦⇀∗≈ ⊆⇀∗≈.

(iv): Take any x1, x2,y1,y2 ∈ X. Using the reflexivity of ≈ together with (i) and (iii), we
get

x1 ≈ x2 ⊗ y1 ≈ y2 ⊗ x1 ⇀
∗
≈ y1 = x2 ≈ x1 ⊗ y1 ≈ y2 ⊗ x1 ⇀

∗
≈ y1 ≤

≤x2 ⇀∗≈ x1 ⊗ y1 ⇀
∗
≈ y2 ⊗ x1 ⇀

∗
≈ y1 ≤ x2 ⇀

∗
≈ y2,

showing the compatibility of ⇀∗≈ with ≈.

The following assertion characterizes the closure properties of ⇀∗≈:

Theorem 17. ⇀∗≈ is a reflexive, ⊗-transitive, and ≈-extensional closure of ⇀.
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Proof. Using Theorem 16, ⇀∗≈ is a reflexive and ⊗-transitive L-relation which is compat-
ible with ≈ and contains ⇀. Indeed, the reflexivity is a consequence of Theorem 16 (i).
The transitivity is a consequence of Theorem 16 (iii). Moreover, ⇀ ⊆ ⇀∗≈ due to Theo-
rem 16 (ii) since ⇀ ⊆ ⇀∗. Furthermore, Theorem 16 (iv) yields that ⇀∗≈ is compatible
with ≈. Thus, it remains to check that ⇀∗≈ is the least L-relation having this property. So,
suppose that  ∗≈ is an L-relation which is reflexive, ⊗-transitive, compatible with ≈ such
that ⇀ ⊆  ∗≈. Then, for any x, z1, . . . , z2k,y from X, the ⊗-transitivity of  ∗≈ together
with the facts that  ∗≈ is compatible with ≈ and  ∗≈ extends ⇀ give

x ≈ z1 ⊗ z1 ⇀ z2⊗ z2 ≈ z3 ⊗ z3 ⇀ z4 ⊗ · · · ⊗ z2k−1 ⇀ z2k ⊗ z2k ≈ y ≤
≤x ≈ z1 ⊗ z1  

∗
≈ z2⊗ z2 ≈ z3 ⊗ z3  

∗
≈ z4 ⊗ · · · ⊗ z2k−1  

∗
≈ z2k ⊗ z2k ≈ y ≤

≤x  ∗≈ z3 ⊗ z3  
∗
≈ z5 ⊗ · · · ⊗ z2k−1  

∗
≈ y ≤ x  ∗≈ y.

Hence, x ⇀∗≈ y ≤ x  ∗≈ y for all x,y ∈ X, meaning ⇀∗≈ ⊆ ∗≈, finishing the proof.

Remark 18. As a consequence of Theorem 17, the operator ∗≈ : LX×X → LX×X is exten-
sional, idempotent and monotone. In this context, idempotency means that (⇀∗≈)∗≈= ⇀∗≈.
Monotony means that ⇀1⊆⇀2 implies (⇀1)

∗
≈⊆(⇀2)

∗
≈. Moreover, Theorem 17 yields that

⇀∗≈ is compatible with ≈. As a consequence, we get

≈ ◦⇀∗≈ ◦ ≈ = ≈ ◦⇀∗≈ = ⇀∗≈ ◦ ≈ = ⇀∗≈, (3.2)

i.e., the ≈-extensional closure of ⇀∗≈ equals to ⇀∗≈.

Recall that in the classic theory of abstract rewriting systems [2], ⇀∗ is a reflexive and
transitive closure of relation ⇀. The same applies for reductions in graded setting as they
were introduced in Section 3.1, where ⇀∗ is a reflexive and ⊗-transitive closure of ⇀.
This is quite natural since we are interested in reachability (substitutability) in multiple
steps. In case of similarity spaces, ⇀∗≈ introduced in Definition 15 turned out to be a
reflexive, ⊗-transitive and ≈-extensional closure of ⇀, see Theorem 17. This should also
be regarded as natural since we are interested in reachability (substitutability) in multiple
steps with the possibility to “jump over” elements similar according to ≈. Nevertheless,
an open question is, whether ⇀∗ can be seen as a reflexive and a ⊗-transitive closure of
a new L-relation derived from ⇀. The answer is given by the following assertion which
shows that it is sufficient to take the ≈-extensional closure ≈ ◦⇀ ◦ ≈ of ⇀.

Theorem 19. For any ⇀, ≈ and ⇀◦ defined by ⇀◦ = ≈ ◦⇀ ◦ ≈, we have ⇀∗≈ = (⇀◦)
∗,

where the operator ∗ denotes the reflexive and ⊗-transitive closure.

Proof. Since ⇀∗≈ is compatible with ≈ and contains ⇀, we get ⇀◦ ⊆ ⇀∗≈ because ⇀◦ is
the least L-relation which is compatible with ≈ and contains ⇀. Furthermore, since ⇀∗≈
is reflexive, ⊗-transitive and contains ⇀◦, we get that (⇀◦)

∗ ⊆⇀∗≈ because (⇀◦)
∗ is the

least reflexive and ⊗-transitive L-relation containing ⇀◦. Thus, it suffices to prove the
converse inclusion.
In order to prove ⇀∗≈ ⊆ (⇀◦)

∗, it suffices to check that (⇀◦)
∗ is compatible with ≈. Then,

⇀∗≈ ⊆ (⇀◦)
∗ will readily follow since ⇀∗≈ is the least L-relation containing ⇀ which is

reflexive, ⊗-transitive, and compatible with ≈. Thus, take any elements x1, x2,y1,y2 ∈ X.
First, observe that for each z1 ∈ X, the ⊗-transitivity of ≈ yields

x1 ≈ x2 ⊗ x1 ⇀◦ z1 = x1 ≈ x2 ⊗
∨
u1,u2∈X

(
x1 ≈ u1 ⊗ u1 ⇀◦ u2 ⊗ u2 ≈ z1

)
=

=
∨
u1,u2∈X

(
x2 ≈ x1 ⊗ x1 ≈ u1 ⊗ u1 ⇀ u2 ⊗ u2 ≈ z1

)
≤

≤
∨
u1,u2∈X

(
x2 ≈ u1 ⊗ u1 ⇀ u2 ⊗ u2 ≈ z1

)
= x2 ⇀◦ z1.
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Analogously, we have zk ⇀◦ y1 ⊗ y1 ≈ y2 for each zk ∈ X. Using the latter observations,

x1 ≈ x2 ⊗ y1 ≈ y2 ⊗ x1 (⇀◦)
∗ y1 =

=x1 ≈ x2 ⊗ y1 ≈ y2 ⊗
∨
〈z1,z2,...,zk〉∈XN0

(
x1 ⇀◦ z1 ⊗ z1 ⇀◦ z2 ⊗ · · · ⊗ zk ⇀◦ y1

)
=

=
∨
〈z1,z2,...,zk〉∈XN0

(
x2 ≈ x1 ⊗ x1 ⇀◦ z1 ⊗ z1 ⇀◦ z2 ⊗ · · · ⊗ zk ⇀◦ y1 ⊗ y1 ≈ y2

)
≤

≤
∨
〈z1,z2,...,zk〉∈XN0

(
x2 ⇀◦ z1 ⊗ z1 ⇀◦ z2 ⊗ · · · ⊗ zk ⇀◦ y2

)
= x2 (⇀◦)

∗ y2,

proving that (⇀◦)
∗ is compatible with ≈. As a consequence, ⇀∗≈ ⊆ (⇀◦)

∗.

Remark 20. Theorem 17 and Theorem 19 yield that if ⇀ is compatible with ≈, then
⇀◦ equals ⇀ and, hence, ⇀∗≈ becomes ⇀∗ which is the reflexive and ⊗-transitive closure
of ⇀. Thus, in case of ⇀ compatible with ≈, the reducibility ⇀∗≈ induced by ⇀ and
≈ can be seen as reducibility ⇀∗ as it has been introduced in Section 3.1, i.e., without
considering ≈.
From the epistemic point of view, the latter observation should be interpreted so that if ⇀
is given and one has an additional background knowledge about X formalized by similarity
≈ of elements on X, then from the point of view of reductions, the background knowledge
is nontrivial if it is not already contained in ⇀, i.e., if ⇀ is not compatible with ≈.

We now explore L-relations connected to the idea or rewriting which are derived from
given ⇀ with respect to ≈. We first introduce the notions of convergence and divergence,
respectively.

Definition 21. Given ⇀ and ≈, we define L-relations �≈ and �≈ by

x �≈ y =
∨
z∈X(x ⇀∗≈ z ⊗ y ⇀∗≈ z),

x �≈ y =
∨
z∈X(z ⇀∗≈ x ⊗ z ⇀∗≈ y),

for all x,y ∈ X. The L-relations �≈ and �≈ are called convergence and divergence
(induced by ⇀ and ≈), respectively. The degrees x �≈ y and x �≈ y are called the
degrees to which x and y are convergent and divergent (according to ⇀ with respect to
≈), respectively.

Remark 22. (1) Notice that if L is a two-valued Boolean algebra and if ≈ is the identity,
then �≈ and �≈ become the ordinary convergence and divergence, respectively, see [2, 54].
(2) Note that it might be tempting to define x �≈ y as a degree to which x reduces to z1,
y reduces to z2 , and to which z1 and z2 are similar. That is:∨

z1,z2∈X(x ⇀∗≈ z1 ⊗ y ⇀∗≈ z2 ⊗ z1 ≈ z2). (3.3)

At first sight, (3.3) better agrees with the idea of rewriting under similarity. A second
glimpse at (3.3) shows that the degree is exactly x �≈ y. Indeed,∨

z1,z2∈X(x ⇀∗≈ z1 ⊗ y ⇀∗≈ z2 ⊗ z1 ≈ z2) =

=
∨
z1∈X

(
x ⇀∗≈ z1 ⊗

∨
z2∈X(y ⇀∗≈ z2 ⊗ z1 ≈ z2)

)
=

=
∨
z1∈X

(
x ⇀∗≈ z1 ⊗ y ⇀∗≈ ◦ ≈ z1

)
=
∨
z1∈X

(
x ⇀∗≈ z1 ⊗ y ⇀∗≈ z1

)
= x �≈ y,

which is a consequence of (3.2). Analogous observation can be made for �≈.
(3) Obviously, for ⇀ and ⇀◦ defined as in Theorem 19, we have �◦ = �≈, i.e., the degree
x �◦ y of convergence without considering any L-similarity is equal to the degree x �≈ y

of convergence with respect to ≈. Since ⇀◦ is the ≈-extensional closure of ⇀, the latter
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observation says that the convergence induced by ⇀ with respect to ≈ agrees with the
convergence induced by the ≈-extensional closure of ⇀ in sense of Section 3.1. In addition
to that, if ⇀ is compatible with ≈, then ⇀ = ⇀◦ and thus � = �≈. Hence, if ⇀ is
compatible with ≈, the notion of convergence with respect to ≈ becomes the notion of
convergence without considering the similarity ≈. Analogous observations can be made
for �◦ and �≈.
(4) From the point of view of ◦-compositions of L-relations, �≈ is a ◦-composition of ⇀∗≈
and its inverse (⇀∗≈)−1 while �≈ is a ◦-composition of the inverse (⇀∗≈)−1 with ⇀∗≈. Thus,

�≈= ⇀∗≈ ◦ (⇀∗≈)−1 =⇀◦
∗ ◦ (⇀◦

∗)−1 =⇀◦
∗ ◦↽◦∗= ⇀∗≈ ◦↽∗≈,

�≈= (⇀∗≈)−1 ◦⇀∗≈ = (⇀◦
∗)−1 ◦⇀◦∗=↽◦

∗ ◦⇀◦∗= ↽∗≈ ◦⇀∗≈,

on account of Theorem 19.

In order to study properties of L-relations related to rewriting, we need a notion of con-
vertibility. The convertibility is in fact a reducibility relation induced by a symmetric
closure of ⇀.

Definition 23. Given ⇀ and ≈, the L-relation 
∗≈, where 
 is defined by ⇀ ∪⇀−1, is
called a convertibility (induced by ⇀ and ≈). The degree x 
∗≈ y ∈ L is a degree to
which x and y are convertible with respect to ⇀ and ≈.

Remark 24. (1) Following Definition 15 and Definition 23, the degree x 
∗≈ y to which
x and y are convertible with respect to ⇀ and ≈ is given by

x 
∗≈ y =
∨
〈z1,z2,...,z2k〉∈X2N0

(
x ≈ z1 ⊗ z1 
 z2 ⊗ z2 ≈ z3 ⊗ · · · ⊗ z2k−1 
 z2k ⊗ z2k ≈ y

)
,

where X2N0 =
⋃
n∈N0

X2n, i.e. X2N0 is a union of all even Cartesian powers of the set X.
(2) As in cases of reducibility, convergence, and divergence, the notion of convertibility
introduced in Definition 23 generalizes the corresponding notion known in abstract rewrit-
ing systems [2, 54] as well as the generalizations shown in Section 3.1. Indeed, if ≈ is
identity, 
∗≈ becomes
∗. In addition, if L is a two-valued Boolean algebra, 
∗≈ becomes
the ordinary convertibility which is the least equivalence relation induced by ⇀.

Closure properties of 
∗≈ are characterized by the following assertion.

Theorem 25. 
∗≈ is a reflexive, symmetric, ⊗-transitive, and ≈-extensional closure of
⇀. As a consequence, 
∗≈ is the least L-similarity containing ⇀ which is compatible with
≈.

Proof. According to Theorem 17,
∗≈ is a reflexive, ⊗-transitive, and ≈-extensional closure
of 
. Thus, it is sufficient to show that 
∗≈ is symmetric. The symmetry of 
∗≈ is but a
direct consequence of the facts that both ≈ and 
 are symmetric. In a more detail, take
any x, z1, z2, . . . , z2k,y ∈ X and observe that

x ≈ z1 ⊗ z1 
 z2 ⊗ z2 ≈ z3 ⊗ · · · ⊗ z2k−1 
 z2k ⊗ z2k ≈ y =

=y ≈ z2k ⊗ z2k 
 z2k−1 ⊗ · · · ⊗ z3 ≈ z2 ⊗ z2 
 z1 ⊗ z1 ≈ x,

which follows by the symmetry of ≈ and 
 together with the fact that ⊗ is commutative
and associative. Therefore, x 
∗≈ y = y 
∗≈ x for all x,y ∈ X, showing 
∗≈ = (
∗≈)−1,
i.e. 
 is symmetric. Thus, 
∗≈ is the least L-similarity containing ⇀ which is compatible
with ≈.
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Corollary 26. For any ⇀, ≈ and 
◦ defined by 
◦ =(≈ ◦ ⇀ ◦ ≈) ∪ (≈ ◦ ↽ ◦ ≈), we
have 
∗≈ = (
◦)∗.

Proof. According to distributivity of ◦ over ∪ [5], we immediately get (≈ ◦ ⇀ ◦ ≈) ∪ (≈
◦ ↽ ◦ ≈) = ≈ ◦ [(⇀ ◦ ≈) ∪ (↽ ◦ ≈)] = ≈ ◦(⇀ ∪ ↽)◦ ≈ = ≈ ◦ 
 ◦ ≈. The rest follows
from Theorem 19 for ⇀ being 
.

Similar observations as in Remark 22 (2) can be made about the convertibility degrees
∗≈
and (
◦)∗.

So far, we have introduced derived L-relations based on ⇀ and ≈. From now on, we turn
our attention to properties of ⇀ determined from the derived L-relations.

Definition 27. The degree CFL(⇀)≈ to which ⇀ is confluent with respect ≈ is defined
by CFL(⇀)≈ = S(�≈, �≈). The degree CR(⇀)≈ to which ⇀ has the Church-Rosser
property with respect to ≈ is defined by CR(⇀)≈ = S(
∗≈, �≈).

Remark 28. Due to Remark 22 (2) and Corollary 26, we have CFL(⇀)≈ = CFL(⇀◦) and
CR(⇀)≈ = CR(⇀◦), where CFL(⇀◦) denotes the degree of confluence of ⇀◦ and CR(⇀◦)
denotes the degree to which ⇀◦ has the Church-Rosser property without considering a
similarity on X. As a further consequence of these observations, if ⇀ is compatible with
≈, CFL(⇀)≈ = CFL(⇀) and CR(⇀)≈ = CR(⇀).

Further properties of CR and CFL can be proved by a reductionist approach using the fact
that instead of considering ⇀ over 〈X,≈〉 one may take ⇀◦ = ≈ ◦⇀ ◦ ≈ over X. Using
this approach, we can prove that the degree to which ⇀ has the Church-Rosser property
with respect to ≈ is the degree to which convertibility 
∗≈ is equal to convergence �≈.

Theorem 29. For each ⇀ and ≈, we get CR(⇀)≈=E(
∗≈, �≈).

Proof. Take ⇀◦ and apply observations from Remark 28 together with Theorem 7 and
observe that CR(⇀)≈= CR(⇀◦) =E(
∗◦, �◦) =E(
∗≈, �≈), proving the claim.

The relationship between degrees of confluence and degrees to which L-relations relations
have the Church-Rosser property can be characterized as follows:

Theorem 30. If CFL(⇀)≈ is an idempotent element of L then CR(⇀)≈= CFL(⇀)≈.

Proof. Using Remark 28, we get CR(⇀)≈ = CR(⇀◦) as well as CFL(⇀)≈ = CFL(⇀◦).
The rest follows by Theorem 11 applied to CR(⇀◦) and CFL(⇀◦). Indeed, CR(⇀)≈ =
CR(⇀◦) = CFL(⇀◦) = CFL(⇀)≈, proving the claim.

If ⊗=∧ then CR(⇀)≈= CFL(⇀)≈ which is an obvious corollary of Theorem 30. More-
over, one can claim that an L-relation ⇀ has the Church-Rosser property with respect to
an L-similarity ≈ iff it is confluent with respect to ≈. This follows immediately from the
fact that 1 ∈ L is idempotent.

3.2.2 Substitutability on Generalized Pseudometric Spaces

In this subsection, we introduce an alternative semantics of rewriting under similarity.
Unlike the approach from the previous subsection, we consider a distance-based similarity
which is formalized by considering generalized pseudometric spaces as a universe of dis-
course. We introduce notions related to reducibility by allowing to “jump” to elements
based on their distance. Furthermore, we show a connection between the notions and their
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counterparts from the previous subsection. Throughout this subsection, we let 〈X, δ〉 be
a generalized pseudometric space and  be a (classical) reduction relation on X.

We first introduce the notion of reducibility:

Definition 31. An element x ∈ X is said to be reducible to y ∈ X by  with the
cumulative jump distance d < ∞ with respect to δ if there is a sequence of elements
z1, . . . , z2k ∈ X such that z1  z2 and z3  z4 and . . . and z2k−1  z2k and δ(x, z1) +
δ(z2, z3) + · · ·+ δ(z2k,y) = d. This fact will be briefly denoted by x  d

δ y.

Remark 32. (1) It can be easily seen that the notion of reducibility introduced by Defi-
nition 31 generalizes the classic notion of reducibility. Namely, if x is reducible to y in the
usual sense, then one can put z2i = z2i+1 for all i and thus δ(z2i, z2i+1) = 0 gives that x is
reducible to y with the cumulative jump distance 0. The converse is not true in general,
i.e., x can be reducible to y with the cumulative jump distance 0 while x is not reducible
to y in the ordinary sense since distinct elements of the universe can have a zero distance.
(2) The presence of jumps reflects the idea of approximate rewriting if one is allowed to
substitute an element by another one which is sufficiently near (note that according to
Definition 31, δ(x,y) = ∞ means that a jump from x to y is not possible). Needless to
say, there may be other reasonable ways to capture such requirement (e.g., one can restrict
the distance of a single jump between applications of the given reduction relation). We
elaborate here on the approach from Definition 31 and leave other possible extensions to
interested readers.

Definition 33. Elements x,y ∈ X are said to be convergent with the cumulative jump
distance d with respect to δ if there is z ∈ X such that x  d1

δ z, y  d2
δ z, and d1 +d2 = d.

We denote the fact shortly by x �dδ y. Analogously, x,y ∈ X are said to be divergent
with the cumulative jump distance d with respect to δ (written x �dδ y) if there is z ∈ X
such that z  d1

δ x, z  d2
δ y, and d1 + d2 = d.

Notice that all the notions introduced so far are bivalent. Given a threshold d, either x is
reducible to y with the cumulative jump distance d or not. Analogously in cases of con-
vergence and divergence. Using divergence and convergence, we can introduce confluence
in a fairly standard way:

Definition 34. A relation  is called confluent with respect to δ if for each x,y ∈ X,
x �d1δ y implies x �d2δ y with d1 ≥ d2.

Described verbally,  is confluent with respect to δ whenever any x and y which are
divergent with the cumulative jump distance d are convergent with a cumulative jump
distance at most d. Thus, the notion from Definition 34 generalizes the ordinary notion of
confluence. The notions of convertibility and the Church-Roser property can be introduced
in a similar way. Now we could examine properties of the proposed notions and their
mutual relationship but we leave it for interested readers and deliberately go in a different
direction: we show a connection between the notions introduced in this subsection for
an ordinary relation  on a generalized pseudometric space 〈X, δ〉 and the notions from
Subsection 3.2.1 which are dealing with an L-relation on a similarity space 〈X,≈〉.
In the rest of this subsection, we let L =〈[0, 1],∧,∨,⊗,→, 0, 1〉 be a complete residuated
lattice defined on the real unit interval with⊗ being a continuous Archimedean t-norm with
a continuous additive generator f . Denote the pseudoinverse of f by f (−1). Let 〈X, δ〉 be
a generalized pseudometric space and denote by ≈ the similarity L-relation corresponding
to δ in the sense of [4, 5]. This way, 〈X,≈〉 is a similarity space corresponding to 〈X, δ〉.
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Furthermore, ⇀ be an ordinary relation on X. As it is usual, we can consider ⇀ as a crisp
L-relation on X, i.e., x ⇀ y ∈ {0, 1} for all x,y ∈ X.

The following two assertions chartacterize the basic relationship between the notions of
reducibility that appear in the proposed generalizations:

Theorem 35. For any x,y ∈ X, x ⇀d
δ y implies x ⇀∗≈ y ≥ f (−1)(d).

Proof. By definition of x ⇀d
δ y, there are elements z1, . . . , z2k ∈ X such that z1 ⇀ z2 and

z3 ⇀ z4 and, . . . , and z2k−1 ⇀ z2k and δ(x, z1) + δ(z2, z3) + · · ·+ δ(z2k,y) = d.

Thus, for z1, . . . , z2k ∈ X, we immediately have

x ⇀∗≈ y =
∨
〈v1,...,v2m〉∈X2N0 x ≈ v1 ⊗ v1 ⇀ v2 ⊗ · · · ⊗ v2m−1 ⇀ v2m ⊗ v2m ≈ y ≥

≥x ≈ z1 ⊗ z1 ⇀ z2 ⊗ · · · ⊗ z2k−1 ⇀ z2k ⊗ z2k ≈ y =

=x ≈ z1 ⊗ z2 ≈ z3 ⊗ · · · ⊗ z2k−2 ≈ z2k−1 ⊗ z2k ≈ y.

Using the basic properties of the additive generator f and its pseudoinverse f (−1), we can
rewrite ⊗ and ≈ in the foregoing expression to get

x ≈ z1 ⊗ z2 ≈ z3 ⊗ · · · ⊗ z2k−2 ≈ z2k−1 ⊗ z2k ≈ y =

=f (−1)
[
f
[
f (−1)

(
· · ·
(
f
[
f (−1) (f (x ≈ z1) + f (z2 ≈ z3))

]
+ f (z4 ≈ z5)

)
· · ·
)]

+

+f (z2k ≈ y)] = f (−1) [f (x ≈ z1) + f (z2 ≈ z3) + f (z4 ≈ z5) + · · ·+ f (z2k ≈ y)] =

=f (−1)
[
f
(
f (−1) (δ(x, z1))

)
+ f

(
f (−1) (δ(z2, z3))

)
+ · · ·+ f

(
f (−1) (δ(z2k,y))

)]
=

=f (−1) [δ(x, z1) + δ(z2, z3) + · · ·+ δ(z2k,y)] = f (−1)(d)

which concludes the proof.

Theorem 36. For any x,y ∈ X, x ⇀∗≈ y = a> 0 implies that there is a nonincreasing
sequence {dn}∞n=1 of distances such that f(a) = limn→∞ dn and x ⇀dn

δ y for each n ∈ N.

Proof. By definition of ⇀∗≈ and the assumption x ⇀∗≈ y > 0, we immediately get that
x ⇀∗≈ y is a supremum of a nonempty set {ci | i ∈ I} of nonzero degrees of the from

ci = x ≈ zi,1 ⊗ zi,1 ⇀ zi,2 ⊗ · · · ⊗ zi,2ki ≈ y > 0

for 〈zi,1, zi,2, . . . , zi,2ki〉 ∈ X2N0 (i ∈ I). Furthermore, using the fact that ⇀ is a crisp
L-relation, each ci simplifies to ci = x ≈ zi,1 ⊗ zi,2 ≈ zi,3 ⊗ · · · ⊗ zi,2ki ≈ y. As in the
previous proof,

ci = x ≈ zi,1 ⊗ zi,2 ≈ zi,3 ⊗ · · · ⊗ zi,2ki ≈ y =

= f (−1)
(
δ(x, zi,1) + δ(zi,2, zi,3) + · · ·+ δ(zi,2ki ,y)

)
= f (−1)(di)

for di = δ(x, zi,1)+δ(zi,2, zi,3)+ · · ·+δ(zi,2ki ,y). As a consequence, x ⇀di
δ y (i ∈ I) and we

can write x ⇀∗≈ y = a =
∨
i∈I f

(−1)(di). The latter equality gives f(a) = f
(∨

i∈I f
(−1)(di)).

Since f is decreasing and continuous, f(a) =
∧
i∈I f

(
f (−1)(di)) =

∧
i∈I di. Now, by a

standard argument, select from {di | i ∈ I} a nonincreasing sequence of values such that
limn→∞ dn =

∧
i∈I di (trivial if {di | i ∈ I} has a least element; otherwise for each natural

n, take dn such that
∧
i∈I di < dn ≤

∧
i∈I di + 1

n and dn+1 ≤ dn).



3.2. Confluence on Similarity and Pseudometric Spaces 25

Remark 37. If X is finite, for each x and y satisfying x ⇀∗≈ y > 0 there is a sequence
z1, . . . , z2k ∈ X such that x ⇀∗≈ y = x ≈ z1 ⊗ z1 ⇀ z2 ⊗ · · · ⊗ z2k−1 ⇀ z2k ⊗ z2k ≈ y

(recall that our L is linearly ordered). Therefore, Theorem 36 yields that from x ⇀∗≈ y =∨
{f (−1)(d) | x ⇀d

δ y} we get that x ⇀∗≈ y = f (−1)(d) such that d is the least distance for
which x ⇀d

δ y.

Theorem 38. Let x,y ∈ X be arbitrary elements. Then, x �dδ y implies x �≈ y ≥ f (−1)(d)
and x �dδ y implies x �≈ y ≥ f (−1)(d).

Proof. Suppose that x �dδ y, i.e., there is an element z ∈ X such that z ⇀d1
δ x and z ⇀d2

δ y

and d= d1 + d2. Using Theorem 35, we immediately get

x �≈ y =
∨
w∈X w ⇀∗≈ x ⊗w ⇀∗≈ y ≥ z ⇀∗≈ x ⊗ z ⇀∗≈ y ≥ f (−1) (d1)⊗ f (−1) (d2) =

=f (−1)
(
f
(
f (−1) (d1)

)
+ f

(
f (−1) (d2)

))
= f (−1) (d1 + d2) = f (−1) (d)

which concludes the first part of the proof. The second implication can be proved analo-
gously.

Theorem 39. For arbitrary x,y ∈ X, if x �≈ y = a> 0 then there is a nonincreasing
sequence of distances {dn}∞n=1 such that f(a) = limn→∞ dn and x �dnδ y for each n ∈ N.
Analogously for �≈.

Proof. Using Theorem 36 and basic properties of f and f (−1), we obtain

a= x �≈ y =
∨
i∈I zi ⇀

∗
≈ x ⊗ zi ⇀

∗
≈ y =

∨
i∈I

(∨
j∈J f

(−1)(gi,j)
)
⊗
(∨

k∈K f
(−1)(hi,k)

)
=

=
∨
i∈I,j∈J,k∈K f

(−1)(gi,j)⊗ f (−1)(hi,k) =
∨
i∈I,j∈J,k∈K f

(−1) (gi,j + hi,k) ,

where z ⇀
gi,j
δ x and z ⇀

hi,k
δ y for each i ∈ I, j ∈ J , and k ∈ K. Therefore, we may write

a =
∨
m∈I×J×K f

(−1) (dm) where dm = gi,j + hi,k and x �dmδ y for each m = 〈i, j, k〉 ∈
I × J ×K. Applying basic properties of f and f (−1), we may proceed as in the proof of
Theorem 36: We get that f(a) =

∧
m∈I×J×K dm, i.e., we may pick from dm (m ∈ I×J×K)

a nonincreasing sequence {dn}∞n=1 such that f(a) =
∧
m∈I×J×K dm = limn→∞ dn, finishing

the proof. For �≈, one proceeds analogously.

Theorem 40. If ⇀ is confluent with respect to δ then CFL(⇀)≈= 1.

Proof. Let ⇀ be confluent with respect to δ and take arbitrary x,y ∈ X. If x �≈ y = 0
then we trivially get x �≈ y ≤ x �≈ y. Now, assume that x �≈ y = a > 0. By Theorem
39, there are distances {dn}∞n=1 such that x �dnδ y for each n ∈ N and a=

∨
n∈N f

(−1) (dn).
Since ⇀ is confluent with respect to δ, for each n ∈ N there is some distance d′n ≤ dn such

that x �d
′
n
δ y. As a consequence, f (−1)(d′n) ≥ f (−1)(dn) for each n ∈ N. Due to Theorem

38, we immediately get x �≈ y ≥ f (−1)(d′n) for each n ∈ N. Altogether, we obtain

x �≈ y =
∨
n∈N f

(−1) (dn) ≤
∨
n∈N f

(−1) (d′n) ≤ x �≈ y

for each x,y ∈ X, i.e., CFL(⇀)≈= 1.

Theorem 41. Let CFL(⇀)≈= 1. If x �dδ y and d < f(0), then there is a nonincreasing

sequence {dn}∞n=1 such that limn→∞ dn ≤ d and x �dnδ y for each n ∈ N.
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Proof. Assume that CFL(⇀)≈= 1, i.e., x �≈ y ≤ x �≈ y for each x,y ∈ X. Take
x,y ∈ X such that x �dδ y and f(0) > d. Now, observe that using properties of f and
f (−1), we get 0 < f (−1)(d). Hence, by Theorem 38 and the fact that CFL(⇀)≈= 1,
we get 0 < f (−1)(d)≤ x �≈ y ≤ x �≈ y. Furthermore, properties of f and f (−1) yield
f(x �≈ y) ≤ d. Applying Theorem 39, there is a nonincreasing sequence {dn}∞n=1 such
that limn→∞ dn = f(x �≈ y) ≤ d and x �dnδ y for each n ∈ N.

Remark 42. Note that the value f(0) can be seen as a distinguishability threshold while
transferring the background knowledge on distance from 〈X, δ〉 to 〈X, δ≈〉. Theorem 41
shall be understood so that the full confluence of ⇀ with respect to ≈ implies confluence
of ⇀ with respect to δ except the cases when the cumulative jump distance exceed the
threshold distance f(0). From this point of view, the property of ⇀ “being confluent with
respect to δ” is stronger then the property “being fully confluent with respect to ≈δ”, cf.
Theorem 40 and Theorem 41.

Similar observations to Remark 37 can also be made for divergence, convergence and
confluence. Moreover, one can easily develop further properties related to rewriting in
generalized pseudometric spaces (convertibility, Church-Roser property, . . . ).

3.3 Similarity Issues of Confluence of Fuzzy Relations

In Section 3.2, the notions of confluence and some other related properties which respect a
fuzzy reduction relation and a fuzzy equivalence were introduced. Since all these notions
are naturally graded, one can examine if usage of two similar reductions and two similar
equivalences always yields to somehow similar degrees of the properties investigated in the
first part of this chapter. Our results dealing with these similarity issues are presented in
Subsection 3.3.2. Furthermore, we have also constructed some estimation formulas for the
degrees of confluence of derived fuzzy reductions which are shown in Subsection 3.3.3.

The results summarized in this section have been published in [36].

3.3.1 Monotony of reducibility degrees

Let ⇀ be an L-relation on a similarity space 〈X,≈〉. Recall from Section 3.2 that ⇀∗≈ is
called a reducibility L-relation induced by ⇀ with respect to ≈. In this subsection, we deal
with properties of the corresponding operator ∗≈, i.e., the operator which associates to each
⇀ the reducibility ⇀∗≈ induced by ⇀ and ≈. In particular, we will focus on properties
related to monotony here.
Directly from its definition, we can observe that ∗≈ is monotone in the usual sense, i.e.,
x ⇀1 y ≤ x ⇀2 y implies x(⇀1)

∗
≈y ≤ x(⇀2)

∗
≈y for any L-relations ⇀1, ⇀2 on X and

for any elements x,y ∈ X. Hence, ⇀1 ⊆⇀2 implies (⇀1)
∗
≈⊆(⇀2)

∗
≈ for any ⇀1, ⇀2.

A question is whether ∗≈ satisfies any stronger from of monotony. It can be easily shown
that ∗≈ does not satisfy the graded monotony S(⇀1,⇀2) ≤ S((⇀1)

∗
≈, (⇀2)

∗
≈) which often

appears in literature [5], see Example 43.

Example 43. Let 〈X,≈〉 be a similarity space with the standard  Lukasiewicz structure of
truth degrees on the real unit interval with ≈ being the (fuzzy) identity relation (x ≈ y = 1
if x =y and x ≈ y = 0 otherwise). Let ⇀1 and ⇀2 be L-relations defined as in Figure 3.4
by the degrees written abote the solid lines (the other degrees are zero). For instance, the
value 1 at the solid arrow from x1 to x2 in the left part of the figure means that x1 can
be fully reduced to x2 by ⇀1, i.e. x1 ⇀1 x2 = 1. If there is no arrow between elements
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〈X,≈〉,⇀1

x1 x2 x3
1 1

1

〈X,≈〉,⇀2

x1 x2 x3
0.5 0.5

0

Figure 3.4: Illustration to Example 43.

then the corresponding degree is 0, e.g. x1 ⇀1 x3 = 0. The dotted arrows show selected
degrees of reducibility by (⇀1)

∗
≈ and (⇀2)

∗
≈. The degree of subsethood ⇀1 in ⇀2 can be

calculated directly from its definition as follows:

S(⇀1,⇀2) =
∧

x,y∈X(x ⇀1 y → x ⇀2 y) =

= min(x1 ⇀1 x1 → x1 ⇀2 x1, x1 ⇀1 x2 → x1 ⇀2 x2, x1 ⇀1 x3 → x1 ⇀2 x3,

x2 ⇀1 x1 → x2 ⇀2 x1, x2 ⇀1 x2 → x2 ⇀2 x2, x2 ⇀1 x3 → x2 ⇀2 x3,

x3 ⇀1 x1 → x3 ⇀2 x1, x3 ⇀1 x2 → x3 ⇀2 x2, x3 ⇀1 x3 → x3 ⇀2 x3) =

= min(1, 0.5, 1, 1, 1, 0.5, 1, 1, 1) = 0.5 .

In a similar way, we can compute S((⇀1)
∗
≈, (⇀2)

∗
≈):

S((⇀1)
∗
≈, (⇀2)

∗
≈) =

∧
x,y∈X(x(⇀1)

∗
≈y → x(⇀2)

∗
≈y) =

= min(x1(⇀1)
∗
≈x1 → x1(⇀2)

∗
≈x1, x1(⇀1)

∗
≈x2 → x1(⇀2)

∗
≈x2, x1(⇀1)

∗
≈x3 → x1(⇀2)

∗
≈x3,

x2(⇀1)
∗
≈x1 → x2(⇀2)

∗
≈x1, x2(⇀1)

∗
≈x2 → x2(⇀2)

∗
≈x2, x2(⇀1)

∗
≈x3 → x2(⇀2)

∗
≈x3,

x3(⇀1)
∗
≈x1 → x3(⇀2)

∗
≈x1, x3(⇀1)

∗
≈x2 → x3(⇀2)

∗
≈x2, x3(⇀1)

∗
≈x3 → x3(⇀2)

∗
≈x3) =

= min(1, 0.5, 0, 1, 1, 0.5, 1, 1, 1) = 0 .

In this particular case, we get S(⇀1,⇀2) > S((⇀1)
∗
≈, (⇀2)

∗
≈). Hence, the inequality

S(⇀1,⇀2) ≤ S((⇀1)
∗
≈, (⇀2)

∗
≈) does not hold in general.

Although the operator ∗≈ does not satisfy the most common graded form of monotony as
it is demonstrated by the foregoing example, a weaker form of graded monotony can be
established which is shown by the following two assertions.

Theorem 44. Let ⇀1, ⇀2 be L-relations on X, ≈1, ≈2 be L-similarities on X. The
inequality S(≈1,≈2)

n+1⊗S(⇀1,⇀2)
n ≤ S((⇀1)

n
≈1
, (⇀2)

n
≈2

) holds for each n ∈ N0, where
(⇀i)

n
≈j

(for i, j ∈ {1, 2}) denotes ≈j if n= 0 and ≈j ◦⇀i ◦ (⇀i)
n−1
≈j

otherwise.

Proof. The inequality will be proved by induction. For n= 0, the inequality S(≈1,≈2)
1⊗

S(⇀1,⇀2)
0 = S(≈1,≈2) ⊗ 1 = S(≈1,≈2) = S((⇀1)

0
≈1
, (⇀2)

0
≈2

) holds trivially. Now, we
suppose that the inequality is true for n= k and we will prove it for n= k + 1. Using the
assumption S(≈1,≈2)

k+1 ⊗ S(⇀1,⇀2)
k ≤ S((⇀1)

k
≈1
, (⇀2)

k
≈2

), we get

S(≈1,≈2)
k+2 ⊗ S(⇀1,⇀2)

k+1 =

=S(≈1,≈2)⊗ S(⇀1,⇀2)⊗ S(≈1,≈2)
k+1 ⊗ S(⇀1,⇀2)

k ≤
≤S(≈1,≈2)⊗ S(⇀1,⇀2)⊗ S((⇀1)

k
≈1
, (⇀2)

k
≈2

) =

=S(≈1,≈2)⊗
∧

w,x∈X (w ⇀1 x → w ⇀2 x)⊗
∧

y,z∈X

(
y(⇀1)

k
≈1

z → y(⇀2)
k
≈2

z
)
.
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Using the inequalities (2.10) and (2.6), the latter expression is less than or equal to

S(≈1,≈2)⊗
∧

w,x,y,z∈X

[
(w ⇀1 x → w ⇀2 x)⊗

(
y(⇀1)

k
≈1

z → y(⇀2)
k
≈2

z
)]
≤

≤S(≈1,≈2)⊗
∧

w,x,y,z∈X

[(
w ⇀1 x ⊗ y(⇀1)

k
≈1

z
)
→
(
w ⇀2 x ⊗ y(⇀2)

k
≈2

z
)]

=

=
∧

u,v∈X (u ≈1 v → u ≈2 v)⊗

⊗
∧

w,x,y,z∈X

[(
w ⇀1 x ⊗ y(⇀1)

k
≈1

z
)
→
(
w ⇀2 x ⊗ y(⇀2)

k
≈2

z
)]
≤

≤
∧

u,v,w,x,y,z∈X [(u ≈1 v → u ≈2 v)⊗

⊗
(

(w ⇀1 x ⊗ y(⇀1)
k
≈1

z)→ (w ⇀2 x ⊗ y(⇀2)
k
≈2

z)
)]
≤

≤
∧

u,v,w,x,y,z∈X

[(
u ≈1 v ⊗w ⇀1 x ⊗ y(⇀1)

k
≈1

z
)
→
(
u ≈2 v ⊗w ⇀2 x ⊗ y(⇀2)

k
≈2

z
)]
.

Now, we identify the elements v =w and x =y to get the following expression which is
greater than or equal to the foregoing one. Then, we use the inequality (2.14) to conclude
the proof.∧

u,v,x,z∈X

[(
u ≈1 v ⊗ v ⇀1 x ⊗ x(⇀1)

k
≈1

z
)
→
(
u ≈2 v ⊗ v ⇀2 x ⊗ x(⇀2)

k
≈2

z
)]
≤

≤
∧

u,z∈X

[∨
v,x∈X

(
u ≈1 v ⊗ v ⇀1 x ⊗ x(⇀1)

k
≈1

z
)
→

→
∨
v,x∈X

(
u ≈2 v ⊗ v ⇀2 x ⊗ x(⇀2)

k
≈2

z
)]

=

=
∧

u,z∈X

(
(u ≈1 ◦⇀1 ◦(⇀1)

k
≈1

z)→ (u ≈2 ◦⇀2 ◦(⇀2)
k
≈2

z)
)

=

=
∧

u,z∈X

(
u(⇀1)

k+1
≈1

z → u(⇀2)
k+1
≈2

z
)

=S((⇀1)
k+1
≈1

, (⇀2)
k+1
≈2

)

Altogether, we have S(≈1,≈2)
n+1 ⊗ S(⇀1,⇀2)

n ≤ S((⇀1)
n
≈1
, (⇀2)

n
≈2

) for each n ∈ N0.

Theorem 45. For any L-relations ⇀1, ⇀2 and for any L-similarities ≈1, ≈2 on X, the
following inequality holds.∧

n∈N0

[
S(≈1,≈2)

n+1 ⊗ S(⇀1,⇀2)
n
]
≤ S((⇀1)

∗
≈1
, (⇀2)

∗
≈2

) (3.4)

Proof. The L-relations (⇀i)
∗
≈j

(i, j ∈ {1, 2}) can be alternatively defined by
⋃
n∈N0

(⇀i)
n
≈j

,
i.e. x(⇀i)

∗
≈j

y =
∨
n∈N0

x(⇀i)
n
≈j

y for each x,y ∈ X. By Theorem 44, we also know that

S(≈1,≈2)
n+1 ⊗ S(⇀1,⇀2)

n ≤ S((⇀1)
n
≈1
, (⇀2)

n
≈2

) holds for each n ∈ N0. Using these
facts and (2.14), we get∧

n∈N0

[
S(≈1,≈2)

n+1 ⊗ S(⇀1,⇀2)
n
]
≤
∧
n∈N0

S((⇀1)
n
≈1
, (⇀2)

n
≈2

) =

=
∧
n∈N0

∧
x,y∈X

[
x(⇀1)

n
≈1

y → x(⇀2)
n
≈2

y
]
≤

≤
∧

x,y∈X
[∨

n∈N0

(
x(⇀1)

n
≈1

y
)
→
∨
n∈N0

(
x(⇀2)

n
≈2

y
)]

=

=
∧

x,y∈X
[
x(⇀1)

∗
≈1

y → x(⇀2)
∗
≈2

y
]

=S((⇀1)
∗
≈1
, (⇀2)

∗
≈2

).

Remark 46. (1) Notice that the inequality in Theorem 45 is in a general form and gives
a lower estimate of subsethood degrees of (⇀1)

∗
≈1

in (⇀2)
∗
≈2

by means of (n-th powers of)
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subsethood degrees S(≈1,≈2) and S(⇀1,⇀2). Hence, it can be seen as a monotony con-
dition which involves in general two different similarities ≈1 and ≈2 on the universe of dis-
course. In a special case, the inequality becomes

∧
n∈N0

S(⇀1,⇀2)
n ≤ S((⇀1)

∗
≈1
, (⇀2)

∗
≈1

)
whenever ≈1 = ≈2 and it becomes

∧
n∈N0

S(≈1,≈2)
n+1 ≤ S((⇀1)

∗
≈1
, (⇀1)

∗
≈2

) whenever
⇀1 = ⇀2.

(2) Note that if L is a complete BL-chain satisfying a ⊗
∧
i∈I bi =

∧
i∈I(a ⊗ bi) (e.g., if L

is a complete BL-chain on the real unit interval with ⊗ being a continuous t-norm), then
for each a ∈ L,

∧
n∈N0

an is the greatest idempotent element which is less than or equal to
a [13]. Thus, for an important class of structures of truth degrees (including the standard
 Lukasiewicz, Gödel and Goguen structures), the degree which appears on the left-hand
side of (3.4) is an idempotent element.

3.3.2 Sensitivity of Confluence

We will now investigate how much the degrees of reducibility, convergence, divergence,
confluence, convertibility and the Church-Roser property of an L-relation ⇀1 with respect
to a similarity ≈1 change if ⇀1 is replaced by a (very) similar L-relation ⇀2 and/or ≈1 is
substituted by a (very) similar L-equivalence ≈2. We will provide some inequalities which
can be used for estimations of the above mentioned degrees for ⇀2 and ≈2.

The first assertion shows that the degree of equality E((⇀1)
∗
≈1
, (⇀2)

∗
≈2

) of reducibility
L-relations (⇀1)

∗
≈1

and (⇀2)
∗
≈2

can be estimated from below in a similar way as in The-
orem 45:

Theorem 47. For any L-relations ⇀1, ⇀2 and for any L-similarities ≈1, ≈2 on X, the
following inequality holds:∧

n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)
≤ E((⇀1)

∗
≈1
, (⇀2)

∗
≈2

)

Proof. By definition of E(· · · ) and Theorem 45, we immediately get∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)
≤ S((⇀1)

∗
≈1
, (⇀2)

∗
≈2

) and∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)
≤ S((⇀2)

∗
≈2
, (⇀1)

∗
≈1

).

Using these two inequalities, idempotency and isotony of ∧, we obtain∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)

=

=
∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)
∧
∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)
≤

≤S((⇀1)
∗
≈1
, (⇀2)

∗
≈2

) ∧ S((⇀2)
∗
≈2
, (⇀1)

∗
≈1

) =E((⇀1)
∗
≈1
, (⇀2)

∗
≈2

),

proving the claim.

The following assertion shows a property that will be used in subsequent proofs.

Theorem 48. For any L-relations ⇀1, ⇀2, any L-similarities ≈1, ≈2 on X and arbitrary
u, v, x,y ∈ X, we always have[∧

n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]2 ≤

≤
[
(u(⇀1)

∗
≈1

v)⊗ (x(⇀1)
∗
≈1

y)
]
↔
[
(u(⇀2)

∗
≈2

v)⊗ (x(⇀2)
∗
≈2

y)
]
.
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Proof. Using the isotony of ⊗ and Theorem 47, we get[∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]2 ≤

≤E((⇀1)
∗
≈1
, (⇀2)

∗
≈2

)⊗ E((⇀1)
∗
≈1
, (⇀2)

∗
≈2

) =

=
[∧

u,v∈X(u(⇀1)
∗
≈1

v ↔ u(⇀2)
∗
≈2

v)
]
⊗
[∧

x,y∈X(x(⇀1)
∗
≈1

y ↔ x(⇀2)
∗
≈2

y)
]
.

By definition of ↔ and the inequality (2.9), we can continue as follows:[∧
u,v∈X(u(⇀1)

∗
≈1

v ↔ u(⇀2)
∗
≈2

v)
]
⊗
[∧

x,y∈X(x(⇀1)
∗
≈1

y ↔ x(⇀2)
∗
≈2

y)
]

≤
∧

u,v,x,y∈X
[(

(u(⇀1)
∗
≈1

v → u(⇀2)
∗
≈2

v) ∧ (u(⇀2)
∗
≈2

v → u(⇀1)
∗
≈1

v)
)
⊗

⊗
(
(x(⇀1)

∗
≈1

y → x(⇀2)
∗
≈2

y) ∧ (x(⇀2)
∗
≈2

y → x(⇀1)
∗
≈1

y)
)]
≤

≤
∧

u,v,x,y∈X
[(

(u(⇀1)
∗
≈1

v → u(⇀2)
∗
≈2

v)⊗ (x(⇀1)
∗
≈1

y → x(⇀2)
∗
≈2

y)
)
∧

∧
(
(u(⇀1)

∗
≈1

v → u(⇀2)
∗
≈2

v)⊗ (x(⇀2)
∗
≈2

y → x(⇀1)
∗
≈1

y)
)
∧

∧
(
(u(⇀2)

∗
≈2

v → u(⇀1)
∗
≈1

v)⊗ (x(⇀1)
∗
≈1

y → x(⇀2)
∗
≈2

y)
)
∧

∧
(
(u(⇀2)

∗
≈2

v → u(⇀1)
∗
≈1

v)⊗ (x(⇀2)
∗
≈2

y → x(⇀1)
∗
≈1

y)
)]
.

Now, we interchange → and ⊗ using (2.6) and then we reduce the amount of operands
for the meet operation (by “skipping 2 lines”). Thus, we get that the last term in the
foregoing inequality is less than or equal to∧

u,v,x,y∈X
[(

(u(⇀1)
∗
≈1

v ⊗ x(⇀1)
∗
≈1

y)→ (u(⇀2)
∗
≈2

v ⊗ x(⇀2)
∗
≈2

y)
)
∧

∧
(
(u(⇀1)

∗
≈1

v ⊗ x(⇀2)
∗
≈2

y)→ (u(⇀2)
∗
≈2

v ⊗ x(⇀1)
∗
≈1

y)
)
∧

∧
(
(u(⇀2)

∗
≈2

v ⊗ x(⇀1)
∗
≈1

y)→ (u(⇀1)
∗
≈1

v ⊗ x(⇀2)
∗
≈2

y)
)
∧

∧
(
(u(⇀2)

∗
≈2

v ⊗ x(⇀2)
∗
≈2

y)→ (u(⇀1)
∗
≈1

v ⊗ x(⇀1)
∗
≈1

y)
)]
≤

≤
∧

u,v,x,y∈X
[(

(u(⇀1)
∗
≈1

v ⊗ x(⇀1)
∗
≈1

y)→ (u(⇀2)
∗
≈2

v ⊗ x(⇀2)
∗
≈2

y)
)
∧

∧
(
(u(⇀2)

∗
≈2

v ⊗ x(⇀2)
∗
≈2

y)→ (u(⇀1)
∗
≈1

v ⊗ x(⇀1)
∗
≈1

y)
)]

=

=
∧

u,v,x,y∈X
[
(u(⇀1)

∗
≈1

v ⊗ x(⇀1)
∗
≈1

y)↔ (u(⇀2)
∗
≈2

v ⊗ x(⇀2)
∗
≈2

y)
]
.

Thus, we have[∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]2 ≤

≤
[
(u(⇀1)

∗
≈1

v)⊗ (x(⇀1)
∗
≈1

y)
]
↔
[
(u(⇀2)

∗
≈2

v)⊗ (x(⇀2)
∗
≈2

y)
]
,

which concludes the proof.

Using Theorem 48, we can express lower estimates of equality degrees of divergence, con-
vergence, and confluence.

Theorem 49. For any L-relations ⇀1, ⇀2 and for any L-similarities ≈1, ≈2 on X, the
following inequalities hold.[∧

n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]2 ≤ E(�⇀1

≈1
, �⇀2
≈2

)[∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]2 ≤ E(�⇀1

≈1
, �⇀2
≈2

)

Proof. We start with the inequality from Theorem 48. First, we reduce the amount of
operands for the meet operation by identifying u and x on the right-hand side of this
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inequality. Furthermore, we use (2.17) to get[∧
n∈N0

E(⇀1,⇀2)
n
]2 ≤

≤
∧

u,v,y∈X
[(

(u(⇀1)
∗
≈1

v)⊗ (u(⇀1)
∗
≈1

y)
)
↔
(
(u(⇀2)

∗
≈2

v)⊗ (u(⇀2)
∗
≈2

y)
)]
≤

≤
∧

v,y∈X
[(∨

u∈X(u(⇀1)
∗
≈1

v)⊗ (u(⇀1)
∗
≈1

y)
)
↔
(∨

u∈X(u(⇀2)
∗
≈2

v)⊗ (u(⇀2)
∗
≈2

y)
)]

=

=
∧

v,y∈X
[
(v �⇀1

≈1
y))↔ (v �⇀2

≈2
y))
]

=E(�⇀1
≈1
, �⇀2
≈2

),

finishing the proof of the first inequality.

The second inequality can be proved analogously, just start with identifying v and y.

Theorem 50. For any L-relations ⇀1, ⇀2 and any L-similarities ≈1, ≈2 on X, the
following inequlality holds.[∧

n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]4 ≤ CFL(⇀1)≈1

↔ CFL(⇀2)≈2

Proof. Using the isotony of ⊗, Theorem 49, we get[∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]4

=

=
[∧

n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]2 ⊗ [∧n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]2≤

≤E(�⇀1
≈1
, �⇀2
≈2

)⊗ E(�⇀1
≈1
, �⇀2
≈2

) =

=
[∧

u,v∈X(u �⇀1
≈1

v ↔ u �⇀2
≈2

v)
]
⊗
[∧

x,y∈X(x �⇀1
≈1

y ↔ x �⇀2
≈12

y)
]
.

Applying (2.9) and (2.15), we get[∧
u,v∈X(u �⇀1

≈1
v ↔ u �⇀2

≈2
v)
]
⊗
[∧

x,y∈X(x �⇀1
≈1

y ↔ x �⇀2
≈2

y)
]
≤∧

u,v,x,y∈X
[
(u �⇀1

≈1
v ↔ u �⇀2

≈2
v)⊗ (x �⇀1

≈1
y ↔ x �⇀2

≈2
y)
]
≤

≤
∧

u,v,x,y∈X
[
(u �⇀1

≈1
v → x �⇀1

≈1
y)↔ (u �⇀2

≈2
ev → x �⇀2

≈2
y)
]
.

Now, we reduce the amount of operands for the meet operation by identifying x with u

and y with v. Using (2.16), we further get∧
u,v,x,y∈X

[
(u �⇀1

≈1
v → x �⇀1

≈1
y)↔ (u �⇀2

≈2
v → x �⇀2

≈2
y)
]
≤∧

u,v∈X
[
(u �⇀1

≈1
v → x �⇀1

≈1
y)↔ (u �⇀2

≈2
v → x �⇀2

≈2
y)
]
≤

≤
[∧

u,v∈X(u �⇀1
≈1

v → u �⇀1
≈1

v)
]
↔
[∧

u,v∈X(u �⇀2
≈2

v → u �⇀2
≈2

v)
]

=

= CFL(⇀1)≈1
↔ CFL(⇀2)≈2

.

Putting previous inequalities together, we get the desired inequality.

Similar inequlalities can be proved also for convertibility degrees as well as for degrees of
the Church-Rosser property:

Theorem 51. For given L-relations ⇀1, ⇀2, the corresponding 
1, 
2, and given L-
similarities ≈1, ≈2, the following inequality holds:∧

n∈N0

[
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
]
≤ E((
1)

∗
≈1
, (
2)

∗
≈2

).
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Proof. Directly from definitions of 
1 and 
2, we have ⇀1⊆
1, ↽1⊆
1, ⇀2⊆
2 and
↽2⊆
2,i.e., S(⇀1,
1) =S(↽1,
1) =S(⇀2,
2) =S(↽2,
2) = 1. Using the definition
of E(· · · ) and transitivity of S(· · · ), we also get:

E(⇀1,⇀2) ≤ S(⇀1,⇀2) =S(⇀1,⇀2)⊗ S(⇀2,
2) ≤ S(⇀1,
2), (3.5)

E(⇀1,⇀2) =E(↽1,↽2) ≤ S(↽1,↽2) =S(↽1,↽2)⊗ S(↽2,
2) ≤ S(↽1,
2), (3.6)

E(⇀1,⇀2) =E(⇀2,⇀1) ≤ S(⇀2,⇀1) =S(⇀2,⇀1)⊗ S(⇀1,
1) ≤ S(⇀2,
1), (3.7)

E(⇀1,⇀2) =E(↽2,↽1) ≤ S(↽2,↽1) =S(↽2,↽1)⊗ S(↽1,
1) ≤ S(↽2,
1). (3.8)

According to inequalities (3.5) and (3.6) and the associativity of ∧, the following holds.

E(⇀1,⇀2) ≤ S(⇀1,
2) ∧ S(↽1,
2) =

=
[∧

u,v∈X(u ⇀1 v → u 
2 v)
]
∧
[∧

x,y∈X(x ↽1 y → x 
2 y)
]

=

=
∧

u,v,x,y∈X [(u ⇀1 v → u 
2 v) ∧ (x ↽1 y → x 
2 y)]

Then, we identify elements u = x and v = y and use (2.11) to get

E(⇀1,⇀2) ≤
∧

x,y∈X [(x ⇀1 y → x 
2 y) ∧ (x ↽1 y → x 
2 y)] =

=
∧

x,y∈X [(x ⇀1 y ∨ x ↽1 y)→ x 
2 y] =

=
∧

x,y∈X (x 
1 y → x 
2 y) =S(
1,
2).

Starting with inequalities (3.7) and (3.8), we can prove inequality E(⇀1,⇀2) ≤ S(
2,
1)
in the same way. Using these 2 inequalities together, we immediately get E(⇀1,⇀2) ≤
S(
1,
2) ∧ S(
2,
1) = E(
1,
2).

Due to Theorem 45 for ⇀ being 
, we also have∧
n∈N0

[
S(≈1,≈2)

n+1 ⊗ S(
1,
2)
n
]
≤ S((
1)

∗
≈1
, (
2)

∗
≈2

).

By definitions of E(· · · ) and S(· · · ) and the isotony of ⊗, we also get∧
n∈N0

[
E(≈1,≈2)

n+1 ⊗ E(
1,
2)
n
]
≤ S((
1)

∗
≈1
, (
2)

∗
≈2

),∧
n∈N0

[
E(≈1,≈2)

n+1 ⊗ E(
1,
2)
n
]
≤ S((
2)

∗
≈2
, (
1)

∗
≈1

).

Altogether, using the inequality E(⇀1,⇀2) ≤ E(
1,
2), we obtain∧
n∈N0

[
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
]
≤
∧
n∈N0

[
E(≈1,≈2)

n+1 ⊗ E(
1,
2)
n
]
≤

≤S((
1)
∗
≈1
, (
2)

∗
≈2

) ∧ S((
2)
∗
≈2
, (
1)

∗
≈1

) =E((
1)
∗
≈1
, (
2)

∗
≈2

)

which concludes the proof.

Theorem 52. For arbitrary L-relations ⇀1, ⇀2 and L-similarities ≈1, ≈2 on X, the
following inequality holds.[∧

n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]3 ≤ CR(⇀1)≈1 ↔ CR(⇀2)≈2

Proof. Using the isotony of ⊗, Theorem 49 and Theorem 51, we get[∧
n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]3

=

=
[∧

n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]
⊗
[∧

n∈N0

(
E(≈1,≈2)

n+1 ⊗ E(⇀1,⇀2)
n
)]2≤

≤E((
1)
∗
≈1
, (
2)

∗
≈2

)⊗ E(�⇀1
≈1
, �⇀2
≈2

) =

=
[∧

u,v∈X(u(
1)
∗
≈1

v ↔ u(
2)
∗
≈2

v)
]
⊗
[∧

x,y∈X(x �⇀1
≈1

y ↔ x �⇀2
≈2

y)
]
.
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Applying the inequalities (2.9) and (2.15), we get[∧
u,v∈X(u(
1)

∗
≈1

v ↔ u(
2)
∗
≈2

v)
]
⊗
[∧

x,y∈X(x �⇀1
≈1

y ↔ x �⇀2
≈2

y)
]
≤

≤
∧

u,v,x,y∈X
[
(u(
1)

∗
≈1

v ↔ u(
2)
∗
≈2

v)⊗ (x �⇀1
≈1

y ↔ x �⇀2
≈2

y)
]
≤

≤
∧

u,v,x,y∈X
[
(u(
1)

∗
≈1

v → x �⇀1
≈1

y)↔ (u(
2)
∗
≈2

v → x �⇀2
≈2

y)
]
.

Now, we reduce the amount of operands for the meet operation by identifying x = u and
y = v. Using (2.16), we further get∧

u,v,x,y∈X
[
(u(
1)

∗
≈1

v → x �⇀1
≈1

y)↔ (u(
2)
∗
≈2

v → x �⇀2
≈2

y)
]
≤∧

u,v∈X
[
(u(
1)

∗
≈1

v → u �⇀1
≈1

v)↔ (u(
2)
∗
≈2

v → u �⇀2
≈2

v)
]
≤

≤
[∧

u,v∈X(u(
1)
∗
≈1

v → u �⇀1
≈1

v)
]
↔
[∧

u,v∈X(u(
2)
∗
≈2

v → u �⇀2
≈2

v)
]

=

=S((
1)
∗
≈1
, �⇀1
≈1

)↔ S((
2)
∗
≈2
, �⇀2
≈2

) = CR(⇀1)≈1 ↔ CR(⇀2)≈2 .

Putting all these inequalities together, we get the desired inequality.

Remark 53. The similarity estimation formulas provided in this subsection can be simpli-
fied if ⇀1 = ⇀2 or ≈1 = ≈2, see Remark 46 (1). Another simplification of the estimations
is obtained under the assumption that either E(≈1,≈2) or E(⇀1,⇀2) is an idempotent
element of L.

There are important cases in which ⇀1 and ⇀2 are similar to a degree which is an idempo-
tent element of L. For instance, if L is a BL-algebra on [0, 1] then an idempotent similarity
degree can be obtained in the following situation. Suppose that ⇀1 is an L-relation and
one wants to replace ⇀1 by ⇀2 which is simpler in that the set of all degrees used by
⇀2 is small (i.e., {u1 ⇀2 u2 |u1,u2 ∈ X} is finite and sufficiently small) and represents
⇀1 sufficiently well. One way to get ⇀2 from ⇀1 is by “rounding” truth degrees, e.g.,
one selects a finite subset of L, say K = {0, 0.25, 0.5, 0.75, 1}, and defines u1 ⇀2 u2

as the greatest element from K which is less than or equal to u1 ⇀1 u2. If each ele-
ment in K is an idempotent of L and ⇀1 and ⇀2 satisfy the following condition: for
all u1,u2 ∈ X, u1 ⇀1 u2 is an idempotent or there is an idempotent c ∈ L such that
u1 ⇀2 u2 < c < u1 ⇀1 u2, then E(⇀1,⇀2) ∈ L is idempotent. This is a consequence of
the well-known Mostert-Shields representation [34, 39, 44] of BL-algebras saying that L
can be seen as an ordinal sum of isomorphic copies of standard  Lukasiewicz and product
algebras mutually separated by idempotent elements. Also note that for any finite ⇀1

and ⇀2 using degrees from the [0, 1] interval and finite K ⊆ [0, 1], one can always take
(infinitely many) L satisfying the above-described condition (again, this is a consequence
of the Mostert-Shields representation).

Example 54. Let L be ordinal sum of 3 isomorphic copies of standard  Lukasiewicz struc-
tures and 2 isomorphic copies of product algebras mutually separated by idempotent
elements, i.e., L =

⊕
i∈I Li, where I = {1, 2, . . . , 5}, L1,L3,L5 are standard  Lukasiewicz

algebras and L2,L4 are standard product structures of truth degrees.
Let ⇀1 and ⇀2 be L-relations on X = {x0, x1, . . . , x6} which are depicted in Figure 3.5
and let ≈ be the identity. By direct computation using the definition of E(· · · ), we get
E(⇀1,⇀2) = 0.2. By Theorem 50, we can estimate the degrees of confluence of ⇀1 and
⇀2 by CFL(⇀1)≈ ↔ CFL(⇀2)≈ ≥ 0.2. Thus, after determining CFL(⇀1)≈= 0.9, we
immediately know from the estimate that the value CFL(⇀2)≈ will be somewhere in the
interval from 0.2 to 1. The estimate can be useful because the exact computation may
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be very demanding. In this particular case, by direct computation of CFL(⇀2)≈, we get
CFL(⇀2)≈= 0.6.

Figure 3.5: Illustration to Example 54.

3.3.3 Confluence of Derived Fuzzy Relations

In this subsection, we focus on properties of derived L-relations. In particular, we focus on
L-relations which result by so-called a-multiples and a-shifts from other L-relations. We
show lower and upper estimates of degrees of divergence, convergence, and confluence of
the derived L-relations based on the corresponding properties of the original L-relations.
For sake of simplicity, we will use here the notions developed in Section 3.1, i.e., notions
without considering a similarity.
From now on, let a ∈ L and let ⇀ be an arbitrary L-relation on X. Moreover, we consider
an L-relation ⇀2 which is the a-multiple of ⇀, i.e., ⇀2 = a⊗⇀.

Theorem 55. For each x,y ∈ X, the following inequalities hold:∧
n∈N a

n ⊗ x ⇀∗ y ≤ x (⇀2)
∗ y ≤ x ⇀∗ y. (3.9)

Proof. The first inequality can be proved using (2.8) and the fact that
∧
n∈N a

n ≤ ak+1

for every a ∈ L and k ∈ N0. Indeed, we get∧
n∈N a

n ⊗ x ⇀∗ y =
∧
n∈N a

n ⊗
∨
〈z1,...,zk〉∈X∗ (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y) =

=
∨
〈z1,...,zk〉∈X∗

[∧
n∈N a

n ⊗ (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)
]
≤

≤
∨
〈z1,...,zk〉∈X∗

[
ak+1 ⊗ (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)

]
=

=
∨
〈z1,...,zk〉∈X∗ [(a⊗ x ⇀ z1)⊗ · · · ⊗ (a⊗ zk ⇀ y)] = x (a⊗⇀)∗ y = x (⇀2)

∗ y.

The second inequality follows directly from the isotony of
∨

and fact that a⊗⇀⊆⇀, i.e.,
x (a⊗⇀)y ≤ x ⇀ y for each x,y ∈ X:

x (⇀2)
∗ y = x (a⊗⇀)∗ y =

∨
〈z1,...,zk〉∈X∗ (x (a⊗⇀) z1 ⊗ · · · ⊗ zk (a⊗⇀)y) ≤

≤
∨
〈z1,...,zk〉∈X∗ (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y) ≤ x ⇀∗ y,

showing both inequalities.
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Theorem 56. For each x,y ∈ X, the following inequalities hold:(∧
n∈N a

n
)2 ⊗ x � y ≤x �2 y ≤ x � y, (3.10)(∧

n∈N a
n
)2 ⊗ x � y ≤x �2 y ≤ x � y. (3.11)

Proof. Using Theorem 55 and (2.8), the first inequality in (3.10) can be proved as follows:(∧
n∈N a

n
)2 ⊗ x � y =

(∧
n∈N a

n
)2 ⊗∨z∈X (z ⇀∗ x ⊗ z ⇀∗ y) =

=
∨
z∈X

(∧
n∈N a

n ⊗ z ⇀∗ x ⊗
∧
n∈N a

n ⊗ z ⇀∗ y
)
≤

≤
∨
z∈X (z (a⊗⇀)∗ x ⊗ z (a⊗⇀)∗ y) = x �2 y.

The remaining part of (3.10) follows directly from Theorem 55:

x �2 y =
∨
z∈X (z (a⊗⇀)∗ x ⊗ z (a⊗⇀)∗ y) ≤

∨
z∈X (z ⇀∗ x ⊗ z ⇀∗ y) = x � y.

The inequalities in (3.11) can be shown analogously.

Now, we can express lower and upper bounds for degrees of confluence of the a-multiple
of ⇀ based on a ∈ L and the degrees of confluence of ⇀ as follows:

Theorem 57.
(∧

n∈N a
n
)2 ⊗ CFL(⇀) ≤ CFL(⇀2) ≤

(∧
n∈N a

n
)2 → CFL(⇀).

Proof. Due to Theorem 56, using the inequalities (2.5) and (2.9), the antitony of → in its
first argument and the isotony of → in the second argument, we obtain(∧

n∈N a
n
)2 ⊗ CFL(⇀) =

(∧
n∈N a

n
)2 ⊗∧x,y∈X (x � y → x � y) ≤

≤
∧

x,y∈X

[(∧
n∈N a

n
)2 ⊗ (x � y → x � y)

]
≤
∧

x,y∈X

[
x � y →

((∧
n∈N a

n
)2 ⊗ x � y

)]
≤

≤
∧

x,y∈X

[
x �2 y →

((∧
n∈N a

n
)2 ⊗ x � y

)]
≤
∧

x,y∈X (x �2 y → x �2 y) = CFL(⇀2),

which proves the first part of the inequality. In order to show the remaining inequality, we
use Theorem 56 together with (2.3), (2.10), and the antitony (isotony) of → in the first
(second) argument:

CFL(⇀2) =
∧

x,y∈X (x �2 y → x �2 y) ≤
∧

x,y∈X

[((∧
n∈N a

n
)2 ⊗ x � y

)
→ x � y

]
≤

≤
∧

x,y∈X

[(∧
n∈N a

n
)2 → (x � y → x � y)

]
=
(∧

n∈N a
n
)2 → ∧

x,y∈X (x � y → x � y) =

=
(∧

n∈N a
n
)2 → CFL(⇀),

which concludes the proof.

While considering only idempotent elements a ∈ L, the inequalities in Theorem 55, The-
orem 56, and Theorem 57 can be simplified.

Corollary 58. Let a ∈ L be idempotent. Then, for each x,y ∈ X, we get

x ⇀∗2 y = a⊗ x ⇀∗ y, (3.12)

x �2 y = a⊗ x � y, (3.13)

x �2 y = a⊗ x � y. (3.14)
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Proof. The equality (3.12) can be proved similarly to the first inequality in Theorem 55:

x (⇀2)
∗ y = x (a⊗⇀)∗ y =

∨
〈z1,...,zk〉∈X∗ [(a⊗ x ⇀ z1)⊗ · · · ⊗ (a⊗ zk ⇀ y)] =

=
∨
〈z1,...,zk〉∈X∗

[
ak+1 ⊗ (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)

]
=

=
∨
〈z1,...,zk〉∈X∗ [a⊗ (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)] =

= a⊗
∨
〈z1,...,zk〉∈X∗ (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y) = a⊗ x ⇀∗ y.

The proof of (3.13) is based on (3.12) and the assumption that a is an idempotent element
of L. This proof is done similarly to the first part of the proof of Theorem 56:

x �2 y =
∨
z∈X (z (a⊗⇀)∗ x ⊗ z (a⊗⇀)∗ y) =

=
∨
z∈X (a⊗ z ⇀∗ x ⊗ a⊗ z ⇀∗ y) =

= a2 ⊗
∨
z∈X (z ⇀∗ x ⊗ z ⇀∗ y) = a⊗ x � y.

The proof of (3.14) is very similar and is therefore omitted.

Corollary 59. If a ∈ L is idempotent, then CFL(⇀) ≤ CFL(⇀2) ≤ a→ CFL(⇀).

Proof. Corollary 58 together with (2.6) yields

CFL(⇀2) =
∧

x,y [(x �2 y)→ (x �2 y)] =
∧

x,y [(a⊗ x � y)→ (a⊗ x � y)] ≥
≥
∧

x,y [(a→ a)⊗ (x � y → x � y)] =
∧

x,y [1⊗ (x � y → x � y)] =

=
∧

x,y (x � y → x � y) = CFL(⇀).

The rest can be shown using Theorem 57 and the fact that
(∧

n∈N a
n
)2

= a.

Example 60. Let L be a complete residuated lattice with Gödel structure of truth degrees
[5, 29], i.e., the structure on the real unit interval with ∨ being maximum, ∧ and ⊗ being
both minimum, and → is defined by a → b= b (for a > b) and a → b= 1 otherwise. We
also recall that all elements of L are idempotent.
Let ⇀ be L-relation on X which is depicted in the left part of Figure 3.6. Using direct
computation, we get CFL(⇀) = 0.6. Now, consider the derived L-relation 0.7⊗⇀, which
is depicted in the middle part of Figure 3.6. By Corollary 59, we immediately get 0.6 ≤
CFL(0.7⊗⇀) ≤ 0.7 → 0.6 = 0.6, i.e. CFL(0.7⊗⇀) = 0.6, without its demanding direct
computation.

We now turn our attention to properties of L-relations which result by a-shifts. In
the sequel, we denote by ⇀3 an L-relation which results from ⇀ using an a-shift, i.e.,
⇀3 = a→⇀ for a given a ∈ L.

Theorem 61. For each x,y ∈ X, the following inequalities hold:

x ⇀∗ y ≤ x (⇀3)
∗ y ≤

∧
n∈N a

n → x ⇀∗ y. (3.15)

Proof. The first inequality follows easily since ⇀ ⊆ a→⇀ for each a ∈ L. We now prove
the remaining inequality. Using commutativity and associativity of

∨
, we immediately get

x ⇀∗ y =
∨
〈z1,...,zk〉∈X∗

(
x ⇀ z1⊗ z1 ⇀ z2 ⊗ · · · ⊗ zk ⇀ y

)
=

=
∨
k∈N0

∨
z1,...,zk∈X (x ⇀ z1 ⊗ z1 ⇀ z2 ⊗ · · · ⊗ zk ⇀ y) .
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Figure 3.6: Illustration to Examples 60 and 65.

By applying (2.12) and (2.13), we acquire:

∧
n∈N0

an+1 → x ⇀∗ y ≥
∨
n∈N0

(
an+1 → x ⇀∗ y

)
=

=
∨
n∈N0

[
an+1 →

∨
k∈N0

∨
z1,...,zk∈X (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)

]
≥

≥
∨
n∈N0

∨
k∈N0

∨
z1,...,zk∈X

[
an+1 → (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)

]
.

By identifying the numbers k = n, we get∨
n∈N0

∨
k∈N0

∨
z1,...,zk∈X

[
an+1 → (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)

]
≥

≥
∨
k∈N0

∨
z1,...,zk∈X

[
ak+1 → (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)

]
=

=
∨
k∈N0

∨
z1,...,zk∈X [(a⊗ · · · ⊗ a)→ (x ⇀ z1 ⊗ · · · ⊗ zk ⇀ y)] ≥

≥
∨
k∈N0

∨
z1,...,zk∈X [(a→ x ⇀ z1)⊗ · · · ⊗ (a→ zk ⇀ y)] = x (a→⇀)∗ y = x (⇀3)

∗ y,

which follows using (2.7).

Theorem 62. For each x,y ∈ X, the following inequalities hold:

x � y ≤ x �3 y,≤
(∧

n∈N a
n
)2 → x � y, (3.16)

x � y ≤ x �3 y ≤
(∧

n∈N a
n
)2 → x � y. (3.17)

Proof. The first inequalities in (3.16) and (3.17) can be proved easily using the fact that
⇀ ⊆ a→⇀ for each a ∈ L. The second part of (3.16) follows from Theorem 61 using
(2.6) and (2.13):

x �3 y =
∨
z∈X [z (a→⇀)∗ x ⊗ z (a→⇀)∗ y] ≤

≤
∨
z∈X

[(∧
n∈N a

n → z ⇀∗ x
)
⊗
(∧

n∈N a
n → z ⇀∗ y

)]
≤

≤
∨
z∈X

[(∧
n∈N a

n ⊗
∧
n∈N a

n
)
→ (z ⇀∗ x ⊗ z ⇀∗ y)

]
≤

≤
(∧

n∈N a
n
)2 → ∨

z∈X (z ⇀∗ x ⊗ z ⇀∗ y) =
(∧

n∈N a
n
)2 → x � y.

Finally, the remaining part of (3.17) can be proved analogously.

Theorem 63. CFL(⇀3) ≤
(∧

n∈N a
n
)2 → CFL(⇀).
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Proof. According to Theorem 56 and using the antitony of → in the first argument and
the isotony of → in the second argument, we get

CFL(⇀3) =
∧

x,y∈X (x �3 y → x �3 y) ≤
∧

x,y∈X (x � y → x �3 y) ≤

≤
∧

x,y∈X

[
x � y →

((∧
n∈N a

n
)2 → x � y

)]
.

By applying the equalities (2.4) and (2.10), we further obtain

CFL(⇀3) ≤
∧

x,y∈X

[(∧
n∈N a

n
)2 → (x � y → x � y)

]
=

=
(∧

n∈N a
n
)2 → ∧

x,y∈X (x � y → x � y) =
(∧

n∈N a
n
)2 → CFL(⇀)

which concludes the proof.

As in case of a-multiples, the estimation formulas can be simplified if a is an idempotent
element of L.

Corollary 64. Let a ∈ L be idempotent, then the following inequalities hold:

x(⇀3)
∗y ≤ a→ x ⇀∗ y,

x �3 y ≤ a→ x � y,

x �3 y ≤ a→ x � y,

CFL(⇀3) ≤ a→ CFL(⇀).

Proof. Directly from Theorems 61, 62 and 63 using idempotency of a.

Example 65. Let L be a complete residuated lattice with Gödel structure of truth degrees
(see Example 60 for details). Let ⇀ be L-relation on X which is depicted in the left part
of Figure 3.6. Using the definition of CFL(·), we can compute CFL(⇀) = 0.6. Now, let us
consider the derived L-relation 0.7→⇀, which is depicted in the right part of Figure 3.6.
By Corollary 64, we immediately get CFL(0.7→⇀) ≤ 0.6, which provides a fast estimation
without the need to compute the precise value CFL(0.7→⇀), which is more demanding.
The exact confluence degree of 0.7→⇀ is CFL(0.7→⇀) = 0.6.

3.4 Termination and Related Properties of Fuzzy Relation

This section aims on developing notions related to the termination of fuzzy relations and
investigating their properties. Unlike in the previous sections, there is no indistinguisha-
bility relation taken into account here. Due to our inspiration by the bivalent notions, the
ordinary properties of reductions can be seen as a particular case in our approach, i.e. the
case when the underlying structure of truth degrees is the two-valued Boolean algebra.

The results summarized in this section have been published in [8].

3.4.1 Termination

In this subsection we turn our attention to termination which is considered an important
property of abstract rewriting systems. Intuitively, termination can be seen as a natural
property of “algorithms”, saying that each reduction may terminate after finitely many
steps. We would like to have the same intuitive interpretation of termination in case of
fuzzy relations. Therefore, unlike the notions introduced in the previous sections which
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were naturally graded, termination seems to be a bivalent notion—a reduction either
terminates or not. From the computational point of view, it is desirable that each reduction
that is supposed to be handled algorithmically stops after finitely many steps. Following
these motivations, we introduce several notions of termination and inspect their properties.
We first introduce a new notation. For any sequence x0, . . . , xn of elements from X, let
nt(x0, . . . , xn) ∈ L denote a degree defined by

nt(x0, . . . , xn) =
∨
y∈X re(x0, . . . , xn,y). (3.18)

Remark 66. Following the definition of re(x0, . . . , xn), (3.18) is equivalent to

nt(x0, . . . , xn) = re(x0, . . . , xn)⊗
∨
y∈X(xn ⇀ y).

Hence, nt(x0, . . . , xn) can be seen as a degree to which the sequence x0, . . . , xn can be
extended by an additional element y. If x ⇀ y is interpreted as a degree to which x

reduces to y then nt(x0, . . . , xn) is a degree to which “x0 reduces to x1 and, . . . , and xn−1
reduces to xn, and there is y ∈ X such that xn reduces to y”. If re(x0, . . . , xn) 6= 0 and
nt(x0, . . . , xn) = 0, we may say that x0, . . . , xn cannot be further extended with a nonzero
degree of reduction. In a special case for n = 0, the latter is true if

nt(x0) =
∨
y∈X re(x0,y) =

∨
y∈X(x0 ⇀ y) = 0.

These observations motivate the following definition of termination.

Definition 67. An element x ∈ X has a terminating reduction if there is a finite
sequence x = x0, x1, . . . , xn (n ≥ 0) such that re(x0, . . . , xn) 6= 0, and nt(x0, . . . , xn) = 0.
An element x ∈ X is called irreducible if nt(x) = 0. An element x ∈ X has a strictly
terminating reduction if there is a terminating reduction x = x0, x1, . . . , xn, where xn
is irreducible. An element x ∈ X has a nonterminating reduction if there is an infinite
sequence x = x0, x1, . . . such that for each n ∈ N0, nt(x0, . . . , xn) 6= 0.

Remark 68. (1) The first requirement in the definition of the terminating reduction,
namely re(x0, . . . , xn) 6= 0, postulates that the element x0 can be reduced to the element
xn to a nonzero degree. On the other hand, the second condition, i.e. nt(x0, . . . , xn) = 0,
says that there is no element, which can further extend this reduction.
(2) Using (3.18), condition nt(x) = 0 can be equivalently written as

re(x)⊗
∨
y∈X x ⇀ y = 1⊗

∨
y∈X x ⇀ y =

∨
y∈X x ⇀ y = 0.

Hence, if x is an irreducible element then x ⇀ y = 0 is true for each y ∈ X.
(3) An element x ∈ X has a nonterminating reduction iff there is an infinite sequence
x = x0, x1, . . . such that for each n ∈ N0, re(x0, . . . , xn) 6= 0. Intuitively, the element x

can be reduced infinitely many times.
(4) Each strictly terminating reduction is terminating. The converse claim does not hold.

Example 69. Consider the L-relation ⇀ from Fig. 3.7 and let L be the  Lukasiewicz
structure. The element x0 has a reduction x0x1x2 which is terminating, i.e. nt(x0, x1, x2) =
0. On the other hand, the element x2 is not irreducible since nt(x2) = 0.4 6= 0. Hence,
this reduction is not strictly terminating.

Since termination and strict termination of fuzzy relations have been introduced as bivalent
notions, we should investigate their relationship to the (ordinary) termination of bivalent
relations. The following assertion shows that termination of fuzzy relations can be observed
from their strong 0-cuts.
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〈X, ⇀〉

x0 x1 x2 x3
0.8 0.6 0.4

0.4
0

Figure 3.7: Terminating reduction which is not strictly terminating.

〈X1, ⇀1〉

x0 x1 x2 x3
0.8 0.6 0.4

0.4
0 〈X2, ⇀2〉

x0 x1 x2 x3
0.8 0.6 0.4 > 0

0.4
0

〈X1, 1〉

x0 x1 x2 x3

〈X2, 2〉

x0 x1 x2 x3

Figure 3.8: Counterexample to the converse claim to Theorem 70.

Theorem 70. The following are true for any binary L-relation ⇀ on X.

(i) If an element x has a strictly terminating reduction, then x has a terminating re-
duction in the strong 0-cut  of ⇀.

(ii) If an element x has a nonterminationg reduction, then x has a nonterminating re-
duction in the strong 0-cut  of ⇀.

Proof. (i): Denote by the strong 0-cut of ⇀. Let x have a strictly terminating reduction
x = x0, x1, . . . , xn. By definition, we have re(x0, . . . , xn) 6= 0 and nt(xn) = 0. The
inequality re(x0, . . . , xn) 6= 0 yields (x0 ⇀ x1)⊗ · · · ⊗ (xn−1 ⇀ xn) 6= 0, i.e. xi ⇀ xi+1 6= 0
for each i ∈ {0, . . . , n− 1}. Therefore, in the strong 0-cut  of ⇀, we have xi  xi+1

for each i ∈ {0, . . . , n− 1}, i.e. there is a reduction x = x0, x1, . . . , xn. From nt(xn) = 0
it follows that xn ⇀ y = 0 for each y ∈ X. Thus, there is no element y ∈ X such that
xn  y, i.e. xn is an irreducible element in the strong 0-cut  . Altogether, the reduction
x0, x1, . . . , xn in  is terminating.

(ii): Let x has a nonterminating reduction x = x0, x1, . . . By Remark 68, for each n ∈ N0,
re(x0, . . . , xn) 6= 0. Hence, (x0 ⇀ x1) ⊗ (x1 ⇀ x2) ⊗ · · · 6= 0, i.e. xi ⇀ xi+1 6= 0 is
true for each i ∈ N0. Therefore, for each i ∈ N0, we get xi  xi+1, i.e. x0, x1, . . . is a
nonterminating reduction in the strong 0-cut  .

Example 71. The converse claim to Theorem 70 does not hold in general. Consider ⇀1

and ⇀2 from Fig. 3.8 and their strong 0-cuts  1 and  2, respectively. Suppose that L is
the  Lukasiewicz structure of truth degrees. In these two cases, x0 ∈ X1 has a terminating
reduction x0x1x2x3 in the strong 0-cut but re(x0, x1, x2, x3) = 0, i.e. it is not a reduction
with respect to ⇀1. Furthermore, x0 ∈ X2 has a nonterminating reduction x0x1x2 . . . in
the strong 0-cut but it does not have any nonterminating reduction with respect to ⇀2.

We now introduce (strict) termination as a property of L-relations:

Definition 72. An L-relation ⇀ on X is called terminating if no x ∈ X has a nontermi-
nating reduction. Moreover, ⇀ is called strictly terminating if (i) ⇀ is terminating, and
(ii) for each x ∈ X: if x has a terminating reduction x = x0, . . . , xn then xn is irreducible.

Remark 73. By definition, each strictly terminating L-relation is terminating, the con-
verse does not hold in general (see Example 69).
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Theorem 74. If ⇀ is terminating then each x ∈ X has a terminating reduction.

Proof. The proof is done by showing that x has a terminating reduction y0, . . . ,yk. We
construct the sequence y0, . . . ,yk incrementally provided that in each j-th step we already
have y0, . . . ,yj with re(y0, . . . ,yj) 6= 0.
Put y0 = x. Directly from the definition, re(y0) = 1. Let us have y0, . . . ,yj with
re(y0, . . . ,yj) 6= 0. If nt(y0, . . . ,yj) = 0, we are done for y0, . . . ,yj is a terminating
reduction. In the other case, we have

∨
y∈X re(y0, . . . ,yj ,y) 6= 0, i.e. there is y ∈ X

such that re(y0, . . . ,yj ,y) 6= 0. We can put yj+1 = y. Clearly, we cannot repeat the
above procedure infinitely many times without getting a sequence with nt(y0, . . . ,yk) = 0,
because x does not have any nonterminating reductions.

3.4.2 Inductive Properties and Well-Foundedness

We shall now investigate further properties of fuzzy relations which are closely related
to termination. We are motivated by the fact that in the ordinary case, a relation ter-
minates iff it is well-founded which is iff the relation obeys the principle of Noetherian
induction. In this subsection we first present a generalization of inductive properties and
well-foundedness and then investigate their relationship to our notions of termination. We
conclude the subsection by presenting applications of well-foundedness. Namely, we in-
troduce a notion of a local confluence and prove its relationship to confluence which is
analogous to that known from the ordinary case.

Definition 75. An L-set P ∈ LX is called a property. For any subset B ⊆ X we define
a degree ||P||B ∈ L to which P holds in B by ||P||B =

∧
b∈B P(b). An L-set P ∈ LX is

called an inductive property with the respect to an L-relation ⇀, if∧
y∈X

(
x ⇀ y → P(y)

)
≤ P(x), for each x ∈ X. (3.19)

Remark 76. An inductive property as it is established in Definition 75 is a graded gen-
eralization of the classical inductive property. Indeed, the formula used in the previous
definition corresponds to the first-order predicate formula

(∀x)((∀y)(r(x, y)i p(y))i p(x)), (3.20)

which occurs in the definition of the classical inductive property (denoted by symbol) p on
a set X with the respect to a relation (denoted by symbol) r. If (3.20) is required to be
true to degree 1 in a general complete residuated lattice L, we obtain exactly the concept
from Definition 75. Thus, (3.19) can be read as follows: “In order to prove that x has
property P, it suffices to show that each reduct of x has property P”. A finer reading,
using degrees of truth may be: “The degree to which x has P is at least the degree to
which all reducts of x have P”. Obviously, for L = 2, we obtain the ordinary concept of
an inductive property.

Definition 77. For ∅ 6= B ⊆ X, an element m ∈ B is called ⇀-minimal in B if, for
each x ∈ X, m ⇀ x 6= 0 implies x 6∈ B. Let min(B) = {m ∈ B |m is ⇀-minimal in B}.
⇀ is called well-founded L-relation on X if, for each ∅ 6= B ⊆ X, min(B) 6= ∅.

Remark 78. Well-foundedness is again a generalization of the corresponding ordinary
notion for fuzzy relations. In addition to that, the fact that ⇀ is well-founded can be
observed from its strong 0-cut. Indeed, ⇀ is a well-founded L-relation on X iff each
B ⊆ X has at least one ⇀-minimal element which is true iff each B ⊆ X has at least one
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〈X1, ⇀1〉 x1 x2

x5 x6x3
x4

x7 x8

0.1
0.2

0.8
0.2

0.9 1
0.3

0.5

〈X2, ⇀2〉

x0 x1 x2 x3
0.8 0.6 0.4 0.5

Figure 3.9: Well-founded L-relations.

 -minimal element in the strong 0-cut  of ⇀. This follows directly from the fact that
m ⇀ x 6= 0 is true iff m  x, i.e. iff m is related with x in the strong 0-cut  of ⇀. For
L being 2, Definition 77 yields the classical notion of well-foundedness.

Example 79. Take ⇀1 and ⇀2 from Fig. 3.9. Both ⇀1 and ⇀2 are well-founded. It is
easy to show that every subset of X1 has a ⇀1-minimal element. The L-relation ⇀2 is an
example of a well-founded L-relation on an infinite set. Observe that the well-foundedness
is not influenced by the choice of a structure of truth degrees. The L-relation ⇀1 from
Fig. 3.10 is an example of an L-relation which is not well-founded.

The following theorem generalizes the well-known principle of Noetherian induction:

Theorem 80. Let ⇀ be well-founded. If P is an inductive property then ||P||X = 1.

Proof. Put B = {x ∈ X | P(x) = 1} and assume X − B 6= ∅. The well-foundedness of ⇀
yields that min(X−B) 6= ∅, i.e. there is a ⇀-minimal element m ∈ min(X−B) ⊆ X−B.
Observe that if m ⇀ y = 0, we get m ⇀ y → P(y) = 1, because 0→ a = 1 is true for any
a ∈ L. Suppose that m ⇀ y 6= 0. Since m is a ⇀-minimal element in X −B, m ⇀ y 6= 0
yields y 6∈ X − B, i.e. y ∈ B. By definition of B, we get P(y) = 1. As a consequence,
m ⇀ y → P(y) = 1, because a → 1 = 1 is true for any a ∈ L. Altogether, the equality
m ⇀ y → P(y) = 1 is true for any y ∈ X. Therefore,

∧
y∈X

(
m ⇀ y → P(y)

)
= 1. Since

P is supposed to be an inductive property, 1 =
∧

y∈X
(
m ⇀ y → P(y)

)
≤ P(m), i.e.

P(m) = 1 which violates m ∈ X −B. Thus, we have B = X and hence ||P||X = 1.

We now investigate the relationship between well-foundedness, principle of Noetherian
induction, and termination.

Theorem 81. Each well-founded fuzzy relation is terminating.

Proof. Let ⇀ be well-founded. By contradiction, suppose ⇀ is not terminating, i.e. there
is x ∈ X, which has a nonterminating reduction x = x0, x1, . . . Since B = {xi | i ∈ N0} 6= ∅
and ⇀ is well-founded, there is j ∈ N0 such that xj ∈ min(B). Since x = x0, . . . , xj , . . .
is a nonterminating reduction, from nt(x0, . . . , xj , xj+1) 6= 0 it follows that xj ⇀ xj+1 6= 0,
i.e. we have xj+1 6∈ B by ⇀-minimality of xj which is a contradiction.

Theorem 82. Each strictly terminating fuzzy relation is well-founded.

Proof. The claim follows from the properties of termination of the bivalent relations. If
⇀ is strictly terminating then the corresponding strong 0-cut  is terminating in the
classical sense. This follows from Theorem 70. As a consequence, is well-founded in the
classical sense. By definition, for every subset ∅ 6= Y ⊆ X, there is a  -minimal element
m, i.e. m  x implies x 6∈ Y . Therefore, m ⇀ x 6= 0 implies x 6∈ Y , i.e. m is ⇀-minimal
in Y and ⇀ is well-founded.
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〈X1, ⇀1〉 x0

x1x2

0.9

0.2

0.6

〈X2, ⇀2〉

x0 x1 x2 x3
0.8 0.6 0.4

Figure 3.10: Terminating L-relation which is not well-founded, well-founded L-relation
which is not strictly terminating (L is a  Lukasiewicz structure).

Example 83. The converse claims to Theorem 81 and Theorem 82 do not hold in general.
Counterexamples can be found in Fig. 3.10. For instance, consider ⇀2 from Fig. 3.10 and
the  Lukasiewicz structure of truth degrees. We got that ⇀2 is well-founded and is not
strictly terminating. It is easy to show that every subset of X2 has a ⇀2-minimal element
but terminating reduction x0x1x2 is not strictly terminating.

The following corollary summarizes previous observations on termination of fuzzy relations
and their corresponding strong 0-cuts.

Corollary 84. If L has no zero-divisors then ⇀ is terminating iff ⇀ is strictly termi-
nating iff ⇀ is well-founded iff  is well-founded iff  is terminating.

Proof. The claim follows from the fact that if L has no zero-divisors then re(x0, . . . , xn) 6= 0
and nt(x0, . . . , xn) = 0 mean that, for each y ∈ X, xn ⇀ y = 0. Hence, ⇀ is terminating
strictly. The rest follows from Theorem 82, Theorem 70, and properties of the classical
termination.

Finally, we present an assertion showing the equivalence of well-foundedness, termination,
and Noetherian induction under the assumption of no zero divisors.

Theorem 85. Let L has no zero-divisors. Then the following conditions are equivalent.

(i) ⇀ is well-founded;

(ii) for each inductive property P with respect to ⇀ we have ||P||X = 1;

(iii) ⇀ is terminating.

Proof. “(i)i (ii)”: Apply Theorem 80.

“(ii)i (iii)”: Consider property P ∈ LX such that P(x) = 1 if x does not have a
nonterminating reduction; P(x) = 0 otherwise. We first show that the property P is
inductive, i.e.

∧
y∈X

(
x ⇀ y → P (y)

)
≤ P (x) is true for any x ∈ X. Since P (x) ∈ {0, 1},

it suffices to check the inequality for all x ∈ X such that P(x) = 0. Thus, take any x ∈ X
such that P(x) = 0. By definition of P, x has a nonterminating reduction x, x1, x2, . . .
Obviously, x1 has a nonterminating reduction as well, meaning P(x1) = 0. In addition to
that, x ⇀ x1 6= 0. As a consequence,

x ⇀ x1 → P(x1) = x ⇀ x1 → 0 =
∨
{c ∈ L | x ⇀ x1 ⊗ c ≤ 0}.

Since L has no zero-divisors, x ⇀ x1⊗c ≤ 0 iff x ⇀ x1⊗c = 0 iff c = 0 because x ⇀ x1 6= 0.
Therefore,

∨
{c ∈ L | x ⇀ x1 ⊗ c ≤ 0} = 0, showing x ⇀ x1 → P(x1) = 0. From this we

further get
∧

y∈X
(
x ⇀ y → P (y)

)
= 0, proving

∧
y∈X

(
x ⇀ y → P (y)

)
≤ P (x). Hence,

we have shown that P is an inductive property. Therefore, using Theorem 80, we have
||P||X = 1, i.e. no x ∈ X has a nonterminating reduction, i.e. ⇀ is terminating.

“(iii)i (i)”: Consequence of Corollary 84.
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〈X, ⇀〉 u

v w

x z y

z ′

z ′′

u ⇀ v u ⇀ w

v ⇀∗ x v ⇀∗ z

w ⇀∗ z

w ⇀∗ y

x ⇀∗ z ′ z ⇀∗ z ′

y ⇀∗ z ′′

z ′ ⇀∗ z ′′

Figure 3.11: Illustration for the proof of Theorem 88.

We conclude this subsection with observations on confluent and terminating relations. The
confluence of classical relations has a simpler characterization if the relation in question is
terminating. Namely, there is a notion of a local confluence and each terminating relation
is known to be confluent if and only if it is locally confluent. This characterization is
beneficial since local confluence is much easier to check. We are going to show that in our
setting there is also a notion of local confluence with similar properties.

Definition 86. We define a degree LCFL(⇀) to which ⇀ is locally confluent by
LCFL(⇀) = S(↽ ◦⇀, �). If LCFL(⇀) = 1 we say that ⇀ is locally confluent.

Remark 87. Observe the difference of confluence and local confluence. The only technical
difference is that the definition of LCFL(⇀) involves ↽ ◦ ⇀ instead of � = ↽∗ ◦ ⇀∗.
Clearly, x ↽ ◦ ⇀ y is a degree to which there is z such that z ⇀ x and z ⇀ y. Using
graded subsethood, LCFL(⇀) can be restated as follows:

LCFL(⇀) =
∧

x,y∈X
(∨

z∈X(z ⇀ x ⊗ z ⇀ y) → x � y
)

=

=
∧

x,y,z∈X
(
(z ⇀ x ⊗ z ⇀ y) → x � y

)
.

Since ↽ ◦⇀ ⊆↽∗ ◦⇀∗ = �, we get CFL(⇀) ≤ LCFL(⇀) because → is antitone in the
first argument.

Theorem 88. Let ⇀ be a well-founded L-relation. Then CFL(⇀) = 1 iff LCFL(⇀) = 1,
i.e., ⇀ is confluent iff ⇀ is locally confluent.

Proof. The “i” part of the claim follows from ↽ ◦ ⇀ ⊆ �. In order to prove the “⇐”
part, consider the following property:

P(u) =
∧

x,y∈X
(
(u ⇀∗ x ⊗ u ⇀∗ y)→ x � y

)
.

We first prove that P is an inductive property. The proof is illustrated in Fig. 3.11. Take
arbitrary u ∈ X. If u is irreducible (i.e., u is ⇀-minimal in X) then clearly P(u) = 1.
If u is not irreducible, we can proceed as follows. Assume that P(v) = 1 for each v such
that u ⇀ v 6= 0. We are going to prove that the latter assumption implies P(u) = 1.
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First, notice that u ⇀∗ x⊗u ⇀∗ y ≤ x � y is trivially true if x, y, and u are not distinct.
Indeed, if x = u, we have

u ⇀∗ x ⊗ u ⇀∗ y = 1⊗ u ⇀∗ y = u ⇀∗ y ⊗ 1 = u ⇀∗ y ⊗ y ⇀∗ y ≤
≤
∨
z∈X

(
u ⇀∗ z ⊗ y ⇀∗ z

)
= u � y = x � y.

The other cases are analogous. Thus, consider x 6= u 6= y. Then,

u ⇀∗ x ⊗ u ⇀∗ y =
∨
v∈X(u ⇀ v ⊗ v ⇀∗ x)⊗

∨
w∈X(u ⇀ w ⊗w ⇀∗ y) =

=
∨
v,w∈X(u ⇀ v ⊗ v ⇀∗ x ⊗ u ⇀ w ⊗w ⇀∗ y).

Notice that we can assume that the supremum “
∨
v,w∈X” in the last formula ranges over

all v,w ∈ X such that u ⇀ v 6= 0 and u ⇀ w 6= 0. Indeed, if either u ⇀ v = 0 or
u ⇀ w = 0, we get u ⇀ v ⊗ v ⇀∗ x ⊗ u ⇀ w ⊗w ⇀∗ y = 0, i.e. such v and w are not
essential.
Since ⇀ is locally confluent, u ⇀ v ⊗ u ⇀ w ≤ v � w =

∨
z∈X(v ⇀∗ z ⊗w ⇀∗ z), i.e.

u ⇀∗ x ⊗ u ⇀∗ y ≤
∨
v,w∈X

(∨
z∈X(v ⇀∗ z ⊗w ⇀∗ z)⊗ v ⇀∗ x ⊗w ⇀∗ y

)
=

=
∨
v,w,z∈X(v ⇀∗ z ⊗w ⇀∗ z ⊗ v ⇀∗ x ⊗w ⇀∗ y).

Since u ⇀ v 6= 0, P(v) = 1 yields v ⇀∗ z ⊗ v ⇀∗ x ≤ z � x =
∨
z′∈X(z ⇀∗ z ′ ⊗ x ⇀∗ z ′).

Therefore,

u ⇀∗ x ⊗ u ⇀∗ y ≤
∨
w,z∈X

(∨
z′∈X(z ⇀∗ z ′ ⊗ x ⇀∗ z ′)⊗w ⇀∗ z ⊗w ⇀∗ y

)
=

=
∨
w,z,z′∈X(z ⇀∗ z ′ ⊗ x ⇀∗ z ′ ⊗w ⇀∗ z ⊗w ⇀∗ y) ≤

≤
∨
w,z′∈X(w ⇀∗ z ′ ⊗ x ⇀∗ z ′ ⊗w ⇀∗ y).

Moreover, P(w) = 1, i.e. w ⇀∗ z ′ ⊗w ⇀∗ y ≤ z ′ � y =
∨
z′′∈X(z ′ ⇀∗ z ′′ ⊗ y ⇀∗ z ′′), i.e.

u ⇀∗ x ⊗ u ⇀∗ y ≤
∨
z′∈X

(∨
z′′∈X(z ′ ⇀∗ z ′′ ⊗ y ⇀∗ z ′′)⊗ x ⇀∗ z ′

)
=

=
∨
z′,z′′∈X(z ′ ⇀∗ z ′′ ⊗ y ⇀∗ z ′′ ⊗ x ⇀∗ z ′) ≤

≤
∨
z′′∈X(x ⇀∗ z ′′ ⊗ y ⇀∗ z ′′) = x � y,

showing (u ⇀∗ x ⊗ u ⇀∗ y) → x � y = 1. Since x,y ∈ X have been taken arbitrarily,
we get P(u) =

∧
x,y∈X

(
(u ⇀∗ x ⊗ u ⇀∗ y) → x � y

)
= 1. Hence, assuming P(v) = 1

for each v such that u ⇀ v 6= 0, we have shown P(u) = 1. From the latter observation
we directly obtain

∧
v∈X

(
u ⇀ v → P(v)

)
= 1 = P(u), meaning that P is an inductive

property. Since ⇀ is well founded, we get ||P||X = 1, i.e. (u ⇀∗ x ⊗ u ⇀∗ y) ≤ x � y is
true for all u, x,y ∈ X. Hence, x � y =

∨
u∈X(u ⇀∗ x ⊗ u ⇀∗ y) ≤ x � y is true for all

x,y ∈ X, proving that ⇀ is confluent.

Corollary 89. If L has no zero-divisors then a terminating L-relation ⇀ is confluent iff
⇀ is locally confluent.

Proof. Follows from Corollary 84 and Theorem 88.

3.4.3 Normal Forms

Terminating and confluent relations play a crucial role in abstract rewriting systems be-
cause each element can be rewritten to a unique element in finitely many steps. The
unique element is called a normal form. In this subsection, we present a preliminary study
of normal forms and related issues.
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Definition 90. Let x ∈ X. An element y ∈ X is called a normal form of x if it satisfies
the following property: if x has a terminating reduction x0, . . . , xn then xn = y. The
normal form of x (if it exists) is denoted by nf(x).

Obviously, the normal form nf(x) of x, if it exists, is determined uniquely. We now show
that under the assumption of no zero-divisors each terminating confluent fuzzy relation
has a normal form for any element.

Theorem 91. Let L have no zero-divisors, let ⇀ be terminating and confluent. Then

(i) each x ∈ X has the normal form;

(ii) x ⇀∗ y 6= 0 implies nf(x) = nf(y).

Proof. (i): According to Lemma 74, any x ∈ X has a terminating reduction. Suppose
that x has terminating reductions x = y0, . . . ,yn and x = z0, . . . , zm. Since L has no
zero-divisors, re(y0, . . . ,yn) 6= 0 and re(z0, . . . , zm) 6= 0 yield yn � zm 6= 0. In addition
to that, yn and zm are irreducible (this also is a consequence of the fact that L has no
zero-divisors). Using the fact that ⇀ is a confluence, 0 6= yn � zm ≤ yn � zm. Hence, yn
and zm are convergent to a nonzero degree yn � zm and both yn and zm are irreducible.
This immediately gives yn = zm = nf(x), proving (i).
(ii): Let x ⇀∗ y 6= 0. Then x has a terminating reduction

x = x0, . . . , xi−1, xi, xi+1, . . . , xn = nf(x),

where y = xi. Thus, y has a terminating reduction y = xi, . . . , xn = nf(x). Applying (i),
y has a normal form nf(y) = xn. Therefore, nf(x) = nf(y).

Remark 92. If L has no zero-divisors, nf can be seen as a map nf : X → X which assigns
to each element x from X its normal form nf(x). It is then convenient to consider an
equivalence relation induced by such a map. Namely, we put x ≡nf y iff nf(x) = nf(y).
In the sequel, an equivalence class of ≡nf containing x will be denoted by [x]nf , i.e.

[x]nf = {y ∈ X | nf(x) = nf(y)}.

The following assertion shows how normal forms can be used to decide whether x 
∗ y 6= 0
and to estimate degrees x 
∗ y to which x and y are convertible.

Theorem 93. Let L have no zero-divisors, let ⇀ be terminating and confluent. Then

(i) x 
∗ y =
∨
z∈[x]nf (x ⇀

∗ z ⊗ y ⇀∗ z), and

(ii) x 
∗ y 6= 0 iff nf(x) = nf(y).

Proof. (i): Due to the Theorem 13, ⇀ has the Church-Rosser property, i.e. CR(⇀) = 1.
Theorem 7 yields 
∗ ≈ � = 1, i.e. x 
∗ y = x � y for each x,y ∈ X. By Definition 5 and
using the fact that [x]nf ⊆ X,

x 
∗ y = x � y =
∨
z∈X(x ⇀∗ z ⊗ y ⇀∗ z) ≥

∨
z∈[x]nf (x ⇀

∗ z ⊗ y ⇀∗ z).

To prove the converse inequality, observe that for each z ∈ X with x ⇀∗ z ⊗ y ⇀∗ z 6= 0
we have x ⇀∗ z 6= 0. Using the latter fact, Theorem 91 (ii) yields nf(x) = nf(z), i.e.
z ∈ [x]nf . Since z ∈ X has been taken arbitrarily, we get∨

z∈X(x ⇀∗ z ⊗ y ⇀∗ z) ≤
∨
z∈[x]nf (x ⇀

∗ z ⊗ y ⇀∗ z),
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proving the equality in (i).

(ii): If x 
∗ y 6= 0 then there is z ∈ X such that x ⇀∗ z 6= 0, and y ⇀∗ z 6= 0 by
Theorem 13 and Theorem 7. Furthermore, Theorem 91 (ii) yields nf(x) = nf(z) = nf(y).
Conversely, let nf(x) = nf(y). Then there are reductions x, . . . ,nf(x) and y, . . . ,nf(y)
such that re(x, . . . ,nf(x)) 6= 0 and re(y, . . . ,nf(y)) 6= 0, respectively. Thus, x ⇀∗ nf(x) 6=
0 and y ⇀∗ nf(y) = y ⇀∗ nf(x) 6= 0. Since L has no zero-divisors, x ⇀∗ nf(x) ⊗ y ⇀∗

nf(x) 6= 0 from which we immediately get that x 
∗ y = x � y 6= 0.

We get the following

Corollary 94. Let L have no zero-divisors. Then !∗ = ≡nf , where !∗ is the strong
0-cut of 
∗ and ≡nf is defined as in Remark 92.

Proof. Directly using Theorem 93 (ii).

Remark 95. Theorem 93 and Corollary 94 allow us to decide whether x 
∗ y = 0. If x
and y have the same normal form, x 
∗ y 6= 0 due to Theorem 93 (ii). In that case, if we
wish to get the exact (nonzero) value of the convertibility x 
∗ y, we have to go through
all elements z ∈ [x]nf = [y]nf , i.e. all elements that reduce to nf(x) = nf(y) and compute
the supremum of all x ⇀∗ z ⊗ y ⇀∗ z. Since the equivalence class [x]nf can be large (or
even infinite), we can go over just a subset of [x]nf to obtain a lower estimation of the
convertibility degree x 
∗ y. Hence, normal forms can be used to compute estimates of
degrees x 
∗ y when computing the value directly is expensive.

Note that if L = 2, Theorem 93 (ii) yields x 
∗ y = 1 iff nf(x) = nf(y), which is the
classical property of terminating and confluent relations. In case of L = 2, Theorem 93 (i)
collapses with Theorem 93 (ii) because x 
∗ y = 1 iff there is z ∈ [x]nf such that x ⇀∗

z = 1 and y ⇀∗ z = 1, which is iff nf(x) = nf(y).

Example 96. Consider the L-relation ⇀ on the set X of colors from Fig. 3.12 and let L be
the Goguen structure of truth degrees. This L-relation describes a possible transformation
of a picture color map provided one needs a new indexed color map containing 8 basic
colors: x1 (black), x3 (blue), x7 (green), x9 (cyan), x19 (red), x21 (magenta), x25 (yellow),
and x27 (white). The color xi of each pixel in the picture will be substituted by its normal
form nf(xi). The similarity of an original color xi and the substituted color nf(xi) can be
computed using Theorem 93 (i). Normal forms can be used to obtain a lower estimation
of x 
∗ y. For instance, let x = x11 and y = x23. Since nf(x11) = nf(x23) = x21 and
x21 ∈ [x11]nf , by Remark 95 we have x11 
∗ x23 ≥ x11 ⇀

∗ x21 ⊗ x23 
∗ x21 = 0.1944.

3.5 Conclusions and Open Problems

We have introduced and studied properties of fuzzy relations which are connected to the
idea of rewriting and substituting. The research is motivated by the fact that in many
cases, relations which appear in rewriting systems are fuzzy rather than crisp. For a given
fuzzy reduction relation, we have defined reducibility, convergence, divergence, convertibil-
ity, Church-Rosser property, and confluence and investigated their graded properties. We
have shown that such fuzzy relations have analogous properties and mutual relationship
as in the ordinary case.

We have also introduced the notions mentioned above as properties of a fuzzy relation
on a similarity space. We have presented a reductionist approach considering extensional
closures which enables us to reduce considerations on rewriting over similarity spaces
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Figure 3.12: Color depth reduction.

to rewriting without taking similarities into account. Furthermore, the notions related
to substitutability on generalized pseudometric spaces were introduced and a connection
between these notions and notion on a similarity spaces was established.
Basic similarity issues of confluence and Church-Rosser property of fuzzy relations on
similarity spaces were also studied. The main result is a collection of formulas provid-
ing estimations of convergence, divergence, convertibility, Church-Rosser property, and
confluence degrees.
In addition to that, we have investigated termination, well-foundedness, and Noetherian
induction from the point of view of fuzzy relations. We have outlined normal forms of
fuzzy relations and their application in estimation of convertibility degrees.

Topics that have not been considered include:

• issues of termination of fuzzy relations on similarity and pseudometric spaces as well
as further properties related to rewriting, see [2];

• preservation of properties like confluence by a-cuts;

• relationship to corresponding notions based on other types of compositions of fuzzy
relations [35].
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Chapter 4

Representing Fuzzy Logic
Programs by Graded Attribute
Implications

This chapter shows that the fundamental notions of correct answers and semantic entail-
ment, that appear in FLP and FAL respectively, are mutually reducible. This result may
allow us to transport results from one theory to the other and vice versa. In addition
to the reductions presented in Sections 4.1 and 4.3, we have also extended the existing
Pavelka-style [48] Armstrong-like [1] axiomatization of FAL over infinite attribute sets and
over arbitrary complete residuated lattices which is shown in Section 4.2.

The results summarized in this chapter have been published in [38].

4.1 Representing FAIs by Propositional FLPs

Let L = 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice on the real unit interval. In
this section, we consider FAIs of the form A i B, where both A and B are finite (i.e.,
there are finitely many attributes y ∈ Y such that A(y) > 0 and B(y) > 0). In addition,
we assume that all degrees A(y) and B(y) (y ∈ Y ) are rational in order to satisfy the
assumptions on definite programs from [53]. We call fuzzy attribute implications satisfying
these two conditions finitely presented FAIs. In this section, we show that for each finite
theory T of finitely presented FAIs (i.e., there are only finitely many FAIs which belong to
T to a nonzero degree and all of them are finitely presented) we can find a corresponding
definite program in which the correct answers can be used to describe degrees ||· · ·||T of
semantic entailment of finitely presented FAIs.

Remark 97. Although we are going to prove that for finite theories of finitely presented
FAIs, there exist corresponding definite programs, it is important to understand that only
a fragment of theories in sense of fuzzy attribute logic are covered this way. This is namely
because we have made a restriction on structures of truth degrees. In fuzzy attribute logic,
any complete residuated lattice can be taken for a structure of degrees, whereas in FLP,
one works with (multi-adjoint) structures based on the real unit interval. Second, FAL
admits general infinite theories whereas definite programs in FLP as in ordinary logic
programming are considered finite for computational reasons.

In order to simplify considerations about semantic entailment of FAIs, we utilize the
observation that for each theory T which is considered as an L-set of FAIs, we may find



50 Chapter 4. Representing FLPs by FAIs

an equivalent theory T ′ (i.e., a theory with the same models and thus the same semantic
entailment) which is crisp. According to [12], for T , we may take

T ′ = {Ai T (Ai B)⊗B |T (Ai B)⊗B * A}. (4.1)

The fact that Mod(T ) coincides with Mod(T ′) can be easily shown because c ≤ ||Ai B||M
iff ||A i c⊗B||M = 1 holds for any A,B ∈ LY and c ∈ L. Recall that in (4.1),
T (Ai B)⊗B denotes an L-set which results from L-set B by an a-multiple for a be-
ing T (A i B). Also note that the condition T (A i B)⊗B * A ensures that we do not
put in T ′ inessential formulas which are true in all models to degree 1. The consequent
of formulas in T ′ can further be simplified but we do not discuss the issue here. Anyway,
instead of considering theories as L-sets, we can restrict ourselves only to crisp theories
without any loss of expressive power.
In the subsequent characterization, we use the following construction of a language of
definite programs. We consider a language L with only nullary relation symbols R =
{top, y1, y2, . . . , yk} (i.e., ar(top) = 0 and ar(yi) = 0 for all i = 1, . . . , k). The symbol top
serves a technical role and its purpose is to represent the truth degree 1. The remaining
relation symbols correspond to attributes which appear in the antecedents or consequents
of finitely presented FAIs from T to a nonzero degree. Clearly, R is a finite set since T is
supposed to be finite and there are only finitely many pairwise different attributes in all
finitely presented FAIs in T which belong to antecedents and/or consequents of the FAIs
to nonzero degrees. Notice that the Herbrand base BP of any program P written in L is
equal to R. In addition, we assume that L contains the following logical connectives and
aggregations:

(i) i (interpreted by the residuum → in L),

(ii) c (interpreted by the infimum ∧ in L),

(iii) a unary aggregation ts (interpreted by an idempotent truth-stressing hedge ∗, i.e.
M ](ts(ϕ)) = (M ](ϕ))∗ for each ground formula ϕ),

(iv) for each rational a ∈ (0, 1] a binary aggregation sha called an a-shift aggregation
(interpreted by M ](sha(ϕ,ψ)) = M ](ϕ) ∧ (a → M ](ψ)) for all ground formulas
ϕ,ψ).

Remark 98. Our particular selection of the language will become clear in the next the-
orem. Let us note here that the choice is not the only possible. For instance, one may
introduce a language with unary relation symbols corresponding to attributes and a single
constant or a language with a single relation symbol and constant denoting attributes.
Our choice of the language is mainly to show that counterparts of finite theories of finitely
presented FAIs can be constructed as propositional fuzzy logic programs.

The first observation on the relationship of FAL and FLP is the following:

Theorem 99. For each finite theory T of finitely presented FAIs and a finitely presented
Ai B there is a definite program P such that ||Ai B||T ≥ a iff for each attribute y ∈ Y
such that a⊗ B(y) > 0, the pair 〈a⊗ B(y), ∅〉 is a correct answer for the program P and
atomic formula y.

Proof. We can assume that T is crisp. If it is not, we can take a corresponding crisp
theory given by (4.1). Since all FAIs in T are finitely presented, for any Ai B ∈ T and
arbitrary attribute y ∈ Y , we can consider a rule of FLP

y its
(
shA(z1)(top, z1) c · · · c shA(zn)(top, zn)

)
, (4.2)
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where z1, . . . , zn are exactly the attributes from Y which belong to A to a nonzero degree
provided that A 6= ∅. In the special case of A = ∅, we can let (4.2) be just the fact y.
Notice that (4.2) is a properly defined rule of a definite program written in the language
L as described before. We denote the rule (4.2) by y iA. Moreover, for any finite crisp
T of finitely presented FAIs, we can consider an L-set of rules PT defined by

PT (ϕ) =


1, if ϕ is top,∨
{B(y) |B ∈ LY such that Ai B ∈ T}, if ϕ is y iA,∨
{B(y) |B ∈ LY such that ∅i B ∈ T}, if ϕ is y ,

0, otherwise.

(4.3)

Clearly, PT is a definite program in L in sense of [53]. Indeed, there are only finitely many
rules y iA (and facts) such that PT (y iA) > 0 and all degrees PT (y iA) are rational
since in (4.3), the supremum goes over a finite set of rational degrees.
Our proof continues by observing that ||A i B||T ≥ a iff ||A i a⊗B||T = 1 which is
indeed true (cf. [12] and see the comments after Remark 97). Moreover, the latter identity
holds true iff ||∅ i a⊗B||T∪{∅iA} = 1. Indeed, if ||A i a⊗B||T = 1, then due to the
monotony of the semantic entailment, we can conclude that ||A i a⊗B||T∪{∅iA} = 1,
meaning that S(A,M)∗ ≤ S(a⊗B,M) for each M ∈ Mod(T ∪ {∅i A}) and, in addition,
M ⊇ A, i.e., S(A,M)∗ = 1 which further gives that S(a⊗B,M) = 1 for each M ∈ Mod(T∪
{∅ i A}). This immediately yields S(a⊗B,M) = ||∅ i a⊗B||T∪{∅iA} = 1. Conversely,
if ||∅ i a⊗B||T∪{∅iA} = 1, we exploit the observation that Mod(T ) is an L∗-closure
system [7], i.e., Mod(T ) is closed under arbitrary intersections and a-shifts by fixed points
of the idempotent truth-stressing hedge ∗. In particular case, for any M ∈ Mod(T ), we get
that S(A,M)∗→M ∈ Mod(T ). Recall that S(A,M)∗→M denotes an L-set which results
from M ∈ LY by an a-shift for a being S(A,M)∗. Since A ⊆ S(A,M)∗→M , we can
conclude that S(A,M)∗→M is a model of T ∪ {∅ i A}. Thus, ||∅ i a⊗B||T∪{∅iA} = 1
yields that ||∅ i a⊗B||S(A,M)∗→M = 1, i.e., S(a⊗B,S(A,M)∗→M) = 1 which is true
iff a⊗B ⊆ S(A,M)∗→M iff S(A,M)∗ ≤ S(a⊗B,M) which is true iff ||A i a⊗B||M =
1. Since we have taken M ∈ Mod(T ) arbitrarily, it follows that ||A i a⊗B||T = 1.
Altogether, we have shown that

||Ai B||T ≥ a iff ||∅i a⊗B||T∪{∅iA} = 1. (4.4)

We further prove that ||∅i a⊗B||T∪{∅iA} = 1 iff

a⊗B(y) ≤ ||∅i {1/y}||T∪{∅iA} (4.5)

holds for all y ∈ Y such that a⊗B(y) > 0. But this is indeed true since ||∅i a⊗B||T∪{∅iA}
= 1 iff S(a⊗B,M) = 1 for all M ∈ Mod(T ∪ {∅i A}) which is true iff a⊗B(y) ≤M(y)
for all y ∈ Y and all such M . Since, M(y) can be written as S({1/y},M), the latter
is equivalent to a ⊗ B(y) ≤ S({1/y},M) iff a ⊗ B(y) ≤ ||∅ i {1/y}||M for all M ∈
Mod(T ∪ {∅ i A}) which is equivalent to (4.5). At this point, we have shown that
||Ai B||T ≥ a iff (4.5) holds.

Now it suffices to show that (4.5) is equivalent to M ]
∀(y) ≥ a ⊗ B(y) for all y ∈ Y (such

that a ⊗ B(y) > 0) and all M ∈ Mod
(
PT∪{∅iA}

)
. Since y is an atomic ground formula,

it suffices to show that (4.5) is true iff M(y) ≥ a ⊗ B(y) for all for all y ∈ Y and all
M ∈ Mod

(
PT∪{∅iA}

)
. We prove this claim by showing Mod(T ) = Mod(PT ) for any crisp

finite theory T consisting of finitely presented FAIs and its counterpart PT given by (4.3).

Observe that M ∈ Mod(PT ) iff for each y iA, we have M ]
∀(y

iA) ≥ PT (y iA). If

A 6= ∅, we have by definition M ]
∀(y

iA) = S(A,M)∗ →M(y). If A = ∅, we have

M ]
∀(y) = M(y) = S(∅,M)∗ →M(y) = S(A,M)∗ →M(y). (4.6)
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Hence, in both the cases, M ]
∀(y

iA) ≥ PT (y iA) holds true iff S(A,M)∗ → M(y) ≥
PT (y iA). From (4.3), we have B(y) ≤ S(A,M)∗ → M(y) for all A i B ∈ T , i.e., by
adjointness S(A,M)∗ ≤ B(y) → M(y) for all A i B ∈ T and all y ∈ Y . The latter is
true iff S(A,M)∗ ≤ S(B,M) for all Ai B ∈ T , i.e. iff M ∈ Mod(T ).

We can now conclude the proof as follows. We have observed that for given T and Ai B,
we have ||A i B||T ≥ a iff a ⊗ B(y) ≤ ||∅ i {1/y}||T∪{∅iA} for all y ∈ Y which is true

iff a ⊗ B(y) ≤ M(y) = M ]
∀(y) for all y ∈ Y and all M ∈ Mod

(
PT∪{∅iA}

)
. The latter is

true iff for each y ∈ Y such that a ⊗ B(y) > 0, the pair 〈a ⊗ B(y), ∅〉 is a correct answer
for the program PT∪{∅iA} and atomic formula y.

Considering characterization of degrees ||· · ·||T of semantic entailment of FAIs, we have
the following consequence of Theorem 99:

Theorem 100. For each finite theory T of finitely presented FAIs and a finitely presented
Ai B there is a definite program P such that ||Ai B||T is the greatest degree a ∈ L for
which the following condition holds: for any y ∈ Y , 〈a ⊗ B(y), ∅〉 is a correct answer for
P and any y ∈ Y provided that a⊗B(y) > 0.

Proof. For T and Ai B, consider PT∪{∅iA} as in (4.3) and apply the fact that ||Ai B||T
is the greatest degree a ∈ L such that ||Ai B||T ≥ a.

Therefore, we have shown that for T and A, we can find a propositional fuzzy logic program
from which we can express degrees of semantic entailment of FAIs of the form A i B.
Due to the limitations of FLP, the result is restricted to finite theories consisting of finitely
presented FAIs, and structures of degrees defined on the real unit interval.

Remark 101. Note that regarding [53, Theorem 3], our aggregations ts and sha are
not lower semi-continuous in general. That is, in general one cannot directly apply [53,
Theorem 3] and Theorem 100 to obtain a characterization of ||Ai B||T using computed
answers in FLP. On the other hand, if L is the standard  Lukasiewicz algebra and ∗ is
the identity, then both ts and sha will be interpreted by continuous truth functions, i.e.,
one may use the machinery of computed answers in FLP to deduce the degrees to which
finitely presented FAIs follow from a finite theory of finitely presented FAIs.

4.2 Completeness for FAIs over Infinite Attribute Sets

Before we show the reduction in the opposite direction, we provide a syntactic characteri-
zation of ||· · ·||T for FAIs over infinite sets of attributes and over arbitrary L. An analogous
result has been shown in [12], where we have considered arbitrary L and finite Y . The
limitation to finite Y in [12] was mainly for historical reasons because originally FAIs were
developed as rules extracted from object-attribute data tables, i.e., the sets of attributes
were considered finite. Nevertheless, we show here that the main results from [12] hold
for any infinite Y . In addition to that, we present here the completeness results for a
simplified set of deduction rules.

Let us consider the following deduction rules:

(Ax):
A∪B i A

, (Mul):
Ai B

c∗⊗Ai c∗⊗B
, (Cutω):

Ai B, {B∪C i Di | i ∈ I}
A∪C i

⋃
i∈I Di

,

where A,B,C,Di ∈ LY (i ∈ I), and c ∈ L.



4.2. Completeness for FAIs over Infinite Attribute Sets 53

Remark 102. The first two rules come from [12], the rule (Cutω) is an infinitary rule
saying that “from Ai B and (in general infinitely many) FAIs B∪C i Di, infer A∪C i⋃
i∈I Di”. For |I| = 1, the infinitary (Cutω) becomes the ordinary (Cut) from [12].

A proof from a set T of FAIs (a theory) is defined as a labeled infinitely branching rooted
(directed) tree with finite depth [54]. Denoting by T = 〈l, Z〉 the rooted tree with the root
label l (a FAI) and subtrees from Z, we introduce the following notion:

(i) for each Ai B ∈ T , tuple T = 〈Ai B, ∅〉 is a proof of Ai B from T ,

(ii) if Ti = 〈ϕi, . . . 〉 (i ∈ I) are proofs from T and if ϕ results from ϕi (i ∈ I) by any of
the deduction rules (Ax), (Mul), or (Cutω), then T = 〈ϕ, {Ti | i ∈ I}〉 is a proof of
ϕ from T .

Furthermore, A i B is provable from T , written T ` A i B, if there is a proof Ai B
from T . The degree |A i B|T to which A i B is provable from T is defined by
|Ai B|T =

∨
{c ∈ L |T ` Ai c⊗B}. We can now prove the following characterization:

Theorem 103 (ordinary-style completeness). For any crisp theory T and Ai B,

T ` Ai B iff ||Ai B||T = 1. (4.7)

Proof. Soundness is obvious since both (Ax) and (Mul) are known to be sound (see [12]
for details) and the soundness of (Cutω) can be shown by a similar argument as for the
ordinary (Cut). Namely, if ||Ai B||T = 1 and ||B∪C i Di||T = 1 for all i ∈ I, then for
each M ∈ Mod(T ), we have S(A,M)∗ ≤ S(B,M) and S(B∪C,M)∗ ≤ S(Di,M) for all
i ∈ I. Using the monotony of ∗,

S(A∪C,M)∗ =
(
S(A,M) ∧ S(C,M)

)∗ ≤ (S(B,M) ∧ S(C,M)
)∗

= S(B∪C,M)∗ ≤ S(Di,M)

for all i ∈ I. Hence, S(A∪C,M)∗ ≤
∧
i∈I S(Di,M) = S(

⋃
i∈I Di,M). We therefore have

||A∪C i
⋃
i∈I Di||M = 1 for each M ∈ Mod(T ), showing ||A∪C i

⋃
i∈I Di||T = 1. Thus,

the soundness can be proved by induction on the depth of a proof.
The converse implication of (4.7) is shown indirectly. Assume that T 0 Ai B. We show
there is M ∈ Mod(T ) such that ||A i B||M < 1. We let SAT ⊆ LY be a system of L-sets
defined by SAT = {C ∈ LY |T ` Ai C}. Due to (Ax), SAT is nonempty and due to (Cutω),
SAT has a greatest element. Indeed, for M =

⋃
SAT observe that from Ai A and Ai C

(for all C ∈ SAT ), one infers AiM using (Cutω). Therefore, T ` AiM .
Furthermore, M ∈ Mod(T ) and ||A i B||M < 1 can be shown using T ` A i M by the
same arguments as in the the proof of [12, Lemma 3.5] taking into account the fact that
the ordinary (Cut) is a particular case of (Cutω). We therefore omit the rest of the proof
and refer to [12] for details.

Remark 104. Note that the approach from [12] involves an ordinary (Cut) and an in-
finitary rule (Addω) saying that from Ai Bi (for all i ∈ I), one infers Ai

⋃
i∈I Bi. As

a consequence of Theorem 103, we get that (Cutω) is derivable from (Cut) and (Addω)
and vice versa. The observation on mutual substitutability of the rules does not answer
the question whether the approach from [12] can be extended to infinite Y , however. We
have answered this in Theorem 103 by checking the critical part of the completeness result
which depends on (infinite) Y and L.

The following is a consequence of the ordinary-style completeness:
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Corollary 105 (graded-style completeness). For any theory T and Ai B,

|Ai B|T = ||Ai B||T .

Proof. Consequence of Theorem 103 utilizing the fact ||A i B||T is the supremum of all
c ∈ L such that ||Ai c⊗B||T = 1 and that T can be considered crisp.

Completeness results like Corollary 105 are usually called Pavelka-style completeness re-
sults. We have obtained the result over arbitrary L at the cost of introducing an infinitary
rule, cf. [25, 29, 48].

In addition to the graded completeness of fuzzy attribute logic we have established before,
there is an alternative characterization of entailment degrees using least models. In our
previous papers, we have described a construction of least models and we established the
characterization of degrees of semantic entailment for finite L and Y which was motivated
by solving issue in concept lattices constrained by linguistic hedges [17] where infinite
L and Y are not considered because of computational issues. Again, the results can be
generalized for both L and Y being infinite as we show in the rest of this section.

For any crisp theory T , consider an operator [· · ·]T defined by

[M ]T = M ∪
⋃
{S(A,M)∗⊗B |Ai B ∈ T} (4.8)

for all M ∈ LY . Clearly, M ∈ Mod(T ) iff M is a fixed point of [· · ·]T . Indeed, we have
M = [M ]T iff [M ]T ⊆M which is true iff for all Ai B ∈ T , we have S(A,M)∗⊗B ⊆M ,
meaning S(A,M)∗ ≤ S(B,M), i.e., ||A i B||M = 1 for all A i B ∈ T which is true iff
M ∈ Mod(T ).

Since (4.8) is extensive and monotone, we may apply Tarski fixpoint theorem [52] in its
constructive version [20] to get a closure operator whose fixed points are the fixed points
of [· · ·]T . That is, for arbitrary ordinal number κ, we let

Mκ
T =


M, if κ = 0,[
Mκ−1
T

]
T
, if κ is a successor ordinal,⋃

µ<κM
µ
T , if κ is a limit ordinal,

(4.9)

and let lfpT (M) = Mκ−1
T , where κ is a successor ordinal such that Mκ−1

T = Mκ
T . As a

consequence of the results from [20], lfpT is a closure operator whose fixed points are the
fixed points of (4.8), i.e., the fixed points of lfpT are exactly the models of T . Therefore,
lfpT (M) is the least model of T containing M .

Remark 106. Furthermore, it follows that for each L and Y there is an ordinal µ such
that lfpT (M) = Mµ

T for all M ∈ LY . In general, such µ can be taken as µ = card(Y × L)
which if both Y and L are finite means µ = card(Y ) · card(L) and if either of Y and L is
infinite, it means µ = max(card(Y ), card(L)).

Using least models, we can characterize degrees of semantic entailment:

Theorem 107. For any T and Ai B, we have ||Ai B||T = S
(
B, lfpT (A)

)
.

Proof. By analogous arguments as in [10, Theorem 1] considering a general closure oper-
ator lfpT for arbitrary L and Y . See also [50] for an analogous weaker result.
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4.3 Representing FLPs by FAIs over Herbrand Bases

We now explore the opposite direction of the transformation between definite programs
and theories consisting of fuzzy attribute implications. In this section, we consider L to be
a complete residuated lattice on the real unit interval equipped with ∗ defined by (2.25).
For a definite program P , we consider a theory consisting of FAIs where the set of attributes
is represented by the Herbrand base BP . In general, BP is infinite and therefore the FAIs
are formulas with infinite antecedents and consequents. Note that in the important case
when F consists solely of constants, BP is finite and thus we work with FAIs that can be
understood as formulas in the usual sense.
For any definite program P with Herbrand base BP , we introduce the following notation
which also appears in [53, Definition 4]. For each A ∈ LBP such that A 6= ∅, we put

A◦(χ) =
∨
{P (ψ iξ)⊗A](ξη) | ξη is ground and ψη equals χ}, (4.10)

for all χ ∈ BP . Note that A◦(χ) should be read the following way: “A◦(χ) is a degree to
which P contains a rule ψ iξ such that a ground instance ξη of its tail is true under
A and χ is a ground instance of its head ψ which results by applying η.” Note that
the multiplication ⊗ which appears in (4.10) is the multiplication which is adjoint to the
residuum → interpreting i. In addition, we put

∅◦(χ) =
∨
{P (ψ) |ψη equals χ}. (4.11)

for all χ ∈ BP . Technically, (4.11) can be seen as a special case of (4.10) since facts can
be seen as rules ψ i, we keep the distinction here to emphasize that facts are atomic
formulas whereas rules are compound. Nevertheless, A◦ ∈ LBP for all A ∈ LBP and we
may let TP be the set

TP = {Ai A◦ |A ∈ LBP } (4.12)

of fuzzy attribute implications over BP . The construction of TP ensures that it has the
same models as P :

Lemma 108. Let P be a definite program. Then Mod(P ) = Mod(TP ).

Proof. First, we may use an argument that M ∈ Mod(P ) iff M◦ ⊆ M and ∅◦ ⊆ M .
This is almost immediate and it has already been observed in [53, Theorem 2], we just
distinguish the cases of (4.10) and (4.11). We now proceed by showing both the inclusions
of Mod(P ) = Mod(TP ). Let M ∈ Mod(P ) and take A i A◦ ∈ TP . If A ⊆ M and
A 6= ∅, then by realizing that the operator ◦ is monotone (this is indeed true since all
connectives appearing in a head of a rule are interpreted by monotone functions), we get
that A◦ ⊆ M◦ ⊆ M , i.e., ||A i A◦||M = 1 because ∗ is globalization. In addition,
if A = ∅, then we can conclude ||∅ i ∅◦||M = 1 due to ∅◦ ⊆ M . Since A has been
taken arbitrarily, we get M ∈ Mod(TP ). Now it suffices to show the converse inclusion.
Let M ∈ Mod(TP ). Since M is a model of TP , we have ||∅ i ∅◦||M = 1, meaning
∅◦ ⊆ M and ||M i M◦||M = 1, meaning M◦ ⊆ M which are together equivalent with
M ∈ Mod(P ).

The following theorem exploits Theorem 103 and Lemma 108 and establishes the opposite
reduction to that from Section 4.1.

Theorem 109. For every definite program P there is a set T of FAIs such that for each
atomic formula ϕ and substitution θ there is a crisp Bϕ ∈ LBP so that 〈a, θ〉 is a correct
answer for P and ϕ iff T ` ∅i a⊗Bϕ and a > 0.
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Proof. Let T be defined as in (4.12). For the atomic formula ϕ, we introduce a crisp L-set
Bϕ so that for each ψ ∈ BP ,

Bϕ(ψ) =

{
1, if ψ is a ground instance of ϕθ,
0, otherwise.

(4.13)

By definition, 〈a, θ〉 is a correct answer for P and ϕ iff M ]
∀(ϕθ) ≥ a > 0 for all M ∈

Mod(P ). Using Lemma 108 the condition is true iff M(ϕθη) ≥ a > 0 for all M ∈ Mod(T )
and for all substitutions η such that ϕθη is ground. The latter condition holds true
iff ||∅ i {1/ϕθη}||M ≥ a > 0 for all η such that ϕθη ∈ BP and all M ∈ Mod(T ).
Taking into account (4.13), we get ||∅ i Bϕ||M ≥ a > 0 for all M ∈ Mod(T ) which is
equivalent to ||∅ i a⊗Bϕ||T = 1 and a > 0. Now, using Theorem 103, the latter is true
iff T ` ∅i a⊗Bϕ and a > 0.

Let us comment on the previous result.

Remark 110. (1) In Theorem 109, we have used multiplication ⊗ and logical connective
i without any specification. In fact, since Bϕ is crisp, all ⊗ yield the same a⊗Bϕ, i.e., the
choice of ⊗ is not essential. The same applies to i, it can be any residuated implication,
this is a consequence of having the truth-stressing hedge ∗ as the globalization which
suppresses the role of i and its truth function →, see [14, Theorem 15] for details.
(2) The previous assertion can be seen as an alternative syntactic characterization of
correct answers in fuzzy logic programming. The utilized formulas in A◦ are constructed
from models of definite programs. A problem we consider interesting is to describe more
concise representations of T ◦, i.e., to find a theory which is equivalent to T ◦ from (4.12)
and is not redundant. Classic results related to this issue can be found in [28, 41].
(3) In [53], the author uses various connectives together with the aggregations but, in fact,
the aggregations are more universal and the connectives (conjunctions and disjunctions)
used therein can be seen as binary aggregations. From the proof of Lemma 108, we can
see that the key property of such aggregations is monotony. It is not the case of the
residua (which are antitone in the first argument) but their role is different from the other
connectives since the (symbols of) implications cannot be used in tails of the rules.

The paper [53] does not introduce semantic entailment from definite programs which is
quite usual in the logic programming since its agenda is different from that of general
logic aiming at exploring notions of entailment. At least in case of facts and particular
conjunctions of facts, we can introduce graded semantic entailment and provide its Pavelka-
style characterization based on Theorem 109. For each definite program P and fact ϕ, we
let

||ϕ||P =
∧
M∈Mod(P )M

]
∀(ϕ). (4.14)

As a consequence of Theorem 109, we establish the following characterization.

Corollary 111. For every definite program P there is a set T of FAIs such that for each
fact ϕ there is a crisp Bϕ ∈ LBP such that

||ϕ||P = ||∅i Bϕ||T = |∅i Bϕ|T = S
(
Bϕ, lfpT (∅)

)
. (4.15)

Proof. Let T and Bϕ be defined as in (4.12) and (4.13), respectively. Observe that

||ϕ||P =
∧
M∈Mod(P )M

]
∀(ϕ) =

∧
M∈Mod(T )

∧
χ∈Bϕ

M(χ)

=
∧
M∈Mod(T )

∧
χ∈BP (Bϕ(χ)→M(χ)) = ||∅i Bϕ||T .
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Again, the particular choice of → is not essential since Bϕ is crisp. This follows from
Theorem 103, Theorem 107, and Theorem 109.

Remark 112. (1) Formulas in Corollary 111 can be extended to arbitrary min-conjunc-
tions ϕ1 c · · · c ϕn of n facts in which case it suffices to take Bϕ1c···cϕn =

⋃n
i=1Bϕ and

one can establish an analogous characterization as in the corollary. For other compound
formulas, the situation does not seem to be straightforward and we consider it as an open
problem.
(2) Since Bϕ is crisp, the expressions involved in (4.15) simplify, e.g.

S
(
Bϕ, lfpT (∅)

)
=
∧
χ∈Bϕ

(lfpT (∅))(χ),

which for ϕ being a ground atomic formula yields ||ϕ||T = (lfpT (∅))(ϕ). From the point
of view of FAL, we can view this fact, which is mentioned in the proof of [53, Theorem 3],
as a consequence of the least model characterization of semantic entailment in FAL and
the existing reduction.

4.4 Boolean Case Reduction

It has been observed that entailment of FAIs is reducible to entailment of ordinary attribute
implications using a transformation based on (L-set)-representative [5] subsets of L× Y .
In what follows we assume that ∗ is globalization. Following [5, 9], we can use the fact
that

||Ai B||T = 1 iff bT c |= bAci bBc, (4.16)

where

bMc = {〈y, a〉 ∈ Y × L | a ≤M(y)}, (4.17)

bT c = {bAci bBc |Ai B ∈ T} (4.18)

for any M ∈ LY and any crisp theory T and bT c |= bAc i bBc denotes the ordi-
nary semantic entailment of attribute implications. Notice that since all bAc, bBc, and
the formulas in bT c are crisp, we can view them as their ordinary counterparts. Hence,
(4.16) shows that under globalization the semantic entailment of FAIs to degree 1 can be
characterized by an ordinary semantic entailment of ordinary attribute implications [24].
Therefore, by a combination of our observations in Section 4.3 with (4.16), we may find a
counterpart of a fuzzy logic program expressed by ordinary attribute implications:

Corollary 113. For every definite program P there is a set T of attribute implications
such that for each atomic formula ϕ and substitution θ there is Cϕ ⊆ BP ×L so that 〈a, θ〉
is a correct answer for P and ϕ iff T |= ∅i Cϕ and a > 0.

Proof. Take T = bTP c, where TP is given by (4.12) and let Cϕ = ba⊗Bϕc, where Bϕ
is given by (4.13). Now, apply Theorem 109, Theorem 103 (for L being a two-element
Boolean algebra) together with (4.16).

Further characterizations derived from Corollary 113 and Corollary 111 are possible. For
instance:

||ϕ||P =
∨{

a ∈ L | bTP c ` ∅i ba⊗Bϕc
}

=
∨{

a ∈ L | ba⊗Bϕc ⊆ lfpbTP c(∅)
}
,
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where lfpbTP c(∅) is the least model of bTP c in the usual sense and can be seen as a special
case of the operator from Section 4.2 for L being the two-element Boolean algebra. Anal-
ogously, ` is the ordinary provability based on (Ax) and (Cutω) with L-sets replaced by
ordinary sets in which case the rules become the ordinary (but infinitary) Armstrong-rules.

4.5 Illustrative Examples

This section shows some illustrative examples of the reductions introduced in Sections 4.1,
Section 4.3, and Section 4.4.

Example 114. Let L be the standard  Lukasiewicz structure of truth degrees, i.e., a
complete residuated lattice on the unit interval with its genuine ordering ≤ and adjoint
operations ⊗, → defined by a⊗ b= max(0, a+ b− 1) and a→ b= min(1, 1− a+ b). Let ∗

be the identity.
Furthermore, consider a set of attributes of cars Y ={lA, lM , hAT , hFE , hP} which mean:
“low age”, “low mileage”, “automatic transmission”, “high fuel economy”, and “high
price” respectively. Let T be a set containing the following FAIs over Y :{

0.7/lA, 0.9/lM , 0.4/hAT
}
i
{
0.6/hFE , 0.9/hP

}
,{

0.8/lA
}
i
{
0.7/lM

}
.

Using Theorem 99, we can find a FLP PT that corresponds to FAIs from T . The program
PT will contain the following rules:

hFE
0.6its

(
sh0.7(top, lA) c sh0.9(top, lM ) c sh0.4(top, hAT )

)
,

hP
0.9its

(
sh0.7(top, lA) c sh0.9(top, lM ) c sh0.4(top, hAT )

)
,

lM
0.7its

(
sh0.8(top, lA)

)
,

top
1 i.

Obviously, the aggregator ts interpreted by identity can be omitted. Furthermore, all
aggregations interpreting sha(y, z) as well as the function ∧ interpreting conjunctor c are
continuous in this case. Thus, we can use [53, Theorem 3] and Theorem 100 to characterize
||A i B||T using computed answers for program PT∪{∅iA} and queries y ∈ Y with
B(y) > 0.
For example, a user asks a question “How much expensive are quite new cars with au-
tomatic transmission?”, i.e., more precisely “To what degree a ∈ L, is {0.6/lA, 1/hAT} i
{1/hP} true in T?”. To get the answer, we first extend PT to PT∪{∅iA} by adding facts

lA
0.6iand hAT

1 ito the program. Then, we can easily compute an answer to query hP
using the usual admissible rules of FLPs [53] (all substitutions are ∅):

hP,

0.9⊗
(
sh0.7(top, lA) c sh0.9(top, lM ) c sh0.4(top, hAT )

)
,

0.9⊗
(
sh0.7(top, lA) c sh0.9(top, 0.7⊗ sh0.8(top, lA)) c sh0.4(top, hAT )

)
,

0.9⊗
(
sh0.7(top, 0.6) c sh0.9(top, 0.7⊗ sh0.8(top, 0.6)) c sh0.4(top, 1)

)
,

0.9⊗
(
0.7→ 0.6 ∧ 0.9→ (0.7⊗ (0.8→ 0.6)) ∧ 0.4→ 1

)
,

0.5.

Using [53, Theorem 3], Theorem 100 and the computed answer 〈0.5, ∅〉, we immediately
get ||{0.6/lA, 1/hAT}i {1/hP}||T = 0.5.
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Example 115. Let L={0, 0.1, 0.2, . . . , 0.9, 1} be a chain of 11 elements (truth degrees)
equipped with  Lukasiewicz 〈⊗L,←L〉 and Gödel 〈⊗G,←G〉 pair of truth functions.

We define a language for a simple fuzzy logic program describing properties of hotels and
their suitability for a sport fan as follows. Let R={near , cost , suitable} with ar(near) = 2,
ar(cost) = 1 and ar(suitable) = 1. The meanings of these predicates are “locations are
near”, “(accommodation) cost is low” and “(accommodation) is suitable”. Further, let
F ={hotel, center, stadium} where ar(hotel) = ar(center) = ar(stadium) = 0. These constants
represent a particular hotel, the stadium and the city center. For simplicity, we con-
sider only one hotel here. In order to make the example concise, we also use sorts (or
types) of constants and variables in this example, which is quite usual in fuzzy logic pro-
gramming [53]. This way, we can specify that all constants in F are locations, but only
hotel can be used for accommodation. Thus, atomic formulas cost(stadium), cost(center),
suitable(stadium) and suitable(center) does not exist in our language. The Herbrand base
of this language is obviously

BP = {near(hotel, hotel),near(hotel, center),near(hotel, stadium),

near(center, hotel),near(center, center),near(center, stadium),

near(stadium, hotel),near(stadium, center),near(stadium, stadium),

cost(hotel), suitable(hotel)} .

Now, we consider the following fuzzy logic program P using the given language and struc-
ture of truth degrees.

near(hotel, center)
0.8i

near(stadium, center)
0.6i

cost(hotel)
0.7i

near(X,X)
1 i

near(X,Y)
1 inear(Y,X)

near(X,Z)
0.7i

L near(X,Y) cL near(Y,Z)

suitable(X)
0.8i

L avg(near(X, stadium) cG near(X, center), cost(X))

where i

L is interpreted by ←L, cL by ⊗L, cG by ⊗G and avg by rounded arithmetic
average.

Using the construction from Section 4.3, we get a theory TP of FAIs whose models are
exactly models of P . First, we construct ∅◦ by (4.11):

∅◦=
{
1/near(hotel, hotel), 0.8/near(hotel, center), 1/near(center, center),

0.6/near(stadium, center), 1/near(stadium, stadium), 0.7/cost(hotel)
}
.
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Then, for an arbitrary L-set A on BP , we get the corresponding A◦ by (4.10).

A= {a1/near(hotel, hotel), a2/near(hotel, center), a3/near(hotel, stadium),
a4/near(center, hotel), a5/near(center, center), a6/near(center, stadium),
a7/near(stadium, hotel), a8/near(stadium, center), a9/near(stadium, stadium),
a10/cost(hotel), a11/suitable(hotel)}

A◦=
{
b1/near(hotel, hotel), b2/near(hotel, center), b3/near(hotel, stadium),

b4/near(center, hotel), b5/near(center, center), b6/near(center, stadium),
b7/near(stadium, hotel), b8/near(stadium, center), b9/near(stadium, stadium),

b10/suitable(hotel)
}

where a1, . . . , a11 ∈ L are arbitrary elements such that there is some ai > 0 and b1, . . . , b10 ∈
L can be computed as follows:

b1 =
∨
{a2 ⊗L a4 ⊗L 0.7, a3 ⊗L a7 ⊗L 0.7, a1},

b2 =
∨
{a1 ⊗L a2 ⊗L 0.7, a2 ⊗L a5 ⊗L 0.7, a3 ⊗L a8 ⊗L 0.7, a4},

b3 =
∨
{a1 ⊗L a3 ⊗L 0.7, a2 ⊗L a6 ⊗L 0.7, a3 ⊗L a9 ⊗L 0.7, a7},

b4 =
∨
{a4 ⊗L a1 ⊗L 0.7, a5 ⊗L a4 ⊗L 0.7, a6 ⊗L a7 ⊗L 0.7, a2},

b5 =
∨
{a4 ⊗L a2 ⊗L 0.7, a6 ⊗L a8 ⊗L 0.7, a5},

b6 =
∨
{a4 ⊗L a3 ⊗L 0.7, a5 ⊗L a6 ⊗L 0.7, a6 ⊗L a1 ⊗L 0.7, a8},

b7 =
∨
{a7 ⊗L a1 ⊗L 0.7, a8 ⊗L a4 ⊗L 0.7, a9 ⊗L a7 ⊗L 0.7, a3},

b8 =
∨
{a7 ⊗L a2 ⊗L 0.7, a8 ⊗L a5 ⊗L 0.7, a9 ⊗L a8 ⊗L 0.7, a6},

b9 =
∨
{a7 ⊗L a3 ⊗L 0.7, a8 ⊗L a6 ⊗L 0.7, a9},

b10 =

⌊
(a3 ⊗G a2) + a10

2

⌋
.

The theory TP consist of 121 (|BP | · |L|) FAIs: ∅i ∅◦ and all possible Ai A◦.
By the technique described in Section 4.4, we can also compose a crisp theory of AIs bTP c.
From ∅i ∅◦ we get b∅ci b∅◦c where

b∅c= {〈near(hotel, hotel), 0〉, 〈near(hotel, center), 0〉, 〈near(hotel, stadium), 0〉,
〈near(center, hotel), 0〉, 〈near(center, center), 0〉, 〈near(center, stadium), 0〉,
〈near(stadium, hotel), 0〉, 〈near(stadium, center), 0〉,
〈near(stadium, stadium), 0〉, 〈cost(hotel), 0〉, 〈suitable(hotel), 0〉} ,

b∅◦c= {〈near(hotel, hotel), 0〉, 〈near(hotel, hotel), 0.1〉, . . . , 〈near(hotel, hotel), 1〉,
〈near(hotel, center), 0〉, . . . , 〈near(hotel, center), 0.8〉,
〈near(hotel, stadium), 0〉, 〈near(center, hotel), 0〉,
〈near(center, center), 0〉, . . . , 〈near(center, center), 1〉,
〈near(center, stadium), 0〉, 〈near(stadium, hotel), 0〉,
〈near(stadium, center), 0〉, . . . , 〈near(stadium, center), 0.6〉,
〈near(stadium, stadium), 0〉, . . . , 〈near(stadium, stadium), 1〉,
〈cost(hotel), 0〉, . . . , 〈cost(hotel), 0.7〉} .
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In the same way, we can construct bAci bA◦c form each Ai A◦.

bAc= {〈near(hotel, hotel), 0〉, . . . , 〈near(hotel, hotel), a1〉,
〈near(hotel, center), 0〉, . . . , 〈near(hotel, center), a2〉,
. . . ,

〈suitable(hotel), 0〉, . . . , 〈suitable(hotel), a11〉, }
bA◦c= {〈near(hotel, hotel), 0〉, . . . , 〈near(hotel, hotel), b1〉,

. . . ,

〈near(stadium, stadium), 0〉, . . . , 〈near(stadium, stadium), b9〉,
〈cost(hotel), 0〉,
〈suitable(hotel), 0〉, . . . , 〈suitable(hotel), b10〉, }

The theory bTP c of boolean AIs also consist of b∅ci b∅◦c and all bAci bA◦c.

Finally, we use our results from Section 4.1 to create a crisp logic program PbTP c cor-
responding to bTP c as well as to TP and to the original fuzzy logic program P . From
b∅ci b∅◦c we get the following formulas of PbTP c:

top
1⇐

〈near(hotel, hotel), 0〉 1⇐ ts(sh1(top, 〈near(hotel, hotel), 0〉) c . . .
· · · c sh1(top, 〈suitable(hotel), 0〉)),

. . .

〈near(hotel, hotel), 1〉 1⇐ ts(sh1(top, 〈near(hotel, hotel), 0〉) c . . .
· · · c sh1(top, 〈suitable(hotel), 0〉)),

〈near(hotel, center), 0〉 1⇐ ts(sh1(top, 〈near(hotel, hotel), 0〉) c . . .
· · · c sh1(top, 〈suitable(hotel), 0〉)),

. . .

〈near(hotel, center), 0.8〉 1⇐ ts(sh1(top, 〈near(hotel, hotel), 0〉) c . . .
· · · c sh1(top, 〈suitable(hotel), 0〉)),

. . .

〈cost(hotel), 0.7〉 1⇐ ts(sh1(top, 〈near(hotel, hotel), 0〉) c . . .
· · · c sh1(top, 〈suitable(hotel), 0〉)).
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Similarly, we get other rules of PbTP c from each bAci bA◦c:

〈near(hotel, hotel), 0〉 1⇐ ts(sh1(top, 〈near(hotel, hotel), a1〉) c . . .
· · · c sh1(top, 〈suitable(hotel), a11〉)),

. . .

〈near(hotel, hotel), b1〉
1⇐ ts(sh1(top, 〈near(hotel, hotel), a1〉) c . . .
· · · c sh1(top, 〈suitable(hotel), a11〉)),

〈near(hotel, center), 0〉 1⇐ ts(sh1(top, 〈near(hotel, hotel), 0〉) c . . .
· · · c sh1(top, 〈suitable(hotel), 0〉)),

. . .

〈near(hotel, center), b2〉
1⇐ ts(sh1(top, 〈near(hotel, hotel), a1〉) c . . .
· · · c sh1(top, 〈suitable(hotel), a11〉)),

. . .

〈cost(hotel), b10〉
1⇐ ts(sh1(top, 〈near(hotel, hotel), a1〉) c . . .
· · · c sh1(top, 〈suitable(hotel), a11〉)).

All these rules can be further simplified. Note that the aggregator sh1 (interpreted by
1-shift, i.e. identity) can be obviously omitted. Moreover, the conjunctor c performs just
as a boolean conjunction for crisp values and ts (interpreted by globalization here) is also
indistinguishable from identity when applied on crisp values. Altogether, PbTP c can be
seen as a boolean logic program containing the following rules for all a1, . . . , a11 ∈ L such
that there is some ai > 0.

〈near(hotel, hotel), 0〉 ⇐ 〈near(hotel, hotel), 0〉, . . . , 〈suitable(hotel), 0〉
. . .

〈near(hotel, hotel), 1〉 ⇐ 〈near(hotel, hotel), 0〉, . . . , 〈suitable(hotel), 0〉
〈near(hotel, center), 0〉 ⇐ 〈near(hotel, hotel), 0〉, . . . , 〈suitable(hotel), 0〉

. . .

〈near(hotel, center), 0.8〉 ⇐ 〈near(hotel, hotel), 0〉, . . . , 〈suitable(hotel), 0〉
. . .

〈cost(hotel), 0.7〉 ⇐ 〈near(hotel, hotel), 0〉, . . . , 〈suitable(hotel), 0〉
〈near(hotel, hotel), 0〉 ⇐ 〈near(hotel, hotel), a1〉, . . . , 〈suitable(hotel), a11〉

. . .

〈near(hotel, hotel), b1〉 ⇐ 〈near(hotel, hotel), a1〉, . . . , 〈suitable(hotel), a11〉
〈near(hotel, center), 0〉 ⇐ 〈near(hotel, hotel), a1〉, . . . , 〈suitable(hotel), a11〉

. . .

〈near(hotel, center), b2〉 ⇐ 〈near(hotel, hotel), a1〉, . . . , 〈suitable(hotel), a11〉
. . .

〈cost(hotel), b10〉 ⇐ 〈near(hotel, hotel), a1〉, . . . , 〈suitable(hotel), a11〉

Further, we add the “basic” facts to PbTP c to get a boolean logic program which is equiv-
alent to a given fuzzy logic program P . For each y ∈ BP , we add a fact 〈y, 0〉 to PbTP c. In
this particular case, the “basic” facts are 〈near(hotel, hotel), 0〉, 〈near(hotel, center), 0〉,. . . ,
〈suitable(hotel), 0〉.
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4.6 Conclusions

We have shown that fuzzy attribute implications (in sense of Bělohlávek and Vychodil)
and fuzzy logic programs (in sense of Vojtáš) are mutually reducible (with some limita-
tions to structures of degrees) and correct answers for fuzzy logic programs and queries
can be described via semantic entailment of fuzzy attribute implications and vice versa.
Furthermore, we have shown a complete Pavelka-style axiomatization for fuzzy attribute
logic (FAL) over arbitrary L and infinite sets of attributes using a new deduction system
containing an infinitary cut. Together with the reduction we have shown in the paper, this
gives us a new syntactic characterization of correct answers in fuzzy logic programming
(FLP). The results have shown a new theoretical insight and a link of two branches of rule-
based reasoning methods. Future research will focus on various other issues interrelating
FLP and FAL.
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