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ABSTRACT
Artificial spin systems have emerged as a promising platform for studying in real space
and harnessing exotic states of matter. This diploma thesis investigates the unique
properties of a specific artificial spin system known as the shakti ice magnet. The shakti
ice magnet is a two-dimensional arrangement of interacting nano-magnets, exhibiting
intriguing magnetic behaviour.
This research aimed at characterising its behaviour and its ability to be mapped onto
the seminal square ice in which interesting Coulomb physics is expected. A combination
of experimental measurements and numerical simulations was employed to achieve these
objectives. Experiments were based on MFM measurements to determine the magnetic
configuration of samples containing lithographically prepared shakti lattices.

KEYWORDS
artificial spin systems, artificial magnetic spin systems, shakti lattice, vertex model,
magnetic force microscopy, spin dynamics, Coulomb phase.

ABSTRAKT
Umělé spinové systémy se staly slibnou platformou pro studium nízkoenergetických stavů
v reálném prostoru. Tato diplomová práce zkoumá jedinečné vlastnosti specifického umě-
lého spinového systému známého jako ledový magnet shakti. Ledový magnet shakti je
dvourozměrné uspořádání interagujících nano-magnetů, projevujících zajímavé magne-
tické chování.
Tato studie si klade za cíl charakterizovat chování ledového magnetu shakti a jeho schop-
nost být mapován na fundamentální čtvercový spinový led, kde se očekává projevení za-
jímavé Coulombovské fyziky. K dosažení těchto cílů byla využita kombinace experimen-
tálních měření a numerických simulací. Experimenty byly založeny na měření magnetické
silové mikroskopie pro stanovení magnetické konfigurace vzorků obsahující litograficky
připravené shakti mřížky.

KLÍČOVÁ SLOVA
umělý spinový systém, umělý magnetický spinový systém, mřížka shakti, vertexový mo-
del, mikroskopie magnetických sil, spinový dynamika, Coulombova fáze.
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1 Introduction
In this work, I focused on a special area of condensed matter physics consisting of
the analysis of artificial frustrated spin systems. The phenomenon of frustration,
such as frustration in water ice between oxygen and hydrogen atoms, has led scien-
tists to develop other approaches to studying the properties of this exotic physics.
For this purpose, artificial magnetic systems have been developed that mimic this
phenomenon observed in nature. Frustration in the system is meditated by magnetic
interactions between nanomagnets produced by lithographic techniques.

These nano-magnets can be arranged in different geometries that provide differ-
ent system properties and behaviour. The work on my diploma thesis consisted of
exploring several geometries with an emphasis on the situation where nanomagnets
are placed on a shakti lattice.

In these systems, it is possible to observe an interesting physics. When several
conditions are met, the system can be in the lowest energy state, the ground state,
and at the same time, it can be disordered. When the system is in this exotic
state, we can call it a spin-liquid or Coulomb phase. Just above the ground state,
when excitations begin to appear, another phenomenon can be studied. Under these
conditions, the excitations will behave like electrostatically charged free particles.
These excitations, also called monopoles for their charge properties, interact as
positively or negatively charged Coulomb-like particles. They can repel or attract
each other, but their origin is not electrostatic but purely magnetic.

In recent years, scientific work on the shakti lattice has been published and
created another branch of frustrated magnetic systems. In a theoretical article,
Chern et al. describe a very interesting connection between the ground state of the
shakti lattice and a spin-liquid phase on a square lattice. In another publication,
Gilbert et al. confirm this theory experimentally and claims that the disordered
state of spin-liquid can be observed even above the ground state.

The goal of this work is to carefully reanalyse the experiments done by Gilbert
et al. with a new approach and study the ice physics in the shakti lattice. Also,
no magnetic monopoles were mentioned in the previous works that are inextricably
linked with the Coulomb phase. The physics of monopoles and their impact on the
whole shakti system will be presented.
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2 Scientific background

2.1 Frustrated systems in nature
Frustration is a natural feature of many systems in nature. These systems are not
able to satisfy all interactions at the same time [18]. The history of frustrated
systems dates back to the 1930s when physicists attempted to clarify the non-zero
entropy of water ice at cryogenic temperatures [13]. In 1935, Linus Pauling came
up with a model describing these findings [29]. According to this model, the oxygen
atom is surrounded by four hydrogens, where two hydrogens are bound to oxygen
by a stronger bond than the other two hydrogens. This results in a situation where
two hydrogens are always closer to the oxygen and two further away. The schematic
of this atom arrangement can be seen in figure 2.1.

a) b)

Fig. 2.1: a) Schematic of a water molecule in the tetrahedral coordination of the
ice structure. Oxides are depicted by open circles and protons by filled circles. The
position of the proton is located by displacement vectors that occupy a lattice of
linked tetrahedra. b) In spine ice the displacement vectors are replaced by Ising
spins occupying the pyrochlore lattice. Adapted from [4].

One can imagine that the position of these hydrogen atoms can be expressed by
an arrow (or by a spin) where the close proximity of the hydrogen near the oxygen
atom corresponds to the head of the arrow and the more distant hydrogen corre-
sponds to the tail of the arrow. Now a problem of the position is transferred to a spin
model problem. During the second half of the 20th century, several two-dimensional
models were introduced and solved by Lieb [19]. Now it is more appropriate to talk
about vertex models because these models fully describe the whole system [1].

In 1997, Harris introduced other materials where frustration also occurs. These
materials, such as Ho2Ti2O7 [15] and Dy2Ti2O7 [5], are rare-earth materials with
the same ice model able to describe the physics of the atomic magnetic moments in
these compounds as in water ice and its hydrogen positions. However, this approach
could not provide information about each magnetic moment orientation, but only
the overall results of the bulk sample. This and other disadvantages led to a new
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branch of frustrated systems studies where local information and easier measurement
processes were present.

2.2 Frustrated artificial systems
For the purpose of approaching these exotic systems, artificial magnetic systems have
been developed. Frustration in the system is meditated by magnetic interactions be-
tween nano-magnets produced by lithographic techniques [39]. These nano-magnets
can be arranged in several geometries that provide different system properties and
behaviours. By tuning these parameters, one can design the system properties and
probe these systems with a lab-on-chip approach.

In the beginning, the water ice structure has been the inspiration for geometries
in artificial systems. Hydrogen atoms and their position between two oxygen atoms
in water ice at low-temperature form a tetrahedral lattice with shared corners. By
projecting corner-shared tetrahedral lattice in a plane one can obtain two funda-
mental geometries used in frustrated artificial systems - the square lattice [24] and
the kagome lattice.

These two geometries differ especially in their coordination number, i.e. by
the number of nano-magnets that interact in a single vertex and their orientation
in a lattice. In a classical square lattice, the interaction is among four magnets
(coordination number is 𝑧 = 4) and in a kagome lattice is among three magnets
(coordination number is 𝑧 = 3). In this thesis, more focus will be on a classical
square lattice which is fundamental for other geometry called shakti.

2.3 Classical square lattice
One of the most basic geometric arrangements is a classical square lattice (CSL).
In this geometry, one can observe competition between the coupling strengths when
the interactions between the first and second neighbours are ferromagnetic. This
kind of system can be described by a vertex model, which was theoretically solved
for specific cases by Lieb [19, 20, 21].

In this case, the coupling strength is provided by magnetostatic interaction be-
tween nano-magnets fabricated of permalloy which are single domains [39, 40]. Thus
we can assign for such a magnet an orientation of its magnetization which we depict
as a pseudo-spin (or an Ising variable). This nano-magnet is creating a magnetic
stray field that can affect other magnets in its surrounding. In figure 2.2b one can
see four nano-magnets in a square geometry and their spins that are aligned with
the stray field coming out of the first magnet on the left side of the figure. From
the point of view of the first magnet, the other ones are aligned and the system
is in the lowest energy. But considering other nano-magnets one can see that just
one nano-magnet is aligned with its stray field but the other two magnetizations
are in opposite directions. In this organization, the system is frustrated and the
lowest energy of the vertex must be a compromise among all the magnets. How this
compromise will look like will be dependent on the coupling strength between the
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a) b) c)

Fig. 2.2: a) The square lattice. b) The four magnets create a vertex where the
orientation of other magnets is aligned with the leftmost nano-magnet but not with
the rightmost nano-magnet. This creates frustration in the vertex. c) Interactions
between first (𝐽1) and second (𝐽2) neighbours.

first and second neighbours, but always satisfy the "2in/2out" ice rule introduced by
Bernal and Fowler [2].

2.3.1 Energy of the 16 vertex model
In this system, only the dipolar interactions between the first and the second nearest
neighbours are considered. The Hamiltonian ℋ describing such a system can be
written as

ℋ = −1
2

∑︁
⟨⟨𝑖𝑗⟩⟩

𝐽𝑖𝑗𝜎𝑖𝜎𝑗, (2.1)

where 𝐽𝑖𝑗 is positive coupling strength for the first and the second nearest neighbour
and 𝜎𝑖 and 𝜎𝑗 are scalars giving the spin’s orientation along this direction. The
expression < 𝑖𝑗 > means that summation is made over the nearest neighbouring
spins. Because 𝜎𝑖 = ±1 the spins can be considered as Ising variables.

Thanks to spin-reversal symmetry one can divide the 16 vertices into four groups.
These groups (or types) are not characterised just by their symmetry but also thanks
to their energy. When one considers interactions with just first and second neigh-
bours the energies can be calculated by equations 2.2–2.5.

𝐸I = −4𝐽1 + 2𝐽2, (2.2)
𝐸II = −2𝐽1 + 2𝐽1 − 2𝐽2 = −2𝐽2, (2.3)
𝐸III = −2𝐽1 + 2𝐽1 − 𝐽2 + 𝐽2 = 0, (2.4)
𝐸IV = +4𝐽1 + 2𝐽2, (2.5)

where the 𝐽1, resp. 𝐽2, are coupling strengths of the first, resp. the second nearest
neighbour. In this definition of vertex energies the coupling strengths are posi-
tive thus the (−) sign corresponds to favourable and the (+) sign corresponds to
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unfavourable alignment. Another aspect of this energy level ordering can be seen
when one assumes the first neighbour coupling strength is stronger than that of the
second one (𝐽1 > 𝐽2), thus the energies of corresponding types are higher for each
type and the system tends to form type I vertices everywhere.

2.3.2 Spin liquid phase in CSL

type I

type II

type III

type IV

a) b)

Fig. 2.3: a) Example of a typical spin-liquid state composed of a mixture of type I
and type II vertices. In all spin configurations, the colour of spins (arrows) depends
on the orientation by the next convention. Horizontal spins pointing to the right
(resp. to the left) are blue (resp. red). Vertical spins pointing upward (resp. down-
ward) are blue (resp. red). This convention helps to directly observe line ordering
(typical example can be seen in figure 3.7b). Type I vertices are portrayed by light
green and blue squares. Regions, where type I vertices are connected together, are
then more recognisable. Type II which separates blue and green islands of type I
is portrayed by light red squares. Spin configuration was obtained by Monte Carlo
simulation. b) Overview of all 16 possible vertex configurations. Type I and type
II are the only types that fulfil the so-called ice rule. Type III and type IV are
excitations of the system and violate the ice rule. The spin configuration is adapted
from [34].

The artificial spin liquid is a disordered but correlated magnetic state made by an
assembly of interacting Ising variables and pairwise spin correlations that decay to
zero at large distances [34]. Spin liquid phase or ice phase on a square lattice is a
specific state that usually refers to a six vertex model in statistical mechanics that
has an intriguing behaviour at zero temperature [22]. Because there are only six
vertices out of the 16 possible variants which permit the so-called ice rule (two spins
pointing in the vertex and two out of it) the model is then referred to as the six
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vertex model (see figure 2.3) [29]. This means that only type I and type II vertices
are considered thus yielding in an ice rule constraint [34].

When the coupling strengths of the first nearest neighbour 𝐽1 and the second
nearest neighbour 𝐽2 are equal, the condition for reaching a spin-liquid regime is
fulfilled. For this system, the ground state is formed by six possible vertex con-
figurations with the same energy (See equation 2.2 and 2.3 for ice rule condition
𝐽1 = 𝐽2).

When the system is not in the ground state the other configurations - excitations
will start to appear (see section 2.4.1). In such a manifold one can observe the exotic
behaviour of the magnetic monopoles on the disordered background. By magnetic
monopoles in spin ice one means classical quasi-particles carrying a magnetic charge
and interacting via a Coulomb potential at long distances [9]. Determining the
magnetic charge of a vertex is simple, one needs to add up all spins (arrows) pointing
in a vertex and subtract all spins pointing out of the vertex. Each spin has a charge
value equal to one. Because types I and II do not carry a magnetic charge the first
excited vertex is type III (𝑞 = ±2). A magnetic monopole with even higher energy
is one with type IV (𝑞 = ±4) but these excitations are energetically so unsuitable
to be observed in such a manifold.

2.4 Coulomb phase
Coulomb phase physics was introduced by Henley in 2010 [16] to describe specific
lattice models by using fundamental laws of electrostatics and magnetostatics. This
concept is built on the idea of "lattice fluxes" and local vertex charges. Considering
only lattice spin models Henley provides three conditions [16] for a Coulomb phase
[34].

1. Each lattice variable (the spin in our case) can be mapped to a discrete signed
(magnetic) flux p𝑖, running along bond 𝑖.

2. At each lattice vertex, the sum of these signed fluxes is zero.
3. the system is in a highly disordered state (i.e., liquid-like).
Furthermore, Henley showed that the desired emergent vector field P(r) is the

coarse-graining of these lattice fluxes and is divergence-free.

∇ · P(r) = 0. (2.6)

The classical square lattice system and its liquid phase is a natural candidate for
a Coulomb phase. Because of the ice rule condition, only type I and II are present
and those types have zero magnetic charges thus condition 2 and corresponding
equation 2.6 is fulfilled. Also, because the system is in spin liquid regime, it is
degenerate too and condition 3 is fulfilled as well.

2.4.1 Magnetic monopoles in Coulomb phase
A question arises about how the system will behave when the equation 2.6 is locally
disturbed by the presence of a defect (i.e. type III with non-zero magnetic charge).
These defects are from the energetic point of view excitations of the spin liquid
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a) b) c)

Fig. 2.4: a) Classical square lattice. In the first step, the blue magnets are removed.
b) Big cross lattice. Empty spaces are filled with longer magnets in alternating
horizontal or vertical directions. c) Long island shakti lattice.

manifold but mostly are referred to as magnetic monopoles. The reason why one
would use the word monopole (and to top it all magnetic monopole) is the following.
Excitations living on the highly disordered manifold have particle-like properties. In
this sense, the background formed by type I and II vertices behaves like an uncharged
vacuum in which charged particles repel and attract each other through Coulombic
interactions. Observation of these dynamics and system phenomena on a lab-on-
chip approach is currently a very interesting direction of scientific research [11, 10,
31].

2.4.2 Pinch points in reciprocal space

However, how to know that the spin system is in this Coulomb phase? Henley and
others [16, 12, 38] showed that a Coulomb phase has specific diffraction features
that leave fingerprints in reciprocal space. By Fourier transformation, one can ob-
tain the magnetic structure factor (MSF) that carries important information about
the system (see section 3.4.1). Due to a singularity in reciprocal space at certain
values, one can observe a characteristic shape of a pinch point that unambiguously
corresponds to a Coulomb phase.

2.5 Shakti lattice and mapping to the square ice

The classical square lattice was studied for decades and is still a very interesting
geometry for the study of frustrated systems. But physicists in this field are still
trying to invent new geometries with different properties [6, 36, 34, 26]. One of the
rather new geometry is the shakti lattice [26, 37, 17]. This geometry is interesting
in many ways. The first interesting thing is using two different vertex types with
coordination numbers 𝑧 = 3 and 𝑧 = 4. Also one can see at first glance that not
every nano-magnet is the same. In figure 2.4 one can see how the geometry of the
shakti lattice is derived from the classical square lattice.
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One can notice that with the coordination number 𝑧 = 3 new type of vertices
can be observed. This means that for the shakti lattice, the 16 possibilities of
square lattice vertices are extended by another eight vertices. These new vertices
can be divided into three categories. In figure 2.5 one can see all possibilities of
configuration in the shakti lattice. For better clarity, we will name the 4 types of
vertices with coordination number 𝑧 = 4 as 𝑇1, 𝑇2, 𝑇3 and 𝑇4 and the 3 types of
vertices with coordination number 𝑧 = 3 as 𝐶1, 𝐶2 and 𝐶3.

T1 T2 T3 T4 C1 C2 C3

z = 4 z = 3

Fig. 2.5: All 16 possibilities of vertex configuration for a cross vertex (𝑧 = 4) and
all 8 possibilities of vertex configuration for a T junction vertex (𝑧 = 3).

2.5.1 Shakti mapping

circle

notation

spin

notation

shakti lattice square lattice

C2

C1

Fig. 2.6: Scheme of shakti lattice mapping to the square lattice by rules provided
in [10]. Only black spins are part of the vertex plaquette and their orientation is
important for the mapping. Green circles mark vertices with type 𝐶2. The same
circles are also visible in the circle notation. From the circle notation, one can assign
the spin notation in the square lattice.
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Chern et al. [10] describe a way how to transfer a more complex system (shakti) to a
well-known one (square lattice). They also predict that this system can be mapped
to a six-vertex model if other conditions are fulfilled. And the most interesting
prediction was that after mapping such a system we should obtain a spin-liquid
phase in the square lattice.

To understand how the mapping works one needs to have a look at the vertices
composed of type 𝐶. In our conditions where one should be close to the shakti
ground state only types 𝐶1 and 𝐶2 are taken into account. In figure 2.6 one can see
that in the square that contains the horizontal (or vertical) long magnet, are four
vertices of type 𝐶. Because only two possibilities for the T-vertex are valid one can
assign an arrow (or spin) pointing up or down for the top and bottom T-vertex and
the same for the left and right T-vertex.

a) b) c)

Fig. 2.7: a) Spin state in the shakti lattice with type 𝑇1 at the cross vertices. b)
Mapping to the circle notation by definition presented in figure 2.6. c) Emergent
6-vertex model after the mapping. Adapted from [10].

The definition of the mapping consists of only 𝑇1 vertices at the cross vertices
(𝑧 = 4) and only 𝐶1 and 𝐶2 at the T junction vertices (𝑧 = 3). This yields just two
possibilities of configuration at the T junction vertices and because type 𝑇1 is the
only possibility for the cross vertices, one can have only six possible configurations
on the shakti plaquette. These configurations can be defined as a vertex after the
mapping (6-vertex model). A typical configuration can be seen in figure 2.7. This
definition of mapping is useful only for experimentally unreachable conditions. Also,
this model does not include excitations (i.e. monopoles) created by type III and type
IV. For those reasons, an extension from the 6-vertex model to the 16-vertex model
has been needed. In figure 2.8 all possible shakti configurations in the circle notation
are present and their corresponding 16-vertex model configurations.
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T4T3T2T1

Fig. 2.8: Mapping between shakti geometry and square geometry. Dashed horizontal
and vertical lines represent the direction of long islands. A circle between the corners
of the square represents a T junction with vertex type 𝐶2 and the same place without
a circle represents a T junction with vertex type 𝐶1.

2.5.2 Excitations in the new mapping model
This extension has one important impact on the shakti lattice system. To observe
type III in the square system after the mapping, the rule of type 𝑇1 only on the cross
vertices must be broken. The excitation (type III) is linked with the mapping by
having three times type 𝐶1 (resp. type 𝐶2) in its vertex. To achieve this state at least
one of the four cross vertices must be formed by type 𝑇2 or type 𝑇3. Theoretically
even by type 𝑇4 but with our level of demagnetization protocol and its efficiency
described in the section 3.2 the type 𝑇4 has immense energy and it is, therefore,
never observed.

To be more specific the condition for excitation creation is more complex. To
better understand the situation let’s label the four cross vertices as corners of the
plaquette. From each of those four cross vertices, two spins (nano-magnets) are
participating in the T junction vertices (spins with black colour) and two of them
belong to the diagonal plaquette (spins with grey colour). These corner spins can
generally have ferromagnetic ordering (FM) or antiferromagnetic ordering (AM).
When the theoretical conditions are met one observes only type 𝑇1 vertices at the
cross vertices. In such a case corner spins are always ferromagnetically aligned.
However, in experiments, this configuration is very challenging to obtain and the
non-zero probability of other types than type 𝑇1 at cross vertices is present.

Plaquettes with two 𝐶1 and two 𝐶2 types at the T-cross are types I and II
after the mapping. For these two types, the general condition for the number of
ferromagnetic and antiferromagnetic corner spins is as follows:

Rule 1 The number of antiferromagnetic spin corners must be zero or an even
number in a plaquette with two 𝐶1 and two 𝐶2 types.

For plaquettes that project themselves to type III exists two main groups. These
groups are defined by the number of 𝐶1 (resp. 𝐶2) types. Because type III in CSL
lattice is referred to as a monopole at specific conditions described by Chern [10],
these new type III groups will be named as 𝐶1 (resp. 𝐶2) monopoles depending on
which number of 𝐶 types is higher. Nevertheless, both groups must fulfil the FM or
AM condition. In this case with three 𝐶1 or 𝐶2 types in the plaquette, at least one
pair of corner spins must be aligned antiferromagnetically.
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Rule 2 The number of antiferromagnetic spin corners must be an odd number in a
plaquette with three 𝐶1 (resp. 𝐶2) types and one 𝐶2 (resp. 𝐶1) type.

Similar groups can be found for type IV vertices. Again, groups will be named
𝐶1 (resp. 𝐶2) type IV monopoles. Due to the even number of types 𝐶1 or 𝐶2 the
number of antiferromagnetic corners spins must be even or zero.

Rule 3 The number of antiferromagnetic spin corners must be zero or an even
number in a plaquette with four 𝐶1 (resp. 𝐶2) types.

These last two rules (2 and 3) have important implications. When one wants
to observe interesting behaviour of excited defects (i.e. monopoles) on a disordered
background formed of the spin liquid phase, types 𝑇2 and type 𝑇3 at the cross
vertices must be present. With such an approach the disadvantage of achieving
100 % population of 𝑇1 at the cross vertices now becomes important and desirable
property of the system.
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3 Methodology
One of the great advantage of working with artificial spin systems is fabricating a
large variety of desired lattices on a relatively small surface (e.g. 5000 lattices on
30 mm2 area). This implies that when a sample is optimized one sample is more
than enough. The sample used for this thesis was fabricated by Ing. Ondřej Brunn
at the Institue of Scientific Instruments in Brno and further details will be provided
in section 3.1.

To observe the exotic behaviour of artificial spin systems one has to bring them
to their lowest possible energy. The methods to reach these low-energy states will
be discussed in section 3.2 with emphasis on the method I used.

Once the sample is fabricated, magnetic force microscopy (MFM) imaging is
used to determine the direction of magnetization of each nano-magnet in the lattice
under examination. The basis of atomic force microscopy imaging will be discussed
in section 3.3.

After measuring the magnetic response of the artificial system one needs to
analyse the data. In section 3.4 the recognition process, the determination of the
vertex populations before and after the mapping (see section 2.5.1), Monte Carlo
simulations and other techniques used to post-process the data will be presented.

3.1 Fabrication of the sample

a)

substrate (Si)
resist (PMMA)
deposited material (Ti/NiFe/Al)

b) c)

d) e) f)

electron beam 
irradiation

Fig. 3.1: Sample fabrication process: a) substrate preparation (e.g. Si), b) substrate
is spin-coated with e-beam positive resist (e.g. PMMA), c) resist is exposed by
electron beam lithography, d) resist is developed, e) desired material is deposited by
vapour deposition, f) Unwanted material is lifted-off together with remaining resist.
Adapted from [6].

For the sample, a silicon substrate with a native SiO2 layer was used. The silicon
substrate was spin-coated with a PMMA positive resist, which was irradiated with
an electron beam at precise locations depending on the required parameters such as
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the length and width of the nano-magnets and the geometry of the lattices. After
electron beam exposure, the irradiated parts of the resist were dissolved by the
developer. The metal layer is then evaporated and consists of an adhesive 5 nm
layer of titanium a 25 nm thick layer of permalloy Ni80Fe20 and a capping layer of
3 nm thick layer of aluminium. The last step was to use a solvent to remove the
resist with unwanted permalloy and aluminium. More details about the fabrication
process can be found elsewhere [6, 36, 31, 28, 30].

3.1.1 Lattice parameters

In previous sections, the great advantage of artificial spin ice systems was already
mentioned. The tunability of these systems is crucial and relatively easy thanks to
the fabrication process described in section 3.1. One just needs to design a series of
lattices (e.g. shakti lattices) with one or more varying parameters.

The main property of the lattice is the lattice geometry. Different geometries
have obviously different parameters that can be tuned. Shakti geometry is derived
from the classical square lattice as illustrated in figure 2.4, therefore describing the
shakti parameters will be sufficient to understand the CSL parameters as well.

Designing the layout starts with the parameters of a single nano-magnet nor-
mally used in CSL. The parameters of this magnet are its shape, length, width and
thickness. All lattices measured for this diploma thesis have an aspect ratio length
divided by width defined equal to five. For better interactions, all nano-magnets
(including long islands in the shakti lattice) have their ends rounded. The length
of the nano-magnet already includes the rounding as can be seen in figure 3.2. The
thickness of all nano-magnets is the same and depends on the fabrication process (see
section 3.1). The last important parameter is the distance between nano-magnets.
This distance is called the gap and its value is the same for nano-magnets interacting
in a cross and at T junction. Sometimes different notations are used and a parame-
ter called lattice spacing can be introduced [14]. For a full description of the shakti
lattice, one just needs two parameters: the gap and the length of the nano-magnet.
The rest (e.g. length of the long island) can be easily computed from the geometry
presented in figure 3.2.
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width

width

gap gap

lattice spacing

length

length of
long island (LI)

cross
vertex

T junction
vertex

Fig. 3.2: Schematic description of the shakti lattice parameters. The gap between
short and long nano-magnets is the same everywhere. The distance between the
T junction vertex and the end of the long island nano-magnet is half of the gap
distance. Lattice spacing is therefore equal to the length of a nano-magnet plus the
gap, or to half of the length of the long island plus the gap. The cross vertex and
the T junction vertex are marked with their centres.

3.2 Demagnetisation protocol
For estimating the quality of the field demagnetisation protocols, CSL lattices were
used as a reference. As was mentioned in section 2.3.1, the ground state (i.e. a
system with an effective temperature equal to zero) is an ordered phase containing
only type I vertices [35].

Magnetization of these nano-magnets is randomly orientated after the manu-
facture. The interesting physics of frustrated systems appears when the effective
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temperature is as low as possible. One needs to bring the artificial system to low
energies and provide the system with the possibility to behave according to its
neighbour’s interactions.

There are several methods how to help the system to decrease its energy. The two
mostly used approaches are the thermal annealing protocol [14, 40, 25, 32] and the
field demagnetization protocol [39, 7, 8, 34]. In my case, the field demagnetisation
protocol was used and will be more specified. In this approach, one can use an
external periodical magnetic field that is decreasing in time (see figure 3.3b). A
sample with fabricated lattices is placed on a sample holder which rotates between
the poles of an electromagnet (see figure 3.3a). In the beginning, all magnets are
polarised with the external magnetic field. But because the sample holder is rotating
with greater frequency than the frequency of the magnetic field, the magnetization
of nano-magnets is changing rapidly.

At some point, several nano-magnets stop changing their direction of magneti-
zation, and because the external field has no longer the sufficient strength to flip a
nano-magnet, magnetization freezes. The frozen nano-magnet then starts to affect
its still-changing neighbours. At the end of this demagnetization protocol, one hopes
that the system had relaxed for a sufficient time and that the system has found a
low energy configuration.

B

a) b)

t

B0
I. II. III.

Fig. 3.3: a) Scheme of the demagnetization setup. The sample is placed on the
rotating sample holder and between the electromagnet poles. b) Plot of a slowly
decaying external magnetic field. During phase I, the external magnetic field is
relatively strong and all nano-magnets follow the field direction. After some time
(depending on the demagnetisation protocol) the magnetic field starts to be of the
same order of magnitude as the critical field required for the spin-flip. This effec-
tive zone window is described by phase II in the plot. At the end of the second
phase, some nano-magnets start to freeze and this effect is increased by additional
field lowering. In phase III, the nano-magnets have found their best configuration
for this procedure and the external field does not have enough strength to change
magnetisation anymore.
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3.3 Magnetic force microscopy
After a demagnetization protocol, one microstate of the 2𝑁 (where 𝑁 is a total
number of spins e.g. 3000) possible configurations of the system is obtained. By
using magnetic force microscopy (MFM) and by scanning the whole lattice one
can read the orientations of all spins (e.g. magnetization) and have access to the
magnetic microstate.

Magnetic force microscopy [23] is a scanning microscopy technique that is based
on atomic force microscopy first introduced by Binning [3]. This method uses force
interactions between a sharp tip and the sample of interest. If one uses specially
treated tips such as tips with a magnetic coating, a magnetic image can be obtained.
To separate the information about the topography of a sample and its magnetic be-
haviour, a two pass method is used. The sharp tip is oscillating near its resonant
frequency (tapping mode) and probes topological information during its first pass.
Then the tip is lifted up by a specified distance (mostly between 40 and 80 nm de-
pending on the tip, sample and other circumstances). The second pass is conducted
but now the tip mimics the topography with a constant distance (e.g. 80 nm). The
contribution of attractive or repulsive force induced by the interaction between the
tip and the surface of a sample is substantially reduced and only the interaction
between the magnetic layer of the tip and the magnetic stray field coming out of
the sample (a nano-magnet this case) is recorded.

When the stray field from the nano-magnet is parallel with the magnetization
of the MFM tip, the repulsive or attractive forces are the largest. This force bends
the cantilever of the MFM tip which then changes the path of the laser beam used
to capture these small tilting movements (see the schematic description in figure
3.4). The result of the measurement is a scanned region with dark and bright circles
depending on the orientation of the stray field coming in or out of the nano-magnet.

Sample

MFM phase

Fig. 3.4: MFM phase contrast and bending of the cantilever when probing the stray
field. The result of the MFM measurement is a series of dark and bright dots
depending on the orientation of the magnetisation of each nano-magnet.

The MFM imaging was conducted both at CNRS, Institut NÉEL (NT-MDT
Ntegra microscope) and at CEITEC Nano (Scanning Probe Microscope Bruker Di-
mension Icon).
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3.4 Analysis of measured data

After basic adjustments in Gwyddion software, [27] (contrast modification, row
alignment, smoothing) picture with magnetic phase contrast is uploaded into the
evaluation MATLAB script provided by Ing. Ondřej Brunn. The first step is to
select the lattice borders. The program then computes a mesh containing in each
cell picture of one vertex (cross or T junction). During the first phase of evaluation,
the cross vertices are examined (see figure 3.4b). One then has to distinguish among
all 16 vertex configurations and select the right one by pressing the associated key-
board key. This process is repeated until all cross vertices are recognized. The
second phase focus on T junctions and long nano-magnets. In this case, one does
not evaluate the exact T junction vertex type but directly assigns a spin orientation
of the long nano-magnet.
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Fig. 3.5: a) A typical phase image from MFM measurement. After a preparation
process, this figure is used in the evaluation script. b) The user interface of the
evaluation script. In the middle of the screen can be seen a cropped region of the
MFM image shown in a). The user has to press the corresponding key on a keyboard
depending on the vertex configuration. On the left and the right side, all 16 vertex
possibilities are shown with their corresponding keys. In this case, the user should
press the button "n". Information is stored and the following vertex appears. This
process continues until all vertices are evaluated.

After completing this process, several outputs are obtained. The first output is
unsurprisingly a datasheet containing the spin configuration of the examined lattice
in form of numbers associated with the vertex types. Thanks to this configuration,
all other calculations and statistic properties can be made automatically.

The second important quantity describing a system is the vertex population.
The evaluation script counts all vertices according to their types (𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝐶1,
𝐶2 and 𝐶3) and provides their representation in percentages. Vertex populations
are good indicators of the system’s behaviour. They provide local information but
not the system’s correlations. However, they are very useful when some lattice
parameter is changing (e.g. a gap between nano-magnets, their width, aspect ratio
etc.), thus influencing the behaviour of the entire system.
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Because a spin configuration in the form of dark and light dots scattered on the
blurred background provided by MFM image is confusing for scientists in the field
as well as for the wider public, a spin configuration in form of arrows was needed.
Inspired by a code developed by Y. Perrin [30] for CSL lattices, an analogic vertex
map for the shakti lattice has been developed (see figure 3.6a).

The last part of the script gives us a spin configuration of the shakti lattice
after the mapping to the square lattice (see section 2.5.1). Because the system
size is not infinite, the vertices at the boundaries are omitted. This reduces the
system size but on the other hand, decreases the unwanted presence of the system’s
boundary. The definition of the mapping works only when there is type 𝐶1 or 𝐶2
at a T junction vertex. However, sometimes even type 𝐶3 occurs and in such a case
the associated spin is not taken into account and only an empty space is visible in
the spin configuration. The spin configuration of both lattices (shakti lattice and
CSL lattice after the mapping) are presented in figure 3.6.

a) b)

Fig. 3.6: a) The shakti lattice spin configuration is provided by the MATLAB script.
The main significance of colours used in the shakti lattice configuration is the same
as in the CSL described in figure 2.3 except the colour of 𝑇1 vertex. In CSL two
colours for type I are used: light blue and light green. This is not needed in the
shakti configuration so only light blue colour is used for the 𝑇1 vertices. Types
of T junction vertices can be differentiated by green, orange and magenta colours
corresponding to types 𝐶1, 𝐶2 and 𝐶3, respectively. b) Spin configuration of CSL
obtained after the mapping of the shakti lattice shown in a). Because the mapping
(see section 2.5.1) and orientation of the spin in CSL is linked with the shakti lattice
via the T junction vertices, one can see that one spin that corresponds to a type 𝐶3
(magenta colour) in the shakti lattice is missing in the CSL lattice.

3.4.1 Magnetic structure factor
The magnetic structure factor (MSF) is a powerful tool for the characterisation
of a spin configuration. A spin configuration obtained by MFM is represented in
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reciprocal space by a Fourier transformation of pairwise spin correlations. The result
of this computation is a diffraction pattern similar to one that can be obtained by
a neutron diffraction experiment [34]. Computation of MSF is part of Y. Perrin
toolkit developed during his Ph.D. thesis where additional details concerning this
technique can be found.[30].

When the system is ordered, the MSF gives magnetic Bragg peaks at specific
locations in reciprocal space. However, when the system is disordered (e.g. spin
liquid phase) the MSF is diffuse and has a specific shape [33]. MSF then looks like
a series of squares connected by their corners. Where two corners intersect, the
so-called pinch-points are visible [16, 33] (see section 2.4.2).
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Fig. 3.7: Spin configurations and their corresponding MSF. a) tiling of type I ver-
tices, b) spin configuration of random arranged fully polarized lines created by type
II vertices, c) all-in/all-out ordered phase of type IV, d) spin liquid phase with a dis-
ordered mixture of type I (light green and light blue vertices) and type II (light red
vertices). The spin configuration is adapted from [34]. In e)–h) magnetic structure
factors are shown for lattices a)–d) respectively. For this overview, only type IV
tiling in g) was chosen but one can expect some intensity at the very same q-vectors
with type III tiling. The fingerprints of the spin liquid phase, the pinch-points, are
highlighted by red circles in h).

3.4.2 Monte Carlo simulations
Monte Carlo simulations (developed by B. Canals at Institut Néel) are used for
calculating MSF for a wide range of models and temperatures. However, these
simulations do not provide just magnetic structure factors for desired temperatures,
they also provide useful results, such as pairwise spin correlations, nearest neighbour
charge correlators, entropy density and specific heat or population dependencies on
the effective temperature. Simulations of the dependence of Monte Carlo population
curves (MC curves) on temperature are essential for this thesis.
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For the analysis of artificial spin systems, several approaches were mentioned
(e.g. spin configuration, populations of vertices, MSF). The last approach that was
used in this project was to determine the effective temperature of the system. To
assign a temperature correctly one has to do two things. First is to use the right
model i.e. fitting experimental data on a model that should describe an experiment.
The second part is to place experimental data on the Monte Carlo curves with the
smallest mismatch.
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Fig. 3.8: Monte Carlo simulation of population curves for a model with only first
and second neighbour interactions. Experimental values are depicted by star markers
where each colour corresponds to the colour of MC curves. During the fitting process,
the difference between the experimental and simulated populations is calculated for
each temperature (difference Δ𝑗). The accuracy of the fit is then ∑︀IV

𝑗=I Δ2
𝑗 . The

effective temperature for the selected model is the temperature with the value of the
overall square difference closest to zero.

Using the correct model to describe the physics of the system is a complex task
and these issues will be discussed in later chapters (see sections 4.3.1 and 4.3.2).
Here, the more technical part of the fitting process should be addressed. After
the evaluation process and mapping to the square lattice, one obtains four values
corresponding to the population of each of the four vertex types (𝑃 exp

I , 𝑃 exp
II , 𝑃 exp

III
and 𝑃 exp

IV ). These four values are then compared with values simulated for a certain
temperature 𝑇i that is probing a temperature range given by the parameters of a
simulation (𝑃 MC

I (𝑇𝑖), 𝑃 MC
II (𝑇𝑖), 𝑃 MC

III (𝑇𝑖) and 𝑃 MC
IV (𝑇𝑖)). This comparison is done
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for each temperature (the exact number of steps depends on the accuracy of the
simulation). In each step, the difference between the population obtained from an
experiment and one from a Monte Carlo simulation is squared and summed over
all types (∑︀IV

𝑗=I[𝑃
exp
𝑗 − 𝑃 MC

𝑗 (𝑇𝑖)]2). This value then reflects the accuracy of the fit
for a certain temperature 𝑇𝑖. The final effective temperature 𝑇eff of a system is the
temperature for which the value of the accuracy is the highest.
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4 Results
4.1 Ice physics in the shakti lattice
To observe the ice phase in the shakti lattice, one needs to have 100 % vertex pop-
ulation of type 𝑇1 at the cross vertices. Each lattice, defined by its gap, has three
copies, which means that 30 lattices were measured. Each shakti lattice has 20×20
cross vertices which can be mapped to 19×19 vertices in CSL. Because of the fi-
nite size of the system, the mapped CSL borders are omitted, thus the final CSL
has 17×17 vertices (see section 3.4). The population of the lattices with the same
parameters was averaged and standard deviation was also added. Two regimes can
be observed in figure 4.1a for vertex population of type 𝑇1 and type 𝑇2. For larger
gaps, the vertex population of these two types is almost constant. However, when
the gap is smaller, it is interesting to see a substantial decrease of type 𝑇1 that is
compensated by an increase of type 𝑇2. This has an important impact on the forma-
tion of type III and type IV vertices after the mapping which disturbs the ideal spin
liquid configuration. On the other hand vertex population of type 𝑇3 is negligible
for small gaps but with larger gaps, the interaction strength is decreasing, while the
possibility of excitations (i.e. type 𝑇3) in the system is growing. The vertex popu-
lation of type 𝑇4 is zero for all measurements. In figure 4.1b the vertex population
for T junction vertices can be seen. For larger gaps, the population of type 𝐶1 and
type 𝐶2 is balanced around 50 % but type 𝐶1 is always more favoured than type 𝐶2.
For smaller gaps, the vertex population is unbalanced and the coupling strength
favouring the formation of type 𝐶1 vertices is winning. The vertex population of
type 𝐶3 is almost zero for all measurements. The field demagnetisation protocol
was used (see section 3.2) for the 72-hour long procedure with the initial magnetic
field 𝐵0 = 37 mT. The quality of the demagnetisation protocol was confirmed by
measuring the CSL lattices with 39 × 39 vertices (see figure 4.1c).
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Fig. 4.1: a) Vertex population plot of cross vertices in the shakti lattice. Type 𝑇1
which is crucial for the mapping to the spin liquid grows to a maximum value of
about 75 % and then slowly decreases. b) Population plot of T junction vertices.
Type 𝐶1 is dominant for lattices with small gaps but the population difference
between type 𝐶1 and type 𝐶2 decreases with larger gaps. c) Population plot for
reference CSL lattices. Measurement was done only for CSL lattices whose gaps
corresponded with the highest type 𝑇1 representation in the shakti lattices.
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In figure 4.2a can be seen the spin configuration of the shakti lattice and in figure
4.2b can be seen the spin configuration of the shakti lattice after the mapping for
the 180 nm gap. The first striking difference between this spin configuration and the
spin configuration of a spin liquid (see figure 2.3) is in a non-negligible amount of
type III (32 %) and type IV (7 %) which should not be present in pure spin ice. One
could imagine that the reason for the presence of type III and type IV in the CSL
lattice is that they are excitations of the system and behave like magnetic monopoles
scattered on the spin liquid background of type I and II as was described in section
2.4.1. Another argument supporting this hypothesis is the population of type 𝑇1
in the shakti lattice (which is about 75 %) that enables the creation of excitations
after the mapping (type III and type IV). Two crucial arguments will be presented
to explain why the system after the mapping is not in the spin liquid phase.
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Fig. 4.2: a) Spin configuration of the shakti lattice with 180 nm gap. Colours used
for the vertices are the same as in figure 3.6a b) Spin configuration of the shakti
lattice after the mapping for the shakti lattice presented in a). The presence of
charge alternating clusters of type III with positive magnetic charge 𝑞 = +2 (violet
vertices) and negative magnetic charge 𝑞 = −2 (dark green vertices) is visible. c)
Corresponding MSF for spin configuration in b). Several proofs of the spin liquid
absence are present such as missing pinch points (green circles), a considerable drop
of intensity in the middle (red square) and the presence of emergent Bragg peaks at
the positions associated with all-in/all-out vertices (grey squares).

Another indicator for the ice phase observation in the shakti lattice should be the
equilibration of type 𝐶1 and type 𝐶2 at the T junction (see figure 4.1b). This can
be observed for lattices with a 200 nm gap and larger. The population of type 𝐶3,
which does not allow the mapping (see section 2.5.1), is very low for all measurements
and the mapping is not possible only for a negligible amount of vertices. However,
the population of individual types is not sufficient enough to fully characterize the
system because it does not carry information about the correlations.

The first interesting thing is the behaviour of "monopoles" which are clustering
together and forming chessboard islands thanks to their magnetic charge alternation
(dark green and violet vertices). In the Coulomb phase, monopoles can freely move
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through the disordered background and behave like electrostatically charged quasi-
particles. In this case (see figure 4.2b) "monopoles" tends to be together but they
do not annihilate and rather form the chessboard clusters. The movement of these
clusters through the background is not possible without increasing the energy of
the system. From this, one can conclude that excitations are not Coulomb-like and
could not be named monopoles.

The second question then arises what exactly is the background made of? Just
by looking at the spin configuration, one would be tempted to say that there is a
disordered mixture of type I and type II and that type II has more representation
than type I, thus some assumptions are met for the spin liquid phase. For this
characterisation can be used more precise technique which also includes the magnetic
correlations of the system that are important ingredients in the spin liquid phase.
The magnetic structure factor (MSF) carries all of this information as was mentioned
in the section 3.4.1.

By a simple comparison of figure 4.2c and 3.7h, several differences can be directly
seen. The most important difference is the absence of pinch points typical for the
Coulomb phase and the spin liquid marked by green circles in figure 4.2c. Also,
the typical squares are not visible but rather separated islands are present and the
connection by "bridges" in the form of the pinch points is missing. Another proof
of the absence of the spin liquid phase is the considerable drop of intensity in the
centre of the MSF (𝑞x = 0 and 𝑞y = 0). If one takes a closer look at the emergent
Bragg peaks marked with grey squares in figure 4.2c, their position is the same as
for the expected intensity of type III and type IV tiling (see figure 3.4.1g). On the
other hand, in the MSF of pure spin liquid (see figure 3.4.1h) these Bragg peaks are
not present due to the absence of type III or type IV.

The same results can be seen for other lattices. None of them exhibited the
typical MSF of spin liquid and charge crystallisation for type III vertices was still
present. An explanation is offered that the reason for the observation of this un-
expected physics in artificial spin systems is that the effective temperature of these
systems is not sufficiently low to be able to exhibit the ice phase as predicted in
[10]. Further increase of type 𝑇1 vertices in the shakti lattices is difficult due to
the limitation of field demagnetisation. The quality of the field demagnetisation
protocol was not assessed only by the population of type 𝑇1 in the shakti lattice but
also in reference CSL lattices. The vertex population plot for the CSL lattice can
be seen in figure 4.1c.

However, Gilbert et al. used a thermal annealing procedure to lower the effective
temperature of the system and managed to get a substantially larger number of type
𝑇1 at the cross vertices [14]. It is appropriate to reanalyze their results with the
methodology presented in this thesis and hopefully see the anticipated liquid phase.

4.2 Reanalysis of the literature
Gilbert et al. provided the MFM image of their measurement of the shakti lattice
with the highest number of type 𝑇1 vertices (around 80 %) [14]. The corresponding
reference CSL lattice had a type I population of around 95 % which indicates the
very good quality of the thermal procedure. The parameters of their shakti lattice
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were slightly different from the lattice parameters used in my experiments. They
used nano-magnets with a height of 25 nm, a length of 220 nm, and a width of 80
nm. The lattice spacing for their best lattice was 320 nm, thus the gap between two
nano-magnets was 100 nm (see figure 3.2 with the lattice parameters).

However, only the MFM image and the population of the shakti lattice were
presented. The mapping to the CSL was done only for tightly cropped region with
only 4x4 vertices after the mapping. Even with the population of type 𝑇1 around
80 % there was still around 20 % of type 𝑇2 which brings excitations to the system
as was explained in the section 2.5.2. With the extended definition of the shakti
mapping the whole lattice can be used even with type 𝑇2 vertices. In figure 4.3
can be seen the spin configuration of the shakti lattice obtained from [14] and its
corresponding spin configuration after the mapping and the MSF of the mapped
lattice.
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-5 -3 -1 1 3 5

-5
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1
3
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qx (r.l.u.)

a) b) c)

Fig. 4.3: a) Spin configuration of the shakti lattice from [14]. For the mapping were
also used the border vertices because the MFM image is only a cropped part from
a larger system. This will substantially increase the statistics for further analysis.
b) Spin configuration of the shakti lattice after the mapping for the shakti lattice
presented in a). One can see a mixture of type I and type II vertices and a large
amount of type III vertices in clusters with alternating charges (dark green and violet
vertices). c) MSF for the spin configuration in b). The very same results as in 4.2c
can be seen. Missing pinch points (green circles), a significant drop of intensity in
the centre (red square) and the presence of ordered type III vertices (grey squares).

These results are again surprising. Even in a system with slightly different pa-
rameters (different widths and lengths of the nano-magnets), one can observe the
same non-liquid-like behaviour of the system. The first thing that one can see clearly
is the large number of type III vertices and they, again, form clusters with alter-
nating charges (see figure 4.3b). The background looks like a disordered mixture of
type I and type II vertices, but the analysis in reciprocal space provided by MSF
(see figure 4.3c) exhibits the very same behaviour as in my results (see figure 4.2c).
The absence of the pinch points (green circles) and intensity drop in the centre of
the MSF (𝑞x = 0 and 𝑞y = 0) marked by red square proves that the right model
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that describes the physics observed in these systems is not the square ice model.
Reaching the predicted spin liquid phase is even more difficult than what was ex-
pected even for shakti lattice with 85 % of type 𝑇1 (The cropped MFM image has
even better population of type 𝑇1 than the whole lattice presented in population
plots in [14]).

4.3 Analysis of my measurements
It is suitable to check that the square ice model is not the right model for the whole
set of my measurements. For this confirmation, Monte Carlo simulations can be
used. The square ice model must fulfil such a condition where coupling strengths
of the first nearest neighbour 𝐽1 and the second nearest neighbour 𝐽2 are equal (see
section 2.3.2). The populations of vertex types should fit on the population curves
computed for the condition 𝐽1 = 𝐽2 and the Hamiltonian ℋ defined by equation 2.1.
In figure 4.4a can be seen results of the fitting for all 30 lattices (thin star markers)
and the lattice provided by Gilbert (thick star markers). It can be seen that most
of the results do not fit well the MC curves, except for the Gilbert data points and
some of my measurements.
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Fig. 4.4: a) Monte Carlo simulation for vertex populations depends on the system’s
temperature. Dashed lines are standard deviations provided by the simulation for
each population curve. The lowest effective temperature is for the Gilbert lattice
(thick star markers) but is still too high to reach the spin liquid phase at the lowest
temperature. Thin star markers label my measurements. All data sets are moved
to the higher effective temperatures which corresponds to a slightly worse quality of
demagnetisation. b) Population plot of the shakti lattices after the mapping. For
each gap, three lattices were measured and the averaged populations are presented
with standard deviation bars. One can see a sharp decline for the type III population
and a slow increase for larger gaps. An opposite behaviour can be seen for type I
and type II. Type III and type IV play a significant role in the system for the whole
variety of gaps.
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Because of the mapping, the differences between type III and type IV are not
as large as in conventional CSL. The presence of type IV is natural for the system
in the same manner as the presence of type III. Furthermore, type IV vertices also
tend to cluster together, thus their charges alternate as well as type III vertices.
The energies of vertices are more complex than described in section 2.3.1 so one can
afford to merge the populations of type III and type IV vertices and take them as
collective excitations of the system (see section 4.4 for further explanation of the
energies).

To find a better model that would describe the system one needs to change the
shape of the type I and type II curves. In figure 4.4a almost all population results
for type I and type II are between the MC curves for type I and type II. Because
one is not bound with the 𝐽1 = 𝐽2 condition anymore, a simple change of the 𝐽2/𝐽1
ratio will tune the shape of MC curves.

Also, from the population curve after the mapping (see figure 4.4b) several im-
plications can be made. The lattices with very small gaps (i.e. 100 nm and 120 nm
gaps) have a significant number of type III (and type IV) vertices. In the middle of
the population curve for lattices with gap around 180 nm one can see the highest
population of type I and a significant drop of the type III population. For larger
gaps, the population curves are rather flat. This simply implies that observation of
a different behaviour for these groups is probable.

4.3.1 MC simulations with a different 𝐽2/𝐽1 ratio
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Fig. 4.5: Results of the Monte Carlo simulations for different 𝐽2/𝐽1 ratios. Each
column indicates one lattice (i.e. 30 lattices). For each gap parameter and lattice
copy (a, b and c) a label is placed. Each row represents the simulations with the
corresponding 𝐽2/𝐽1 parameter (i.e. 12 simulations). The colour scale is set by the
threshold value of the square difference parameter 𝑆𝐷max that was set to 5 · 10−4.
Cells with a deep blue colour are fitted with the highest accuracy. Cells with yellow
colour cannot be considered as good fits.
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Monte Carlo simulations for population curves are a good point to start but they
cannot determine the right model itself. For each lattice twelve different values of
the 𝐽2/𝐽1 ratio were used. The best fitting for each of these simulations was done
by minimising the overall square difference as described in section 3.4.2. Ideally,
the MC fitting would provide only one unique result for each lattice. However,
for only slightly different 𝐽2/𝐽1 ratios the population curves do not differ much
thus the fitting is suitable for a wider variety of ratios. The following strategy was
used to analyze these simulations. A threshold has been set by the value of the
overall square difference. The simulations that passed this filter were plotted in
a heatmap (see figure 4.5). Each cell in this heatmap represents the result of the
fitting for the corresponding lattice and the fitting parameter. The threshold was set
to 𝑆𝐷max = 5 · 10−4. It was observed that this value is sufficient for good accuracy.
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Fig. 4.6: Monte Carlo simulations fit for three groups depending on their gap and
fit accuracy shown in figure 4.5. a) MC simulation for group #1 with 𝐽2/𝐽1 = 0.70
and for 160 and 200 nm gaps. b) MC simulation for group #2 with 𝐽2/𝐽1 = 0.85
and for 180 nm gap. c) MC simulation for group #3 with 𝐽2/𝐽1 = 0.50 and for 120,
140, 220, 240, 260 and 280 nm gaps. Type III and type IV populations were merged
for the reasons described above.

In figure 4.5 can be seen the formation of groups. Lattices with small gaps tend
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to have a lower 𝐽2/𝐽1 ratio (and for 100 nm gap probably and for larger gaps the
ratio grows. Around the 180 nm gap (lattice with the best match with Gilbert
measurement and closest to the predicted liquid phase) the best fit has a ratio
around 𝐽2/𝐽1 = 0.85 and for larger gaps ratio decreases. For very large gaps a
different behaviour can be seen and several ratios can be used with high accuracy
of the fitting. One can compare these "groups" with those obtained by analysing
the vertex population curves for the lattice after the mapping (see figure 4.4b) and
see a direct connection. To investigate this "package method" the measured results
were divided into three groups depending on the fit accuracy.

The results in figure 4.6 clearly fit more accurately than the model with 𝐽1 = 𝐽2
shown in figure 4.4a. Also, by tuning the gap parameter in the shakti lattice one
does not affect only the effective temperature of the system after the mapping but
also the key parameter of the model itself, i.e. the 𝐽2/𝐽1 ratio. These results suggest
that a model describing shakti physics was found. However, the right model must
provide the vertex population agreement and the magnetic correlations. For that,
the agreement between MSF provided by Monte Carlo simulations and MSF from
measurements is needed.

In previous sections was shown that type III and type IV vertices are more
represented than expected but also they cluster together and form the chessboard
pattern with their alternating magnetic charge (see the spin configuration in figure
4.2b and 4.3b). This magnetic correlation is not encoded in the MC population
curves but emerges in the MSF at specified locations in reciprocal space as Bragg
peaks (see grey squares in figure 4.2c and 4.3c). However, this tiling of type III
and type IV vertices is not favoured in the Hamiltonian used for the simulations.
Another ingredient must then be added to support the clustering of type III and
type IV.
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4.3.2 MC simulations with a local magnetic field ℎ
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Fig. 4.7: a) Results of the Monte Carlo simulations for different 𝐽2/𝐽1 ratios and
several ℎ values. Each column indicates one lattice. For each gap parameter and
lattice copy (a, b and c) a label is placed. Each row represents the simulations with
the corresponding 𝐽2/𝐽1 and ℎ parameters. The colour scale is set by the threshold
value of the square difference parameter 𝑆𝐷max that was set to 5 · 10−4 same as
in figure 4.5. The division into five groups used in figure 4.9 is depicted by red
rectangles. The ℎ value orders cells. Cells with a deep blue colour are fitted with
the highest accuracy. Cells with yellow colour can not be considered as good fits.
b) MC simulation for 𝐽2/𝐽1 = 0.9 and strong local field ℎ = 2.5 for 100 and 120 nm
gap (only copy a and b were used for 120 nm gap). One can see that the ground
state favours type III and type IV lattices. c) MC simulation for 𝐽2/𝐽1 = 0.8 and
ℎ = 1.5 for 140, 160, 180, 200, 220, 240, 260 and 280 nm gap.

To favour the type III and type IV tiling, a local alternating magnetic field ℎ can
be implemented in the Hamiltonian. The field alternates on the vertex sites forcing
the formation of all-in/all-out vertex type. The system with the 𝐽1 and 𝐽2 coupling
and this local magnetic field ℎ can be described by the Hamiltonian ℋℎ
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ℋℎ = ℋ − ℎ
∑︁

𝑘

𝜎𝑘 = −1
2

∑︁
⟨⟨𝑖𝑗⟩⟩

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 − ℎ
∑︁

𝑘

𝜎𝑘, (4.1)

where the new summation coefficient 𝑘 sums over all sites in the system. The original
Hamiltonian ℋ is defined by equation 2.1.

In figure 4.7a can be seen similar heatmap as in figure 4.5 for which the same
threshold value was set (i.e. 5 · 10−4). In this case, simulations for different 𝐽2/𝐽1
ratios and ℎ values were done (i.e. additional 63 simulations). Determining only one
set of parameters for each lattice is even more complicated than for the previous set
of simulations. However, for small gaps (100 and 120 nm gap) one can see a series
of fits with decent accuracy. The MC simulation that fits very well for small lattices
was set for parameters 𝐽2/𝐽1 = 0.9 and ℎ = 2.5 (see figure 4.7b). This is thanks to
the ℎ parameter which was missing in the previous set of simulations. The strong
local field is important for the lattices with small gaps and the 𝐽2/𝐽1 ratio is less
significant, but for lattices with larger gaps the importance of the 𝐽2/𝐽1 ratio grows
and the local field ℎ value is smaller. To prove that, one can see the area of yellow
cells (i.e. bad fit accuracy) for gaps larger than 120 nm and ℎ value larger than 2,
or in figure 4.7c can be seen MC simulation for parameters 𝐽2/𝐽1 = 0.8 and ℎ = 1.5
were vertex populations fit very well. Also, more lattices fit on one MC simulation
with the ℎ parameter included than for the simulations without the ℎ parameter
(i.e. for ℎ = 0).
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Fig. 4.8: Computed averaged magnetic structure factors for each gap. For each
gap, three MSF were averaged (copy a, b and c). Magnetic structure factors a)–j)
correspond to gaps 100 to 280 nm.

As was mentioned above for determining the right model one needs to analyse
the MSF results as well. In figure 4.8 are presented averaged MSF for each gap. The
MSF for small gaps (100 and 120 nm) are different than the MSF for larger gaps. In
figure 4.8a and 4.8b the Bragg peaks representing the type I tiling (see illustrating
figure 3.7) are missing and emerge for larger gaps. On the contrary, Bragg peaks
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associated with type III and type IV tiling are present in every MSF except figures
4.8g and 4.8j. Also, for the smallest gaps (see figures 4.8a and 4.8b) the type III
and type IV Bragg peaks are the most intense. This supports the importance of the
ℎ parameter in MC simulations and its large value that favors the type III tiling.
Besides the Bragg peaks, one can see the faint background that emerges with a
gradually increasing gap to its most intense state in figure 4.8e.
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Fig. 4.9: Population curves with experimental MSF and simulated MSF by Monte
Carlo for five groups. In subfigures a), d), g), j) and m) are population curves that
were calculated for 𝐽2/𝐽1 and ℎ parameters noted in the table. In subfigures b),
e), h), k) and n) are experimental MSF averaged over all measurements present in
the group. In subfigures c), f), i), l) and o) are MSF calculated for the same group
parameters.

Comparing the experimental results and MC simulations of MSF for parameters
provided by the fitting accuracy (see figure 4.7a) an agreement between experimen-
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tal and theoretical MSF can be found. To analyse the experimental MSF a division
into several groups is more appropriate. By analysing the MSF in figure 4.8, mea-
surements were divided into five groups. Group #1 consists of lattices with 100
and 120 nm gaps. This group is characteristic of type III and type IV tiling Bragg
peaks in MSF (see figures 4.8a–b) and a tendency for higher ℎ values in the MC
simulations (see figure 4.7a). Group #2 consists of lattices with 140, 160 and 200
nm gaps. In this group, one can see emerging type I tiling (see figures 4.8c–d and
4.8f). The behaviour of lattices with a 180 nm gap is slightly different and deserves
a unique group #3. For larger gaps, Bragg peaks for type I tiling are becoming
more narrow thus lattices with 220 and 240 nm gaps are examined in group #4
(see figures 4.8g–h). The last group #5 contains lattices with 260 and 280 nm gaps.
There the Bragg peaks tend to be wider once again (see figures 4.8i–j).

In figure 4.9 can be seen MC simulation curves and MC simulation of MSF for
the same parameters 𝐽2/𝐽1 and ℎ with corresponding experimental averaged MSF
for all five groups described above. These results fulfil both conditions necessary
for the right description of the system, i.e. the vertex population fractions and
the correlations encrypted in the MSF. By a simple comparison of simulated MSF
for the temperature windows obtained from the vertex population MC simulations
and experimental MSF can be concluded that the model explains the experimental
results for small and large gaps very well and also can be used as a far better
description of the 180 nm gap lattices than a "spin liquid" model provided so far.

This new set of MSF has the important type III and type IV Bragg peaks at
the exact locations as the experiment one. In figure 4.9b the faint background is
emerging in the same way as in the experimental MSF in figure 4.9c. For larger
gaps, wider and unconnected Bragg peaks linked with type I tiling are also visible.
In group #3 the comparison between the MSFs is also very good except for the not
sufficient drop of intensity for 𝑞x = 0 and 𝑞y = 0 coordinates in the simulated MSF.
To have an even better match with the model a slight increase of the intensity in
between the central Bragg peaks at [𝑞x, 𝑞y] = [±1, 0] and [0, ±1] coordinates would
be needed to form the intensity ring in donut shape as can be seen in figure 4.9i.
For the largest gaps in groups #4 and #5 the accuracy of population curves fitting
and the MSFs are again in good agreement.

After the successful determination of a more accurate model, it would be inter-
esting to examine the specific behaviour of type III vertices in other lattices and
make sure that the tiling of type III and type IV is observable in the same sense as
in figures 4.2b and 4.3b.

4.3.3 The behaviour of the lattices with small gaps
In the first spin configurations shown in this work, the surprising clustering of type
III vertices was clearly visible. From the beginning, there was an effort to reduce
the number of excitations in the system (type III and type IV vertices) and reach
the predicted spin liquid phase. However, observation of this state is more difficult
than expected, and types III and types IV vertices were still occurring.

It is therefore interesting to focus more on the lattices where type III and type
IV vertices are dominant. The population curves after the mapping (see figure 4.4b)
indicates a rapid increase of type III vertices for the smallest gaps (i.e. 100 nm
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and 120 nm gaps). Also, the MSFs predict type III tiling for the same lattices (see
figure 4.9c) and a large ℎ value derived from MC simulation supports the selection
of lattices with small gaps.
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Fig. 4.10: Spin configurations for lattices with 100 nm gap a)–c) and for lattices
with 120 nm gap d)–f). g)–l) Magnetic structure factors for corresponding a)–f)
spin configurations. In a) the charge crystallisation of type III vertices is clearly
visible. MSFs have sharp Bragg peaks at the q-vectors indicating type III tiling.

In figure 4.10 can be seen spin configurations for lattices with 100 nm and 120
nm gaps. For all spin configurations with the smallest gap, the type III clustering
and charge crystallisation (chessboard arrangement made by violet and dark green
vertices) extends throughout the whole lattice (see figure 4.10a). In each of the
MSFs, the faint background is visible showing the subtle presence of type I and
type II. The stronger presence of this background is visible in figure 4.10l where
the number of excitations is reduced and type I and type II vertices are increasing
their populations. It suggests that under some circumstances the shakti lattice can
be mapped to a system where the ground state is formed by type III (or type IV)
vertices with crystallised charges. To prove these assumptions further research going
beyond this work is needed.

4.4 Energies of mapped vertices
By nature of the new mapping definition, the energy hierarchy of the vertices after
the mapping is different than the classical one described in section 2.3.1. In the

49



original definition for only type I and type II vertices, there was no problem with
multiple vertex energies. Each of the possible spin configurations had always two 𝐶1
vertices and two 𝐶2 vertices. Type III after the mapping is defined as a plaquette
with three 𝐶1 vertices and one 𝐶2 vertex or a plaquette with one 𝐶1 vertex and
three 𝐶2 vertices. Because of these two possible configurations, two groups of type
III energies are present (see section 2.5.2). Plaquettes with more type 𝐶1 (resp. 𝐶2)
at T junction vertices than with 𝐶2 (resp. 𝐶1) at T junction vertices are named type
IIIC1 (resp. type IIIC2) vertices. The same problem occurs with type IV. Depending
on the number of type 𝐶1 or 𝐶2 at T junctions type IVC1 and type IVC2 is defined.

a) b)type IIIC2
type IIIC1

J1'

J2

Fig. 4.11: a) Examples of two spin configurations in the shakti lattice for type IIIC1

and type IIIC2 . Even with different spin configurations in the shakti lattice, the
plaquette is projected to an identical type III vertex. b) Interactions between first
(𝐽 ′

1) and second (𝐽2) neighbours at the T junction.

In figure 4.11a can be seen two different spin configurations that yield the same
result after the mapping. When the shakti lattice is mapped to the square lattice,
part of the information is lost. Because of the presence of other vertex types different
than type 𝑇1 at the cross vertices, reverse mapping is no longer possible. To calculate
the energy of the plaquette before the mapping, the energy of the T junction for
each vertex type must be defined. These energies can be calculated by equations
4.2–4.4.

𝐸C1 = −2𝐽 ′
1 + 𝐽2, (4.2)

𝐸C2 = −𝐽2, (4.3)
𝐸C3 = +2𝐽 ′

1 + 𝐽2. (4.4)

In these equations, the 𝐽2 coupling strength of the second neighbours is the same
as for nano-magnets interacting in the CSL lattice (see section 2.3). Due to the fact
that the long island nano-magnet has different dimensions, the coupling strength
between the long island nano-magnet and the closest short nano-magnet would not
be the same as in the CSL lattice. To distinguish between these two couplings for
the T junction, the coupling strength between the first neighbours will be 𝐽 ′

1.
Now let’s compare the energies of type IIIC1 and type IIIC2 . This simply means

to sum all T junction energies in each plaquette. For the type IIIC1 vertex the energy
of T junctions is −6𝐽 ′

1 +2𝐽2 but for the type IIIC2 it is −2𝐽 ′
1 −2𝐽2. This proves that

two groups of vertices in an excited state exist in the system and to understand the
shakti system from an energetical point of view this must be taken into account.
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This favouring of one type over another one can be seen in figure 4.1b where the
population of T junction vertices is plotted on the gap dependence.

4.4.1 Effect of the corners
To completely describe the energy of mapped vertices one must include the corners
of the plaquette. It is obvious that a plaquette with one type 𝑇1, two types 𝑇2 and
one type 𝑇3 at the corner would be more energy-demanding than a plaquette with
only one type 𝑇2 and three types 𝑇1. Because the definition of mapping is done by
T junction vertices these nuances at the corners are not transcribed into the spin
configuration after the mapping. The schematic of this second type of information
loss is shown in figure 4.12.

type IIIC1

310 type IIIC1

121

Fig. 4.12: Example of plaquettes in the shakti lattice for type IIIC1 with different
plaquette corners. The three digits mean the number of type 𝑇1, type 𝑇2 and type
𝑇3 vertices present at the corners. After the conversion to the circle notation (or
spin notation after the mapping), this information is lost.

To express the configuration of corners in the shakti plaquette, three digits are
used. The first digit gives the number of type 𝑇1 vertices, the second digit the number
of type 𝑇2 vertices and the last digit gives the number of type 𝑇3 vertices. To cover
all possible configurations, even the type 𝑇4 should be taken into account. However,
the presence of type 𝑇4 cross vertex is very close to zero after the demagnetisation
protocol, it is therefore fine to neglect this possibility. Because there are four corner
cross vertices present in the shakti plaquette, the sum of these three digits must be
always equal to 4. This yields that there are 14 possible compositions for type IIIC1

and 14 possible compositions for type IIIC2 . To fulfil the rule 2, at least one type 𝑇2
or type 𝑇3 must be in the shakti plaquette. This implies that type III400

C1 vertex is
not possible and type III310

C1 is the candidate for the lowest energy composition. To
calculate the energy of the shakti plaquette, the energy of corner cross vertices and
the energy of T junction vertices must be summed together. To distinguish between
the energy of type III and type IV, the 𝐸 will describe the energy of type III vertices
and the 𝑈 will describe the energy of type IV vertices.

𝐸𝑥𝑦𝑧
C1 = 3𝐸C1 + 𝐸C2 + 𝑥 · 𝐸I + 𝑦 · 𝐸II + 𝑧 · 𝐸III, (4.5)

𝐸𝑥𝑦𝑧
C2 = 𝐸C1 + 3𝐸C2 + 𝑥 · 𝐸I + 𝑦 · 𝐸II + 𝑧 · 𝐸III, (4.6)

𝑈𝑥𝑦𝑧
C1 = 4𝐸C1 + 𝑥 · 𝐸I + 𝑦 · 𝐸II + 𝑧 · 𝐸III, (4.7)

𝑈𝑥𝑦𝑧
C2 = 4𝐸C2 + 𝑥 · 𝐸I + 𝑦 · 𝐸II + 𝑧 · 𝐸III. (4.8)
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Equations 4.5 and 4.6 serve as a guide for calculating any of the 14 possible
energies. Variables 𝑥, 𝑦 and 𝑧 stands for the number of type 𝑇1, type 𝑇2 and type
𝑇3 respectively. Equations 4.7 and 4.8 serve as a guide for calculating any of the
12 possible energies for type IVC1 or any of the 15 possible energies for type IVC2

(reason for this number of possibilities is explained in section 4.4.2). The energies of
𝐸C1 and 𝐸C1 are presented in equations 4.2 and 4.3. The energies of type 𝑇1, type
𝑇2 and type 𝑇3 are the same as presented in equations 2.2–2.4.

In the previous sections, the populations of type III and type IV vertices were
merged together. One reason why one can do this is the interesting fact that when
the energy of type IIIC1 and type IIIC2 is averaged, the energy is the same as for the
averaged type IVC1 and type IVC2 . For instance in equation 4.9 can be seen this
equivalence for the situation with corners containing two type 𝑇1 and two type 𝑇2.

(𝐸220
C1 + 𝐸220

C2 )/2 = (𝑈220
C1 + 𝑈220

C2 )/2 = −8𝐽1 − 4𝐽 ′
1. (4.9)

4.4.2 The composition of type III and type IV vertices
When one has the theoretical description of the vertex energies, it is not difficult to
plot the "energy ladder" that depends on the ratio of the strength of the second and
the first neighbour in the shakti lattice 𝐽2/𝐽1. This hierarchy can be seen in figure
4.13 where only low energy vertices out of the 28 are shown.
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Fig. 4.13: Calculated energy spectrum for type IIIC1 and type IIIC2 vertices. The
energy of a vertex type depends on the 𝐽2/𝐽1 ratio. The 𝐽 ′

1 value affects the mutual
hierarchy of type IIIC1 and type IIIC2 . For this computation, the 𝐽 ′

1 value is set to
𝐽 ′

1 = 0.9𝐽1.

Thanks to this plot one can easily compare the vertex energies of type III for
an arbitrary 𝐽2/𝐽1 ratio. Also, from figure 4.13, it is obvious that the vertex type
with the lowest energy is not just one but by tuning the 𝐽2/𝐽1 ratio one can favour
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different low energy type III vertices. This change is occurring for not just the lowest
vertex energy but it also holds for the whole energy ladder.

It is natural to expect that type III vertices with the lowest energies should be
represented in larger numbers than the vertices with high energies. This can be
checked by computing the population of the type III vertices depending on their
composition of the corner cross vertices and the T junction vertices. These results
can be seen in figure 4.14 where only relevant population curves are shown (vertices
with a population lower than 5 % are omitted).
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Fig. 4.14: Experimental population curves for different type IIIC1 and type IIIC2

vertex compositions dependent on the gap. The markers used in this plot are the
same as those used in the theoretical energy spectrum in figure 4.13. Vertices with
a population lower than 5 % are omitted.

In figure 4.14 can be seen population curves for 10 different compositions of
type III vertices. Populations for each gap were again averaged over three identical
lattices. Several interesting results can be made from the experimental data. The
most frequent vertex compositions are types III220

C1 , III310
C1 and III310

C2 . These three
vertex compositions also appear on the three lowest energy levels in figure 4.13.

It is clear that vertices want to minimise the energy of the system and prefer
the compositions with the lowest energy. For lattices with a larger gap than 180
nm, one can even see that type III310

C1 is more represented than type III310
C2 (or are

equally represented) and population with the composition of type III220
C1 is decreasing

and is lower than the later two. For that region, the interval of 𝐽2/𝐽1 ratio can be
determined so that 𝐽2/𝐽1 < 0.9 (see figure 4.13).

This method of explanation slightly spoils the composition population for the
smallest gaps where type III220

C1 is represented by almost 50 %. In figure 4.13, there
is not an interval where type III220

C1 would have the lowest energy. This substantial
increase of the vertex composition can be explained by the large population of type
𝑇2 which is then imprinted into the type III vertices (see the population curve for
type 𝑇2 in figure 4.1a for 100 nm and 120 nm gaps).
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The reason to investigate the vertex compositions is valid because from fig-
ure 4.14, it is obvious that some configurations are more frequent and thus more
energetically favourable than others. To understand the dynamics of type III clus-
tering and other phenomena, the understanding of the formation of a plaquette is
crucial. For the smallest gaps, the reason for forming the type III220

C1 composition is
also in the sharing of defects (i.e. types 𝑇2 in the corners of the plaquette) and does
not depend only on the energy of a single vertex type.
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Fig. 4.15: Computed energy spectrum for type IVC1 and type IVC2 vertices. The
energy of a vertex type depends on the 𝐽2/𝐽1 ratio. The 𝐽 ′

1 value affects the mutual
hierarchy of type IVC1 and type IVC2 . For this computation, the 𝐽 ′

1 value is set to
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1 = 0.9𝐽1.

The same analysis of the composition of type III vertices can be made for type
IV vertices. For the calculation of the energy spectrum for type IV vertices the
equations 4.7 and 4.8 were used. The results of these computations can be seen in
figure 4.15. One can notice that the energies for type IV310

C1 and type IV301
C1 are not

present. This is caused by the four 𝐶1 type vertices at all T junctions. This leads to
the presence of at least two antiferromagnetic spin corners (e.g. two types 𝑇2 or one
type 𝑇2 and one type 𝑇3, etc.) to fulfil the rule 3 described in section 2.5.2. On the
other hand, type IVC2 vertices do not have strictly given direction for the two short
nano-magnets, thus enabling the type IV310

C2 and type IV301
C2 and even type IV400

C2 .
It is not surprising that the lowest energy is for type IV400

C2 because of enabling
four type 𝑇1 vertices. This dramatically decreases the energy of the plaquette for
𝐽2/𝐽1 < 1. Except for the later composition, type IV220

C1 , type IV310
C2 and type

IV220
C2 are the vertex compositions with the lowest energy for the 𝐽2/𝐽1 ratio lower

then 1. Now, one can compare the theoretical energy ladder for type IV vertices
with experimental data.

In figure 4.16 can be seen the population curves for different type IV composi-
tions depending on the gap of the lattice. For lattices with a gap larger than 140
nm, the composition of type IV400

C2 is dominating. This agrees with the same 𝐽2/𝐽1
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interval predicted by the configuration for type III vertices. The second most fre-
quent composition of type IV is the type IV310

C2 (this again matches for 𝐽2/𝐽1 < 1).
For the lattices with small gaps (i.e. 100 nm and 120 nm gap) the behaviour is
different. Vertex compositions with a higher fraction of 𝑇2 vertices (type IV130

C1 , type
IV220

C1 and type IV121
C1 ) are present because of the shared type 𝑇2 cross vertices.
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Fig. 4.16: Experimental population curves for different type IVC1 and type IVC2

vertex compositions dependent on the gap. The markers used in this plot are the
same as those used in the theoretical energy spectrum in figure 4.15. Vertices with
a population lower than 5 % are omitted.

This section demonstrated the complex behaviour of the shakti lattice system and
reminds the fact that some information is lost in the process of extended mapping
presented in this work. It is important to include in any future works about the
shakti system the fact that vertices after the mapping do not have the same energy
as would be expected in the classical 16 vertex model. This was proved by the
analysis of the theoretical energies of single vertices (see figures 4.13 and 4.15) and
by observing the same phenomena experimentally (see figures 4.14 and 4.16).
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5 Conlusion
This work focused on the artificial spin system with the shakti geometry. I showed
how its physics can be mapped to the one of the square geometry. To interpret the
results, the mapping definition was extended to include type III and type IV vertices
which behave like electrostatically charged quasi-particles in the square ice.

By measuring several shakti lattices with MFM for a wide range of gaps, good
statistics was provided to analyse the behaviour of the shakti system. The vertex
populations and configurations in reciprocal space provided by MSF were used for
the analysis. The use of the MSF enables to analyse the magnetic correlations in
the system.

The lattices with the highest fraction of type 𝑇1 at the cross vertices were natu-
ral candidates for the observation of the predicted spin liquid phase for the system
mapped to the square lattice. After analysing my experiments and experiments pro-
vided in the literature, an important conclusion was made. The shakti system with
the population of type 𝑇1 around 85 % is not sufficient to exhibit the signatures of
the disordered spin liquid phase. This means that my measurements could not reach
the shakti ice physics. Also, the presence of type III and type IV vertices can not be
associated with the monopole-like behaviour of excitations in the Coulomb phase.
Surprised by these results and the essential differences between the experimental
results and theoretical predictions led to an effort to find a new model that would
better describe the shakti system.

For finding the new model, Monte Carlo simulations were used. The procedure
to find a better model was done by fitting the vertex populations obtained from the
experiments on the population curves computed by Monte Carlo simulations. To be
sure that spin correlations are the same in the experiments and that the new model
describes them as well, a comparison of the MSF calculated from the experiments
and simulated by Monte Carlo was done. The new model consists of two variable
parameters. The 𝐽2/𝐽1 parameter affects the composition of the background formed
by type 𝑇1 and type 𝑇2 vertices. For the shakti ice, it should be equal to one, but
experimental results can not reach such a condition, and this parameter was lower
than one for all my measurements. The ℎ parameter is the second parameter and
describes a local alternating field on each vertex, which favours the configuration of
type III and type IV vertices that are inherently present in the shakti system with
the population of type 𝑇1 at the cross vertices lower than 100 %.

After the analysis of the experiments, it was observed that by changing the gap
between the nano-magnets in the shakti lattice, the system after the mapping is
characterized by different parameters. By tuning the gap parameter one can choose
different models. For gaps similar to the width of the nano-magnets, the effect of
charge crystallisation is visible, and type III and type IV tiling emerges (i.e. ℎ is
larger). Lattices with larger gaps tend to be described by smaller ℎ parameters.
MSFs of these lattices have a typical shape of wide Bragg peaks at the same q-
vectors as the MSF background for 100 nm and 120 nm gaps. This new model
includes the specific behaviour of type III and type IV vertices especially for small
gaps that were not taken into account in the previous model.

To understand the dynamics of the charge crystallisation and type III and type
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IV tiling, the energy hierarchy of the excitations was studied. During the mapping
process, some information is lost due to the mapping procedure. This information
is stored in the composition of the plaquettes that are mapped to the vertices in the
square lattice. The compositions of type III and type IV plaquettes were studied
both theoretically and experimentally. The experiments confirmed that several en-
ergies are associated with one vertex type after the mapping and that the formation
of type III clusters is driven by the plaquette composition.

This work extended the understanding of the artificial shakti system and helped
to get insight into the physics of the shakti lattice. However, the observation of
the pure spin liquid phase or Coulomb phase is experimentally very difficult. Oth-
erwise, this work can serve as an inspiration for studying the fascinating charge
crystallisation effect.
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