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ABSTRACT 
Artificial spin systems have emerged as a promising platform for studying in real space 
and harnessing exotic states of matter. This diploma thesis investigates the unique 
properties of a specific artificial spin system known as the shakti ice magnet. The shakti 
ice magnet is a two-dimensional arrangement of interacting nano-magnets, exhibiting 
intriguing magnetic behaviour. 
This research aimed at characterising its behaviour and its ability to be mapped onto 
the seminal square ice in which interesting Coulomb physics is expected. A combination 
of experimental measurements and numerical simulations was employed to achieve these 
objectives. Experiments were based on M F M measurements to determine the magnetic 
configuration of samples containing lithographically prepared shakti lattices. 

KEYWORDS 
artificial spin systems, artificial magnetic spin systems, shakti lattice, vertex model, 
magnetic force microscopy, spin dynamics, Coulomb phase. 

ABSTRAKT 
Umělé spinové systémy se staly slibnou platformou pro studium nízkoenergetických stavů 
v reálném prostoru. Tato diplomová práce zkoumá jedinečné vlastnosti specifického umě­
lého spinového systému známého jako ledový magnet shakti. Ledový magnet shakti je 
dvourozměrné uspořádání interagujících nano-magnetů, projevujících zajímavé magne­
tické chování. 
Tato studie si klade za cíl charakterizovat chování ledového magnetu shakti a jeho schop­
nost být mapován na fundamentální čtvercový spinový led, kde se očekává projevení za­
jímavé Coulombovské fyziky. K dosažení těchto cílů byla využita kombinace experimen­
tálních měření a numerických simulací. Experimenty byly založeny na měření magnetické 
silové mikroskopie pro stanovení magnetické konfigurace vzorků obsahující litograficky 
připravené shakti mřížky. 

KLÍČOVÁ SLOVA 
umělý spinový systém, umělý magnetický spinový systém, mřížka shakti, vertexový mo­
del, mikroskopie magnetických sil, spinový dynamika, Coulombova fáze. 
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1 Introduction 
In this work, I focused on a special area of condensed matter physics consisting of 
the analysis of artificial frustrated spin systems. The phenomenon of frustration, 
such as frustration in water ice between oxygen and hydrogen atoms, has led scien­
tists to develop other approaches to studying the properties of this exotic physics. 
For this purpose, artificial magnetic systems have been developed that mimic this 
phenomenon observed in nature. Frustration in the system is meditated by magnetic 
interactions between nanomagnets produced by lithographic techniques. 

These nano-magnets can be arranged in different geometries that provide differ­
ent system properties and behaviour. The work on my diploma thesis consisted of 
exploring several geometries with an emphasis on the situation where nanomagnets 
are placed on a shakti lattice. 

In these systems, it is possible to observe an interesting physics. When several 
conditions are met, the system can be in the lowest energy state, the ground state, 
and at the same time, it can be disordered. When the system is in this exotic 
state, we can call it a spin-liquid or Coulomb phase. Just above the ground state, 
when excitations begin to appear, another phenomenon can be studied. Under these 
conditions, the excitations will behave like electrostatically charged free particles. 
These excitations, also called monopoles for their charge properties, interact as 
positively or negatively charged Coulomb-like particles. They can repel or attract 
each other, but their origin is not electrostatic but purely magnetic. 

In recent years, scientific work on the shakti lattice has been published and 
created another branch of frustrated magnetic systems. In a theoretical article, 
Chern et al. describe a very interesting connection between the ground state of the 
shakti lattice and a spin-liquid phase on a square lattice. In another publication, 
Gilbert et al. confirm this theory experimentally and claims that the disordered 
state of spin-liquid can be observed even above the ground state. 

The goal of this work is to carefully reanalyse the experiments done by Gilbert 
et al. with a new approach and study the ice physics in the shakti lattice. Also, 
no magnetic monopoles were mentioned in the previous works that are inextricably 
linked with the Coulomb phase. The physics of monopoles and their impact on the 
whole shakti system will be presented. 
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2 Scientific background 

2.1 Frustrated systems in nature 
Frustration is a natural feature of many systems in nature. These systems are not 
able to satisfy all interactions at the same time [18]. The history of frustrated 
systems dates back to the 1930s when physicists attempted to clarify the non-zero 
entropy of water ice at cryogenic temperatures [13]. In 1935, Linus Pauling came 
up with a model describing these findings [29]. According to this model, the oxygen 
atom is surrounded by four hydrogens, where two hydrogens are bound to oxygen 
by a stronger bond than the other two hydrogens. This results in a situation where 
two hydrogens are always closer to the oxygen and two further away. The schematic 
of this atom arrangement can be seen in figure 2.1. 

Fig. 2.1: a) Schematic of a water molecule in the tetrahedral coordination of the 
ice structure. Oxides are depicted by open circles and protons by filled circles. The 
position of the proton is located by displacement vectors that occupy a lattice of 
linked tetrahedra. b) In spine ice the displacement vectors are replaced by Ising 
spins occupying the pyrochlore lattice. Adapted from [4]. 

One can imagine that the position of these hydrogen atoms can be expressed by 
an arrow (or by a spin) where the close proximity of the hydrogen near the oxygen 
atom corresponds to the head of the arrow and the more distant hydrogen corre­
sponds to the tail of the arrow. Now a problem of the position is transferred to a spin 
model problem. During the second half of the 20th century, several two-dimensional 
models were introduced and solved by Lieb [19]. Now it is more appropriate to talk 
about vertex models because these models fully describe the whole system [1]. 

In 1997, Harris introduced other materials where frustration also occurs. These 
materials, such as Ho2Ti207 [15] and Dy2Ti207 [5], are rare-earth materials with 
the same ice model able to describe the physics of the atomic magnetic moments in 
these compounds as in water ice and its hydrogen positions. However, this approach 
could not provide information about each magnetic moment orientation, but only 
the overall results of the bulk sample. This and other disadvantages led to a new 

a) b) 

17 



branch of frustrated systems studies where local information and easier measurement 
processes were present. 

2.2 Frustrated artificial systems 

For the purpose of approaching these exotic systems, artificial magnetic systems have 
been developed. Frustration in the system is meditated by magnetic interactions be­
tween nano-magnets produced by lithographic techniques [39]. These nano-magnets 
can be arranged in several geometries that provide different system properties and 
behaviours. By tuning these parameters, one can design the system properties and 
probe these systems with a lab-on-chip approach. 

In the beginning, the water ice structure has been the inspiration for geometries 
in artificial systems. Hydrogen atoms and their position between two oxygen atoms 
in water ice at low-temperature form a tetrahedral lattice with shared corners. By 
projecting corner-shared tetrahedral lattice in a plane one can obtain two funda­
mental geometries used in frustrated artificial systems - the square lattice [24] and 
the kagome lattice. 

These two geometries differ especially in their coordination number, i.e. by 
the number of nano-magnets that interact in a single vertex and their orientation 
in a lattice. In a classical square lattice, the interaction is among four magnets 
(coordination number is z = 4) and in a kagome lattice is among three magnets 
(coordination number is z — 3). In this thesis, more focus will be on a classical 
square lattice which is fundamental for other geometry called shakti. 

2.3 Classical square lattice 

One of the most basic geometric arrangements is a classical square lattice (CSL). 
In this geometry, one can observe competition between the coupling strengths when 
the interactions between the first and second neighbours are ferromagnetic. This 
kind of system can be described by a vertex model, which was theoretically solved 
for specific cases by Lieb [19, 20, 21]. 

In this case, the coupling strength is provided by magnetostatic interaction be­
tween nano-magnets fabricated of permalloy which are single domains [39, 40]. Thus 
we can assign for such a magnet an orientation of its magnetization which we depict 
as a pseudo-spin (or an Ising variable). This nano-magnet is creating a magnetic 
stray field that can affect other magnets in its surrounding. In figure 2.2b one can 
see four nano-magnets in a square geometry and their spins that are aligned with 
the stray field coming out of the first magnet on the left side of the figure. From 
the point of view of the first magnet, the other ones are aligned and the system 
is in the lowest energy. But considering other nano-magnets one can see that just 
one nano-magnet is aligned with its stray field but the other two magnetizations 
are in opposite directions. In this organization, the system is frustrated and the 
lowest energy of the vertex must be a compromise among all the magnets. How this 
compromise will look like will be dependent on the coupling strength between the 
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Fig. 2.2: a) The square lattice, b) The four magnets create a vertex where the 
orientation of other magnets is aligned with the leftmost nano-magnet but not with 
the rightmost nano-magnet. This creates frustration in the vertex, c) Interactions 
between first (Ji) and second (J2) neighbours. 

first and second neighbours, but always satisfy the "2in/2out" ice rule introduced by 
Bernal and Fowler [2]. 

2.3.1 Energy of the 16 vertex model 
In this system, only the dipolar interactions between the first and the second nearest 
neighbours are considered. The Hamiltonian % describing such a system can be 
written as 

where Jy is positive coupling strength for the first and the second nearest neighbour 
and <7j and Oj are scalars giving the spin's orientation along this direction. The 
expression < ij > means that summation is made over the nearest neighbouring 
spins. Because <7j = ±1 the spins can be considered as Ising variables. 

Thanks to spin-reversal symmetry one can divide the 16 vertices into four groups. 
These groups (or types) are not characterised just by their symmetry but also thanks 
to their energy. When one considers interactions with just first and second neigh­
bours the energies can be calculated by equations 2.2-2.5. 

Ei = - 4 J i + 2J 2 , (2.2) 
En = - 2 J i + 2JX - 2J 2 = - 2 J 2 , (2.3) 

Em = - 2 J i + 2Ji - J 2 + J 2 = 0, (2.4) 
Eiy = +4JX + 2J 2 , (2.5) 

where the J i , resp. J 2 , are coupling strengths of the first, resp. the second nearest 
neighbour. In this definition of vertex energies the coupling strengths are posi­
tive thus the (—) sign corresponds to favourable and the (+) sign corresponds to 
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unfavourable alignment. Another aspect of this energy level ordering can be seen 
when one assumes the first neighbour coupling strength is stronger than that of the 
second one (Ji > J2), thus the energies of corresponding types are higher for each 
type and the system tends to form type I vertices everywhere. 

2.3.2 Spin liquid phase in CSL 

a) 
11 1 t t t l l t t 1 t 1 t I t t t ^rccn' rrcrrcrrrcrn zrrrrrrrrrrrrrrrrn ^crcrccccrcrcrcccn ~~crccrrrcrcrcrcccn 

• r rrccrm err. rcrn 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

_ i 1 \JJ 1 1 1 1 1 1 1 1 1 1 1 1 j 
UJ * u j j u _ U J L U • JJU 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 zccrri' rcrrcrrcrrrci j~~crrrrrrrrrr~rrrri 
UJJJJJJJJJJJJJJJJ 
t t 11 t t t 1 1 t 1 t 1 1 t 1 t 1 

~crrcccrrccrcrrirrc\ 

Fig. 2.3: a) Example of a typical spin-liquid state composed of a mixture of type I 
and type II vertices. In all spin configurations, the colour of spins (arrows) depends 
on the orientation by the next convention. Horizontal spins pointing to the right 
(resp. to the left) are blue (resp. red). Vertical spins pointing upward (resp. down­
ward) are blue (resp. red). This convention helps to directly observe line ordering 
(typical example can be seen in figure 3.7b). Type I vertices are portrayed by light 
green and blue squares. Regions, where type I vertices are connected together, are 
then more recognisable. Type II which separates blue and green islands of type I 
is portrayed by light red squares. Spin configuration was obtained by Monte Carlo 
simulation, b) Overview of all 16 possible vertex configurations. Type I and type 
II are the only types that fulfil the so-called ice rule. Type III and type IV are 
excitations of the system and violate the ice rule. The spin configuration is adapted 
from [34]. 

The artificial spin liquid is a disordered but correlated magnetic state made by an 
assembly of interacting Ising variables and pairwise spin correlations that decay to 
zero at large distances [34]. Spin liquid phase or ice phase on a square lattice is a 
specific state that usually refers to a six vertex model in statistical mechanics that 
has an intriguing behaviour at zero temperature [22]. Because there are only six 
vertices out of the 16 possible variants which permit the so-called ice rule (two spins 
pointing in the vertex and two out of it) the model is then referred to as the six 

b) 
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vertex model (see figure 2.3) [29]. This means that only type I and type II vertices 
are considered thus yielding in an ice rule constraint [34]. 

When the coupling strengths of the first nearest neighbour J\ and the second 
nearest neighbour J 2 are equal, the condition for reaching a spin-liquid regime is 
fulfilled. For this system, the ground state is formed by six possible vertex con­
figurations with the same energy (See equation 2.2 and 2.3 for ice rule condition 

When the system is not in the ground state the other configurations - excitations 
will start to appear (see section 2.4.1). In such a manifold one can observe the exotic 
behaviour of the magnetic monopoles on the disordered background. By magnetic 
monopoles in spin ice one means classical quasi-particles carrying a magnetic charge 
and interacting via a Coulomb potential at long distances [9]. Determining the 
magnetic charge of a vertex is simple, one needs to add up all spins (arrows) pointing 
in a vertex and subtract all spins pointing out of the vertex. Each spin has a charge 
value equal to one. Because types I and II do not carry a magnetic charge the first 
excited vertex is type III (q = ±2). A magnetic monopole with even higher energy 
is one with type IV (q = ±4) but these excitations are energetically so unsuitable 
to be observed in such a manifold. 

2.4 Coulomb phase 
Coulomb phase physics was introduced by Henley in 2010 [16] to describe specific 
lattice models by using fundamental laws of electrostatics and magnetostatics. This 
concept is built on the idea of "lattice fluxes" and local vertex charges. Considering 
only lattice spin models Henley provides three conditions [16] for a Coulomb phase 

1. Each lattice variable (the spin in our case) can be mapped to a discrete signed 
(magnetic) flux p«, running along bond %. 

2. At each lattice vertex, the sum of these signed fluxes is zero. 
3. the system is in a highly disordered state (i.e., liquid-like). 
Furthermore, Henley showed that the desired emergent vector field P(r) is the 

coarse-graining of these lattice fluxes and is divergence-free. 

The classical square lattice system and its liquid phase is a natural candidate for 
a Coulomb phase. Because of the ice rule condition, only type I and II are present 
and those types have zero magnetic charges thus condition 2 and corresponding 
equation 2.6 is fulfilled. Also, because the system is in spin liquid regime, it is 
degenerate too and condition 3 is fulfilled as well. 

2.4.1 Magnetic monopoles in Coulomb phase 
A question arises about how the system will behave when the equation 2.6 is locally 
disturbed by the presence of a defect (i.e. type III with non-zero magnetic charge). 
These defects are from the energetic point of view excitations of the spin liquid 

Ji = J2). 

[34]. 

(2.6) 
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a) b) c) 

Fig. 2.4: a) Classical square lattice. In the first step, the blue magnets are removed, 
b) Big cross lattice. Empty spaces are filled with longer magnets in alternating 
horizontal or vertical directions, c) Long island shakti lattice. 

manifold but mostly are referred to as magnetic monopoles. The reason why one 
would use the word monopole (and to top it all magnetic monopole) is the following. 
Excitations living on the highly disordered manifold have particle-like properties. In 
this sense, the background formed by type I and II vertices behaves like an uncharged 
vacuum in which charged particles repel and attract each other through Coulombic 
interactions. Observation of these dynamics and system phenomena on a lab-on-
chip approach is currently a very interesting direction of scientific research [11, 10. 
31]. 

2.4.2 Pinch points in reciprocal space 
However, how to know that the spin system is in this Coulomb phase? Henley and 
others [16, 12, 38] showed that a Coulomb phase has specific diffraction features 
that leave fingerprints in reciprocal space. By Fourier transformation, one can ob­
tain the magnetic structure factor (MSF) that carries important information about 
the system (see section 3.4.1). Due to a singularity in reciprocal space at certain 
values, one can observe a characteristic shape of a pinch point that unambiguously 
corresponds to a Coulomb phase. 

2.5 Shakti lattice and mapping to the square ice 
The classical square lattice was studied for decades and is still a very interesting 
geometry for the study of frustrated systems. But physicists in this field are still 
trying to invent new geometries with different properties [6, 36, 34, 26]. One of the 
rather new geometry is the shakti lattice [26, 37, 17]. This geometry is interesting 
in many ways. The first interesting thing is using two different vertex types with 
coordination numbers z = 3 and z — 4. Also one can see at first glance that not 
every nano-magnet is the same. In figure 2.4 one can see how the geometry of the 
shakti lattice is derived from the classical square lattice. 
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One can notice that with the coordination number z = 3 new type of vertices 
can be observed. This means that for the shakti lattice, the 16 possibilities of 
square lattice vertices are extended by another eight vertices. These new vertices 
can be divided into three categories. In figure 2.5 one can see all possibilities of 
configuration in the shakti lattice. For better clarity, we will name the 4 types of 
vertices with coordination number z = 4 as T! ,T 2 ,T 3 and T 4 and the 3 types of 
vertices with coordination number z = 3 as C\,C2 and C3. 

t 
J . * 

1 

t 
i 

z = 4 2= 3 

Fig. 2.5: All 16 possibilities of vertex configuration for a cross vertex (z = 4) and 
all 8 possibilities of vertex configuration for a T junction vertex [z — 3). 

2.5.1 Shakti mapping 

shakti lattice square lattice 

Fig. 2.6: Scheme of shakti lattice mapping to the square lattice by rules provided 
in [10]. Only black spins are part of the vertex plaquette and their orientation is 
important for the mapping. Green circles mark vertices with type C<i- The same 
circles are also visible in the circle notation. From the circle notation, one can assign 
the spin notation in the square lattice. 
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Chern et al. [10] describe a way how to transfer a more complex system (shakti) to a 
well-known one (square lattice). They also predict that this system can be mapped 
to a six-vertex model if other conditions are fulfilled. And the most interesting 
prediction was that after mapping such a system we should obtain a spin-liquid 
phase in the square lattice. 

To understand how the mapping works one needs to have a look at the vertices 
composed of type C. In our conditions where one should be close to the shakti 
ground state only types C\ and C2 are taken into account. In figure 2.6 one can see 
that in the square that contains the horizontal (or vertical) long magnet, are four 
vertices of type C. Because only two possibilities for the T-vertex are valid one can 
assign an arrow (or spin) pointing up or down for the top and bottom T-vertex and 
the same for the left and right T-vertex. 

a) b) c) 

1 f 
t t 

I \ 

f f 
f 

i„ 1 
I t 

I J 
t t t 

1 
\ ' ' \ 

1 

A. 
1 
; c > — 

LL - \ 

t I I 
—ft*- js* 

^ I i t 
Fig. 2.7: a) Spin state in the shakti lattice with type 7\ at the cross vertices, b) 
Mapping to the circle notation by definition presented in figure 2.6. c) Emergent 
6-vertex model after the mapping. Adapted from [10]. 

The definition of the mapping consists of only T\ vertices at the cross vertices 
(z = 4) and only C\ and C 2 at the T junction vertices (z — 3). This yields just two 
possibilities of configuration at the T junction vertices and because type 7\ is the 
only possibility for the cross vertices, one can have only six possible configurations 
on the shakti plaquette. These configurations can be defined as a vertex after the 
mapping (6-vertex model). A typical configuration can be seen in figure 2.7. This 
definition of mapping is useful only for experimentally unreachable conditions. Also, 
this model does not include excitations (i.e. monopoles) created by type III and type 
IV. For those reasons, an extension from the 6-vertex model to the 16-vertex model 
has been needed. In figure 2.8 all possible shakti configurations in the circle notation 
are present and their corresponding 16-vertex model configurations. 

24 



B B Q B B Q B B B 0 B B B Q 0 B 
- B - B - B - B B — B + + + + + + * + - B - B 
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Fig. 2.8: Mapping between shakti geometry and square geometry. Dashed horizontal 
and vertical lines represent the direction of long islands. A circle between the corners 
of the square represents a T junction with vertex type C 2 and the same place without 
a circle represents a T junction with vertex type C\. 

2.5.2 Excitations in the new mapping model 
This extension has one important impact on the shakti lattice system. To observe 
type III in the square system after the mapping, the rule of type T\ only on the cross 
vertices must be broken. The excitation (type III) is linked with the mapping by 
having three times type C\ (resp. type C 2) in its vertex. To achieve this state at least 
one of the four cross vertices must be formed by type T 2 or type T 3. Theoretically 
even by type T 4 but with our level of demagnetization protocol and its efficiency 
described in the section 3.2 the type T4 has immense energy and it is, therefore, 
never observed. 

To be more specific the condition for excitation creation is more complex. To 
better understand the situation let's label the four cross vertices as corners of the 
plaquette. From each of those four cross vertices, two spins (nano-magnets) are 
participating in the T junction vertices (spins with black colour) and two of them 
belong to the diagonal plaquette (spins with grey colour). These corner spins can 
generally have ferromagnetic ordering (FM) or antiferromagnetic ordering (AM). 
When the theoretical conditions are met one observes only type T\ vertices at the 
cross vertices. In such a case corner spins are always ferromagnetically aligned. 
However, in experiments, this configuration is very challenging to obtain and the 
non-zero probability of other types than type Xi at cross vertices is present. 

Plaquettes with two C\ and two C 2 types at the T-cross are types I and II 
after the mapping. For these two types, the general condition for the number of 
ferromagnetic and antiferromagnetic corner spins is as follows: 

Rule 1 The number of antiferromagnetic spin corners must be zero or an even 

number in a plaquette with two C\ and two C 2 types. 

For plaquettes that project themselves to type III exists two main groups. These 
groups are defined by the number of C\ (resp. C 2) types. Because type III in CSL 
lattice is referred to as a monopole at specific conditions described by Chern [10], 
these new type III groups will be named as C\ (resp. C 2) monopoles depending on 
which number of C types is higher. Nevertheless, both groups must fulfil the FM or 
A M condition. In this case with three C\ or C 2 types in the plaquette, at least one 
pair of corner spins must be aligned antiferromagnetically. 
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Rule 2 The number of antiferromagnetic spin corners must be an odd number in a 

plaquette with three C\ (resp. C2) types and one C 2 (resp. C\) type. 

Similar groups can be found for type IV vertices. Again, groups will be named 
C\ (resp. C 2) type IV monopoles. Due to the even number of types C\ or C 2 the 
number of antiferromagnetic corners spins must be even or zero. 

Rule 3 The number of antiferromagnetic spin corners must be zero or an even 

number in a plaquette with four C\ (resp. C2) types. 

These last two rules (2 and 3) have important implications. When one wants 
to observe interesting behaviour of excited defects (i.e. monopoles) on a disordered 
background formed of the spin liquid phase, types T 2 and type T 3 at the cross 
vertices must be present. With such an approach the disadvantage of achieving 
100% population of 7\ at the cross vertices now becomes important and desirable 
property of the system. 
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3 Methodology 
One of the great advantage of working with artificial spin systems is fabricating a 
large variety of desired lattices on a relatively small surface (e.g. 5000 lattices on 
30 mm2 area). This implies that when a sample is optimized one sample is more 
than enough. The sample used for this thesis was fabricated by Ing. Ondfej Brunn 
at the Institue of Scientific Instruments in Brno and further details will be provided 
in section 3.1. 

To observe the exotic behaviour of artificial spin systems one has to bring them 
to their lowest possible energy. The methods to reach these low-energy states will 
be discussed in section 3.2 with emphasis on the method I used. 

Once the sample is fabricated, magnetic force microscopy (MFM) imaging is 
used to determine the direction of magnetization of each nano-magnet in the lattice 
under examination. The basis of atomic force microscopy imaging will be discussed 
in section 3.3. 

After measuring the magnetic response of the artificial system one needs to 
analyse the data. In section 3.4 the recognition process, the determination of the 
vertex populations before and after the mapping (see section 2.5.1), Monte Carlo 
simulations and other techniques used to post-process the data will be presented. 

3.1 Fabrication of the sample 

Q substrate (Si) 
• resist (PMMA) 
• deposited material (Ti/NiFe/Al) 

a) 

electron beam 
irradiation 

d) e) f) 

Fig. 3.1: Sample fabrication process: a) substrate preparation (e.g. Si), b) substrate 
is spin-coated with e-beam positive resist (e.g. PMMA), c) resist is exposed by 
electron beam lithography, d) resist is developed, e) desired material is deposited by 
vapour deposition, f) Unwanted material is lifted-off together with remaining resist. 
Adapted from [6]. 

For the sample, a silicon substrate with a native Si02 layer was used. The silicon 
substrate was spin-coated with a PMMA positive resist, which was irradiated with 
an electron beam at precise locations depending on the required parameters such as 
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the length and width of the nano-magnets and the geometry of the lattices. After 
electron beam exposure, the irradiated parts of the resist were dissolved by the 
developer. The metal layer is then evaporated and consists of an adhesive 5 nm 
layer of titanium a 25 nm thick layer of permalloy Ni80Fe2o a n d a capping layer of 
3 nm thick layer of aluminium. The last step was to use a solvent to remove the 
resist with unwanted permalloy and aluminium. More details about the fabrication 
process can be found elsewhere [6, 36, 31, 28, 30]. 

3.1.1 Lattice parameters 

In previous sections, the great advantage of artificial spin ice systems was already 
mentioned. The tunability of these systems is crucial and relatively easy thanks to 
the fabrication process described in section 3.1. One just needs to design a series of 
lattices (e.g. shakti lattices) with one or more varying parameters. 

The main property of the lattice is the lattice geometry. Different geometries 
have obviously different parameters that can be tuned. Shakti geometry is derived 
from the classical square lattice as illustrated in figure 2.4, therefore describing the 
shakti parameters will be sufficient to understand the CSL parameters as well. 

Designing the layout starts with the parameters of a single nano-magnet nor­
mally used in CSL. The parameters of this magnet are its shape, length, width and 
thickness. All lattices measured for this diploma thesis have an aspect ratio length 
divided by width defined equal to five. For better interactions, all nano-magnets 
(including long islands in the shakti lattice) have their ends rounded. The length 
of the nano-magnet already includes the rounding as can be seen in figure 3.2. The 
thickness of all nano-magnets is the same and depends on the fabrication process (see 
section 3.1). The last important parameter is the distance between nano-magnets. 
This distance is called the gap and its value is the same for nano-magnets interacting 
in a cross and at T junction. Sometimes different notations are used and a parame­
ter called lattice spacing can be introduced [14]. For a full description of the shakti 
lattice, one just needs two parameters: the gap and the length of the nano-magnet. 
The rest (e.g. length of the long island) can be easily computed from the geometry 
presented in figure 3.2. 
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width 1 
gap gap 

length 

width 

> + 
length of i 

long island (LI) 

T junction 
vertex 

lattice spacing cross 
vertex 

Fig. 3.2: Schematic description of the shakti lattice parameters. The gap between 
short and long nano-magnets is the same everywhere. The distance between the 
T junction vertex and the end of the long island nano-magnet is half of the gap 
distance. Lattice spacing is therefore equal to the length of a nano-magnet plus the 
gap, or to half of the length of the long island plus the gap. The cross vertex and 
the T junction vertex are marked with their centres. 

3.2 Demagnetisation protocol 
For estimating the quality of the field demagnetisation protocols, CSL lattices were 
used as a reference. As was mentioned in section 2.3.1, the ground state (i.e. a 
system with an effective temperature equal to zero) is an ordered phase containing 
only type I vertices [35]. 

Magnetization of these nano-magnets is randomly orientated after the manu­
facture. The interesting physics of frustrated systems appears when the effective 
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temperature is as low as possible. One needs to bring the artificial system to low 
energies and provide the system with the possibility to behave according to its 
neighbour's interactions. 

There are several methods how to help the system to decrease its energy. The two 
mostly used approaches are the thermal annealing protocol [14, 40, 25, 32] and the 
field demagnetization protocol [39, 7, 8, 34]. In my case, the field demagnetisation 
protocol was used and will be more specified. In this approach, one can use an 
external periodical magnetic field that is decreasing in time (see figure 3.3b). A 
sample with fabricated lattices is placed on a sample holder which rotates between 
the poles of an electromagnet (see figure 3.3a). In the beginning, all magnets are 
polarised with the external magnetic field. But because the sample holder is rotating 
with greater frequency than the frequency of the magnetic field, the magnetization 
of nano-magnets is changing rapidly. 

At some point, several nano-magnets stop changing their direction of magneti­
zation, and because the external field has no longer the sufficient strength to flip a 
nano-magnet, magnetization freezes. The frozen nano-magnet then starts to affect 
its still-changing neighbours. At the end of this demagnetization protocol, one hopes 
that the system had relaxed for a sufficient time and that the system has found a 
low energy configuration. 

a) b) 

Fig. 3.3: a) Scheme of the demagnetization setup. The sample is placed on the 
rotating sample holder and between the electromagnet poles, b) Plot of a slowly 
decaying external magnetic field. During phase I, the external magnetic field is 
relatively strong and all nano-magnets follow the field direction. After some time 
(depending on the demagnetisation protocol) the magnetic field starts to be of the 
same order of magnitude as the critical field required for the spin-flip. This effec­
tive zone window is described by phase II in the plot. At the end of the second 
phase, some nano-magnets start to freeze and this effect is increased by additional 
field lowering. In phase III, the nano-magnets have found their best configuration 
for this procedure and the external field does not have enough strength to change 
magnetisation anymore. 
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3.3 Magnetic force microscopy 
After a demagnetization protocol, one microstate of the 2^ (where TV is a total 
number of spins e.g. 3000) possible configurations of the system is obtained. By 
using magnetic force microscopy (MFM) and by scanning the whole lattice one 
can read the orientations of all spins (e.g. magnetization) and have access to the 
magnetic microstate. 

Magnetic force microscopy [23] is a scanning microscopy technique that is based 
on atomic force microscopy first introduced by Binning [3]. This method uses force 
interactions between a sharp tip and the sample of interest. If one uses specially 
treated tips such as tips with a magnetic coating, a magnetic image can be obtained. 
To separate the information about the topography of a sample and its magnetic be­
haviour, a two pass method is used. The sharp tip is oscillating near its resonant 
frequency (tapping mode) and probes topological information during its first pass. 
Then the tip is lifted up by a specified distance (mostly between 40 and 80 nm de­
pending on the tip, sample and other circumstances). The second pass is conducted 
but now the tip mimics the topography with a constant distance (e.g. 80 nm). The 
contribution of attractive or repulsive force induced by the interaction between the 
tip and the surface of a sample is substantially reduced and only the interaction 
between the magnetic layer of the tip and the magnetic stray field coming out of 
the sample (a nano-magnet this case) is recorded. 

When the stray field from the nano-magnet is parallel with the magnetization 
of the M F M tip, the repulsive or attractive forces are the largest. This force bends 
the cantilever of the M F M tip which then changes the path of the laser beam used 
to capture these small tilting movements (see the schematic description in figure 
3.4). The result of the measurement is a scanned region with dark and bright circles 
depending on the orientation of the stray field coming in or out of the nano-magnet. 

Fig. 3.4: M F M phase contrast and bending of the cantilever when probing the stray 
field. The result of the M F M measurement is a series of dark and bright dots 
depending on the orientation of the magnetisation of each nano-magnet. 

The M F M imaging was conducted both at CNRS, Institut NEEL (NT-MDT 

Ntegra microscope) and at CEITEC Nano (Scanning Probe Microscope Bruker Di­

mension Icon). 
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3.4 Analysis of measured data 
After basic adjustments in Gwyddion software, [27] (contrast modification, row 
alignment, smoothing) picture with magnetic phase contrast is uploaded into the 
evaluation MATLAB script provided by Ing. Ondfej Brunn. The first step is to 
select the lattice borders. The program then computes a mesh containing in each 
cell picture of one vertex (cross or T junction). During the first phase of evaluation, 
the cross vertices are examined (see figure 3.4b). One then has to distinguish among 
all 16 vertex configurations and select the right one by pressing the associated key­
board key. This process is repeated until all cross vertices are recognized. The 
second phase focus on T junctions and long nano-magnets. In this case, one does 
not evaluate the exact T junction vertex type but directly assigns a spin orientation 
of the long nano-magnet. 

a) b) 
O u m 5 10 15 20 25 30 

Fig. 3.5: a) A typical phase image from M F M measurement. After a preparation 
process, this figure is used in the evaluation script, b) The user interface of the 
evaluation script. In the middle of the screen can be seen a cropped region of the 
M F M image shown in a). The user has to press the corresponding key on a keyboard 
depending on the vertex configuration. On the left and the right side, all 16 vertex 
possibilities are shown with their corresponding keys. In this case, the user should 
press the button "n". Information is stored and the following vertex appears. This 
process continues until all vertices are evaluated. 

After completing this process, several outputs are obtained. The first output is 
unsurprisingly a datasheet containing the spin configuration of the examined lattice 
in form of numbers associated with the vertex types. Thanks to this configuration, 
all other calculations and statistic properties can be made automatically. 

The second important quantity describing a system is the vertex population. 
The evaluation script counts all vertices according to their types (Ti, T 2, T 3, T 4, C\. 
C 2 and C3) and provides their representation in percentages. Vertex populations 
are good indicators of the system's behaviour. They provide local information but 
not the system's correlations. However, they are very useful when some lattice 
parameter is changing (e.g. a gap between nano-magnets, their width, aspect ratio 
etc.), thus influencing the behaviour of the entire system. 
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Because a spin configuration in the form of dark and light dots scattered on the 
blurred background provided by M F M image is confusing for scientists in the field 
as well as for the wider public, a spin configuration in form of arrows was needed. 
Inspired by a code developed by Y. Perrin [30] for CSL lattices, an analogic vertex 
map for the shakti lattice has been developed (see figure 3.6a). 

The last part of the script gives us a spin configuration of the shakti lattice 
after the mapping to the square lattice (see section 2.5.1). Because the system 
size is not infinite, the vertices at the boundaries are omitted. This reduces the 
system size but on the other hand, decreases the unwanted presence of the system's 
boundary. The definition of the mapping works only when there is type C\ or C2 
at a T junction vertex. However, sometimes even type C 3 occurs and in such a case 
the associated spin is not taken into account and only an empty space is visible in 
the spin configuration. The spin configuration of both lattices (shakti lattice and 
CSL lattice after the mapping) are presented in figure 3.6. 

Fig. 3.6: a) The shakti lattice spin configuration is provided by the MATLAB script. 
The main significance of colours used in the shakti lattice configuration is the same 
as in the CSL described in figure 2.3 except the colour of 7\ vertex. In CSL two 
colours for type I are used: light blue and light green. This is not needed in the 
shakti configuration so only light blue colour is used for the Ti vertices. Types 
of T junction vertices can be differentiated by green, orange and magenta colours 
corresponding to types Ci, C2 and C3, respectively, b) Spin configuration of CSL 
obtained after the mapping of the shakti lattice shown in a). Because the mapping 
(see section 2.5.1) and orientation of the spin in CSL is linked with the shakti lattice 
via the T junction vertices, one can see that one spin that corresponds to a type C 3 

(magenta colour) in the shakti lattice is missing in the CSL lattice. 

3.4.1 Magnetic structure factor 
The magnetic structure factor (MSF) is a powerful tool for the characterisation 
of a spin configuration. A spin configuration obtained by M F M is represented in 
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reciprocal space by a Fourier transformation of pairwise spin correlations. The result 
of this computation is a diffraction pattern similar to one that can be obtained by 
a neutron diffraction experiment [34]. Computation of MSF is part of Y. Perrin 
toolkit developed during his Ph.D. thesis where additional details concerning this 
technique can be found. [30]. 

When the system is ordered, the MSF gives magnetic Bragg peaks at specific 
locations in reciprocal space. However, when the system is disordered (e.g. spin 
liquid phase) the MSF is diffuse and has a specific shape [33]. MSF then looks like 
a series of squares connected by their corners. Where two corners intersect, the 
so-called pinch-points are visible [16, 33] (see section 2.4.2). 
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Fig. 3.7: Spin configurations and their corresponding MSF. a) tiling of type I ver­
tices, b) spin configuration of random arranged fully polarized lines created by type 
II vertices, c) all-in/all-out ordered phase of type IV, d) spin liquid phase with a dis­
ordered mixture of type I (light green and light blue vertices) and type II (light red 
vertices). The spin configuration is adapted from [34]. In e)-h) magnetic structure 
factors are shown for lattices a)-d) respectively. For this overview, only type IV 
tiling in g) was chosen but one can expect some intensity at the very same q-vectors 
with type III tiling. The fingerprints of the spin liquid phase, the pinch-points, are 
highlighted by red circles in h). 

3.4.2 Monte Carlo simulations 
Monte Carlo simulations (developed by B. Canals at Institut Neel) are used for 
calculating MSF for a wide range of models and temperatures. However, these 
simulations do not provide just magnetic structure factors for desired temperatures, 
they also provide useful results, such as pairwise spin correlations, nearest neighbour 
charge correlators, entropy density and specific heat or population dependencies on 
the effective temperature. Simulations of the dependence of Monte Carlo population 
curves (MC curves) on temperature are essential for this thesis. 
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For the analysis of artificial spin systems, several approaches were mentioned 
(e.g. spin configuration, populations of vertices, MSF). The last approach that was 
used in this project was to determine the effective temperature of the system. To 
assign a temperature correctly one has to do two things. First is to use the right 
model i.e. fitting experimental data on a model that should describe an experiment. 
The second part is to place experimental data on the Monte Carlo curves with the 
smallest mismatch. 

— * — type I 
type II 

— * — type III 
type IV 

10 Tt 101 

temperature 
l ( r 

Fig. 3.8: Monte Carlo simulation of population curves for a model with only first 
and second neighbour interactions. Experimental values are depicted by star markers 
where each colour corresponds to the colour of MC curves. During the fitting process, 
the difference between the experimental and simulated populations is calculated for 
each temperature (difference Aj). The accuracy of the fit is then £™i A | . The 
effective temperature for the selected model is the temperature with the value of the 
overall square difference closest to zero. 

Using the correct model to describe the physics of the system is a complex task 
and these issues will be discussed in later chapters (see sections 4.3.1 and 4.3.2). 
Here, the more technical part of the fitting process should be addressed. After 
the evaluation process and mapping to the square lattice, one obtains four values 
corresponding to the population of each of the four vertex types (P I

e x p , PnP, -PmP 

and i"rvP). These four values are then compared with values simulated for a certain 
temperature 7] that is probing a temperature range given by the parameters of a 
simulation (PjMC(Tj), P I^ l c(T i), i ^ c ( 7 i ) and P^ c (T i )) . This comparison is done 
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for each temperature (the exact number of steps depends on the accuracy of the 
simulation). In each step, the difference between the population obtained from an 
experiment and one from a Monte Carlo simulation is squared and summed over 
all types (Ej=i[^/ x p - P J

M C(T i)] 2). This value then reflects the accuracy of the fit 
for a certain temperature Tj. The final effective temperature Te$ of a system is the 
temperature for which the value of the accuracy is the highest. 
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4 Results 

4.1 Ice physics in the shakti lattice 
To observe the ice phase in the shakti lattice, one needs to have 100 % vertex pop­
ulation of type Ti at the cross vertices. Each lattice, defined by its gap, has three 
copies, which means that 30 lattices were measured. Each shakti lattice has 20x20 
cross vertices which can be mapped to 19x19 vertices in CSL. Because of the fi­
nite size of the system, the mapped CSL borders are omitted, thus the final CSL 
has 17x17 vertices (see section 3.4). The population of the lattices with the same 
parameters was averaged and standard deviation was also added. Two regimes can 
be observed in figure 4.1a for vertex population of type 7\ and type T 2. For larger 
gaps, the vertex population of these two types is almost constant. However, when 
the gap is smaller, it is interesting to see a substantial decrease of type Ti that is 
compensated by an increase of type T 2. This has an important impact on the forma­
tion of type III and type IV vertices after the mapping which disturbs the ideal spin 
liquid configuration. On the other hand vertex population of type T 3 is negligible 
for small gaps but with larger gaps, the interaction strength is decreasing, while the 
possibility of excitations (i.e. type T3) in the system is growing. The vertex popu­
lation of type T4 is zero for all measurements. In figure 4.1b the vertex population 
for T junction vertices can be seen. For larger gaps, the population of type C\ and 
type C 2 is balanced around 50 % but type C\ is always more favoured than type C 2 . 
For smaller gaps, the vertex population is unbalanced and the coupling strength 
favouring the formation of type C\ vertices is winning. The vertex population of 
type C3 is almost zero for all measurements. The field demagnetisation protocol 
was used (see section 3.2) for the 72-hour long procedure with the initial magnetic 
field BQ = 37 mT. The quality of the demagnetisation protocol was confirmed by 
measuring the CSL lattices with 39 x 39 vertices (see figure 4.1c). 
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Fig. 4.1: a) Vertex population plot of cross vertices in the shakti lattice. Type Ti 
which is crucial for the mapping to the spin liquid grows to a maximum value of 
about 75 % and then slowly decreases, b) Population plot of T junction vertices. 
Type C\ is dominant for lattices with small gaps but the population difference 
between type C\ and type C 2 decreases with larger gaps, c) Population plot for 
reference CSL lattices. Measurement was done only for CSL lattices whose gaps 
corresponded with the highest type Ti representation in the shakti lattices. 
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In figure 4.2a can be seen the spin configuration of the shakti lattice and in figure 
4.2b can be seen the spin configuration of the shakti lattice after the mapping for 
the 180 nm gap. The first striking difference between this spin configuration and the 
spin configuration of a spin liquid (see figure 2.3) is in a non-negligible amount of 
type III (32 %) and type IV (7%) which should not be present in pure spin ice. One 
could imagine that the reason for the presence of type III and type IV in the CSL 
lattice is that they are excitations of the system and behave like magnetic monopoles 
scattered on the spin liquid background of type I and II as was described in section 
2.4.1. Another argument supporting this hypothesis is the population of type T\ 
in the shakti lattice (which is about 75 %) that enables the creation of excitations 
after the mapping (type III and type IV). Two crucial arguments will be presented 
to explain why the system after the mapping is not in the spin liquid phase. 

a) b) c) 

Fig. 4.2: a) Spin configuration of the shakti lattice with 180 nm gap. Colours used 
for the vertices are the same as in figure 3.6a b) Spin configuration of the shakti 
lattice after the mapping for the shakti lattice presented in a). The presence of 
charge alternating clusters of type III with positive magnetic charge q = +2 (violet 
vertices) and negative magnetic charge q = —2 (dark green vertices) is visible, c) 
Corresponding MSF for spin configuration in b). Several proofs of the spin liquid 
absence are present such as missing pinch points (green circles), a considerable drop 
of intensity in the middle (red square) and the presence of emergent Bragg peaks at 
the positions associated with all-in/all-out vertices (grey squares). 

Another indicator for the ice phase observation in the shakti lattice should be the 
equilibration of type C\ and type C 2 at the T junction (see figure 4.1b). This can 
be observed for lattices with a 200 nm gap and larger. The population of type C 3 , 
which does not allow the mapping (see section 2.5.1), is very low for all measurements 
and the mapping is not possible only for a negligible amount of vertices. However, 
the population of individual types is not sufficient enough to fully characterize the 
system because it does not carry information about the correlations. 

The first interesting thing is the behaviour of "monopoles" which are clustering 
together and forming chessboard islands thanks to their magnetic charge alternation 
(dark green and violet vertices). In the Coulomb phase, monopoles can freely move 
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through the disordered background and behave like electrostatically charged quasi-
particles. In this case (see figure 4.2b) "monopoles" tends to be together but they 
do not annihilate and rather form the chessboard clusters. The movement of these 
clusters through the background is not possible without increasing the energy of 
the system. From this, one can conclude that excitations are not Coulomb-like and 
could not be named monopoles. 

The second question then arises what exactly is the background made of? Just 
by looking at the spin configuration, one would be tempted to say that there is a 
disordered mixture of type I and type II and that type II has more representation 
than type I, thus some assumptions are met for the spin liquid phase. For this 
characterisation can be used more precise technique which also includes the magnetic 
correlations of the system that are important ingredients in the spin liquid phase. 
The magnetic structure factor (MSF) carries all of this information as was mentioned 
in the section 3.4.1. 

By a simple comparison of figure 4.2c and 3.7h, several differences can be directly 
seen. The most important difference is the absence of pinch points typical for the 
Coulomb phase and the spin liquid marked by green circles in figure 4.2c. Also, 
the typical squares are not visible but rather separated islands are present and the 
connection by "bridges" in the form of the pinch points is missing. Another proof 
of the absence of the spin liquid phase is the considerable drop of intensity in the 
centre of the MSF (qx = 0 and qy — 0). If one takes a closer look at the emergent 
Bragg peaks marked with grey squares in figure 4.2c, their position is the same as 
for the expected intensity of type III and type IV tiling (see figure 3.4. lg). On the 
other hand, in the MSF of pure spin liquid (see figure 3.4.lh) these Bragg peaks are 
not present due to the absence of type III or type IV. 

The same results can be seen for other lattices. None of them exhibited the 
typical MSF of spin liquid and charge crystallisation for type III vertices was still 
present. An explanation is offered that the reason for the observation of this un­
expected physics in artificial spin systems is that the effective temperature of these 
systems is not sufficiently low to be able to exhibit the ice phase as predicted in 
[10]. Further increase of type Ti vertices in the shakti lattices is difficult due to 
the limitation of field demagnetisation. The quality of the field demagnetisation 
protocol was not assessed only by the population of type Ti in the shakti lattice but 
also in reference CSL lattices. The vertex population plot for the CSL lattice can 
be seen in figure 4.1c. 

However, Gilbert et al. used a thermal annealing procedure to lower the effective 
temperature of the system and managed to get a substantially larger number of type 
Ti at the cross vertices [14]. It is appropriate to reanalyze their results with the 
methodology presented in this thesis and hopefully see the anticipated liquid phase. 

4.2 Reanalysis of the literature 
Gilbert et al. provided the M F M image of their measurement of the shakti lattice 
with the highest number of type Ti vertices (around 80%) [14]. The corresponding 
reference CSL lattice had a type I population of around 95 % which indicates the 
very good quality of the thermal procedure. The parameters of their shakti lattice 
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were slightly different from the lattice parameters used in my experiments. They 
used nano-magnets with a height of 25 nm, a length of 220 nm, and a width of 80 
nm. The lattice spacing for their best lattice was 320 nm, thus the gap between two 
nano-magnets was 100 nm (see figure 3.2 with the lattice parameters). 

However, only the M F M image and the population of the shakti lattice were 
presented. The mapping to the CSL was done only for tightly cropped region with 
only 4x4 vertices after the mapping. Even with the population of type T\ around 
80 % there was still around 20 % of type T 2 which brings excitations to the system 
as was explained in the section 2.5.2. With the extended definition of the shakti 
mapping the whole lattice can be used even with type T 2 vertices. In figure 4.3 
can be seen the spin configuration of the shakti lattice obtained from [14] and its 
corresponding spin configuration after the mapping and the MSF of the mapped 
lattice. 

Fig. 4.3: a) Spin configuration of the shakti lattice from [14]. For the mapping were 
also used the border vertices because the M F M image is only a cropped part from 
a larger system. This will substantially increase the statistics for further analysis, 
b) Spin configuration of the shakti lattice after the mapping for the shakti lattice 
presented in a). One can see a mixture of type I and type II vertices and a large 
amount of type III vertices in clusters with alternating charges (dark green and violet 
vertices), c) MSF for the spin configuration in b). The very same results as in 4.2c 
can be seen. Missing pinch points (green circles), a significant drop of intensity in 
the centre (red square) and the presence of ordered type III vertices (grey squares). 

These results are again surprising. Even in a system with slightly different pa­
rameters (different widths and lengths of the nano-magnets), one can observe the 
same non-liquid-like behaviour of the system. The first thing that one can see clearly 
is the large number of type III vertices and they, again, form clusters with alter­
nating charges (see figure 4.3b). The background looks like a disordered mixture of 
type I and type II vertices, but the analysis in reciprocal space provided by MSF 
(see figure 4.3c) exhibits the very same behaviour as in my results (see figure 4.2c). 
The absence of the pinch points (green circles) and intensity drop in the centre of 
the MSF (qx = 0 and qy = 0) marked by red square proves that the right model 
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that describes the physics observed in these systems is not the square ice model. 
Reaching the predicted spin liquid phase is even more difficult than what was ex­
pected even for shakti lattice with 85 % of type Ti (The cropped M F M image has 
even better population of type 7\ than the whole lattice presented in population 
plots in [14]). 

4.3 Analysis of my measurements 
It is suitable to check that the square ice model is not the right model for the whole 
set of my measurements. For this confirmation, Monte Carlo simulations can be 
used. The square ice model must fulfil such a condition where coupling strengths 
of the first nearest neighbour Jx and the second nearest neighbour J 2 are equal (see 
section 2.3.2). The populations of vertex types should fit on the population curves 
computed for the condition J\ = J 2 and the Hamiltonian Ti defined by equation 2.1. 
In figure 4.4a can be seen results of the fitting for all 30 lattices (thin star markers) 
and the lattice provided by Gilbert (thick star markers). It can be seen that most 
of the results do not fit well the MC curves, except for the Gilbert data points and 
some of my measurements. 
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Fig. 4.4: a) Monte Carlo simulation for vertex populations depends on the system's 
temperature. Dashed lines are standard deviations provided by the simulation for 
each population curve. The lowest effective temperature is for the Gilbert lattice 
(thick star markers) but is still too high to reach the spin liquid phase at the lowest 
temperature. Thin star markers label my measurements. Al l data sets are moved 
to the higher effective temperatures which corresponds to a slightly worse quality of 
demagnetisation, b) Population plot of the shakti lattices after the mapping. For 
each gap, three lattices were measured and the averaged populations are presented 
with standard deviation bars. One can see a sharp decline for the type III population 
and a slow increase for larger gaps. An opposite behaviour can be seen for type I 
and type II. Type III and type IV play a significant role in the system for the whole 
variety of gaps. 
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Because of the mapping, the differences between type III and type IV are not 
as large as in conventional CSL. The presence of type IV is natural for the system 
in the same manner as the presence of type III. Furthermore, type IV vertices also 
tend to cluster together, thus their charges alternate as well as type III vertices. 
The energies of vertices are more complex than described in section 2.3.1 so one can 
afford to merge the populations of type III and type IV vertices and take them as 
collective excitations of the system (see section 4.4 for further explanation of the 
energies). 

To find a better model that would describe the system one needs to change the 
shape of the type I and type II curves. In figure 4.4a almost all population results 
for type I and type II are between the MC curves for type I and type II. Because 
one is not bound with the J\ = J<i condition anymore, a simple change of the J2/J1 
ratio will tune the shape of MC curves. 

Also, from the population curve after the mapping (see figure 4.4b) several im­
plications can be made. The lattices with very small gaps (i.e. 100 nm and 120 nm 
gaps) have a significant number of type III (and type IV) vertices. In the middle of 
the population curve for lattices with gap around 180 nm one can see the highest 
population of type I and a significant drop of the type III population. For larger 
gaps, the population curves are rather flat. This simply implies that observation of 
a different behaviour for these groups is probable. 

4.3.1 MC simulations with a different J2/J1 ratio 

to 

180 200 

gap (nm) 

Fig. 4.5: Results of the Monte Carlo simulations for different J2/J1 ratios. Each 
column indicates one lattice (i.e. 30 lattices). For each gap parameter and lattice 
copy (a, b and c) a label is placed. Each row represents the simulations with the 
corresponding J2/J1 parameter (i.e. 12 simulations). The colour scale is set by the 
threshold value of the square difference parameter SDmax that was set to 5 • 10~4. 
Cells with a deep blue colour are fitted with the highest accuracy. Cells with yellow 
colour cannot be considered as good fits. 
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Monte Carlo simulations for population curves are a good point to start but they 
cannot determine the right model itself. For each lattice twelve different values of 
the J2/J1 ratio were used. The best fitting for each of these simulations was done 
by minimising the overall square difference as described in section 3.4.2. Ideally, 
the MC fitting would provide only one unique result for each lattice. However, 
for only slightly different J2/J1 ratios the population curves do not differ much 
thus the fitting is suitable for a wider variety of ratios. The following strategy was 
used to analyze these simulations. A threshold has been set by the value of the 
overall square difference. The simulations that passed this filter were plotted in 
a heatmap (see figure 4.5). Each cell in this heatmap represents the result of the 
fitting for the corresponding lattice and the fitting parameter. The threshold was set 
to SDr 5-10 . It was observed that this value is sufficient for good accuracy. 
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180 #2 0.85 
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240 #3 0.50 
260 #3 0.50 
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Fig. 4.6: Monte Carlo simulations fit for three groups depending on their gap and 
fit accuracy shown in figure 4.5. a) MC simulation for group #1 with J2/J1 = 0.70 
and for 160 and 200 nm gaps, b) MC simulation for group #2 with J2/J1 = 0.85 
and for 180 nm gap. c) MC simulation for group #3 with J2/J1 = 0.50 and for 120, 
140, 220, 240, 260 and 280 nm gaps. Type III and type IV populations were merged 
for the reasons described above. 

In figure 4.5 can be seen the formation of groups. Lattices with small gaps tend 
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to have a lower J2/J1 ratio (and for 100 nm gap probably and for larger gaps the 
ratio grows. Around the 180 nm gap (lattice with the best match with Gilbert 
measurement and closest to the predicted liquid phase) the best fit has a ratio 
around J2/J1 = 0.85 and for larger gaps ratio decreases. For very large gaps a 
different behaviour can be seen and several ratios can be used with high accuracy 
of the fitting. One can compare these "groups" with those obtained by analysing 
the vertex population curves for the lattice after the mapping (see figure 4.4b) and 
see a direct connection. To investigate this "package method" the measured results 
were divided into three groups depending on the fit accuracy. 

The results in figure 4.6 clearly fit more accurately than the model with Ji = J2 

shown in figure 4.4a. Also, by tuning the gap parameter in the shakti lattice one 
does not affect only the effective temperature of the system after the mapping but 
also the key parameter of the model itself, i.e. the J2/J1 ratio. These results suggest 
that a model describing shakti physics was found. However, the right model must 
provide the vertex population agreement and the magnetic correlations. For that, 
the agreement between MSF provided by Monte Carlo simulations and MSF from 
measurements is needed. 

In previous sections was shown that type III and type IV vertices are more 
represented than expected but also they cluster together and form the chessboard 
pattern with their alternating magnetic charge (see the spin configuration in figure 
4.2b and 4.3b). This magnetic correlation is not encoded in the MC population 
curves but emerges in the MSF at specified locations in reciprocal space as Bragg 
peaks (see grey squares in figure 4.2c and 4.3c). However, this tiling of type III 
and type IV vertices is not favoured in the Hamiltonian used for the simulations. 
Another ingredient must then be added to support the clustering of type III and 
type IV. 
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4.3.2 MC simulations with a local magnetic field h 
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Fig. 4.7: a) Results of the Monte Carlo simulations for different J2/J1 ratios and 
several h values. Each column indicates one lattice. For each gap parameter and 
lattice copy (a, b and c) a label is placed. Each row represents the simulations with 
the corresponding J2/J1 and h parameters. The colour scale is set by the threshold 
value of the square difference parameter SDmax that was set to 5 • 10~4 same as 
in figure 4.5. The division into five groups used in figure 4.9 is depicted by red 
rectangles. The h value orders cells. Cells with a deep blue colour are fitted with 
the highest accuracy. Cells with yellow colour can not be considered as good fits, 
b) MC simulation for J2/J1 = 0.9 and strong local field h = 2.5 for 100 and 120 nm 
gap (only copy a and b were used for 120 nm gap). One can see that the ground 
state favours type III and type IV lattices, c) MC simulation for J2/J1 = 0.8 and 
h = 1.5 for 140, 160, 180, 200, 220, 240, 260 and 280 nm gap. 

To favour the type III and type IV tiling, a local alternating magnetic field h can 
be implemented in the Hamiltonian. The field alternates on the vertex sites forcing 
the formation of all-in/all-out vertex type. The system with the J\ and J2 coupling 
and this local magnetic field h can be described by the Hamiltonian Tih 

45 



7-Lh = "H - hJ2 ak = ~-  Jij ai ai ~ hJ2 ak, 
k  1 «„•» k 

(4.1) 

where the new summation coefficient k sums over all sites in the system. The original 
Hamiltonian % is defined by equation 2.1. 

In figure 4.7a can be seen similar heatmap as in figure 4.5 for which the same 
threshold value was set (i.e. 5 • 10~4). In this case, simulations for different J2/J1 
ratios and h values were done (i.e. additional 63 simulations). Determining only one 
set of parameters for each lattice is even more complicated than for the previous set 
of simulations. However, for small gaps (100 and 120 nm gap) one can see a series 
of fits with decent accuracy. The MC simulation that fits very well for small lattices 
was set for parameters J2/J1 = 0.9 and h = 2.5 (see figure 4.7b). This is thanks to 
the h parameter which was missing in the previous set of simulations. The strong 
local field is important for the lattices with small gaps and the J2/J1 ratio is less 
significant, but for lattices with larger gaps the importance of the J2/J\ ratio grows 
and the local field h value is smaller. To prove that, one can see the area of yellow 
cells (i.e. bad fit accuracy) for gaps larger than 120 nm and h value larger than 2, 
or in figure 4.7c can be seen MC simulation for parameters J2/J\ = 0.8 and h = 1.5 
were vertex populations fit very well. Also, more lattices fit on one MC simulation 
with the h parameter included than for the simulations without the h parameter 
(i.e. for h = 0). 

a) b) c) d) e) 

-5-3-1 1 3 5 -5-3-1 1 3 5 -5-3-1 1 3 5 -5-3-1 1 3 5 -5-3-1 1 3 5 
gx (r.l.u.) ft; (r.l.u.) q^ (r.l.u.) q^ (r.l.u.) q^ (r.l.u.) 

Fig. 4.8: Computed averaged magnetic structure factors for each gap. For each 
gap, three MSF were averaged (copy a, b and c). Magnetic structure factors a)-j) 
correspond to gaps 100 to 280 nm. 

As was mentioned above for determining the right model one needs to analyse 
the MSF results as well. In figure 4.8 are presented averaged MSF for each gap. The 
MSF for small gaps (100 and 120 nm) are different than the MSF for larger gaps. In 
figure 4.8a and 4.8b the Bragg peaks representing the type I tiling (see illustrating 
figure 3.7) are missing and emerge for larger gaps. On the contrary, Bragg peaks 
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associated with type III and type IV tiling are present in every MSF except figures 
4.8g and 4.8j. Also, for the smallest gaps (see figures 4.8a and 4.8b) the type III 
and type IV Bragg peaks are the most intense. This supports the importance of the 
h parameter in MC simulations and its large value that favors the type III tiling. 
Besides the Bragg peaks, one can see the faint background that emerges with a 
gradually increasing gap to its most intense state in figure 4.8e. 
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Fig. 4.9: Population curves with experimental MSF and simulated MSF by Monte 
Carlo for five groups. In subfigures a), d), g), j) and m) are population curves that 
were calculated for J2/J1 and h parameters noted in the table. In subfigures b), 
e), h), k) and n) are experimental MSF averaged over all measurements present in 
the group. In subfigures c), f), i), 1) and o) are MSF calculated for the same group 
parameters. 

Comparing the experimental results and MC simulations of MSF for parameters 
provided by the fitting accuracy (see figure 4.7a) an agreement between experimen-
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tal and theoretical MSF can be found. To analyse the experimental MSF a division 
into several groups is more appropriate. By analysing the MSF in figure 4.8, mea­
surements were divided into five groups. Group #1 consists of lattices with 100 
and 120 nm gaps. This group is characteristic of type III and type IV tiling Bragg 
peaks in MSF (see figures 4.8a-b) and a tendency for higher h values in the MC 
simulations (see figure 4.7a). Group #2 consists of lattices with 140, 160 and 200 
nm gaps. In this group, one can see emerging type I tiling (see figures 4.8c-d and 
4.8f). The behaviour of lattices with a 180 nm gap is slightly different and deserves 
a unique group #3. For larger gaps, Bragg peaks for type I tiling are becoming 
more narrow thus lattices with 220 and 240 nm gaps are examined in group #4 
(see figures 4.8g-h). The last group #5 contains lattices with 260 and 280 nm gaps. 
There the Bragg peaks tend to be wider once again (see figures 4.8i-j). 

In figure 4.9 can be seen MC simulation curves and MC simulation of MSF for 
the same parameters J2/J1 and h with corresponding experimental averaged MSF 
for all five groups described above. These results fulfil both conditions necessary 
for the right description of the system, i.e. the vertex population fractions and 
the correlations encrypted in the MSF. By a simple comparison of simulated MSF 
for the temperature windows obtained from the vertex population MC simulations 
and experimental MSF can be concluded that the model explains the experimental 
results for small and large gaps very well and also can be used as a far better 
description of the 180 nm gap lattices than a "spin liquid" model provided so far. 

This new set of MSF has the important type III and type IV Bragg peaks at 
the exact locations as the experiment one. In figure 4.9b the faint background is 
emerging in the same way as in the experimental MSF in figure 4.9c. For larger 
gaps, wider and unconnected Bragg peaks linked with type I tiling are also visible. 
In group #3 the comparison between the MSFs is also very good except for the not 
sufficient drop of intensity for qx = 0 and qy = 0 coordinates in the simulated MSF. 
To have an even better match with the model a slight increase of the intensity in 
between the central Bragg peaks at [gX)9y] — [±1>0] and [0, ±1] coordinates would 
be needed to form the intensity ring in donut shape as can be seen in figure 4.9i. 
For the largest gaps in groups #4 and #5 the accuracy of population curves fitting 
and the MSFs are again in good agreement. 

After the successful determination of a more accurate model, it would be inter­
esting to examine the specific behaviour of type III vertices in other lattices and 
make sure that the tiling of type III and type IV is observable in the same sense as 
in figures 4.2b and 4.3b. 

4.3.3 The behaviour of the lattices with small gaps 
In the first spin configurations shown in this work, the surprising clustering of type 
III vertices was clearly visible. From the beginning, there was an effort to reduce 
the number of excitations in the system (type III and type IV vertices) and reach 
the predicted spin liquid phase. However, observation of this state is more difficult 
than expected, and types III and types IV vertices were still occurring. 

It is therefore interesting to focus more on the lattices where type III and type 
IV vertices are dominant. The population curves after the mapping (see figure 4.4b) 
indicates a rapid increase of type III vertices for the smallest gaps (i.e. 100 nm 
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and 120 nm gaps). Also, the MSFs predict type III tiling for the same lattices (see 
figure 4.9c) and a large h value derived from MC simulation supports the selection 
of lattices with small gaps. 

Fig. 4.10: Spin configurations for lattices with 100 nm gap a)-c) and for lattices 
with 120 nm gap d)-f). g)-l) Magnetic structure factors for corresponding a)-f) 
spin configurations. In a) the charge crystallisation of type III vertices is clearly 
visible. MSFs have sharp Bragg peaks at the q-vectors indicating type III tiling. 

In figure 4.10 can be seen spin configurations for lattices with 100 nm and 120 
nm gaps. For all spin configurations with the smallest gap, the type III clustering 
and charge crystallisation (chessboard arrangement made by violet and dark green 
vertices) extends throughout the whole lattice (see figure 4.10a). In each of the 
MSFs, the faint background is visible showing the subtle presence of type I and 
type II. The stronger presence of this background is visible in figure 4.101 where 
the number of excitations is reduced and type I and type II vertices are increasing 
their populations. It suggests that under some circumstances the shakti lattice can 
be mapped to a system where the ground state is formed by type III (or type IV) 
vertices with crystallised charges. To prove these assumptions further research going 
beyond this work is needed. 

4.4 Energies of mapped vertices 
By nature of the new mapping definition, the energy hierarchy of the vertices after 
the mapping is different than the classical one described in section 2.3.1. In the 
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original definition for only type I and type II vertices, there was no problem with 
multiple vertex energies. Each of the possible spin configurations had always two C\ 
vertices and two C 2 vertices. Type III after the mapping is defined as a plaquette 
with three C\ vertices and one C 2 vertex or a plaquette with one C\ vertex and 
three C 2 vertices. Because of these two possible configurations, two groups of type 
III energies are present (see section 2.5.2). Plaquettes with more type C\ (resp. C 2) 
at T junction vertices than with C 2 (resp. C\) at T junction vertices are named type 
H i d (resp. type IIIc2) vertices. The same problem occurs with type IV. Depending 
on the number of type C\ or C 2 at T junctions type I V d and type IVc 2 is defined. 
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Fig. 4.11: a) Examples of two spin configurations in the shakti lattice for type IIIci 
and type IIIcv Even with different spin configurations in the shakti lattice, the 
plaquette is projected to an identical type III vertex, b) Interactions between first 
(J[) and second (J2) neighbours at the T junction. 

In figure 4.11a can be seen two different spin configurations that yield the same 
result after the mapping. When the shakti lattice is mapped to the square lattice, 
part of the information is lost. Because of the presence of other vertex types different 
than type Ti at the cross vertices, reverse mapping is no longer possible. To calculate 
the energy of the plaquette before the mapping, the energy of the T junction for 
each vertex type must be defined. These energies can be calculated by equations 
4.2-4.4. 

ECl = -2J[ + J 2 , (4.2) 
Ec2 = -J2, (4.3) 
EC3 = +2J[ + J 2 . (4.4) 

In these equations, the J 2 coupling strength of the second neighbours is the same 
as for nano-magnets interacting in the CSL lattice (see section 2.3). Due to the fact 
that the long island nano-magnet has different dimensions, the coupling strength 
between the long island nano-magnet and the closest short nano-magnet would not 
be the same as in the CSL lattice. To distinguish between these two couplings for 
the T junction, the coupling strength between the first neighbours will be J[. 

Now let's compare the energies of type IIIci and type IIIcv This simply means 
to sum all T junction energies in each plaquette. For the type IIIci vertex the energy 
of T junctions is — 6J[ + 2 J 2 but for the type IIIc2 it is — 2 J[ — 2 J 2 . This proves that 
two groups of vertices in an excited state exist in the system and to understand the 
shakti system from an energetical point of view this must be taken into account. 
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This favouring of one type over another one can be seen in figure 4.1b where the 
population of T junction vertices is plotted on the gap dependence. 

4.4.1 Effect of the corners 
To completely describe the energy of mapped vertices one must include the corners 
of the plaquette. It is obvious that a plaquette with one type 7\, two types T 2 and 
one type T 3 at the corner would be more energy-demanding than a plaquette with 
only one type T 2 and three types 7\. Because the definition of mapping is done by 
T junction vertices these nuances at the corners are not transcribed into the spin 
configuration after the mapping. The schematic of this second type of information 
loss is shown in figure 4.12. 

type III^U type III, 

Fig. 4.12: Example of plaquettes in the shakti lattice for type IIIci with different 
plaquette corners. The three digits mean the number of type Ti, type T 2 and type 
T 3 vertices present at the corners. After the conversion to the circle notation (or 
spin notation after the mapping), this information is lost. 

To express the configuration of corners in the shakti plaquette, three digits are 
used. The first digit gives the number of type 7\ vertices, the second digit the number 
of type T 2 vertices and the last digit gives the number of type T 3 vertices. To cover 
all possible configurations, even the type T 4 should be taken into account. However, 
the presence of type T4 cross vertex is very close to zero after the demagnetisation 
protocol, it is therefore fine to neglect this possibility. Because there are four corner 
cross vertices present in the shakti plaquette, the sum of these three digits must be 
always equal to 4. This yields that there are 14 possible compositions for type IIIci 
and 14 possible compositions for type IIIc2- To fulfil the rule 2, at least one type T2 

or type T 3 must be in the shakti plaquette. This implies that type IHQ® vertex is 
not possible and type 111^° is the candidate for the lowest energy composition. To 
calculate the energy of the shakti plaquette, the energy of corner cross vertices and 
the energy of T junction vertices must be summed together. To distinguish between 
the energy of type III and type IV, the E will describe the energy of type III vertices 
and the U will describe the energy of type IV vertices. 

Eg* = 3ECl +EC2+x-EI + yEII + z- EIIh (4.5) 
E%* = ECl + 3EC2 + x-EI + yEII + z- Enh (4.6) 
U%* = AECl +x-El + y-En + z- EIIh (4.7) 
U%* = 4EC2 + x-EI + yEII + z- Em. (4.8) 
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Equations 4.5 and 4.6 serve as a guide for calculating any of the 14 possible 
energies. Variables x, y and z stands for the number of type Ti, type T 2 and type 
T 3 respectively. Equations 4.7 and 4.8 serve as a guide for calculating any of the 
12 possible energies for type I V d or any of the 15 possible energies for type IVc 2 

(reason for this number of possibilities is explained in section 4.4.2). The energies of 
Ed and ECl are presented in equations 4.2 and 4.3. The energies of type Ti, type 
T 2 and type T 3 are the same as presented in equations 2.2-2.4. 

In the previous sections, the populations of type III and type IV vertices were 
merged together. One reason why one can do this is the interesting fact that when 
the energy of type IIIci and type IIIc2 is averaged, the energy is the same as for the 
averaged type I V d a n d type IVd- For instance in equation 4.9 can be seen this 
equivalence for the situation with corners containing two type Ti and two type T 2. 

(E™ + E™)/2 (4.9) 

4.4.2 The composition of type III and type IV vertices 
When one has the theoretical description of the vertex energies, it is not difficult to 
plot the "energy ladder" that depends on the ratio of the strength of the second and 
the first neighbour in the shakti lattice J-ijJ\- This hierarchy can be seen in figure 
4.13 where only low energy vertices out of the 28 are shown. 
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Fig. 4.13: Calculated energy spectrum for type H i d and type IIIc2 vertices. The 
energy of a vertex type depends on the J2/J1 ratio. The J[ value affects the mutual 
hierarchy of type H i d and type IIIc2- F° r this computation, the J[ value is set to 
J[ = 0.9 J i . 

Thanks to this plot one can easily compare the vertex energies of type III for 
an arbitrary J2/J1 ratio. Also, from figure 4.13, it is obvious that the vertex type 
with the lowest energy is not just one but by tuning the J2/J1 ratio one can favour 
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different low energy type III vertices. This change is occurring for not just the lowest 
vertex energy but it also holds for the whole energy ladder. 

It is natural to expect that type III vertices with the lowest energies should be 
represented in larger numbers than the vertices with high energies. This can be 
checked by computing the population of the type III vertices depending on their 
composition of the corner cross vertices and the T junction vertices. These results 
can be seen in figure 4.14 where only relevant population curves are shown (vertices 
with a population lower than 5 % are omitted). 

1 

100 120 140 160 180 200 220 240 260 280 

gap (nm) 

Fig. 4.14: Experimental population curves for different type IIIci and type IIIc2 

vertex compositions dependent on the gap. The markers used in this plot are the 
same as those used in the theoretical energy spectrum in figure 4.13. Vertices with 
a population lower than 5 % are omitted. 

In figure 4.14 can be seen population curves for 10 different compositions of 
type III vertices. Populations for each gap were again averaged over three identical 
lattices. Several interesting results can be made from the experimental data. The 
most frequent vertex compositions are types III^ 0, HI^ 1 0 a n d IIIc2°- These three 
vertex compositions also appear on the three lowest energy levels in figure 4.13. 

It is clear that vertices want to minimise the energy of the system and prefer 
the compositions with the lowest energy. For lattices with a larger gap than 180 
nm, one can even see that type I l l g 0 is more represented than type IIIc*0 ( o r a r e 

equally represented) and population with the composition of type is decreasing 
and is lower than the later two. For that region, the interval of J2/J1 ratio can be 
determined so that J2/J1 < 0.9 (see figure 4.13). 

This method of explanation slightly spoils the composition population for the 
smallest gaps where type III^?0 is represented by almost 50%. In figure 4.13, there 
is not an interval where type would have the lowest energy. This substantial 
increase of the vertex composition can be explained by the large population of type 
T2 which is then imprinted into the type III vertices (see the population curve for 
type T2 in figure 4.1a for 100 nm and 120 nm gaps). 
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The reason to investigate the vertex compositions is valid because from fig­
ure 4.14, it is obvious that some configurations are more frequent and thus more 
energetically favourable than others. To understand the dynamics of type III clus­
tering and other phenomena, the understanding of the formation of a plaquette is 
crucial. For the smallest gaps, the reason for forming the type composition is 
also in the sharing of defects (i.e. types T 2 in the corners of the plaquette) and does 
not depend only on the energy of a single vertex type. 
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Fig. 4.15: Computed energy spectrum for type I V d and type IVc 2 vertices. The 
energy of a vertex type depends on the J 2 / J i ratio. The J[ value affects the mutual 
hierarchy of type I V d a n d type IVc 2- For this computation, the J[ value is set to 
J{ = 0.9 J i . 

The same analysis of the composition of type III vertices can be made for type 
IV vertices. For the calculation of the energy spectrum for type IV vertices the 
equations 4.7 and 4.8 were used. The results of these computations can be seen in 
figure 4.15. One can notice that the energies for type IV C and type I V C are not 
present. This is caused by the four C\ type vertices at all T junctions. This leads to 
the presence of at least two antiferromagnetic spin corners (e.g. two types T 2 or one 
type T 2 and one type T 3, etc.) to fulfil the rule 3 described in section 2.5.2. On the 
other hand, type IVc 2 vertices do not have strictly given direction for the two short 
nano-magnets, thus enabling the type I V q 1 0 and type I V ^ 0 1 and even type I V ^ ? 0 . 

It is not surprising that the lowest energy is for type IV^?0 because of enabling 
four type 7\ vertices. This dramatically decreases the energy of the plaquette for 
J2/J1 < 1- Except for the later composition, type IV^ 2 0 , type IVc2° and type 
IVd° are the vertex compositions with the lowest energy for the J 2 / J i ratio lower 
then 1. Now, one can compare the theoretical energy ladder for type IV vertices 
with experimental data. 

In figure 4.16 can be seen the population curves for different type IV composi­
tions depending on the gap of the lattice. For lattices with a gap larger than 140 
nm, the composition of type IV^?0 is dominating. This agrees with the same J 2 / J i 
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interval predicted by the configuration for type III vertices. The second most fre­
quent composition of type IV is the type IV(this again matches for J2/J1 < 1). 
For the lattices with small gaps (i.e. 100 nm and 120 nm gap) the behaviour is 
different. Vertex compositions with a higher fraction of T 2 vertices (type IVj?0, type 
IV^?0 and type IVj?1) are present because of the shared type T2 cross vertices. 

1 

gap (nm) 

Fig. 4.16: Experimental population curves for different type IVc x and type IVc 2 

vertex compositions dependent on the gap. The markers used in this plot are the 
same as those used in the theoretical energy spectrum in figure 4.15. Vertices with 
a population lower than 5 % are omitted. 

This section demonstrated the complex behaviour of the shakti lattice system and 
reminds the fact that some information is lost in the process of extended mapping 
presented in this work. It is important to include in any future works about the 
shakti system the fact that vertices after the mapping do not have the same energy 
as would be expected in the classical 16 vertex model. This was proved by the 
analysis of the theoretical energies of single vertices (see figures 4.13 and 4.15) and 
by observing the same phenomena experimentally (see figures 4.14 and 4.16). 

5 5 





5 Conlusion 
This work focused on the artificial spin system with the shakti geometry. I showed 
how its physics can be mapped to the one of the square geometry. To interpret the 
results, the mapping definition was extended to include type III and type IV vertices 
which behave like electrostatically charged quasi-particles in the square ice. 

By measuring several shakti lattices with M F M for a wide range of gaps, good 
statistics was provided to analyse the behaviour of the shakti system. The vertex 
populations and configurations in reciprocal space provided by MSF were used for 
the analysis. The use of the MSF enables to analyse the magnetic correlations in 
the system. 

The lattices with the highest fraction of type Ti at the cross vertices were natu­
ral candidates for the observation of the predicted spin liquid phase for the system 
mapped to the square lattice. After analysing my experiments and experiments pro­
vided in the literature, an important conclusion was made. The shakti system with 
the population of type Ti around 85 % is not sufficient to exhibit the signatures of 
the disordered spin liquid phase. This means that my measurements could not reach 
the shakti ice physics. Also, the presence of type III and type IV vertices can not be 
associated with the monopole-like behaviour of excitations in the Coulomb phase. 
Surprised by these results and the essential differences between the experimental 
results and theoretical predictions led to an effort to find a new model that would 
better describe the shakti system. 

For finding the new model, Monte Carlo simulations were used. The procedure 
to find a better model was done by fitting the vertex populations obtained from the 
experiments on the population curves computed by Monte Carlo simulations. To be 
sure that spin correlations are the same in the experiments and that the new model 
describes them as well, a comparison of the MSF calculated from the experiments 
and simulated by Monte Carlo was done. The new model consists of two variable 
parameters. The J2/T1 parameter affects the composition of the background formed 
by type Ti and type T 2 vertices. For the shakti ice, it should be equal to one, but 
experimental results can not reach such a condition, and this parameter was lower 
than one for all my measurements. The h parameter is the second parameter and 
describes a local alternating field on each vertex, which favours the configuration of 
type III and type IV vertices that are inherently present in the shakti system with 
the population of type Ti at the cross vertices lower than 100 %. 

After the analysis of the experiments, it was observed that by changing the gap 
between the nano-magnets in the shakti lattice, the system after the mapping is 
characterized by different parameters. By tuning the gap parameter one can choose 
different models. For gaps similar to the width of the nano-magnets, the effect of 
charge crystallisation is visible, and type III and type IV tiling emerges (i.e. h is 
larger). Lattices with larger gaps tend to be described by smaller h parameters. 
MSFs of these lattices have a typical shape of wide Bragg peaks at the same q-
vectors as the MSF background for 100 nm and 120 nm gaps. This new model 
includes the specific behaviour of type III and type IV vertices especially for small 
gaps that were not taken into account in the previous model. 

To understand the dynamics of the charge crystallisation and type III and type 
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IV tiling, the energy hierarchy of the excitations was studied. During the mapping 
process, some information is lost due to the mapping procedure. This information 
is stored in the composition of the plaquettes that are mapped to the vertices in the 
square lattice. The compositions of type III and type IV plaquettes were studied 
both theoretically and experimentally. The experiments confirmed that several en­
ergies are associated with one vertex type after the mapping and that the formation 
of type III clusters is driven by the plaquette composition. 

This work extended the understanding of the artificial shakti system and helped 
to get insight into the physics of the shakti lattice. However, the observation of 
the pure spin liquid phase or Coulomb phase is experimentally very difficult. Oth­
erwise, this work can serve as an inspiration for studying the fascinating charge 
crystallisation effect. 
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