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Abstract
Emergency calls are usually made under extremely stressful conditions, where callers often
provide crucial information rapidly, making it difficult for emergency line agents to capture
all details accurately. This can result in repeated questions about information that was
already provided and cause delays in response times from emergency services. This work
aims to mitigate this problem and potentially speed up the response of emergency services
by deploying a neural network models for information extraction, specifically targeting the
Named Entity Recognition (NER) task. This work explores various Transformer-based
approaches for NER task, such as pre-trained encoder-only, encoder-decoder (sequence-2-
sequence) and Large Language Models. The best models achieved state-of-the-art results
on publicly available Czech NER datasets. In addition, new NER datasets were created
from available recordings of real emergency calls and the corresponding metadata. The
models were trained and evaluated on the created datasets successfully achieving reasonable
performance in name and location extraction.

Abstrakt
Tiesňové volania sa zvyčajne uskutočňujú v extrémne stresujúcich podmienkach, kde vola-
júci často poskytuje dôležité informácie rýchlo, čo sťažuje operátorom tiesňovej linky presne
zachytiť všetky podrobnosti. To môže viesť k opakovaným otázkam o už poskytnutých in-
formáciách a oneskoreniu reakcie pohotovostnej služby. Cieľom tejto práce je zmierniť tento
problém a potenciálne urýchliť reakciu pohotovostných služieb nasadením neurónovej siete
na extrakciu informácií, konkrétne so zameraním na úlohu Rozpoznávania pomenovaných
entít (NER). Táto práca skúma rôzne prístupy založené na architektúre typu Transform-
ers, ako sú predtrénované enkodér modely, enkodér-dekodér (sequence-2-sequence) a veľké
jazykové modely. Vybrané modely dosiahli zatiaľ najlepšie výsledky na verejne dostupných
českých NER datasetoch. Okrem toho boli vytvorené nové NER datasety z poskytnutých
nahrávok skutočných tiesňových volaní a odpovedajúcich metadát. Predstavené modely
boli natrénované a vyhodnotené na týchto novovytvorených datasetoch a úspešne dosiahli
rozumné výsledky pre extrakciu mien a polohy.
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Rozšířený abstrakt
V dnešnom svete sa čoraz viac začína využívať umelá inteligencia v každodennom živote s
cieľom pomôcť ľuďom alebo zlepšiť či automatizovať určité úlohy bez nutnosti ľudského
zásahu. V posledných rokoch sú na vzostupe technológie v oblasti spracovania zvuku
a prirodzeného jazyka, najmä od predstavenia veľký jazykových modelov (LLM), ktoré
prekonávajú doterajšie modely v širokom spektre úloh.

Jednou z oblastí, v ktorej začína byť záujem o tieto technológie a kde by modely stro-
jového učenia mohli mať zásadný prínos, je verejný sektor. Konkrétne sa zvyšuje záu-
jem o využitie modelov strojového učenia v oblasti pohotovostných služieb ako napríklad
záchranné služby či polícia. Takéto systémy by mohli byť nasadené do riešenia menších úloh
ako extrakcia informácií, ktoré by slúžili ako pomocná ruka a využívali by sa v spolupráci
s ľudskými operátormi alebo aj ako plne automatizovaný hlasový asistent.

Využívanie najmodernejších modelov strojového učenia v spojení s pohotovostnými
službami má veľký potenciál, no vyvinúť takéto systémy nie je jednoduché z niekoľkých
dôvodov. Dáta sú jednou z najdôležitejších vecí pre vybudovanie dobrého systému za-
loženého na neurónových sieťach. Avšak, získať dáta práve z oblastí ako pohotovostné
služby je veľmi obtiažne keďže sa jedná o citlivé údaje obsahujúce množstvo osobných in-
formácií. Okrem toho sa ľudia, ktorí využívajú pohotovostné služby, často nachádzajú v
nebezpečných alebo život ohrozujúcich situáciách, čo vytvára malý priestor na chyby.

Táto diplomová práca je súčasťou univerzitného projektu1 sponzorovaného Minister-
stvom vnútra Českej republiky pre operátorov tiesňových liniek v Českej republike. Mo-
tivácia tohto projektu spočíva v tom, že počas tiesňového volania je volajúci v strese a chce
čo najrýchlejšie zdeliť všetky dôležité informácie, aby mu bola poskytnutá pomoc v čo na-
jkratšom čase. Vo veľa prípadoch sa ale stáva, že volajúci poskytne veľa informácii v prvých
sekundách hovoru a operátor tiesňovej linky nie je schopný ich všetky spracovať. Toto vedie
k opätovnému pokladaniu otázok ohľadom mena volajúceho, jeho polohy či situácie v ktorej
sa nachádza. Cieľom tejto práce je získať informácie, ktoré by pomohli agentovi a mohli
skrátiť dĺžku hovoru a potenciálne urýchliť reakciu záchranných zložiek.

Navrhovaným riešením je vytvorenie neurónovej siete s architektúrou Transformer pre
extrakciu dôležitých informácií z textových údajov. Prvotným cieľom je natrénovať tento
model na získanie mien a polohy z tiesňových volaní. Typ extrahovaných informácií možno v
budúcnosti rozšíriť na základe potrieb záchranných zložiek. Sekundárnym cieľom je vytvoriť
štruktúrovaný dataset z poskytnutých nahrávok tiesňových volaní a ich metadát. Dataset
bude použitý na dodatočné dotrénovanie modelov na dátach z tejto domény. Tento dataset
bude tiež užitočný pre budúci vývoj nových modelov a je možné ho použiť na rozšírenie
riešení prezentovaných v tejto práci, napríklad na extrahovanie kľúčových informácií priamo
z reči.

Bolo experimentované s tromi prístupmi k tejto úlohe a pre každý prístup bol použitý
iný typ modelu. Vo všetkých prípadoch ide o predtrénované modely s architektúrou Trans-
former, ktoré boli dotrénované pre úlohu extrakcie informácií. Prvým typom sú modely
obsahujúce iba enkodér vrstvy a klasifikačnú vrstvu. Výstupom týchto modelov je typ en-
tity pre každé slovo. Druhým typom sú tzv. sequence-to-sequence modely kde vstup je
sekvencia slov a na výstupe je rovnaká sekvencia slov doplnená o označenia vybraných, pre
nás dôležitých, informácií. Tretím typom sú veľké jazykové modely ktorých výstup je vo for-
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máte JSON. V tejto práci sa podarilo získať 0.89 F1 skóre na voľne dostupnej CoNLL verzii
CNEC2.0 datasetu, čo predstavuje nové najlepšie F1 skóre na tomto datasete. Následne
bol pomocou automatizovaných techník s manuálnou korekciou vytvorený nový dataset z
poskytnutých nahrávok tiesňovej linky obsahujúci 56 000 slov a 3000 označených mien a
polôh. Na tomto datasete bolo dosiahnuté 0.89 F1 skóre pre detekciu mien a 0.87 F1 skóre
pre detekciu polohy danej udalosti.
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Chapter 1

Introduction

In today’s world, Artificial Intelligence has started to be incorporated more and more into
real-world applications to help people, improve some tasks, or automate things without
human intervention in various scenarios in image, speech, or natural language processing
fields. Especially with the rise of Large Language Models, new state-of-the-art results
were achieved in a range of tasks and the models started to be utilized more in real-world
scenarios.

One of the areas where machine learning models could bring crucial benefits is the public
sector. Specifically, there is an increasing interest in the incorporation of machine learning
models for the emergency services. From smaller tasks such as information extraction that
would serve as a helping hand and would be used in collaboration with human operators
to fully automated voice-bots. Using state-of-the-art machine learning models has great
potential in collaboration with emergency services, however, it is not easy to develop such
systems for several reasons. This area comes with a good portion of bureaucracy, as the
data in this domain are difficult to obtain and very sensitive, containing a lot of personal
information. In addition, people who use emergency services are often in dangerous or
life-threatening situations, creating a small margin for error.

This thesis is part of a project1 for emergency service call centers in the Czech Republic
sponsored by the Ministry of Interior of the Czech Republic. During emergency calls,
the person calling is often stressed and wants to get all the information out as soon as
possible to receive help. This often happens in the first seconds of the call and the agent
is not capable of processing all the information which leads the agent to ask questions that
could have already been answered. This work aims to help extract information that would
help the agent, potentially shortening emergency calls and speeding up the response of the
emergency services.

The proposed solution is to create a Transformer-based neural network for the extrac-
tion of important information from textual data. The first goal is to extract names and
locations from emergency calls. The type of information extracted can be extended based
on emergency services needs. The secondary goal is to create a good labeled dataset from
provided emergency call recordings and metadata that will be used for supervised fine-
tuning of the models on in-domain data. This dataset could be very helpful in the future

1VK01020132 - Praktické ověření možnosti integrace umělé inteligence pro příjem tísňových volání pomocí
hlasového chatbota, vyvinutého v rámci výzkumného projektu BV č. VI20192022169, s technologií pro
příjem tísňové komunikace 112 a 150 v ČR (TCTV 112). Available at: https://starfos.tacr.cz/cs/
projekty/VK01020132
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development of new models and could be used to extend the solutions presented in this
work to extract key information directly from speech.

Chapter 2 introduces neural networks and currently popular model architectures and
training approaches. It presents the, Transformers architecture, Large Language Models
and approaches to their training. Chapter 3 describes the Named Entity Recognition (NER)
task and popular approaches to tackle this task, such as token classification or the sequence-
to-sequence approach.

The following Chapter 4 lists publicly available Czech Named Entity Recognition datasets
that will be used for baseline systems and the creation of the Czech emergency calls datasets.
Chapter 5 presents an overview of the technologies and different models used in this work.
It also compares the different approaches to this task based on the previous works presented
in Chapter 3. Chapter 6 is divided into three main blocks based on the content of the ex-
periments. The first part explores the proposed approaches for NER on publicly available
datasets. The second part describes the process of creating the labels for a clean and us-
able emergency calls dataset (TCTV112 dataset). The third part contains inference and
fine-tuning experiments on the new TCTV112 dataset along with a description of common
mistakes made by the models and drawbacks of the available data. Chapter 7 concludes
this work.
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Chapter 2

Machine Learning

Machine learning experienced one of the biggest growths in the area of technical fields in
recent years and has started to be widely applied in our day-to-day lives [24]. This chapter
serves as an introduction to machine learning and neural networks, concentrating on deep
learning architectures and concepts used throughout this thesis.

Machine learning is a subfield of Artificial Intelligence focusing on algorithms that are
able to “learn” from the available data. In the case of machine learning algorithms, learning
from an experience 𝐸 is an improvement measured by 𝑃 on a set of tasks 𝑇 [18]. 𝑃 stands
for a quantitative performance measure, and it is a means of evaluating a given algorithm
for a specific task or a set of tasks 𝑇 . This evaluation enables the comparison of different
algorithms. The measure is task-specific, for example, accuracy can be used to evaluate
the classification algorithm, which is a proportion of correctly classified inputs to all inputs.

Goodfellow et al. [18] describe a task as a process of how the examples x ∈ R𝑛 are
processed by the algorithm, where x are features such as pixel values in an image. There
is a diverse number of tasks based on input feature processing and output produced by the
ML algorithm [18], a few common examples:

Classification

The goal of classification is to assign a category from a set of 1, . . . , 𝑘 to each input. The
algorithm is designed to produce a function 𝑓 : R𝑛 → 1, . . . , 𝑘, where for 𝑦 = 𝑓(x), x is
input feature vector and 𝑦 is the assigned category. Classification can also have variants such
as, the output of the algorithm is a probability distribution over the classes, or assigning
multiple classes to a single input, also called multi-label classification. Another variant is
described by Goodfellow et al. [18] as a Classification with missing inputs. In this
case, some information is missing in the input, and the algorithm needs to learn a set of
functions instead.

The main task of this thesis, the Named Entity Recognition, can also be approached as
a classification problem where each word is classified as some entity type. Chapter 3 gives
more details.

Transcription

According to Goodfellow et al. [18] description, transcription is a machine learning task
where an algorithm takes some unstructured data as input and produces textual form for
the information at the output. An example of this task, used in this thesis, is Automatic
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Speech Recognition (ASR), which takes speech recording, for example, waveform, as input
and produces its text transcription.

Machine Translation

In Machine Translation, the input of an algorithm is a sequence of symbols in one language,
and a desired output is another sequence of symbols in a different language. Although not
very common, this approach is also explored for Named Entity Recognition in Sections 3.2
and 6.1.

2.1 Neural Networks
Machine learning has a prominent role in today’s world, advancing faster than ever, es-
pecially with the introduction of artificial neural networks (NN), formed from a simple
perceptron [48] inspired by biological neurons to state-of-the-art deep neural network mod-
els that solve complex tasks in the fields of image, speech, and natural language processing.
The effectiveness of deep neural networks (DNNs) lies in the ability to automatically extract
hierarchical features from raw data, allowing the representation of intricate patterns and
relations. As the name suggests, DNNs are composed of multiple different layers indicating
the ”depth“ of the network, each consisting of many neurons. The structure of a neural
network and the types of layers used vary according to the target task and the nature of
the data [1].

Deep neural network training is an optimization process in which the goal is to adjust
the weights and biases in the network to minimize the error between the output of the
network and the desired target data [18]. This error is referred to as the network loss and is
computed between the network output and the targets by a loss function. The loss function
is usually selected based on the solved problem and is a crucial part of the training process,
leading to model performance. Such loss function is, for example, Cross-Entropy loss [3]

𝐿(w) = −
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑡𝑘𝑛 ln 𝑦𝑘(x𝑛,w) , (2.1)

which measures the error between two probability vectors and will be used in this thesis.
In this equation, xn represents an input vector, where 𝑛 = 1, . . . , 𝑁 , 𝑁 is the number of
vectors and 𝑡𝑘 ∈ {0, 1} represents the element of the corresponding target vector. The loss
is computed over 𝐾 classes, 𝑦𝑘 is the output of a network, and w are weights to be learned.
After a forward pass through the model and a loss computation, the weights are updated
using a backpropagation algorithm based on the gradient that is acquired for each layer,
applying the chain rule of differential calculus [1, 18].

As machine learning algorithms learn from the data, they can be categorized based on
the type of data provided during training into 3 categories [18, 3]:

• In Supervised learning, the datasets consist of both input data for the algorithm
to learn from and corresponding labels for each training data point. The goal is to
learn a mapping between these two.

• Unsupervised learning is the opposite, where the dataset does not contain the
corresponding labels. In this case, the goal is to discover data with similar features
and group them together based on these features, learn the probability distributions
within the input data, or project the input to lower dimensionality.
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• The above categories have a fixed-sized dataset and examples of optimal output dur-
ing the training. In Reinforcement learning the algorithm interacts with the en-
vironment and has to discover the optimal result by itself through trial and error to
maximize the reward.

2.1.1 Learning challenges

The goal of machine learning is to generalize to real-world scenarios for which they were
designed, and to perform well not only on selected data. In addition to the challenge of
generalization, some tasks, such as speech or natural language processing, become expo-
nentially difficult, since they usually have high-dimensional features that model complex
relations. This motivated research and the design of more complex algorithms, such as deep
neural networks [18].

Neural networks are highly dependent on the data on which they are trained, and
sometimes there is not enough data for the specific task that is being solved. The lack
of data often occurs in supervised learning tasks, where it is demanding to acquire the
labels. Machine translation for some languages can be an example in a scenario where the
model is trained to translate from one language to another and we do not have enough
language1 - language2 pairs. There are techniques to tackle these problems and/or boost
the performance by leveraging unlabeled data or data available for different but similar
tasks, such as:

• Self-supervised learning (SSL) is a machine learning paradigm where the model is
trained on unlabeled data and the supervision signal is generated by the model itself.
In Natural Language Processing, an objective for SSL can be masking some inputs
and forcing the model to learn these masked inputs [14], or generating the input from
the model’s hidden intermediate representation [10]. Utilizing this approach, models
can be first trained on a large amount of unlabeled data followed by training on a
specific task with limited labeled data [14, 10, 35]. All models presented in Chapter 5
use SSL during pre-training.

• Multi-task learning (MTL) led to improved performance in various machine learn-
ing tasks by leveraging the information available in similar tasks. MTL can be defined
as improving the performance of a model on task 𝑇𝑖 using information from 𝑚 tasks
{𝑇𝑖}𝑚𝑖=1 [60]. Multiple learning approaches take advantage of similarities between
tasks and can be considered as some variations of MTL [49]. In MTL the goal is
to obtain predictions for multiple tasks at once. However, in many works, a model
benefits from learning auxiliary tasks during training. Auxiliary task, or auxiliary
loss, is an objective that is used during training in order to improve the performance
or generalization of the main tasks [49]. The use of multi-task learning in this work
is described in Section 5.3.

2.2 Deep Neural Networks in Natural Language Processing
Natural Language Processing is a subfield of artificial intelligence that contains tasks such as
natural language generation, machine translation, question answering, text generation, etc.
The main goal is to train models that are able to understand (to a certain extent) or generate
text in human language that is meaningful or relevant to the task performed. Algorithms
used for these tasks are usually trained by using large text corpora from various sources
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such as proprietary materials, public datasets, web crawls, etc. Several breakthroughs have
been made in the NLP field in recent years, with the introduction of new deep learning
architectures and approaches that allowed better representations of natural language on a
word, sentence, or higher level. For example, the works [38] and [15] present approaches for
learning word or sentence representation in vector space. Recurrent neural networks (RNNs)
were the go-to models not only for NLP tasks, where the goal was to process and usually
also to generate sequences with variable lengths. RNNs achieved state-of-the-art results in
tasks such as machine translation, language modeling, or named entity recognition (further
described in Chapter 3). However, RNNs have some drawbacks, and in 2017 Vaswani et
al. [57] introduced a new architecture called Transformers that achieved new state-of-
the-art results. Since then, multiple variations of the Transformer architecture have been
introduced and used across the NLP tasks together with new training approaches.

2.2.1 Language representations

Even though deep neural networks showed great ability to perform tasks in the NLP field,
they cannot work with text directly and need pre-processing to transform the text into
input data that can be further processed by the neural models. This process is called
tokenization, where the text is broken down into smaller units (tokens) and transformed
into a numerical representation. One token can represent various parts of text based on the
tokenization technique. The simplest tokenizer can work on the word level, where an integer
number is assigned to each word. The drawback of this method is the closed vocabulary.
This may cause problems in some NLP tasks such as machine translation, which is an open
vocabulary problem. Sennrich et al. [51] introduced the byte pair encoding (BPE) technique
for textual data, based on the BPE compression technique, where frequent characters or
sequences are iteratively merged. BPE can therefore represent the out-of-vocabulary words
by sequence of the sub-words that are present in the vocabulary.

Next, tokenized text data goes through a trainable embedding layer that maps the
tokens into a vector of chosen size followed by the rest of the network. A model can learn
different representations depending on its architecture and the objectives for which it is
trained, as introduced in this chapter. Some models are explicitly trained to learn the
intermediate complex language representation in a high-dimensional subspace and produce
these representations that can later be used in a chosen downstream task.

Neural network pre-training for language representations is an effective way of improving
performance on various NLP tasks [14]. Devlin et al. [14] introduced a method to learn
language representation while taking into account context from both directions. Nowadays,
this technique is very popular for transformer-based models (Section 2.4) that are pre-
trained in an unsupervised fashion on large amounts of textual data, achieving SOTA
results when applied on down-stream tasks.

2.2.2 Recurrent Neural Networks

RNNs are not used in any of the experiments in this thesis; however, this architecture was
used in a previous work that will be compared with the proposed approaches. Recurrent
neural network [18, 21, 42] is a type of NN that can process sequential data with variable
length where the length of the output does not have to match the length of the input. This
processing of sequential data and learning long-term dependencies is done by preserving
the hidden state at each timestamp and using the hidden state from the previous step in
the computation at the current step. Although RNNs achieved state-of-the-art results in
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various NLP tasks, they have drawbacks that sometimes make them difficult to train. Some
of the widely addressed problems [42] are the vanishing gradient [42], exploding gradient,
or slow training. The former two problems can be mitigated by various approaches, such as
introducing variations to original RNNs, for example, Gated Recurrent Unit [7] and Long-
Short Term Memory [21] networks. Other approaches proposed by Pascanu et al. [42] are
gradient norm clipping addressing the exploding gradient problem and a soft constraint to
mitigate the vanishing gradient problem.

2.3 Transformers
Transformer is a deep neural network architecture based entirely on the attention mech-
anism proposed by Vaswani et al. [57]. This section describes how the model works, all
the information used is gathered from the “Attention Is All You Need” [57] paper. The
transformer model was originally implemented as an encoder-decoder and demonstrated
on a machine translation that can be characterized as a sequence-to-sequence modeling
task. The main idea behind this architecture was to overcome the limitations of previ-
ously mentioned recurrent neural networks, which were state-of-the-art approaches used in
sequence modeling tasks such as machine translation. The attention mechanism reduces
the sequential computation between the input and output symbols present in RNNs. This
effectively creates room for a higher degree of parallelization. The original Transformer
model is shown in Figure 2.1.

The input of the Transformer is tokenized text that is further passed through the train-
able embedding layer to represent each token with a vector. Such vectors go through a
stack of 𝑁 encoder layers, producing an intermediate representation of the input sentence,
further used in cross-attention in the decoder part of the model. In the case of machine
translation, the target sentence is the input sentence translated to the target language.
During training, the target sentence is tokenized, passes through the embedding layer, and
is used as input to the decoder. However, unlike the input sentence in the encoder, the
target is masked and shifted in a way that the model cannot attend to tokens in the future.

2.3.1 Multi-head Attention

Attention is described as a function mapping query and a key-value set to an output. In
Transformers, scaled dot-product attention is used, where queries, keys, and values are
the input of the attention, with dimensions 𝑑𝑘, 𝑑𝑘, and 𝑑𝑣, respectively. However, in a real
implementation, these computations are performed simultaneously for a set of queries, keys,
and values in the form of matrices Q, K, and V, respectively. The size of these matrices
are 𝑑𝑘 × 𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑘 × 𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑣 × 𝑑𝑚𝑜𝑑𝑒𝑙, where 𝑑𝑚𝑜𝑑𝑒𝑙 is size of an embedding vector;

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
QK𝑇

√
𝑑𝑘

)V . (2.2)

The paper proposing transformer architecture [57] further improves self-attention by
introducing a multi-head attention mechanism, depicted in Figure 2.2. The multi-head
attention allows the model to attend to information from different sub-space representations
in different positions and is computed as

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(Q,K,V) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)W
𝑂 (2.3)
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Figure 2.1: Encoder-Decoder architecture of the original Transformer. Adopted from [57].

where
ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(QW𝑄

𝑖 ,KW𝐾
𝑖 ,VW𝑉

𝑖 ) (2.4)

and the W𝑄
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , W𝐾

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 and W𝑉
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 are projection matrices.

In the transformer model, we can see that the multi-head attention is placed in three
different places.

1. Inside the encoder, where all three keys, values, and queries in self-attention are
computed from the encoder inputs.

2. Masked multi-head attention inside the decoder where keys, values, and queries are
computed from the decoder input and masked to not attend to tokens in the future.

3. Encoder-decoder attention (also called cross-attention), where keys and values are
computed from encoder output, while queries are obtained from the previous decoder
layer.
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Figure 2.2: Multi-head attention mechanism. Adopted from [57].

2.3.2 Positional Encoding

The attention mechanism in the original Transformer architecture computes the represen-
tation of a sequence by relating to different positions at the same time with a constant
number of operations. It is beneficial to encode the position of each token into the input
embeddings. In this case, the authors used an absolute positional encoding. Positional
encoding inserts crucial information about the token order in the sequence [57] into the
model. In the original paper [57], fixed positional embeddings were used, computed with
the sine and cosine functions as:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (𝑝𝑜𝑠/10002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (𝑝𝑜𝑠/10002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙),
(2.5)

where 𝑝𝑜𝑠 is a position and 𝑖 represents a dimension. Shaw et al. [53] introduce another
approach on how to encode the positions of words in the sentence called relative positional
encoding.

2.4 Transformer architecture variations
In the original paper presenting the Transformer architecture [57], the model could be di-
vided into two parts, encoder and decoder. The encoder part takes a source text as input,
and, through self-attention and additional layers, it produces an intermediate representa-
tions of the input tokens. The decoder part combines the output of the encoder and the
masked target sequences [57]. This masking ensures that the model has information only
from previous tokens when predicting a token in position 𝑖.

Encoder-only models

In this case, as the name suggests, the models consist only of the encoder transformer.
These models are usually pre-trained on large amounts of text data in a self-supervised
fashion, where the input text is altered and the model is trained to reconstruct the original
text. An example of such a training objective is Masked Language Modeling (MLM) shown
in Figure 2.3. This approach was used to train the BERT [14] and subsequent BERT-like
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models, where during training, a percentage of input tokens were masked and the model
was tasked to predict the original tokens. Encoder-only models learn to produce word or
sentence representations during the pre-training and are usually fine-tuned with additional
layers to perform specific tasks such as sentence classification, entity recognition (also called
token classification), part of speech tagging, etc. Other models in this encoder-only family
are RoBERTa [36], LABSE [15], other variations of BERT [14] such as Albert [30], or
multilingual approaches such as XLM [29].

Figure 2.3: Example of Masked Language Modeling (MLM). Adopted from [29].

Decoder-only models

Decoder-only models are based on the decoder part of the original Transformers paper [57].
During training and inference, these models can access only tokens before the current one
for every token, unlike encoder-only models. They are again pre-trained on large amounts
of text in a self-supervised way. By learning the probability distribution of words, they can
predict the next word based on the previous words in a sequence. These models, often called
auto-regressive models, are good for text generation tasks. Examples of these models
are nowadays popular Large Language Models such as GPT [59], GPT-2 [44], GPT-3 [4],
LLaMa [55], LLaMa 2 [56], or Tranformer XL [11].

Encoder-Decoder models

Encoder-Decoder models are also called sequence-to-sequence models as both the input and
the output are sequences. These models are used for tasks that involve generating a text
output that depends on the input. Usually, there is a complex relation between the input
and target sequences. The application tasks can be machine translation, summarization,
automatic speech recognition, or speech-to-text translation that also involves audio input,
not only text. This architecture can utilize training techniques used in encoder-only or
decoder-only models; however, it usually involves more complex approaches. An example of
encoder-decoder models in NLP is T5 [45], its multilingual variant mT5 [58], or BART [31].

2.5 Large Language Models
Large language models have become a target of research in the Artificial Intelligence field
in recent years, mainly in its Natural Language Processing sub-field, reaching state-of-the-
art results in various tasks. Nowadays, the term “Large Language Model” refers to the
type of model based on the Transformer architecture that is trained on vast amounts of
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textual data in an unsupervised or semi-supervised way. The “large” in the name refers to
the amount of training data used and the size of these models, which, in the case of the
state-of-the-art models, ranges in billions of parameters. Because of this, the models are
able to learn complex patterns and structures in the natural language. This allows them to
achieve state-of-the-art results in various natural language processing tasks. As mentioned
in Section 2.4, examples of such models are GPT [59], GPT-2 [44], GPT-3 [4], PaLM [6],
LLaMa [55], LLaMa2 [56], etc.

These models are trained in an auto-regressive way to generate text or answer either
with or without some additional information (prompt) by predicting the most probable
next tokens. The core of this approach [44] is to estimate a distribution of examples
(𝑥1, 𝑥2, . . . 𝑥𝑛) where each example is composed of sequences (𝑠1, 𝑠2, . . . , 𝑠𝑛) with variable
length which can be factorized into

𝑝(𝑥) =
𝑛∏︁

𝑖=1

𝑝(𝑠𝑛|𝑠1, . . . , 𝑠𝑛−1). (2.6)

The NLP field shifted from designing task-specific model architectures into task-agnostic
models pre-trained on large quantities of data combined with task-specific fine-tuning
achieving state-of-the-art results in several NLP tasks. However, authors of GPT-2 and
GPT-3 suggested that the Large Language Models can be pushed even further. By scaling
the amount of training data and size of the models, they are able to perform reasonably well
in zero-shot or few-shot settings. Zero-shot refers to the evaluation of a model on a task it
was not trained on. When the model is trained on small amount of data for specific task or
several examples are included in the prompt it is referred to as few-shot. These models are
usually developed by research teams in big tech companies such as Open AI or Google, and
trained with proprietary data, Meta released LLaMa and later LLaMa 2, LLama 3 models
that achieved better results than GPT-3 while being trained on publicly available data.

2.5.1 Low-Rank Adaptation of LLMs

With the rising popularity of Large Language models and other big pre-trained models,
solutions to problems in natural language processing follow a very similar pattern. It starts
with an extensive model pre-training on broad domain data, followed by fine-tuning to
specific tasks. Fine-tuning a model for a specific task is usually done by updating all weights
of model. This has become quite a challenging task considering the size of the current LLM
models, for example, GPT-3 with 175 billion parameters. In addition, managing multiple
models, each fine-tuned for different tasks, creates additional challenges in terms of training,
storage, and operation.

When the model is fine-tuned, all weights are updated to Φ0+∆Φ, where Φ0 are weights
from the pre-trained model. This weight update is performed multiple times in a loop during
fine-tuning while trying to maximize the language modeling objective (Equation 2.7) [22].

max
Φ

∑︁
(𝑥,𝑦)∈𝒵

|𝑦|∑︁
𝑡=1

log(𝑃Φ(𝑦𝑡|𝑥, 𝑦𝑡<1)) (2.7)

The problem arises from the fact that the newly learned parameters ∆Φ are the same size
as the weights of the pre-trained model, that is |∆Φ| = |Φ0| and we would obtain these new
parameters for every new task where the model is fine-tuned to.
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Hu et al. [22] proposed a technique called Low-Rank Adaptation to mitigate these
problems and overcome some problems of current solutions, such as inference latency or
reduction of the model’s usable sequence length. This approach involves a substitution of
the update matrix ∆W with the lower rank matrix decomposition BA in a fine-tuning
process W0 + ∆W = W0 + BA, where W0 ∈ R𝑑×𝑘 is a weight matrix of a pre-trained
model, and A, B are low-rank matrices of size A ∈ R𝑟×𝑘, B ∈ R𝑑×𝑟 with rank 𝑟 ≪
min(𝑑, 𝑘). The pre-trained weights 𝑊0 are frozen during training and only BA is updated.
The forward pass with low-rank matrix decomposition modification, where ℎ = W0x:

ℎ = W0x+∆Wx = W0x+BAx, (2.8)

is illustrated in Figure 2.4.

+

x

h

r

Figure 2.4: Illustration of forward pass with LoRA approach, where W are weights of pre-
trained model, A and B are low rank matrices initialized to 𝒩 (0, 𝜎2) and 0 with sizes 𝑟×𝑘
and 𝑑× 𝑟 respectively. This illustration is a recreation from the original LoRA paper [22].

2.5.2 Quantization

Although the LoRA approach made the training of the LLMs more affordable, with the
size of some current LLMs even the inference is hardware demanding requirement. With
billions of parameters, one still needs a large enough GPU. The quantization technique
mitigates this problem by reducing the precision of the model. Weights, usually stored in
32 or 16 bits, are scaled to 8 or 4 bit integers, effectively reducing the size of the model,
while maintaining comparable performance [33]. Quantization can be defined as [34]:

𝑄(w) = ∆ ·𝑅𝑜𝑢𝑛𝑑(
w

∆
), (2.9)

where 𝑄 is qunatization function, w are weights and ∆ is a scaler defined as:

∆ =
𝑚𝑎𝑥(|w|)
2𝑁−1

, (2.10)
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where 𝑁 represents number of quantization bits. There are several quantization methods
for LLMs such as GPTQ [16] or AWQ [34]. For example, AWQ (Activation-aware Weight
Quantization) performs per-channel scaling to reduce the quantization loss of important
weights, as in LLMs, not all weights have the same importance.

2.5.3 QLoRA

As mentioned before, fine-tuning large pre-trained models is a widely used approach to
improve model performance on some specific downstream task. However, this has become
a problem for LLMs because of their size and the large number of trainable parameters.
Methods for mitigating this problem during training (LoRA) and inference (quantization)
are presented in previous subsections. QLoRA, suggested by Dettmers et al. [13], is an ap-
proach that combines quantization and low-rank adaptation techniques to further reduce
the memory requirements of the model. This allows models with billions of parameters
to be trained on consumer GPUs with memory as small as 24GB [13]. QLoRA reduces
memory consumption with 3 main techniques:

• 4-bit NormalFloat data type - is a new data type for quantization that achieved
better results than 4-bit integers or floats

• double quantization - quantization of quantization constants

• paged optimizers - to avoid gradient checkpointing spikes for mini-batches contain-
ing long sequences
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Chapter 3

Named Entity Recognition

A vast supply of textual data in various shapes and forms comes with the internet access.
Their content covers different styles, from scientific papers to casual conversations on social
media. However, this creates a problem, as it is impossible for humans to read and process
this amount of data or even navigate it [9]. Information extraction is one of the techniques
developed to tackle this problem. In Chang et al. [5], this task is defined as a set of inputs
and corresponding extraction targets.

Information extraction (IE) [9, 20, 5] is the process of extracting relevant information
from unstructured data. Relevant information includes entities, their relations, etc., while
ignoring irrelevant information in a specific domain or domain sets. Hobbs et al. [20]
describe two categories of data for IE, unstructured (natural sentences) and semi-structured
(the physical layout of the document is important). The datasets in this thesis consist
of only unstructured data, that is, natural sentences without any information about the
document layout, consisting solely of spoken natural language and its transcription. The
extraction targets are predefined structures or objects that can include several slots [43].
The extracted structured data can be used for numerous applications, for example, data
analysis, updating or building databases, creating datasets for other tasks, machine learning
models, etc. According to Piskorski et al. [43], IE consists of several sub-tasks, including
Named Entity recognition. In this work, IE is used in form of NER task to speed up reaction
time of emergency services and build new datasets for future models. The goal of named
Named Entity Recognition (NER) is to identify and classify pre-defined objects or entities
from a given text. Some common entities through the datasets are

• person - names and/or surnames of people, characters, etc.

• location - names of places, geographic locations, cities, etc.

• organization - for example, World Health Organization, football clubs [46]

• numerical values.
The number and types of entities can vary depending on the NER system and dataset
chosen for training. For example, the original version of the Czech Named Entity Corpus
(CNEC2.0)[52] defines 46 entities. Furthermore, some entities can be defined as nested,
which means that an entity is composed of several different entities within it, as presented
in the CNEC2.0 or NNE corpus [47] (Figure 3.1). In the CoNLL version of the CNEC2.0
(Section 4.2) similar entity types were grouped, creating only 7 entity types. On the other
hand, the WikiANN [46] dataset (all languages, including Czech) contains only 3 entity
types.
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Figure 3.1: Example of nested entities for NER task. Adopted from Ringland et al. [47].

3.1 NER approaches
Early approaches to Named Entity recognition were based on hand-crafted rules and fea-
tures, and gazetteers. Such rules could be based on grammar rules combined with created
contextual rules as presented by Mikheev et al. [37], rules created based on synonym dictio-
naries or parts of speech tagging [32]. An example of such rules for person identification
is

Xxxx+ is? a? JJ* PROF,

where Xxxx+ represents a sequence of capitalized words, JJ* is a sequence of adjectives, and
PROF stands for a profession [37]. Gazetteers are lists of known organizations, locations,
people, or other entities, and have been widely used to tackle the problem of Entity Recogni-
tion. Ringland et al. [32] briefly summarized other approaches in addition to used methods
based on hand-crafted rules. Unsupervised methods based on clustering, where words with
the same or similar semantic meaning would belong to the same group. Feature-Based Su-
pervised Approaches that used machine learning algorithms such as Hidden Markov Models
(HMM), Decision Trees, Maximum Entropy Models, or Conditional Random Fields (CRF)
are used to this day. Features for these models were based on numerical representations of
words, word-level features (e.g. parts of speech), or gazetteers. Currently the most used
approach is based on deep neural networks.

Conditional Random Field

Conditional Random Field (CRF) [25] is a discriminative probabilistic graphical model that
is used to predict labels from data sequences. To this day, CRF models are used for Named
Entity Recognition with varying combinations of input features or in combination with pre-
trained neural network models. The model is trained to compute the probability 𝑝(y|x) with
Equation 3.1, where x = 𝑥1, 𝑥2, . . . 𝑥𝑛 represents the input sequence and y = 𝑦1, 𝑦2, . . . 𝑦𝑛
is a sequence of the corresponding labels, 𝐹𝑘 is the feature function that maps x and y to
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a feature vector and 𝐾 is the number of features.

𝑝(y|x) = 1

𝑍(x)
exp

(︁ 𝐾∑︁
𝑘=1

𝑤𝑘𝐹𝑘(x,y)
)︁

(3.1)

Final labels are obtained by selecting the most probable sequence of labels from all possible
sequences as:

ŷ = argmax
y∈𝒴

𝑝(y|x). (3.2)

The CRF implementation used in this work is defined with Equation 3.3 and is described
in more detail in [50]. It uses only two feature functions denoted as 𝜃1 · 𝑓(𝑦𝑡,x, 𝑡)) and
𝜃2 · 𝑓(𝑦𝑡, 𝑦𝑡+1). The first feature function represents a neural network model, providing
a score of how likely the t-th word belongs to each NER tag. This is also called emission
score. The second feature function, called transition score, is a 𝐶 × 𝐶 matrix, where 𝐶
is the number of classification labels. This matrix represents how likely it is that the label
𝑦𝑡+1 belongs to the class 𝑐, given the previous label 𝑦𝑡. The term 𝑍(x) is a normalizer to
ensure that the equation is a probability distribution and is defined in Equation 3.4.

𝑝(y|x) = 1

𝑍(x)

𝑛∏︁
𝑡=1

exp(𝜃1 · 𝑓(𝑦𝑡,x, 𝑡))
𝑛−1∏︁
𝑡=1

exp(𝜃2 · 𝑓(𝑦𝑡, 𝑦𝑡+1))

=
1

𝑍(x)
exp

(︁ 𝑛∑︁
𝑡=1

𝜃1 · 𝑓(𝑦𝑡,x, 𝑡) +
𝑛−1∑︁
𝑡=1

𝜃2 · 𝑓(𝑦𝑡, 𝑦𝑡+1)
)︁ (3.3)

𝑍(x) =
∑︁
𝑦′

exp
(︁ 𝑚∑︁

𝑡=1

𝜃1 · 𝑓(𝑦′𝑡,x, 𝑡′) +
𝑚−1∑︁
𝑡=1

𝜃2 · 𝑓(𝑦′𝑡, 𝑦′𝑡+1)
)︁

(3.4)

Approaches Based on Deep Neural Networks

Deep neural network models in natural language, speech, or image processing usually out-
perform previously used methods. A lot of tasks in NLP, including NER, benefit from
models’ ability to learn on huge amounts of unsupervised corpora, potentially learning
more complex language representations, having bigger vocabulary, and modeling natural
language better. This approach was accelerated with the introduction of transformer archi-
tecture and methods of unsupervised pre-training, as described in Chapter 2. Today, the
majority of Named Entity Recognition approaches that report state-of-the-art results on
standard NER datasets are based on some pre-trained encoder transformer model followed
with the classification layer and optionally CRF on top of it (Figure 3.2). Such architectures
are able to efficiently extract language features to perform the token classification.

3.1.1 Label formats in NER

NER systems based on neural networks are trained in a supervised fashion, where the input
is a sentence in a particular language and the target is a sequence of entity labels, each
for a corresponding word in the input sentence. Labeling comes in different formats that
mainly differ when it comes to multiple word entities, e.g., World Health Organization, or
distinguishing subsequent entities. Konkol et al. [28] provide a summary of these formats
with experiments and references that show that the format in which the entities are labeled
can have an impact on the performance of the model. Different NER tags are characterized
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Transformer Encoder

Linear classification layer

CRF

hidden
representations ...

... the Ontario Supreme Court said it will postpone ...

O  GOV  GOV  GOV   O  O  O  O 

Figure 3.2: Example of transformer encoder-only based neural architecture for Named
Entity Recognition with optional CRF layer. The input is tokenized text and the output of
the model consists of entity labels corresponding to each word, where GOV is “government”
entity label and O is a widely used label for no entity.

by the entity type and the prefix. Common prefixes are B - the first word of an entity,
I - a word is part of an entity, L (or E) - last word of an entity, U - single word entity, and
O - words that are not entities (usually comes without entity type sufix). Some widely used
formats composed of different combinations of tags are described below [28] and Figure 3.1
shows these formats on a real example taken from the CoNLL-based CNEC2.0 corpus [27].

• IO is the simplest representation where every entity is labeled with one tag. The prob-
lem in this case is that this format cannot differentiate between entities of the same
type that follow each other.

• BIO format can represent each entity with two tags. Beginning of the entity and
Inside of the entity. There are two versions of this format, BIO-1 where B is used
only at the beginning of the entity if it follows an entity of the same type. BIO-2
format uses the B tag for every entity. This format will be used in this thesis.

• BILOU is the most complex representation adding the Last tag for the last word of
an entity and the Unit tag representing single word entity.

3.1.2 Evaluation metric

Evaluation plays a crucial role in comparing different NER systems and assessing their
performance. NER systems, as many other systems in the field of NLP, are evaluated using
the F1 score [12]. F1 score is calculated as a harmonic mean of two other summary measures:
precision and recall. As mentioned by Derczynksi et al. [12], precision and recall are well-
suited for scenarios where the objective is to identify a specific subset of items from a larger
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Table 3.1: Example of different NER label formats. The prefix is changing based on
the format, where B- stands for beggining of the entity, I- is inside of an entity, L- stands
for last (end of the entity) and U- is used for single-word entities in BILOU format.

Text Vylet Bledule v Pekle vlakem z Liberce v 8 12
IO O I-Ins I-Ins I-Ins O O I-Geo O I-Time I-Time

BIO O B-Ins I-Ins I-Ins O O B-Geo O B-Time I-Time
BILOU O B-Ins I-Ins L-Ins O O U-Geo O B-Time L-Time

collection of items. This is applicable for NER, where generally the majority of words in
the data do not belong to any particular entity type. Because of this imbalance between
entities and non-entities, the accuracy is not well fitting evaluation metric, as labeling all
words as non-entities would give high accuracy, but such NER system would be useless.
Precision is computed as

𝑃 =
|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|

|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|+ |𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|
, (3.5)

and represents a ratio of correctly recognized entities and all entities recognized by the model.
Recall, on the other hand, represents how many entities were found by the model from all
the entities labeled in the test dataset, and it is calculated as

𝑅 =
|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|

|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|+ |𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠|
. (3.6)

F1 score is a special case of the 𝐹𝛽 score, where 𝛽 = 1, and it is calculated as

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑅

𝛽2𝑃 +𝑅
. (3.7)

However, Derczynksi et al. [12] also present some drawbacks of evaluation using F1. When
it comes to the comparison of two models, if one model scores a higher F1 it does not
necessarily mean that the model is better. This comes from F1’s lack of detail when
blending together precision and recall, as it is hard to determine what mistakes the models
make or what the differences in their behavior are.

3.2 Previous works
There is plenty of work for NER task that chose various approaches to this problem directly
or had NER as a subtask. This section introduces selected previous works done on Czech
data serving as a baseline, as the focus of this work is on Czech emergency line calls. In
addition, the translation approach is described below as an example of an unconventional
approach to this task.

3.2.1 NER on Czech Named Entity Corpus

The Czech Named Entity Corpus (CNEC) has a leaderboard of NER results for this dataset.
However, most of the works present in the leaderboard are done and evaluated on the origi-
nal dataset that includes nested entities and also many entity categories (described in more
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detail in Section 4.2). As this work is focused on detecting a smaller number of entity
categories, CoNLL version was selected along with two works as baselines.

First one is done by Konkol et al. [27]. In this work, the NER task is performed
purely with a CRF model that was trained on a combination of multiple features such
as: lemmas, affixes, bag of words, bi-grams, various orthographic features, and
gazeteers. Features used for training the model have a context of 2 previous and 2 following
words, and the distribution modeled by the CRF is:

𝑝(y|x) ∝
𝑁∏︁
𝑗=1

𝑒𝑥𝑝
𝑀∑︁
𝑖=0

𝜆𝑖𝑓𝑖(𝑦𝑗−1, 𝑦𝑗 , 𝑥𝑗), (3.8)

where 𝛼𝑖 is learnable weight, 𝑓𝑖 is a feature function, y and x are NER labels and input
tokens, respectively. 𝑀 is number of features and 𝑁 is number of tokens, achieving overall
F1 score of 74.08 %.

The second work on this dataset is done by Sido et al. [54], where BERT [14] and
ALBERT [30]-like models are pre-trained on the Czech corpus and then fine-tuned for
the six different tasks separately. For NER by adding a linear classification layer on top
of the pre-trained embeddings obtained from the Czert model. The newly added layer
was initialized randomly and trained with cross-entropy loss. The BERT-like Czert model
achieved a of 86.27% F1 score, while the SlavicBERT [2] achieved 86.57% F1.

3.2.2 Translation between augmented natural languages

Paolini et al. [41] proposed a sequence-to-sequence approach to tackle different structured
language prediction tasks. Examples of such tasks are joint entity and relation extraction,
(nested) named entity recognition, relation classification, or coreference resolution. Typ-
ically, these problems are solved (as described above) by training task-specific models or
discriminator parts on top of the pre-trained models [41]. In contrast, Paolini et al. used
a pre-trained encoder-decoder T5 model in single-task and multi-task scenarios, where the
model produces the so-called augmented natural language. Augmented natural language is
a replicated input utterance in the same language with added special tokens that indicate
spans of entities and additional information (such as type of entity or relation) depending
on the task. Structured information that is extracted based on the task is present also in
natural language form, for example, the person is tagged as person instead of the usual
PER tag. Paolini et al. argue that with this approach, the model can better leverage
semantic information. An example of the proposed framework is shown in Figure 3.3 and
a more detailed description can be found in the original work of Paolini et al. [41].
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Figure 3.3: Translation between augmented natural languages with T5 model. Adopted
from [41].
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Chapter 4

Data

Named Entity Recognition (NER) is a well-known task with a significant amount of previous
work done, as described in Chapter 3. In all instances where deep neural networks are
utilized, the efficiency and quality of models in real-world scenarios are strongly influenced
by the quality and amount of training data. Most of the state-of-the-art models for NER are
trained or evaluated on either English only datasets or on a combination of English + other
languages. The data for Czech NER are sparse. Examples of widely used datasets for NER
are CoNLL-20031 or OntoNotes Release 5.02.

As described in Chapter 1, this thesis aims to provide help to emergency call center
workers in the Czech Republic. Within this project, I had access to real-world data from
emergency calls. However, since the data is classified and access is restricted, the perfor-
mance of the proposed models (Chapter 5) had to be tested first with preliminary experi-
ments done on other available datasets, preferably in the Czech language.

4.1 WikiANN
The first dataset used in the preliminary experiments was the Czech subset of the WikiANN
dataset (sometimes called PAN-X3). This dataset was originally introduced by Pan et al. [40]
as part of the cross-lingual framework for entity recognition and linking. However, the data
used in the experiments in Chapter 6 were introduced and described by Rahimi et al. [46]
for the multilingual transfer task for NER.

The WikiANN data were obtained from Wikipedia articles using its annotated markups.
The Czech subset of this dataset is divided into training, validation, and test sets with 20k,
10k, and 10k utterances, respectively. In each utterance, the selected named entities are
labeled with either PER, LOC, ORG, or O, meaning person, location, organization,
or no entity respectively. The distribution of the entity types for the training and test set
is shown in Figure 4.1.

4.2 Czech Named Entity Corpus
Another dataset used in experiments was the Czech Named Entity Corpus [52] (CNEC),
specifically, the second version of this dataset (CNEC2.0) introduced by Konkol et al. [27]

1https://huggingface.co/datasets/conll2003
2https://huggingface.co/datasets/tner/ontonotes5
3https://huggingface.co/datasets/wikiann/viewer/cs
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Figure 4.1: Statistics about Czech part of WikiANN dataset containing: B-PER (person),
B-ORG (Organization), B-LOC (location) entities.

and modified to the CoNLL format. This version will be further referred to as CoNLL-
based CNEC 2.0. The original dataset [52] consists of 46 unique entity types and 4 entity
containers, where multiple entity types can be part of one entity container, for example,
the forename and surname are part of the “person” container, etc. On the other hand,
CoNLL-based CNEC 2.0 [27] includes only seven entities plus the “no entity” label. Another
key difference between these two versions is the existence of nested entities (as mentioned in
the example above) in the original versions of the CNEC dataset, unlike in the CoNLL-based
version. The reason for choosing the CoNLL-based version over the original dataset are
that we did not initially expect to predict nested entities. Moreover, the Czech emergency
dataset described in the following section will also be prepared in the non-nested entity
fashion.

As usual, this dataset is divided into training, validation, and test splits consisting of
7142, 885, and 890 utterances, respectively. The seven entities present in this version are
Time, Geography, Person, Address, Media, Other, Institution, and “no entity”,
and the corresponding distribution of entities in the training and test split is shown in
Figure 4.2.

4.3 TCTV112 - Czech emergency line calls
This section describes emergency call center data and the preparation of the dataset. It
also serves as a documentation of the dataset for future work on the TCTV112 project.
The data consists of a collection of mp3 recordings with corresponding meta-data from real-
world emergency calls in the Czech Republic. This collection of raw data with metadata
files and datasets will be referred to as the TCTV112 dataset.

TCTV112 data come from emergency centers in three locations: Praha (Prague), Olo-
mouc, and Plzeň (Pilsen). One part of the data is from 2020 and the second part is from
2022. Various data are stored in multiple files across the directories (depicted in Figure 4.3).
The index.xml contains mainly metadata that are not useful for this task, such as time
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Figure 4.2: Number of entities in coNLL based CNEC 2.0 dataset.

and different IDs that are only used to pair individual mp3 files with other data needed to
create the NER dataset.

The <year_month>.csv files in the Udalosti (events) directory contain information
about the location and some description of the emergency situation, the number of injured
people, cars, etc. Finally, the NIS_DV_2020 directory contains the data sentences in XML
format. It also contains additional information, such as additional description of the emer-
gency or, more importantly, the name of the caller. An example of a data sentence is shown
in the Appendix A.

However, at the time of writing this thesis, the CSV files are missing crucial information
such as the caller’s name. Furthermore, even though both data sources have a structured
format, it is a mixture of information provided by the caller and information obtained
by the agent from emergency line systems and stored manually. For example, the caller
can provide the location vaguely or not at all, and the agent can get the location using
GPS or other available methods. The “what happened” information is in the form of
an informal description in natural language ranging from a couple of words to a longer
sentence. Chapter 6 presents approaches to mitigate these drawbacks (multiplied with
propagated ASR errors) to improve the performance of the proposed models that can be
further used for automatic labeling of the dataset for future work.

4.3.1 Data linking

The mp3 recordings were paired with meta-data to create the TCTV112 dataset with the
number of utterances shown in Table 4.1. The information in the table shows the number
of calls (one call can be stored as multiple mp3 recordings) with the specified raw metadata
available from linked XML and CSV files. These numbers will change throughout the data
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data/
VSB

Olomouc
<id>.mp3
index.xml

Plzen
<id>.mp3
index.xml

Praha
<id>.mp3
index.xml

Udalosti
<year_month>.csv

NIS_DV_2020
<hash>.xml

Figure 4.3: Content of emergency calls data directory. CSV files contain various infor-
mation about the calls such as description of what happened, location, number of people
injured, number of cars in traffic accidents, etc. XML files in NIS_DV_2020 contain similar
information to CSV with the addition of name of the caller. The XML files are available
for the year 2020 only.

Table 4.1: Number of emergency calls available for each year. All numbers in the table
correspond to the number of calls, not the number of mp3 recordings since some calls are
stored as multiple mp3 recordings. Name is for calls with the caller name available in
the metadata (suitable for NER). Desc contains a text description of the emergency. Loc
utterances contain the location of the emergency. Info utterances contain some additional
notes, which could be useful for the creation of NER dataset.

Year Number of calls
Total Name Desc Loc Info

2020 1 945 849 85 410 454 531 1 415 484 18 549
2022 1 409 898 - 384 482 1 409 898 -

preparation process as more structured information will be extracted and some calls will
be filtered out.

4.3.2 Producing call transcriptions

Another part of the emergency calls data preparation pipeline is to obtain transcriptions
of audio data. This is a crucial part of the process, as entity recognition is performed on
textual data, with all experiments done with a cascade of ASR + NER. Prior to this work,
no true labels were available for Named Entity Recognition besides the metadata created by
the call center agents during an emergency and barely any transcriptions with the exception
of some automatic transcription of calls recorded during a tornado disaster that happened
in the Czech Republic in 2021.

The transcribed audio recordings were selected based on the audio format and paired
metadata available for a particular call. For year 2020, most calls were stored in mono
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audio, where both speakers, the caller and the agent, are mixed in one channel. This is not
ideal, so all mono recordings were removed, shrinking the data used for the experiments.
This 2020 subset included all types of emergency events, resulting in a dataset containing
121k recordings. Figure 4.4 shows the distribution of different emergency event types in
December 2020. All of these were automatically transcribed, but the final number of utter-
ances obtained from transcriptions was further reduced for the NER experiments based on
the available metadata.

For 2022, everything was recorded and saved as stereo; therefore, there is no data format
restriction, and the focus can be shifted to choosing data that match the intention of this
work. That is, to help emergency line agents during larger disasters that cause the number of
incoming calls to skyrocket. Figure 4.5, shows the distribution of calls to the emergency line
in 2022 with highlighted timestamps that were chosen for the 2022 TCTV112 dataset. The
large spikes during these timestamps were caused by strong winds and fires. The incoming
calls for those events contain mainly property damage and fallen trees. After selecting the
calls for transcriptions, they were further filtered for the NER experiments based on the
following assumptions:

• There is no reason to use the calls with missing metadata information as there is no
way to label the data without any existing solution. A pre-trained NER model or
rule-based approach could be used, at the cost of potentially miss-labeled entities.
However, such transcriptions will be removed prior to the creation of the dataset.

• Calls without the metadata can also indicate short calls without conversation, which
provide no value for the experiments, and also no data for any model training.

• Only stereo recordings will be used because in future experiments, there will be need
to distinguish between the caller and the emergency call center agent. Data in this
format can be used to simulate fully automated conversations with an audio channel
that contains caller audio only.

Automatic Speech Recognition model

A neural network speech-to-text model (ASR) provided by Phonexia4 was used for audio
transcriptions. The ASR architecture is a Factorized Time Delay NN (TDNNf) composed
of 6 convolutional and 9 TDNNf layers and was trained with the neural network x-vector
extractor. The model and training process are described in more detail in the original
work [26]. The ASR model was trained on 110 hours of BABEL data, and the x-vector
extractor was trained on multilingual data containing 204k recordings from 40k speakers
and 27 languages [26].

Due to the poor quality of emergency call recordings, two additional adaptations were
made in the preceding emergency line project5 (a project on the integration of neural
networks / machine learning in an emergency line call center). The first modification was
made to the acoustic model, which was adapted to the TCTV112 data using 507 hours of
calls. The second was a 3-gram language model (LM) added to the ASR. This LM was
trained on the text extracted from the data sentences (Appendix A) containing almost

4https://www.phonexia.com/
5VK01020132 - Praktické ověření možnosti integrace umělé inteligence pro příjem tísňových volání pomocí

hlasového chatbota, vyvinutého v rámci výzkumného projektu BV č. VI20192022169, s technologií pro
příjem tísňové komunikace 112 a 150 v ČR (TCTV 112). Available at: https://starfos.tacr.cz/cs/
projekty/VK01020132
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4 million words. The ASR was evaluated on a small test set containing 102 recordings that
was also created in the preceding TCTV112 project. These ASR modifications improved
the performance from 59% to 49% WER. High word error rates, despite the adaptations of
the ASR made specifically for this data, are caused by the poor quality of the recordings.
The recordings are stored in compressed mp3 format with a low bit rate of 24𝑘𝑏𝑖𝑡/𝑠. After
the change of recording storage from mono to stereo, the bit rate stayed the same, but 2
channels were stored instead of one, effectively worsening the audio quality.

Figure 4.4: Distribution of emergency line calls based on the emergency event type in
December 2020 and beginning of January 2021.
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Figure 4.5: Distribution of emergency line calls based on the emergency event type in 2022.
Calls marked by the black boxes were selected for the 2022 TCTV112 dataset. These big
spikes are caused mainly by the strong winds where people call about the property damage
or fallen trees. In addition, one spike in calls caused by the fire was selected for the dataset
diversity.
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Chapter 5

Proposed solutions

This chapter describes different approaches and model architectures used in experiments
(Chapter 6) along with their input/output data format that was pre-/post-processed as
needed for the task. Three approaches were explored for the NER task; Pre-trained encoder-
only models, Seq2Seq models, and Large Language Models.

The “traditional” token classification approach was chosen first, as this is the most
common way of doing NER, followed by seq2seq and LLMs. This decision was based
on multiple factors present in this field. Many works have shown state-of-the-art results
for NER by extracting word embeddings or other information from text and performing
classification on top of these embeddings, e.g., an encoder+classification layer, Conditional
Random Field (CRF), or a combination of both. At the time of writing this thesis, the use
of LLMs such as LLaMa 2 [56] or GPT models [59, 44, 4] is a rapidly growing area of
research, with new models coming out every couple of months. These models showed great
capabilities in a variety of NLP tasks, even for tasks they were not trained for. Mistral
7B [23] LLM will be explored further in this work for NER on emergency call data.

5.1 Implementation Tools
The models and experiments were implemented in Python, mainly with the HuggingFace1

libraries that provide an assortment of NLP models, classes to train these models, and
datasets for various NLP tasks. In addition, the implementation of CRF was taken from
the AllenNLP library [17].

Regarding computational hardware, all experiments were conducted on the FIT SGE2

cluster mainly on 48GB Quadro RTX 8000 GPU. The following experiments on real data
from the emergency call center were performed on a separate isolated computer with a 24GB
NVIDIA RTX A5000 GPU, provided by the BUT Speech@FIT group.

5.2 Encoder-only transformer models
Token classification with embeddings from pre-trained encoder-only models was chosen as
a first approach in this work. It is a fairly common approach for the NER task with state-
of-the-art results on various datasets. Multiple transformer-based encoder models were
explored with the addition of an optional CRF layer on top of a classifier layer, as shown

1https://huggingface.co/
2https://www.fit.vut.cz/units/cvt/cluster/.en
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in Figure 3.2. Only multilingual encoders were explored as oposed to Czech-only models,
because such models are usually trained on much larger corpora. In addition, multilingual
models could potentially work better in case of code-switching or different language in
real-world scenarios, for example, in the case of an accident where a foreigner calls the
emergency line.

XLM-R

One of the models used in this thesis was multilingual XLM-R [8] with 588M parameters.
This model is based on the original Transformers [57] trained in a multilingual manner using
the Masked Language Modeling approach shown in Figure 2.3, with the difference in not
using language embeddings (gray embedding boxes in Figure 2.3), which should improve
code-switching abilities [8]. The model used in the experiments was trained on 2.5TB of
filtered CommonCrawl data containing 100 languages and has a vocabulary of 250k tokens.
Conneau et al. [8] show that such multilingual models can outperform their monolingual
BERT counterparts.

LaBSE

Another model tested for the NER was LaBSE (Language-agnostic Bert Sentence Embed-
ding [15]) with 470M parameters. This model was trained as a dual BERT-based encoder
model (Figure 5.1) for sentence-level embeddings, however it can also produce (at least
in HuggingFace implementation) word-level embeddings.

Figure 5.1: LaBSE dual encoder architecture, taken from Feng et al. [15].

Multilingual DeBERTaV3

This model is a multilingual version of the DeBERTaV3 [19] model trained on the same
data as the XLM-R model and has 278M parameters. It is a Transformer-based model that
improves the results on downstream Natural Language Understanding (NLU) tasks with
two major changes in the training method.
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First, instead of MLM used for BERT [14] or XLM-R [8], DeBERTaV3 uses the Re-
placed Token Detection method in which the model is trained with two encoders. One
encoder (generator) is trained with the MLM objective, whereas the second one (discrim-
inator) is trained as a token-level binary classifier. The generator is trained to produce
masked tokens, while the discriminator performs classification of these tokens, determining
whether the generated token is the original or not.

Second, the authors propose a method of sharing the embeddings between the generator
and the discriminator during the training in order to mitigate the drawbacks of the embed-
ding sharing (“tug-of-war dynamics”) [19].

5.3 Encoder-Decoder approach
The second approach was inspired by Paolini’s paper [41] with some modifications, as
Paolini et al. did the experiments only on the English data with the T5 model. The target
dataset of this thesis is in Czech and therefore multilingual T5 (mT5) [58] was chosen.
The small version of mT5 has 300M parameters and the base version has 582M parameters.
The mT5 training closely follows the training of the T5 model, and, similar to XLM-R, mT5
was trained on 101 languages. During training, languages were sampled with probability
𝑝(𝐿) ∝ |𝐿|𝛼, where |𝐿| is the number of examples for the given language and 𝛼 = 0.3 based
on the ablation experiments in the original article [58].

mT5 Encoder

Linear classification layer

hidden
representations

... the Ontario Supreme Court said it will postpone ...

O  GOV  GOV  GOV   O  O  O  O 

mT5 Decoder

...

... the [ Ontario Supreme Court | government ] said it
will postpone ...

Figure 5.2: mT5 architecture with additional token classification head used in this work.

In addition to the original encoder-decoder architecture approach, a classification layer
was added on top of the encoder part of mT5 as shown in Figure 5.2. This allowed the model
to be trained in a multitask fashion, where the encoder also performs a token classification
task during the training in order to improve the results. The final loss for the multi-task
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approach was:
ℒ = 𝛼 · ℒ𝑠𝑒𝑞2𝑠𝑒𝑞 + (1− 𝛼) · ℒ𝑡𝑜𝑘𝑒𝑛, (5.1)

where the 𝛼 is a hyper-parameter, the ℒ𝑠𝑒𝑞2𝑠𝑒𝑞 is cross-entropy loss on augmented natural
language sentences and ℒ𝑡𝑜𝑘𝑒𝑛 is cross-entropy loss computed on NER labels similarly as
during the basic token classification task.

5.4 Large Language Models
Large Language models (LLMs) are achieving state-of-the-art results in a variety of NLP
tasks. Because of their capabilities, they are becoming very popular and new models are
released every couple of months. For this work, the Mistral 7B [23] model was chosen
for its performance on various NLP tasks, multilingual and fine-tuning abilities. Jiang
et al. [23] implemented multiple changes compared to the LLama 2 [56] model. Sliding
Window Attention (SWA), shown in Figure 5.5, is an attention mechanism in which the
hidden state ℎ𝑖 at some position 𝑖 attends only to 𝑊 hidden states in the previous layer
at the positions between 𝑖 −𝑊 and 𝑖. When this mechanism is used across all layers, the
hidden state ℎ𝑖 in layer 𝑘 can attend to previous 𝑊 ×𝑘 hidden states. The Sliding-Window
Attention is reportedly two times faster than the vanilla attention. Rolling Buffer Cache,
shown in Figure 5.5, is an implementation of cache for attention keys and values. Because
the SWA has a fixed attention span of size 𝑊 , the cache also has a fixed size 𝑊 . The
keys and values at timestamp 𝑖 are stored in position 𝑖 mod 𝑊 effectively reducing the
memory usage, without affecting model quality. Pre-fill and Chunking method, shown in
Figure 5.5, utilizes LLM prompt that is known from the beginning. This means that the keys
and values cache can be pre-filled before the tokens are generated one-by-one. However,
nowadays the prompts can get very long. The chunking takes care of long prompts by
dividing them and pre-filling the cache with each chunk.

Figure 5.3: Example of Sliding Window Attention adopted from [23] with window size
𝑊 = 3. The predicted token can be influenced even by tokens outside of the sliding window
through the stacked attention layers (the right-most image).
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Figure 5.4: Example of the rolling buffer cache adopted from [23] with window size
𝑊 = 4. At the timestamp 𝑖+2 the input in first and third row are larger than the window
size. Therefore the cache is over-written with the new keys and values at the position 𝑖+2
mod 𝑊 .

Figure 5.5: Example of pre-fill and chunking adopted from [23]. The prompt “The cat
sat on the mat and saw the dog go to” is split into three chunks. The example shows
the masking for the third chunk (current) where it attends to itself and to the previous
chunk (cache) via sliding window.
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Chapter 6

Experiments

This chapter describes the experimental setup for the datasets presented in Chapter 4 and
for the proposed solutions presented in Chapter 5. It is divided into three parts; exploring
different approaches on public Czech NER datasets (cs subset of the WikiANN [40], CoNLL-
based CNEC2.0 [27]), creating Czech emergency calls (TCTV112) datasets, and NER on
created TCTV112 datasets.

6.1 Named Entity Recognition on Czech datasets
Because the Czech emergency calls are proprietary data and were not available at the begin-
ning of this work, different methods and models were implemented and tested on the Czech
part of WikiANN [40], CoNLL-based CNEC2.0 [27] datasets. This section is divided into
two parts. The first part consists of experiments with traditional token classification ob-
jective, while the second set of experiments insert entity tags directly into the text, as
introduced in Section 3.2 (Previous works), and need further post-processing.

6.1.1 Token Classification

This approach leverages models pre-trained on large quantities of data, mainly in self-
supervised way and achieving SOTA results for entity classification on various datasets
such as CoNLL-20031 or OntoNotes Release 5.02, WikiANN [46], etc. The architectures
in this subsection of experiments follow the process presented in Section 5.2 with a pre-
trained tokenizer, and a pre-trained encoder model, followed by a linear classification layer
and optional CRF layer. Both, the pre-trained encoder and the classification layer, were
fine-tuned on the corresponding datasets. The classification layer was initialized randomly.
The transition matrix of the CRF layer was initialized in the following ways:

• init - transition matrix was initialized to transitions probabilities computed on the train-
ing set of the dataset and fine-tuned with the model

• train - every value in transition matrix was initialized to -1000 (as in original imple-
mentation) [17] and trained with the model

• freeze - same as init but the transition matrix was kept frozen during the training.
1https://huggingface.co/datasets/conll2003
2https://huggingface.co/datasets/tner/ontonotes5
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In case of the CoNLL-based CNEC 2.0 [27] and WikiANN [46] datasets, the added CRF
slightly improved the final results. However, there is almost no difference between the ini-
tialization approaches listed for the CRF transition matrix. An example of transition matrix
initialize from the training data is shown in Figure 6.1.

Figure 6.1: Example of the CRF transition matrix. Transition values were initialized from
the training data as log-probabilities of transitions from the label on the y axis to the label
on the x axis. The labels are in BIO2 format (described in Section 3.1.1). The empty
transitions are set to -1000 as in the original implementation of CRF [25].

For token classification experiments, XLM-R [8], mDeBERTaV3 [19] and LaBSE [15]
models were chosen with the size of 588M, 278M and 470M parameters, respectively. All
models were trained for 20 epochs. The early stopping was used during the training to
prevent model from over-fitting because the Czech NER datasets are fairly small. In this
stage, the model checkpoint with the highest overall F1 score (computed over the 7 entity
types) was chosen. Event though, the focus in the following experiments will be only on
location and person entity types. Token classification models were trained on a single
GPU as it took only approximately 1 hour to train on these datasets. The batch size was
set to 64 with learning rate 1𝑒−5 and no gradient accumulation.

The results are shown in Table 6.1 with the XLM-R model achieving the best scores
on both datasets. However, the mDeBERTa-v3 model achieved comparable results, and is
half the size.The WikiANN dataset was created from Wikipedia data, and the pre-trained
encoder model saw Wikipedia data during the pre-training with a high chance of seeing also
the WikiANN test data. Because of this, the experiments on the WikiANN dataset serve
mainly as a “sanity check” to ensure the model is working. For the CoNLL-based CNEC
2.0 dataset, XLM-R achieved a better F1 score than the baseline results reported in [54].
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Table 6.1: Performance of different pre-trained encoder models on Czech entity recognition
datasets. The CRF column indicates if the CRF was used and type of its initialization.
* - results taken from original paper [54].

Model CRF coNLL-based CNEC2.0 wikiann cs
Acc F1 P R Acc F1 P R

CZERT* - - 0.866 - - - - - -

XLM-Roberta

- 0.973 0.877 0.861 0.893 0.976 0.929 0.924 0.934
train 0.973 0.885 0.875 0.894 - - - -
init 0.973 0.888 0.878 0.897 0.977 0.939 0.939 0.940

freeze 0.973 0.885 0.876 0.893 - - - -
LaBSE - 0.969 0.863 0.846 0.881 0.975 0.924 0.919 0.928

mDeBERTaV3
- 0.968 0.855 0.833 0.878 0.973 0.919 0.912 0.926

train 0.97 0.875 0.864 0.886 0.972 0.925 0.921 0.929
init 0.969 0.876 0.865 0.886 0.972 0.925 0.921 0.929

6.1.2 Seq2Seq NER

The sequence-to-sequence approach proposed by Paolini et al. [41] and introduced in Sec-
tion 3.2.2, was explored for the Czech NER, with some modifications for the experiments
presented in this section. The mT5 model [58] was used, as its multilingual pre-training
enables its use on data in Czech language. The architecture with additional encoder token
classification loss is described in Section 5.3.

The CoNLL-based CNEC 2.0 dataset (Section 4.2) was originally prepared for the token
classification NER approach, where each word has an entity label assigned. This had to
be updated for the seq2seq task by creating the augmented natural language from text
utterances and the corresponding entity labels.

Two ways of augmenting natural language were explored. The examples are shown
below. In the first approach, new special tokens are added to the text, tokenizer, and model
itself. Every entity is encapsulated between start and end tokens with the corresponding
entity type. In the CoNLL-based CNEC2.0 [27] dataset, 7 entity types are used that
correspond to 14 new special tokens, as shown in the example below (person is labeled as
words between the <P> and </P> tags).

The second approach follows the idea of the original paper [41] more closely. In this
case, every entity is encapsulated in the same brackets “[ ]”. The entity type is present
as a word in natural language after the “|” delimiter. An example of this augmentation is
shown for the same sentence from the CoNLL-based CNEC2.0 dataset [27].

Augmentation with special tokens

Výrazným oslabením jsou odchody brankáře <P> Čapka </P> do <G> Bratislavy
</G>, útočníka <P> Poukara </P> do <I> Slavie </I> a <P> Romana a Petra
Kaňkovských </P> do <G> Znojma </G>.
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Augmentation with natural language

Výrazným oslabením jsou odchody brankáře [ Čapka | person ] do [ Bratislavy | location ]
útočníka [ Poukara | person ] do [ Slavie | institution ] a [ Romana a Petra Kaňkovských
| person ] do [ Znojma| location ].

Experimental results

This approach was trained and evaluated on CoNLL-based CNEC2.0 dataset because
the WikiANN dataset seems too artificial compared to real emergency line data. These
experiments were carried out similarly to token classification. Only one 49GB GPU was
used, as the mT5 [58] model versions are similar in size to XLM-R [8] and mDeBER-
TaV3 [19]. Small and base versions of mT5 were used in these experiments with 300M
and 582M parameters, respectively. The batch size had to be reduced to 16 because the
seq2seq model generates natural language sequences instead of producing only the labels
for each word. To compensate for a smaller batch size, the gradient accumulation was set
to 8 steps, effectively simulating a larger batch size. Based on the initial experiments, the
learning rate was set to 1𝑒−3 with a cosine learning rate scheduler. Furthermore, various
loss weights 𝛼 were explored for multitask learning with token classification as an auxiliary
task. The final loss was computed with Equation 5.1.

The results of NER with the mT5 [58] encoder-decoder model are shown in Table 6.2.
In general, the seq2seq approach performed worse than the token classification. The in-
troduction of the second task, token classification, improved performance of the model.
Experiments with different values of weight 𝛼 were carried out to balance both losses to
maximize performance on the NER task. Although this approach still yielded worse results
than the encoder-based token classification technique, the final result is highly dependent
on the post-processing and evaluation method. In the case of CoNLL-based CNEC2.0,
the dataset is quite “dirty” and even after removing redundant characters such as: ”.,[]
etc., some model outputs that are marked as wrong are questionable.

As an example, there are occurrences of person entities in the form of person con-
junction person for which the true labels are B-P I-P I-P counting the conjunction
also as part of the entity. The model, on the other hand, tags only the person entities
producing the B-P O B-P output, which is evaluated as completely wrong as shown in
an example from the CoNLL-based CNEC2.0 dataset:

LABELS: ...zmátla policii Dvojčata<P> Ray a Jay Nugentovi</P>...
MODEL : ...zmátla policii Dvojčata<P> Ray</P> a<P> Jay Nugentovi</P>...

There are some other observations of this behavior. For example, one is in geographical
locations, where the model omits “v” (meaning “in”) between two geographic names.

Both augmentation methods yielded comparable results, showing that the model per-
formed better on the natural language-augmented version of the dataset. Control exper-
iments were run for the natural language augmentation, where instead of English entity
types, person for example, Czech translations (person) were used, however the English
version performed slightly better.

6.1.3 Summary

Experiments in this section explored pre-trained encoder-based and sequence-to-sequence
approaches for Named Entity Recognition task on publicly available Czech datasets. The pre-
trained encoder-based token classification approach with XLM-R [8] as multilingual encoder
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Table 6.2: Performance of mT5 small and base version on sequence-to-sequence NER with
optional token classification task introduced during the multi-task training. Argument 𝛼 is
used as a weight for seq2seq loss and 1− 𝛼 for token classification loss.

Model 𝛼𝛼𝛼
natural language augment special tokens augment

F1 P R F1 P R

mT5-small

0.5 0.662 0.692 0.634 0.767 0.758 0.775
0.7 0.779 0.787 0.770 0.770 0.77 0.767
0.9 - - - 0.735 0.735 0.735
1.0 - - - 0.774 0.770 0.779

mT5-base 0.5 0.816 0.823 0.808 0.754 0.740 0.768
0.7 0.830 0.831 0.828 0.810 0.810 0.810
1.0 0.812 0.817 0.807 0.788 0.776 0.800

achieved the best results outperforming the state-of-the-art overall F1 score on CoNLL-
based CNEC 2.0 [27] dataset at the time of writing this thesis.

Experiments showed that even the sequence-to-sequence approach with encoder-decoder
architecture is a viable option with a bit of performance degradation depending on the model
size. Taking into account the points raised in the original seq2seq paper [41], this approach
can be beneficial when used in multi-task settings instead of pure entity recognition. An-
other disadvantage of seq2seq, taking into account the goal of this thesis, is the need for
a heavy post-processing of the output in comparison to encoder-based token classification.
The best results and alignment between the output entity types and inputs to the model are
the reason why encoder-based models will be used for experiments done on real emergency
line data. In addition, the performance of the LLMs models will be tested on the created
emergency line datasets.

6.2 TCTV112 - from transcriptions to labels
This section describes the main pipeline and additional methods for creating multiple la-
beled NER datasets from the available TCTV112 data that are used in experiments in
the following Section 6.3. Some parts presented in this section were implemented in paral-
lel or after some initial experiments described in the following Section 6.3. Therefore, the
information from those experiments was used during the creation of some subsets described
here.

Following the initial data pre-processing described in Section 4.3, the available data from
various sources were linked to create several dataset files that consist of ASR transcriptions
of selected calls, corresponding audio recording, and multiple columns containing selected
metadata that could be important not only for NER. This leads to multiple datasets, shown
in Table 6.3. The sets differ in size and the labeling process.

6.2.1 Creating Named Entity Recognition Labels

As mentioned in Section 4.3, the data for the TCTV112 project came only in the mp3 format
with some structured metadata (example shown in Appendix A), which is not optimal for
NER or the extraction of other information from calls. This brought a secondary goal, that
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is, creation of better structured dataset for future work. This is done with information
extracted from audio transcriptions by:

1. rule-based approach using information available in the metadata

2. neural network approach using pre-trained models with optional manual correction

The creation of NER labels from the metadata proved to be a bit more tricky than it seemed
at first glance. The metadata contains a lot of useful information. Although it is arguably
not that large compared to the amount of audio and its transcription, such as the name of
the caller, the location of the emergency, or the type of emergency. The metadata comes
in a structured form and it is manually created by the emergency call center agent. This
means that a lot of information is gathered by the agent with tools available in the call
center (for example, the locations), therefore, it may not be present in the corresponding
transcriptions. For the 2022 data, caller names were not available at all. Moreover, the audio
transcriptions consist of tens of thousands of utterances, while only a fraction of them carry
information that is aimed at in this thesis.

The dataset creation pipeline is presented in Figure 6.2 and starts after the selection of
data and transcriptions described in Section 4.3. This pipeline consists of multiple stages
and was used for both 2020 and 2022 datasets and their variations. First, there are two
automated methods for creating labels that are run in parallel:

1. The transcriptions are run through the token classification model pre-trained on
coNLL-based CNEC2.0 [27] dataset providing NER labels in BIO2 format.

2. The location of emergency and callers’ names presented in metadata files associated
with the recording are matched with words in the transcriptions. This is done via
a simple method, where both metadata information and transcriptions are lower-
cased, and punctuation and diacritics are removed. After this, if the words stored in
the metadata are present in the transcription, they are marked with the corresponding
labels. All the other words are marked with “O” representing no entity.

Entities were labeled in BIO2 format with either P for person (caller’s name) or G for
location of emergency. A more common tag for location is usually the LOC, but the G tag
(stands for geography) was used in the CoNLL-based CNEC2.0 [27] dataset on which the
token classification model was trained. For further processing and evaluation, the dataset
was reduced even more by selecting mainly the utterances containing callers’ name and
location information that represent only a fraction of all the transcribed utterances. This
was done with the intention to make the system reliable in detecting names and locations.

The “Annotated datasets”, shown in Figure 6.2, stand for the data annotated with
two previously described methods. These datasets were used for further analysis to assess
the quality of the labels from both sources and are present in Table 6.3 as 2020_full
and 2020_names subsets. It was found that the metadata alone, in their current form,
are not sufficient to create reliable labels. Moreover, the pre-trained models had a high
ratio of false positive classifications. Examples and a more detailed description are given
in Subsection 6.3.1.

In the second stage, the labels generated by the model and the labels matched from
the metadata were combined. If some words were labeled by both methods with different
labels, the metadata label was taken as correct, and the labels provided by the model
were overwritten. The labels in these datasets are then manually corrected and split for
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the training/test set. This was followed by the augmentation of the training set based on
the analysis performed on the “Annotated datasets”. The augmentation of the training
split was done by adding words or phrases that were the most frequently classified as false
positives. This augmentation and frequently miss-classified entities are also described in
Subsection 6.3.1.

Assets

mp3 caller location

Named Entity 
Recognition 

model

Automatic 
transcriptions

Manual label 
correction 

Data 
Augmentation

utterances containing 
entities

utterances with 
no entities

Entity matching
Assets

mp3 caller location

ASR

Train set

Test set

Annotated 
datasets

Metadata

Figure 6.2: TCTV112 pipeline for creating structured dataset with proper NER labels.
The ASR transcriptions are labeled for NER task based on the model predictions and
content of the metadata. Portion of the annotated data is manually corrected and augmen-
tation is added, creating clean train and test splits.

Tornado subset

The TCTV112 tornado subset was created from two data sources. One consists of a small
number of emergency calls made during a tornado in the Czech Republic in 2021. The sec-
ond is a subset selected based on the emergency event type from 2022, specifically the spikes
highlighted in Figure 4.5. These calls are mainly about strong winds and the damage they
caused. Therefore, the content is similar to the emergency calls recorded during the tornado.

This subset was anonymized and manually transcribed by colleagues from Speech@FIT
group in the firefighters’ center in Brno Líšeň. Anonymization was performed on the names
and locations of the calls. The names of the callers were completely anonymized by re-
placing the surname and/or first name with the Czech keywords “(jméno)”, “(příjmení)”
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meaning “first name” and “surname”, respectively. The locations were anonymized in a sim-
ilar fashion by replacing the addresses with the Czech keyword “(adresa)”, which means
“address”.

The anonymized name tags were then replaced by randomly generated names, while
simultaneously labeled with P labels in BIO2 format, to match the format of the CoNLL-
based CNEC2.0 dataset [27]. The names were randomly generated by combining the top 10
most common names and surnames (both male and female) in the Czech Republic in 2007.
The names and surnames were taken from the Czech Statistical Office3, which resulted in
100 possible combinations of male and female names each. In addition, sometimes only
the surname was chosen and the order of surname and first name was randomly shuffled.
This was done to prevent the model from learning just these names, but rather to learn
also the context in which the names are given by the caller.

Similarly, addresses were randomly generated using ChatGPT [39] with the instruction
prompt to generate 40 random Czech addresses consisting of the street name with the street
number and the city. Furthermore, the chosen address sometimes misses some components
to create more variations and avoid creating the same pattern for locations. All names
and addresses were added to the dataset in the nominative case. However, this may cause
problems like model over-fitting in the future. As this dataset will grow, more advanced
augmentation will be needed.

Final TCTV112 datasets

Several different subsets were created with different labeling methods and even manual cor-
rection. The 2020_names and 2022 subsets, which were manually corrected, and the tornado
subset were combined to the final clean TCTV112 dataset containing 1149 person and 1476
location entities. An overview of these datasets is given in Table 6.3.

Table 6.3: Various NER datasets created as a part of this thesis with corresponding number
of words and entities. The dataset with the extension “names” is just the subset of the “full”
containing all utterances with person entity. The Labels column shows the method of label
creation. Metadata means that the labels were created based on the information from
the metadata. Manual means that the entities were labeled manually. Semi-manual is
present only for the tornado dataset, where the names and locations were tagged manually
but the content of the entities was automatically generated.

Dataset Labels Words Number of entities
Person Location

2020_full metadata 3845376 3436 23626

2020_names
metadata 969878 3436 9121
manual 5399 465 178

tornado semi-manual 40440 94 775
2022 manual 6740 466 289

TCTV112_NER semi-manual + manual 55750 1149 1476

3https://www.czso.cz/csu/czso/nejoblibenejsi_detska_jmena
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Table 6.4: Person and location entity classification performance with different variations of
XLM-R model on created TCTV112 datasets. For the tc (truecase), the model was pre-
trained on the CoNLL-based CNEC 2.0, the tc, lc variation is a model trained additionally
on lowercase version of the dataset. CRF means that the model contained the CRF layer on
top of the classification head. The Labels column represents the manner in which the labels
for the particular subset were created, where manual is manual labeling, semi-manual
stands for automatic creation of names and locations with labels in place of manually
anonymized information (described in more detail in Subsection 6.2.1). For the metadata
subset, the labels were created by automatically matching metadata with text transcrip-
tions.

Dataset Labels XLM-R
variation

Person Location
F1 P R F1 P R

tornado
semi-
manual

tc 0.703 0.727 0.681 0.160 0.463 0.096
tc, lc 0.505 0.385 0.734 0.687 0.706 0.668

tc, lc, CRF 0.470 0.343 0.745 0.656 0.713 0.6077

2020
names
subset

metadata tc 0.188 0.162 0.225 0.172 0.383 0.111
tc, lc 0.300 0.219 0.476 0.250 0.204 0.321

manual
tc 0.449 0.841 0.307 0.143 0.517 0.082

tc, lc 0.711 0.704 0.719 0.761 0.855 0.685
tc, lc, CRF 0.705 0.745 0.670 0.639 0.748 0.558

2022
subset

manual tc 0.533 0.772 0.408 0.138 0.710 0.076
tc,lc 0.717 0.699 0.736 0.563 0.740 0.455

6.3 Named Entity Recognition on TCTV112 dataset
This section describes the entity recognition on real emergency call centers data from Czech
Republic, on various version of datasets created as part of this thesis. Experiments are car-
ried out with encoder-only token classification models selected based on the results obtained
on the publicly available Czech NER datasets. In addition, with the rising popularity and
capabilities of large language models (LLM), some experiments were done to assess the per-
formance of selected LLMs on this task.

6.3.1 Inference with pre-trained models

First, the objective was to establish some baseline performance numbers and statistics on
real data mainly focused on classification of person and location entities. The XLM-R
model trained with and without the CRF layer on CoNLL-based CNEC 2.0 [27] was selected
as a baseline. The model was used for inference on tornado, 2020_names, and 2022 subsets
of TCTV112 dataset. The results of the initial experiments are shown in Table 6.4.

The metrics presented in Table 6.4 combined with an analysis of the utterances on which
the model performed poorly provide a lot of information on how to increase its performance.
Information about the dataset quality can be assessed based on model performance across
different subsets. The following paragraphs will elaborate on these results.

The model pre-trained on CoNLL-based CNEC2.0 [27] dataset performed poorly across
all subsets after initial tests (tc variation). This was caused by the fact that the text in
the CoNLL-based CNEC2.0 dataset is originally in truecase, and the ASR transcriptions
contain all utterances in lowercase with the capital letter at the beginning of the sentence.
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Because of this, there is one exception for the tornado subset. Here, the person entity is of-
ten at the beginning of the sentence, which makes the majority of names start with a capital
letter, causing inflation in the F1 score. Based on these baseline results, the fastest and eas-
iest way to increase performance with the training pipeline that was already implemented is
to adapt it to the output format of the used ASR. The CoNLL-based CNEC 2.0 [27] dataset
was normalized to lowercase with the capital letter at the beginning of the sentence and
combined with the original dataset. This resulted in a dataset twice as large as the original
one, where each utterance had a truecase and a lowercase version. The XLM-R model was
trained on this dataset with the same settings as described in Section 6.1. The results are
shown in Table 6.4 as tc, lc variation.

This model achieved better performance across all subsets (with the expected exception
in the tornado subset), with a significant difference in location tagging. Compared to
the truecase-only model, the difference in F1 was ranging from ≈ 0.4 to ≈ 0.6 for manually
labeled datasets.

The greatest increase in performance can be seen on the subsets that are labeled man-
ually. However, the model still achieved poor results for the 2020 subset, where labels were
created from the metadata. This was expected due to the nature of the provided metadata
and the drawbacks of this simple labeling method, as described in Section 6.2.

Some areas in which the model could improve were discovered by closer examination of
precision and recall scores in combination with the model output. The miss-classifications
made by the model are mainly caused by the following factors:

• exclamations in real life scenarios - the model achieved very low precision scores
compared to the recall for the person entity for the tornado subset. This problem
arises from the difference between the training and test data, where in the TCTV112
data people in real life situations use a lot of exclamations such as (transcribed to En-
glish) “Oh God”, “Jesus Christ”, “Jesus Mary” and so on, probably because the area
affected by the tornado is a strongly catholic part of Moravia. The model classified
these exclamations as a person entity.

• poor metadata quality - even though the model classifies many entities correctly,
a portion of correct classifications is still considered False Positive during the eval-
uation due to the fact that not all names were correctly labeled with the simple
automatic matching of the metadata against the transcribed text. However, part of
this could also be due to the accumulation of errors created by the ASR model causing
the content of transcriptions and metadata to not match.

• lowercase text - even though fine-tuning the model on lowercase text increased
the performance, it also introduced new errors. The model still cannot correctly
classify all entities due to the lowercase text plus sometimes there is an occasional
mix-up between the street names and name of the person, where the only difference
is in the context.

In conclusion, the problems revealed in the baseline experiments are caused by the differ-
ence between real data and public NER dataset combined with accumulation of errors in
the ASR+NER cascade system. In addition, the metadata alone are not sufficient enough
to create good NER labels, and manual correction is needed.
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Mistral inference

Mistral was expected to mitigate some of the drawbacks of the XLMR token classification
approach. Few-shot inference evaluation was done with the expectation of better con-
text understanding for entity extraction and some level of internal normalization. Several
prompts in both English and Czech were tried with a couple of examples. The expected
output was a json format containing extracted location and person entities. The example
of the used prompt is:

Extract the entities in Czech language for the following labels from
the given input sentence text and provide the results in JSON format

- Entities must be extracted exactly as mentioned in the text.
- Return each entity under its label without creating new labels.
- Provide a list of entities for each label, ensuring that if no entities

are found for a label, an empty list is returned.
- Accuracy and relevance in your responses are key.
- Czech words such as: jo, Jo, jojo, naschle, boze are not entities.
Lables and their Descriptions:

- PERSON : Extract names
- LOCATION : Extract location information such as cities

and street addresses
Input sentence to extract from: INPUT.

The INPUT was replaced by the actual utterance from the dataset. In addition, a couple
of examples of the input and corresponding output were given. Inference was done with
the model quantized to 4 bits. Mistral-7B achieved very poor results on this task for several
reasons. It was not very consistent with the output JSON format to the point where it was
not possible to automatically parse the output into JSON. In such cases, the empty JSON
was used as a prediction of the model for the F1 scoring. However, the model did not work
very well in these settings as can be seen in Table 6.5 below.

Table 6.5: Evaluation of pre-trained Mistral 7B LLM quantized to 4bits in few-shot settings
with prompts and exampels in either Czech or English language. The output was expected
to be in JSON format. An empty JSON was used for the evaluation of utterances where
the output format was wrong and could not be reconstructed. In these settings a high
amount of hallucination was present which corresponds with the obtained results.

Mistral
prompts

Person Location
F1 P R F1 P R

English + few shot 0.23 0.261 0.205 0.088 0.083 0.093
Czech + few shot 0.179 0.221 0.151 0.139 0.111 0.187

6.3.2 Improving baseline results

The next step is to fine-tune the models on the created in-domain TCTV112_NER dataset that
is present in Table 6.3, with 56k words and almost 3000 entities. It was created by combining
manually annotated subsets and tornado subset as described in Section 6.2.1. Creating
such dataset brought some technical drawbacks. The sensitivity of the TCTV112 data and
how time-consuming it is to manually annotate the data by one or two people. This results
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to only a small amount of data divided into training and testing splits. Furthermore, data
augmentation was added to the train split to increase performance more even with a limited
number of data utterances by addressing some findings made during the baseline evaluation.
The augmentation consisted of adding the exclamations into no entity utterances. This
process corresponds to the bottom part of Figure 6.2.

The XLM-R model trained on the truecase and lowercase versions of CoNLL-based
CNEC 2.0 [27] dataset (tc, lc version of XLM-R in Table 6.6) was further fine-tuned
on the created TCTV112_NER datatset. Fine-tuning was also done for the CRF version.
The model was trained in the same way as in the previous experiments with the learning
rate set to 1𝑒−5, for 10 epochs and early stopping.

The Table 6.6 compares the performance of the XLM-R model variations pre-trained
on CoNLL-based CNEC2.0 [27] and models fine-tuned on the real TCTV112 data. Fine-
tuning brought significant improvement in F1 score. For both entity types, person and
location, it is ≈ 0.2 increase in F1. The XLM-R with additional CRF layer obtained
slightly better results similar to the experiments on CoNLL-based CNEC2.0 [27] dataset
showed in Table 6.1.

Table 6.6: XLM-R model performance on TCTV112_NER. The first three rows represent
the XLM-R baselines. These models were pre-trained on CoNLL-based CNEC2.0 [27].
Last two rows show the performance of the model fine-tuned on the created TCTV112_NER
dataset.

XLM-R
variation

Person Location
F1 P R F1 P R

tc 0.497 0.767 0.367 0.112 0.4545 0.063
tc,lc 0.677 0.641 0.718 0.658 0.695 0.624

tc,lc, CRF 0.676 0.579 0.812 0.626 0.709 0.560
tc,lc, fine-tuned 0.883 0.895 0.872 0.866 0.848 0.885

tc,lc, CRF fine-tuned 0.887 0.903 0.872 0.870 0.844 0.898

Mistral fine-tuning

Because of the poor performance of the pre-trained Mistral model (inference results present
in Table 6.5), the model was also fine-tuned on the TCTVT112_NER dataset. This model was
fine-tuned with the QLoRA (described in Section 2.5) approach for 400 steps with a batch
size of 4 and the gradient accumulation steps set to 16. It was quantized to 4 bits and
the size of LoRA rank was set to 64. The model achieved poor results that were even
worse than the pre-trained inference baseline results. These results are shown in Table 6.8.
The output of the fine-tuned model was further inspected to clarify what went wrong.
The model successfully learned to produce the correct JSON format; however, it suffers
from a huge amount of hallucination and effectively stopped performing NER. Instead,
the model randomly generates entities seen in the training data or no entities. Examples
of the input (TEXT) and output (JSON) of the model are shown below.
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TEXT: takže.
JSON: {‘‘LOCATION’’: [‘‘hodonína.’’], ‘‘PERSON’’: []}

TEXT: Děkuju za oznámení pane <CENSORED NAME> já to takhle předám.
JSON: {‘‘LOCATION’’: [‘‘lužice.’’], ‘‘PERSON’’: []}

The hypothesis is that this was caused by a combination of several factors; too many
fine-tuning steps and the small size of the TCTVT112_NER dataset with a lot of utterances
that do not contain any entities. Assuming a larger dataset would be needed, the fine-tuned
XLM-R from Table 6.6 was used as it has sufficient enough performance to automatically
label a larger dataset.

A new dataset was created by taking all the transcribed text available at the time,
labeling it with the fine-tuned XLM-R model, and removing all utterances that do not
contain any entities. The new dataset, shown in Table 6.7, contains 2 million words, 91k
person entities and 137k location entities. Mistral 7B was fine-tuned on this dataset with
the same settings as in the previous experiment, besides the number of steps which was
set to 1400 steps (trained in ≈ 11 hours). The model achieved better results (Table 6.8),
especially compared to the first failed experiment. Although performance is nowhere near
the token classification approach with XLM-R, it was shown that the LLM of this size can
be trained for named entity recognition on emergency calls in a reasonable time. The aim of
future experiments will be to improve the fine-tuning hyperparameters, and train the model
on all of the available data.

Table 6.7: Comparison of NER datasets created from emergency call recordings used in
the fine-tuning experiments. The Labels column shows the method for label creation.
Manual means that the entities were labeled manually. Semi-manual was present only
in the tornado subset, where the names and locations were tagged manually but the content
of the entities was automatically generated. Labels for all_transcriptions (automatic)
were created solely with the fine-tuned XLM-R model shown in Table 6.6.

Dataset Labels Words Number of entities
Person Location

TCTV112_NER semi-manual + manual 55750 1149 1476
all_transcriptions automatic ≈ 2000000 91000 137 000

Table 6.8: Evaluation of fine-tuned 7B Mistral LLM quantized to 4bits. The output was
expected to be in the JSON format as in previous baseline experiments. The model over-
fitted when trained on the TCTV112_NER dataset producing a high amount of hallucinations.
The model fine-tuned on the dataset created from all available transcriptions slightly im-
proved the results compared to baseline.

Dataset
(# words) Steps Person Location

F1 P R F1 P R
TCTV112_NER (55k) 0 (baseline) 0.23 0.261 0.205 0.088 0.083 0.093
TCTV112_NER (55k) 400 0.079 0.500 0.043 0.036 0.214 0.019

all transcriptions (2m) 1400 0.300 0.429 0.231 0.283 0.317 0.255
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Chapter 7

Conclusion

The motivation of this work is to build a system that could help an emergency call center
agent process information in a shorter period of time during emergency calls. This involves
implementing and training models for the extraction of information from emergency calls.
Because real-world emergency calls data are not publicly available or used, the need for
a clean dataset created a secondary goal to create such dataset from available metadata
and recordings.

7.1 Summary of work
Two different approaches for Named Entity Recognition (NER) on text data were explored.
The first is the token classification, as the model classifies every token. The second approach
was formulated as the sequence-to-sequence (seq2seq) task. In the seq2seq task, the output
of the model is a sequence of tokens instead of class labels. These approaches were eval-
uated on publicly available Czech NER datasets and served as baselines for the following
experiments. The token classification approach with the pre-trained XLM-R [8] model as
the backbone achieved a 0.89 F1 score on the CoNLL-based CNEC2.0 [27] dataset, improv-
ing previously reported state-of-the-art results.

Next, multiple subsets of the labeled data were created from real emergency call record-
ings and the corresponding metadata. This included running an ASR model to create
transcriptions and creating NER labels. The quality of the data provided was not the best
and a manual label correction was needed to create a clean dataset suited for neural network
fine-tuning. The implemented pipeline is ready to process more data if available and utilize
reliable fine-tuned models to automatically create labels. The final clean dataset consists
of 56k words and almost 3000 entities. It was used for fine-tuning of the chosen models on
real world data. I successfully managed to improve the performance of the XLM-R based
model for name classification from 0.49 F1 to 0.89 F1 and for location classification from
0.11 F1 to 0.87 F1. Additionally, a couple of LLM fine-tuning experiments were conducted
on created emergency calls datasets. It is important to have a large enough dataset to
fine-tune LLMs. Because of this, a new dataset containing 2 million words was created.
The Mistral 7B model was successfully fine-tuned, improving its baseline results, but still
lacking in performance compared to the XLM-R model.
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7.2 Future work
For future work, the goal is to create a larger dataset from all available data, run more
experiments and continue to improve Mistral 7B or other LLM. This should be possible by
tuning the training hyperparameters in combination with the larger dataset. In addition,
the plan is to implement multi-modal models to take advantage of speech and text data,
potentially improving the results and be able to do NER directly from speech.

This work serves as a stepping stone for the deployment of neural network models in
areas such as emergency services. Even if these models are currently not used in emergency
call centers, they present a great tool to create and expand the current dataset in this
domain. With more data and LLM capabilities, it is possible to build a model or system
that will not only perform NER, but could be a foundation for a conversational system that
will assist the emergency line agents in real time.
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Appendix A

TCTV112 data sentence

<s:Envelope>
<hlavicka xmlns="">

<idDatovaVeta>s8g9k-3w7j4p1x-2q6r5y0z1m-2n3b4</idDatovaVeta>
<datumVytvoreni>2020-02-17T05:52:56.127+01:00</datumVytvoreni>
<odesilatel>

<id>s8g9k-3w7j4p1x-2q6r5y0z1m-2n3b4</id>
<kod>TOLK</kod>

</odesilatel>
<adresat>

<id>s8g9k-3w7j4p1x-2q6r5y0z1m-2n3b4</id>
<kod>HOLK</kod>

</adresat>
</hlavicka>
<teloDatovaVeta xmlns="">

<idUdalost>s8g9k-3w7j4p1x-2q6r5y0z1m-2n3b4</idUdalost>
<typUdalosti>NEM</typUdalosti>
<oznamovatel>

<jmeno>ANONYMIZED</jmeno>
<prijmeni>ANONYMIZED</prijmeni>

</oznamovatel>
<poznamka>

<timestamp>2020-02-17T05:52:50.233+01:00</timestamp>
<text>V blizkosti se nachazi dalsi OA,
uvnitr obytneho privesu by se nemel nikdo nachazet.
</text>

</poznamka>
<mistoUdalosti>

<dopresneniMista>pod mostem mezi ANONYMIZED </dopresneniMista>
<poloha>

<x>ANONYMIZED</x>
<y>ANONYMIZED</y>
<srid>ANONYMIZED</srid>

</poloha>
<urceniPolohy>DBA</urceniPolohy>
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</mistoUdalosti>
</teloDatovaVeta>

<s:Envelope>

Listing A.1: Example of data sentence in XML format provided as metadata with the emer-
gency call recordings. The most important elements are; oznamovatel - contains name
of the caller, mistoUdalosti - containing information on the location of the emergency,
text for additional information, and typUdalosti which is an event type used to select
recordings of interest. The event types are 3-letter abbreviations, e.g., NEM for “nemoc”
meaning illness. Data sentences stored in CSV files contain similar information stored in
CSV format.
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