
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SYSTEM FOR MANAGING CORPORATE
DATA INTEGRATION
SYSTÉM PRO SPRÁVU FIREMNÍ DATOVÉ INTEGRACE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

MICHAL ŘEZNÍK

Ing. RADEK KOČÍ, Ph.D.

BRNO 2023

BRNO
FACULTY 1 r UNIVERSITY OF INFORMATION 1

• GFTECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment ||||||||||||||||||
148861

Institut: Depar tment of Intel l igent Sys tems (UITS)

Student : Řezn ík M i c h a l

P rog ramme: Informat ion Techno logy

Specia l izat ion: Informat ion Techno logy

Tit le: S y s t e m f o r M a n a g i n g C o r p o r a t e Da ta I n t e g r a t i o n

Category : Informat ion Sys tems

Academ ic year: 2022/23

Ass ignment :

1. S tudy the issue of creat ing scalable appl icat ions based on the pr inciples of midd leware, serv ice-
or iented archi tecture, microserv ices, etc. Learn about the Spr ing f ramework and the ReactJS Ul
l ibrary.

2. Ana lyze the data integrat ion needs in a real company and learn about the current state of the art.
3. Suggest necessary modi f icat ions, mainly to introduce user control over data f lows.
4. Implement the proposed modif icat ion using Java, Spr ing Framework , and Reac tJS techno log ies .
5. Test the result ing sys tem and d iscuss its possible fur ther deve lopment .

Li terature:
• M. De inum, D. Rubio, J . Long . Spr ing 5 Rec ipes: A Problem-Solut ion App roach , 4th Edi t ion.

Apress , 2017 . ISBN-13: 978 -1484227893
• ReactJS: Get t ing s tar ted. Onl ine, ht tps: / / react js .org/docs/get t ing-star ted.html, září 2022 .

Requ i rements for the semest ra l de fence :
The first two points.

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor :

Head of Depar tment :

Beginning of work :

Submiss ion deadl ine:

Approva l date:

K o č í R a d e k , I ng . , P h . D .

Hanáček Petr, doc. Dr. Ing.

1.11.2022

10.5.2023

3.11.2022

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://reactjs.org/docs/getting-started.html
https://www.fit.vut.cz/study/theses/

Abstract
This thesis aims to design and implement an applicat ion interface that w i l l become part
of a micro applicat ion on the Onsemi integration platform. The thesis introduces the
strategies used during the development of the system, the tools used, and the system's
design. The Onsemi middleware platform caters for more than 3000 data flows per day
and ensures the corporation's successful day-to-day running. Middlware platform must
gurantee data delivery for each integration. Some data integration flows can produce a
token representing an outgoing datafile stored i n the file system. The token represents this
state by moving around the server's file system on which the applicat ion catering for data
delivery is currently running. The main purpose of the interface is to make it easier for
middleware team members to manage failed data integrations, which they must deal w i th
along wi th developing the platform and providing new integrations. A t the end of the thesis,
the implementat ion i n the company's system is described together wi th an evaluation of
the benefits of the developed solution.

Abstrakt
Cílem t é t o p r á c e je n á v r h a implementace ap l ikačn ího rozh ran í , k t e r ý se stane součás t í
mikro aplikace pa t ř í c í do in t eg račn í platformy firmy Onsemi. P r á c e se nejprve věnuje
p ř e d s t a v e n í s t r a t eg i í použ ívaných b ě h e m vývoje sys t ému , p o u ž i t ý m n á s t r o j ů m a n á v r h u
s a m o t n é h o designu s y s t é m u . Middleware platforma Onsemi o b s t a r á v á více než 3000 da­
tových t o k ů d e n n ě a zajišťuje ú s p ě š n ý k a ž d o d e n n í chod k o r p o r á t u . Tato platofrma garan­
tuje do ručen í dat pro k a ž d o u jednu integraci. D a t o v é in t eg račn í toky mohou v y t v á ř e t token
předs tavu j íc í odchoz í d a t o v ý soubor u ložený v s o u b o r o v é m sys t ému . K a ž d ý jeden z d a n ý c h
t o k ů v y t v á ř í b ě h e m s p u š t ě n í token, k t e r ý se po dobu b ě h u toku s t ává jakousi reprezen­
t ac í jeho a k t u á l n í h o stavu. Token reprezentuje tento stav p o m o c í pohybu v s o u b o r o v é m
s y s t é m u serveru, na k t e r é m zrovna běž í aplikace obs ta ráva j íc í a s y n c h r o n n í do ručen í dat.
H l a v n í m úko lem d a n é h o r o z h r a n í je u lehči t s p r á v u n e ú s p ě š n ý c h d a t o v ý c h in tegrac í pro členy
middleware t ý m u , k t e r ý m i se m u s í zabýva t společně s vyví jen ím platfromy a zaj išťováním
nových in tegrac í . N a konci p r á c e je p o p s á n a implementace do s y s t é m u firmy společně se
z h o d n o c e n í m p ř ínosu v y p r a c o v a n é h o řešení .

Keywords
user interface, web application, middleware, O p e n A p i , microservices, service-oriented ar­
chitecture, Reac tJS frontend, Spring Framework, Java

Klíčová slova
uživate lské rozh ran í , webová aplikace, middleware, O p e n A p i , microslužby,
architektura o r i en tovaná na služby, Reac tJS frontend, Spring Framework, Java

Reference
Ř E Z N Í K , M i c h a l . System for Managing Corporate
Data Integration. Brno , 2023. Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of
Information Technology. Supervisor Ing. Radek Kočí , P h . D .

System for Managing Corporate
Data Integration

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Radek Kočí , P h . D . The supplementary information was
provided by the Onsemi middleware team. I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

M i c h a l Řezn ík
M a y 9, 2023

Acknowledgements
I want to thank my supervisor, Ing. Radek Kočí , P h . D . , for his guidance and willingness
to help while wr i t ing this thesis. Furthermore, I would like to thank the company Onsemi,
especially their middleware team, for their patience and for al lowing me to work w i t h them.
A n d last but not least to my family and my girlfriend for their huge support.

Contents

1 Introduction 3

2 Analysis and Specification of Requirements 4
2.1 Current System 4
2.2 Requirements 5

2.2.1 Funct ional Requirements 5
2.2.2 Non-functional Requirements 7

3 T h e Appl icat ion Plat form 8
3.1 Archi tecture 9

3.1.1 M o n o l i t h 9
3.1.2 Microservices 10
3.1.3 Cluster Architecture 11

3.2 Development Process 11
3.2.1 Agi le 12
3.2.2 C D / C I 12

3.3 P la t form Services 12
3.3.1 Runt ime Engine 12
3.3.2 Dashboard 13
3.3.3 Scheduler 13
3.3.4 Del ivery Engine 13
3.3.5 Logging service 15

3.4 Communica t ion 15
3.4.1 Swagger 16

3.5 Development tools 17
3.5.1 Consul 17
3.5.2 Jenkins 17
3.5.3 Maven 18
3.5.4 At lass ian tools 18

3.6 D a t a serialization formats 19
3.6.1 Jackson 19

3.7 Security 20
3.7.1 User Authent ica t ion and Author iza t ion Methods 21

4 Design of the system 22
4.1 Architecture 22
4.2 Enti t ies and Models 23
4.3 App l i ca t ion Programming Interface 24

1

4.4 Frontend Design 26
4.4.1 F i g m a 28
4.4.2 Security 28

5 Implementation 29
5.1 Models and Enti t ies 30
5.2 Cache 30

5.2.1 Performance P rob lem 31
5.3 Important parts of the project 31

5.3.1 Delivery Engine A P I 31
5.3.2 Swagger Client 32
5.3.3 Dashboard A P I 33
5.3.4 Frontend 33

5.4 Technologies Used 34
5.4.1 Java 8 34
5.4.2 Spring Framework 35
5.4.3 React 35
5.4.4 TypeScr ip t 36
5.4.5 S toryBook 36

6 Testing 37
6.1 Testing new functionality 38

6.2 Testing process 38

7 Conclusion 39

Bibl iography 40

A Contents of the physical medium 43

2

Chapter 1

Introduction

Middleware, as such, is the layer that mediates communicat ion. In practice, it is a bridge
that can deliver data to the user or appl icat ion from another applicat ion or system. Wi thou t
middleware, a developer must create a special module for each component communicat ing
wi th the applicat ion. In large companies, it is important for the overall operation because it
mediates data transfers and the operation of distr ibuted applications simultaneously. One
of these companies is Onsemi.

Onsemi manufactures and supplies semiconductors and integrated circuits. It is an
Amer ican company that has been growing rapidly i n recent years. For this reason, it is
also important that the middleware functions are as reliable as possible when acquiring or
adding new parts to a system.

This work aims to design and implement an interface to the applicat ion that integrates
the different data streams, al lowing the user to manage the ind iv idua l runs of these flows.
It would save middleware team members' time, which can be spent on maintenance or
extending the platform.

Change would increase the efficiency of dai ly operations that are currently hindered by
the inabi l i ty of users to manage files representing a queue wi th ind iv idua l data flow runs.
It means that users have to seek assistance from system administrators, who are members
of the middleware team, whenever there is an issue. This disrupts bo th the users and
the administrators work, w i th several minutes wasted dai ly managing ind iv idua l runs and
coordinating wi th flow owners. Th is fact does not fit the philosophy of the platform, which
tries to be buil t on the principle of P la t form as a Service, which means that the user should
be able to perform a l l tasks without assistance.

To address this issue, an interface w i l l be created for users to manage their queues from
their flows on the file system. This solution w i l l not only free up administrators t ime but
also empower users to manage their own flows.

A t the beginning of the work, to achieve the desired results, it is necessary to familiarize
oneself w i th the platform and study the issues related to its development and functioning.
After researching and creating a needs analysis, the next step is to create an interface
design. The design is then implemented into the middleware of the platform. The thesis
also discusses the testing methods used i n the development process.

The ending includes an evaluation of the benefits to the company along wi th a statement
of the degree of achievement of the objective.

3

Chapter 2

Analysis and Specification of
Requirements

Requirements analysis and specification is a crucial first step in software engineering, which
commences once the project's feasibility is established. This process involves communi­
cation wi th the customer for data collection, analysis, and correction. The output of this
phase is typical ly a Software Requirements Specification (SRS) document [28], which system
analysts usually prepare for larger projects.

In the case of Onsemi, the in i t i a l phase involved getting acquainted wi th the platform
they had been developing for 12 years. Th is platform is an integral part of the company's
system, and the company provided a complete confluence, including architecture descrip­
tions and user tutorials mainly intended for managers. After getting up to speed w i t h the
necessary basics, I was assigned some aesthetic tasks, such as modifying the logging in some
micro-applications or tweaking the frontend.

Once I had completed these in i t i a l tasks, the team architect presented me w i t h the
project brief. The brief in i t ia l ly contained an outline of the final product that would make
the team members' jobs easier. After consultations and fine-tuning, this outline gradually
evolved into a complete architecture design of the module [22]. To support this design, we
created a use case diagram, which was consulted wi th various team members wi th different
views on the interface design. After evaluating these views, we selected an interface design
that delegated a l l responsibili ty and works to the data flow owner, despite concerns about
their abi l i ty to manage the runs effectively. Th is was chosen over creating an admin-only
interface that would only speed up server access and operations over tokens. F r o m this
diagram, we extracted the system requests and created a first draft of the interface design.

2.1 Current System

W h e n developing a larger platform, it is crucial to set specific requirements. These require­
ments are related to both the functionality itself and the features that are not functional.
In our case, we are t ry ing to add a module to the Delivery engine microservice, which caters
for delivery that transfers many data. Currently, there is a problem that has not been ad­
dressed due to the workload of the administrators, specifically token management. Tokens
are smal l files that represent a given integration run. A n d i f there's any problem, like w i th
the queue. The user can't do anything about it and has to contact the middleware team
that manages the platform. This thesis solves this problem. Choosing the proper require-

4

merits at the beginning of development is necessary to make everything work as it should.
So that there is no affectation on the existing system and, at the same time, everything
works as required.

2.2 Requirements

Each software requirement represents a task or condit ion imposed on the software [13],
and requirements can be categorized i n several ways. For this thesis, I have divided them
into two categories: functional and non-functional, which represent different groups of
requirements.

The process of requirements gathering and analysis involves several steps, start ing wi th
communicat ing w i t h stakeholders, who are interested parties [29]. We gather information
from stakeholders and analyze it to eliminate any unclear, incompatible, or conflicting
requirements.

Once the requirements are recorded, we create documentation such as the above use
case diagram. The final stage is to manage the requirements throughout their lifecycle,
which may involve merging or modifying them.

Since this product w i l l be used by management employees, developers, and other I T
users, it was essential to consider their needs and design an interface that is simple and
intuit ive. After designing and discussing the use case diagram wi th users, we refined the
requirements and categorized them as functional or non-functional.

2.2.1 F u n c t i o n a l R e q u i r e m e n t s

The first group of requirements are functional requirements. These define the software's
features to be developed along wi th the functions it w i l l perform. It is, therefore, essential
that they are clearly defined for the development team.

The following functional requirements were selected for this project to extend Delivery
engine micro applicat ion of the Onsemi middleware platform:

For users:

• Display the current state of the file system i n counts for the owned data
flow.

• V i e w tokens i n a specific state (folder) for a specific (owned) interface.

• Perform operations on the token list, such as moving and deleting.

• Get a specific token and the abi l i ty to work wi th it as needed. This includes
resetting the number of launch attempts, moving the token, or deleting it.

Adminis t ra tors can perform the same operations as users. The only change is
that they are not l imi ted to their own data flows but can manage a l l of them i n
a given environment.

In order to display these requirements as s imply as possible, a use case diagram was
created that corresponds to the system's functional requirements. This diagram was used
as an outline for creating ind iv idua l endpoints in the A P I .

5

Figure 2 . 1 : Design of a use case diagram for the newly designed applicat ion interface

6

2.2.2 N o n - f u n c t i o n a l R e q u i r e m e n t s

The second major group of requirements consists of non-functional requirements, which do
not specify the system's behaviour i n different situations but rather define cri teria that can
be used to judge whether a development project has succeeded. Non-functional require­
ments take the form of features, not specific system functions, i n different situations.

The following non-functional parameters have been selected for the software under de­
velopment:

• Main ta inabi l i ty : This requirement determines the software's abi l i ty to be repaired
without affecting other system parts. If the system is correctly divided into modules,
one module can be repaired without affecting the others. Proper documentation and
a well-designed architecture are essential to avoid unnecessary interdependences..

• Scalabil i ty: Scalabil i ty is essential for systems wi th the potential for load growth.
It is a property that indicates the abi l i ty of the system to increase or decrease its
performance depending on the load. This is par t icular ly important for businesses
that are expected to grow.

• Rel iabi l i ty : Rel iab i l i ty is one of the main requirements i n software development. It is
defined as the probabil i ty of success at a given time.

• Extens ib i l i ty : This is a characteristic that refers to the capacity for future growth,
such as adding new functionality or modifying existing functionality without interfer­
ing wi th the system's current functionality.

7

Chapter 3

The Application Platform

Onsemi's [25] appl icat ion middleware platform is significant for the day-to-day running of
the company, as communicat ion between the various systems of the corporation is indis­
pensable. Therefore, despite hindsight, everyone is happy wi th the decision to develop
their platform rather than buying it from an external supplier. The platform connects the
business systems of the corporation, such as the sales systems, w i th the product ion sys­
tems, accounting or, for example, it can predict when the selected product w i l l be able to
be shipped thanks to the information obtained from product ion. Its benefits can also be
quantified i n data, w i th over 3,000 data streams containing approximately 2000 G B of data
being transferred daily. Thus, even though the platform is not visible to the average user,
it is a pi l lar that makes the company's stable growth possible.

Supported transfers are from database to database, between files, from file to database
or vice versa. Other options are for example using the cloud, messaging services, various
rest A P I , exchange and much more. So-called generic interfaces mainly trigger these trans­
fers. A n interface is called a data flow i n a corporate environment. A s already indicated,
there are two kinds of interfaces. Generic interfacing can be created by the user himself
thanks to a user interface that is used for that, and it is part of one of the micro applica­
tions. It is possible to select inputs, outputs, transmission, and data properties during the
creation. The second, numerically smaller group are interfaces that are wr i t ten manually.
Main ly , these custom interfaces cater to higher-level logic that the generic ones no longer
contain. For these interfaces, data collection and communicat ion w i t h the end owner of the
interfacing are already required. These interfaces usually cause more problems than the
generic ones, so developers usually t ry to cater for data flows differently, for example, by
combining generic interfaces rather than creating special ones.

The system consists of 4 environments, each represented by various servers. The unique
environments are ranked in ascending order of importance. F i rs t is the D E V environment,
which is purely for developing enhancements and new features. T h e n there is Integration
Testing, in abbreviated I N T , an intermediate layer between the pure development and
user testing environments. U A T , that is User Acceptance Testing. It is a user-testing
environment, which is just below product ion. Because of rights and access, the testing
process usually requires the owner to create sample input and run the actual interface.
The result can then be discussed wi th the developer if something needs improvement.
The last and most important is the P R O D product ion environment. This is where the
ind iv idua l enhancements are pushed to dur ing the 4-week release t rain, continuously moving
the software up a level i n the C D / C I process [2].

8

The entire system runs on the t ime of the company's headquarters, which is Phoenix in
the Uni t ed States.

Figure 3.1: Diagram of the integrations handled by the Onsemi platform, Source: Onsemi

3.1 Architecture
A s observed, modern information systems are increasingly demanding, par t icular ly regard­
ing scalabili ty and speed. This trend is mainly driven by the rapid growth of companies,
which raises the crucial question of whether t radi t ional monoli thic architectures can s t i l l
compete wi th modern microservices-based architectures [24].

In 2009, Netfl ix faced this challenge due to the high demand for streaming content, even
though the concept of microservices was s t i l l unknown at the time. Nevertheless, Netfl ix
became one of the first major companies to successfully replace its monoli thic architecture
wi th a microservices-based architecture, thus becoming a pioneer of this now widely used
architecture.

3.1.1 M o n o l i t h

The monoli thic model [10] creates a system as a single unit independent of other applica­
tions. One large monoli thic code base ties a l l the functions together, making it significantly
more challenging to modify and update the code.

However, monoliths are s t i l l used for smaller projects due to the ease of code manage­
ment and deploying the entire project simultaneously.

The main reasons to use a monol i th are:

9

• Easy development and deployment

• Simple testing and debugging

However, the disadvantages vastly outweigh the advantages for larger projects. These
include:

• Scalabil i ty - One component can't scale on its own

• Rel iab i l i ty - One failure can affect the whole system

• F lex ib i l i ty - Development is constrained by the technologies used i n the monol i th

• Deployment - Redeploying the whole project w i th every single change may slow down
development.

3.1.2 M i c r o s e r v i c e s

Microservices architecture [11] is buil t on distr ibuted components, each wi th separate de­
ployments, updates, logic, and a goal that it performs, thus contr ibut ing to the overall
system goal.

Architecture solves many of the problems that large companies have wi th software
development because the system consists of units that work independently, so it is possible
to scale a unit independently or develop a service that does not affect the rest of the system.

One more crucial feature i n development makes many companies apply this architecture
today. This is the ease of updat ing code and accelerating release cycles in continuous
integration and delivery.

This architecture is trendy nowadays mainly for the following reasons:

• Scalabil i ty - C a n add another instance of this service to the cluster

• Deployment - Independent deployment of ind iv idua l features

• Technology flexibil i ty

• Rel iab i l i ty - A change can be deployed without r isking crashing the entire system.

O n the other side, there are also some disadvantages:

• Development management and overheads - If development is properly managed, the
increased complexity makes development faster and more efficient. A l o n g w i t h this,
there is a need to coordinate teams working on different services.

• Chal lenging deployment - The actual t ransi t ion to this architecture can be almost
unattainable for companies running on monol i th .

10

Monolith architecture Microservice architecture

Figure 3.2: Compar ison of monoli thic and microservices-based architectures

3.1.3 C l u s t e r A r c h i t e c t u r e

This architecture [27] includes how companies design their systems, and for larger systems,
it is an ideal way to increase resilience to outages and increase the availabil i ty of their
services. In a cluster architecture, ind iv idua l components, which can be physical or v i r tua l ,
are called nodes. These nodes communicate w i th each other. If one of these components
fails, the others can continue their functionality without system outages, leading to higher
service availability.

In our case, the Consu l tool manages and coordinates the clusters. Th is tool allows
administrators to monitor and adjust the configuration itself and much more.

3.2 Development Process

The right approach to software development is cr i t ica l to the overall development process.
The comprehensive set of methodologies and processes determines how a product is de­
veloped. Today, many approaches vary i n different aspects, starting from planning to the
delivery of the software. It is impossible to label any approach as the right one, as each
one is suited to a different k ind of project. Th is is why choosing the right approach at the
beginning of any development is essential. Some of the most well-known approaches [19]
are the waterfall mode, the agile approach, DevOps or Lean.

Onsemi's middleware team uses an agile approach enriched wi th C D / C I processes to
develop its platform. In addit ion, they also use it to develop ind iv idua l data integrations.

B y using these practices, the team can develop the platform very quickly. W h i c h ,
together w i th the involvement of appropriate tools, is also relatively easy and efficient.
W h i c h also reduces the overall cost of developing and maintaining the platform.

11

3.2.1 A g i l e

W i t h i n software development [7], the Agi le approach focuses mainly on the continuous
delivery of functionality. This approach makes it easier for developers to react quickly to
changes and adapt the product to their needs. It is, in fact, an iterative process at the end
of which there is always feedback from the customer or developers on which the next step
is based.

3.2.2 C D / C I

Continuous Delivery and Continuous Integration are very well suited to the agile approach.
Its use and advantages are demonstrated i n the article [15], while also connecting it to
the concept of DevOps [20]. The point is that these tools enable continuous delivery that
is focused on code quality. These tools are used to automate testing, deployment and
verification of code. In agile development, they are useful i n the effort to deliver new
features that are tested and deployed quickly. Th is process eliminates human mistakes to
a greater extent and saves the developers themselves the t ime they would otherwise spend
performing monotonous tasks.

3.3 Platform Services

The Onsemi platform is designed based on microservices architecture for the reasons men­
tioned above. Thanks to this feature, the team can release bug fixes and work on improve­
ments daily, which they are able to release every 4 weeks.

This process is called Continuous Deployment, and together w i th the Continuous Inte­
gration process, it introduces a series of steps that need to be carried out to create a quali ty
software release. Th is versioning is done on each micro-application, and the Jenkins service
is used to manage and bu i ld it.

These are the leading and most essential parts of the middleware platform that relate
to the software being developed:

3.3.1 R u n t i m e E n g i n e

The ma in task of this microservice is to start ind iv idua l interfaces. These interfaces are
stored as Java archive files, aka J A R s , which the service executes i f the Scheduler decides
to. The Java development kit runs these ind iv idua l interfaces. Because a large number of
J A R files run, approximately 3000 per day, much emphasis is placed on garbage collection.

The runtime engine could be called this system's core due to its interfacing spooling
function. It communicates w i th a l l other microservices.

D E light

It is a l ibrary that performs only a simple task: token creation. The runtime engine always
initiates this action at the start of each interface. It is essential for our work because of
precaching, where each created token w i l l be cached to avoid non-correlation wi th the real
file system as much as possible..

12

3.3.2 D a s h b o a r d

This service is significant for every user because it is a place to view a l l the data integrations.
The introductory page provides a file hierarchy of a l l interfaces created for administra­

tors and a list of owned interfaces for regular users i n the selected environment. Th is is a
cr i t ical feature precisely because administrat ion outside the Dashboard is not possible. The
user can test a given interface, view logs and modify its startup properties—for example,
triggers, cascading actions or scheduled operations.

The Dashboard also contains an interface on which users can create a generic interface
using a wizard . Few users s t i l l use this option due to a lack of technical knowledge. A s
a rule, the way it works is that the requirements are given to the administrator, who
considers what interface type it w i l l be. Once created, he sets the interface as visible to
other users and promotes its environment to that intended for user testing or " U A T " . Once
the user approves the functionality, the interface can be deployed to the product ion servers.
However, administrators t ry to mystify this process and teach users to create their own
interfaces and operate the platform without communication.

This is the first place administrators look i f one of the integrations fails because there
is also a l is t ing of another service called "Logging Service", which logs a l l the information
about the runs of each interface and service. Due to the s implic i ty of the interface and
the creation of contrasting logs containing unexpected behaviour, this is the fastest way to
investigate the problem.

The applicat ion w i l l also include the interface being developed as part of this work.

3.3.3 Scheduler

The Scheduler has a cr i t ica l role i n the platform, which controls the execution of single
interactions. D a t a integrations can be triggered i n various ways, remotely - A P I , database
plugins, by clients, manual ly or t imely scheduled by a Scheduler. The integrations them­
selves can be triggered periodical ly or based on events. One of these events is, for example,
a cascading trigger after another integration has run out of t ime or, based on, for exam­
ple, the fulfilment of one of the preconditions of the so-called precondition, which can be
different. Typical ly , this may be, for example, a condit ion that the input data is i n place.
Ideally, it can notify the runtime engine when the interface is running, but it can save time
and resources otherwise if one of the conditions is not met.

3.3.4 D e l i v e r y E n g i n e

Delivery Engine takes care of data delivery. The different interfaces are described i n the
introduct ion of chapter 3. Interfaces are accessible to users through the Dashboard appli­
cation, where they can be configured and managed.lt is essential to guarantee the correct
order when delivering files. If this is not necessary, it is possible to deliver multi threaded.

We need to guarantee data delivery, but any error could occur while the file is being
processed, so the logic of moving tokens between folders i n the file system was introduced
to represent the transfer state.After data processing, the service creates a token on the
server's file system where it is running. The token represents the current delivery status by
moving between folders. If an attempt fails, it w i l l reduce the number of attempts and t ry
to run again i n 5 minutes. O n successful completion, the token ends up in the " D O N E "
folder, likewise on failure.

13

http://managed.lt

FAILED

PENDING

STAGE OUT

CLEAN UP

I
El
DONE

STOPPED

Figure 3.3: Simplified token lifecycle diagram

A s the paragraph above states, the token movement corresponds to the actual state.
Thus, the ind iv idua l states correspond to processing-related states:

• P E N D I N G - Runt ime is ready for scheduling.

• A C T I V A T E - Runt ime is currently executing.

• S T A G E O U T - Current ly wai t ing for output file to be transfered.

• S T O P P E D - Stop command was issued during execution.

• F A I L E D - It was not possible to perform al l the actions.

• C L E A N U P - Delet ing temporary folders created at runtime.

• D O N E - A l l actions were successfully completed.

Our applicat ion interface w i l l take care of the management of these tokens.

14

3.3.5 L o g g i n g service

This service creates and stores logs from the interface runs together w i th logs from the work
of ind iv idua l services.

Q

Q_
Dashboard

SERVER 11

Dashboard

SERVER 12

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 13

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 14

Dashboard

SERVER 7

Dashboard

SERVER 8

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 9

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 10

CO
LU
CO

<
ILL)
,—II
LU
DC

LU
Q

Dashboard

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 4

Dashboard

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 1

Dashboard

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 5

Dashboard

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 2

Dashboard

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 6

Dashboard

Delivery engine

Runtime engine

Scheduler

Logging service

SERVER 3

Figure 3.4: Simplified scheme of clusters used i n Onsemi

3.4 Communication

Communica t ion between services in a microservice-oriented architecture is cr i t ica l because
communicat ion i n the system must be as efficient as possible [3]. Th is architecture's fun­
damental divis ion of communicat ion is synchronous and asynchronous communication.

The difference between these two communications is that a message is sent during
asynchronous communicat ion, but the response is not waited for but is processed by another
service entirely independently. W h i l e synchronous communicat ion consists of cal l ing an
application interface in another service, synchronous communicat ion is about wai t ing for a
response.

Each communicat ion i n this architecture has its advantages and disadvantages:
For asynchronous communicat ion, the main advantages are for example:

• Lower failure rate - i f the service fails, the sender continues to send

• Faster response t ime - reduced wait ing for a response

15

• L o a d - uploaded requests act as a queue

However, the disadvantages include:

• Latency when the queue is full

• Higher complexity

A s stated i n the [33], data dissemination between microservices should always be asyn­
chronous if possible. The main reason for this is the goal of the architecture itself, which is
to have services available even if other services become unavailable. A t the same time, as
synchronous dependencies grow, the overall response t ime for applications grows. Therefore,
creating a k ind of H T T P request chain between services is undesirable.

A P I s are used i n communicat ion between middleware platform applications along wi th
the O p e n A p i specification.

Figure 3.5: Diagram of basic communicat ion between platform microservices

3.4.1 Swagger

This is a framework [38] that is used to define interfaces according to the O p e n A p i specifica­
t ion. It covers the complete software lifecycle, from design to documentation to deployment.
It is a toolset that can make developing and working wi th software easier when adequately
annotated.

W h e n used i n its full scope, the too l can significantly accelerate software development
in larger teams.

16

Swagger Edi tor

This tool is used i n the design phase. It allows the creation of Swagger UI , thanks to
which it is possible to test annotated endpoints through structuring using annotations in
the source code [23] .The documentation itself then allows testing and shows the responses
from the service.

In addi t ion to the interactive documentation, this is also a bui ld ing block for subsequent
code generation and A P I work.

It also allows documentation of data structures.

Swagger C o d e G e n

The main task of SwaggerCodeGen [26] is to use the generated documentation to create a
skeleton of either a client that w i l l cal l the annotated service or an applicat ion to implement
the service.

3.5 Development tools

The development of platforms like this one must include several addi t ional tools, which
the Onsemi team has time-tested thanks to their experience i n the industry and time
spent developing their platform. These tools are used during development to facilitate the
extraction of value and manage the code and the development. The tools mentioned below
are an essential part of the platform.

3.5.1 C o n s u l

Consul [14] is a multi-network software. It can be used to solve problems associated wi th
the operation of microservices. W i t h this tool , it is possible to discover the state of mi -
croservices, service networking and overall traffic management. Consu l can be deployed
indiv idual ly or together. The procurement team can use this tool to manage ind iv idua l
microservices and servers i n the cluster.

It provides, among other things, several services that are key to its users:

• Heal th Check - Provides ind iv idua l microservices wi th a check that determines whether
the requested microservice is active in the cluster. If any of the services fail , Consul
notifies the other services.

• Key-Va lue store - Th is is a distr ibuted key and value store that can be used by
indiv idual microservices.

• Service Discovery - It is an interface that allows services to find others. For example,
it can get an address for subsequent communication.

• Service Mesh - This is a configuration for microservices, which can thus use Consul to
control traffic rout ing or traffic l imits using the Traffic Management feature. It also
handles securing communicat ion wi th encryption or user authentication, for example.

3.5.2 J e n k i n s

It is an open-source tool that is used i n Continuous Integration (CI) and Continuous De­
ployment /Del ivery (C D) processes during software development [9]. It is a very widespread

17

tool that is used for automation, such as bui lding code, testing it or even deploying it.
Even though other services offer similar features today, Jenkins s t i l l remains a big player
in this field because it has certain advantages that are especially crucial i n the case of large
projects.

• Open-source - A s mentioned i n the first paragraph, this is open-source software.
W h i c h means it is completely free.

• Scalabil i ty - A l l o w i n g scaling across mult iple servers is great for cluster architecture,
where you would have to bu i ld and test separately on each server.

• F lex ib i l i ty and expandabil i ty - P robab ly the most fundamental feature. Th is allows
extended instances wi th custom scripts or plugins from the Jenkins library.

Thanks not only to these features, Jenkins is great for C I / C D processes i n microservices
architecture [18], where the emphasis is on the fast and reliable deployment of changes.

3.5.3 M a v e n

Maven is a project management tool . Maven takes care of bui ld ing a project based on the
dependencies specified. It manages this process by using a configuration file called "Project
Object M o d e l " , abbreviated as P O M , which contains information about the project along
wi th its dependencies and modules. A t the same time, Maven provides a central repository
that contains thousands of plugins that can be downloaded to a local repository where these
plugins can be run wi th each project start.

The tool automatical ly downloads the dependencies that are i n the P O M file, which
results i n saving t ime spent manual ly downloading ind iv idua l dependencies. Maven can
make software development faster and more efficient, as its described in [34].

Parent

In addi t ion to the classic dependencies, there is a parent section i n the P O M file. Th is
section contains the configuration that can be shared across the projects that share i t .

3.5.4 A t l a s s i a n tools

It is an Aus t ra l i an software company. Thei r products are tools that are used to improve
teamwork. W i t h these tools, it is possible to improve the software development process or
project management. Due to its high robustness and performance, the company's products
are trendy. In the case of Onsemi, a large part of the work management, the following tools
are used:

Confluence

This tool is used to manage information between team members [6]. Specifically, it includes
various documentation and manuals that make the work of team members more efficient.
Th is tool works on the principle of creating and editing ind iv idua l pages that can contain
text, images, tables and others. The tool also supports the creation of these pages in a tree
structure, which improves the clari ty of information. O f course, it is also possible to set
up different accesses, which can be divided by level. For example, confluence can also be
integrated wi th J I R A , a project management tool .

18

J ira

J i r a is used for project management and task management [5]. Its main task is to plan and
then manage the work. It does this by creating a so-called ticket that contains a task that
needs to be completed. This task is then assigned to someone and gradually changes its
status un t i l it is handed over for testing. This process aims to reduce task errors as much
as possible and make the overall team work more efficiently A m o n g other things, it allows
working wi th ind iv idua l versions of a project, which leads to the abi l i ty to track changes in
single versions by summarizing ind iv idua l tickets. L ike Confluence, J I R A allows integration
wi th other tools, which leads to a k ind of environment for working on projects.

BitBucket

This platform is used to manage G i t or Mercur ia l repositories, as described i n [12]. B i t -
bucket offers provides code management and collaboration tools for projects. It allows
developers to create new repositories or comment on code and manage them. These fea­
tures make it very easy to collaborate on code among team members. P rov id ing feedback
on code is also an essential part of development, which is also one of the cr i t ica l features
of the software. Another feature is version control, which is indispensable i n almost every
project and allows tracking changes i n each version. This is another G i t repository man­
agement tool , and its main advantage over the others is a feature outl ined throughout this
section: its integration into the environment created by the At lass ian tool combination.

In addit ion, plugins are used that allow integration wi th Jenkins. Then , when the code
is added, it runs the Jenkins Job configured. A s a rule, this involves bui lding, running tests
and then deploying. This integration again increases the automation level, saving t ime for
the platform developers themselves.

3.6 Data serialization formats

The most commonly used formats are Extensible M a r k u p Language or X M L and Javascript
Object Nota t ion or J S O N . J S O N and X M L are both highly used serialization formats w i th
advantages and disadvantag 6 S , ctS described in this article [4].

In the case of X M L , it is a markup language used to describe the structure of objects.
In comparison, J S O N is a data exchange format that can be used in any language. In the
case of X M L , it is an inferior option for sharing data between applications compared to the
second format because it consumes more memory dur ing processing. W r i t i n g and reading
J S O N is generally easier than X M L because it uses fewer characters. Th is also makes it
more efficient to transfer over the network. Another reason Onsemi's middleware platform
uses J S O N is to parse large amounts of data more efficiently

The above formats are the ma in reasons why Onsemi mainly uses J S O N format, along
w i t h the Jackson processor, to work wi th the data.

3.6.1 J a c k s o n

This is a prevalent open-source l ibrary for working w i t h J S O N format, and this book is
dedicated to this topic [16]. It is used to map Java objects to format and back. It is a very
efficient way because it supports different types of data structures. There are three modules
that the l ibrary contains. The first is the basic module that handles wr i t ing and reading
bypasses i n J S O N format. The following module is the Da tab ind module, which takes

19

care of serializing Java objects to J S O N and vice versa without parsing. The last of these
modules annotates classes and attributes for automatic serialization and deserialization.

3.7 Security

In this section, we ' l l look at why security is an important part of the design of that system.
This mainly includes the protection of corporate and user data, which by name implies that
the data that each endpoint acquires w i l l not be misused or compromised. If this were to
happen, sensitive information could be leaked, or functionality could be abused.

A s such, the functionality could also be misused to attack the applicat ion itself. For this
reason, endpoint security is an important element in protecting the applicat ion. Endpoints ,
due to their function i n the communicat ion between client and server, can fall v i c t i m to
many types of attacks. Some of the most notorious attacks described i n [21] include the
following:

• Man-in-the-middle - this attack targets the communicat ion itself and obtains sensitive
data. This may include, for example, user data.

• S Q L injection - this involves problematic or incorrect filtering of input . Resul t ing in
the attacker being able to execute malicious code and /or obtain sensitive data.

• D D O S attack - this attack targets the overload of a given service using many requests
from different devices. Th is causes an overload that makes it impossible for even
legitimate users to enter. This attack results i n slowing down or crashing the service.

There are many more attacks, like brute-force or cross-site attacks. Therefore, endpoint
security must include various measures such as S Q L injection filtering and data encryption.
Each attack, as mentioned above, needs a different form of solving, and it is, therefore,
essential to choose suitable security.

Other v i t a l processes in security are authentication and authorization. Us ing a combi­
nation of these two processes prevents data leakage or malicious behaviour by a user who
is not authorized to access the data.

Authentication

This process is used to authenticate the user. Its purpose is to prevent unauthorized access
to the system. S imply that the user who logs in to the system is actually behind the device.
This process is usually performed using a username and password. For higher security,
biometric authentication is emerging.

Authorizat ion

This is a process that is handled after the authentication process, where it is possible that
the user has the right to enter the system itself but may no longer have them for reading
certain documents or for other operations. The goal is to control the access possibilities
wi th in the organization, where based on the role, ind iv idua l rights are modified as part of
the movement wi th in the system. A s wi th authentication, this process is concerned wi th
denying access to data, but i n this case, it is a denial based on the rights of an already
known user.

20

3.7.1 U s e r A u t h e n t i c a t i o n a n d A u t h o r i z a t i o n M e t h o d s

There are some methods for implementing authentication and authorizat ion processes.
Where data and systems need to be protected, they must be accessed only through au­
thenticated users w i th the necessary rights. In this section, we w i l l therefore discuss the
methods that are described collection [8] and that are commonly used.

J W T - J S O N W e b Token

This is a standard for the reliable exchange of information between parties. The J S O N
token plays an important role here, as it is used to authenticate the user and access certain
parts of the system.

This mechanism is used so that when the user logs in , he receives a J W T , which is then
used for further operations that the user w i l l perform on the server.

O A u t h

This standard works by having users share their data w i t h third-party applications that
they do not have to enter directly.

It works because the user first logs in to the provider's site, the most common being
Facebook and Google. After the user gives consent, the provider returns a token to the app
to access his or her data.

B a s i c A u t h

This method works by authenticating wi th a password and username. It is prevalent when
accessing resources wi th in a website or A P I .

W h e n this method is used, it is required i n every operation where security is impl ied.
The method is susceptible to man-in-the-middle attacks due to the format i n which user
data is sent.

Nevertheless, B a s i c A u t h remains in use today, especially for easier and faster user iden­
t i ty authentication.

Form-based H T M L auth

This method shows the approach by which the website secures access to resources. It works
by filling out a form and getting user credentials. A final authentication mechanism on the
server then follows this.

Despite being highly susceptible to attacks, this authentication method is widely used.

S A M L

This is a standard that is used to exchange authentication and authorizat ion data. W i t h
this method, users can log i n only once and gain access to a l l applications.

The applicat ion is an identity provider i n a central locat ion wi th in the organization.
After authentication, it sends a S A M L token to the applicat ion. After authenticating i t , the
application gets the user's data and rights. S A M L is much used i n corporate environments.

21

Chapter 4

Design of the system

The chapter is dedicated to the design of the applicat ion. Th is chapter aims on creation
application design based on the requirements set out i n the chapter 2. The main task of the
chapter was to look into the requirements and create a summary that can be implemented.
It is about introducing a new interface to the applicat ion. A d d i n g new communicat ion on
such a platform is challenging, especially debugging it properly. Therefore, it was necessary
to consider the placement of the data transfer objects and how the actual communicat ion
w i l l occur. Ult imately, the choice was made to connect the microservices using the Swagger
CodeGen tool , which can create a client that mediates the communicat ion when adequately
annotated.

F rom the beginning, it was essential to understand what we would be working w i t h to
achieve the requirements. Th is part was followed by determining what endpoints would
need to be created in our appl icat ion interface and how they would work. Theoretically,
this was just a list of relatively simple functions that would ul t imately perform tasks over
the system when combined wi th the frontend.

The software design was consulted wi th the architect of the platform.

4.1 Architecture

Architecture design is a crucial part of designing new software [32], because a poorly de­
signed A P I can harm the whole process. Therefore, this section w i l l describe the final
communicat ion layout to make it as suitable for our case.

The case we are discussing is necessary based on future sustainability. Essential elements
are, for example, the abi l i ty to respond quickly to customer requests or the abi l i ty to scale
together w i th applicat ion management.

Another important task was creating a user through which client communicat ion w i l l
work. Fortunately, this possibil i ty is already implemented i n the platform. This eased the
authentication process and set up communicat ion between microservices in the case of the
application interface. The last section that had to be addressed i n the architecture design
case was to l imi t the possibil i ty of negative impact on the operation of already established
services as much as possible.

22

Figure 4.1: Design of communicat ion between microservices and the frontend of the system

4.2 Entities and Models

Each system needs to create models and entities to implement the new A P I . These w i l l
be used as data representations wi th in the functioning of the appl icat ion programming
interface. Proper ly designing models and entities is integral to creating a successful system.

The models that need to be created i n the system include the following:

• MoveTokenRequest - Th is is an object that is intended for the case of a request to
change the state of the token. This object contains three properties: the token's name
and its current and new state.

• NodeNameAwareResponse - this object returns a response enriched wi th information
about the server the response is coming from. Thus, there are two properties, one
containing the content of the response from the server and a str ing wi th a string.

• StateSummary - an entity representing the ind iv idua l states between which the token
moves. Pract ical ly, these are folders on the file system.

There are also several entities i n our system:

• State - this is an entity that represents the ind iv idua l states between which the token
moves. Pract ical ly, these are folders on the file system.

• W o r k l t e m - this is the representation of the token.

23

TokenName.txt

Interface name
Run ID
Event name
Source file
Target file PENDING DONE STAGE_OUT

Line count
Action ID
Attempt count
Last attempt

ACTIVE FAILED UNKNOWN

CLEANJJP STOPPED SUSPENDED

Figure 4.2: The content of the
token that is serialized to the
W o r k l t e m

Figure 4.3
state

Init ial ized objects in

4.3 Applicat ion Programming Interface

In this section, we w i l l discuss the process of designing an applicat ion interface that w i l l
allow interaction w i t h the final applicat ion. T h i s interface w i l l be crucial for the entire
applicat ion. Every applicat ion interface, must meet certain characteristics that should be
properly thought out dur ing the design process, because a bad design can affect existing
parts of the system.

The A P I itself should be based on the functional requirements that we have defined
in the chapter 2. We have defined that each user w i l l only have access to his integrations
for which he is the owner. We cannot solve this problem because the Dashboard interface
already works this way and only allows administrators to view a l l interfaces. Th is makes
the authentication issue relatively easy to solve.

Furthermore, we know that the Swagger framework, currently being implemented in
various platform interfaces, w i l l be used for communicat ion between services. Th is frame­
work w i l l also provide interactive documentation and an environment to test ind iv idua l
endpoints.

The main th ing that needs to be designed is the endpoints themselves. A s mentioned,
these endpoints need to be designed based on the endpoints we have already defined.

Apar t from that, however, the properties mentioned above need to be designed for each
endpoint:

• U R L s - The U R L address for each endpoint should be easy to read and should describe
the functionality of the endpoint. The consequence is easier work wi th the A P I , easy
understanding for developers what the endpoint is for, etc.

• H T T P Methods - E a c h of the endpoints must have an H T T P method selected, such
as the G E T method, which is used when retrieving data from the server, or the P O S T
method, which sends data to the server i n the payload.

• Parameters - We must choose the correct type and number of parameters that w i l l
then be used in the business logic.

24

• Responses - Deciding what format and type of response to return to the client. The
response should contain a l l the elements that w i l l need to be used afterwards. A n d
have a format that is easy to work wi th .

For these reasons, the following endpoints were designed using entities that we have
already designed or already existed i n the system:

G E T methods:

• getSummaryO - Th is endpoint w i l l provide a main window, displaying a list of a l l
possible folders (states) that we can access. Next to them, the number of tokens
inside w i l l be displayed i n brackets, making the work more transparent. Parameters
are not needed here, as the pr imary view is displayed. The response w i l l be i n J S O N
format, and i n addi t ion to the sheet containing objects of type StateSummary, it w i l l
also contain what server the response came from for future reference.

This endpoint is more of a test, as there is no requirement i n the current model to
display a l l interfaces from a l l servers i n the environment. In the future, it could extend
into the A d m i n section, where there would be aggregated tokens from a l l servers and
interfaces.

• getSummaryForlnterf ace (String interf aceName) - Th is endpoint is the one that
w i l l be displayed first to the real user. It is actually a filtered version of the previous
one. Its only parameter w i l l be a string containing the name of the interface for which
the StateSummary list w i l l be returned and the name of the server.

• getTokensForState (String state) - A A s wi th the last pair of endpoints, we start
w i t h the one that is a general version of the previous one. Its function is to return
tokens that are i n a specific state. Its only parameter is a str ing containing the name
of the state. Its larger purpose rests on the abi l i ty to extend the A P I beyond the
interface direct ly for that interface. The response is again i n J S O N format and is
a list of work items, which are models created based on the token, again containing
server information, among other things.

• getTokensForlnterface(String state, String interface)
- Th is Endpoin t w i l l be the one that w i l l be called when the user selects which state
he wants to enter. A s the definition implies, the function's parameters w i l l be a string
containing the name of the state to step into and the name of the interfacename that
is selected. We w i l l return a list of W o r k l t e m that corresponds to the tokens in the
given state.

P O S T methods:

• resetAttempts (String tokenName, String state) - This endpoint w i l l be tasked
w i t h resetting the attempts of a given token on completion. If, for some reason, a
token has lost a l l attempts, which could be due to system overload, a crashed server,
or perhaps an error related to the input data. The number of attempts is defined
during the integration creation, and the default value is 5. Thus, on failure, the run
is stopped and restarted after 5 minutes, up to 5 times. The function parameters are
two strings, one containing the name of the token, and the other containing the name
of the state i n which the token is located. The response is a CommonRep lyBean that
contains the success or failure status of the action.

25

• sendToken(MoveTokenRequest request) - Th is w i l l be an action that w i l l move to­
kens between states. Its parameter is the MoveTokenRequest described i n the section
above. This action may be required, for example, when moving tokens from some fold­
ers to D O N E , which is used for tokens that are already completed. The response is
again a C o m m o n R e p l y B e a n that informs about the success or failure of the operation.

• deleteToken (String tokenName, String state) - Th is endpoint w i l l remove the
token. Even though this is an extreme case that is not a commonly used practice,
there are s t i l l cases where this endpoint w i l l be used. However, it must be flagged
w i t h a warning in the future front end. Here again, we have string-type parameters,
one is again the name of the token to be targeted, and the other is the state where it
is..

• deleteTokens(List<String> tokensList, String state),
sendTokens(List<String> tokensList, String state)
- B o t h endpoints have the same function: extending the functionality w i th and opera­
t ion on token lists. Hence the functionality is not different, only one of the parameters
is different, and that is that there is a token list instead of just one. The answer is the
same as the original functions, namely CommonRep lyBean , determining the resulting
state of the cal l .

4.4 Frontend Design

For A P I design for a system such as this, the behaviour of the front end must be as close
as possible to the expected behaviour from the user. Th is expectation w i l l match the
behaviour of a file system known from different operating systems. T h i s is achieved by
choosing suitable icons and working wi th the hierarchy.

Users must be able to find intui t ively a given token or group of tokens and then perform
operations that display important data, moving tokens, deleting them and, last but not
least resetting attempts.

It is also necessary to th ink about where the design w i l l be implemented. In this case,
it is the window wi th in each integration. Th is window w i l l be reachable in the details of
each integration. Thus, it is also necessary to think about how the graphical page w i l l look
together w i th the rest of the already implemented frontend of the page.

Therefore, because of the users' diversity, the interface's main requirement is intuitive-
ness. Intuitive control and design is the key to a proper interface design.

26

Main window

CD D CD D D D
STAGE_Our DONE UNKNOWN ClEANJJP STOPPED STAGE J N PENDING ACTIVE SUSPENDED FAILED

State detail window

CD © © © ©
}kenName TokenNam

© ©
TokenName TokenName TokenName Token Name TokenName

©
To ken Name

©
TokenName

TokenName TokenName

Token Detail

© © © ©.
© ©

© © ©

TokenName TokenName

kenNsrne TokenName

TokenName

InterfaceName
E»en< Manne
Action ID
Tokens attempts
Lasl attempt
Source file
Tang et file

DELETE WOVE DONE

Figure 4.4: Design of the graphic interface for Dashboard

27

4.4.1 F i g m a

For the design and presentation of the frontend, the F i g m a was used. F i g m a is a graphical
tool that is free of charge i n its basic version and serves users to design web or mobile
applications. One of its main advantages is that it is a cloud-based tool , which allows
working anywhere. Its functions and uses are also described i n the collection [17]

It has been used to create wireframes containing prel iminary graphic designs. Once
created, this design was consulted wi th other, more experienced platform developers.

4.4.2 Secur i ty

Pla t form security refers to the specific steps that each system must complete to ensure the
platform's security [31]. Thus, the implementat ion involves many tools and technologies
together w i th a methodology that, as a whole, creates a whole that should implement as
many measures as possible to eliminate the possibil i ty of security risks.

We w i l l address the security used by the platform. Basically, it is the Legacy security
framework. It is actually an outdated security framework that is largely not up to date
wi th current standards, which can result in increased security risks for the company.

The company's middleware platform uses Spring Security to modernize its various com­
ponents. It is a comprehensive framework for implementing security features. Specifically,
for example, authentication or authorization. D a t a l ink ing occurs specifically w i t h the
Legacy framework, which serves as an addi t ional layer of security. Thus, it creates various
addi t ional rules and constraints for the system. Spring Security can also be combined wi th
other authentication methods. In our case, this is the B a s i c A u t h method. It serves as a
pr imary authentication based on username and password.

Even though this combinat ion requires a more complex configuration, the platform
achieves a sufficient level of security. That ensures that a l l layers are fully functional and
that different methods are used for different system parts. Even though, for example,
B a s i c A u t h is a pr imary method that might seem susceptible to attacks of various types,
such as brute force, this risk is drastically reduced due to its inaccessibility from the public
network.

Therefore, i f we would like to log i n here, it is necessary to be on a local network or be
connected using Remote Access Security, abbreviated R A S . Tha t means that the attacker
would have to be inside the network for such an attack. H i g h requirements such as creating
strong, regularly changed passwords are already a standard that Onsemi also uses.

28

Chapter 5

Implementation

This section follows the software design chapter, so it is i n reality. So we w i l l focus on
implementing A P I s that are used for communicat ion between applications and systems.
This can be done using the interface that is defined here. We address the implementat ion
by defining our designed functions and their associated operations.

A s such, A P I implementat ion is crucial for larger systems where there is communicat ion
between different systems or applications. It is also used to integrate different systems
that use different technologies. In our case, it is an A P I that w i l l communicate w i th
microservices. Specifically, it w i l l be the Dashboard for communicat ing wi th the frontend
and performing operations defined wi th in the functional requirements and the D E light
library, which is part of the Runt ime engine, which w i l l be called during token creation as
part of the precaching. In the previous chapters, we designed the operations that w i l l be
implemented. A t the same t ime, the technologies are decided wi th in the corporate system.

The implementat ion itself is implemented in a gradual process of Continuous Integra­
t ion, from the basic functions to the functions providing the required operations. Par t
of our implementat ion is to ensure zero impact on the existing system, which is achieved
through integration testing and continuous upgrading of the environment i n which the sys­
tem resides. Th is impact is essential, especially i n terms of performance, which is important
in delivery platforms. This is why efficiency is v i t a l for any related development. Another
way this can be achieved besides code opt imizat ion is, for example, scalability. Scalabil i ty is
crucial for growing systems, as the adaptabi l i ty to different numbers of users and increasing
command processing requirements can be devastating.

Therefore, i n this chapter, we w i l l implement A P I s so that the abi l i ty to perform a l l
operations even under load is achieved without system affectation. A m o n g other things,
al l the tools that were used besides those mentioned i n the 3.5 section w i l l be described
here. These tools were used pr imar i ly because of their use i n the platform. It also discusses
the problems that occurred during the implementation—moreover, ways of solving them
operatively.

A s part of the overall development process, I received feedback on the code i n the code
review of the B i tBucke t applicat ion. Th is process was helpful, especially in improving the
quali ty of the code.

29

5.1 Models and Entities
The designed models and entities from the previous chapter had to be created to meet the
requirements and formal properties of proper implementation. In the implementation, it
was necessary first to create models that w i l l be used i n the responses to the ind iv idua l
endpoints of our proposed applicat ion programming interface.

We first started wi th the basic bui lding block of most of our responses, named
NodeNameAwareResponse. This found its use mainly because of the information returned
by the ind iv idua l responses from the server. Th is functionality w i l l find its use mainly in
case of working from the Dashboard, where the knowledge of which of the servers a given
token comes from w i l l be very important for the creation of the subsequent request, which
w i l l have to send a request to a specific one of them from the environment obtained from
the aggregation of a l l servers.

The next implemented already created are very specific and are more about dealing
wi th specific situations. One such example is the StateSummary object, which is used
wi th in a list, and its parameters are the Stateit is in , along wi th the number of tokens it
contains. It w i l l thus be used to get the current state on the ma in window. Alternat ively,
for example, the MoveTokenRequest object was created and this is used wi th in a single
command, namely creating a command to move a token to another state.

5.2 Cache

Even though cache creation was not planned in the design phase, dur ing the gradual inte­
gration into the system, it turned out that the gradual loading of folders slows down the
Delivery engine to a greater extent, so it was necessary to create another object that cre­
ates an accurate representation of the current file system content on the server. Then every
movement is also projected into this object. Hence the add, delete, and move methods are
created i n this class to keep it current.

The first setup and then the periodic refresh is taken care of by TokenCacheSetter,
which scans each state and stores information about it in the cache, which is then used. A s I
mentioned, it also takes care of the automatic refresh thanks to the ©Scheduled annotation,
which runs the function periodical ly according to the t ime not set i n the consul tool .

TokensServices

Figure 5.1: A way t o solve a performance problem by creating a cache.

30

5.2.1 P e r f o r m a n c e P r o b l e m

Another essential piece of information that changed only as part of the implementat ion was
the use of the D O N E state. The first change became apparent right after the release of the
first version of the A P I , which encountered a problem wi th a higher number of tokens the
moment it t r ied to list the D O N E folder and, thus, the request t imeout. Th is problem was
solved the first t ime by adding the pagination feature.

However, w i th the addi t ion of the cache to our implementation, it was no longer the
only one needed, so it was agreed w i t h the administrators that the usage of the D O N E
folder itself is pretty small , so it w i l l be sufficient to store the StateSummary itself, which
w i l l only show the user that the folder exists. We w i l l only store the number of tokens that
are i n the folder.

The final problem that brought development to the point where the D O N E folder itself
was omit ted entirely and not even displayed to the user was a coincidence problem, where
the script that usually takes care of creating the hierarchy i n the D O N E folder so that
the number of tokens i n it does not grow infinitely failed. Crea t ing a folder and inserting
older tokens would prevent it from l is t ing them. Unfortunately, this failure was also not
detected immediately, but only when the version containing the autorefresh cache went
into product ion. Thus, the moment the setter at tempted to list the value of a given folder,
it would generally store the number of tokens. He could not achieve a result wi th in that
because he was t ry ing to count mill ions of tokens, and every 3 minutes, he would t ry again.
This led to a drastic slowdown of the entire product delivery even though the A P I was not
used yet. Thus, the decision was made and removing the D O N E state from the cache and
not allow users to interact w i t h that state. It already has no use case for moving or doing
anything wi th tokens i n the D O N E state.

5.3 Important parts of the project

New software is a crucial success factor for many companies. It can deliver cr i t ica l efficien­
cies and improve overall operations across the board. Even though it is a crucial process and
many companies devote a significant amount of their attention to it , it is a complex process.
Work ing i n a larger team requires some overhead, such as planning and coordination.

This section is dedicated to the essential parts of the system developed. These core
modules play an important role i n overall functioning. The modules listed below interact
w i th each other to form the overall system.

5.3.1 D e l i v e r y E n g i n e A P I

It would be easier to find something more important to the functionality of our system than
the basic A P I . It is the basic bui ld ing block for further work and was also the first part
to start working on after the theoretical preparation. The development process pr imar i ly
started from the design phase, when it was decided what endpoints we would design and
what tasks they would perform. Dur ing the development process, many problems arose,
and many of the early assumptions were wrong and had to be adapted to the environment
where we would implement the system.

A s w i t h the rest of the platform, Swagger was used along wi th Java to facilitate testing
of the A P I being created during implementation.

31

The implementat ion was also accompanied by learning about previously unknown fea­
tures of each tool , which are essential for platform development in larger companies. Dur ing
this part of the development, the Models and Enti t ies used there were developed i n parallel .

tokens-controller

| / t o k e n s / r e s e t - a t t e m p t s Reset attempts in token A

/ t o k e n s / m o v e Move Token to another state A

/ t o k e n s / m o v e - l i s t Move Tokens to another state A

| / t o k e n s / d e l e t e Delete token A

/ t o k e n s / d e l e t e - l i s t Delete list of tokens by token name A

| / t o k e n s / a d d - t o k e n Add token to cache A

/ t o k e n s Gets counts of tokens for each state A

/ t o k e n s / { i n t e r f aceName} Gets list of token count in each state by interface name A

/ t o k e n s / s t a t e Gets list of tokens in state A

/ t o k e n s / i n t e r f a c e G9ts list of :okens in state by interface A

Figure 5.2: Created endpoints that ensure the functionality of the system.

5.3.2 Swagger C l i e n t

After completing the first version and wr i t ing tests dedicated to the created interface, it
was necessary to start th ink ing about generating the client itself, which w i l l be used for
communicat ion between the Delivery engine and Dashboard and, as it turned out, between
DE_Light and Delivery Engine. The process started wi th figuring out what arguments to
choose for the generation. The swagger-codegen itself moved pretty quickly, and over the
phase where different options were tr ied, the documentation of the Swagger itself changed,
and more options were added.

After some time of testing the client, it was decided to add it to Jenkins. The setup
was relatively smooth thanks to the interface that Jenkins provides. The next stage was to
change the architecture i n which the client is generated. The change is that only the un-
generated part of the client is uploaded to Bi tBucke t itself, which is generated on the server
every t ime the Delivery engine is run. This is achieved by a swagger-codegen-maven-plugin,
which is part of the Maven plugin library. Th is led to the automation of the generation
process, which was inevitable.

The not generated code, which contains the configuration of the client i n question, had
to be created to set the values necessary for communicat ion correctly. The first version
of the appl icat ion contained an interceptor, which was there because of the work of the
DE_Light l ibrary. Here, due to the cluster architecture, it is not allowed to ca l l a load-
balanced endpoint. It would have resulted in not being able to target a specific server
either for getting data using G E T type commands, whereas i n a dashboard where data
would be aggregated would break the whole concept. Thus, none of the endpoints would be
able to achieve an operation, such as accessing a specific file system where a given token is
expected. Tha t is because running ind iv idua l interfaces and thus creating tokens on specific
server file systems works based on load balancing.

32

5.3.3 D a s h b o a r d A P I

The first important task wi th in this A P I was to deal w i t h load balancing, where it was
inevitable to achieve the abi l i ty to specific server using the OOverrideHost anno­
tat ion. In our case, the procedure was that we in i t ia l ly overwrote the postProcessAfterlni-
t ia l izat ion function, which belongs to the BeanPostProcessor. Thanks to this, we could
mark those beans that contain our annotation by adding advice as an interceptor.

This interceptor implements the following:

• M e t h o d Interceptor - Th is is an interceptor that is meant to define the behaviour
to be executed before or after a method cal l .

In our case, this was to take advantage of the fact that at the moment of invocation,
the ThreadLocal variable is set to the value of the parameter annotated by the
© O v e r r i d e H o s t annotation, the function from which the invocation is made. It also
takes care of removing the value after completion.

• Cl ientHttpRequest lnterceptor - Th is interceptor allows you to define the be­
haviour to be performed before sending an H T T P request or after receiving an H T T P
response.

In our case, it performed the function of the interceptor itself, it worked by break­
ing the request that came i n here down into ind iv idua l U R I parts and modifying it
based on the circumstances of the cal l . For example, the lack of context i n various
microservices played a role here. Fortunately, thanks to the platform environment, it
was possible to get the information from the sprint or from the U R L of the original
call .

Then it was necessary to start the aggregation itself, which was done quite specifically
for each endpoint i n the case of G E T requests. It was done by creating a unique bean used
in the aggregation to target each server specifically.

5.3.4 F r o n t e n d

This section w i l l describe the frontend creation for our system, which was proposed i n the
previous section. It is an integral part of our appl icat ion as it is a graphical interface that
allows the user to interact w i th the functions of our applicat ion programming interface and
display information. The frontend includes a l l the elements that the user can see.

W h e n creating the frontend, the main requirement is knowledge of technology. In this
case, knowledge of the React framework and Typescript programming is at the core. In the
implementation, it was necessary to emphasize the intuitiveness and design of the interface.

In this section, we discuss the implementat ion process, which in the first moments took
place in the Storybook application, where the ind iv idua l components were tested. W h i c h
are sort of basic bui ld ing blocks that are modular . O u r A P I consists of two Token and state,
both of which have different roles. W h e n you click on a part icular state, it aggregates the
server data and returns the tokens corresponding to that interface for a l l servers. These
two components were created first.

This was followed by the creation of the actual windows that display the response based
on the tokens and the creation of a window that contains the detai l of the token along wi th
the action options associated wi th the token. This was completed by implementing modal
windows that are used to confirm the actions. The implementat ion used hooks and states,

33

postProcessAfterlnitialization
return proxyFactoryBean

object for beans with
annotation.

Set t ing Th readLoca l
var iab le t o anno ta ted

parameter .

Method interceptor

proceed

Creat ing mod i f i ed request
by bu i ld ing Th readLoca l

and o ld URI

Client HTTP request interceptor

request

Bean tha t con ta ins a
m e t h o d w i t h the

pa ramete r anno ta ted by
the © O v e r r i d e H o s t

anno ta t i on .

Delivery engine
swagger client

Figure 5.3: The way the request reaches the specific server.

which are essential elements of React. The Mate r i a l U I l ibrary was used for styles and
pre-made components, which made the creation process more manageable.

5.4 Technologies Used

In order to connect the new A P I to the system, it was necessary to get acquainted wi th the
technologies used i n addi t ion to the system itself and its functioning. The correct language
and tools are essential elements i n any development.

This section w i l l be dedicated to describing the technologies and tools I used wi th in the
implementation of the new A P I . These technologies were chosen based on technologies that
the rest of the platform uses or it is a custom in the platform development environment to
use it.

Therefore, the following list contains the technologies pr imar i ly used i n the process of
creating and wr i t ing code. These technologies were used to integrate this interface and
create a functional and seamless system.

5.4.1 J a v a 8

Java [36] is a widely used programming language. Java 8 first release was i n 2014. In
this t ime, it has brought several innovations. For example, it has significantly impacted
data processing, al lowing for use in working wi th large amounts of data. The next feature
was the support for parallel data processing. These are some reasons why Java 8 is s t i l l a
prevalent choice i n applicat ion development.

One of the main competitors is C#, developed by Microsoft and part of the .NET
Framework. Even though the choice depends to some extent on the preferences and specific
features of the chosen project, there are differences i n the language choice that cannot

34

be ignored. One of Java's leading and significant advantages is that it is a mult ipla t form
language, thanks to which an applicat ion developed i n this language can run on different
operating systems, unlike the other one that runs on the . N E T Framework and is therefore
connected to windows. Another advantage is, for example, multi-threaded programming,
or we can also count among the advantages the broad community of developers that Java
8 has.

These and many others are the advantages that make many companies, including the
middleware team at Onsemi, choose Java to develop their own applications.

5.4.2 S p r i n g F r a m e w o r k

Another technology that the team uses in their platform and that had to be familiarized
wi th i n order to start the implementat ion was Spring [37] .This framework aims to reduce
the dependencies between components and make testing and maintenance of the platform
more accessible. Spring, as such, works on the principle of I O C or "Inversion of control",
which changes the application's flow control so that objects i n the system are created and
processed by the framework and are also assigned dependencies on other such objects.

The technique Spring framework uses for I O C is D I or "Dependency injection", a process
where an object's given dependencies are created externally instead of the object creating
them itself. Th i s increases the modular i ty of the applicat ion.

The framework is modular . Tha t is, it offers modules that are designed to be integrated
into different applications. Here is a description of the most cr i t ical modules found i n the
framework.

• Spring Core - A s you can tel l from the name, this is the module that contains the
core of the Spring Framework, so it contains D I , I O C and other features.

• Spring M V C - Provides M V C architecture for bui ld ing applications. It separates
modules for logic and appearance.

• Spring D a t a - This module caters for the work of data warehousing. This module
allows you to switch between the ind iv idua l data handlers without having to change
the code.

• Spring Security - This module takes care of authentication and authorizat ion. E x a m ­
ples include use in website security, single-user account management, and more.

Thus, Spring Framework is used to facilitate the development of robust enterprise applica­
tions for Java. This works because of the practices mentioned above that Spring uses.

5.4.3 R e a c t

This l ibrary is used to create user interfaces for web applications like ours. It was released
in 2013 by Facebook. The l ibrary is open-source, making it easier to manage applicat ion
states and create state-based interfaces. It can also be used wi th libraries and frameworks
like Redux or Angula r . Th is l ibrary is described in the book [35].

In React, the functioning is based on components. These blocks can nest wi th in each
other and be assembled into more complex clusters of components. A s such, components
are wr i t ten i n Javascript, and their output indicates how the output w i l l be displayed.

35

React itself also uses J S X , which stands for Javascript X M L , which serves as an extension
to clickable Javascript, and allows for syntax extensions so that H T M L - l i k e code can be
wri t ten. This is then compiled into p la in Javascript code. A m o n g other things, it includes
addi t ional features such as hooks or lifecycle methods, for example.

5.4.4 T y p e S c r i p t

It is a programming language which is a superstructure of the JavaScript language. The
extension consists of several significant additions that improve the previous language. Type-
Script is compiled into pure JavaScript at compile time, which runs on a l l browsers that
support i t .

Typescript provides many extensions, the most important of which include type spec­
ification, class inheritance, and others.By using this extension, it is possible to achieve a
lower error rate during development, increasing the application's overall reliability. A t the
same time, it achieves ease of working in a team.

5.4.5 S t o r y B o o k

This tool is used to create and test isolated components. The whole process is shown in
[1] so that the developer can create components, which are then displayed and tested i n an
isolated environment. Tha t makes it unnecessary to run the entire applicat ion.

In our case, it is also used because of the support for React. A t the same time, various
testing tools can be integrated.

A l l in a l l , we can say that it serves mainly developers, for whom it simplifies the work
spent on development.

36

Chapter 6

Testing

This section is the last one, and it deals w i th one of the essential parts of the development
process, namely testing. The goal of testing is to ensure that the functionality currently
in the development phase is working correctly and fulfils the specific requirements defined
at the beginning of the development. Through this process, deficiencies or bugs can be
detected early, resulting i n a reduced l ikel ihood of problems in the future.

M a n y methods of testing can be performed on a system under development. The most
basic ones, which are also the easiest, are tests that are performed manually. These tests
serve as a sort of baseline or as tests of specific situations. However, this testing is not
efficient. A n alternative opt ion is automated tests. These, al though i n this case, require
some knowledge regarding the technology, are faster and have the possibil i ty of repeatable
execution, which leads to saving t ime by manual execution.

A t the beginning of the bui ld , it is a good idea to create a good test p lan covering what
w i l l be tested to achieve the lowest possibil i ty of errors. A t the same time, this plan aims to
ensure the highest quali ty and rel iabil i ty of the tests. Th is is achieved by choosing different
types of tests and complexities. There are many types of tests wi th in the test plan. There
are, for example, tests for integrations, performace, security and much more. For our work,
we used only Un i t tests to test if important functionality works correctly.

A s mentioned here, proper testing is the key to successful deployment into product ion. It
is through this that software can be achieved that can be safely uploaded into a product ion
environment w i th the m a x i m u m possible el iminat ion of future bug patterns. Ult imately,
testing w i l l also reduce the cost of having to spend on fixing specific patches or defects and
possible functionality modifications.

37

6.1 Testing new functionality
In our case, when the development started from the A P I , which we implemented i n a
microservice called the Delivery Engine, and we also implemented a swagger i n parallel w i th
the ind iv idua l endpoints, it was relatively easy to run them. Thus, there was continuous
manual testing. This was also because, quite often, thanks to code reviews from various
colleagues, there was a re-discussion regarding the ind iv idua l endpoints.

However, each section was followed by wri t ing automated tests wri t ten i n Groovy and
using the Spock framework [30]. This testing was done based on testing the essential parts
of the system so that they would show possible affections i n future development. Overal l ,
this testing also fits into the C D / C I 3.2.2 process. The i r use i n these processes works so
that they can regularly integrate into the system i n the Continuous Integration process to
see i f changes affect the rest. A t the same time, Continuous Deployment has a role in these
tests because when code is automatical ly integrated into the product ion environment, it
must be checked that the system continues functioning as it should.

A m o n g the tested parts is TokenCache, which is a k ind of information backbone for
working wi th the file system for performance reasons. It is therefore important that a l l
functions that cater for operations on top of it work as reliably as possible. Another such
is TokenController , these tests are important for example to check for correct return codes
in different scenarios. Other testing has already been done by users.

This testing is also related to teaching users how to use the functionality correctly. It is
mainly about the possibil i ty of token removal, which despite its m in ima l use, many users
choose as the first choice for solving their problems. For this reason, the interface currently
does not find itself on the product ion but only in an environment dedicated to testing new
user integrations. Tha t should avoid the targeted removal of essential product ion data by
unfamiliar users.

Unfortunately, dur ing these tests, the code turned out to contain a bug and therefore
the A P I was pulled from the servers at the t ime of submission, where it was slowing down
the existing system.

6.2 Testing process

A s mentioned above, the development process itself was mainly accompanied by manual
tests, which were very inefficient and always followed by the creation of automated tests at
the end of the first version. In the case of our development, these are purely Un i t tests that
accompany each bui ld . These tests are designed to avoid as much as possible the possibil i ty
of interference.

Currently, w i th the launch of the Delivery engine, a group of tests is run to check the
work of the Cache and Controllers. Other tests are at the Dashboard level, so again, unit
tests. Th is checks if the Aggregation service works correctly. The next object tested is the
interceptor that connects to the correct server. There the function that caters for the valid
U R L is checked.

Further tests were performed by deploying on a non-production environment, and as
mentioned above, they were unsuccessful because they revealed problems that were not
detected during local development.

38

Chapter 7

Conclusion

The a i m of this applicat ion was to get acquainted wi th the technologies related to the
development of middleware platforms, together w i th the principles on which corporate
systems that usually depend on these platforms operate. Another element of the assignment
was also to learn about the technologies that are used. A l l of these requirements were met
wi th in the first chapters of this thesis. For these phases, the middleware team of Onsemi
itself was heavily involved and took the place of the tutor i n this phase.

Based on this experience, a discussion was then started about the needs for the develop­
ment and the future extensibil i ty of the platform. After familiarising myself w i th the basic
functionality and operation of the current system, a p lan for the future of the platform
itself was outl ined to me. Whereby wi th the increasing demands on middleware due to
the company's growth, any opportuni ty to hand over the overhead of their data to users
is beneficial. Also , to avoid overloading administrators w i th tasks that are pr imit ive. For
this reason, too, the topic of my thesis was decided.

M y work has been honestly directed throughout the development by the programmers of
the Onsemi team, who regularly prepared code reviews and gave me feedback and planned
further development w i t h me, also thanks to this, a l l the points of the assignment we set
during the assignment were achieved.Unfortunately, due to an error that occurred during
deployment i n the corporate environment, the applicat ion was wi thdrawn and is therefore
out of the environment at the t ime of submission of this work and needs to be fixed.

Nevertheless, created applicat ion facilitates the middleware team's work after its imple­
mentation i n the system. Users w i l l be able to manage their tokens. The presence of this
A P I i n the system's user interface w i l l save the administrators several tens of minutes every
day. A t the same time, communicat ion t ime w i l l be saved, which is less efficient than using
a text-based communicat ion platform and takes more t ime than solving the problem itself.

A large part of the work is devoted to the appl icat ion platform itself. This was because
it was a source of considerable development slowdown, as it took an unini t ia ted programmer
t ime to understand the overall workings. The ma in reason for this was to implement parts
of our module so that, as far as possible, there was no slowdown or affectation of the
system. The implementat ion as such on the local device went fine, unfortunately, it failed
just before the submission of this work. It is, therefore, currently out of service. However,
it is a matter of a short t ime to get this interface back up and running and then integrate
it back into the corporate environment.

39

Bibliography

[1] A G U T U , M . , S H I L M A N , M . and N G U Y E N , D . Designing with Storybook: Create
scalable design systems that empower your team to build great user experiences.
Pragmat ic Bookshelf, 2021. I S B N 978-1680507035.

[2] A H M E D , S., A W A N , M . A . , I K R A M , A . and U L L A H , S. Continuous deployment and

continuous integration: A systematic review on the latest developments i n the
literature. IEEE Access. I E E E . 2019, vol . 7, p. 85808-85822.

[3] A L I , N . , G A O , L . , W A N G , X . and L i , L . Asynchronous Communica t ion Between
Microservices: The Service Mesh . IEEE Cloud Computing. I E E E . 2020, vol . 7, no. 6,
p. 64-71.

[4] A L I Z A D E H , E . , R A Z A K , S. A . , S H O J A F A R , M . and G A N I , A . Performance evaluation

of J S O N and X M L for big data storage and processing. Journal of Big Data.
Springer. 2015, vol . 2, no. 1, p. 1-18.

[5] ATLASSIAN. lira [h t t p s : / / w w w . a t l a s s i a n . c o m / s o f t w a r e / j i r a] . 2002. Accessed:
2022-04-22.

[6] ATLASSIAN. Confluence [h t t p s : / / w w w . a t l a s s i a n . c o m / s o f t w a r e / c o n f l u e n c e] . 2004.
Accessed: 2022-04-22.

[7] B E C K , K . and A L . et. Manifesto for Agile Software Development. Agi le Al l iance ,
2001.

[8] B O A T E N G , R . and S I A W , F . User Authent ica t ion and Author iza t ion in the Dig i t a l
Age. In: Handbook of Research on Human-Computer Interfaces, Developments, and
Applications. I G I Globa l , 2018, p. 79-98.

[9] C I , J . Jenkins [h t t p s : / / w w w . j e n k i n s . i o /] . 2021. Accessed: Apr i l 22, 2023.

[10] D R A G O N I , N . , G I A L L O R E N Z O , S., L A F U E N T E , A . L . , M A Z Z A R A , M . and P R I C L , S.

Monol i th i c to microservices: A n experience report from the banking domain. Journal
of Systems and Software. Elsevier. 2017, vol . 131, p . 81-92.

[11] F O W L E R , M . Microservices: a definition of this new architectural term.
Martinfowler.com. 2014, vol . 25, p. 2014.

[12] G A L L O , M . H O W to Use Bitbucket: A Guide for Beginners. The Startup. A p r i l 2020.
Available at: https:
//medium.com/swlh/how-to-use-bitbucket-a-guide-for-beginners-94339b0a9f9c.

40

http://www.atlassian.com/software/jira
http://www.atlassian.com/software/confluence
http://www.jenkins.io/
http://Martinfowler.com

[13] G O R S C H E K , T . and W N U K , K . Software requirements pr ior i t izat ion. IEEE software.
I E E E . 2006, vol . 23, no. 2.

[14] H A S H I C O R P . Consul Documentation [https://www .consul.io/docs/]. 2021.
Accessed: Apr i l 22, 2023.

[15] H U M B L E , J . and F A R L E Y , D . Continuous delivery and the world of devops. IEEE
software. I E E E . 2010, vol . 28, no. 3, p. 18-21.

[16] J A C K S O N , F . Jackson in Action. Shelter Island, N Y : M a n n i n g Publ icat ions, 2019.
I S B N 978-1-61729-372-5.

[17] J A N K O V I C O V A , J . F igma : Collaborat ive interface design tool . In: I E E E . 2018 10th
International Conference on Electronics, Computers and Artificial Intelligence
(ECAI). 2018, p. 1-4.

[18] J E S P E R S E N , C . and B E R G M A N , S. Continuous integration and delivery of
microservices using Jenkins C I . In: I E E E . 2016 International Conference on
Computational Science and Computational Intelligence (CSCI). 2016, p. 516-522.

[19] K A R L S S O N , J . and R Y A N , K . Software development: Agi le vs. t radi t ional . IEEE
Software. I E E E . 2001, vol . 18, no. 5, p. 104-105.

[20] K I M , G . , H U M B L E , J . , D E B O I S , P . and W I L L I S , J . The DevOps Handbook: How to

Create World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolut ion Press, 2016.

[21] K O L I A S , C , K A M B O U R A K I S , G . , G R I T Z A L I S , S. and S T E R G I O P O U L O S , G . Taxonomy

of cyber attacks: A comprehensive study of types, motives and techniques. Journal
of Network and Computer Applications. Elsevier. 2017, vol . 88, p. 1-10.

[22] L A R M A N , C . Agile and iterative development: a manager's guide. Addison-Wesley
Professional, 2004.

[23] L i , X . , Z H U , X . , S H E N , B . , G A O , S. and L i u , Y . Swagger Edi to r : A Graph ica l Tool
for O p e n A P I Definitions. IEEE Software. I E E E . 2017, vol . 34, no. 5, p. 87-91.

[24] N E W M A N , S. Building Microservices: Designing Fine-grained Systems. Sebastopol,
C A , U S A : O ' R e i l l y Media , Inc., 2015. I S B N 1491950358, 9781491950357.

[25] O N S E M I . O N Semiconductor. Onsemi.com. 2022. Available at:
h t tp s : //www.onsemi. com/company/about-onsemi.

[26] S H A H , M . Generat ing client-side code w i t h Swagger: a complete walkthrough.
Journal of Open Source Software. The Open Journal . 2017, vol . 2, no. 12, p. 269.

[27] S H A R I F L O O , A . and T I Z H O O S H , H . R . Cluster-based Archi tecture for H i g h
Avai labi l i ty and Scalabil i ty of Web Appl ica t ions . Journal of Network and Computer
Applications. Elsevier. 2016, vol . 76, p. 84-94.

[28] S O M M E R V I L L E , I. Software engineering. Pearson Educa t ion L i m i t e d , 2015.

[29] S O M M E R V I L L E , I. and S A W Y E R , P . Requirements engineering: a good practice guide.
John W i l e y & Sons, 1997.

41

http://www.consul.io/docs/
http://Onsemi.com
http://www.onsemi

[30] S P Ö C K F R A M E W O R K C O N T R I B U T O R S . Spöck Framework

[h t t p s : / / s p o c k f r a m e w o r k . o r g /] . 2 0 2 3 . Accessed: Apr i l 17, 2 0 2 3 .

[31] S T A L L I N G S , W . and B R O W N , L . Computer Security: Principles and Practice.
Pearson, 2 0 1 7 .

[32] Š T E F Á N I K O V A , A . System architecture design: A pract ical overview. Procedia
Engineering. Elsevier. 2 0 1 6 , vol . 1 6 1 , p . 1 1 9 6 - 1 2 0 1 .

[33] S Y S A I D . Microservices Architecture: W h y Asynchronous Communica t ion is Better.
SysAid Tech Blog [h t t p s://www . sy sa id . com/b log / sysa id - t ech /mic rose rv i ce s -
a r c h i t e c t u r e - a s y n c h r o n o u s c o m m u n i c a t i o n - b e t t e r] . A p r i l 2 0 2 1 . Accessed: A p r i l
2 2 , 2 0 2 3 .

[34] T A H C H I E V , M . and M I T E V , N . B u i l d i n g Microservices w i th Spr ing Boot and Spring
C loud . Spring: Developing Microservices with Spring Boot. Apress. 2 0 1 9 , p. 3 5 - 5 5 .

[35] T O D O R O V , S. and KovAČEVic , J . React: Up & Running: Building Web Applications.
Sebastopol, C A : O ' R e i l l y Media , 2 0 1 6 .

[36] U L L E N B O O M , C . Java 8 - The Complete Reference, Ninth Edition. New York , N Y :
M c G r a w - H i l l Educa t ion , 2 0 1 4 . I S B N 9 7 8 - 0 - 0 7 - 1 8 0 8 5 5 - 2 .

[37] W A L L S , C . Spring in Action: Covers Spring 4- M a n n i n g Publ icat ions, 2 0 1 6 .

[38] W A N G , X . , L i , Z . , L i , X . , L i , Y . and W u , Z . A survey on microservice A P I
documentation. Journal of Systems and Software. Elsevier. 2 0 2 0 , vol . 1 7 0 , p. 1 1 0 7 2 7 .

4 2

http://spockframework.org/
http://www.sysaid.com/blog/sysaid-tech/microservices-

Appendix A

Contents of the physical medium

The included S D card contains, in addi t ion to the work itself, the most important files that
have been created to add new functionality to the system.

• text .pdf - P D F file containing this bachelor thesis

• \source - source codes

• \models - models used i n system

• \tests - snit tests used

43

file:///source
file:///models
file:///tests

