
Factor analysis
with ordinal attributes

Markéta Trnečková

Dissertation

Faculty of Science

Palacký University Olomouc

2016





iii

Author

Markéta Trnečková (nee Krmelová)

Department of Computer Science

Faculty of Science

Palacký University Olomouc

17. listopadu 12

CZ–771 46 Olomouc

Czech Republic

www.marketa-trneckova.cz

marketa.trneckova@gmail.com

Keywords

Matrix decomposition, Factor analysis, Ordinal data, Fuzzy logic

Declaration

Hereby I declare that the thesis is my original work.

Some parts of this thesis are based on outcomes of the joint scientific work

with Radim Bělohlávek (radim.belohlavek@acm.org) (Chapters 2, 3, 4, 5 and

6). All authors have even share in the results and findings contained in the

respective parts.

Markéta Trnečková

www.marketa-trneckova.cz


iv



v

Abstract The problem of matrix decomposition, also known as matrix

factorization problem, is widely investigated in data mining community. Es-

pecially Boolean case, where entries of matrices are 0s and 1s. In this the-

sis we explore the extension of matrix decomposition problem for ordinal

data, i.e. data where attributes are values from ordered scales. The replace-

ment of the two-element set of Boolean values and Boolean operations by

a multiple-valued set of grades and multiple-valued operations introduced

various non-trivial problems. We examine existing algorithms for ordinal

data and propose three new algorithms for matrix decomposition problem.

We demonstrate that the proposed algorithms deliver decompositions with

informative and easy-to-understand factors by analysing real datasets. More-

over, we also compare algorithms presented on synthetic datasets.



vi



vii

Acknowledgements

I would like to thank to my whole family and especially to my husband

Martin for their support and love. My gratitude also belongs to my advisor,

prof. RNDr. Radim Bělohlávek, DSc and Mgr. Petr Osička, Ph.D. for their

valuable comments and advices to this thesis.

This thesis is supported by grant No. GA15-17899S of the Czech Science

Foundation and by grant No. PrF 2016 027 of IGA of Palacký University

Olomouc.



viii



Contents

1 Introduction 1

1.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 7

2.1 Fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Decomposition problem and its two variants . . . . . . . . . . 9

2.3 Formal concept analysis . . . . . . . . . . . . . . . . . . . . . 12

2.4 Errors in decomposition . . . . . . . . . . . . . . . . . . . . . 13

3 First observations 15

3.1 Variants of decomposition problem in the general case . . . . . 15

3.2 Decomposition problem as a covering problem . . . . . . . . . 17

3.3 Role of entries in matrix . . . . . . . . . . . . . . . . . . . . . 18

3.4 Explanation of data by factors . . . . . . . . . . . . . . . . . . 20

3.4.1 General case . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Selection of rows from dataset . . . . . . . . . . . . . . 22

4 Previous algorithms 23

4.1 Boolean factorization of ordinally scaled attributes . . . . . . 23

4.2 Previous algorithms for ordinal data . . . . . . . . . . . . . . 25

4.2.1 GreConL . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 GreConDL . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Statistical methods . . . . . . . . . . . . . . . . . . . . 26

5 New algorithms 31

5.1 GreEssL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Essential parts of matrices over scales . . . . . . . . . . 31

ix



x CONTENTS

5.1.2 GreEssL algorithm . . . . . . . . . . . . . . . . . . . 34

5.2 AssoL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Association matrix . . . . . . . . . . . . . . . . . . . . 37

5.2.2 Procedures Cover and AssoL . . . . . . . . . . . . . 39

5.3 GreConDL+ . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Algorithm GreConDL+ . . . . . . . . . . . . . . . . 43

6 Experimental evaluation 47

6.1 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Results for GreConDL . . . . . . . . . . . . . . . . . 49

6.1.2 Results for ordinal scaling . . . . . . . . . . . . . . . . 50

6.1.3 Results for NMF . . . . . . . . . . . . . . . . . . . . . 52

6.1.4 Results for GreEssL . . . . . . . . . . . . . . . . . . . 54

6.1.5 Results for AssoL . . . . . . . . . . . . . . . . . . . . 54

6.1.6 Results for GreConDL+ . . . . . . . . . . . . . . . . 56

6.1.7 Choice of the scale of degrees . . . . . . . . . . . . . . 57

6.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 Evaluation of explanation data . . . . . . . . . . . . . 69

6.3.2 Selection of smaller I from J . . . . . . . . . . . . . . . 73

6.3.3 Role of τ in AssoL algorithm . . . . . . . . . . . . . . 76

7 Conclusion 79

Summary in Czech 81

Bibliography 83



CONTENTS xi



xii CONTENTS



Chapter 1

Introduction

1.1 Problem setting

Factor analysis and related techniques based on matrix decompositions are

important methods of data analysis. In the past, considerable attention

has been paid to the problem of Boolean matrix factorization (BMF) and

its variants, because of its direct usefulness in data analysis and its role in

understanding Boolean data.

The basic problem is to find for a given n ×m Boolean matrix I, some

n × k and k ×m Boolean matrices A and B with a reasonably small k for

which the Boolean product A ◦B is (approximately) equal to I.

In this thesis, we are concerned with extending the problems and methods

of BMF toward a more general case. Namely, instead of Boolean matrices

whose entries are 0s and 1s, we consider matrices with entries taken from a

partially ordered set L bounded by 0 and 1, such as for example the five-

element scale L = {0, 1
4
, 1
2
, 3
4
, 1}. The entries of a Boolean matrix I represent

presence (Iij = 1) and absence (Iij = 0) of attributes. In the more general

case, the entries represent degrees to which attributes are present, i.e. degrees

to which they apply to objects, with 0 and 1 representing full absence and

full presence and the intermediate degrees, such as 3
4
, representing partial

presence.

Several methods for real-valued matrices exist. The best known are for ex-

ample singular value decomposition and principal component analysis. These

methods are widely used but the produced results are often hard to interpret,

because of a possible presence of negative coefficients. Another well-known

method, non-negative matrix factorisation, deals with this issue, but inter-

1



2 CHAPTER 1. INTRODUCTION

pretation of results is not quite straightforward either.

Papers [5, 18] extended the Boolean matrix factorization problem and the

methods developed in [19] to ordinal data. This thesis provides an overview

of existing methods, presents three new algorithms inspired by the existing

BMF algorithms and compares them. Particular parts (Chapters 2, 3, 4, 5

and 6) of this thesis are mainly based on the following articles:

[7] R. Belohlavek, M. Krmelova, “Factor Analysis of Sports Data via De-

composition of Matrices with Grades”, In: Szathmary L., Priss U.

(Eds.): CLA 2012: Proceedings of the 9th International Conference on

Concept Lattices and Their Applications, 2012, pp. 293–304 Fuengirola

(Málaga), Spain, October 2012,

[8] R. Belohlavek, M. Krmelova, “Beyond Boolean Matrix Decomposi-

tions: Toward Factor Analysis and Dimensionality Reduction of Or-

dinal Data”, ICDM 2013, pp. 961–966, 2013,

[9] R. Belohlavek, M. Krmelova, “Factor Analysis of Ordinal Data via

Decomposition of Matrices with Grades”, Annals of Mathematics and

Artiffcial Intelligence 72 (1–2) (2014), 23–44,

[14] R. Belohlavek, M. Trneckova, “The Asso algorithm for graded at-

tributes”, Unpublished manuscript,

[15] R. Belohlavek, M. Trneckova, “Toward a geometry of decompositions

of matrices with grades”, Unpublished manuscript,

[16] R. Belohlavek, M. Trneckova, “A decomposition algorithm for matrices

with grades that admits overcovering”, Unpublished manuscript.

[7] presents analyses of various sports datasets using the algorithm pre-

sented in [18]. The aim of [7] is to demonstrate that the method yields rea-

sonable factors and explain in detail how the factor model and the factors are

to be understood. [9] is an extended version of [7], we provided here exten-

sive experimentation and in addition, we proposed ways to address questions

regarding the ability to explain a given data by factors obtained from this

or possibly different data described by the same attributes. In [8, 14, 15, 16]

we present new theorems regarding decompositions of matrices with ordi-

nal data and propose new algorithms based on these results along with an

experimental evaluation.



1.2. RELATED WORK 3

The full list of my publications can be found at my personal webpages

http://www.marketa-trneckova.cz.

This thesis consists of seven chapters. The first chapter contains a brief

introduction to this work and also contains the list of my publications rele-

vant to this thesis and a brief survey of related works. The second chapter

defines the problem this thesis is dealing with and lists the used notation. In

the third chapter we present first observations related to new theory behind

the presented algorithms. The fourth chapter contains a brief description

of existing algorithms that will be present in the experimental part of this

thesis (Chapter 6) together with the new algorithms presented in Chapter 5.

Chapter 5, the main part of this thesis, comprises description of three new

algorithms, their definition and same theoretical insight behind them. Chap-

ter 6, the experimental part of this thesis, consists of several experiments.

Shows how all presented methods work and their results on a small illustra-

tive example and provides us results of various experiments on both real and

synthetics datasets. The thesis is closed by Chapter 7 containing a summary

of the work.

1.2 Related work

This section summarizes the works directly related to the topics in this the-

sis. The main part of this thesis is devoted to matrix decompositions—

factorization of a matrix into a product of two or more matrices. Roots of

this decompositions lays in factor analysis, which aims is to find new hidden

variables (factors) in data. Factor analysis was initiated in 1904 by Charles

Spearman [55], when he wanted to determine whether there are common fac-

tors of human intelligence. He tested how well people performed on various

tasks relating to intelligence.

Since the literature on matrix decompositions is too numerous we present

here only a little part of it. Perhaps the best known methods designed for

real-valued matrices are singular value decomposition (SVD) [56], principal

component analysis (PCA) [26, 31], independent component analysis (ICA)

[23] and network component analysis (NCA) [40]. These methods usually de-

compose n×m real input matrix I into a product of two (in case of PCA, ICA,

NCA, NMF) or three matrices (in SVD). The constraints of each method are

different. For example for PCA, we want one of the resulted matrices to be

http://www.marketa-trneckova.cz


4 CHAPTER 1. INTRODUCTION

orthogonal, in ICA we require all components of the resulting matrix indepen-

dent. There exist many applications using these methods, for example image

processing and compression [2] or data reduction [24]. When using these

techniques, some issues appears—such as a difficulty to interpret negative

coefficients. This problem is solved by the well-known non-negative matrix

factorization (NMF) [38]. Even though NMF is conceptually very different

from the methods that we propose, a comparison seems worth performing.

Applications of NMF are numerous, let us mention several of them. Text

mining—analysis of document-term matrix (constructed usually as weighted

word frequency in a set of documents)—[50] analyse small subset of scientific

abstracts from PubMed database, [51] clusters Wikipedia articles and scien-

tific journals based on the citations. Another application is spectral analysis,

for example classification of space objects and debris [21], or bioinformatics

applications such as for example gene expression [58] and identify common

patterns of mutations that occur in cancers [1].

The data mining community pays attention to Boolean matrix factori-

sation, which is the most related to this work. One of the first paper in

this area is [49] in which NP-completeness of the basic decomposition prob-

lem is observed. The interest in BMF in data mining is due to Miettinen’s

works, especially [46] with the Asso algorithm whose extension for matrices

with scales we propose. Another Miettinen’s works related to BMF include

Boolean CX and CUR decompositions (different kind of decomposition) [43],

investigating sparcity in BMF [44], examining common factor of two and

more matrices [45], selecting the number of factors using minimum descrip-

tion length (MDL) [47]. [29] is the first paper on “tiling” Boolean data, which

is closely related to BMF since it corresponds to the from-below factorizations

that we examine for matrices with scales.

The utilization of formal concepts (fixpoints of Galois connections) of

Boolean matrices as factors, two BMF algorithms—a GreCon and a Gre-

ConD algorithms—and other issues are examined in [19]. One of these issues

is a transformation between the space of attributes and the space of factors.

This is used in machine learning for classification of Boolean data [10, 11].

Another paper about BMF related to our work is [12], which proposed the

GreEss algorithm based on essential elements, which we generalize in this

work. Not yet published is [13], which includes the algorithm GreConD+,

a modification of the algorithm GreConD which allows for overcover error.

[62] studies summarization of Boolean data and proposes an algorithm uti-



1.2. RELATED WORK 5

lizing MDL called PaNDa, which is the algorithm for mining top-k patterns

in Boolean data in [41] (the problems are naturally reformulated as BMF

problems). Modification of PaNDa algorithm with using several different

cost functions called PaNDa+ algorithm was proposed in [42]. Another al-

gorithm called Nassau utilizes the MDL principle for solving BMF problem

(in different way that PaNDa) was presented in [35].

In this thesis we are interested in a more general case namely in factorising

matrices with entries from an appropriate scale. Matrices over scales and

other structures are examined in many papers, including those on matrices

over semi-ring-like algebras [30] and binary fuzzy relations between finite

universes, see e.g. [3, 32].

Directly related to this paper are also [5, 18], where the the role of formal

concepts of matrices over scales is studied and a decomposition algorithms

are proposed. [9] presents analyses of various sports datasets using this al-

gorithm and studies further theoretical problems inspired by the analyses.

For algorithms AssoL and GreEssL presented in this thesis we refer to

[8, 14, 15] and for algorithm GreConDL+ we refer to [16].

A theoretical basis of this work lays in formal concept analysis (of Boolean

data) [28], ordered and combinatorial structures [54] and closure structures

in the setting of fuzzy logic and structures over scales [3]. The scales with

aggregation we utilize in our work have recently been investigated in the

context of formal fuzzy logic [32, 33].

Methods of analysis of ordinal data also appear in the psychological lit-

erature but the tools employed are basically variations of classical factor

analysis. That is, grades are represented by and treated like numbers which

leads to loss of interpretability, similarly as in the case of Boolean data, see

e.g. [59].

Possible extension of factor analysis is multi-relational factor analysis. In

specific form was mentioned in [45] as joint subspace matrix factorization,

where are two Boolean matrices and both share the same rows (or columns).

Another paper related to this topics is [34], where is introduced the relational

formal concept analysis, i.e. the formal concept analysis on multi-relational

data. The multi-relational data are iteratively merged into one data table and

than processed. The most relevant papers for this extension are [37, 60, 61],

where was presented factorisation of multi-relational data. Also a heuristic

algorithm was presented there.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

This chapter describes the notation and calculus used in this thesis. We start

with fuzzy logic, define problem of matrix decomposition and conclude with

formal concept analysis which we mainly use for solving the decomposition

problem.

2.1 Fuzzy logic

Fuzzy logic has been employed to handle the concept of partial truth, where

the truth value may range between completely true and completely false.

This approach has been proven to be useful in several areas and we utilize it

in our work. The content of this section is based on [3].

Let us consider a set L of truth values. We assume that this set is partially

ordered (partial ordering is denoted by ≤), contains a least element 0 and a

greatest element 1.

Let a and b truth degrees from L, then in L exists a truth value which is

greater than both a and b. The least element that is greater or equal to both

a and b is called supremum of a and b. Analogously, we can define infimum

of a and b—the greatest element from L which is smaller or equal to both a

and b. We define the lower cone of A by L(A) = {a ∈ L|a ≤ b for all b ∈ A}
and the upper cone of A by U(A) = {a ∈ L|b ≤ a for all b ∈ A}. If L(A)

has a greatest element a, then a is called the supremum of A (denoted
∨
A)

and dually if U(A) has a least element a, then a is called the infimum of

A (denoted
∧
A). In particular, we assume that the partial order ≤ makes

L a complete lattice [32] (i.e., arbitrary infima
∧

and suprema
∨

exist in

7



8 CHAPTER 2. PRELIMINARIES

L). This assumption is automatically satisfied if L is a finite chain (i.e.

a ≤ b or b ≤ a for every a, b ∈ L), in which case a ∧ b = min(a, b) and

a ∨ b = max(a, b). We also need to define operation logical conjunction

(denoted by ⊗). We assume that ⊗ is commutative, associative, has 1 as its

neutral element (a⊗ 1 = a = 1⊗ a), and distributes over arbitrary suprema,

i.e. a⊗ (
∨
j∈J bj) =

∨
j∈J(a⊗ bj). This leads to if a and b are truth degrees

of propositions p1 and p2, then a ⊗ b is the truth degree of proposition “p1
and p2”.

Importantly, ⊗ induces another operation, →, called the residuum of ⊗,

which plays the role of the truth function of implication and is defined by

a→ b = max{c ∈ L | a⊗ c ≤ b}. (2.1)

Residuum, which may be looked at as a kind of division, satisfies an impor-

tant technical condition called adjointness:

a⊗ b ≤ c iff a ≤ b→ c,

which is also utilized below. This leads to algebraic structures called residu-

ated lattices.

Definition 1. A residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉
where

(i) 〈L,∧,∨, 0, 1〉 is a lattice with a least element 0 and a greatest element

1,

(ii) 〈L,⊗, 1〉 is a comutative monoid i.e. ⊗ is associative, commutative,

and the identity x⊗ 1 = x holds,

(iii) ⊗ and → satisfy the adjointness property, i.e.

x ≤ y → z iff x⊗ y ≤ z

holds for each x, y, z ∈ L (≤ denotes the lattice ordering).

A residuated lattice is called complete if 〈L,∧,∨, 0, 1〉 is a complete lat-

tice.

Many examples of scales are known in many-valued logic [32, 33], among

them those where L is the real unit interval [0, 1] or its finite equidistant



2.2. DECOMPOSITION PROBLEM AND ITS TWO VARIANTS 9

subinterval, i.e. L = {0, 1
n
, . . . , n−1

n
, 1}, which are used in examples and

experiments presented in the thesis.

Examples of ⊗ include

 Lukasiewicz t-norm defined by

a⊗ b = max(0, a+ b− 1),

whose residuum is

a→ b = min(1, 1− a+ b),

Gödel

a⊗ b = min(a, b),

whose residuum is

a→ b =

{
1 if a ≤ b

b if a > b

and Goguen conjunction

a⊗ b = a · b,

whose residuum is

a→ b =

{
1 if a ≤ b
b
a

if a > b

As far as the choice of the operations on L is concerned, we mainly use

 Lukasiewicz in examples, because of some of its intuitive properties. For

example, the implication → naturally corresponds to the natural distance in

[0, 1].

2.2 Decomposition problem and its two vari-

ants

Factor analysis is a method used to describe variability among observed,

correlated variables in terms of a potentially smaller number of unobserved

variables which are called factors. For example, it is possible that variations

in several observed variables (such as performance of students) mainly reflect

the variations in an unobserved variable (their intelligence).

Formally, the input data is represented by an n × m object–attribute

matrix I and the “explanation” means a decomposition

I = A ◦B (2.2)



10 CHAPTER 2. PRELIMINARIES

(exact or approximate) of I into a product A ◦ B of an n × k object–factor

matrix A and a k × m factor–attribute matrix B. What kind of matrices

(real, Boolean, or other) and what kind of product ◦ are involved determines

the semantics of the factor model.

Now we present two concrete variants of the decomposition problem.

These two problems reflect two important views on BMF. The first one—the

discrete basis problem (DBP) [46]—emphasizes the importance of the first k

(presumably the most important) factors. The second one—the approximate

factorization problem (AFP) [12]—emphasizes the need to account for (and

thus to explain) a prescribed portion of data, which is specified by error ε.

Formally DBP is defined as follows:

Given n×m matrix I and positive integer k, find n× k matrix A and k×m
matrix B that minimize ||I − A ◦B||.

AFP is defined as follows:

Given n×m matrix I and prescribed error ε, find n× k matrix A and k×m
matrix B with k as small as possible such that that minimize ||I−A◦B|| ≤ ε.

Several other reasonable variants may be formulated but we restrict to

these two because they reflect two basic views of the decomposition problem.

Our model (2.2) involves matrices containing degrees (or grades) of cer-

tain scales L and the product is the sup-⊗ product, as described below. In

particular, the matrix entry Iij is a degree to which attribute j applies to

object i, for example Iij = 0.5. Similarly, Ail is the degree to which factor l

applies to object i and Blj is the degree to which attribute j is (one partic-

ular) manifestation of factor l. The case in which the scale L contains only

two degrees, 0 and 1, called the Boolean case in what follows, corresponds to

Boolean matrices and Boolean factor analysis [19] which is a special case of

ours.

A verbal description of equation (2.2) reads:

Object i has attribute j if and only if

there exists factor l such that i has l (or, l applies to i) (2.3)

and j is one of the particular manifestations of l.

Such description is certainly appealing and well understandable.

In the Boolean case, in which L = {0, 1}, the verbal description leads to

(A ◦B)ij = 1 iff there exists l ∈ {1, . . . , k} such that Ail = 1 and Blj = 1,



2.2. DECOMPOSITION PROBLEM AND ITS TWO VARIANTS 11

which may equivalently be described by the well-known formula

(A ◦B)ij =
k

max
l=1

min(Ail, Blj) (2.4)

for Boolean matrix composition.

With a general scale L, we approach the situation according to the prin-

ciples of (mathematical) fuzzy logic (see Section 2.1) as follows. Let us have

the formulas ϕ(i, l) saying “object i has factor l” and ψ(l, j) saying “attribute

j is a manifestation of factor l”, and consider Ail the truth degree of ϕ(i, l)

and Blj the truth degree of ψ(l, j), i.e.

||ϕ(i, l)|| = Ail and ||ψ(l, j)|| = Blj. (2.5)

Now, according to fuzzy logic, the truth degree of formula ϕ(i, l) &ψ(l, j)

which says “object i has factor l and attribute j is a manifestation of factor

l” is computed by

||ϕ(i, l) &ψ(l, j)|| = ||ϕ(i, l)|| ⊗ ||ψ(l, j)||

where ⊗ : L×L→ L is a truth function of many-valued conjunction &, and

hence the truth degree of (∃l)(ϕ(i, l)&ψ(l, j) which says “there exists factor

l such that object i has l and attribute j is a manifestation of l”, i.e. the

proposition involved in (2.3), is computed by

||(∃)(ϕ(i, l) &ψ(l, j))|| =
∨k
l=1 ||ϕ(i, l)|| ⊗ ||ψ(l, j)||, (2.6)

where
∨

denotes the supremum. Given into account (2.5), we see that a

generalization of (2.4) to the case of possibly intermediate degrees is given

by

(A ◦B)ij =
∨k
l=1Ail ⊗Blj. (2.7)

Therefore, with ◦ given by (2.7), the factor model (2.2) retains its meaning

(2.3) even in the case when intermediate degrees are allowed.

Example 1. With  Lukasiewicz t-norm, let I = A ◦B:0.5 1.0 0.0

0.0 0.5 0.5

0.0 0.5 0.0

 =

1.0 0.5

0.5 1.0

0.5 0.5

 ◦ (0.5 1.0 0.0

0.0 0.5 0.5

)



12 CHAPTER 2. PRELIMINARIES

2.3 Formal concept analysis

From the description in Section 2.2, it is clear that for any decomposition

(2.2), the lth factor (l ∈ {1, . . . , k}) is represented by two parts: the lth

column A l of A and the lth row Bl of B. As shown in [5], optimal factors for

a decomposition of I (see below) are provided by formal concepts associated

to I. In detail, let X = {1, . . . , n} (objects) and Y = {1, . . . ,m} (attributes).

Recall that a formal concept (formal fuzzy concept) of I is any pair 〈C,D〉
of L-sets (fuzzy sets) C : {1, . . . , n} → L of objects and D : {1, . . . ,m} → L

of attributes, see [4], that satisfies C↑ = D and D↓ = C where ↑ : LX → LY

and ↓ : LY → LX are the concept-forming operators defined by

C↑(j) =
∧
i∈X(C(i)→ Iij) and D↓(i) =

∧
j∈Y (D(j)→ Iij).

The set of all formal concepts of I is denoted by B(X, Y, I) or just B(I).

The set B(I) = {〈C,D〉 | C↑ = D,D↓ = C} equipped with a partial order ≤,

defined by 〈C1, D1〉 ≤ 〈C2, D2〉 iff C1 ≤ C2 (iff D2 ≤ D1), forms a complete

lattice, called the concept lattice of I. The fuzzy set C is called extent and

the fuzzy set D is called intent. C(i) ∈ L is interpreted as the degree to which

factor l applies to object i and D(j) ∈ L is the degree to which attribute j

is a manifestation of l.

Example 2. Let us have X = {a, b, c}, Y = {1, 2, 3} and matrix I from

Example 1, i.e.

I =

0.5 1.0 0.0

0.0 0.5 0.5

0.0 0.5 0.0


the set of all formal concepts and the corresponding concept lattice can be

seen in Table 2.1 and Figure 2.1, respectively.

Optimality of using formal concepts as factors means the following. Let

for a set

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(I) (2.8)

of formal concepts denote by AF and BF the matrices defined by

(AF)il = (Cl)(i) and (BF)lj = (Dl)(j). (2.9)



2.4. ERRORS IN DECOMPOSITION 13

Fi Extent Intent

C0 {1/a, 1/b, 1/c} {0/1, 0.5/2, 0/3}
C1 {0.5/a, 1/b, 0.5/c} {0/1, 0.5/2, 0.5/3}
C2 {1/a, 0.5/b, 0.5/c} {0.5/1, 1/2, 0/3}
C3 {0.5/a, 0.5/b, 0.5/c} {0.5/1, 1/2, 0.5/3}
C4 {0.5/a, 0/b, 0/c} {1/1, 1/2, 0.5/3}
C5 {0/a, 0.5/b, 0/c} {0.5/1, 1/2, 1/3}
C6 {0/a, 0/b, 0/c} {1/1, 1/2, 1/3}

Table 2.1: Example 2: All formal concepts

C6

C4 C5

C3

C1 C2

C0

Figure 2.1: B(I)

Then, whenever I = A ◦ B for n × k and k × m matrices A and B, there

exists a set F ⊆ B(I), |F| ≤ k such that I = AF ◦ BF , i.e. the optimal

decompositions are attained by formal concepts as factors. Proof of this

claim is below (Equation 2).

By rankL(I) we denote the smallest k for which the above decomposition

of I exists and call it the (L-)rank of I.

For two matrices J1, J2 ∈ Ln×m we put

J1 ≤ J2 iff (J1)ij ≤ (J2)ij for every i, j (2.10)

in which case we say that J1 is contained in J2. J ∈ Ln×m is called a rectangle

if J = C ◦D for some column C ∈ Ln×1 and row D ∈ L1×m. Note that in the

Boolean case, rectangles are just tiles in terms of [29], i.e. rectangular areas

filled with 1s. Unlike the Boolean case, the C and D for which J = C ◦ D
are not unique. We say that a rectangle J covers 〈i, j〉 in I if Jij = Iij.

2.4 Errors in decomposition

When we desire exact decomposition, using formal concept as factors is ben-

eficial, but it has a limitation—it never commit overcovering—when approx-

imate factorization is needed. For factor model 2.2, we are talking about

uncovering when Iij > (A ◦B)ij and overcovering when Iij < (A ◦B)ij.

The error function E (distance) between I and approximate decomposi-

tion (A ◦ B) is sum of two components—Eu and Eo denoting uncover error

and overcover error respectively, i.e E = Eu + Eo. Uncover and overcover



14 CHAPTER 2. PRELIMINARIES

errors may be defined as follows

Eu =
∑
i

∑
j

1− (Iij → (A ◦B)ij),

Eo =
∑
i

∑
j

1− ((A ◦B)ij → Iij).

These two components are not symmetrical. While Eu can only decrease

by adding more factors, Eo may only increase. This fact was presented in

boolean case in [12].

Observation 1. Let A′ ∈ Ln×(k+1) and B′ ∈ L(k+1)×m result by adding a

single column and row, respectively. Then Eu(I, A
′ ◦B′) ≤ Eu(I, A ◦B) and

Eo(I, A
′ ◦B′) ≥ Eo(I, A ◦B).



Chapter 3

First observations

This chapter provides first observations that lead to deeper theoretical insight

to below presented algorithms. Results presented here are based on [7, 8, 9].

3.1 Variants of decomposition problem in the

general case

In the previous chapter we describe two variants of decomposition problem,

namely the discrete basis problem (DBP) and the approximate factorisation

problem (AFP). In order to define generalization of the DBP a AFP problems

for Boolean matrices to general problems over some scale L, we need to define

closeness of matrices over L.

The first possible approach is to take as closeness of two matrices I, J ∈
Ln×m function

s=(I, J) =

∑n,m
i,j=1 eq(Iij, Jij)

n ·m
.

Function eq(a, b) here returns 1 if a is equal to b and 0 otherwise. In a sense,

this is a pessimistic approach because it ignores the case where Iij is close to

but different from Jij.

Let sL : L×L→ [0, 1] be an appropriate function measuring closeness of

degrees in L. For matrices I, J ∈ Ln×m, put

s≈(I, J) =

∑n,m
i,j=1 sL(Iij, Jij)

n ·m
, (3.1)

i.e. s≈(I, J) ∈ [0, 1] is the normalized sum over all matrix entries of the

closeness of the corresponding entries in I and J . In general, we require

15



16 CHAPTER 3. FIRST OBSERVATIONS

sL(a, b) = 1 if and only if a = b, and sL(0, 1) = sL(1, 0) = 0, in which case

s≈(I, J) = 1 if and only if I = J . We furthermore require that a ≤ b ≤ c

implies sL(a, c) ≤ sL(b, c). For the important case of L being a subchain of

[0, 1], sL may be defined by

sL(a, b) = a↔ b,

where a ↔ b = min(a → b, b → a) is the so-called biresiduum (many-valued

equivalence from a logical point of view) of a and b (note that → is the

residuum (2.1) of ⊗).

We use closeness because of its natural logical interpretation as a many-

valued equivalence but, clearly, one could alternatively use distance instead

of closeness.

In terms of above presented closeness, we now present generalisation of

the two above presented problems of decomposition over scale L:

– DBP(L): Given I ∈ Ln×m and a positive integer k, find A ∈ Ln×k and

B ∈ Lk×m that maximize s(I, A ◦B).

– AFP(L): Given I and prescribed error ε ∈ [0, 1], find A ∈ Ln×k and

B ∈ Lk×m with k as small as possible such that s(I, A ◦B) ≥ ε.

As s(I, A ◦B), we can take function s≈ or s=.

In view of the provable difficulty of the AFP and DBP in the Boolean

case [19, 46] and the remarks above, the following theorem is not surprising:

Theorem 1. DBP(L) and AFP(L) are NP-hard optimization problems.

Proof. The proof proceeds by adaptation of the proofs of NP-hardness of

the AFP and DBP in the Boolean case, see [19] and [46]. We proceed for

AFP(L) only, by showing that the restriction to instances with ε = 1 is NP-

hard. Due to our assumptions, s(I, A ◦ B) ≥ ε is equivalent to A ◦ B = I

in this case. According to the definition of NP-hardness, it suffices to verify

that the corresponding decision problem, Π, is NP-complete. Π consists in

deciding whether for a given I ∈ Ln×m and k there exists A ∈ Ln×k and

B ∈ Lk×m with A ◦B = I.

The Boolean version of Π is NP-complete because it is a reformulation

(see e.g. [19]) of the set basis problem whose NP-completeness is due to

[57]. To finish the proof it thus suffices to check that the restriction of Π to

Boolean input matrices I is NP-complete. But the latter fact follows since



3.2. DECOMPOSITION PROBLEM AS A COVERING PROBLEM 17

for a Boolean I, there exist A ∈ Ln×k and B ∈ Lk×m with A◦B = I iff there

exist Boolean matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m with A ◦ B = I.

Namely, if A ◦ B = I for A ∈ Ln×k and B ∈ Lk×m then A′ ◦ B′ = I for the

Boolean A′ and B′ defined by A′il = 1 if Ail = 1, A′il = 0 if Ail < 1, and the

same for B′, which is easily seen from the isotony of ⊗.

3.2 Decomposition problem as a covering prob-

lem

In Section 2.3, we present notation in formal concept analysis and present

a definition of rectangles in I. The following lemma, which is easy to see,

extends the observation in [5] and shows that an exact decomposition of I is

equivalent to a coverage of entries in I by rectangles contained in I.

Lemma 1. The following conditions are equivalent for any I ∈ Ln×m:

(a) I = A ◦B for some A ∈ Ln×k and B ∈ Lk×m.

(b) There exist rectangles J1, . . . , Jk ∈ Ln×m such that I = J1 ∨ · · · ∨ Jk,

i.e. Iij = maxkl=1(Jl)ij.

(c) There exist rectangles J1, . . . , Jk ∈ Ln×m contained in I such that every

〈i, j〉 in I is covered by some Jl.

In particular, for the matrices A and B in (a), one may take the product of

the lth column of A and the lth row of B to be the rectangle Jl in (b).

Importantly, Lemma 1 allows us to consider the problem of decomposition

of I as a certain coverage problem, namely the problem of covering the entries

in I by rectangles contained in I. Next we show that optimal in such coverage

are rectangles that correspond to so-called formal concepts of I, which are

fixpoints of certain operators and are studied in FCA, see [28] for the Boolean

case and [4] for the general case with scales.

The following theorem shows that formal concepts of I are optimal factors

for approximate decompositions of I that provide a from-below approximation

of I, i.e. A◦B ≤ I (note that these include exact decompositions I = A◦B).



18 CHAPTER 3. FIRST OBSERVATIONS

Theorem 2. Let for I ∈ Ln×m there exist A ∈ Ln×k and B ∈ Lk×m such

that A ◦ B ≤ I. Then there exists a set F ⊆ B(I) of formal concepts of I

with |F| ≤ k such that for the n×|F| and |F|×m matrices AF and BF over

L we have

s(I, AF ◦BF) ≥ s(I, A ◦B).

Proof. Since A ◦B ≤ I, Lemma 1 implies that every rectangle Jl = A l ◦Bl

is contained in I. Consider the pairs 〈(AT
l)
↑↓, (AT

l)
↑〉. Every 〈(AT

l)
↑↓, (AT

l)
↑〉

is a formal concept in B(I) (a well-known fact in FCA).

Moreover AT
l ≤ (AT

l)
↑↓, because ↑↓ is a closure operator. Since, A l ◦ Bl

is contained in I, a straightforward computation using adjointness of ⊗ and

→ implies Bl ≤ (AT
l)
↑. Now consider the set

F = {〈(AT
1)
↑↓, (AT

1)
↑〉, . . . , 〈(AT

k)
↑↓, (AT

k)
↑〉} ⊆ B(I)

and the matrices AF and BF . Clearly F contains at most k elements (it may

happen |F| < k). It is easy to check that the rectangle corresponding to

〈(AT
l)
↑↓, (AT

l)
↑〉, i.e. the cross-product (AF) l ◦ (BF)l , is contained in I and,

due to the above observation, contains Jl = A l ◦Bl . Hence,

A ◦B ≤ k
max
l=1

Jl ≤
k

max
l=1

(AF) l ◦ (BF)l = AF ◦BF ≤ I.

Since a ≤ b ≤ c implies sL(a, c) ≤ sL(b, c), we readily obtain s(I, AF ◦BF) ≥
s(I, A ◦B), finishing the proof.

3.3 Role of entries in matrix

We now examine in detail the coverage problem by rectangles, to which the

decomposition problem may be transformed. An inspection of the concept

lattice B(I) reveals an interesting fact—a possibility to differentiate the role

of matrix entries for decompositions. In, particular, we identify a so-called

essential part of I, a minimal set of entries whose coverage guarantees an

exact decomposition of I. We show later that the number of such entries

is significantly smaller than the number of all entries. Most importantly,

the essential part may be seen as the part to focus on when computing

decompositions. This view is studied in detail in Section 5.1.1 and is utilized

in the design of a decomposition algorithm in Section 5.1.2.



3.3. ROLE OF ENTRIES IN MATRIX 19

Note that the idea of differentiating the role of entries is inspired by

[12], but the situation is considerably more involved in the setting of scales

compared to the Boolean case.

The results presented in this section are based on [8].

Definition 2. J ≤ I is called an essential part of I if J is minimal w.r.t. ≤
having the property that for every F ⊆ B(I), J ≤ AF ◦BF then I = AF ◦BF .

In other words, the coverage of an essential part J by formal concepts of I

guarantees the coverage of all entries in I. It turns out that certain intervals

in B(I) play a crucial role for our considerations. For C ∈ L1×n, D ∈ L1×m,

put

γ(C) = 〈C↑↓, C↑〉 and µ(D) = 〈D↓, D↓↑〉,

and denote by IC,D the interval

IC,D = [γ(C), µ(D)]

in B(I), i.e. the set

[γ(C), µ(D)] = {〈E,F 〉 ∈ B(I) | γ(C) ≤ 〈E,F 〉 ≤ µ(D)}.

In particular, γ({ a
/
x}) = γ(x, a) and µ({ b

/
y}) = µ(y, b) are the map-

pings from the basic theorem of L-concept lattices [3].

In Section 5.1.1 we will show that all the rectangles corresponding to the

formal concepts in IC,D cover the rectangle CT ◦D.

Now, for a given matrix I ∈ Ln×m, let

Iij = {I{a/i},{b/j} | a, b ∈ L, a⊗ b = Iij}

and put

Iij =
⋃

Iij.

Note that the situation is much easier in the Boolean case. Namely, if

Iij > 0, then Iij consists of a single interval in the Boolean case because the

only a and b for which a ⊗ b = 1 are a = b = 1. In case of general scales,

there may be several pairs of a and b for which Iij = a ⊗ b, hence several

intervals of which Iij consists, see Example 3.

Later in Section 5.1.1 we will prove important theorem which shows that

Iij is just the set of all formal concepts of I that cover 〈i, j〉.



20 CHAPTER 3. FIRST OBSERVATIONS

Denote now by E(I) ∈ Ln×m the matrix over L defined by

(E(I))ij =

{
Iij if Iij is 6= ∅ and minimal w.r.t. ⊆,

0 otherwise.

In Section 5.1.1, we will show that E(I) is an essential part of matrix I.

Example 3. Let us have X, Y and I from Example 2. Than for en-

try 〈b, 2〉 we obtain two intervals. First one is bounded by factors C5 =

〈{0.5/b}↑↓, {0.5/b}↑〉 and C2 = 〈{1/2}↓, {1/2}↓↑〉 and second one is bounded by

C1 = 〈{1/b}↑↓, {1/b}↑〉 and C0 = 〈{0.5/2}↓, {0.5/2}↓↑〉, see Figure 3.1.

C6

C4 C5

C3

C1 C2

C0

Figure 3.1: B(I) with intervals for entry 〈b, 2〉.

3.4 Explanation of data by factors

In this section we propose a way to address the following related problems.

First, we want to determine what does it mean that a set of formal concepts

explain well (or to a certain extent) a given dataset? Second, what does it

mean that good factors of a given dataset explains well another dataset? The

results in this section are based on paper [9].

If a set F ⊆ B(X) of formal concepts of I satisfies I = AF ◦ BF , we

intuitively regard F as fully explaining the data represented by I and call F
a set of factor concepts. In general, however, we are interested in F for which

I is close to AF ◦ BF , in particular if F is reasonably small. We can take

into account above presented closeness s≈ and s= and say that F explains

100 · s=(I, AF ◦ BF)% of data represented by I. Clearly, this means that



3.4. EXPLANATION OF DATA BY FACTORS 21

100 · s=(I, AF ◦BF)% of all the n×m entries have the same values in I and

AF ◦BF . Or analogously for s≈ we can say that entries from I and AF ◦BF
are in average s≈(I, AF ◦BF) close.

In the rest of the paper unless otherwise stated, we take s≈ as closeness

function s.

3.4.1 General case

Let I and J be two matrices describing the sets X1 and X2 of objects by

a common set Y of attributes. How can we answer the question of whether

a set F ⊆ B(I) of possibly good factors of I is a set of good factors of

J? The concepts in F may not be directly used as concepts of J because

for 〈C,D〉 ∈ F we have C ∈ LX1 while we need ∈ LX2 for factors of J .

A abundantly discussed the topicnatural option is to consider instead of F
the set of concepts of J that are generated by the intents of the factors in F ,

i.e. the set

FJ = {〈D↓J , D↓J↑J 〉 | 〈C,D〉 ∈ F}, (3.2)

because the intents represent the meanings of concepts. One may then use

s=(I, AFJ
◦BFJ

) or s≈ to asses how well the factors F of I explain the data

represented by J .

Of a particular importance is the particular case when J results by adding

rows to I (i.e. adding objects to those represented by I). Let us thus assume

that X1 ⊆ X2 and that Iij = Jij for i ∈ X1 and j ∈ Y . We may proceed as

above but the following observation presents a convenient simplification of

the set FJ .

Observation 1 For the above notation,

FJ = {〈D↓J , D〉 | 〈C,D〉 ∈ F}.

Proof. We need to show that every intent of I is an intent of J . We have

D = C↑I . Consider the L-set E ∈ LX2 defined by E(i) = C(i) for i ∈ X1

and E(i) = 0 for i ∈ X2 −X1. Then

E↑J (j) =
∧
i∈X2

(E(i)→ Jij) =
∧
i∈X1

(E(i)→ Jij) ∧
∧
i∈X2−X1

(E(i)→ Jij)

=
∧
i∈X1

(C(i)→ Iij) ∧ 1 =
∧
i∈X1

(C(i)→ Iij) = C↑I = D,

proving that D is an intent of J .



22 CHAPTER 3. FIRST OBSERVATIONS

Therefore an intent of a factor of I is also an intent of a possible factor

of a larger dataset J .

3.4.2 Selection of rows from dataset

An interesting problem is how to select from a possibly large dataset J a

smaller I such that the factors of I explain well J . This problem was pre-

sented in [9], but no solution was provided here.

More precisely, J is the n×m matrix and k < n the non negative integer

smaller than n. We want to choose the k×m matrix I created by k selected

rows from J , such that the factors F ⊆ B(I) explain well J .

To solve the above presented problem, we use the essential part of ma-

trices presented in Section 3.3. We benefit from the fact that the essential

elements in matrix have some useful properties. One of them is that the es-

sential part of matrix J is a minimal set of entries whose coverage guarantees

an exact decomposition of J . Moreover essential part E(J) can be computed

easily.

The procedure is following. For matrix J , we compute E(J) and choose

k rows that contain the most of the essential elements. The idea behind the

procedure is quite simple. More covered essential elements leads to a bigger

coverage of input data. In Section 6.3.2 we present results of experimentation

with this heuristic.



Chapter 4

Previous algorithms

This chapter consists of previous algorithms for decomposition matrices with

ordinal attributes. The presented methods will be included in comparison

together with new algorithms presented in Chapter 5 in experimental evalu-

ation in the Chapter 6.

4.1 Boolean factorization of ordinally scaled

attributes

As was mentioned above, there is great effort devoted to the development of

matrix methods for Boolean data, particularly Boolean matrix factorization

(BMF), so there exist several algorithms for BMF. Small overview of BMF

methods can be found e.g. in [12].

A natural question is if this methods could be used for our purpose, i.e. to

perform decomposition of an input matrix I with grades as follows. A positive

answer may be given as follows. First, one transforms I by ordinal scaling

to a Boolean matrix I×. Second, one performs Boolean factor analysis to I×

and interprets the obtained set F× of factors of I× in an appropriate way,

taking the scaling procedure into account.

We presented this approach in paper [7], but experimental evaluation is

missing. We compare results obtained by this approach with other algorithms

in experimental part of this thesis (Chapter 6).

Given an input matrix I ∈ Ln×m, consider the matrix I× ∈ {0, 1}n×(m·|L|)

23



24 CHAPTER 4. PREVIOUS ALGORITHMS

defined by

I×ija =

{
1 if a ≤ Iij,

0 otherwise,

for i = 1, . . . , n, j = 1, . . . ,m, a ∈ L (we assume a fixed sorting of the

elements in L so that the order of columns in I× is fixed). That is, I× is

the Boolean matrix resulting from I by simple ordinal scaling. In a sense,

each graded attribute j is replaced by a collection of Boolean attributes ja
(a ∈ L); ja applies to object i if i has j to a degree at least a. The concept

lattices and other structures associated to I× and their relationships to those

associated to I are studied in [17, 20] and are utilized in what follows.

Recalling that rank2(I×) and rankL(I) denote the Boolean rank of I× and

the L-rank of I, respectively, i.e. the smallest numbers of factors using which

I× and I may be explained (factorized), we may formulate the following

theorem.

Theorem 3. For every I, rankL(I) ≤ rank2(I×).

Proof. Let AF×◦BF× = I× where |F×| = rank2(I×). Due to [19, Theorem 2],

we may safely assume that F× ⊆ B(I×). Due to [17, 20], the ordinary concept

lattice B(I×) is embedded in the fuzzy concept lattice B(I) via the mapping

taking every 〈C×, D×〉 ∈ B(I×) to 〈C,D〉 ∈ B(I) with D(j) =
∨
ja∈D a

and C = c(C×)↑I↓I where c(C×) is the characteristic function of C×. Let

F = {〈C,D〉 | 〈C×, D×〉 ∈ B(I×)} denote the counterparts of the factors in

F×. To prove the claim, it is sufficient to show that AF ◦BF = I.

Since for every 〈C×, D×〉 ∈ B(I×) we have c(C×) ⊆ c(C×)↑I↓I , the set

G = {〈c(C×), D〉 | 〈C×, D×〉 ∈ F×} satisfies AG ◦ BG ≤ AF ◦ BF . Because

AF ◦BF ≤ I for any F ⊆ B(I) [5], it is sufficient to prove I ≤ AG ◦BG. Let

thus Iij = b for an arbitrary 〈i, j〉. Then I×ijb = 1, hence AF× ◦ BF× = I×

implies that there exists 〈C×, D×〉 ∈ B(I×) such that i ∈ C× and jb ∈ D×,

i.e. (c(C×))(i) = 1 and D(j) ≥ b. It thus follows

Iij = b = 1⊗ b ≤ (c(C×))(i)⊗D(j) ≤
∨

〈E,F 〉∈G

E(i)⊗ F (j) = (AG ◦BG)ij,

proving I ≤ AG ◦BG.

Therefore, as far as the number of factors (usually considered as measur-

ing goodness of explanation) is concerned, we are not worse off when directly

factorizing I compared to the scale-and-Boolean-factorize method.



4.2. PREVIOUS ALGORITHMS FOR ORDINAL DATA 25

Remark 1. The reason, partly apparent from the proof, is that the spaces of

factors to attain optimal factorizations of I and I× are the concept lattices

B(I) and B(I×). Now, B(I×) is in general smaller than B(I), in fact embed-

ded in B(I) in a natural way [17, 20]. Thus, the space of possible factors of

I is richer than that of I×, leaving Theorem 3 a natural consequence of this

fact. In addition to Theorem 3.

The following example shows that the estimation is not tight and that in

fact, rankL(I) can be significantly smaller than rank2(I×).

Example 4. Let L = {0 = a1, a2, . . . , an = 1}, consider an n × 1 matrix

I with Ii1 = ai. Then I× is an n × n matrix, the square staircase matrix,

given by I×pq = 1 if p ≥ q and = 0 if p < q. It is clear that rankL(I) = 1 and

rank2(I×) = n.

We showed that such approach has severe limitations and later we exam-

ine this in experimental evaluation.

4.2 Previous algorithms for ordinal data

Pointing on limitations of Boolean factorization of ordinally scaled attributes,

we claim that factor analyzing I directly using the methods suited for ordinal

data has a significant advantage.

This section will be devoted to the brief introduction of known algorithms

that can be more or less used for doing so. The first two presented algorithms

are based on algorithms presented in [19] developed for Boolean data. An-

other algorithm is the algorithm widely used in statistics—perhaps the best

known method designed for real-valued matrices—the non-negative matrix

factorization (NMF) [38].

4.2.1 GreConL

As was mentioned above, this algorithm was presented in [19]. Moreover

in [19] was proved that the optimal factors are obtained from the space of

factors computed via FCA. The first algorithm (called Algorithm 1, later

called GreCon1) is based on an algorithm for set covering problem. The

algorithm can be simply used for our fuzzy setting. A disadvantage of this

1Greedy Concepts



26 CHAPTER 4. PREVIOUS ALGORITHMS

approach is that such algorithm requires us to compute first the set B(I) of

all formal fuzzy concepts and then select candidates for factor from B(I).

Because B(I) can be exponentially large, this approach is time-consuming.

4.2.2 GreConDL

The second algorithm for BMF presented in [19], (called Algorithm 2, later

GreConD2) was modified for decomposition ordinal data in [18]. This al-

gorithm is designed to avoid computing the set B(I) of all formal concepts.

Instead, it computes concepts on demand.

This algorithm generates factors by looking for “promising columns”.

It works due to fact that each formal concept 〈C,D〉, each intent D is an

union of intents {D(j)/j}↑↓. As a consequence, we may construct any formal

concept by adding sequentially {a/j}↑↓ to the empty set of attributes. This

algorithm follows a greedy approach that selects j ∈ Y and degree a ∈ L

which maximize the size of

D ⊕a j = {〈k, l〉 ∈ U |{D ∪ {a/j}}↓(k)⊗ {D ∪ {a/j}}↓↑(l) ≥ Ik,l}.

The symbol U there denotes the set of 〈i, j〉 of I for which the corresponding

entry Iij is not covered yet. A pseudocode of this algorithm is depicted in

Algorithm 1.

4.2.3 Statistical methods

Statistical methods are widely used in many fields such as bioinformatics,

medicine, chemistry and lot more. Representatives of these methods are for

example principal component analysis (PCA) [53], independent component

analysis (ICA) [23], network component analysis (NCA) [40], non-negative

matrix factorisation (NMF) [38] or singular value decomposition (SVD) [56].

These methods usually decompose n ×m input matrix I into a product of

two (in case of PCA, ICA, NCA, NMF) or three matrices (in SVD). The

constraints of each method are different. For example for PCA, we want one

of the resulted matrices to be orthogonal, in ICA we require all components

of resulted matrix independent and in NMF both matrices need to be non-

negative. Due to this fact, non-negative matrix factorisation is method the

most relevant to purpose of this thesis, so we omit the rest ones.

2Greedy Concepts on Demand



4.2. PREVIOUS ALGORITHMS FOR ORDINAL DATA 27

Algorithm 1: GreConDL

Input: matrix I with entries from scale L

Output: set F ⊆ B(I) of factor concepts

1 F ← ∅
2 U ← {〈i, j〉|Iij > 0}
3 while U is non-empty do

4 D ← ∅; V ← 0

5 select 〈j, a〉 that maximizes |D ⊕a j|
6 while |D ⊕a j| > V do

7 V ← |D ⊕a j|
8 D ← {D ∪ {a/j}}↓↑

9 select 〈j, a〉 that maximizes |D ⊕a j|
10 end

11 C ← D↓

12 F ← F ∪ {〈C,D〉}
13 remove entries 〈i, j〉 covered by C↑↓ ⊗D↓↑ in I from U

14 end

15 return F

Non-negative matrix factorization

Interest in this methods started with the paper [38]. There exists hundreds

of papers about NMF, and most of them cite [38] although this method was

developed by Pentti Paatero [52] five years earlier.

NMF can be stated as follows: Given a non-negative matrix A ∈ Rm×n

and a positive integer k < min({m,n}), find non-negative matrices W ∈
Rm×k and H ∈ Rk×n to minimize the function

f(W,H) =
1

2
||A−WH||2F .

The product WH is called non-negative factorisation of A. However,

A is not usually equal to the product WH, i.e. WH is an approximate

factorisation of rank at most k.

Various alternative minimization strategies have been proposed. In the

standard NMF algorithm W and H are initialized with random non-negative

values and than iteratively computes better approximation. Algorithms for

NMF can be divided into three general classes:

• Multiplicative update algorithms,



28 CHAPTER 4. PREVIOUS ALGORITHMS

• Gradient descent algorithms,

• Alternating least squares algorithms.

Multiplicative update algorithms The algorithm presented here (Algo-

rithm 2) is prototypical algorithm originated in [39].

Algorithm 2: Multiplicative update algorithm for NMF

Input: matrix A ∈ Rm×n, positive integer k

Output: matrices W ∈ Rm×k and H ∈ Rk×n

1 W ← rand(m, k)

2 H ← rand(k, n)

3 for i ∈ {1, . . . ,maxiter} do
4 H ← H · (W TA)/(W TWH + 10−9)

5 W ←W · (AHT )/(WHHT + 10−9)

6 end

7 return H, W

The value 10−9 in each update (lines 4 and 5) is added to avoid division

by 0. Constant maxiter indicates the number of iterations. The assumption

that this algorithm converges to a local minimum was later shown to be

incorrect (see [22]), but this was the first well-known algorithm and newer

algorithms are usually compared with it.

Gradient descent algorithms The second class of algorithms is based on

the gradient descent method. Algorithms from this class repeatedly apply

update rules (lines 4 and 5) see pseudocode depicted in Algorithm 3

εH and εW are step size parameters and they depend on concrete algo-

rithm.

Alternating least squares algorithms All algorithms here are composed

by least squares steps in an alternating fashion. They exploit the fact that

while the optimization problem of non-negative matrix factorisation is not

convex in both W and H, is convex in either W or H. Thus from given

one matrix, the second one is computed with a simple leasts squares. An

elementary algorithm from this group follows (see Algorithm 4).



4.2. PREVIOUS ALGORITHMS FOR ORDINAL DATA 29

Algorithm 3: Basic gradient descent algorithm for NMF

Input: matrix A ∈ Rm×n, positive integer k

Output: matrices W ∈ Rm×k and H ∈ Rk×n

1 W ← rand(m, k)

2 H ← rand(k, n)

3 for i ∈ {1, . . . ,maxiter} do
4 H ← H − εH ∂f

∂H

5 W ←W − εW ∂f
∂W

6 end

7 return H, W

Algorithm 4: Basic alternating least squares algorithm for NMF

Input: matrix A ∈ Rm×n, positive integer k

Output: matrices W ∈ Rm×k and H ∈ Rk×n

1 W ← rand(m, k)

2 for i ∈ {1, . . .maxiter} do
3 solve for H equation W TWH = W TA

4 set all negative elements in H to 0

5 solve for W equation HHTW T = HAT

6 set all negative elements in W to 0

7 end

8 return H, W



30 CHAPTER 4. PREVIOUS ALGORITHMS



Chapter 5

New algorithms

In this chapter we present three algorithms for decomposition of matrices

over scales. The first two algorithms are inspired by GreEss [12] and Asso

[46], currently perhaps the best algorithms for the AFP and DBP, respec-

tively. The third one is slightly modified GreConDL, which is inspired by

a modified binary version of GreConD called GreConD+ presented in

[13]. The last mentioned algorithm—GreConD+—is based on algorithm

which constructs a factorization from formal concepts, but computes a gen-

eral factorization, since formal concepts never allow overcover error.

5.1 GreEssL

In [12] a new algorithm based on the properties of essential parts E(I) of

Boolean matrices I was presented. The algorithm uses the fact that E(I)

represents the entries whose cover by arbitrary factors guarantees an exact

decomposition of I. Another useful property is that the number of 1s in

E(I) tends to be significantly smaller than the number of 1s in I. E(I) may

be simpler to cover than I, also note that we can compute E(I) efficiently.

These features hold also in fuzzy setting. An algorithm based on this idea

appeared in [8, 15].

5.1.1 Essential parts of matrices over scales

This section refers to Section 2.3 and Section 3.3, where are described first

observations on the role of entries in input matrix I. We defined so-called

31



32 CHAPTER 5. NEW ALGORITHMS

essential part of I, dentoted E(I), whose cover by formal concepts of I guar-

antees the cover of all entries in I. We defined intervals IC,D that play crucial

role in this consideration.

The following lemma shows that all the rectangles corresponding to the

formal concepts in IC,D cover the rectangle CT ◦D.

Lemma 2. If 〈E,F 〉 ∈ IC,D then CT ◦D ≤ ET ◦ F .

Proof. Since 〈E,F 〉 ∈ IC,D, we have C↑↓ ≤ E and D↓↑ ≤ F . As 〈E,F 〉 is

a formal concept of I, we have E = E↑↓ and F = F ↓↑. Since ↑↓ and ↓↑ are

closure operators, we obtain C ≤ C↑↓ ≤ C↑↓↑↓ = E↑↓ ≤ E and similarly

D ≤ F . The claim now easily follows.

In particular, consider C = {a/i} by which we denote the “singleton”

vector with zero components except Ci = a, and D = {b/j} with analogous

meaning. Then every concept 〈E,F 〉 in IC,D = I{a/i},{b/j} covers the entry

〈i, j〉 in CT◦D. This means that if a⊗b = Iij, then every concept in I{a/i},{b/j}
covers the entry 〈i, j〉 in I. However, the entry 〈i, j〉 in I is covered also by

other concepts than those in I{a/i},{b/j}. The following lemma is crucial in

understanding this issue.

Lemma 3. Let 〈E,F 〉 ∈ B(X, Y, I) and a, b ∈ L. Then a ⊗ b ≤ Ei ⊗ Fj if

and only if for some c, d with a⊗ b ≤ c⊗ d we have 〈E,F 〉 ∈ I{c/i},{d/j}.

Proof. If a⊗ b ≤ Ei ⊗ Fj, one may put c = Ei and d = Fj. Namely, we then

have to check 〈E,F 〉 ∈ I{Ei/i},{Fj/j} which is equivalent to γ({Ei/i}) ≤ E

and µ({Fj/j}) ≤ F . The first inequality is equivalent to {Ei/i}↑↓ ≤ E which

is true. Namely, from the obvious fact {Ei/i} ≤ E we obtain by isotony

and idempotency of ↑↓ that {Ei/i}↑↓ ≤ E↑↓ = E. The second inequality is

obtained symmetrically.

Conversely, assume that for some c, d with a⊗b ≤ c⊗d we have 〈E,F 〉 ∈
I{c/i},{d/j}. Lemma 2 then implies {c/i}T ◦ {d/j} ≤ ET ◦ F , which entails

c⊗ d ≤ Ei ⊗ Fj. Since a⊗ b ≤ c⊗ d, the proof is finished.

For a given matrix I ∈ Ln×m let

Iij = {I{a/i},{b/j} | a, b ∈ L, a⊗ b = Iij}

and put

Iij =
⋃

Iij.



5.1. GREESSL 33

Next, we can show that Iij is just the set of all formal concepts of I that

cover 〈i, j〉.

Theorem 4. The rectangle corresponding to 〈E,F 〉 ∈ B(X, Y, I) covers 〈i, j〉
in I iff 〈E,F 〉 ∈ Iij.

Proof. If ET ◦ F covers 〈i, j〉, i.e. Iij = Ei ⊗ Fj, then since Iij = Iij ⊗ 1, we

obtain 〈E,F 〉 ∈ Iij by Lemma 3.

Conversely, let 〈E,F 〉 ∈ Iij, i.e. 〈E,F 〉 ∈ I{a/i},{b/j} for some a, b with

a⊗ b = Iij. Lemma 3 then implies Iij = a⊗ b ≤ Ei⊗Fj. Since the definition

of a formal concept of I along with adjointness yield that we always have

Ei ⊗ Fj ≤ Iij, we readily obtain Ei ⊗ Fj = Iij, finishing the proof.

Denote now by E(I) ∈ Ln×m the matrix over L defined by

(E(I))ij =

{
Iij if Iij is 6= ∅ and minimal w.r.t. ⊆,

0 otherwise.

The following two theorems provide the main result in this section and are

utilized in the new algorithm.

Theorem 5. E(I) is an essential part of I.

Proof. First, E(I) ≤ I follows from the definition of E(I). Second, consider

any F ⊆ B(I) for which E(I) ≤ AF ◦BF . We need to show I = AF ◦BF .

On one hand, I ≥ AF◦BF is a consequence of the fact that every 〈C,D〉 ∈
F is a formal concept of I. Namely, adjointness easily yields Ci ⊗Dj ≤ Iij
from which the required inequality directly follows.

It remains to prove I ≤ AF ◦ BF . Consider any 〈i, j〉 and the corre-

sponding set Iij. Take any Ii′j′ ⊆ Iij that is non-empty and minimal w.r.t

⊆. The definition of E(I) implies E(I)i′j′ = Ii′j′ . Since E(I) ≤ AF ◦ BF ,

the definition of ◦ and of AF and BF imply the existence of 〈C,D〉 ∈ F for

which E(I)i′j′ ≤ Ci′⊗Dj′ . Since 〈C,D〉 is a formal concept of I, we also have

Ci′ ⊗Dj′ ≤ Ii′j′ ≤ E(I)i′j′ , hence the rectangle corresponding to 〈C,D〉 cov-

ers 〈i′, j′〉. Thanks to Theorem 4 we get 〈C,D〉 ∈ Ii′j′ and since Ii′j′ ⊆ Iij,
also 〈C,D〉 ∈ Iij. Applying Theorem 4 again now yields that the rectangle

corresponding to 〈C,D〉 covers 〈i, j〉, i.e. Iij = Ci ⊗ Dj ≤ (AF ◦ BF)ij and

since we always have (AF ◦ BF)ij ≤ Iij, we obtain (AF ◦ BF)ij = Iij. Since

〈i, j〉 is arbitrary, I = AF ◦BF follows.



34 CHAPTER 5. NEW ALGORITHMS

The next theorem shows how a factorization of E(I) may be used to

obtain a factorization of I.

Theorem 6. Let G ⊆ B(E(I)) be a set of factor concepts of E(I), i.e. E(I) =

AG ◦ BG. Then every set F ⊆ B(I) containing for each 〈C,D〉 ∈ G at least

one concept from IC,D is a set of factor concepts of I, i.e. I = AF ◦BF .

Proof. Let for 〈C,D〉 ∈ G denote by 〈E,F 〉〈C,D〉 a concept in F ∩ IC,D (it

exists by assumption). Due to Lemma 2, 〈E,F 〉〈C,D〉 covers the rectangle

corresponding to 〈C,D〉. Since this this is true for every 〈C,D〉 ∈ G, it is

easy to see that AG ◦ BG ≤ AF ◦ BF . The assumption E(I) = AG ◦ BG now

yields E(I) ≤ AF ◦BF . As E(I) is an essential part of I, we get I = AF ◦BF ,

finishing the proof.

Example 5. Let us continue with inputs from Example 2. For matrix I, we

obtain essential part

E(I) =

0.5 1.0 0.0

0.0 0.0 0.5

0.0 0.5 0.0

 .

5.1.2 GreEssL algorithm

The GreEssL algorithm, which we now present, is inspired by [12]. GreEssL
is based on the results from Section 5.1.1 and some other facts mentioned

below. It is primarily designed for AFP(L), but can also be used for DBP(L).

The pseudocode depicted in Algorithm 5 describes computation of an exact

decomposition of I but an easy modification makes it an algorithm for com-

putation of ε-approximate decompositions (in line 3, stop when precision ε

is reached).

In Algorithm 5 and Algorithm 6 the symbol ∅ denotes the empty set or

the vector full of zeroes, depending on the context, F ∨{a/j} denotes F with

the component Fj updated to Fj ∨ a, and C ⊗ D denotes the crossproduct

of C and D, i.e. the rectangle for which (C ⊗D)ij = Ci ⊗Dj. Moreover, U

denotes the set of entries 〈i, j〉 not yet covered by the factors computed so far,

and cov(U, F, J) and cov I(U,D, E) denote the number of 〈i, j〉 ∈ U covered

in I by the rectangle F ↓J ⊗ F ↓J↑J and (D↓E )↑I↓I ⊗ (D↓E↑E )↓I↑I , respectively.

The fuzzy-set-like notation {a/j} ∈ C↑I \ F means Fj < a ≤ C↑Ij .

ComputeIntervals first computes E(I) (easy by definition) and then

computes a set G of factors of E(I), each 〈C,D〉 ∈ G representing the interval



5.1. GREESSL 35

IC,D in B(I) from which it is possible to obtain a decomposition of I according

to Theorem 6. In fact we use the following improvement of Theorem 6 whose

proof is easy and thus omitted: for G it suffices (rather than being a set of

factor concepts of E(I)) that the crossproducts C↑I↓I ⊗D↓I↑I corresponding

to 〈C,D〉 ∈ G cover all entries in I (line 11). The formal concepts in G
are computed in a greedy manner from E(I) by sequentially increasing in

D (initially set to ∅) the most promising value a of the most promising

component j (line 5–9), until such increase is impossible. The formal concept

〈C,D〉, obtained by taking closures w.r.t. E in line 7, is added to G (line 10).

The entries covered by C↑I↓I ⊗D↓I↑I are removed from U . The selection is

repeated until U is empty.

With G obtained this way, GreEssL performs a greedy search for factors,

i.e. formal concepts, in the intervals IC,D, 〈C,D〉 ∈ G, in line 3–21. For every

IC,D we select the formal concept in IC,D with best coverage in line 6–11 in

a manner similar to the one used in ComputeIntervals, i.e. extending

the initially empty F by most promising attributes j and degrees a. The

condition J ← D↓I ⊗ C↑I which functions as a restriction speeding up the

computation, guarantees that we do not leave IC,D in this search. The best

found concept 〈E ′, F ′〉 over all the intervals is then added to F in line 18. The

interval IC′,D′ in which 〈E ′, F ′〉 was found is removed from G in line 19 (hence

is not searched in the remaining iterations) and U is updated accordingly.

To proof correctness of this algorithm we provide its detailed description.

GreEssL uses function ComputeIntervalswhich computes a set of con-

cepts G by first computing the matrix E(I) and then computing the concepts

of B(X, Y, E(I)) in a greedy manner inspired by [18] and adding them to G.

The difference between original algorithm from [18] is that we maximize size

of C↑I↓I⊗D↓I↑I for concept 〈C,D〉 ∈ B(X, Y,B(I)). This is possible since the

factors for I are selected form the interval IC,D (due to Lemma 2). GreEssL
than picks at most one concept from every interval IC,D for 〈C,D〉 ∈ G until

U is covered. It selects the intervals in a greedy manner similar to the one

we described above.

Example 6. For Example 2 ComputeIntervals computes essential part

of input matrix (see Example 5) and returns a set

G = {〈{1/a, 0.5/b, 0.5/c}, {0.5/1, 0.5/2}〉, 〈{0.5/a, 1/b, 0.5/c}, {0.5/3}〉}.

From this set GreEssL computes concepts C2 and C1 as factors.



36 CHAPTER 5. NEW ALGORITHMS

Algorithm 5: GreEssL
Input: matrix I with entries in scale L

Output: set F of factors for which I = AF ◦BF
1 G ← ComputeIntervals(I)

2 U ← {〈i, j〉|Iij > 0}; F ← ∅
3 while U is non-empty do

4 s← 0

5 foreach 〈C,D〉 ∈ G do

6 J ← D↓I ⊗ C↑I ; F ← ∅; s〈C,D〉 ← 0

7 while exists {a/j} ∈ C↑I \ F s.t. cov(U,F ∨ {a/j}, J) > s〈C,D〉 do

8 select {a/j}maximizing cov(U,F ∨ {a/j}, J)

9 F ← (F ∨ {a/j})↓J↑J
10 E ← (F ∨ {a/j})↓J
11 s〈C,D〉 ← cov(U,F, J)

12 end

13 if s〈C,D〉 > s then

14 〈E′, F ′〉 ← 〈E,F 〉
15 〈C ′, D′〉 ← 〈C,D〉
16 s← s〈C,D〉

17 end

18 end

19 add 〈E′, F ′〉 to F
20 remove 〈C ′, D′〉 from G
21 remove from U all 〈i, j〉 covered by E′ ⊗ F ′ in I

22 end

23 return F



5.2. ASSOL 37

Algorithm 6: ComputeIntervals
Input: matrix I with entries in scale L

Output: set G ⊆ B(E(I))

1 E ← E(I)

2 U ← {〈i, j〉|Eij > 0}
3 while U is non-empty do

4 D ← ∅; s← 0

5 while exists {a/j} ∈ D s.t. cov I(U,D ∨ {a/j}, E) > s do

6 select {a/j} maximizing cov I(U,D ∨ {a/j}, E)

7 D ← (D ∨ {a/j})↓E↑E ; C ← (D ∨ {a/j})↓E
8 s← cov I(U,D, E)

9 end

10 add 〈C,D〉 to G
11 remove from U entries 〈i, j〉 covered by C↑I↓I ⊗D↓I↑I in I

12 end

13 return G

5.2 AssoL

AssoL is inspired by Asso algorithm [46], currently the best known algo-

rithm for DBP. A preliminary version of the algorithm was presented in [8].

The final version of the algorithm will be presented in detail in an extended

version of the paper [8] in [14].

5.2.1 Association matrix

Recall that the ordinary Asso is based on the idea of using the rows of the

association matrix A of I as candidate basis vectors, i.e. rows of the k ×m
factor-attribute matrix B. A is an m×m Boolean matrix such that Apq = 1

if the confidence c(p, q) of the association rule {p} ⇒ {q} given by I exceeds

a given threshold τ .

The confidence c(p, q) may be understood as a conditional probability,

namely that “an object has attribute q provided it has attribute p”, given

that objects as elementary events are equally probable. In presence of grades,

we consider conditional probabilities ca(p, q) that “an object has attribute q

provided it has attribute p to degree at least a”. Loosely speaking, ca(p, q) is

the confidence that the presence of p to degree at least a implies the presence



38 CHAPTER 5. NEW ALGORITHMS

of q. Unlike in the Boolean case, the collections of objects sharing some

attributes to prescribed degrees are naturally conceived as fuzzy sets rather

than ordinary sets. Thus, the collection {a/p}↓ of all objects having attribute

p at least to degree a is a fuzzy set of objects to which object i = 1, . . . , n

belongs to degree

{a/p}↓(i) = a→ I(i, p),

see [3]. Likewise, the collection of objects having p to degree at least a and

having q is defined by

{a/p, 1/q}↓(i) = (a→ I(i, p)) ∧ I(i, q).

These formulas may be obtained from considerations on Galois connections

induced by graded relations [3] (as these are the mathematical counterparts

of assignments of objects sharing a given collection of attributes) but may

also be obtained on intuitive grounds.

In evaluating conditional probability that defines ca(p, q) we deal with

fuzzy events (many-valued events) and probabilities of fuzzy events in the

sense of Zadeh [63]. That is, the probability measure of fuzzy events involved

in our situation is a function P assigning to every fuzzy set A of objects

a number P (A) ∈ [0, 1]—the probability of the fuzzy event A. Assuming as in

the classical case that the objects as elementary events are equally probable,

Zadeh’s formulas for conditional probabilities P (·|·) of fuzzy events yield that

the confidence in question is defined by

ca(p, q) = P ({1/q}↓|{a/p}↓) =
P ({a/p}↓ ∩ {1/q}↓)

P ({a/p}↓)
=
P ({a/p, 1/q}↓)
P ({a/p}↓)

=
|{a/p, 1/q}↓|
|{a/p}↓|

,

where |A| denotes the cardinality of a fuzzy set A. With |A| =
∑n

i=1A(i) we

thus obtain

|{a/p, 1/q}↓| =
n∑
i=1

{a/p, 1/q}↓(i), and |{a/p}↓| =
n∑
i=1

{a/p}↓(i).

Note also that in deriving the formula for ca(p, q) we used {a/p}↓ ∩ {1/q}↓ =

({a/p} ∪ {1/q})↓ = {a/p, 1/q}↓ which is a basic property of Galois connec-

tions [3]. The confidence is a number in [0, 1] which may be transformed to



5.2. ASSOL 39

a truth value in L using a user-defined threshold τ ∈ [0, 1]. The reason is in

principle the same as in the Boolean case, namely to obtain from the vectors

of confidence values, 〈. . . , ca(p, q), . . . 〉, appropriate vectors of grades in L,

i.e. the candidate basis vectors. However, the thresholding process is more

involved compared to the Boolean case, and we propose to accomplish it by

the rounding function roundτ defined for r ∈ [0, 1] by

roundτ (r) =

{
r+ = min{a ∈ L | a ≥ r} if r+ ↔ r ≥ τ ,

r− = max{a ∈ L | a < r} otherwise.

Here, r+ ↔ r = min(r+ → r, r → r+) is the many-valued logical equiva-

lence mentioned above. One may observe that if L = {0, 1} we obtain the

thresholding involved in the ordinary Asso.

This way, we may define for every attribute p and every suitable grade

a ∈ L − {0} a candidate basis vector, i.e. a row A(p,a), of a prospective

association matrix A, by

A(i,a),j = roundτ (ca(p, q)).

Picking now a set K ⊆ L− {0} of suitable grades, we obtain an association

matrix A ∈ L(m·|K|)×m. One may verify that if L = {0, 1} and K = {1}
then A is just the ordinary m ×m association matrix defined in [46]. The

presence of intermediate grades allows us to broaden the set of candidate

basis vectors. Namely, in addition to the possible choice K = {1}, we may

pick K containing more grades, e.g. K = L − {0}, and thus enlarge the

search space for factorization.

5.2.2 Procedures Cover and AssoL

The basic idea of the Asso algorithm may be described as follows. The

algorithm iteratively computes k factors one by one, with the provision that

it stops with less than k factors if the addition of any new factor would only

worsen the error function, i.e. would decrease the value of s in our case. Let

A and B denote the object-factor and factor-attribute matrices computed

so far. The next factor, which is described by a new column and a new

row to be added to A and B, is computed as follows. For every candidate

row of B, i.e. the row of the association matrix A, one determines the best

corresponding candidate column of A. “Best” means such that the value of

a function Cover (see Equation 5.1) is maximized. The candidate row of B



40 CHAPTER 5. NEW ALGORITHMS

and column of A with the highest value of Cover are then added as a new

factor to B and A.

The purpose of the function Cover is to yield a high value for factors

whose addition is likely to lead to a good resulting matrices A and B, i.e.

with high value of s. In the Boolean case, this means that we want a high

number C of entries 〈i, j〉 for which Iij = 1 and (A ◦ B)ij = 1, i.e. 1s in

I that are “covered” by the factors, and a small number O of entries for

which Iij = 0 and (A ◦ B)ij = 1, i.e. are “overcovered” by the factors. This

reasoning leads to the formula

w+ · C − w− ·O

as the definition of Cover in the Boolean case. The weights reflect relative

importance of C and O. In practice, one works with w− larger than w+

because “overcovering” cannot be undone by adding further factors. Hence,

the presence of a single 〈i, j〉 with (A◦B)ij = 1 and Iij = 0 represents a more

serious harm than a presence of a single 〈i, j〉 with (A ◦B)ij = 0 and Iij = 1,

because the latter discrepancy may be corrected by adding an appropriate

factor in the next steps of the algorithm.

An appropriate form of the Cover function in the setting with general

scales is more delicate. One reason is that the coverage of entry 〈i, j〉 of I

is a matter of degree. We therefore need to account for a partial coverage

and a partial overcoverage. For instance, if Iij = 0.5 and (A ◦ B)ij = 0.4,

then one may consider 〈i, j〉 almost covered and thus consider Iij ↔ (A ◦
B)ij = 0.5 ↔ 0.4 = 0.9 as the degree to which 〈i, j〉 is covered. Likewise, if

Iij = 0.5 and (A ◦ B)ij = 0.6, then 〈i, j〉 is slightly overcovered and ¬(Iij ↔
(A ◦ B)ij) = ¬(0.5 ↔ 0.6) = 0.1 may be thought of as a degree to which

〈i, j〉 is overcovered. Using a similar reasoning as in the Boolean case, one

could obtain the value of Cover by adding the degrees corresponding to the

first type of entries, multiply them with w+ and subtract from this number

the w−-multiple of the sum of the degrees corresponding to the second type

of entries. This, however, would not yet be an appropriate approach. For

consider a situation in which Iij = 0.5, w− is even five times larger than w+,

and the so far computed matrices A and B yield (A ◦ B)ij = 0.3. Suppose

we now have two options. First, adding a factor resulting in A1 and B1 with

(A1 ◦ B1)ij = 0.4; second, adding a factor resulting in A2 and B2 with (A2 ◦
B2)ij = 0.52. Intuitively, the second choice is preferable because the factor

commits only a slight overcovering of Iij = 0.5. However, the function Cover



5.2. ASSOL 41

described above would lead to the selection of the first factor. Namely (for

simplicity, we disregard entries other than 〈i, j〉), the first factor contributes

by w+ · (Iij ↔ (A1 ◦ B1)ij) = w+ · 0.9, while the second one contributes by

−w− · ¬(Iij ↔ (A2 ◦ B2)ij) = −w− · 0.02, i.e. even represents a decrease

in value of Cover. The point is that the entries which are overcovered, i.e.

Iij < (A◦B)ij, need to be looked at as follows: They need to be penalized for

overcovering by w− ·¬(Iij ↔ (A◦B)ij) but at the same time rewarded for full

covering by w+ · 1. This type of problem is degenerate in the Boolean case

in which the reward can be ignored because it would pertain to all entries

with Iij = 0, would be equal for all such entries, and would hence have no

influence on the choice of factors. This explains why the function Cover for

the ordinary Asso algorithm does not contain any rewarding term for the

overcovered entries.

The above reasoning leads to the following definition of Cover. Let F
denote a set of factors (with a fixed ordering of its elements), i.e. pairs 〈C,D〉
where C ∈ L1×n and D ∈ L1×m, and let AF and BF be the matrices defined

as in (2.9).

Then we put

Cover(AF , BF , I, w
+, w−) =

+w+ ·
∑
{Iij ↔ (AF ◦BF)ij | Iij ≥ (AF ◦BF)ij}

+w+ · |{〈i, j〉 | Iij < (AF ◦BF)ij}| (5.1)

−w− ·
∑
{1− (Iij ↔ (AF ◦BF)ij) | Iij < (AF ◦BF)ij}.

The above procedure for computing a set F of factors is described by

Algorithm 7.

Note that the selection in line 4 proceeds by finding for every row A(i,a) of

A the best C w.r.t Cover and then selecting the best found pair 〈C,A(i,a) 〉.
Due to the properties of Cover, the best C for a given A(i,a) is found

efficiently in a componentwise manner, i.e. by finding the best Cp for every

p = 1, . . . , n (independently of the other Cqs).

Example 7. Let us have matrix I from Example 2. For τ = 0.75 we obtain

association matrix



42 CHAPTER 5. NEW ALGORITHMS

Algorithm 7: AssoL
Input: matrix I ∈ Ln×m, k ≥ 1, w+, w−, τ , K ⊆ L− {0}
Output: set F of factors

1 compute association matrix A
2 F ← ∅
3 for l = 1, . . . , k do

4 select 〈C,A(i,a) 〉 maximizing Cover(F ∪ {〈C,A(i,a) 〉}, I, w+, w−)

5 add 〈C,A(i,a) 〉 to F
6 end

7 return F

A =

1.0 1.0 0.0

0.5 1.0 0.5

0.0 1.0 1.0

 .

For w+ = 1, w− = 1 we obtain two factors 〈{1/a, 0.5/b, 0.5/c} ,{0.5/1, 1/2,
0.5/3}〉 and 〈{0/a, 0.5/b, 0/c},{0/1, 1/2, 1/3}〉. Resulted matrix is

AF ◦BF =

0.5 1.0 0.5

0.0 0.5 0.5

0.0 0.5 0.0

 .

5.3 GreConDL+

This algorithm is based on GreConDL algorithm which has one big restric-

tion. It never allows the overcover error. This fact is very limiting especially

in case where we do not need an exact decomposition.

The algorithm is based on BMF algorithm GreConD+ presented in [13],

which has not been published yet. Our preliminary version of GreConDL+

is generalization of GreConD+ and has not been published as well. This

preliminary version is included in comparison in experiments in Chapter 6.

GreConD+ reflects two ideas. First, formal concepts of the factorized

matrix form a crucial part of resulted factors. The second idea—inspired

by 8M method [25] which is one of the oldest BMF algorithm—already con-

structed factor could be improved or eliminated depending on the another

added factors.



5.3. GRECONDL+ 43

GreConD+ extends algorithm GreConDand in each step returns a for-

mal concept (factor) which covers the most still uncovered entries, i.e. which

minimizes uncovered error. Such factor is then extended in a greedy man-

ner by further columns and rows for which the gain of decreased uncovered

error is larger than the loss due to overcover error, both formed by added

columns/rows. After this phase, where a new factor is created, the set of ob-

tained factors (created in previous iterations) is examined and some of them

could be modified or even removed. This step is inspired by 8M method and

leads to a decrease of overcover error.

GreConDL+ is generalization of GreConD+ algorithm for data over

some scale L. Results from this section are based on [16].

5.3.1 Algorithm GreConDL+

Algorithm presented in this section is modification of previously presented

algorithm GreConDL from [19], described in Section 4.2.2. Pseudocode of

this algorithm is depicted below (see Algorithm 8).

The main loop of the algorithm (lines 2–27) is executed until all the

nonzero entries of I are covered by at least one factor in F . Clearly, a dif-

ferent stopping criterion is possible—stopping after a prescribed number of

factors is computed, which corresponds to the DBP problem, or after the

overall error does not exceed ε, which corresponds to AFP. The code be-

tween lines 4 and 9 works like original GreConDL algorithm. In this part

the formal concept which covers the maximal part of still uncovered entries,

i.e. minimise uncover error, is selected. Resulted concept 〈C,D〉 is taken as

a nucleus and then its expansion 〈E,F 〉 is computed by Expansion algo-

rithm (Algorithm 9). For simplicity Expansion described in Algorithm 9

is restricted to adding columns with positive gain (described later) until no

{a/j} with positive gain exists. Extension for rows is straightforward. Thus

extended factor 〈C ∪ E,D ∪ F 〉 is added to F (line 11). The loop between

lines 12 and 15 ensures that all matrix entries covered by this factor are re-

moved from U . Last loop (lines 16–26) goes through all the factors and factor

is removed from F iff every non-zero entry is covered by other factors at least

in the same degree. If this is not possible, one replace degree of column j in

B by degree of j in nucleus(B) for which all non-zero entries are covered by

remaining factors (there exist factors covering all entries at least in the same

degree as B).



44 CHAPTER 5. NEW ALGORITHMS

Algorithm 8: GreConD+
Input: n×m matrix I, number w

Output: set F of factors

1 U ← {〈i, j〉 |Iij 6= 0}; F ← ∅
2 while U 6= ∅ do
3 D ← ∅; V ← 0

4 while exists {a/j} /∈ D such that |D ⊕a j| > V do

5 select {a/j} /∈ D that maximizes |D ⊕a j|
6 D ← (D ∪ {a/j})↓↑

7 V ← |D ⊕a j|
8 end

9 C ← D↓

10 〈E,F 〉 ← Expansion(〈C,D〉 , w)

11 add 〈C ∪ E,D ∪ F 〉 to F
12 for 〈i, j〉 ∈ U do

13 if Iij ≤ (C ∪ E)i ⊗ (D ∪ F )j then

14 U ← U − 〈i, j〉
15 end

16 foreach factor 〈A,B〉 ∈ F do

17 if for each 〈i, j〉 with Ai ⊗Bj > 0 there is 〈G,H〉 ∈ F − 〈A,B〉 with
Ai ⊗Bj ≤ Gi ⊗Hj then

18 remove 〈A,B〉 from F
19 else

20 foreach j such that Bj > nucleus(B)j do

21 if for each Ai ⊗Bj there is 〈G,H〉 ∈ F − 〈A,B〉 with
Ai ⊗Bj ≤ Gi ⊗Hj then

22 Bj ← nucleus(B)j
23 end

24 end

25 end

26 end

27 end

28 return F



5.3. GRECONDL+ 45

Algorithm 9: Expansion

Input: pair 〈C,D〉, number w

Output: expansion 〈E,F 〉 of 〈C,D〉

1 E ← ∅; F ← ∅
2 repeat

3 select column j and a ∈ L such (D ∪ F )j < a maximizing gain({a/j})
4 if gain({a/j}) > 0 then

5 add {a/j} to F
6 end

7 until F did not change

8 return 〈E,F 〉

Function gain is in the general case more complicated than the same

function in BMF case. There are three cases. Denote

new ij = (AF ◦BF)ij ∨ Ci ⊗ (D ∪ F ∪ {a/j})j,
old ij = (AF ◦BF)ij ∨ Ci ⊗ (D ∪ F )j.

Then

(1) new ij ≤ Iij, i.e. Iij is still not covered, but coverage is increased

by [Iij ↔ new ij] − [Iij ↔ old ij], which is equal to new ij − old ij =

¬(new ij → old ij).

(2) old ij < Iij < new ij, we overcover Iij. Value of gain needs to be in-

creased by Iij − old ij = ¬(Iij → old ij), but also decreased by weighted

overcover error w · (new ij − Iij).

(3) Iij ≤ old ij < new ij, overcover is increased, so gain needs to be also

increased by w · (new ij − old ij)

Function gain for {a/j} returns:

gain({a/j}) =

n,m∑
i=1,j=1

{new ij − old ij | new ij ≤ Iij}

+

n,m∑
i=1,j=1

{(Iij − old ij)− w · (new ij − Iij) | old ij < Iij < new ij}

− w ·
n,m∑

i=1,j=1

{new ij − old ij | Iij ≤ old ij}



46 CHAPTER 5. NEW ALGORITHMS

Example 8. Let us have matrix I from Example 2. The first obtained factor

is 〈{1/a, 0.5/b, 0.5/c} ,{0.5/1, 1/2, 0/3}〉. The corresponding rectangle is equal0.5 1.0 0.0

0.0 0.5 0.0

0.0 0.5 0.0

 .

For small w we can add new column and cover all entries in input matrix by

single factor.



Chapter 6

Experimental evaluation

This chapter is devoted to extensive experimental evaluation of algorithms

presented in Chapter 4 and Chapter 5. We compare the resulted factoriza-

tions quality in two different ways. Firstly in terms how many factors we

obtain, secondly we analyse the meaning of these factors. We used both syn-

thetic and real datasets. The advantage of using synthetic datasets is that

we can test our algorithms on datasets with known characteristics. On the

other hand using real datasets enable us to study meaning of resulted factors.

6.1 Illustrative example

The purpose of this illustrative example is twofold. First, we want to demon-

strate a usefulness of the presented methods. Second, show how resulted

factorisations look like. This example was originally presented in [8] to

demonstrate how the algorithm GreEssL works. We extend the example

to compare results obtained by other algorithms from Chapter 4 and Chap-

ter 5.

The data in Table 6.1 describes 5 most popular dog breeds and their 11

attributes1 (we analyze the full set of 151 breeds in Section 6.2.1).

We take as the complete residuated lattice six-element  Lukasiewicz chain

L = {0, 0.2, 0.4, 0.6, 0.8, 1}

with  Lukasiewicz operation ⊗ defined in Section 2.1.

1http://www.petfinder.com/

47

http://www.petfinder.com/


48 CHAPTER 6. EXPERIMENTAL EVALUATION

The transformation from the table with ordinal scale (Table 6.1) to the

matrix with degrees from L = {0, 0.2, 0.4, 0.6, 0.8, 1} (Table 6.2) is accom-

plished using function

s : [1, . . . , 6]→ L defined by sij =
oij − 1

5
,

where i is an object (dog breed), j is an attribute (characteristic) and oij is

original value for the object i and the attribute j.

We represent the grades in L by shades of gray as follows:

0.0 0.2 0.4 0.6 0.8 1.0

In particular, we can attach to the degrees linguistic labels such as “not

at all” to 0, “somewhat” to 0.2, “rather not” to 0.4, “rather yes” to 0.6,

“almost fully” to 0.8 and “fully” to 1.

The 5× 11 object-attribute matrix I and its decomposition I = AF ◦BF
into the object-factor and factor-attribute matrices AF and BF are shown

for various algorithms in subsections below. The decomposition is obtained

using the algorithms described in Chapters 4 and 5 and utilizes a set F of

formal concepts as factors.

E
n
er

gy

P
la

y
fu

ln
es

s

F
ri

en
d
.

to
w

ar
d
s

d
og

s

F
ri

en
d
.

to
w

.
st

ra
n
ge

rs

F
ri

en
d
.

to
w

.
ot

h
er

p
et

s

P
ro

te
ct

io
n

ab
il
it

y

E
x
er

ci
se

A
ff

ec
ti

on

E
as

e
of

tr
ai

n
in

g

W
at

ch
d
og

ab
il
it

y

G
ro

om
in

g

Labrador Retrievers 5 6 5 6 6 3 4 6 6 5 3

Golden Retrievers 4 6 6 6 6 3 4 6 6 4 4

Yorkshire terriers 5 5 3 4 3 2 2 4 3 6 5

German shepherds 4 3 2 3 4 6 5 4 6 6 3

Beagles 4 4 6 6 6 2 4 6 2 5 2

Table 6.1: Five most popular dog breeds



6.1. ILLUSTRATIVE EXAMPLE 49

E
n

er
gy

P
la

y
fu

ln
es

s

F
ri

en
d

.
to

w
ar

d
s

d
og

s

F
ri

en
d

.
to

w
.

st
ra

n
ge

rs

F
ri

en
d

.
to

w
.

ot
h

er
p

et
s

P
ro

te
ct

io
n

ab
il

it
y

E
x
er

ci
se

A
ff

ec
ti

on

E
as

e
of

tr
ai

n
in

g

W
at

ch
d

og
ab

il
it

y

G
ro

om
in

g

Labrador Retrievers 0.8 1.0 0.8 1.0 1.0 0.4 0.6 1.0 1.0 0.8 0.4

Golden Retrievers 0.6 1.0 1.0 1.0 1.0 0.4 0.6 1.0 1.0 0.6 0.6

Yorkshire terriers 0.8 0.8 0.4 0.6 0.4 0.2 0.2 0.6 0.4 1.0 0.8

German shepherds 0.6 0.4 0.2 0.4 0.6 1.0 0.8 0.6 1.0 1.0 0.4

Beagles 0.6 0.6 1.0 1.0 1.0 0.2 0.6 1.0 0.2 0.8 0.2

Table 6.2: Five most popular dog breeds

In Figures below is every factor Fl represented by the lth column in AF
and the lth row in BF . The entry (AF)il indicates the degree to which factor

l applies to breed i, while (BF)lj represents the degree to which attribute j

is a particular manifestation of factor l.

6.1.1 Results for GreConDL

In Figure 6.1 are shown seven factors obtained via GreConDL algorithm

presented in Section 4.2.2.

Factor F1 is manifested by the three kinds of “Friendliness” and “Af-

fection” (attributes with high degrees in the first row of BF) and applies in

particular to Labradors, Golden Retrievers and Beagels (breeds with high de-

grees in the first column of AF), and to some extent to Yorkshires. The factor

may hence be termed friendliness. On the other hand, the three attributes

with the highest degree in the row of F2 plus a high degree of “Exercise” tell

us that this factor is naturally interpreted as guardian dog. The correspond-

ing column shows that F2 applies to German shepherds and separates them

clearly from the other breeds. Factor F3 may be interpreted as dogs suitable



50 CHAPTER 6. EXPERIMENTAL EVALUATION

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

F7

F7

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.1: GreConDL: Decomposition I = AF ◦ BF . I, AF , and BF are

the bottom-right, bottom-left, and top matrix, respectively.

for kids, because it is manifested by high “Friendliness”, “Playfulness”, “Af-

fection”, and “Ease of training”, and applies to Golden Retrievers (in degree

1) and Labrador Retrievers (in degree 0.8).

Interestingly, F1, F2, and F3 explain, by and large, the whole data and

hence, the other factors may be neglected. Namely, denoting by AF3 and BF3

the 5×3 and 3×11 matrices (parts of AF and BF), the degree s(I, AF3 ◦BF3)

of similarity of I to AF3 ◦ BF3 , i.e. reconstructability of the original data I

from the first three factors, equals 0.92. In particular, the percentage of

matrix I is explained using the first l factors for l = 1, . . . 7, i.e. by the

set Fl = {〈C1, D1〉, . . . , 〈Cl, Dl〉}, is shown in Figure 6.2, where a concept

〈Cl, Dl〉 is visualized by the 5× 11 matrix JFl
defined by (JFl

) = AFl
⊗BFl

.

One may then also observe the matrix Ip =
∨p
l=1 JFl

for p = 1, . . . , 7, which

results by adding together the first p factors (note that I7 = I).

6.1.2 Results for ordinal scaling

We performed experiments with the approach examined in Section 4.2. We

transformed the input matrix I ∈ L5×11 with grades in L = {0, 0.2, 0.4, 0.6,
0.8, 1} to a Boolean matrix I× ∈ {0, 1}5×(11·6) = {0, 1}5×66 and computed

a set G× ⊆ B(I×) of factors of I× using the GreConD algorithm from



6.1. ILLUSTRATIVE EXAMPLE 51

74% 86% 92%

97% 98% 99%

100%

Figure 6.2: Matrices AFl
◦ BFl

, representing the
∨

-superposition of the set

Fl = {〈C1, D1〉, . . . , 〈Cl, Dl〉} of the first l factors, l = 1, . . . , 7, and the

corresponding percentage of I explained by the first l factors.

[19]. Even though the decomposition algorithms are only approximation

algorithms, the experimental results confirm the theoretical ones from Sec-

tion 4.2—the number of factors of I is in general smaller than the number

of factors of I×. In this case, we obtained 8 factors of I×, compared to the

7 factors of I obtained for by GreConDL. The factors, F1, . . . , F8, are de-

picted in a concise way in Figure. 6.3. As before, AG× is the bottom-left

matrix and its columns represent the factor extents, which are now ordinary

sets of objects (breeds). To save space, the 8 × 66 Boolean matrix BG× is

represented by the top 8 × 11 matrix with grades as follows. For every at-

tribute y, instead of the 6 columns y0, y0.2, . . . , y1 of BG× , the 8× 11 matrix

contains just one column which contains in row Fl the largest degree a for

which ya belongs to the intent of Fl. This way, the intent of Fl, an ordinary

set of the scaled Boolean attributes ya, is uniquely described because if yb is

in the intent and c ≤ b, then yc in in the intent as well. The corresponding

percentage 100 · s≈% (which is the same as 100 · s=% in the Boolean case) of

I× explained by the first l = 1, . . . , 8 factors is 63%, 81%, 87%, 93%, 98%,

99%, 99.6%, and 100%, respectively.

The factors may naturally be compared to those from Section 6.1.1 and

the concise representation of the intents used in Figure 6.3 facilitates this

comparison. We may notice that factors F2, F4, F5 and F6 here are very

similar to factors F6, F2, F7 and F4 respectively from Section 6.1.1, they even

pairwise equivalent intents. These factors are clearly interpretable. Factors



52 CHAPTER 6. EXPERIMENTAL EVALUATION

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

F7

F7

F8

F8

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.3: Decomposition of I× = AF× ◦ BG× . I, AF , and ◦BG are the

bottom-right, bottom-left, and top matrix, respectively.

F1, F3 and F5 from Section 6.1.1 have some similarities with factors to F2

and F3 but interpretation of F2 and F3 is not so clear as interpretability the

above four. The remaining factors here, F1, F7 and F8 have no counterparts

among those in Section 6.1.1 and seem to be not very interesting, particularly

F1, where all attributes are present in small degrees and which applies to all

breeds.

To conclude, our experiments confirm that when using the alternative ap-

proach examined in Section 4.2, the number of factors needed for explaining

data is larger. Moreover, the first, i.e. the most important, factor is not so

clearly interpretable and perhaps also not so interesting compared to those

obtained by the methods examined in this thesis, which directly works with

degrees. We also lost some information such as that Golden Retrievers and

Beagles have in high degree characteristics (intent of factor F6) as Labrador

Retrievers and Yorkshire terriers.

6.1.3 Results for NMF

We examine two algorithms for Non-negative matrix factorization presented

in Section 4.2.3 such as an Alternating least-squares algorithm and a Multi-



6.1. ILLUSTRATIVE EXAMPLE 53

plicative update algorithm. Since resulted matrices W and H include values

that are not from scale L, we can not show them as boxes with shades of

gray. Interpretation is also slightly different.

Resulted matrices obtained by an alternating least-squares algorithm fol-

low:

W =


1.8423 0.1833 0.6805 0.6591

2.2351 0.0000 0.5498 0.5300

1.0538 0.0000 0.1061 1.4114

0.5271 0.0000 1.6407 0.6844

0.0000 2.0849 0.2787 0.4019



H =


0.1587 0.3955 0.4389 0.4156 0.4021 0.0009 0.1553 0.3739 0.3351 0.0430 0.1154

0.1856 0.2336 0.4819 0.4459 0.4489 0.0000 0.2274 0.4247 0.0300 0.2130 0.0000

0.1373 0.0057 0.0000 0.0659 0.2528 0.5660 0.4399 0.1913 0.5061 0.3260 0.0000

0.4524 0.2791 0.0000 0.1140 0.0000 0.0973 0.0000 0.1350 0.0000 0.6667 0.4819

 .

The factorization is not exact, matrix product of matrices W and H is

a lower rank approximation of I. They are chosen to minimize the root-

mean-squared residual between I and product WH. This residual is equal

to 0.0358.

Interpretation of obtained factors is a little bit different than interpreta-

tion of factors computed via methods based on FCA (such as GreConDL,

GreEssL etc.). Row i of I is approximately a linear combination of the rows

of H with the coefficients being row i of W .

One may observe that attributes with high coefficients in third row are

“Protective ability”, “Exercise”, “Ease of training” similarly like factor F2

from Section 6.1.1 and with high coefficient belongs to German shepherds in

matrix W .

Matrices W and H obtained by Multiplicative update algorithm provide

approximation with residual equal to 0.0331. Matrices W and H follow

W =


1.2028 0.6604 1.0638 0.3687

1.3107 0.4606 1.2466 0.2361

0.1601 0.2178 0.5103 1.4527

0.0544 1.8614 0.4139 0.1928

1.8644 0.3788 0.0449 0.4229



H =


0.1739 0.2186 0.4913 0.4496 0.4560 0.0008 0.2332 0.4260 0.0201 0.1850 0.0011

0.2399 0.0601 0.0328 0.1237 0.2508 0.5110 0.4059 0.2353 0.3936 0.4625 0.0968

0.1746 0.5108 0.1964 0.2440 0.2173 0.1026 0.0610 0.2208 0.6455 0.0361 0.2869

0.4402 0.3376 0.1424 0.2604 0.1108 0.0052 0.0265 0.2537 0.0029 0.5914 0.4208

 .

Similar observation like in case of previous decomposition, also here we

can find factor (F2), which we can be labeled guardian dog. Although the

matrices W and H are initialized randomly in the algorithm and each run of

the experiment returns slightly different results, one can find some similarities

in the results of each run.



54 CHAPTER 6. EXPERIMENTAL EVALUATION

6.1.4 Results for GreEssL

GreEssL in this example returns smaller number of factor than earlier men-

tioned GreConDL. We obtain six factors instead of seven, but all of them

are more or less the same as factors obtained in Section 6.1.1. For more

details see Figure 6.4.

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.4: GreEssL: Decomposition I = AF ◦ BF . I, AF , and BF are the

bottom-right, bottom-left, and top matrix, respectively.

F1, F2, and F3 explain, by and large, the whole data. Namely, denoting

by AF3 and BF3 the 5 × 3 and 3 × 11 matrices (parts of AF and BF), the

degree s(I, AF3 ◦ BF3) of similarity of I to AF3 ◦ BF3 , i.e. reconstructability

of the original data I from the first three factors, equals 0.92. In particular,

the percentage of matrix I explained using the first l factors for l = 1, . . . 6 is

71%, 84%, 92%, 98%, 99% and 100%. In comparison with coverage function

in Section 6.1.1) the coverage function grows slower in the first three factors

but then converges faster to 100%.

6.1.5 Results for AssoL

As was mentioned earlier, AssoL usually does not return exact decomposi-

tion. We present here three obtained factors for setting: w0 = 1, w1 = 1, i.e.



6.1. ILLUSTRATIVE EXAMPLE 55

overcover and uncover errors have same weight and τ = 0.9 (later we will

show that choice of τ in AssoL does not rapidly change the result).

F1

F1

F2

F2

F3

F3

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.5: AssoL: Decomposition I ≈ J = AF ◦ BF . J , AF , and BF are

the bottom-right, bottom-left, and top matrix, respectively.

Factors gradually cover 0.72%, 0.84% and 0.844% of input data. Factors

are depicted in Figure 6.5 and
∨

-superposition of this factors is depicted in

Figure 6.6.

Figure 6.6:
∨

-superposition of factor concepts

The obtained factors are hard to explain, the most important factor (the

first one) does not hold any important information. It is caused by the fact

that when |L| > 2 (non-Boolean case), rectangles with values “around the

middle” in L, such as 0.4 and 0.6 in this example, which may be produced

as factors by AssoL have a good coverage and are thus sometimes selected

by AssoL in spite of a possible difficulty in interpreting such factors.

In more detail, for Boolean data the values Iij in the input matrix I are

approximated by 0 or 1 of (AF ◦ BF)ij only. Hence, in case of mismatch



56 CHAPTER 6. EXPERIMENTAL EVALUATION

the entry 〈i, j〉 contributes by Iij ↔ (AF ◦ BF)ij = 0 to the numerator

in (Equation 3.1). With more degrees in L the situation is different. For

example, if 1
2

is available and if 0 ↔ 1
2

= 1 ↔ 1
2

= 1
2

then already the

trivial matrix AF ◦BF with all entries equal to 1
2
, which is obtained from the

“constant average factors”, always satisfies s(I, AF ◦BF) ≥ 1
2
.

6.1.6 Results for GreConDL+

Like in AssoL, we permit overcover errors in GreConDL+. How big is this

error is driven by a choice of the parameter w. The larger w, the smaller

overcover error.

For example, if we take w = 0.5 we obtain coverage by three factors and

overall overcover error is 34%. The first factor covers 85% with overcover

error 29%, the second one covers 97% (error 34%), the last one ensures full

coverage and does not increase the overcover error. With w = 1 we need four

factors to cover all inputs and error is 28%. Computed factorizations can be

seen in Figures 6.7 and 6.8.

F1

F1

F2

F2

F3

F3

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.7: GreConDL+, w = 0.5 : Decomposition I ≈ J = AF ◦ BF . J ,

AF , and BF are the bottom-right, bottom-left, and top matrix, respectively.



6.1. ILLUSTRATIVE EXAMPLE 57

F1

F1

F2

F2

F3

F3

F4

F4

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.8: GreConDL+, w = 1 : Decomposition I ≈ J = AF ◦ BF . J ,

AF , and BF are the bottom-right, bottom-left, and top matrix, respectively.

The choice of w slightly changes the obtained factors, but the most im-

portant factors (first ones), are very similar.

Unlike factors obtained by AssoL, meaning of factors is more relevant.

We can see that there are factors friendliness, guardian dog like in Sec-

tion 6.1.1, i.e. factors F1 and F2 are nearly the same as factors F1 and

F2 from Section 6.1.1.

6.1.7 Choice of the scale of degrees

Due to nature of input data in the above examples we used a six-element

scale L equipped it with  Lukasiewicz operations.

In general it is advisable to choose the number of degrees from five to

nine. This is motivated by the well-known Miller’s 7 ± 2 phenomenon [48].

Small scales L with up to 7 ± 2 degrees are preferable because humans can

understand and use such scales easily.

In [7] we indeed experienced with a larger number of degrees, say 10,

the undesired effect which is in accordance with the 7 ± 2 phenomenon.

Among the extracted factors there were ones which, although mutually dis-

tinct, appeared similar to a human expert. The reason behind it was that

they involved closed degrees, which are intuitively not distinct enough, such

as 0.7 and 0.8. This impairs the interpretation of the factors in that even



58 CHAPTER 6. EXPERIMENTAL EVALUATION

though each of the extracted factors alone makes a relatively good sense,

the extracted factors do not satisfy the intuitive requirement of clear dis-

tinctiveness from each other. Moreover, for the purpose of identifying and

linguistically labeling the most important factors, a relatively smaller num-

ber of degrees seems sufficient. In addition to that, with more degrees of L in

the input matrix I, resulting in the process of scaling I becomes more com-

plex and thus the number of factors to decompose I gets larger. Therefore,

“too much precision” introduced by having a larger L impairs the practical

aspects of the analysis in several ways. We illustrate it on the dataset from

[18]—results of top 5 athletes in the 2004 Olympic Decathlon. Originally

five-element  Lukasiewicz chain was used. Figure 6.9 shows the factors ob-

tained using GreConDL. Figure 6.10 shows the result of decomposition of

matrix I representing the same decathlon data but using a eleven-element

scale L = {0, 0.1, . . . , 0.9, 1}. We can see that, for instance, F1, F3, and

F6 are rather similar to F4, F1, and F3 from set of factors obtained using

smaller L. However, several factors here are mutually similar and difficult to

distinguish.

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

Sebrle
Clay

Karpov
Macey

Warners

10 lj sp hj 40 hu dt pv jt 15

Figure 6.9: Decomposition I = AF ◦BF , using  Lukasiewicz operations.

In the previous examples we used  Lukasiewicz operations, because of some

of its intuitive properties discussed in Section 2.1. Our experience is that with

the other operations, we obtain different factors but the corresponding sets

of factors have important factors in common. Figure 6.11 shows the result

of decomposition of the matrix I from [18] using Gödel operations. Notice

that F1, F2, and F3 obtained using  Lukasiewicz operations are similar to F7,

F2, and F8 here. Let us note that F1, F2, and F3 obtained using  Lukasiewicz

operations also have their counterparts among the factors obtained using the



6.1. ILLUSTRATIVE EXAMPLE 59

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

F7

F7

F8

F8

F9

F9

Sebrle
Clay

Karpov
Macey

Warners

10 lj sp hj 40 hu dt pv jt 15

Figure 6.10: Decomposition I = AF ◦BF using eleven-element scale L.

Goguen operations. Apparently, a more profound treatment of the problem

of the choice of the operations on the scales is needed. This concerns not

only factor analysis and FCA in fuzzy setting but fuzzy set theory and its

applications in general. In this regard, the theory of measurement from math-

ematical psychology seems an appropriate framework for such considerations

(see [6] for some first steps in FCA in a fuzzy setting).

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

F7

F7

F8

F8

Sebrle
Clay

Karpov
Macey

Warners

10 lj sp hj 40 hu dt pv jt 15

Figure 6.11: Decomposition I = AF ◦BF , using Gödel operations.



60 CHAPTER 6. EXPERIMENTAL EVALUATION

6.2 Real data

In this section we present results of selected analyses of real data which we

used in our evaluation. Our primary aim is to illustrate that the presented

decomposition methods can extract natural and easy-to-understand factors

from ordinal data. The datasets and their characteristics are described in

Table 6.3, in which |L| denotes the number of truth degrees in the scale

L and ||I|| denotes the number of non-zero entries in the input matrix I.

Since we are interested also in analysis via algorithm GreEssL, another

interesting characteristic is number of non-zero entries in the essential part

E(I). As one can see, the reduction in the essential part E(I) compared to

that of I is significant which is an important fact in view of the results in

Section 5.1.1.

Most of in this section presented datasets and results for AssoL and

GreEssL was already presented in [8], however new dataset Rio was added

and also results for other presented algorithms—namely GreConD on or-

dinally scaled attributes, GreConDL GreConDL+ and AssoL—are in-

cluded.

The factors obtained by AssoL are generally not so easy to interpret

compared to those obtained by methods based on FCA—a feature which we

observed on the most examples—but reveal, in most cases, a similar insight.

The reason is a good interpretability of formal concepts and the usage of

formal concepts as factors. Another reason is described in Section 6.2.1.

Factors obtained by GreConDL, GreEssL and GreConDL+ are basically

very similar. This is why we mainly focus on describing the factors obtained

by GreEssL, unless those of other methods reveal a different insight.

dataset size |L| ||I|| ||E(I)|| ||E(I)||/||I||
Breeds 151×11 6 1963 362 0.184

Decathlon 28×10 5 266 59 0.221

IPAQ 4510×16 3 41624 1281 0.031

Music 900×26 7 20377 5952 0.292

Rio 87×31 4 402 332 0.820

Table 6.3: Real data



6.2. REAL DATA 61

Dog breeds2 extends the dataset from Section 6.1 to 151 breeds. GreEssL
found 20 factors providing an exact decomposition of the 151× 11 matrix I,

but already the set F3 consisting of the first three most important factors

explains a large portion of the data. In particular, the degree s(I, AF3 ◦BF3)

of closeness of I to the matrix AF3 ◦ BF3 reconstructed from the first three

factors, which is defined by (3.1), equals 0.795. Among these factors is a for-

mal concept containing the attributes “playfulness”, “ease of train”, and

“affection” to degree 1 and “energy” to a high degree. This factor may be

interpreted as the ability to excel in sports (such as agility, flyball, frisbee)

and to serve as guide and therapy dogs. This factor applies to high degree to

breeds such as Golden Retriever, Labrador Retriever, or Papillon. Another

factor is a formal concept containing “Protection ability” and “Watchdog

ability” with high degrees. Such factor may be interpreted as the ability to

serve as a guardian dog and applies e.g. to American Staffordshire Terrier,

Anatolian Shepherd, Belgian Malinois, Belgian Sheepdog, Kuvasz, German

Shepherd Dog, and Doberman Pinscher. Interestingly, these two factors are

similar to factors F3 and F2 described in Section 6.1. In fact, the factors F1,

F2, and F3 from Section 6.1, when extended to the 151 × 11 (in terms of

Section 3.4.1) matrix, cover 0.85 of the matrix according to s, illustrating an

interesting natural property that we observed in several examples.

Decathlon3 extends the dataset from [18] to 28×10 matrix I (28 athletes,

10 disciplines of decathlon) using a five-element scale L. Table 6.4 contains

the matrix I restricted to the first 10 athletes.

Using GreEssL, we obtained 10 factors that we consulted with an experi-

enced decathlon coach. Among the most important factors are the ones that

can be interpreted as speed, containing to high degrees the attributes “100m”,

“Long jump”, “400m”, and “Hurdles”; explosiveness, containing to high de-

grees the attributes “Long jump”, “Shot put”, “High jump”, and “Javelin”;

and a factor containing “High jump” and “1500m”, typical of light-weight

athletes. All these factors were found natural by the decathlon coach.

AssoL computed a set F of 5 factors which reconstruct 80% of the the

input data, i.e. s(I, AF ◦BF) = 0.8. Covering by factors is in order 76% for

first factor, 86% for first two factors, 87%, 88% and 88, 2% for all five factors.

The most interesting is the second most important in terms of coverage,

2http://www.petfinder.com/
3http://www.sports-reference.com/

http://www.petfinder.com/
http://www.sports-reference.com/


62 CHAPTER 6. EXPERIMENTAL EVALUATION

10 lj sp hj 40 hu di pv ja 15

Sebrle 0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75

Clay 1.00 1.00 0.75 0.75 0.50 1.00 1.00 0.50 1.00 0.50

Karpov 1.00 1.00 1.00 0.75 1.00 1.00 1.00 0.25 0.25 0.75

Macey 0.50 0.50 0.75 1.00 0.75 0.75 0.75 0.25 0.50 1.00

Warners 0.75 0.75 0.50 0.50 0.75 1.00 0.25 0.50 0.25 0.75

Zsivoczky 0.50 0.50 0.75 1.00 0.50 0.50 0.50 0.50 0.75 0.75

Hernu 0.50 0.50 0.50 0.50 0.75 0.75 0.50 0.50 0.25 1.00

Nool 0.75 0.75 0.50 0.25 0.75 0.50 0.25 1.00 0.50 0.75

Bernard 0.75 0.75 0.50 1.00 0.50 1.00 0.50 0.25 0.25 0.75

Schwarzl 0.50 0.75 0.25 0.25 0.50 0.75 0.25 0.75 0.25 0.75

Legend: 10—100 meters sprint race; lj—long jump; sp—shot put;

hj—high jump; 40—400 meters sprint race; hu—110 meters hurdles;

di—discus throw; pv—pole vault; ja—javelin throw; 15—1500 meters run.

Table 6.4: 2004 Olympic Games Decathlon

which contains “1500m” with degree 1, and “100m”, “400m”, and “Hurdles”

with degree 0.75, i.e. a factor that may be naturally termed as running

capability.

In this example, we observed factors which are not easy to interpret and

whose appearance is discussed in Section 6.2.1, namely factors which apply

to relatively higher degrees to all athletes and are manifested to high degrees

by every discipline.

IPAQ data4 consists of international questionnaire data regarding physi-

cal activity of population and involves 4510 respondents answering 16 ques-

tions using a three-element scale. This questionnaire is considered important

from health management point of view, particularly as a source for making

government decisions regarding health policy. The questions include respon-

dents age, sex, body-mass-index (BMI), health, to what extent the person

bicycles, walks, etc. GreEssL produced 17 factor concepts providing an

exact decomposition of the 4510 × 16 matrix. As with the other examples,

the first 3–4 factors may be considered sufficient to explain the data. First

4http://www.ipaq.ki.se/, Belohlavek et al., Inf. Sciences 181(2011), 1774–1786.

http://www.ipaq.ki.se/


6.2. REAL DATA 63

factor explains 64%, first two factors 74% and three factors explain 80% of

data. One may see great reduction of input entries using essential part in

this dataset. GreEssL returns the smallest number of factors compared to

other methods providing exact decomposition. On the other hand factors

obtained via GreConDL or GreConDL+ are more interesting, because

factors obtained via GreEssL correspond more or less to a single attribute.

Based on the attributes present in the factors, the first factor returned from

GreConD or GreConD+ corresponds to and thus may be interpreted as

healthy people with good education who cycle on a regular basis ; the second

one as people with normal BMI who walk on a daily basis ; the third one as

people who are employed, own a car, and cycle on a regular basis. All these

groups are considered important according to a kinanthropologist expert.

Music data The data comes from [27] and consists of results of a study

inquiring people’s perception of some speed of song depending of various char-

acteristics of the songs. The data was collected by questionnaires involving

30 participants who were presented 30 samples (29 complex music samples

and one simple tone of 528Hz). The participants recorded their emotional

experience using 26 attributes (such as “Pleasant”, “Happy”, “Exciting”,

“Restful”, “Intelligible”, “Ugly”, “Valuable”, “Interesting”, “Slow”, “Mean-

ingful”, “Active”, “Tense”, “Predictable”, “Closed”, “Violent”, “Strong”,

“Known”, “Variable”, or “Like it”), each using a 6-element scale L, along

with a retrospective time duration and time passage judgement. The data is

then represented by a 900 × 26 matrix with entries in L. Using GreEssL,

we obtained 29 factors. The authors of this study examined the factors and

concluded that the groups of music samples corresponding to the factors are

meaningful and that the factors can be interpreted in terms of emotional

experience. For example, an interesting factor with a good coverage con-

tained songs No. 5, 7, 16, and 26, all of which are melancholic. Another

factor was the one clearly separating the simple tone to which it applied

to degree 1, while applying to degree 0 or to other degrees close to 0 to

the other samples. Among other interesting factors are the one manifested

to a high degree by attributes “Ugly” and “Violent”; the one manifested

by “Restful”, “Safe”, “Stable”, and “Inert”; and the factor manifested by

“Successful”, “Valuable”, “Meaningful”, and “Significant”. All these factors

represent significant categories of songs.



64 CHAPTER 6. EXPERIMENTAL EVALUATION

Rio data 5 represents 87×31 matrix I and consist of 87 countries that ob-

tained any medal in one of 31 sport (such as Archery, Athletics, Badminton,

Basketball, Boxing, . . . ) on Olympics games in Rio de Janeiro 2016. L con-

tains four grades—1 means that country won at least one gold medal, 2
3

at

least silver medal, 1
3

at least one bronze medal and 0 no medal in this sport.

This dataset is very sparse in comparison with other presented datasets.

Great portion of input entries are Essential, i.e. we observe that the ratio

||E(I)||/||I|| of the number of entries in E(I) to the corresponding number

for I is high.

Using GreEssL we computed 32 factors, but it is sufficient take 19 factors

to explain more than 90% of data.

Among the most important factors can be found factor containing martial

arts, which has degree 1 in the attributes “Judo”, “Wrestling” and high

degree in “Weightlifting”. Another one can be interpreted as water sports,

containing in high degrees the attributes “Canoeing”, “Rowing”, “Sailing”,

and “Swimming”.

AssoL returned different factors. Let us mentioned one factor, which

grouped attributes “Archery” and “Shooting”, i.e. sports with the ability to

aim.

6.2.1 Evaluation

Table 6.5 and Table 6.6 display the numbers of factors produced by the algo-

rithms from Section 4 and Section 5 that are needed to achieve a prescribed

coverage. That is, we observe the smallest l such that for the set F of the first

l factors produced by the respective algorithm, s≈(I, AF◦BF) (s=(I, AF◦BF)

respectively) exceeds the prescribed value. For example, the first row in Ta-

ble 6.5 corresponding to Breeds indicates that we need six factors in case of

GreConD of ordinally scaled attributes, three in case of GreConDL, two

in case of GreEssL etc. to have s≈(I, AF ◦BF) ≥ 0.75. “NA” indicates that

the prescribed coverage is not achievable by the factors produced by AssoL.

Observe that in accordance with the theoretical results, “NA” never appears

for other algorithm than AssoL, because the other algorithms eventually

compute an exact decomposition.

5https://www.rio2016.com/en/medal-count

https://www.rio2016.com/en/medal-count


6.2. REAL DATA 65

n
u

m
b

er
of

fa
ct

or
s

n
ee

d
ed

d
at

as
et

s
or

d
in

al
ly

sc
al

ed

at
tr

ib
u

te
s

G
r
e
C
o
n
D
L

A
ss
o
L

G
r
e
E
ss
L

G
r
e
C
o
n
D
L
+

(w
=

0.
5)

G
r
e
C
o
n
D
L
+

(w
=

1
)

B
re

ed
s

0.
75

6
3

2
3

1
1

0.
85

12
5

3
7

2
3

0.
95

25
9

N
A

11
6

8

1
57

16
N

A
15

14
13

D
ec

at
h

lo
n

0.
75

5
1

1
3

1
1

0.
85

8
4

2
5

1
2

0.
95

16
8

N
A

8
4

6

1
31

15
N

A
10

11
13

IP
A

Q
0.

75
6

8
1

10
2

2

0.
85

10
12

1
12

3
4

0.
95

19
18

N
A

15
8

9

1
46

32
N

A
17

20
23

M
u

si
c

0.
75

28
7

1
7

3
1

0.
85

51
13

N
A

14
5

6

0.
95

10
5

24
N

A
25

13
18

1
28

0
36

N
A

29
29

30

R
io

0.
75

1
12

1
2

1
1

0.
85

9
16

1
6

1
1

0.
95

30
24

18
17

5
8

1
79

35
N

A
32

32
33

T
ab

le
6.

5:
Q

u
al

it
y

of
d
ec

om
p

os
it

io
n
s

(r
ea

l
d
at

a)
fo

r
s ≈

.



66 CHAPTER 6. EXPERIMENTAL EVALUATION
n
u

m
b

er
of

fa
ct

or
s

n
ee

d
ed

d
at

as
et

s
or

d
in

al
ly

sc
al

ed

at
tr

ib
u

te
s

G
r
e
C
o
n
D
L

A
ss
o
L

G
r
e
E
ss
L

G
r
e
C
o
n
D
L
+

(w
=

0.
5)

G
r
e
C
o
n
D
L
+

(w
=

1)

B
re

ed
s

0.
50

1
7

N
A

3
N

A
5

0.
75

6
7

N
A

3
N

A
N

A

0.
95

25
12

N
A

11
N

A
N

A

1
57

16
N

A
15

N
A

N
A

D
ec

at
h

lo
n

0.
50

3
3

N
A

3
1

2

0.
75

5
5

N
A

6
N

A
N

A

0.
95

16
11

N
A

9
N

A
N

A

1
31

15
N

A
10

N
A

N
A

IP
A

Q
0.

50
1

1
N

A
2

2
1

0.
75

6
6

N
A

7
N

A
10

0.
95

19
28

N
A

14
N

A
N

A

1
46

32
N

A
17

N
A

N
A

M
u

si
c

0.
50

7
10

N
A

9
N

A
25

0.
75

28
20

N
A

19
N

A
N

A

0.
95

10
5

34
N

A
26

N
A

N
A

1
28

0
36

N
A

29
N

A
N

A

R
io

0.
50

1
1

1
1

1
1

0.
75

1
1

1
1

1
1

0.
95

30
12

N
A

13
N

A
17

1
79

35
N

A
32

N
A

N
A

T
ab

le
6.

6:
Q

u
al

it
y

of
d
ec

om
p

os
it

io
n
s

(r
ea

l
d
at

a)
fo

r
s =

.



6.2. REAL DATA 67

Results for s≈ The results illustrate that, by and large, the number factors

produced by GreConD on dataset with ordinally scaled attributes is signif-

icantly larger in comparison with other algorithms. Moreover the first couple

of factors produced by AssoL and GreConDL+ has a better coverage com-

pared to the same number of factors produced by GreEssL or GreConDL.

On the other hand, beyond certain coverage, AssoL stops producing factors

and is not able to compute an (exact) decomposition of I, while other al-

gorithms always compute an exact decomposition, with a reasonably small

number of factor needed for coverage very close to 1. This is congruent with

the fact that AssoL and GreConDL+ are primarily designed for DBP(L)

and the rest of the algorithms is primarily designed for AFP(L), as well as

with the available evidence from the Boolean case.

We found that factors produced by AssoL are not easy to interpret com-

pared to other algorithms. There are two reasons. The first, mentioned

in Section 6.2, is the usage of formal concepts as factors by GreConD,

GreConDL, GreEssL, GreConDL+ and their good interpretability. The

second one consists in that when |L| > 2 (non-Boolean case) rectangles with

values “around the middle” in L, such as 1
2
, which may be produced as factors

by AssoL have a good coverage and are thus sometimes selected by AssoL
in spite of a possible difficulty in interpreting such factors. In more detail,

note that for Boolean data, the values Iij in the input matrix I are approx-

imated by 0 or 1 of (AF ◦ BF)ij only. Hence, in case of mismatch the entry

〈i, j〉 contributes by Iij ↔ (AF ◦ BF)ij = 0 to the numerator in (3.1). With

more degrees in L, the situation is different. For example, if 1
2

is available

and if 0 ↔ 1
2

= 1 ↔ 1
2

= 1
2
, then already the trivial matrix AF ◦ BF with

all entries equal to 1
2
, which is obtained from the “constant average factors”,

always satisfies s≈(I, AF ◦ BF) ≥ 1
2
. One therefore has to be aware of this

effect of presence in L of the “middle” degrees on the values of s≈.

New algorithm GreEssL requires less factors to achieve a prescribed

coverage than the previous algorithm GreConDL from [18]. The reason is

a better utilization of the geometry of decompositions by GreEssL partic-

ularly of the essential part of I.

Results for s= As was mentioned in Section 6.1.2 in Boolean case (algo-

rithm GreConD on ordinally scaled attributes) it holds that s≈ is equal to

s=, so results in corresponding column are the same. Big change is in case of

GreConDL+. This algorithm like AssoL algorithm allows overcover error,



68 CHAPTER 6. EXPERIMENTAL EVALUATION

so we are not able usually achieve s= = 1. This error grows with smaller pa-

rameter w. More precisely in Breed dataset finally only 47% of entries matrix

I are the same as appropriate element in AF ◦BF for parameter w = 0.5 and

65% for parameter w = 1. In Table 6.7 we show the percentage of the same

entries for all datasets.

dataset AssoL
GreConDL+

(w = 0.5)

GreConDL+

(w = 1)

Breed 29% 47% 65%

Decathlon 24% 51% 73%

IPAQ 24% 69% 80%

Music 12% 35% 52%

Rio 88% 87% 97%

Table 6.7: Percentage of s=

6.3 Synthetic data

We used synthetic data organized in collections Set 1–5, each consisting of

500 n×m matrices I. The characteristics of these datasets are described in

Table 6.8. Each matrix I is obtained as a product of n × k and k ×m ran-

domly generated matrices A and B in which entries from scale L are selected

according to a prescribed probability distribution. For instance, in Set 2 we

used a five-element scale L = {0, 1
4
, 1
2
, 3
4
, 1} with the probabilities p(a) of the

degrees a ∈ L in A and B being p(0) = p(1
4
) = 1

8
and p(1

2
) = p(3

4
) = p(1) = 1

4
.

The probability distributions generalize the commonly considered densities

of Boolean matrices, e.g. for L = {0, 1} the distribution [1
4

3
4
] corresponds to

density 0.75. Table 6.9 contains the average characteristics of synthetic data

with the averages over all matrices in Set i. The characteristics are the same

as for the real data. One observes that the reduction in number of nonzero

entries is significant as in the case of real data. We present similar experiment

in [8]. Set 5 was added and the rest of the sets have the same characteristic,

but they are different, for the purpose of this thesis we generate new ones.



6.3. SYNTHETIC DATA 69

dataset size |L| k distribution on L in A and B

Set 1 50×50 3 10 [1
3

1
3

1
3
]

Set 2 50×50 5 10 [1
8

1
8

1
4

1
4

1
4
]

Set 3 100×50 5 25 [1
8

1
8

1
4

1
4

1
4
]

Set 4 100×100 5 20 [1
8

1
8

1
4

1
4

1
4
]

Set 5 500×100 6 25 [1
6

1
6

1
6

1
6

1
6

1
6
]

Table 6.8: Synthetic data.

dataset avg ||I|| avg ||E(I)|| avg ||E(I)||/||I||
Set 1 2449 195 0.080

Set 2 2503 355 0.141

Set 3 4983 602 0.121

Set 4 10000 2087 0.209

Set 5 49997 14216 0.284

Table 6.9: Characteristics of synthetic data.

6.3.1 Evaluation of explanation data

We now provide an experimental evaluation of the presented algorithms on

synthetic data. We observe the ability of the extracted factors to explain,

i.e. reconstruct, the input data and measure it by the degree of similarity

s≈(I, AF ◦ BF) defined by (3.1), where F is the examined set of factors

(usually the first k factors obtained by the algorithm). In view of Section 2.3,

we speak of coverage of data by factors.

Table 6.10, Table 6.11 and Figure 6.12 display selected results of coverage

s≈, defined by (3.1), by the first k factors for the datasets and the two

algorithms. We also include the percentage s= of entries 〈i, j〉 for which

Iij = (AFk
◦BFk

)ij, where Fk is the set of the first k factors. s= is a stronger

measure than s≈ since it does not take into account the closeness of the

corresponding entries in I and AFk
◦ BFk

and only considers equal entries.

“–” means that no new factors were produced increasing k.

Note that the values of s≈ tend to be high even for a small number of

computed factors and that they are higher than what one usually observes

for Boolean data. The reason is the same like in the case of real datasets and

is explained in Section 6.2.1.



70 CHAPTER 6. EXPERIMENTAL EVALUATION

In results on synthetics data, we observe the same behaviour as in case

of real datasets presented in Section 6.2.1.



6.3. SYNTHETIC DATA 71

co
ve

ra
ge
s/
s =

b
y

th
e

fi
rs

t
k

fa
ct

or
s

d
at

as
et

k
or

d
in

al
ly

sc
al

ed

at
tr

ib
u

te
s

G
r
e
C
o
n
D
L

A
ss
o
L

G
r
e
E
ss
L

G
r
e
C
o
n
D
L
+

(w
=

0.
5)

G
r
e
C
o
n
D
L
+

(w
=

1
)

S
et

1
1

0.
64

8
0.

57
6/

0.
35

0
0.

87
8/

0.
76

1
0.

52
5/

0.
30

9
0.

74
5/

0.
47

0
0.

74
5
/
0
.4

7
0

4
0.

83
7

0.
86

6/
0.

74
4

0.
89

9/
0.

80
5

0.
86

6/
0.

74
4

0.
94

3/
0.

78
0

0.
93

6
/
0
.7

8
1

11
0.

97
5

0.
99

2/
0.

98
5

–
1/

1
1/

0.
85

8
0.

99
9/

0
.8

9
2

12
0.

98
2

0.
99

5/
0.

99
0

–
–

–
1/

0
.8

9
2

17
0.

99
9

1/
1

–
–

–
–

19
1

–
–

–
–

–

S
et

2
1

0.
67

4
0.

62
0/

0.
25

3
0.

79
5/

0.
38

9
0.

63
2/

0.
20

6
0.

83
6/

0.
41

0
0.

83
6
/
0
.4

1
0

2
0.

76
3

0.
78

2/
0.

43
4

0.
83

9/
0.

41
0

0.
82

0/
0.

48
3

0.
92

1/
0.

52
4

0.
92

1
/
0
.5

2
4

10
0.

95
8

0.
99

5/
0.

98
0

–
1/

1
0.

99
9/

0.
68

3
0.

99
8
/
0
.7

3
5

11
0.

96
7

0.
99

7/
0.

98
9

–
–

1/
0.

68
4

0.
99

9/
0
.7

3
8

12
0.

97
5

0.
99

8/
0.

52
4

–
–

–
1/

0
.7

3
8

13
0.

98
0

1/
1

–
–

–
–

23
1

–
–

–
–

–

S
et

3
1

0.
78

0
0.

68
4/

0.
18

8
0.

89
9/

0.
78

9
0.

72
8/

0.
34

9
0.

85
2/

0.
41

2
0.

85
2
/
0
.4

1
2

3
0.

84
5

0.
82

8/
0.

38
6

0.
95

0/
0.

80
7

0.
79

0/
0.

50
8

0.
92

3/
0.

63
2

0.
92

3
/
0
.6

3
2

19
0.

96
6

0.
96

6/
0.

86
7

–
0.

97
9/

0.
95

0
1/

1
0.

99
8
/
0
.8

6
7

27
0.

98
7

0.
98

6/
0.

94
7

–
0.

99
8/

0.
97

7
–

1
/
1

39
0.

99
8

0.
99

8/
0.

99
4

–
1/

1
–

–

47
0.

99
9

1/
1

–
–

–
–

53
1

–
–

–
–

–

T
ab

le
6.

10
:

C
ov

er
ag

e
s ≈

an
d
s =

b
y

th
e

fi
rs

t
k

fa
ct

or
s.



72 CHAPTER 6. EXPERIMENTAL EVALUATION

co
ve

ra
ge
s/
s =

b
y

th
e

fi
rs

t
k

fa
ct

or
s

d
at

as
et

k
or

d
in

al
ly

sc
al

ed

at
tr

ib
u

te
s

G
r
e
C
o
n
D
L

A
ss
o
L

G
r
e
E
ss
L

G
r
e
C
o
n
D
L
+

(w
=

0.
5)

G
r
e
C
o
n
D
L
+

(w
=

1)

S
et

4
1

0.
73

8
0.

65
1/

0.
21

1
0.

92
1/

0.
70

4
0.

64
8/

0.
20

5
0.

84
6/

0.
42

7
0.

84
6/

0.
42

7

4
0.

84
0

0.
82

7/
0.

60
3

0.
93

9/
0.

72
2

0.
85

4/
0.

51
2

0.
96

7/
0.

69
4

0.
96

3/
0.

70
1

21
0.

98
5

0.
97

5/
0.

82
4

–
0.

99
4/

0.
97

9
1/

0.
77

1
0.

99
9/

0.
80

5

27
0.

99
7

0.
99

8/
0.

90
5

–
1/

1
–

1/
0.

80
8

29
0.

99
8

1/
1

–
–

–
–

37
1

–
–

–
–

–

S
et

5
1

0.
56

9
0.

51
1/

0.
11

1
0,

88
6/

0,
53

5
0.

47
7/

0.
06

8
0.

76
5/

0.
23

4
0.

76
5/

0.
23

4

5
0.

75
0

0.
82

1/
0.

41
9

0,
88

7/
0,

54
1

0.
79

8/
0.

32
8

0.
95

3/
0.

54
6

0.
93

1/
0.

53
1

27
0.

94
8

0.
99

5/
0.

97
9

–
0.

99
5/

0.
94

9
1/

0.
62

1
0.

99
9/

0.
70

1

31
0.

96
4

0.
99

8/
0.

99
0

–
0.

99
9/

0.
97

4
–

1/
0.

83
2

36
0.

97
4

0.
99

9/
0.

99
9

–
1/

1
–

–

42
0.

98
6

1/
1

–
–

–
–

10
9

1
–

–
–

–
–

T
ab

le
6.

11
:

C
ov

er
ag

e
s ≈

an
d
s =

b
y

th
e

fi
rs

t
k

fa
ct

or
s

ct
d
.



6.3. SYNTHETIC DATA 73

6.3.2 Selection of smaller I from J

In this section we provide experimental evaluation of heuristic algorithm

presented in Section 3.4.2. We run two kind of experiments.

The first one is a comparison of coverage matrix J by factors from I

obtained by our algorithm with coverage by optimal I. Optimal I means that

we compute factors and then coverage for all combination of k rows. Because

of time complexity of this approach, we compute it on smaller datasets (as

well as real datasets from previous section). Choice by our algorithm is

not unambiguous. Usually there is more rows with same number of essential

elements—in this case, we try all possible combinations and take them as a set

of solutions. In the most instances of our algorithm, the optimal solution is

in the set of our solutions or at least coverage obtained by solutions from the

set are very close to optimal coverage (difference is in average 4%).

Goal of the second type of experiments is to determine how many rows k

must be selected to obtain a good coverage. We take collections of sets from

Section 6.3. Their characteristics are described in Table 6.8. For each set we

compute coverage when we take in order one to 50 percent of rows (selected

via our heuristic). In Figure 6.13 we show averaged final coverage depending

on the parameter k for each collection of sets.

Is sufficient in average to take 20% of rows to obtain coverage greater

than 90% (30% of rows for coverage greater than 95%). This reduction is

significant and leads to computation factorization of smaller matrix. Since

the time complexity of algorithms for matrix decomposition presented in this

thesis depends on size of input matrix, this leads to a faster computation of

approximate decomposition.



74 CHAPTER 6. EXPERIMENTAL EVALUATION

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

Set 1 Set 2

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

Set 3 Set 4

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

Set 5

Figure 6.12: Coverage s≈ by the k factors



6.3. SYNTHETIC DATA 75

0 5 10 15 20 25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

s ≈

0 5 10 15 20 25

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

s ≈

Set 1 Set 2

0 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

0.95

1

k

s ≈

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Set 3 Set 4

0 50 100 150 200 250
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

s ≈

Set 5

Figure 6.13: Coverage if J by factors of k rows.



76 CHAPTER 6. EXPERIMENTAL EVALUATION

6.3.3 Role of τ in AssoL algorithm

In presence of several degrees in L, one may observe a new phenomenon. It

is known that for Boolean data the selection of the threshold τ significantly

influences the performance of Asso [46]. An intuitive explanation is that

with 0 and 1 as the only degrees, the decision based on τ whether to round

off the confidence value to 0 or 1 is significant. We observed that in the

setting with several degrees, the choice of τ becomes less significant as the

number of degrees increases. This is a good feature for a user because the

value of τ needs to be selected by the user but there are no known principles,

except for ad hod recommendations, how to make such a choice.

dataset size |L| k distribution on L in A and B

Set 1 150×150 3 10 [1
3

1
3

1
3
]

Set 2 150×100 5 10 [1
8

1
8

1
4

1
4

1
4
]

Set 3 100×150 11 10 [ 1
16

1
16

1
16

1
16

1
16

1
16

1
8

1
8

1
8

1
8

1
8
]

Set 4 100×100 21 10 1
21

for all

Set 5 100×100 101 10 1
101

for all

Table 6.12: Synthetic data.

Table 6.12 describes characteristics of the synthetic datasets which we

used in the experiments. Table 6.13 presents the values of coverage s≈ cor-

responding to the first factor and to all the factors obtained. The values

are observed for different values of τ . As one can see, as the size of L in-

creases, the coverage values for different values of τ tend to be the same. The

same tendency is seen in Table 6.14 with the stronger measure, s=, replacing

s≈. Note that the low values in this table, particularly for scales L with a

larger number of degrees, indicating a low number of entries for which the

input matrix and the matrix reconstructed from the factors have equal val-

ues, are due to the aim of AssoL to generate approximate rather than exact

decompositions.

For all of the datasets we obtain best coverage for τ between 0.85 and

0.95. For datasets with smaller size of L we obtain different coverage for

τ = 0.85 and τ = 0.95. In datasets Set 4 and Set 5 this difference is small.

See Table 6.13. The entries depict mean coverage for first factor/coverage

for all factors.



6.3. SYNTHETIC DATA 77

dataset τ = 0.85 τ = 0.9 τ = 0.95

Set 1 0.85/0.87 0.87/0.88 0.83/0.86

Set 2 0.87/0.87 0.86/0.90 0.85/0.89

Set 3 0.87/0.87 0.88/0.88 0.87/0.87

Set 4 0.88/0.88 0.88/0.88 0.88/0.88

Set 5 0.87/0.88 0.87/0.88 0.87/0.88

Table 6.13: Coverage s≈ by the first factor/by all factors obtained for different

values of τ .

dataset τ = 0.85 τ = 0.9 τ = 0.95

Set 1 0.68/0.73 0.63/0.65 0.46/0.50

Set 2 0.29/0.33 0.35/0.37 0.26/0.28

Set 3 0.12/0.17 0.12/0.19 0.14/0.19

Set 4 0.04/0.06 0.04/0.07 0.04/0.06

Set 5 0.006/0.01 0.006/0.01 0.006/0.01

Table 6.14: Coverage s= by the first factor/by all factors obtained by AssoL
for different values of τ .



78 CHAPTER 6. EXPERIMENTAL EVALUATION



Chapter 7

Conclusion

In this thesis we generalized the Boolean matrix decomposition problem

(BMF), took into account matrices over scales which represent ordinal data.

We proposed answers to natural question: “How well a set of factors explains

’the data?” Moreover, we present a problem of explaining data by factors

obtained from reduced data—data having same attributes but the smaller

number of objects. We propose heuristic to deal with problem of selection

from a possibly large dataset a smaller one such that the factors of the re-

duced dataset explain the large dataset well. The experimental results reveal

that the heuristic returns very good, nearly optimal solutions.

The main part of this thesis presents existing and new algorithms for

decomposition of matrices with ordinal attributes. We introduce three new

algorithms, namely GreEssL, AssoL and GreConDL+, all based on more

or less known BMF algorithms. We supported the correctness of these algo-

rithms by theoretical results regarding the geometry of decompositions and

by experimental evaluation presented in this thesis. It turns out that the

methods yield reasonable and, in a sense, robust factors and that the results

of the methods are easy to understand. We also shown that methods suited

for ordinal matrices returns better results, than BMF methods on scaled

data.

Decomposition of matrices over some scale is still not well understood

problem. There is a lot of unresolved issues including for example: the

choice of the scale of degrees, the operation ⊗ or a problem we addressed in

Chapter 6—AssoL returns rectangles with values “around the middle” in L.

Abundantly discussed topic in data mining community is, in case of BMF,

noise in Boolean data. This issue should be investigated in general case as

well.

79



80 CHAPTER 7. CONCLUSION



Shrnut́ı v českém jazyce

Rozklady Booleovských matic (BMF), rozklady matic, které obsahuj́ı pouze

nuly a jedničky, také známé jako faktorizace Booleovských dat, se č́ım dál

t́ım v́ıce těš́ı pozornosti dataminingové komunity. Ćılem BMF je hledáńı, v

datech skrytých d̊uležitých informaćı – faktor̊u – pomoćı nichž lze vysvětlit

či popsat originálńı data. Postupem času vznikla celá řada metod pro BMF.

Ćılem této práce je prozkoumat rozš́ı̌reńı těchto maticových rozklad̊u pro

data, která nemaj́ı jen binárńı charakter, ale jejichž vstupy jsou z uspořádané

škály. Takováto generalizace sebou přináš́ı několik netriviálńıch problémů,

které jsou rovněž diskutovány v této práci.

Prvńı část práce je věnována popisu problému rozklad̊u matic s odrinálńımi

daty, na který můžeme nahĺıžet jako na problém pokrýváńı. Jsou zde stručně

popsány matematické základy, které při řešeńı využ́ıváme. Jedńım z nich

je Fuzzy logika, obzvláště pak kalkulus na reziduovaných svazech. Dále pak

Formálńı konceptuálńı analýza – zde s výhodou využ́ıváme faktu, že faktory

vybrané z množiny formálńıch koncept̊u tvoř́ı optimálńı řešeńı.

Nav́ıc v prvńı části práce prezentujeme nové teoretické výsledky, které

pak využijeme při návrhu nových algoritmů. Předevš́ım využ́ıváme toho, že

v binárńım př́ıpadě se ukázalo, že ne všechna poĺıčka jsou rovnocenná. K

tomu abychom pokryli celá vstupńı data stač́ı pokrýt jen některá poĺıčka.

Tyto prvky nazýváme esenciálńı a jsou definovány přes minimálńı intervaly

v konceptuálńım svazu. Ukazujeme, že i v obecném př́ıpadě lze nalézt ekvi-

valentńı pojem. Generalizace neńı úplně př́ımočará a přináš́ı několik výzev.

Např́ıklad každému esenciálńımu prvku může odpov́ıdat v́ıce interval̊u v kon-

trastu s binárńım př́ıpadem, kde interval je pouze jeden.

V druhé části práce představujeme již existuj́ıćı metody pro dekompo-

zici matic s ordinálńımu daty. Konkrétně GreConL, GreConDL a Non-

negative matrix factorisation (NMF). Nav́ıc demonstrujeme možnosti využit́ı

existuj́ıćıch BMF metod na data, která źıskáme ordinálńım škálováńım. Dále

81



82 CHAPTER 7. CONCLUSION

představ́ıme tři nové algoritmy, jejichž myšlenka pocháźı z BMF algoritmů.

Posledńı část je věnována experimentálńı analýze a srovnáńı představených

algoritmů. Zaměřujeme se předevš́ım na interpretovatelnost faktor̊u, źıskaných

z jednotlivých metod, počty faktor̊u a kvalitu pokryt́ı – jak velká část dat

je vysvětlena źıskanými faktory. Experimenty provád́ıme na syntetických a

reálných datech.



Bibliography

[1] L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, P. J. Campbell, M.

R. Stratton, “Deciphering Signatures of Mutational Processes Opera-

tive in Human Cancer”, Cell Reports 3 (1) (2013), 246–259.

[2] H. Andrews, C. Patterson, “Singular Value Decomposition (SVD) Image

Coding”, IEEE Transactions on Communications 24 (4) (2003), 425–

432.

[3] R. Belohlavek, Fuzzy Relational Systems: Foundations and Principles,

Kluwer, Academic/Plenum Publishers, New York, 2002.

[4] R. Belohlavek, “Concept Lattices and Order in Fuzzy Logic”, Annals of

Pure and Applied Logic 128 (1–3) (2004), 277–298.

[5] R. Belohlavek, “Optimal Decompositions of Matrices with Entries from

Residuated Lattices”, J. Logic and Computation 22 (6) (2012), 1405–

1425.

[6] R. Belohlavek, “Ordinally Equivalent Data: A Measurement-Theoretic

Look at Formal Concept Analysis of Fuzzy Attributes”, Int. Journal of

Approximate Reasoning 54 (9) (2013), 1496–1506.

[7] R. Belohlavek, M. Krmelova, “Factor Analysis of Sports Data via De-

composition of Matrices with Grades”, In: Szathmary L., Priss U.

(Eds.): CLA 2012: Proceedings of the 9th International Conference on

Concept Lattices and Their Applications, 2012, pp. 293–304 Fuengirola

(Málaga), Spain, October 2012.

[8] R. Belohlavek, M. Krmelova, “Beyond Boolean Matrix Decomposi-

tions: Toward Factor Analysis and Dimensionality Reduction of Ordinal

Data”, ICDM 2013, pp. 961–966, 2013.

83



84 BIBLIOGRAPHY

[9] R. Belohlavek, M. Krmelova, “Factor Analysis of Ordinal Data via De-

composition of Matrices with Grades”, Annals of Mathematics and Ar-

tiffcial Intelligence 72 (1–2) (2014), 23–44.

[10] R. Belohlavek, J. Outrata, M. Trnecka, “Impact of Boolean Factoriza-

tion as Preprocessing Methods for Classification of Boolean Data”, In:

Szathmary L., Priss U. (Eds.): CLA 2012: Proceedings of the 9th Inter-

national Conference on Concept Lattices and Their Applications, 2012,

pp. 305–316, Fuengirola (Málaga), Spain, October 2012.

[11] R. Belohlavek, J. Outrata, M. Trnecka, “Impact of Boolean Factoriza-

tion as Preprocessing Methods for Classification of Boolean data”, An-

nals of Mathematics and Artificial Intelligence 72(1-2)(2014), 3–22.

[12] R. Belohlavek, M. Trnecka, “From-Below Approximations in Boolean

Matrix Factorization: Geometry and New Algorithm”, Journal of Com-

puter and System Sciences 81(8)(2015), 1678–1697.

[13] R. Belohlavek, M. Trnecka, “A New Algorithm for Boolean Matrix Fac-

torization which Admits Overcovering”, To appear in Discrete Applied

Mathematics.

[14] R. Belohlavek, M. Trneckova, “The Asso algorithm for graded at-

tributes”, Unpublished manuscript.

[15] R. Belohlavek, M. Trneckova, “Toward a geometry of decompositions of

matrices with grades”, Unpublished manuscript.

[16] R. Belohlavek, M. Trneckova, “A decomposition algorithm for matrices

with grades that admits overcovering”, Unpublished manuscript.

[17] R. Belohlavek, V. Sklenar, J. Zacpal, “Crisply Generated Fuzzy Con-

cepts”, In: B. Ganter and R. Godin (Eds.): ICFCA 2005, Lecture

Notes in Artificial Intelligence 3403, pp. 268–283, Springer-Verlag,

Berlin/Heidelberg, 2005.

[18] R. Belohlavek, V. Vychodil, “Factor Analysis of Incidence Data via

Novel Decomposition of Matrices”, Lecture Notes in Artificial Intelli-

gence 5548(2009), 83–97.



BIBLIOGRAPHY 85

[19] R. Belohlavek, V. Vychodil, “Discovery of Optimal Factors in Binary

Data via A Novel Method of Matrix Decomposition”, J. Computer and

System Sciences 76(1)(2010), 3–20.

[20] R. Belohlavek, V. Vychodil, “Formal Concept Analysis and Linguistic

Hedges”, Int. J. General Systems 41(5)(2012), 503–532.

[21] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, R. J. Plemmons,

“Algorithms and Applications for Approximate Nonnegative Matrix

Factorization”, Computational Statistics & Data Analysis 52 1(2007),

155–173.

[22] M. Chu, F. Diele, R. Plemmons, R. Ragni, “Optimality, Computation,

and Interpretations of Nonnegative Matrix Factorizations”, Unpublished

Report, (2004) available at http://www.wfu.edu/~plemmons.

[23] P. Comon, “Independent Component Analysis, A New Concept?”, Sig-

nal Precessing 36 (1994), 287–314.

[24] P. Cunningham, “Dimension Reduction”, University College Dublin,

Technical Report UCD-CSI-2007-7, 2007.

[25] W. J. Dixon(ed.), “BMDP Statistical Software Manual”, Berkeley, CA:

University of California Press, 1992.

[26] L. Eldén, “Matrix Methods in Data Mining and Pattern Recognition”,

SIAM, 2007.

[27] K. Flaska, P. Cakirpaloglu, “Identification of the Multidimensional

Model of Subjective Time Experience”, Int. Studies in Time Perspective,

Imprensa da Universidade de Coimbra (2013), 259–273.

[28] B. Ganter, R. Wille, Formal Concept Analysis. Mathematical Founda-

tions, Springer, Berlin, 1999.

[29] F. Geerts, B. Goethals, T. Mielikäinen, “Tiling Databases”, Proc. Dis-

covery Science 2004, pp. 278–289.

[30] J. S. Golan, Semirings and their Applications, Springer, 1999.

[31] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins University

Press, 1996.

http://www.wfu.edu/~plemmons


86 BIBLIOGRAPHY

[32] S. Gottwald, A Treatise on Many-Valued Logics, Research Studies Press,

Baldock, Hertfordshire, England, 2001.

[33] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, 1998.

[34] M. Huchard, A. Napoli, H. M. Rouane, P. Valtchev, “A Proposal for

Combining Formal Concept Analysis and Description Logics for Mining

Relational Data”, ICFCA 2007, pp. 51–65, 2007.

[35] S. Karaev, P. Miettinen, J. Vreeken, “Getting to Know the Unknown

Unknowns: Destructive-Noise Resistant Boolean Matrix Factorization”,

Proc. 2015 SIAM International Conference on Data Mining (SDM ’15),

pp. 325–333, 2015.

[36] M. Krmelova, M. Trnecka, V. Kreinovich, B. Wu, “How to Distinguish

True Dependence from Varying Independence?”, Journal of Intelligent

Technologies and Applied Statistics 6(4)(2013), 339–351.

[37] M. Krmelova, M. Trnecka, “Boolean Factor Analysis of Multi-relational

Data”, In: Ojeda-Aciego M., Outrata J. (Eds.): CLA 2013: Proceedings

of the 10th International Conference on Concept Lattices and Their

Applications, 2013, pp. 187–198, La Rochelle, France, October 2013.

[38] D. Lee, H. Seung, “Learning the Parts of Objects by Non-Negative Ma-

trix Factorization”, Nature 401 (1999), 788–791.

[39] D. Lee, H. Seung, “Algorithms for Non-Negative Matrix Factorisa-

tion”, Advances in Neural Information Processing Systems 13 (2001),

556–562.

[40] R. Liao, Y-L. Boscolo, L. M. Yang, C. S. Tran, V. P. Roychowdhury,

“Network Component Analysis”, PNAS 100 (2003), 15522–15527.

[41] C. Lucchese, S. Orlando, R. Perego, “Mining Top-K Patterns From Bi-

nary Datasets in Presence of Noise”, In: SIAM DM 2010, pp. 165–176,

2010.

[42] C. Lucchese, S. Orlando, R. Perego, “A Unifying Framework for Mining

Approximate Top-k Binary Patterns”, IEEE Transactions On Knowl-

edge and Data Engineering 26(12):2900–2913, 2014.



BIBLIOGRAPHY 87

[43] P. Miettinen, “The Boolean Column and Column-Row Matrix Decom-

positions”, Data Mining and Knowledge Discovery 17(2008), 39–56.

[44] P. Miettinen, “Sparse Boolean Matrix Factorizations”, Proc. IEEE

ICDM 2010, pp. 935–940, 2010.

[45] P. Miettinen, “On Finding Joint Subspace Boolean Matrix Factoriza-

tions”, In: SDM, pp. 954–965, 2012.

[46] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, H. Mannila, “The

Discrete Basis Problem”, IEEE TKDE 20 (2008), 1348–62.

[47] P. Miettinen, J. Vreeken, “Model Order Selection for Boolean Matrix

Factorization”, ACM SIGKDD 2011, pp. 51–59, 2011.

[48] G. T. Miller, “The mAgical Number Seven, Plus or Minus Two”, Psy-

chol. Rev. 63 (1956), 81–97.

[49] D. S. Nau, G. Markowsky, M. A. Woodbury, D. B. Amos, “A Mathe-

matical Analysis of Human Leukocyte Antigen Serology”, Math. Biosci

40 (1978), 243–270.

[50] F. A. Nielsen, D. Balslev, L. K. Hansen, “Mining the Posterior Cingu-

late: Segregation Between Memory and Pain Components”, NeuroImage

27 3 (2005), 520–522.

[51] F. A. Nielsen, Clustering of Scientific Citations in Wikipedia Wikimania

(2008).

[52] P. Paatero, U. Tapper, “Positive Matrix Factorization: A Non-negative

Factor Model with Optimal Utilization of Error”, Environmetrics, 5

(1994), 111–126.

[53] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points

in Space”, Philosophical Magazine, 2 (1901), 559–572.

[54] D. A. Simovici, C. Djeraba, Mathematical Tools for Data Mining,

Springer, 2008.

[55] C. Spearman, “General Intelligence”, Objectively Determined and Mea-

sured, American Journal of Psychology, 15 (1901), 201–293.



88 BIBLIOGRAPHY

[56] G. W. Stewart, “On the Early History of The Singular Value Decompo-

sition”, SIAM Review, 35 (1993) 551–566

[57] L. Stockmeyer, The Set Basis Problem is NP-complete. Tech. Rep.

RC5431, IBM, Yorktown Heights, NY, USA, 1975.

[58] L. Taslaman, B. Nilsson, “A Framework for Regularized Non-Negative

Matrix Factorization, With Application to The Analysis of Gene Ex-

pression Data”, PLoS One 7 11 (2012).

[59] N. Tatti, T. Mielikäinen, A. Gionis, H. Mannila, “What is The Dimen-

sion of Your Binary Data?”, Proc. IEEE ICDM 2006, pp. 603–612, 2006.

[60] M. Trnecka, M. Trneckova, “An Algorithm for the Multi-Relational

Boolean Factor Analysis based on Essential Elements”, In: K. Bertet,

S. Rudolph (Eds.): CLA 2014: Proceedings of the 11th International

Conference on Concept Lattices and Their Applications, pp. 107–118,

2014.

[61] M. Trnecka, M. Trneckova, “Decomposition of Boolean Multi-Relational

Data with Graded Relations”, In: Proceedings of the 8th IEEE Inter-

national Conference on Intelligent Systems (IEEE IS’16), pp. 221–226,

2016.

[62] Y. Xiang, R. Jin, D. Fuhry, F. F. Dragan, “Summarizing Transactional

Databases with Overlapped Hyperrectangles”, Data Mining and Knowl-

edge Discovery 23 (2011), 215–251.

[63] L. A. Zadeh, “Probability Measures of Fuzzy Events”, J. Math. Anal.

Appl. 23 (1968), 421–427.



factor analysis
with ordinal attributes

Markéta Trnečková

Author Paper of Dissertation Thesis

Department of Computer Science

Faculty of Science

Palacký University Olomouc

2016



Uchazeč

Mgr. Markéta Trnečková

marketa.trneckova@gmail.com

www.marketa-trneckova.cz

Školitel

prof. RNDr. Radim Bělohlávek, DSc.

Mı́sto a termı́n obhajoby

Oponenti

S disertačńı praćı a posudky se bude možné seznámit na katedře informatiky PřF UP,

17. listopadu 12, 771 46 Olomouc.

Abstract – The problem of matrix decomposition, also known as matrix factorization

problem, is widely investigated in data mining community. Especially Boolean case, where

entries of matrices are 0s and 1s. In this work we explore the extension of matrix decom-

position problem for ordinal data, i.e. data where attributes are values from ordered scales.

The replacement of the two-element set of Boolean values and Boolean operations by a

multiple-valued set of grades and multiple-valued operations introduced various non-trivial

problems. We examine existing algorithms for ordinal data and propose three new algo-

rithms for matrix decomposition problem. We demonstrate that the proposed algorithms

deliver decompositions with informative and easy-to-understand factors by analysing real

datasets. Moreover, we also compare algorithms presented on synthetic datasets.

www.marketa-trneckova.cz


Chapter 1

Introduction

1.1 Problem setting

Factor analysis and related techniques based on matrix decompositions are important meth-

ods of data analysis. In the past, considerable attention has been paid to the problem of

Boolean matrix factorization (BMF) and its variants, because of its direct usefulness in data

analysis and its role in understanding Boolean data.

The basic problem is to find for a given n×m Boolean matrix I, some n× k and k×m
Boolean matrices A and B with a reasonably small k for which the Boolean product A ◦ B
is (approximately) equal to I.

In this work, we are concerned with extending the problems and methods of BMF toward

a more general case. Namely, instead of Boolean matrices whose entries are 0s and 1s, we

consider matrices with entries taken from a partially ordered set L bounded by 0 and 1, such

as for example the five-element scale L = {0, 1
4
, 1
2
, 3
4
, 1}. The entries of a Boolean matrix I

represent presence (Iij = 1) and absence (Iij = 0) of attributes. In the more general case, the

entries represent degrees to which attributes are present, i.e. degrees to which they apply

to objects, with 0 and 1 representing full absence and full presence and the intermediate

degrees, such as 3
4
, representing partial presence.

Several methods for real-valued matrices exist. The best known are for example singular

value decomposition and principal component analysis. These methods are widely used but

the produced results are often hard to interpret, because of a possible presence of negative

coefficients. Another well-known method, non-negative matrix factorisation, deals with this

issue, but interpretation of results is not quite straightforward either.

Papers [5, 18] extended the Boolean matrix factorization problem and the methods devel-

oped in [19] to ordinal data. This paper provides an overview of existing methods, presents

three new algorithms inspired by the existing BMF algorithms and compares them. Par-

ticular parts (Chapters 2, 3, 4, 5 and 6) of this work are mainly based on the articles

[7, 8, 9, 14, 15, 16]. The full list of my publications can be found at my personal webpages

http://www.marketa-trneckova.cz.

This work consists of seven chapters. The first chapter contains a brief introduction to

this work and also contains the list of my publications relevant to this work and a brief survey

of related works. The second chapter defines the problem this work is dealing with and lists

the used notation. In the third chapter we present first observations related to new theory

1

http://www.marketa-trneckova.cz


INTRODUCTION 2

behind the presented algorithms. The fourth chapter contains a brief description of existing

algorithms that will be present in the experimental part of this work (Chapter 6) together

with the new algorithms presented in Chapter 5. Chapter 5, the main part of this paper,

comprises description of three new algorithms, their definition and same theoretical insight

behind them. Chapter 6, the experimental part of this work, consists of several experiments.

Shows how all presented methods work and their results on a small illustrative example and

provides us results of various experiments on both real and synthetics datasets. The work

is closed by Chapter 7 containing a summary of the work.

1.2 Related work

This section summarizes the works directly related to the topics in this paper. The main part

of this work is devoted to matrix decompositions—factorization of a matrix into a product of

two or more matrices. Roots of this decompositions lays in factor analysis, which aims is to

find new hidden variables (factors) in data. Factor analysis was initiated in 1904 by Charles

Spearman [55], when he wanted to determine whether there are common factors of human

intelligence. He tested how well people performed on various tasks relating to intelligence.

Since the literature on matrix decompositions is too numerous we present here only a lit-

tle part of it. Perhaps the best known methods designed for real-valued matrices are singular

value decomposition (SVD) [56], principal component analysis (PCA) [26, 31], independent

component analysis (ICA) [23] and network component analysis (NCA) [40]. These methods

usually decompose n ×m real input matrix I into a product of two (in case of PCA, ICA,

NCA, NMF) or three matrices (in SVD). The constraints of each method are different. For

example for PCA, we want one of the resulted matrices to be orthogonal, in ICA we require

all components of the resulting matrix independent. There exist many applications using

these methods, for example image processing and compression [2] or data reduction [24].

When using these techniques, some issues appears—such as a difficulty to interpret negative

coefficients. This problem is solved by the well-known non-negative matrix factorization

(NMF) [38]. Even though NMF is conceptually very different from the methods that we

propose, a comparison seems worth performing. Applications of NMF are numerous, let

us mention several of them. Text mining—analysis of document-term matrix (constructed

usually as weighted word frequency in a set of documents)—[50] analyse small subset of

scientific abstracts from PubMed database, [51] clusters Wikipedia articles and scientific

journals based on the citations. Another application is spectral analysis, for example classi-

fication of space objects and debris [21], or bioinformatics applications such as for example

gene expression [58] and identify common patterns of mutations that occur in cancers [1].

The data mining community pays attention to Boolean matrix factorisation, which is the

most related to this work. One of the first paper in this area is [49] in which NP-completeness

of the basic decomposition problem is observed. The interest in BMF in data mining is due

to Miettinen’s works, especially [46] with the Asso algorithm whose extension for matrices

with scales we propose. Another Miettinen’s works related to BMF include Boolean CX and

CUR decompositions (different kind of decomposition) [43], investigating sparcity in BMF

[44], examining common factor of two and more matrices [45], selecting the number of factors

using minimum description length (MDL) [47]. [29] is the first paper on “tiling” Boolean



INTRODUCTION 3

data, which is closely related to BMF since it corresponds to the from-below factorizations

that we examine for matrices with scales.

The utilization of formal concepts (fixpoints of Galois connections) of Boolean matrices

as factors, two BMF algorithms—a GreCon and a GreConD algorithms—and other issues

are examined in [19]. One of these issues is a transformation between the space of attributes

and the space of factors. This is used in machine learning for classification of Boolean

data [10, 11]. Another paper about BMF related to our work is [12], which proposed the

GreEss algorithm based on essential elements, which we generalize in this work. Not yet

published is [13], which includes the algorithm GreConD+, a modification of the algorithm

GreConD which allows for overcover error. [62] studies summarization of Boolean data

and proposes an algorithm utilizing MDL called PaNDa, which is the algorithm for mining

top-k patterns in Boolean data in [41] (the problems are naturally reformulated as BMF

problems). Modification of PaNDa algorithm with using several different cost functions

called PaNDa+ algorithm was proposed in [42]. Another algorithm called Nassau utilizes

the MDL principle for solving BMF problem (in different way that PaNDa) was presented

in [35].

In this work we are interested in a more general case namely in factorising matrices with

entries from an appropriate scale. Matrices over scales and other structures are examined in

many papers, including those on matrices over semi-ring-like algebras [30] and binary fuzzy

relations between finite universes, see e.g. [3, 32].

Directly related to this paper are also [5, 18], where the the role of formal concepts of

matrices over scales is studied and a decomposition algorithms are proposed. [9] presents

analyses of various sports datasets using this algorithm and studies further theoretical prob-

lems inspired by the analyses. For algorithms AssoL and GreEssL presented in this work

we refer to [8, 14, 15] and for algorithm GreConDL+ we refer to [16].

A theoretical basis of this work lays in formal concept analysis (of Boolean data) [28],

ordered and combinatorial structures [54] and closure structures in the setting of fuzzy logic

and structures over scales [3]. The scales with aggregation we utilize in our work have

recently been investigated in the context of formal fuzzy logic [32, 33].

Methods of analysis of ordinal data also appear in the psychological literature but the

tools employed are basically variations of classical factor analysis. That is, grades are rep-

resented by and treated like numbers which leads to loss of interpretability, similarly as in

the case of Boolean data, see e.g. [59].

Possible extension of factor analysis is multi-relational factor analysis. In specific form

was mentioned in [45] as joint subspace matrix factorization, where are two Boolean matrices

and both share the same rows (or columns). Another paper related to this topics is [34],

where is introduced the relational formal concept analysis, i.e. the formal concept analysis

on multi-relational data. The multi-relational data are iteratively merged into one data table

and than processed. The most relevant papers for this extension are [37, 60, 61], where was

presented factorisation of multi-relational data. Also a heuristic algorithm was presented

there.



Chapter 2

Preliminaries

2.1 Fuzzy logic

Let us consider a set L of truth values. We assume that this set is partially ordered (partial

ordering is denoted by ≤), contains a least element 0 and a greatest element 1.

Let a and b truth degrees from L, then in L exists a truth value which is greater than

both a and b. The least element that is greater or equal to both a and b is called supremum

of a and b. Analogously, we can define infimum of a and b—the greatest element from L

which is smaller or equal to both a and b. We define the lower cone of A by L(A) = {a ∈
L|a ≤ b for all b ∈ A} and the upper cone of A by U(A) = {a ∈ L|b ≤ a for all b ∈ A}. If

L(A) has a greatest element a, then a is called the supremum of A (denoted
∨
A) and dually

if U(A) has a least element a, then a is called the infimum of A (denoted
∧
A). In particular,

we assume that the partial order ≤ makes L a complete lattice [32] (i.e., arbitrary infima
∧

and suprema
∨

exist in L). This assumption is automatically satisfied if L is a finite chain

(i.e. a ≤ b or b ≤ a for every a, b ∈ L), in which case a∧ b = min(a, b) and a∨ b = max(a, b).

We also need to define operation logical conjunction (denoted by ⊗). We assume that ⊗ is

commutative, associative, has 1 as its neutral element (a ⊗ 1 = a = 1 ⊗ a), and distributes

over arbitrary suprema, i.e. a⊗ (
∨
j∈J bj) =

∨
j∈J(a⊗ bj). This leads to if a and b are truth

degrees of propositions p1 and p2, then a⊗ b is the truth degree of proposition “p1 and p2”.

Importantly, ⊗ induces another operation, →, called the residuum of ⊗, which plays the

role of the truth function of implication and is defined by

a→ b = max{c ∈ L | a⊗ c ≤ b}. (2.1)

Residuum, which may be looked at as a kind of division, satisfies an important technical

condition called adjointness:

a⊗ b ≤ c iff a ≤ b→ c,

which is also utilized below. This leads to algebraic structures called residuated lattices.

Definition 1. A residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 where

(i) 〈L,∧,∨, 0, 1〉 is a lattice with a least element 0 and a greatest element 1,

(ii) 〈L,⊗, 1〉 is a comutative monoid i.e. ⊗ is associative, commutative, and the identity

x⊗ 1 = x holds,

4



PRELIMINARIES 5

(iii) ⊗ and → satisfy the adjointness property, i.e.

x ≤ y → z iff x⊗ y ≤ z

holds for each x, y, z ∈ L (≤ denotes the lattice ordering).

A residuated lattice is called complete if 〈L,∧,∨, 0, 1〉 is a complete lattice.

Many examples of scales are known in many-valued logic [32, 33], among them those where

L is the real unit interval [0, 1] or its finite equidistant subinterval, i.e. L = {0, 1
n
, . . . , n−1

n
, 1},

which are used in examples and experiments presented in the work.

As far as the choice of the operations on L is concerned, we mainly use  Lukasiewicz

in examples, because of some of its intuitive properties. For example, the implication →
naturally corresponds to the natural distance in [0, 1].

2.2 Decomposition problem and its two variants

Factor analysis is a method used to describe variability among observed, correlated variables

in terms of a potentially smaller number of unobserved variables which are called factors.

For example, it is possible that variations in several observed variables (such as performance

of students) mainly reflect the variations in an unobserved variable (their intelligence).

Formally, the input data is represented by an n ×m object–attribute matrix I and the

“explanation” means a decomposition
I = A ◦B (2.2)

(exact or approximate) of I into a product A ◦B of an n× k object–factor matrix A and

a k × m factor–attribute matrix B. What kind of matrices (real, Boolean, or other) and

what kind of product ◦ are involved determines the semantics of the factor model.

Now we present two concrete variants of the decomposition problem. These two problems

reflect two important views on BMF. The first one—the discrete basis problem (DBP) [46]—

emphasizes the importance of the first k (presumably the most important) factors. The

second one—the approximate factorization problem (AFP) [12]—emphasizes the need to

account for (and thus to explain) a prescribed portion of data, which is specified by error ε.

Formally DBP is defined as follows: Given n ×m matrix I and positive integer k, find

n× k matrix A and k ×m matrix B that minimize ||I − A ◦B||.
AFP is defined as follows: Given n×m matrix I and prescribed error ε, find n×k matrix

A and k×m matrix B with k as small as possible such that that minimize ||I −A ◦B|| ≤ ε.

Several other reasonable variants may be formulated but we restrict to these two because

they reflect two basic views of the decomposition problem.

Our model (2.2) involves matrices containing degrees (or grades) of certain scales L and

the product is the sup-⊗ product, as described below. In particular, the matrix entry Iij
is a degree to which attribute j applies to object i, for example Iij = 0.5. Similarly, Ail is

the degree to which factor l applies to object i and Blj is the degree to which attribute j is

(one particular) manifestation of factor l. The case in which the scale L contains only two

degrees, 0 and 1, called the Boolean case in what follows, corresponds to Boolean matrices

and Boolean factor analysis [19] which is a special case of ours.



PRELIMINARIES 6

A verbal description of equation (2.2) reads: “Object i has attribute j if and only if there

exists factor l such that i has l (or, l applies to i) and j is one of the particular manifestations

of l.” Such description is certainly appealing and well understandable.

In the Boolean case, in which L = {0, 1}, the verbal description leads to

(A ◦B)ij = 1 iff there exists l ∈ {1, . . . , k} such that Ail = 1 and Blj = 1,

which may equivalently be described by the well-known formula

(A ◦B)ij =
k

max
l=1

min(Ail, Blj) (2.3)

for Boolean matrix composition.

With a general scale L, we approach the situation according to the principles of (math-

ematical) fuzzy logic (see Section 2.1) as follows. Let us have the formulas ϕ(i, l) saying

“object i has factor l” and ψ(l, j) saying “attribute j is a manifestation of factor l”, and

consider Ail the truth degree of ϕ(i, l) and Blj the truth degree of ψ(l, j), i.e.

||ϕ(i, l)|| = Ail and ||ψ(l, j)|| = Blj. (2.4)

Now, according to fuzzy logic, the truth degree of formula ϕ(i, l) &ψ(l, j) which says “object

i has factor l and attribute j is a manifestation of factor l” is computed by

||ϕ(i, l) &ψ(l, j)|| = ||ϕ(i, l)|| ⊗ ||ψ(l, j)||

where ⊗ : L×L→ L is a truth function of many-valued conjunction &, and hence the truth

degree of (∃l)(ϕ(i, l)&ψ(l, j) which says “there exists factor l such that object i has l and

attribute j is a manifestation of l”, i.e. the proposition is computed by

||(∃)(ϕ(i, l) &ψ(l, j))|| =
∨k
l=1 ||ϕ(i, l)|| ⊗ ||ψ(l, j)||, (2.5)

where
∨

denotes the supremum. Given into account (2.4), we see that a generalization of

(2.3) to the case of possibly intermediate degrees is given by

(A ◦B)ij =
∨k
l=1Ail ⊗Blj. (2.6)

Therefore, with ◦ given by (2.6), the factor model (2.2) retains its meaning even in the case

when intermediate degrees are allowed.

2.3 Formal concept analysis

From the description in Section 2.2, it is clear that for any decomposition (2.2), the lth factor

(l ∈ {1, . . . , k}) is represented by two parts: the lth column A l of A and the lth row Bl of

B. As shown in [5], optimal factors for a decomposition of I (see below) are provided by

formal concepts associated to I. In detail, let X = {1, . . . , n} (objects) and Y = {1, . . . ,m}
(attributes). Recall that a formal concept (formal fuzzy concept) of I is any pair 〈C,D〉 of

L-sets (fuzzy sets) C : {1, . . . , n} → L of objects and D : {1, . . . ,m} → L of attributes,



PRELIMINARIES 7

see [4], that satisfies C↑ = D and D↓ = C where ↑ : LX → LY and ↓ : LY → LX are the

concept-forming operators defined by

C↑(j) =
∧
i∈X(C(i)→ Iij) and D↓(i) =

∧
j∈Y (D(j)→ Iij).

The set of all formal concepts of I is denoted by B(X, Y, I) or just B(I). The set B(I) =

{〈C,D〉 | C↑ = D,D↓ = C} equipped with a partial order ≤, defined by 〈C1, D1〉 ≤ 〈C2, D2〉
iff C1 ≤ C2 (iff D2 ≤ D1), forms a complete lattice, called the concept lattice of I. The fuzzy

set C is called extent and the fuzzy set D is called intent. C(i) ∈ L is interpreted as the

degree to which factor l applies to object i and D(j) ∈ L is the degree to which attribute j

is a manifestation of l.

Optimality of using formal concepts as factors means the following. Let for a set F =

{〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(I) of formal concepts denote by AF and BF the matrices

defined by

(AF)il = (Cl)(i) and (BF)lj = (Dl)(j). (2.7)

Then, whenever I = A◦B for n×k and k×m matrices A and B, there exists a set F ⊆ B(I),

|F| ≤ k such that I = AF ◦ BF , i.e. the optimal decompositions are attained by formal

concepts as factors.

By rankL(I) we denote the smallest k for which the above decomposition of I exists and

call it the (L-)rank of I.

For two matrices J1, J2 ∈ Ln×m we put J1 ≤ J2 iff (J1)ij ≤ (J2)ij for every i, j in which

case we say that J1 is contained in J2. J ∈ Ln×m is called a rectangle if J = C ◦D for some

column C ∈ Ln×1 and row D ∈ L1×m. Note that in the Boolean case, rectangles are just

tiles in terms of [29], i.e. rectangular areas filled with 1s. In general case, the C and D for

which J = C ◦D are not unique. We say that a rectangle J covers 〈i, j〉 in I if Jij = Iij.

2.4 Errors in decomposition

When we desire exact decomposition, using formal concept as factors is beneficial, but it has

a limitation—it never commit overcovering—when approximate factorization is needed. For

factor model 2.2, we are talking about uncovering when Iij > (A ◦ B)ij and overcovering

when Iij < (A ◦B)ij.

The error function E (distance) between I and approximate decomposition (A ◦ B) is

sum of two components—Eu and Eo denoting uncover error and overcover error respectively,

i.e E = Eu + Eo. Uncover and overcover errors may be defined as follows

Eu =
∑
i

∑
j

1− (Iij → (A ◦B)ij), Eo =
∑
i

∑
j

1− ((A ◦B)ij → Iij).

These two components are not symmetrical. While Eu can only decrease by adding more

factors, Eo may only increase. This fact was presented in boolean case in [12].

Observation 1. Let A′ ∈ Ln×(k+1) and B′ ∈ L(k+1)×m result by adding a single column and

row, respectively. Then Eu(I, A
′ ◦B′) ≤ Eu(I, A ◦B) and Eo(I, A

′ ◦B′) ≥ Eo(I, A ◦B).



Chapter 3

First observations

This chapter provides first observations that lead to deeper theoretical insight to below

presented algorithms. Results presented here are based on [7, 8, 9].

3.1 Variants of decomposition problem

In the previous chapter we describe two variants of decomposition problem, namely the

discrete basis problem (DBP) and the approximate factorisation problem (AFP). In order to

define generalization of the DBP a AFP problems for Boolean matrices to general problems

over some scale L, we need to define closeness of matrices over L.

The first possible approach is to take as closeness of two matrices I, J ∈ Ln×m function

s=(I, J) =

∑n,m
i,j=1 eq(Iij, Jij)

n ·m
.

Function eq(a, b) here returns 1 if a is equal to b and 0 otherwise. In a sense, this is a

pessimistic approach because it ignores the case where Iij is close to but different from Jij.

Let sL : L × L → [0, 1] be an appropriate function measuring closeness of degrees in L.

For matrices I, J ∈ Ln×m, put

s≈(I, J) =

∑n,m
i,j=1 sL(Iij, Jij)

n ·m
, (3.1)

i.e. s≈(I, J) ∈ [0, 1] is the normalized sum over all matrix entries of the closeness of the

corresponding entries in I and J . In general, we require sL(a, b) = 1 if and only if a = b,

and sL(0, 1) = sL(1, 0) = 0, in which case s≈(I, J) = 1 if and only if I = J . We furthermore

require that a ≤ b ≤ c implies sL(a, c) ≤ sL(b, c). For the important case of L being a

subchain of [0, 1], sL may be defined by sL(a, b) = a↔ b, where a↔ b = min(a→ b, b→ a)

is the so-called biresiduum (many-valued equivalence from a logical point of view) of a and

b (note that → is the residuum (2.1) of ⊗).

In terms of above presented closeness, we now present generalisation of the two above

presented problems of decomposition over scale L:

– DBP(L): Given I ∈ Ln×m and a positive integer k, find A ∈ Ln×k and B ∈ Lk×m that

maximize s(I, A ◦B).

8



FIRST OBSERVATIONS 9

– AFP(L): Given I and prescribed error ε ∈ [0, 1], find A ∈ Ln×k and B ∈ Lk×m with k

as small as possible such that s(I, A ◦B) ≥ ε.

As s(I, A ◦B), we can take function s≈ or s=.

In view of the provable difficulty of the AFP and DBP in the Boolean case [19, 46] and

the remarks above, the following theorem is not surprising:

Theorem 1. DBP(L) and AFP(L) are NP-hard optimization problems.

3.2 Decomposition problem as a covering problem

In Section 2.3, we present notation in formal concept analysis and present a definition of

rectangles in I. The following lemma, which is easy to see, extends the observation in [5]

and shows that an exact decomposition of I is equivalent to a coverage of entries in I by

rectangles contained in I.

Lemma 1. The following conditions are equivalent for any I ∈ Ln×m:

(a) I = A ◦B for some A ∈ Ln×k and B ∈ Lk×m.

(b) There exist rectangles J1, . . . , Jk ∈ Ln×m such that I = J1 ∨ · · · ∨ Jk, i.e. Iij =

maxkl=1(Jl)ij.

(c) There exist rectangles J1, . . . , Jk ∈ Ln×m contained in I such that every 〈i, j〉 in I is

covered by some Jl.

In particular, for the matrices A and B in (a), one may take the product of the lth column

of A and the lth row of B to be the rectangle Jl in (b).

Importantly, Lemma 1 allows us to consider the problem of decomposition of I as a

certain coverage problem, namely the problem of covering the entries in I by rectangles

contained in I.

The following theorem shows that formal concepts of I are optimal factors for approxi-

mate decompositions of I that provide a from-below approximation of I, i.e. A◦B ≤ I (note

that these include exact decompositions I = A ◦B).

Theorem 2. Let for I ∈ Ln×m there exist A ∈ Ln×k and B ∈ Lk×m such that A ◦ B ≤ I.

Then there exists a set F ⊆ B(I) of formal concepts of I with |F| ≤ k such that for the

n× |F| and |F| ×m matrices AF and BF over L we have

s(I, AF ◦BF) ≥ s(I, A ◦B).

3.3 Role of entries in matrix

We now examine in detail the coverage problem by rectangles, to which the decomposition

problem may be transformed. An inspection of the concept lattice B(I) reveals an inter-

esting fact—a possibility to differentiate the role of matrix entries for decompositions. In,



FIRST OBSERVATIONS 10

particular, we identify a so-called essential part of I, a minimal set of entries whose coverage

guarantees an exact decomposition of I. We show later that the number of such entries is

significantly smaller than the number of all entries. Most importantly, the essential part

may be seen as the part to focus on when computing decompositions. This view is studied

in detail in Section 5.1.1 and is utilized in the design of a decomposition algorithm in Section

5.1.2.

Note that the idea of differentiating the role of entries is inspired by [12], but the situation

is considerably more involved in the setting of scales compared to the Boolean case.

The results presented in this section are based on [8].

Definition 2. J ≤ I is called an essential part of I if J is minimal w.r.t. ≤ having the

property that for every F ⊆ B(I), J ≤ AF ◦BF then I = AF ◦BF .

In other words, the coverage of an essential part J by formal concepts of I guarantees the

coverage of all entries in I. It turns out that certain intervals in B(I) play a crucial role for

our considerations. For C ∈ L1×n, D ∈ L1×m, put γ(C) = 〈C↑↓, C↑〉 and µ(D) = 〈D↓, D↓↑〉,
and denote by IC,D the interval IC,D = [γ(C), µ(D)] in B(I), i.e. the set [γ(C), µ(D)] =

{〈E,F 〉 ∈ B(I) | γ(C) ≤ 〈E,F 〉 ≤ µ(D)}.
In particular, γ({ a

/
x}) = γ(x, a) and µ({ b

/
y}) = µ(y, b) are the mappings from the

basic theorem of L-concept lattices [3].

In Section 5.1.1 we will show that all the rectangles corresponding to the formal concepts

in IC,D cover the rectangle CT ◦D.

Now, for a given matrix I ∈ Ln×m, let Iij = {I{a/i},{b/j} | a, b ∈ L, a ⊗ b = Iij} and put

Iij =
⋃

Iij.

Note that the situation is much easier in the Boolean case. Namely, if Iij > 0, then Iij
consists of a single interval in the Boolean case because the only a and b for which a⊗ b = 1

are a = b = 1. In case of general scales, there may be several pairs of a and b for which

Iij = a⊗ b, hence several intervals of which Iij consists.

Later in Section 5.1.1 we will prove important theorem which shows that Iij is just the

set of all formal concepts of I that cover 〈i, j〉.

Denote now by E(I) ∈ Ln×m the matrix over L defined by

(E(I))ij =

{
Iij if Iij is 6= ∅ and minimal w.r.t. ⊆,

0 otherwise.

In Section 5.1.1, we will show that E(I) is an essential part of matrix I.

3.4 Explanation of data by factors

If a set F ⊆ B(X) of formal concepts of I satisfies I = AF ◦ BF , we intuitively regard

F as fully explaining the data represented by I and call F a set of factor concepts. In

general, however, we are interested in F for which I is close to AF ◦ BF , in particular if F
is reasonably small. We can take into account above presented closeness s≈ and s= and say

that F explains 100 · s=(I, AF ◦ BF)% of data represented by I. Clearly, this means that

100 · s=(I, AF ◦ BF)% of all the n ×m entries have the same values in I and AF ◦ BF . Or



FIRST OBSERVATIONS 11

analogously for s≈ we can say that entries from I and AF ◦BF are in average s≈(I, AF ◦BF)

close.

In the rest of the paper unless otherwise stated, we take s≈ as closeness function s.

3.4.1 General case

Let I and J be two matrices describing the sets X1 and X2 of objects by a common set Y

of attributes. How can we answer the question of whether a set F ⊆ B(I) of possibly good

factors of I is a set of good factors of J? The concepts in F may not be directly used as

concepts of J because for 〈C,D〉 ∈ F we have C ∈ LX1 while we need ∈ LX2 for factors

of J . A abundantly discussed the topicnatural option is to consider instead of F the set of

concepts of J that are generated by the intents of the factors in F , i.e. the set

FJ = {〈D↓J , D↓J↑J 〉 | 〈C,D〉 ∈ F}, (3.2)

because the intents represent the meanings of concepts. One may then use s=(I, AFJ
◦BFJ

)

or s≈ to asses how well the factors F of I explain the data represented by J .

Of a particular importance is the particular case when J results by adding rows to I

(i.e. adding objects to those represented by I). Let us thus assume that X1 ⊆ X2 and that

Iij = Jij for i ∈ X1 and j ∈ Y . We may proceed as above but the following observation

presents a convenient simplification of the set FJ .

For the above notation,

FJ = {〈D↓J , D〉 | 〈C,D〉 ∈ F}.

Therefore an intent of a factor of I is also an intent of a possible factor of a larger dataset

J .

3.4.2 Selection of rows from dataset

An interesting problem is how to select from a possibly large dataset J a smaller I such

that the factors of I explain well J . This problem was presented in [9], but no solution was

provided here.

More precisely, J is the n ×m matrix and k < n the non negative integer smaller than

n. We want to choose the k ×m matrix I created by k selected rows from J , such that the

factors F ⊆ B(I) explain well J .

To solve the above presented problem, we use the essential part of matrices presented in

Section 3.3. We benefit from the fact that the essential elements in matrix have some useful

properties. One of them is that the essential part of matrix J is a minimal set of entries

whose coverage guarantees an exact decomposition of J . Moreover essential part E(J) can

be computed easily.

The procedure is following. For matrix J , we compute E(J) and choose k rows that

contain the most of the essential elements. The idea behind the procedure is quite simple.

More covered essential elements leads to a bigger coverage of input data.



Chapter 4

Previous algorithms

4.1 Boolean factorization of ordinally scaled attributes

Small overview of BMF methods can be found e.g. in [12]. A natural question is if this

methods could be used for our purpose, i.e. to perform decomposition of an input matrix

I with grades as follows. A positive answer may be given as follows. First, one transforms

I by ordinal scaling to a Boolean matrix I×. Second, one performs Boolean factor analysis

to I× and interprets the obtained set F× of factors of I× in an appropriate way, taking the

scaling procedure into account. We presented this approach in paper [7], but experimental

evaluation is missing.

Given an input matrix I ∈ Ln×m, consider the matrix I× ∈ {0, 1}n×(m·|L|) defined by

I×ija =

{
1 if a ≤ Iij,

0 otherwise,

for i = 1, . . . , n, j = 1, . . . ,m, a ∈ L (we assume a fixed sorting of the elements in L so

that the order of columns in I× is fixed). That is, I× is the Boolean matrix resulting from

I by simple ordinal scaling. In a sense, each graded attribute j is replaced by a collection

of Boolean attributes ja (a ∈ L); ja applies to object i if i has j to a degree at least a.

The concept lattices and other structures associated to I× and their relationships to those

associated to I are studied in [17, 20] and are utilized in what follows.

Recalling that rank2(I×) and rankL(I) denote the Boolean rank of I× and the L-rank of

I, respectively, i.e. the smallest numbers of factors using which I× and I may be explained

(factorized), we may formulate the following theorem.

Theorem 3. For every I, rankL(I) ≤ rank2(I×).

4.2 Previous algorithms for ordinal data

Pointing on limitations of Boolean factorization of ordinally scaled attributes, we claim

that factor analyzing I directly using the methods suited for ordinal data has a significant

advantage.

12



PREVIOUS ALGORITHMS 13

4.2.1 GreConL

As was mentioned above, this algorithm was presented in [19]. Moreover in [19] was proved

that the optimal factors are obtained from the space of factors computed via FCA. The

first algorithm (called Algorithm 1, later called GreCon) is based on an algorithm for set

covering problem. The algorithm can be simply used for our fuzzy setting. A disadvantage

of this approach is that such algorithm requires us to compute first the set B(I) of all

formal fuzzy concepts and then select candidates for factor from B(I). Because B(I) can be

exponentially large, this approach is time-consuming.

4.2.2 GreConDL

The second algorithm for BMF presented in [19], (called Algorithm 2, later GreConD)

was modified for decomposition ordinal data in [18]. This algorithm is designed to avoid

computing the set B(I) of all formal concepts. Instead, it computes concepts on demand.

This algorithm generates factors by looking for “promising columns”. It works due to

fact that each formal concept 〈C,D〉, each intent D is an union of intents {D(j)/j}↑↓. As

a consequence, we may construct any formal concept by adding sequentially {a/j}↑↓ to the

empty set of attributes. This algorithm follows a greedy approach that selects j ∈ Y and

degree a ∈ L which maximize the size of

D ⊕a j = {〈k, l〉 ∈ U |{D ∪ {a/j}}↓(k)⊗ {D ∪ {a/j}}↓↑(l) ≥ Ik,l}.

4.2.3 Statistical methods

Statistical methods are widely used in many fields such as bioinformatics, medicine, chem-

istry and lot more. The non-negative matrix factorisation is method the most relevant to

purpose of this work, so we omit the rest ones.

Non-negative matrix factorization

Interest in this methods started with the paper [38]. There exists hundreds of papers about

NMF, and most of them cite [38] although this method was developed by Pentti Paatero

[52] five years earlier.

NMF can be stated as follows: Given a non-negative matrix A ∈ Rm×n and a positive

integer k < min({m,n}), find non-negative matrices W ∈ Rm×k and H ∈ Rk×n to minimize

the function

f(W,H) =
1

2
||A−WH||2F .

The product WH is called non-negative factorisation of A. However, A is not usually

equal to the product WH, i.e. WH is an approximate factorisation of rank at most k.

Various alternative minimization strategies have been proposed. In the standard NMF

algorithm W and H are initialized with random non-negative values and than iteratively

computes better approximation. Algorithms for NMF can be divided into three general

classes: “Multiplicative update algorithms”, “Gradient descent algorithms” and “Alternating

least squares algorithms”.



Chapter 5

New algorithms

In this chapter we present three algorithms for decomposition of matrices over scales. The

first two algorithms are inspired by GreEss [12] and Asso [46], currently perhaps the best al-

gorithms for the AFP and DBP, respectively. The third one is slightly modified GreConDL,

which is inspired by a modified binary version of GreConD called GreConD+ presented

in [13].

5.1 GreEssL

In [12] a new algorithm based on the properties of essential parts E(I) of Boolean matrices

I was presented. The algorithm uses the fact that E(I) represents the entries whose cover

by arbitrary factors guarantees an exact decomposition of I. Another useful property is

that the number of 1s in E(I) tends to be significantly smaller than the number of 1s in I.

E(I) may be simpler to cover than I, also note that we can compute E(I) efficiently. These

features hold also in fuzzy setting. An algorithm based on this idea appeared in [8, 15].

5.1.1 Essential parts of matrices over scales

This section refers to Section 2.3 and Section 3.3, where are described first observations on

the role of entries in input matrix I. We defined so-called essential part of I, dentoted E(I),

whose cover by formal concepts of I guarantees the cover of all entries in I. We defined

intervals IC,D that play crucial role in this consideration.

Lemma 2. If 〈E,F 〉 ∈ IC,D then CT ◦D ≤ ET ◦ F .

In particular, consider C = {a/i} by which we denote the “singleton” vector with zero

components except Ci = a, and D = {b/j} with analogous meaning. Then every concept

〈E,F 〉 in IC,D = I{a/i},{b/j} covers the entry 〈i, j〉 in CT ◦D. This means that if a⊗ b = Iij,

then every concept in I{a/i},{b/j} covers the entry 〈i, j〉 in I. However, the entry 〈i, j〉 in I is

covered also by other concepts than those in I{a/i},{b/j}.

Lemma 3. Let 〈E,F 〉 ∈ B(X, Y, I) and a, b ∈ L. Then a ⊗ b ≤ Ei ⊗ Fj if and only if for

some c, d with a⊗ b ≤ c⊗ d we have 〈E,F 〉 ∈ I{c/i},{d/j}.

14



NEW ALGORITHMS 15

For a given matrix I ∈ Ln×m let Iij = {I{a/i},{b/j} | a, b ∈ L, a⊗ b = Iij} and put

Iij =
⋃

Iij.

Theorem 4. The rectangle corresponding to 〈E,F 〉 ∈ B(X, Y, I) covers 〈i, j〉 in I iff

〈E,F 〉 ∈ Iij.

Theorem 5. E(I) is an essential part of I.

Theorem 6. Let G ⊆ B(E(I)) be a set of factor concepts of E(I), i.e. E(I) = AG ◦BG. Then

every set F ⊆ B(I) containing for each 〈C,D〉 ∈ G at least one concept from IC,D is a set

of factor concepts of I, i.e. I = AF ◦BF .

5.1.2 GreEssL algorithm

The GreEssL algorithm, which we now present, is inspired by [12]. GreEssL is based on

the results from Section 5.1.1 and some other facts mentioned below. It is primarily designed

for AFP(L), but can also be used for DBP(L). The pseudocode depicted in Algorithm 1

describes computation of an exact decomposition of I but an easy modification makes it an

algorithm for computation of ε-approximate decompositions (in line 3, stop when precision

ε is reached).

In Algorithm 1 and Algorithm 2 the symbol ∅ denotes the empty set or the vector full

of zeroes, depending on the context, F ∨ {a/j} denotes F with the component Fj updated

to Fj ∨ a, and C ⊗ D denotes the crossproduct of C and D, i.e. the rectangle for which

(C ⊗ D)ij = Ci ⊗ Dj. Moreover, U denotes the set of entries 〈i, j〉 not yet covered by the

factors computed so far, and cov(U, F, J) and cov I(U,D, E) denote the number of 〈i, j〉 ∈ U
covered in I by the rectangle F ↓J ⊗ F ↓J↑J and (D↓E )↑I↓I ⊗ (D↓E↑E )↓I↑I , respectively. The

fuzzy-set-like notation {a/j} ∈ C↑I \ F means Fj < a ≤ C↑Ij .

ComputeIntervals first computes E(I) (easy by definition) and then computes a set

G of factors of E(I), each 〈C,D〉 ∈ G representing the interval IC,D in B(I) from which

it is possible to obtain a decomposition of I according to Theorem 6. In fact we use the

following improvement of Theorem 6 whose proof is easy and thus omitted: for G it suffices

(rather than being a set of factor concepts of E(I)) that the crossproducts C↑I↓I ⊗ D↓I↑I

corresponding to 〈C,D〉 ∈ G cover all entries in I (line 11). The formal concepts in G are

computed in a greedy manner from E(I) by sequentially increasing in D (initially set to ∅)
the most promising value a of the most promising component j (line 5–9), until such increase

is impossible. The formal concept 〈C,D〉, obtained by taking closures w.r.t. E in line 7,

is added to G (line 10). The entries covered by C↑I↓I ⊗ D↓I↑I are removed from U . The

selection is repeated until U is empty.

With G obtained this way, GreEssL performs a greedy search for factors, i.e. formal

concepts, in the intervals IC,D, 〈C,D〉 ∈ G, in line 3–21. For every IC,D we select the

formal concept in IC,D with best coverage in line 6–11 in a manner similar to the one used

in ComputeIntervals, i.e. extending the initially empty F by most promising attributes

j and degrees a. The condition J ← D↓I ⊗ C↑I which functions as a restriction speeding

up the computation, guarantees that we do not leave IC,D in this search. The best found

concept 〈E ′, F ′〉 over all the intervals is then added to F in line 18. The interval IC′,D′ in



NEW ALGORITHMS 16

which 〈E ′, F ′〉 was found is removed from G in line 19 (hence is not searched in the remaining

iterations) and U is updated accordingly.

Algorithm 1: GreEssL
Input: matrix I with entries in scale L
Output: set F of factors for which I = AF ◦BF

1 G ← ComputeIntervals(I)
2 U ← {〈i, j〉|Iij > 0}; F ← ∅
3 while U is non-empty do
4 s← 0
5 foreach 〈C,D〉 ∈ G do
6 J ← D↓I ⊗ C↑I ; F ← ∅; s〈C,D〉 ← 0

7 while exists {a/j} ∈ C↑I \ F s.t. cov(U,F ∨ {a/j}, J) > s〈C,D〉 do

8 select {a/j}maximizing cov(U,F ∨ {a/j}, J)

9 F ← (F ∨ {a/j})↓J↑J
10 E ← (F ∨ {a/j})↓J
11 s〈C,D〉 ← cov(U,F, J)

12 end
13 if s〈C,D〉 > s then

14 〈E′, F ′〉 ← 〈E,F 〉
15 〈C ′, D′〉 ← 〈C,D〉
16 s← s〈C,D〉
17 end

18 end
19 add 〈E′, F ′〉 to F
20 remove 〈C ′, D′〉 from G
21 remove from U all 〈i, j〉 covered by E′ ⊗ F ′ in I

22 end
23 return F

To proof correctness of this algorithm we provide its detailed description. GreEssL uses

function ComputeIntervalswhich computes a set of concepts G by first computing the

matrix E(I) and then computing the concepts of B(X, Y, E(I)) in a greedy manner inspired

by [18] and adding them to G. The difference between original algorithm from [18] is that

we maximize size of C↑I↓I ⊗D↓I↑I for concept 〈C,D〉 ∈ B(X, Y,B(I)). This is possible since

the factors for I are selected form the interval IC,D (due to Lemma 2). GreEssL than picks

at most one concept from every interval IC,D for 〈C,D〉 ∈ G until U is covered. It selects

the intervals in a greedy manner similar to the one we described above.

5.2 AssoL

AssoL is inspired by Asso algorithm [46], currently the best known algorithm for DBP. A

preliminary version of the algorithm was presented in [8]. The final version of the algorithm

will be presented in detail in an extended version of the paper [8] in [14].



NEW ALGORITHMS 17

Algorithm 2: ComputeIntervals
Input: matrix I with entries in scale L
Output: set G ⊆ B(E(I))

1 E ← E(I)
2 U ← {〈i, j〉|Eij > 0}
3 while U is non-empty do
4 D ← ∅; s← 0
5 while exists {a/j} ∈ D s.t. cov I(U,D ∨ {a/j}, E) > s do
6 select {a/j} maximizing cov I(U,D ∨ {a/j}, E)

7 D ← (D ∨ {a/j})↓E↑E ; C ← (D ∨ {a/j})↓E
8 s← cov I(U,D, E)

9 end
10 add 〈C,D〉 to G
11 remove from U entries 〈i, j〉 covered by C↑I↓I ⊗D↓I↑I in I

12 end
13 return G

5.2.1 Association matrix

Recall that the ordinary Asso is based on the idea of using the rows of the association

matrix A of I as candidate basis vectors, i.e. rows of the k ×m factor-attribute matrix B.

A is an m×m Boolean matrix such that Apq = 1 if the confidence c(p, q) of the association

rule {p} ⇒ {q} given by I exceeds a given threshold τ .

The confidence c(p, q) may be understood as a conditional probability, namely that “an

object has attribute q provided it has attribute p”, given that objects as elementary events

are equally probable. In presence of grades, we consider conditional probabilities ca(p, q)

that “an object has attribute q provided it has attribute p to degree at least a”. Loosely

speaking, ca(p, q) is the confidence that the presence of p to degree at least a implies the

presence of q. Unlike in the Boolean case, the collections of objects sharing some attributes

to prescribed degrees are naturally conceived as fuzzy sets rather than ordinary sets. Thus,

the collection {a/p}↓ of all objects having attribute p at least to degree a is a fuzzy set of

objects to which object i = 1, . . . , n belongs to degree

{a/p}↓(i) = a→ I(i, p),

see [3]. Likewise, the collection of objects having p to degree at least a and having q is

defined by

{a/p, 1/q}↓(i) = (a→ I(i, p)) ∧ I(i, q).

These formulas may be obtained from considerations on Galois connections induced by

graded relations [3] (as these are the mathematical counterparts of assignments of objects

sharing a given collection of attributes) but may also be obtained on intuitive grounds.

In evaluating conditional probability that defines ca(p, q) we deal with fuzzy events

(many-valued events) and probabilities of fuzzy events in the sense of Zadeh [63]. That

is, the probability measure of fuzzy events involved in our situation is a function P assigning

to every fuzzy set A of objects a number P (A) ∈ [0, 1]—the probability of the fuzzy event A.

Assuming as in the classical case that the objects as elementary events are equally probable,



NEW ALGORITHMS 18

Zadeh’s formulas for conditional probabilities P (·|·) of fuzzy events yield that the confidence

in question is defined by

ca(p, q) = P ({1/q}↓|{a/p}↓) =
P ({a/p}↓ ∩ {1/q}↓)

P ({a/p}↓)
=
P ({a/p, 1/q}↓)
P ({a/p}↓)

=
|{a/p, 1/q}↓|
|{a/p}↓|

,

where |A| denotes the cardinality of a fuzzy set A. With |A| =
∑n

i=1A(i) we thus obtain

|{a/p, 1/q}↓| =
n∑
i=1

{a/p, 1/q}↓(i), and |{a/p}↓| =
n∑
i=1

{a/p}↓(i).

Note also that in deriving the formula for ca(p, q) we used {a/p}↓∩{1/q}↓ = ({a/p}∪{1/q})↓ =

{a/p, 1/q}↓ which is a basic property of Galois connections [3]. The confidence is a number in

[0, 1] which may be transformed to a truth value in L using a user-defined threshold τ ∈ [0, 1].

The reason is in principle the same as in the Boolean case, namely to obtain from the vectors

of confidence values, 〈. . . , ca(p, q), . . . 〉, appropriate vectors of grades in L, i.e. the candidate

basis vectors. However, the thresholding process is more involved compared to the Boolean

case, and we propose to accomplish it by the rounding function roundτ defined for r ∈ [0, 1]

by

roundτ (r) =

{
r+ = min{a ∈ L | a ≥ r} if r+ ↔ r ≥ τ ,

r− = max{a ∈ L | a < r} otherwise.

Here, r+ ↔ r = min(r+ → r, r → r+) is the many-valued logical equivalence mentioned

above. One may observe that if L = {0, 1} we obtain the thresholding involved in the

ordinary Asso.

This way, we may define for every attribute p and every suitable grade a ∈ L − {0} a

candidate basis vector, i.e. a row A(p,a), of a prospective association matrix A, by

A(i,a),j = roundτ (ca(p, q)).

Picking now a set K ⊆ L − {0} of suitable grades, we obtain an association matrix A ∈
L(m·|K|)×m. One may verify that if L = {0, 1} and K = {1} then A is just the ordinary

m × m association matrix defined in [46]. The presence of intermediate grades allows us

to broaden the set of candidate basis vectors. Namely, in addition to the possible choice

K = {1}, we may pick K containing more grades, e.g. K = L − {0}, and thus enlarge the

search space for factorization.

5.2.2 Procedures Cover and AssoL

The basic idea of the Asso algorithm may be described as follows. The algorithm iteratively

computes k factors one by one, with the provision that it stops with less than k factors if

the addition of any new factor would only worsen the error function, i.e. would decrease the

value of s in our case. Let A and B denote the object-factor and factor-attribute matrices

computed so far. The next factor, which is described by a new column and a new row to



NEW ALGORITHMS 19

be added to A and B, is computed as follows. For every candidate row of B, i.e. the row

of the association matrix A, one determines the best corresponding candidate column of A.

“Best” means such that the value of a function Cover (see Equation 5.1) is maximized.

The candidate row of B and column of A with the highest value of Cover are then added

as a new factor to B and A.

The purpose of the function Cover is to yield a high value for factors whose addition

is likely to lead to a good resulting matrices A and B, i.e. with high value of s. In the

Boolean case, this means that we want a high number C of entries 〈i, j〉 for which Iij = 1

and (A ◦ B)ij = 1, i.e. 1s in I that are “covered” by the factors, and a small number O

of entries for which Iij = 0 and (A ◦ B)ij = 1, i.e. are “overcovered” by the factors. This

reasoning leads to the formula

w+ · C − w− ·O

as the definition of Cover in the Boolean case. The weights reflect relative importance of

C and O. In practice, one works with w− larger than w+ because “overcovering” cannot be

undone by adding further factors. Hence, the presence of a single 〈i, j〉 with (A◦B)ij = 1 and

Iij = 0 represents a more serious harm than a presence of a single 〈i, j〉 with (A ◦ B)ij = 0

and Iij = 1, because the latter discrepancy may be corrected by adding an appropriate factor

in the next steps of the algorithm.

An appropriate form of the Cover function in the setting with general scales is more

delicate. One reason is that the coverage of entry 〈i, j〉 of I is a matter of degree. We

therefore need to account for a partial coverage and a partial overcoverage. For instance, if

Iij = 0.5 and (A ◦B)ij = 0.4, then one may consider 〈i, j〉 almost covered and thus consider

Iij ↔ (A ◦ B)ij = 0.5 ↔ 0.4 = 0.9 as the degree to which 〈i, j〉 is covered. Likewise, if

Iij = 0.5 and (A ◦ B)ij = 0.6, then 〈i, j〉 is slightly overcovered and ¬(Iij ↔ (A ◦ B)ij) =

¬(0.5 ↔ 0.6) = 0.1 may be thought of as a degree to which 〈i, j〉 is overcovered. Using a

similar reasoning as in the Boolean case, one could obtain the value of Cover by adding the

degrees corresponding to the first type of entries, multiply them with w+ and subtract from

this number the w−-multiple of the sum of the degrees corresponding to the second type of

entries. This, however, would not yet be an appropriate approach. For consider a situation

in which Iij = 0.5, w− is even five times larger than w+, and the so far computed matrices

A and B yield (A ◦ B)ij = 0.3. Suppose we now have two options. First, adding a factor

resulting in A1 and B1 with (A1 ◦B1)ij = 0.4; second, adding a factor resulting in A2 and B2

with (A2◦B2)ij = 0.52. Intuitively, the second choice is preferable because the factor commits

only a slight overcovering of Iij = 0.5. However, the function Cover described above would

lead to the selection of the first factor. Namely (for simplicity, we disregard entries other

than 〈i, j〉), the first factor contributes by w+ · (Iij ↔ (A1 ◦ B1)ij) = w+ · 0.9, while the

second one contributes by −w− · ¬(Iij ↔ (A2 ◦ B2)ij) = −w− · 0.02, i.e. even represents

a decrease in value of Cover. The point is that the entries which are overcovered, i.e.

Iij < (A ◦B)ij, need to be looked at as follows: They need to be penalized for overcovering

by w− ·¬(Iij ↔ (A◦B)ij) but at the same time rewarded for full covering by w+ ·1. This type

of problem is degenerate in the Boolean case in which the reward can be ignored because it

would pertain to all entries with Iij = 0, would be equal for all such entries, and would hence

have no influence on the choice of factors. This explains why the function Cover for the

ordinary Asso algorithm does not contain any rewarding term for the overcovered entries.



NEW ALGORITHMS 20

The above reasoning leads to the following definition of Cover. Let F denote a set

of factors (with a fixed ordering of its elements), i.e. pairs 〈C,D〉 where C ∈ L1×n and

D ∈ L1×m, and let AF and BF be the matrices defined as in (2.7).

Then we put

Cover(AF , BF , I, w
+, w−) =

+w+ ·
∑
{Iij ↔ (AF ◦BF)ij | Iij ≥ (AF ◦BF)ij}

+w+ · |{〈i, j〉 | Iij < (AF ◦BF)ij}| (5.1)

−w− ·
∑
{1− (Iij ↔ (AF ◦BF)ij) | Iij < (AF ◦BF)ij}.

The above procedure for computing a set F of factors is described by Algorithm 3.

Algorithm 3: AssoL
Input: matrix I ∈ Ln×m, k ≥ 1, w+, w−, τ , K ⊆ L− {0}
Output: set F of factors

1 compute association matrix A
2 F ← ∅
3 for l = 1, . . . , k do
4 select 〈C,A(i,a) 〉 maximizing Cover(F ∪ {〈C,A(i,a) 〉}, I, w+, w−)

5 add 〈C,A(i,a) 〉 to F
6 end
7 return F

Note that the selection in line 4 proceeds by finding for every row A(i,a) of A the best

C w.r.t Cover and then selecting the best found pair 〈C,A(i,a) 〉. Due to the properties of

Cover, the best C for a given A(i,a) is found efficiently in a componentwise manner, i.e.

by finding the best Cp for every p = 1, . . . , n (independently of the other Cqs).

5.3 GreConDL+

GreConD+ reflects two ideas. First, formal concepts of the factorized matrix form a

crucial part of resulted factors. The second idea—inspired by 8M method [25] which is one

of the oldest BMF algorithm—already constructed factor could be improved or eliminated

depending on the another added factors.

GreConD+ extends algorithm GreConDand in each step returns a formal concept

(factor) which covers the most still uncovered entries, i.e. which minimizes uncovered error.

Such factor is then extended in a greedy manner by further columns and rows for which the

gain of decreased uncovered error is larger than the loss due to overcover error, both formed

by added columns/rows. After this phase, where a new factor is created, the set of obtained

factors (created in previous iterations) is examined and some of them could be modified or

even removed. This step is inspired by 8M method and leads to a decrease of overcover error.

GreConDL+ is generalization of GreConD+ algorithm for data over some scale L.

Results from this section are based on [16].



NEW ALGORITHMS 21

5.3.1 Algorithm GreConDL+

Algorithm presented in this section is modification of previously presented algorithm GreConDL

from [19], described in Section 4.2.2. Pseudocode of this algorithm is depicted below (see

Algorithm 4).

Algorithm 4: GreConD+
Input: n×m matrix I, number w
Output: set F of factors

1 U ← {〈i, j〉 |Iij 6= 0}; F ← ∅
2 while U 6= ∅ do
3 D ← ∅; V ← 0
4 while exists {a/j} /∈ D such that |D ⊕a j| > V do
5 select {a/j} /∈ D that maximizes |D ⊕a j|
6 D ← (D ∪ {a/j})↓↑
7 V ← |D ⊕a j|
8 end

9 C ← D↓

10 〈E,F 〉 ← Expansion(〈C,D〉 , w)
11 add 〈C ∪ E,D ∪ F 〉 to F
12 for 〈i, j〉 ∈ U do
13 if Iij ≤ (C ∪ E)i ⊗ (D ∪ F )j then
14 U ← U − 〈i, j〉
15 end
16 foreach factor 〈A,B〉 ∈ F do
17 if for each 〈i, j〉 with Ai ⊗Bj > 0 there is 〈G,H〉 ∈ F − 〈A,B〉 with

Ai ⊗Bj ≤ Gi ⊗Hj then
18 remove 〈A,B〉 from F
19 else
20 foreach j such that Bj > nucleus(B)j do
21 if for each Ai ⊗Bj there is 〈G,H〉 ∈ F − 〈A,B〉 with Ai ⊗Bj ≤ Gi ⊗Hj

then
22 Bj ← nucleus(B)j
23 end

24 end

25 end

26 end

27 end
28 return F

The main loop of the algorithm (lines 2–27) is executed until all the nonzero entries of I

are covered by at least one factor in F . Clearly, a different stopping criterion is possible—

stopping after a prescribed number of factors is computed, which corresponds to the DBP

problem, or after the overall error does not exceed ε, which corresponds to AFP. The code

between lines 4 and 9 works like original GreConDL algorithm. In this part the formal

concept which covers the maximal part of still uncovered entries, i.e. minimise uncover error,

is selected. Resulted concept 〈C,D〉 is taken as a nucleus and then its expansion 〈E,F 〉 is

computed by Expansion algorithm (Algorithm 5). For simplicity Expansion described

in Algorithm 5 is restricted to adding columns with positive gain (described later) until no



NEW ALGORITHMS 22

Algorithm 5: Expansion

Input: pair 〈C,D〉, number w
Output: expansion 〈E,F 〉 of 〈C,D〉

1 E ← ∅; F ← ∅
2 repeat
3 select column j and a ∈ L such (D ∪ F )j < a maximizing gain({a/j})
4 if gain({a/j}) > 0 then
5 add {a/j} to F
6 end

7 until F did not change
8 return 〈E,F 〉

{a/j} with positive gain exists. Extension for rows is straightforward. Thus extended factor

〈C ∪ E,D ∪ F 〉 is added to F (line 11). The loop between lines 12 and 15 ensures that

all matrix entries covered by this factor are removed from U . Last loop (lines 16–26) goes

through all the factors and factor is removed from F iff every non-zero entry is covered by

other factors at least in the same degree. If this is not possible, one replace degree of column

j in B by degree of j in nucleus(B) for which all non-zero entries are covered by remaining

factors (there exist factors covering all entries at least in the same degree as B).

Function gain is in the general case more complicated than the same function in BMF

case. There are three cases. Denote

new ij = (AF ◦BF)ij ∨ Ci ⊗ (D ∪ F ∪ {a/j})j,
old ij = (AF ◦BF)ij ∨ Ci ⊗ (D ∪ F )j.

Then

(1) new ij ≤ Iij, i.e. Iij is still not covered, but coverage is increased by [Iij ↔ new ij] −
[Iij ↔ old ij], which is equal to new ij − old ij = ¬(new ij → old ij).

(2) old ij < Iij < new ij, we overcover Iij. Value of gain needs to be increased by Iij−old ij =

¬(Iij → old ij), but also decreased by weighted overcover error w · (new ij − Iij).

(3) Iij ≤ old ij < new ij, overcover is increased, so gain needs to be also increased by

w · (new ij − old ij)

Function gain for {a/j} returns:

gain({a/j}) =

n,m∑
i=1,j=1

{new ij − old ij | new ij ≤ Iij}

+

n,m∑
i=1,j=1

{(Iij − old ij)− w · (new ij − Iij) | old ij < Iij < new ij}

− w ·
n,m∑

i=1,j=1

{new ij − old ij | Iij ≤ old ij}



Chapter 6

Experimental evaluation

6.1 Illustrative example

The data describes 5 most popular dog breeds and their 11 attributes1. We take as the

complete residuated lattice six-element  Lukasiewicz chain (L = {0, 0.2, 0.4, 0.6, 0.8, 1}) and

represent the grades in L by shades of gray as follows:

0.0 0.2 0.4 0.6 0.8 1.0

The 5 × 11 object-attribute matrix I and its decomposition I = AF ◦ BF into the

object-factor and factor-attribute matrices AF and BF are shown for various algorithms

in subsections below.

6.1.1 Results for GreConDL

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

F7

F7

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.1: GreConDL: Decomposition I = AF ◦BF . I, AF , and BF are the bottom-right,
bottom-left, and top matrix, respectively.

1http://www.petfinder.com/

23

http://www.petfinder.com/


EXPERIMENTAL EVALUATION 24

In Figure 6.1 are shown seven factors obtained via GreConDL. Factor F1 is manifested

by the three kinds of “Friendliness” and “Affection” and applies in particular to Labradors,

Golden Retrievers and Beagels in the first column of AF) , and to some extent to Yorkshires.

The factor may hence be termed friendliness. On the other hand, the three attributes with

the highest degree in the row of F2 plus a high degree of “Exercise” tell us that this factor

is naturally interpreted as guardian dog. The corresponding column shows that F2 applies

to German shepherds and separates them clearly from the other breeds. Factor F3 may

be interpreted as dogs suitable for kids, because it is manifested by high “Friendliness”,

“Playfulness”, “Affection”, and “Ease of training”, and applies to Golden Retrievers (in

degree 1) and Labrador Retrievers (in degree 0.8).

Interestingly, F1, F2, and F3 explain, by and large, the whole data and hence, the other

factors may be neglected. Namely, denoting by AF3 and BF3 the 5 × 3 and 3 × 11 matri-

ces (parts of AF and BF), the degree s(I, AF3 ◦ BF3) of similarity of I to AF3 ◦ BF3 , i.e.

reconstructability of the original data I from the first three factors, equals 0.92.

6.1.2 Results for ordinal scaling

We transformed the input matrix I ∈ L5×11 to a Boolean matrix I× ∈ {0, 1}5×(11·6) =

{0, 1}5×66 and computed a set G× ⊆ B(I×) of factors of I× using the GreConD algorithm

from [19]. We obtained 8 factors of I×, compared to the 7 factors of I obtained for by

GreConDL. The factors, F1, . . . , F8, are depicted in a concise way in Figure. 6.2. As

before, AG× is the bottom-left matrix and its columns represent the factor extents, which are

now ordinary sets of objects. To save space, the 8×66 Boolean matrix BG× is represented by

the top 8× 11 matrix with grades as follows. For every attribute y, instead of the 6 columns

y0, y0.2, . . . , y1 of BG× , the 8× 11 matrix contains just one column which contains in row Fl
the largest degree a for which ya belongs to the intent of Fl. This way, the intent of Fl, an

ordinary set of the scaled Boolean attributes ya, is uniquely described because if yb is in the

intent and c ≤ b, then yc in in the intent as well. The corresponding percentage 100 · s≈%

(which is the same as 100 · s=% in the Boolean case) of I× explained by the first l = 1, . . . , 8

factors is 63%, 81%, 87%, 93%, 98%, 99%, 99.6%, and 100%, respectively.

The factors may naturally be compared to those from Section 6.1.1 and the concise rep-

resentation of the intents used in Figure 6.2 facilitates this comparison. We may notice that

factors F2, F4, F5 and F6 here are very similar to factors F6, F2, F7 and F4 respectively from

Section 6.1.1, they even pairwise equivalent intents. These factors are clearly interpretable.

Factors F1, F3 and F5 from Section 6.1.1 have some similarities with factors to F2 and F3 but

interpretation of F2 and F3 is not so clear as interpretability the above four. The remaining

factors here, F1, F7 and F8 have no counterparts among those in Section 6.1.1 and seem to

be not very interesting, particularly F1, where all attributes are present in small degrees and

which applies to all breeds.

To conclude, our experiments confirm that when using the alternative approach examined

in Section 4.2, the number of factors needed for explaining data is larger. Moreover, the

first, i.e. the most important, factor is not so clearly interpretable and perhaps also not

so interesting compared to those obtained by the methods examined in this work, which

directly works with degrees. We also lost some information such as that Golden Retrievers

and Beagles have in high degree characteristics (intent of factor F6) as Labrador Retrievers



EXPERIMENTAL EVALUATION 25

and Yorkshire terriers.

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

F7

F7

F8

F8

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.2: Decomposition of I× = AF× ◦ BG× . I, AF , and ◦BG are the bottom-right,
bottom-left, and top matrix, respectively.

6.1.3 Results for NMF

We examine two algorithms for Non-negative matrix factorization such as an Alternating

least-squares algorithm and a Multiplicative update algorithm. Since resulted matrices W

and H include values that are not from scale L, we can not show them as boxes with shades

of gray. Interpretation is also slightly different.

The resulted factorization is not exact, matrix product of matrices W and H is a lower

rank approximation of I. They are chosen to minimize the root-mean-squared residual

between I and product WH. This residual is equal to 0.0358.

Interpretation of obtained factors is a little bit different than interpretation of factors

computed via methods based on FCA (such as GreConDL, GreEssL etc.). Row i of I is

approximately a linear combination of the rows of H with the coefficients being row i of W .

Attributes with high coefficients in one of the rows are “Protective ability”, “Exercise”,

“Ease of training” similarly like factor F2 from Section 6.1.1 and with high coefficient belongs

to German shepherds in matrix W .

Matrices W and H obtained by Multiplicative update algorithm provide approximation

with residual equal to 0.0331.

Similar observation like in case of previous decomposition, also here we can find factor

(F2), which we can be labeled guardian dog.

6.1.4 Results for GreEssL

GreEssL in this example returns smaller number of factor than earlier mentioned GreConDL.

We obtain six factors instead of seven, but all of them are more or less the same as factors

obtained in Section 6.1.1. For more details see Figure 6.3.



EXPERIMENTAL EVALUATION 26

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.3: GreEssL: Decomposition I = AF ◦ BF . I, AF , and BF are the bottom-right,
bottom-left, and top matrix, respectively.

F1, F2, and F3 explain, by and large, the whole data. In particular, the percentage of

matrix I explained using the first l factors for l = 1, . . . 6 is 71%, 84%, 92%, 98%, 99% and

100%. In comparison with coverage function in Section 6.1.1) the coverage function grows

slower in the first three factors but then converges faster to 100%.

6.1.5 Results for AssoL

As was mentioned earlier, AssoL usually does not return exact decomposition. We present

here three obtained factors for setting: w0 = 1, w1 = 1, i.e. overcover and uncover errors

have same weight and τ = 0.9 (later we will show that choice of τ in AssoL does not rapidly

change the result). Factors gradually cover 0.72%, 0.84% and 0.844% of input data.

F1

F1

F2

F2

F3

F3

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.4: AssoL: Decomposition I ≈ J = AF ◦BF . J , AF , and BF are the bottom-right,
bottom-left, and top matrix, respectively.

The obtained factors are hard to explain, the most important factor (the first one) does

not hold any important information. It is caused by the fact that when |L| > 2 (non-Boolean



EXPERIMENTAL EVALUATION 27

case), rectangles with values “around the middle” in L, such as 0.4 and 0.6 in this example,

which may be produced as factors by AssoL have a good coverage and are thus sometimes

selected by AssoL in spite of a possible difficulty in interpreting such factors.

6.1.6 Results for GreConDL+

Like in AssoL, we permit overcover errors in GreConDL+. How big is this error is driven

by a choice of the parameter w. The larger w, the smaller overcover error.

For example, if we take w = 0.5 we obtain coverage by three factors and overall overcover

error is 34%. The first factor covers 85% with overcover error 29%, the second one covers

97% (error 34%), the last one ensures full coverage and does not increase the overcover

error. With w = 1 we need four factors to cover all inputs and error is 28%. Computed

factorizations can be seen in Figures 6.5 and 6.6.

F1

F1

F2

F2

F3

F3

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.5: GreConDL+, w = 0.5 : Decomposition I ≈ J = AF ◦BF . J , AF , and BF are
the bottom-right, bottom-left, and top matrix, respectively.

F1

F1

F2

F2

F3

F3

F4

F4

Labrador Retrievers
Golden Retrievers
Yorkshire terriers

German shepherds
Beagles

E
ne

rg
y

Pl
ay

fu
ln

es
s

Fr
ie

nd
.t

ow
ar

ds
do

gs

Fr
ie

nd
.t

ow
ar

ds
st

ra
ng

er
s

Fr
ie

nd
.t

ow
ar

ds
ot

he
r

pe
ts

Pr
ot

ec
tio

n
ab

ili
ty

E
xe

rc
is

e

A
ff

ec
tio

n

E
as

e
of

tr
ai

ni
ng

W
at

ch
do

g
ab

ili
ty

G
ro

om
in

g

Figure 6.6: GreConDL+, w = 1 : Decomposition I ≈ J = AF ◦ BF . J , AF , and BF are
the bottom-right, bottom-left, and top matrix, respectively.



EXPERIMENTAL EVALUATION 28

The choice of w slightly changes the obtained factors, but the most important factors

(first ones), are very similar.

Unlike factors obtained by AssoL, meaning of factors is more relevant. We can see that

there are factors friendliness, guardian dog like in Section 6.1.1, i.e. factors F1 and F2 are

nearly the same as factors F1 and F2 from Section 6.1.1.

6.2 Real data

The datasets and their characteristics are described in Table 6.1, in which |L| denotes the

number of truth degrees in the scale L and ||I|| denotes the number of non-zero entries in

the input matrix I. Since we are interested also in analysis via algorithm GreEssL, another

interesting characteristic is number of non-zero entries in the essential part E(I).

Another reason is described in Section 6.2.1. Factors obtained by GreConDL, GreEssL
and GreConDL+ are basically very similar. This is why we mainly focus on describing the

factors obtained by GreEssL, unless those of other methods reveal a different insight.

dataset size |L| ||I|| ||E(I)|| ||E(I)||/||I||
Breeds 151×11 6 1963 362 0.184
Decathlon 28×10 5 266 59 0.221
IPAQ 4510×16 3 41624 1281 0.031
Music 900×26 7 20377 5952 0.292
Rio 87×31 4 402 332 0.820

Table 6.1: Real data

Dog breeds2 extends the dataset from Section 6.1 to 151 breeds. GreEssL found 20

factors providing an exact decomposition of the 151 × 11 matrix I, but already the set F3

consisting of the first three most important factors explains a large portion of the data. In

particular, the degree s(I, AF3 ◦BF3) of closeness of I to the matrix AF3 ◦BF3 reconstructed

from the first three factors, which is defined by (3.1), equals 0.795. Among these factors is

a formal concept containing the attributes “playfulness”, “ease of train”, and “affection” to

degree 1 and “energy” to a high degree. This factor may be interpreted as the ability to excel

in sports (such as agility, flyball, frisbee) and to serve as guide and therapy dogs. This factor

applies to high degree to breeds such as Golden Retriever, Labrador Retriever, or Papillon.

Another factor is a formal concept containing “Protection ability” and “Watchdog ability”

with high degrees. Such factor may be interpreted as the ability to serve as a guardian dog

and applies e.g. to American Staffordshire Terrier, Anatolian Shepherd, Belgian Malinois,

Belgian Sheepdog, Kuvasz, German Shepherd Dog, and Doberman Pinscher. Interestingly,

these two factors are similar to factors F3 and F2 described in Section 6.1. In fact, the factors

F1, F2, and F3 from Section 6.1, when extended to the 151× 11 (in terms of Section 3.4.1)

matrix, cover 0.85 of the matrix according to s, illustrating an interesting natural property

that we observed in several examples.

2http://www.petfinder.com/

http://www.petfinder.com/


EXPERIMENTAL EVALUATION 29

Decathlon3 extends the dataset from [18] to 28× 10 matrix I (28 athletes, 10 disciplines

of decathlon) using a five-element scale L.

Using GreEssL, we obtained 10 factors that we consulted with an experienced decathlon

coach. Among the most important factors are the ones that can be interpreted as speed,

containing to high degrees the attributes “100m”, “Long jump”, “400m”, and “Hurdles”;

explosiveness, containing to high degrees the attributes “Long jump”, “Shot put”, “High

jump”, and “Javelin”; and a factor containing “High jump” and “1500m”, typical of light-

weight athletes. All these factors were found natural by the decathlon coach.

AssoL computed a set F of 5 factors which reconstruct 80% of the the input data, i.e.

s(I, AF ◦ BF) = 0.8. Covering by factors is in order 76% for first factor, 86% for first two

factors, 87%, 88% and 88, 2% for all five factors.

The most interesting is the second most important in terms of coverage, which contains

“1500m” with degree 1, and “100m”, “400m”, and “Hurdles” with degree 0.75, i.e. a factor

that may be naturally termed as running capability.

In this example, we observed factors which are not easy to interpret and whose appearance

is discussed in Section 6.2.1, namely factors which apply to relatively higher degrees to all

athletes and are manifested to high degrees by every discipline.

IPAQ data4 consists of international questionnaire data regarding physical activity of pop-

ulation and involves 4510 respondents answering 16 questions using a three-element scale.

This questionnaire is considered important from health management point of view, partic-

ularly as a source for making government decisions regarding health policy. The questions

include respondents age, sex, body-mass-index (BMI), health, to what extent the person

bicycles, walks, etc. GreEssL produced 17 factor concepts providing an exact decompo-

sition of the 4510 × 16 matrix. As with the other examples, the first 3–4 factors may be

considered sufficient to explain the data. First factor explains 64%, first two factors 74%

and three factors explain 80% of data. One may see great reduction of input entries using

essential part in this dataset. GreEssL returns the smallest number of factors compared

to other methods providing exact decomposition. On the other hand factors obtained via

GreConDL or GreConDL+ are more interesting, because factors obtained via GreEssL
correspond more or less to a single attribute. Based on the attributes present in the factors,

the first factor returned from GreConD or GreConD+ corresponds to and thus may be

interpreted as healthy people with good education who cycle on a regular basis ; the second

one as people with normal BMI who walk on a daily basis ; the third one as people who are

employed, own a car, and cycle on a regular basis.

Music data The data comes from [27] and consists of results of a study inquiring people’s

perception of some speed of song depending of various characteristics of the songs. The

data was collected by questionnaires involving 30 participants who were presented 30 sam-

ples (29 complex music samples and one simple tone of 528Hz). The participants recorded

their emotional experience using 26 attributes each using a 6-element scale L, along with

a retrospective time duration and time passage judgement. The data is then represented

by a 900 × 26 matrix with entries in L. Using GreEssL, we obtained 29 factors. The

3http://www.sports-reference.com/
4http://www.ipaq.ki.se/, Belohlavek et al., Inf. Sciences 181(2011), 1774–1786.

http://www.sports-reference.com/
http://www.ipaq.ki.se/


EXPERIMENTAL EVALUATION 30

authors of this study examined the factors and concluded that the groups of music samples

corresponding to the factors are meaningful and that the factors can be interpreted in terms

of emotional experience. For example, an interesting factor with a good coverage contained

songs No. 5, 7, 16, and 26, all of which are melancholic. Another factor was the one clearly

separating the simple tone to which it applied to degree 1, while applying to degree 0 or

to other degrees close to 0 to the other samples. Among other interesting factors are the

one manifested to a high degree by attributes “Ugly” and “Violent”; the one manifested by

“Restful”, “Safe”, “Stable”, and “Inert”; and the factor manifested by “Successful”, “Valu-

able”, “Meaningful”, and “Significant”. All these factors represent significant categories of

songs.

Rio data 5 represents 87×31 matrix I and consist of 87 countries that obtained any medal

in one of 31 sport on Olympics games in Rio de Janeiro 2016. L contains four grades—1

means that country won at least one gold medal, 2
3

at least silver medal, 1
3

at least one

bronze medal and 0 no medal in this sport. This dataset is very sparse in comparison with

other presented datasets. Great portion of input entries are Essential, i.e. we observe that

the ratio ||E(I)||/||I|| of the number of entries in E(I) to the corresponding number for I is

high.

Using GreEssL we computed 32 factors, but it is sufficient take 19 factors to explain

more than 90% of data.

Among the most important factors can be found factor containing martial arts, which has

degree 1 in the attributes “Judo”, “Wrestling” and high degree in “Weightlifting”. Another

one can be interpreted as water sports, containing in high degrees the attributes “Canoeing”,

“Rowing”, “Sailing”, and “Swimming”.

AssoL returned different factors. Let us mentioned one factor, which grouped attributes

“Archery” and “Shooting”, i.e. sports with the ability to aim.

6.2.1 Evaluation

Table 6.2 and Table 6.3 display the numbers of factors produced by the algorithms from

Section 4 and Section 5 that are needed to achieve a prescribed coverage. That is, we

observe the smallest l such that for the set F of the first l factors produced by the respective

algorithm, s≈(I, AF ◦ BF) (s=(I, AF ◦ BF) respectively) exceeds the prescribed value. For

example, the first row in Table 6.2 corresponding to Breeds indicates that we need six factors

in case of GreConD of ordinally scaled attributes, three in case of GreConDL, two in

case of GreEssL etc. to have s≈(I, AF ◦ BF) ≥ 0.75. “NA” indicates that the prescribed

coverage is not achievable by the factors produced by AssoL. Observe that in accordance

with the theoretical results, “NA” never appears for other algorithm than AssoL, because

the other algorithms eventually compute an exact decomposition.

Results for s≈ The results illustrate that, by and large, the number factors produced

by GreConD on dataset with ordinally scaled attributes is significantly larger in compar-

ison with other algorithms. Moreover the first couple of factors produced by AssoL and

GreConDL+ has a better coverage compared to the same number of factors produced

5https://www.rio2016.com/en/medal-count

https://www.rio2016.com/en/medal-count


EXPERIMENTAL EVALUATION 31

number of factors needed

dataset s
ordinally scaled

attributes
GreConDL AssoL GreEssL

GreConDL+
(w = 0.5)

GreConDL+
(w = 1)

Breeds 0.75 6 3 2 3 1 1
0.85 12 5 3 7 2 3
0.95 25 9 NA 11 6 8

1 57 16 NA 15 14 13

Decathlon 0.75 5 1 1 3 1 1
0.85 8 4 2 5 1 2
0.95 16 8 NA 8 4 6

1 31 15 NA 10 11 13

IPAQ 0.75 6 8 1 10 2 2
0.85 10 12 1 12 3 4
0.95 19 18 NA 15 8 9

1 46 32 NA 17 20 23

Music 0.75 28 7 1 7 3 1
0.85 51 13 NA 14 5 6
0.95 105 24 NA 25 13 18

1 280 36 NA 29 29 30

Rio 0.75 1 12 1 2 1 1
0.85 9 16 1 6 1 1
0.95 30 24 18 17 5 8

1 79 35 NA 32 32 33

Table 6.2: Quality of decompositions (real data) for s≈.

number of factors needed

dataset s
ordinally scaled

attributes
GreConDL AssoL GreEssL

GreConDL+
(w = 0.5)

GreConDL+
(w = 1)

Breeds 0.50 1 7 NA 3 NA 5
0.75 6 7 NA 3 NA NA
0.95 25 12 NA 11 NA NA

1 57 16 NA 15 NA NA

Decathlon 0.50 3 3 NA 3 1 2
0.75 5 5 NA 6 NA NA
0.95 16 11 NA 9 NA NA

1 31 15 NA 10 NA NA

IPAQ 0.50 1 1 NA 2 2 1
0.75 6 6 NA 7 NA 10
0.95 19 28 NA 14 NA NA

1 46 32 NA 17 NA NA

Music 0.50 7 10 NA 9 NA 25
0.75 28 20 NA 19 NA NA
0.95 105 34 NA 26 NA NA

1 280 36 NA 29 NA NA

Rio 0.50 1 1 1 1 1 1
0.75 1 1 1 1 1 1
0.95 30 12 NA 13 NA 17

1 79 35 NA 32 NA NA

Table 6.3: Quality of decompositions (real data) for s=.



EXPERIMENTAL EVALUATION 32

by GreEssL or GreConDL. On the other hand, beyond certain coverage, AssoL stops

producing factors and is not able to compute an (exact) decomposition of I, while other

algorithms always compute an exact decomposition, with a reasonably small number of fac-

tor needed for coverage very close to 1. This is congruent with the fact that AssoL and

GreConDL+ are primarily designed for DBP(L) and the rest of the algorithms is primarily

designed for AFP(L), as well as with the available evidence from the Boolean case.

We found that factors produced by AssoL are not easy to interpret compared to other

algorithms. There are two reasons. The first, mentioned in Section 6.2, is the usage of

formal concepts as factors by GreConD, GreConDL, GreEssL, GreConDL+ and their

good interpretability. The second one consists in that when |L| > 2 (non-Boolean case)

rectangles with values “around the middle” in L, such as 1
2
, which may be produced as

factors by AssoL have a good coverage and are thus sometimes selected by AssoL in spite

of a possible difficulty in interpreting such factors. In more detail, note that for Boolean

data, the values Iij in the input matrix I are approximated by 0 or 1 of (AF ◦ BF)ij only.

Hence, in case of mismatch the entry 〈i, j〉 contributes by Iij ↔ (AF ◦ BF)ij = 0 to the

numerator in (3.1). With more degrees in L, the situation is different. For example, if 1
2

is available and if 0 ↔ 1
2

= 1 ↔ 1
2

= 1
2
, then already the trivial matrix AF ◦ BF with all

entries equal to 1
2
, which is obtained from the “constant average factors”, always satisfies

s≈(I, AF ◦ BF) ≥ 1
2
. One therefore has to be aware of this effect of presence in L of the

“middle” degrees on the values of s≈.

New algorithm GreEssL requires less factors to achieve a prescribed coverage than the

previous algorithm GreConDL from [18]. The reason is a better utilization of the geometry

of decompositions by GreEssL particularly of the essential part of I.

Results for s= As was mentioned in Section 6.1.2 in Boolean case (algorithm GreConD

on ordinally scaled attributes) it holds that s≈ is equal to s=, so results in corresponding

column are the same. Big change is in case of GreConDL+. This algorithm like AssoL
algorithm allows overcover error, so we are not able usually achieve s= = 1. This error

grows with smaller parameter w. More precisely in Breed dataset finally only 47% of entries

matrix I are the same as appropriate element in AF ◦BF for parameter w = 0.5 and 65% for

parameter w = 1. In Table 6.4 we show the percentage of the same entries for all datasets.

dataset AssoL
GreConDL+

(w = 0.5)
GreConDL+

(w = 1)
Breed 29% 47% 65%

Decathlon 24% 51% 73%

IPAQ 24% 69% 80%

Music 12% 35% 52%

Rio 88% 87% 97%

Table 6.4: Percentage of s=



EXPERIMENTAL EVALUATION 33

6.3 Synthetic data

We used synthetic data organized in collections Set 1–5, each consisting of 500 n×m matrices

I. The characteristics of these datasets are described in Table 6.5. Each matrix I is obtained

as a product of n × k and k × m randomly generated matrices A and B in which entries

from scale L are selected according to a prescribed probability distribution. For instance,

in Set 2 we used a five-element scale L = {0, 1
4
, 1
2
, 3
4
, 1} with the probabilities p(a) of the

degrees a ∈ L in A and B being p(0) = p(1
4
) = 1

8
and p(1

2
) = p(3

4
) = p(1) = 1

4
. The

probability distributions generalize the commonly considered densities of Boolean matrices,

e.g. for L = {0, 1} the distribution [1
4

3
4
] corresponds to density 0.75. Table 6.5 also contains

the average characteristics of synthetic data with the averages over all matrices in Set i. The

characteristics are the same as for the real data. One observes that the reduction in number

of nonzero entries is significant as in the case of real data. We present similar experiment

in [8]. Set 5 was added and the rest of the sets have the same characteristic, but they are

different, for the purpose of this work we generate new ones.

dataset size |L| k
distribution on L

in A and B
avg ||I|| avg ||E(I)|| avg ||E(I)||/||I||

Set 1 50×50 3 10 [1
3

1
3

1
3
] 2449 195 0.080

Set 2 50×50 5 10 [1
8

1
8

1
4

1
4

1
4
] 2503 355 0.141

Set 3 100×50 5 25 [1
8

1
8

1
4

1
4

1
4
] 4983 602 0.121

Set 4 100×100 5 20 [1
8

1
8

1
4

1
4

1
4
] 10000 2087 0.209

Set 5 500×100 6 25 [1
6

1
6

1
6

1
6

1
6

1
6
] 49997 14216 0.284

Table 6.5: Synthetic data and their characteristics.

6.3.1 Evaluation of explanation data

We observe the ability of the extracted factors to explain, i.e. reconstruct, the input data

and measure it by the degree of similarity s≈(I, AF ◦ BF) defined by (3.1), where F is the

examined set of factors (usually the first k factors obtained by the algorithm). In view of

Section 2.3, we speak of coverage of data by factors.

Table 6.6, Table 6.7 and Figure 6.7 display selected results of coverage s≈, defined by

(3.1), by the first k factors for the datasets and the two algorithms. We also include the

percentage s=. “–” means that no new factors were produced increasing k.

Note that the values of s≈ tend to be high even for a small number of computed factors

and that they are higher than what one usually observes for Boolean data. The reason is

the same like in the case of real datasets and is explained in Section 6.2.1.

In results on synthetics data, we observe the same behaviour as in case of real datasets

presented in Section 6.2.1.

6.3.2 Role of τ in AssoL algorithm

In presence of several degrees in L, one may observe a new phenomenon. It is known that

for Boolean data the selection of the threshold τ significantly influences the performance of



EXPERIMENTAL EVALUATION 34

coverage s/s= by the first k factors

dataset k
ordinally scaled

attributes
GreConDL AssoL GreEssL

GreConDL+
(w = 0.5)

GreConDL+
(w = 1)

Set 1 1 0.648 0.576/0.350 0.878/0.761 0.525/0.309 0.745/0.470 0.745/0.470
4 0.837 0.866/0.744 0.899/0.805 0.866/0.744 0.943/0.780 0.936/0.781
11 0.975 0.992/0.985 – 1/1 1/0.858 0.999/0.892
12 0.982 0.995/0.990 – – – 1/0.892
17 0.999 1/1 – – – –
19 1 – – – – –

Set 2 1 0.674 0.620/0.253 0.795/0.389 0.632/0.206 0.836/0.410 0.836/0.410
2 0.763 0.782/0.434 0.839/0.410 0.820/0.483 0.921/0.524 0.921/0.524
10 0.958 0.995/0.980 – 1/1 0.999/0.683 0.998/0.735
11 0.967 0.997/0.989 – – 1/0.684 0.999/0.738
12 0.975 0.998/0.524 – – – 1/0.738
13 0.980 1/1 – – – –
23 1 – – – – –

Set 3 1 0.780 0.684/0.188 0.899/0.789 0.728/0.349 0.852/0.412 0.852/0.412
3 0.845 0.828/0.386 0.950/0.807 0.790/0.508 0.923/0.632 0.923/0.632
19 0.966 0.966/0.867 – 0.979/0.950 1/1 0.998/0.867
27 0.987 0.986/0.947 – 0.998/0.977 – 1/1
39 0.998 0.998/0.994 – 1/1 – –
47 0.999 1/1 – – – –
53 1 – – – – –

Table 6.6: Coverage s≈ and s= by the first k factors.

Asso [46]. An intuitive explanation is that with 0 and 1 as the only degrees, the decision

based on τ whether to round off the confidence value to 0 or 1 is significant. We observed

that in the setting with several degrees, the choice of τ becomes less significant as the number

of degrees increases. This is a good feature for a user because the value of τ needs to be

selected by the user but there are no known principles, except for ad hod recommendations,

how to make such a choice.

We used five sets of synthetic datasets with size of L in order 3, 5, 11, 21 and 101.

Table 6.8 presents the values of coverage s≈ and s= corresponding to the first factor and to

all the factors obtained. The values are observed for different values of τ . As one can see,

as the size of L increases, the coverage values for different values of τ tend to be the same.

Note that the low values in s=, particularly for scales L with a larger number of degrees,

indicating a low number of entries for which the input matrix and the matrix reconstructed

from the factors have equal values, are due to the aim of AssoL to generate approximate

rather than exact decompositions.

For all of the datasets we obtain best coverage for τ between 0.85 and 0.95. For datasets

with smaller size of L we obtain different coverage for τ = 0.85 and τ = 0.95. In datasets

Set 4 and Set 5 this difference is small. See Table 6.8. The entries depict mean coverage for

first factor/coverage for all factors.



EXPERIMENTAL EVALUATION 35

coverage s/s= by the first k factors

dataset k
ordinally scaled

attributes
GreConDL AssoL GreEssL

GreConDL+
(w = 0.5)

GreConDL+
(w = 1)

Set 4 1 0.738 0.651/0.211 0.921/0.704 0.648/0.205 0.846/0.427 0.846/0.427
4 0.840 0.827/0.603 0.939/0.722 0.854/0.512 0.967/0.694 0.963/0.701
21 0.985 0.975/0.824 – 0.994/0.979 1/0.771 0.999/0.805
27 0.997 0.998/0.905 – 1/1 – 1/0.808
29 0.998 1/1 – – – –
37 1 – – – – –

Set 5 1 0.569 0.511/0.111 0,886/0,535 0.477/0.068 0.765/0.234 0.765/0.234
5 0.750 0.821/0.419 0,887/0,541 0.798/0.328 0.953/0.546 0.931/0.531
27 0.948 0.995/0.979 – 0.995/0.949 1/0.621 0.999/0.701
31 0.964 0.998/0.990 – 0.999/0.974 – 1/0.832
36 0.974 0.999/0.999 – 1/1 – –
42 0.986 1/1 – – – –
109 1 – – – – –

Table 6.7: Coverage s≈ and s= by the first k factors ctd.

s≈ s=
dataset τ = 0.85 τ = 0.9 τ = 0.95 τ = 0.85 τ = 0.9 τ = 0.95
Set 1 0.85/0.87 0.87/0.88 0.83/0.86 0.68/0.73 0.63/0.65 0.46/0.50
Set 2 0.87/0.87 0.86/0.90 0.85/0.89 0.29/0.33 0.35/0.37 0.26/0.28
Set 3 0.87/0.87 0.88/0.88 0.87/0.87 0.12/0.17 0.12/0.19 0.14/0.19
Set 4 0.88/0.88 0.88/0.88 0.88/0.88 0.04/0.06 0.04/0.07 0.04/0.06
Set 5 0.87/0.88 0.87/0.88 0.87/0.88 0.006/0.01 0.006/0.01 0.006/0.01

Table 6.8: Coverage by the first factor/by all factors obtained for different values of τ .

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

Set 1 Set 2 Set 3

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

s ≈

 

 

ordinal

GreConD
L

Asso
L

GreEss
L

GreConD
L
+ w=0.5

GreConD
L
+ w=1

Figure 6.7: Coverage s≈ by the k factors



Chapter 7

Conclusion

In this paper we generalized the Boolean matrix decomposition problem (BMF), took into

account matrices over scales which represent ordinal data. We proposed answers to natural

question: “How well a set of factors explains ’the data?” Moreover, we present a problem

of explaining data by factors obtained from reduced data—data having same attributes but

the smaller number of objects. We propose heuristic to deal with problem of selection from

a possibly large dataset a smaller one such that the factors of the reduced dataset explain

the large dataset well.

The main part of this work presents existing and new algorithms for decomposition of

matrices with ordinal attributes. We introduce three new algorithms, namely GreEssL,

AssoL and GreConDL+, all based on more or less known BMF algorithms. We supported

the correctness of these algorithms by theoretical results regarding the geometry of decom-

positions and by experimental evaluation presented in this paper. It turns out that the

methods yield reasonable and, in a sense, robust factors and that the results of the methods

are easy to understand. We also shown that methods suited for ordinal matrices returns

better results, than BMF methods on scaled data.

Decomposition of matrices over some scale is still not well understood problem. There

is a lot of unresolved issues including for example: the choice of the scale of degrees, the

operation ⊗ or a problem we addressed in Chapter 6—AssoL returns rectangles with values

“around the middle” in L.

Abundantly discussed topic in data mining community is, in case of BMF, noise in

Boolean data. This issue should be investigated in general case as well.

36



Shrnut́ı v českém jazyce

Rozklady Booleovských matic (BMF), rozklady matic, které obsahuj́ı pouze nuly a jedničky,

také známé jako faktorizace Booleovských dat, se č́ım dál t́ım v́ıce těš́ı pozornosti datami-

ningové komunity. Ćılem BMF je hledáńı, v datech skrytých d̊uležitých informaćı – faktor̊u –

pomoćı nichž lze vysvětlit či popsat originálńı data. Postupem času vznikla celá řada metod

pro BMF. Ćılem této práce je prozkoumat rozš́ı̌reńı těchto maticových rozklad̊u pro data,

která nemaj́ı jen binárńı charakter, ale jejichž vstupy jsou z uspořádané škály. Takováto

generalizace sebou přináš́ı několik netriviálńıch problémů, které jsou rovněž diskutovány v

této práci.

Prvńı část práce je věnována popisu problému rozklad̊u matic s odrinálńımi daty, na

který můžeme nahĺıžet jako na problém pokrýváńı. Jsou zde stručně popsány matematické

základy, které při řešeńı využ́ıváme. Jedńım z nich je Fuzzy logika, obzvláště pak kalkulus na

reziduovaných svazech. Dále pak Formálńı konceptuálńı analýza – zde s výhodou využ́ıváme

faktu, že faktory vybrané z množiny formálńıch koncept̊u tvoř́ı optimálńı řešeńı.

Nav́ıc v prvńı části práce prezentujeme nové teoretické výsledky, které pak využijeme při

návrhu nových algoritmů. Předevš́ım využ́ıváme toho, že v binárńım př́ıpadě se ukázalo, že ne

všechna poĺıčka jsou rovnocenná. K tomu abychom pokryli celá vstupńı data stač́ı pokrýt jen

některá poĺıčka. Tyto prvky nazýváme esenciálńı a jsou definovány přes minimálńı intervaly

v konceptuálńım svazu. Ukazujeme, že i v obecném př́ıpadě lze nalézt ekvivalentńı pojem.

Generalizace neńı úplně př́ımočará a přináš́ı několik výzev. Např́ıklad každému esenciálńımu

prvku může odpov́ıdat v́ıce interval̊u v kontrastu s binárńım př́ıpadem, kde interval je pouze

jeden.

V druhé části práce představujeme již existuj́ıćı metody pro dekompozici matic s or-

dinálńımu daty. Konkrétně GreConL, GreConDL a Non-negative matrix factorisation

(NMF). Nav́ıc demonstrujeme možnosti využit́ı existuj́ıćıch BMF metod na data, která

źıskáme ordinálńım škálováńım. Dále představ́ıme tři nové algoritmy, jejichž myšlenka pocháźı

z BMF algoritmů.

Posledńı část je věnována experimentálńı analýze a srovnáńı představených algoritmů.

Zaměřujeme se předevš́ım na interpretovatelnost faktor̊u, źıskaných z jednotlivých metod,

počty faktor̊u a kvalitu pokryt́ı – jak velká část dat je vysvětlena źıskanými faktory. Expe-

rimenty provád́ıme na syntetických a reálných datech.

37



Bibliography

[1] L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, P. J. Campbell, M. R. Stratton, “Deci-

phering Signatures of Mutational Processes Operative in Human Cancer”, Cell Reports

3 (1) (2013), 246–259.

[2] H. Andrews, C. Patterson, “Singular Value Decomposition (SVD) Image Coding”, IEEE

Transactions on Communications 24 (4) (2003), 425–432.

[3] R. Belohlavek, Fuzzy Relational Systems: Foundations and Principles, Kluwer, Aca-

demic/Plenum Publishers, New York, 2002.

[4] R. Belohlavek, “Concept Lattices and Order in Fuzzy Logic”, Annals of Pure and Ap-

plied Logic 128 (1–3) (2004), 277–298.

[5] R. Belohlavek, “Optimal Decompositions of Matrices with Entries from Residuated

Lattices”, J. Logic and Computation 22 (6) (2012), 1405–1425.

[6] R. Belohlavek, “Ordinally Equivalent Data: A Measurement-Theoretic Look at Formal

Concept Analysis of Fuzzy Attributes”, Int. Journal of Approximate Reasoning 54 (9)

(2013), 1496–1506.

[7] R. Belohlavek, M. Krmelova, “Factor Analysis of Sports Data via Decomposition of

Matrices with Grades”, CLA 2012, pp. 293–304, 2012.

[8] R. Belohlavek, M. Krmelova, “Beyond Boolean Matrix Decompositions: Toward Factor

Analysis and Dimensionality Reduction of Ordinal Data”, ICDM 2013, pp. 961–966,

2013.

[9] R. Belohlavek, M. Krmelova, “Factor Analysis of Ordinal Data via Decomposition of

Matrices with Grades”, Annals of Mathematics and Artiffcial Intelligence 72 (1–2)

(2014), 23–44.

[10] R. Belohlavek, J. Outrata, M. Trnecka, “Impact of Boolean Factorization as Prepro-

cessing Methods for Classification of Boolean Data”, CLA 2012, pp. 305–316, 2012.

[11] R. Belohlavek, J. Outrata, M. Trnecka, “Impact of Boolean Factorization as Preprocess-

ing Methods for Classification of Boolean data”, Annals of Mathematics and Artificial

Intelligence 72(1-2)(2014), 3–22.

[12] R. Belohlavek, M. Trnecka, “From-Below Approximations in Boolean Matrix Factor-

ization: Geometry and New Algorithm”, Journal of Computer and System Sciences

81(8)(2015), 1678–1697.

38



BIBLIOGRAPHY 39

[13] R. Belohlavek, M. Trnecka, “A New Algorithm for Boolean Matrix Factorization which

Admits Overcovering”, To appear in Discrete Applied Mathematics.

[14] R. Belohlavek, M. Trneckova, “The Asso algorithm for graded attributes”, Unpublished

manuscript.

[15] R. Belohlavek, M. Trneckova, “Toward a geometry of decompositions of matrices with

grades”, Unpublished manuscript.

[16] R. Belohlavek, M. Trneckova, “A decomposition algorithm for matrices with grades that

admits overcovering”, Unpublished manuscript.

[17] R. Belohlavek, V. Sklenar, J. Zacpal, “Crisply Generated Fuzzy Concepts”, ICFCA

2005, Lecture Notes in Artificial Intelligence 3403, pp. 268–283, 2005.

[18] R. Belohlavek, V. Vychodil, “Factor Analysis of Incidence Data via Novel Decomposi-

tion of Matrices”, Lecture Notes in Artificial Intelligence 5548(2009), 83–97.

[19] R. Belohlavek, V. Vychodil, “Discovery of Optimal Factors in Binary Data via A Novel

Method of Matrix Decomposition”, J. Comp. and System Sciences 76(1)(2010), 3–20.

[20] R. Belohlavek, V. Vychodil, “Formal Concept Analysis and Linguistic Hedges”, Int. J.

General Systems 41(5)(2012), 503–532.

[21] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, R. J. Plemmons, “Algorithms

and Applications for Approximate Nonnegative Matrix Factorization”, Computational

Statistics & Data Analysis 52 1(2007), 155–173.

[22] M. Chu, F. Diele, R. Plemmons, R. Ragni, “Optimality, Computation, and Interpreta-

tions of Nonnegative Matrix Factorizations”, Unpublished Report, (2004) available at

http://www.wfu.edu/~plemmons.

[23] P. Comon, “Independent Component Analysis, A New Concept?”, Signal Precessing 36

(1994), 287–314.

[24] P. Cunningham, “Dimension Reduction”, University College Dublin, Technical Report

UCD-CSI-2007-7, 2007.

[25] W. J. Dixon(ed.), “BMDP Statistical Software Manual”, Berkeley, CA: University of

California Press, 1992.

[26] L. Eldén, “Matrix Methods in Data Mining and Pattern Recognition”, SIAM, 2007.

[27] K. Flaska, P. Cakirpaloglu, “Identification of the Multidimensional Model of Subjec-

tive Time Experience”, Int. Studies in Time Perspective, Imprensa da Universidade de

Coimbra (2013), 259–273.

[28] B. Ganter, R. Wille, Formal Concept Analysis. Mathematical Foundations, Springer,

Berlin, 1999.

http://www.wfu.edu/~plemmons


BIBLIOGRAPHY 40

[29] F. Geerts, B. Goethals, T. Mielikäinen, “Tiling Databases”, Proc. Discovery Science

2004, pp. 278–289.

[30] J. S. Golan, Semirings and their Applications, Springer, 1999.

[31] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.

[32] S. Gottwald, A Treatise on Many-Valued Logics, Research Studies Press, Baldock, Hert-

fordshire, England, 2001.

[33] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, 1998.

[34] M. Huchard, A. Napoli, H. M. Rouane, P. Valtchev, “A Proposal for Combining Formal

Concept Analysis and Description Logics for Mining Relational Data”, ICFCA 2007,

pp. 51–65, 2007.

[35] S. Karaev, P. Miettinen, J. Vreeken, “Getting to Know the Unknown Unknowns:

Destructive-Noise Resistant Boolean Matrix Factorization”, Proc. 2015 SIAM Inter-

national Conference on Data Mining (SDM ’15), pp. 325–333, 2015.

[36] M. Krmelova, M. Trnecka, V. Kreinovich, B. Wu, “How to Distinguish True Dependence

from Varying Independence?”, Journal of Intelligent Technologies and Applied Statistics

6(4)(2013), 339–351.

[37] M. Krmelova, M. Trnecka, “Boolean Factor Analysis of Multi-relational Data”, CLA

2013, pp. 187–198, 2013.

[38] D. Lee, H. Seung, “Learning the Parts of Objects by Non-Negative Matrix Factoriza-

tion”, Nature 401 (1999), 788–791.

[39] D. Lee, H. Seung, “Algorithms for Non-Negative Matrix Factorisation”, Advances in

Neural Information Processing Systems 13 (2001), 556–562.

[40] R. Liao, Y-L. Boscolo, L. M. Yang, C. S. Tran, V. P. Roychowdhury, “Network Com-

ponent Analysis”, PNAS 100 (2003), 15522–15527.

[41] C. Lucchese, S. Orlando, R. Perego, “Mining Top-K Patterns From Binary Datasets in

Presence of Noise”, In: SIAM DM 2010, pp. 165–176, 2010.

[42] C. Lucchese, S. Orlando, R. Perego, “A Unifying Framework for Mining Approxi-

mate Top-k Binary Patterns”, IEEE Transactions On Knowledge and Data Engineering

26(12):2900–2913, 2014.

[43] P. Miettinen, “The Boolean Column and Column-Row Matrix Decompositions”, Data

Mining and Knowledge Discovery 17(2008), 39–56.

[44] P. Miettinen, “Sparse Boolean Matrix Factorizations”, Proc. IEEE ICDM 2010, pp.

935–940, 2010.

[45] P. Miettinen, “On Finding Joint Subspace Boolean Matrix Factorizations”, In: SDM,

pp. 954–965, 2012.



BIBLIOGRAPHY 41

[46] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, H. Mannila, “The Discrete Basis

Problem”, IEEE TKDE 20 (2008), 1348–62.

[47] P. Miettinen, J. Vreeken, “Model Order Selection for Boolean Matrix Factorization”,

ACM SIGKDD 2011, pp. 51–59, 2011.

[48] G. T. Miller, “The mAgical Number Seven, Plus or Minus Two”, Psychol. Rev. 63

(1956), 81–97.

[49] D. S. Nau, G. Markowsky, M. A. Woodbury, D. B. Amos, “A Mathematical Analysis

of Human Leukocyte Antigen Serology”, Math. Biosci 40 (1978), 243–270.

[50] F. A. Nielsen, D. Balslev, L. K. Hansen, “Mining the Posterior Cingulate: Segregation

Between Memory and Pain Components”, NeuroImage 27 3 (2005), 520–522.

[51] F. A. Nielsen, Clustering of Scientific Citations in Wikipedia Wikimania (2008).

[52] P. Paatero, U. Tapper, “Positive Matrix Factorization: A Non-negative Factor Model

with Optimal Utilization of Error”, Environmetrics, 5 (1994), 111–126.

[53] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space”, Philo-

sophical Magazine, 2 (1901), 559–572.

[54] D. A. Simovici, C. Djeraba, Mathematical Tools for Data Mining, Springer, 2008.

[55] C. Spearman, “General Intelligence”, Objectively Determined and Measured, American

Journal of Psychology, 15 (1901), 201–293.

[56] G. W. Stewart, “On the Early History of The Singular Value Decomposition”, SIAM

Review, 35 (1993) 551–566

[57] L. Stockmeyer, The Set Basis Problem is NP-complete. Tech. Rep. RC5431, IBM, York-

town Heights, NY, USA, 1975.

[58] L. Taslaman, B. Nilsson, “A Framework for Regularized Non-Negative Matrix Factor-

ization, With Application to The Analysis of Gene Expression Data”, PLoS One 7 11

(2012).

[59] N. Tatti, T. Mielikäinen, A. Gionis, H. Mannila, “What is The Dimension of Your

Binary Data?”, Proc. IEEE ICDM 2006, pp. 603–612, 2006.

[60] M. Trnecka, M. Trneckova, “An Algorithm for the Multi-Relational Boolean Factor

Analysis based on Essential Elements”, CLA 2014, pp. 107–118, 2014.

[61] M. Trnecka, M. Trneckova, “Decomposition of Boolean Multi-Relational Data with

Graded Relations”, IEEE IS’16, pp. 221–226, 2016.

[62] Y. Xiang, R. Jin, D. Fuhry, F. F. Dragan, “Summarizing Transactional Databases with

Overlapped Hyperrectangles”, Data Mining and Knowledge Discovery 23 (2011), 215–

251.

[63] L. A. Zadeh, “Probability Measures of Fuzzy Events”, J. Math. Anal. Appl. 23 (1968),

421–427.


	Introduction
	Problem setting
	Related work

	Preliminaries
	Fuzzy logic
	Decomposition problem and its two variants
	Formal concept analysis
	Errors in decomposition

	First observations
	Variants of decomposition problem in the general case
	Decomposition problem as a covering problem
	Role of entries in matrix
	Explanation of data by factors
	General case
	Selection of rows from dataset


	Previous algorithms
	Boolean factorization of ordinally scaled attributes
	Previous algorithms for ordinal data
	GreConL
	GreConDL
	Statistical methods


	New algorithms
	GreEssL
	Essential parts of matrices over scales
	GreEssL algorithm

	AssoL
	Association matrix
	Procedures Cover and AssoL

	GreConDL+
	Algorithm GreConDL+


	Experimental evaluation
	Illustrative example
	Results for GreConDL
	Results for ordinal scaling
	Results for NMF
	Results for GreEssL
	Results for AssoL
	Results for GreConDL+
	Choice of the scale of degrees

	Real data
	Evaluation

	Synthetic data
	Evaluation of explanation data
	Selection of smaller I from J
	Role of  in AssoL algorithm


	Conclusion
	Summary in Czech
	Bibliography
	Introduction
	Problem setting
	Related work

	Preliminaries
	Fuzzy logic
	Decomposition problem and its two variants
	Formal concept analysis
	Errors in decomposition

	First observations
	Variants of decomposition problem 
	Decomposition problem as a covering problem
	Role of entries in matrix
	Explanation of data by factors
	General case
	Selection of rows from dataset


	Previous algorithms
	Boolean factorization of ordinally scaled attributes
	Previous algorithms for ordinal data
	GreConL
	GreConDL
	Statistical methods


	New algorithms
	GreEssL
	Essential parts of matrices over scales
	GreEssL algorithm

	AssoL
	Association matrix
	Procedures Cover and AssoL

	GreConDL+
	Algorithm GreConDL+


	Experimental evaluation
	Illustrative example
	Results for GreConDL
	Results for ordinal scaling
	Results for NMF
	Results for GreEssL
	Results for AssoL
	Results for GreConDL+

	Real data
	Evaluation

	Synthetic data
	Evaluation of explanation data
	Role of  in AssoL algorithm


	Conclusion
	Summary in Czech
	Bibliography

