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ABSTRAKT

Tato prace se zaméfuje na vyuziti riznych typl splinové interpolace pro obrabéni na
Cislicové fizenych strojich. Cilem této prace je teoreticky popsat vyuziti splinovych
interpolaci pti CNC frézovani a nasledné stanovit a zhodnotit limity vyuziti riznych typt
splinovych interpolaci na zakladné¢ daného objemu vstupnich dat. Soucasti prace je
vytvofeni programu pro generaci rdzného poctu uzlovych bodd na analyticky zndmé
kiivce. Nasleduje vlozeni uzlovych bodi do vytvofeného CNC programu pétiosého
obrabéciho centra a poté jeho verifikace. Pro stejné uzlové body jsou aplikovany rizné
druhy interpolace pro nasledné porovnani metod a stanoveni minimalniho poc¢tu bodl na
délku ktivky pro dosazené vyhovujici piesnosti pii pouziti dané interpolacni metody.

Kli¢ova slova

spline, interpolace, CNC, NC, frézovani, CAD, A-spline, B-spline, C-spline, NURBS

ABSTRACT

This study aims to describe application of spline interpolations for computer numerical
control machines. The aim of this work is also to evaluate limits of application of different
spline interpolation methods and to determine minimum input data for different methods.
The thesis includes creation of a program to generate different number of knots on an
analytically known curve. Then we input the knots in a NC program for five axes CNC
milling machine and verification of the program. Knots are then interpolated by different
splines to compare the methods to each other and determine minimal number of knots per
curve length to obtain sufficient precision using the chosen method.

Key words

spline, interpolation, CNC, NC, milling, CAD, A-spline, B-spline, C-spline, NURBS
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ROZSIRENY ABSTRAKT

Lineéarni interpolace je Casto vyuzivand metoda CNC obrabéni a Ize s ni dosdhnout velmi
presnych toleranci, pokud je definovano dostate¢né mnozstvi vstupnich dat (fidicich bodit).
Nicméné pro mnoho aplikaci je vhodngjsi linedrni interpolaci nahradit nékterym typem
splinové interpolace. Splinova interpolace je v podstaté prolozeni uzlovych boda hladkymi
kfivkami (polynomy druhého nebo tfetiho tadu), diky cemuz je kinematika pohybu
nastroje hladsi bez nadmérného zrychlovani a zpomalovéani posuvu nastroje, nez jak je
tomu pii vyuziti linedrni interpolace. Pfi splinovych interpolaci jsou pfechody mezi
jednotlivymi uzlovymi body hladké a nedochazi k tvorbé fazetek jako v ptipad¢ linearni
interpolace. Men$i objem vstupnich dat pro splinové interpolace ma dale za nésledek
vyrazné zmenseni velikosti NC programi, a tudiz mensi naroky na pamét’ obrdbéciho
stroje. [1] [2].

Splinové interpolace maji velky potencial uplatnéni napiiklad v reverznim inzenyrstvi, kdy
je soucast vyrobena na zakladé omezeného poctu uzlovych bodi definujicich geometrii
realné soucastky, bez nutnosti mnohdy zdlouhavého skenovani, vytvafeni a optimalizovani
CAD modelu. Splinové interpolace se daji vyuzit také pti CNC obrabéni soucasti, jejichz
geometrie je definovana pouze za pomoci analyticky znamych kiivek. V ptipadech, kdy
jsou komplexni tvary obrabénych soucésti definovany pouze omezenym poctem fidicich
bodl je nutné tyto body aproximovat vhodnou funkci tak, aby byla zajiSténa nejvyssi
piesnost obrabéni [1] [3].

VétSina dostupnych fidicich systému jako napiiklad Heidenhain, Fanuc nebo Sinumerik
metody patii A-spline, B-spline a C-spline. A-spline je oznaceni pro Akimiv spline, B-
spline znaci Beziéruv spline a C-spline je zkratka pro kubicky spline. Pro B-spline je
charakteristické, Ze neprochazi uzlovymi body kromé& prvniho a posledniho uzlu. VétSinou
je B-spline aplikovan ve formé¢ NURBS (Non-uniform rational basis spline) u kterého ma
kazdy uzel navic parametr vahy. Cim vétsi vaha bodu, tim vice je splinova kiiva
pritahovana k danému bodu. Nastavenim velké vahy uzli lze zmensit chybu zpiisobenou
tim, Ze B-spline uzlovymi body pifimo neprochazi. Pro C-spline je typické, Ze ma ze
studovanych tii typd splind nejvétsi sklon oscilovat. Pro A-spline je zase typicky lokalni
aspekt, kdy je kiivka v urcité oblasti ovlivnéna pouze péti body najednou. Tim padem A-
spline neni pfili§ deformovan skokovymi zménami a je dobie aplikovatelny pro schodové
funkce. VSechny tfi typy, jejich definice a vlastnosti byly detailn¢ popsany v teoretické
Casti této prace [4] [5].

VyuzZiti splinovych interpolaci, kdy je geometrie soucastky popsana za pomoci analyticky
zname kiivky, bylo analyzovdno v experimentdlni casti této prace. Nejprve byla
definovéna analyticky znama kiivka obrabéné soucasti, na niz bylo generovano rizné
mnozstvi uzlovych bodi, které slouzily jako fidici body pro jednotlivé druhy splinovych
interpolaci (A-spline, B-spline a C-spline) a pro linearni interpolaci. Cilem prace bylo
stanovit vliv poctu a vzajemné vzdalenosti fidicich bodl na piesnost a vhodnost
jednotlivych splinovych interpolaci. Generovani fidicich bodl na analyticky znamé kiivce
bylo realizovano dvéma riznymi zpisoby za vyuziti matematického softwaru MATLAB
2017b. Prvnim zplsobem bylo generovani bodl s polarni distribuci, kdy byl ménén thel v
polarnim systému mezi uzly. Byly vytvofeny 3 variace pro thel mezi kazdymi dvéma
sousednimi body: 1°, 5° a 15°. Druhym zplisobem bylo generovani bodl s ekvidistantni
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distribuci, kdy byla ménéna délka oblouku mezi uzlovymi body: 0,38148 mm, 0,76943
mm a 2,38929 mm.

Hlavni program splinovych interpolaci byl vytvofen v fidicim systému Sinumerik 840i.
Ridici body vygenerované v programovaci platformé¢ MATLAB 2017b a MATLAB 2018a
slouzily jako NC podprogramy pro splinové interpolace a linedrni interpolaci.
Experimentalni ovéfeni programi bylo realizovano na pétiosém frézovacim centru
TAIMAC-ZPS MCV 1210 pro 24 riznych variant obrabénych kontur.

Pomoci programu MATLAB bylo dale vygenerovano 11 kontrolnich bodi v druhém
kvadrantu pfislusného kartézského souradného systému. Souradnice teoretickych
kontrolnich boda byly porovnany s pozicemi obrobenych kontur, které byly naméteny
pomoci dilenského méticiho mikroskopu MarVision MM 420. Byly porovnany rozdily
mezi soufadnicemi jednotlivych bodl a také byla spocitana primérnd absolutni chyba
kazdé metody. Porovnadnim primérnych absolutnich chyb vSech pouzitych interpolacnich
metod pro stejny typ distribuce uzll jsme ziskali piehled pouzitelnosti interpolacnich
metod pro pouzité variace distribuce uzli na kontufe. Vysledky méfeni a zhodnoceni
pouzitelnosti dané interpolacni metody pro danu distribuci uzli jsou zaznamenany
Vv tabulkach 1 a 2

Tabulka 1 PouZitelnost splinovych interpolaci pro ekvidistantni distribuci uzli na kontuie.

Interpoacéni | Distribuce y . Vzdé_lenost b ..
. Pocet uzla | mezi uzly odchylka | Pozitelnost
metoda uzlt (mm) (mm)
A-spline | Ekvidistantni 357 0,38148 0,057 ANO
B-spline | Ekvidistantni 357 0,38148 0,047 ANO
C-spline | Ekvidistantni 357 0,38148 0,059 ANO
Linear Ekvidistantni 357 0,38148 0,033 ANO
A-spline | Ekvidistantni 177 0,76943 0,025 ANO
B-spline | Ekvidistantni 177 0,76943 0,055 ANO
C-spline | Ekvidistantni 177 0,76943 0,046 ANO
Linear Ekvidistantni 177 0,76943 0,040 ANO
A-spline | Ekvidistantni 57 2,38929 0,050 ANO
B-spline | Ekvidistantni 57 2,38929 0,330 NE
C-spline | Ekvidistantni 57 2,38929 0,070 ANO
Linear Ekvidistantni 57 2,38929 0,114 NE
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Tabulka 2 PouZzitelnost splinovych interpolaci pro polarni distribuci uzli na kontufe.

Interpoacni Distritzuce Pocet uzlt Uhel mezi E&ﬁ;ﬁ: Pouzitelnost
metoda uzla uzly
(mm)
A-spline Polarni 360 1 0,050 ANO
B-spline Polarni 360 1 0,099 NE
C-spline Polarni 360 1 0,049 ANO
Linear Polarni 360 1 0,054 ANO
A-spline Polarni 72 5 0,041 ANO
B-spline Polarni 72 5 0,234 NE
C-spline Polarni 72 5 0,035 ANO
Linear Polarni 72 5 0,088 NE
A-spline Polarni 24 15 0,676 NE
B-spline Polarni 24 15 1,241 NE
C-spline Polarni 24 15 0,382 NE
Linear Polarni 24 15 0,665 NE

Pro oba typy distribuce uzlovych bodi se C-spline interpolace prokazala jako nepiesnéjsi
metoda, nésledovdna A-spline interpolaci. B-spline vykazoval velké nepfesnosti a kiivku
deformoval nejvice.

Limitni hodnoty (ze zkoumanych hodnot) pro pouZiti splinovych interpola¢nich metod pro
obrabénou konturu, kdy je dana metoda aplikovatelna jsou:

e pro A-spline: ekvidistantni distribuce s 2,38929 mm mezi jednotlivymi uzly,

e pro B-spline: ekvidistantni distribuce s 0,76943 mm mezi jednotlivymi uzly,

e pro C-spline: ekvidistantni distribuce s 2,38929 mm mezi jednotlivymi uzly,
pro linearni interpolaci: ekvidistantni distribuce s 0,76943 mm mezi jednotlivymi uzly.
Vliv zvolené¢ interpola¢ni metody na strojni ¢as byl také prozkoumén
Vyhody vyuziti splinové interpolace oproti linearni interpolaci jsou nasledujici:

e hladka trajektorie nastroje a mensi drsnost povrchu,

e snizeni strojniho Casu

e pro stejnou presnost spline interpolacim staci mensi objem vstupnich dat a tedy
mensi velikost NC programii.
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INTRODUCTION

Linear interpolation is a widely used method for CNC milling and can result in very
accurate results when provided sufficient volume of input data. Nevertheless for many
applications spline interpolations has potential to replace linear interpolation as they bring
multiple advantages such as more perfect kinetics and lesser input data needed to obtain
precise machined curve. Lesser input data mean smaller NC programs. Spline interpolation
represent great potential to be employed in reverse engineering where a part is reproduced
based on a pre-existing part possibly avoiding usage of CAD/CAM systems to create a
numerical model firstly which can be a lengthy process. Other possible application is to
machine analytically known curves while also skipping the CAD/CAM systems. [1, 2].

The latter application was tested as the experimental part of this study. A theoretically
known contour was created and different numbers of points (also called knots in terms of
interpolation) were generated as input data. Creation and execution of programs containing
the generated knots was set as a goal. Multiple varieties of input data were designed to
compare accuracy of three types of spline interpolation methods (A-spline, B-spline and C-
spline) for CNC milling. Number of knots was varied as well as the type of distribution of
the knots along the contour. How these parameters influenced the applicability of chosen
spline interpolation method was evaluated and limits for each method were established.
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1 THEORETICAL ANALYSIS
1.1 CNC MILLING
1.1.1 Basic principles of CNC

Computer Numerical Control abbreviated CNC represents the automation of machine tools
and it aims to partially or entirely substitute manually controlled machining. In general, a
CNC machine consists of following parts: machine tool itself and a control system. The
machine tool structure consists of base, column, spindle, worktable, milling head and a tool

[1].
Main objective of a CNC machine is to guide the tool path respectively to the machine’s
coordinate system to machine the workpiece accordingly to the requirements [1].

Structure of CNC machines usually contains detectors to control different stages of the
machining process. We differentiate three groups of detectors integrated in a CNC
system [1]:

e empiric detectors,
e presence detectors,
e real-time detectors.

A CNC machine performs a sequence of commands based on the directives in the program.
CNC machines can operate with minimal intervention of the operator or even unattended.
The operator is needed for initial adjustments and fixation of the workpiece, therefore the
skill level required of the operator is lowered compared to manual machining. Multiple
machining operations can be performed in one workpiece clamping. Another major
advantage of CNC is its high degree of accuracy ensuring repeatable and consistent results.
Minimal intervention of the operator minimizes human error and therefore contributes to
consistent results [3].

CNC machines are usually equipped with an automatic tool changer (ATC) that allows
rapid change of tools which significantly decreases the machining time for operations that
require tool change [3].

Replacing manual machining with CNC brings general productivity increase and better
precision [3].

1.1.2 Milling

Milling can be defined as a machining process that removes material from the surface of
the workpiece by a milling cutter which performs a rotary movement while either the
workpiece or the tool is advancing. Thus the main cutting movement is performed by the
tool, and secondary movement can be performed either by the workpiece or by the tool.
The cutting movement is discontinuous and milling cutters usually have multiple
blades [4]. Diagram of general milling is displayed on Figure 1.1.2.1.
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Figure 1.1.2.1 Milling diagram.

In case of so called conventional milling the workpiece is fed against the milling cutter [4].
The chip cross section progress from minimum to maximum as displayed in Figure 1.1.2.1.

Conventional
milling

Tool
- Chip

(Workpiece
V§ ==

ANNNNNNNNNNN

Figure 1.1.2.2 Conventional milling.

In case of climb milling the workpiece fed with the milling cutter. The chip cross section

progress from maximum to minimum as is displayed in Figure 1.1.2.3 [4].

Climb
milling

Tool
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[Workpiece

'Vf =
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Figure 1.1.2.3 Climb milling.
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1.1.3 CNC milling

CNC lathes and CNC milling machines can be differentiated. CNC lathes are used to
machine rotational workpieces while CNC mills are in addition able to machine non-
rotational pieces. CNC milling machines with multiple axes are usually identifiable as
milling machines. CNC milling machines are widely used thanks to their versatility to
machine both rotational non-rotational surfaces [4].

Milling Machines can be classified by different criteria [3]:
e by the number of axes: the number of axes varies from two to five or even more,

e by the orientation of its linear axes: linear axes can be vertically or horizontally
oriented, example of a vertical mill is displayed on Figure 1.2.3.1,

e Dby the presence or absence of an automatic tool changer (ATC): vast majority of CNC
machines are equipped with an ATC. There are various types of ATC system.

Figure 1.1.3.1 Vertical CNC mill Mori Seiki GV 5035AX [4].

1.1.4 Coordinate systems in CNC machine

CNC machines guide the reciprocal tool-workpiece movement in a coordinate system.
CNC machines most commonly use right handed Cartesian coordinate system of pair-wise
orthogonal axes X, Y, Z which are parallel to leading surfaces of the machine [5]. Different
axis must correspond to the norm NF ISO 841:2004-09 [1].

For milling: Z axis usually corresponds to the axis of the tool. The term horizontal mill
refers to a Z axis mill. X axis should also be horizontal if possible [1]. Five axes CNC
machines have also two rotational axes, either A, B or B, C or A, C [3].

Representation of a right handed Cartesian coordinate system with three correspondent
rotational axis is displayed on Figure 1.1.4.1.
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Figure 1.1.4.1 Axes X, Y, Z, A, B, C of a coordinate system.

Rotation can be achieved in multiple configurations. Either the workpiece or the tool can
rotate around different axes. Reference points are placed in the coordinate system to
determine tool-workpiece position [5]:

e M: machine reference point, origin of the machine coordinate system, fixed by the
machine manufacturer, cannot be modified by the user,

e R: reference point — a point fixed by the machine manufacturer use for precise
measurements and to set other in the course of the program,

W: workpiece zero point — origin of the workpiece’s coordinate system in which all
instruction in the program are referred to. Workpiece zero point is determinate by the
creator of the program and can be re-defined at any point of the program,

e T: tool mount reference point — the machine operator must enter the distance between
point T and the tip of the tool, every tool in the ATC needs to have this distance
measured in order to be usable,

e P: tool setup point — beginning of the toolpath, after all tasks in the NC program are
carried out, the tool returns to this point.

Some of the reference points are displayed on Figure 1.1.4.2.
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Figure 1.1.4.2 Reference points [5].

1.1.5 Trajectory programming

CNC machining must meet functional specifications of the workpiece set by its designer
[6].

CNC machines are operated by a numerical control (NC) program. 3D CAD model needs
to be mathematically described and transformed into NC data readable by the machine.
Creation of NC data consists of four stages. In the first stage the designer creates a CAD
model of the workpiece. In the second stage the tool trajectories are calculated in a CAM
system in form of CL data. In the third stage CL data are treated by the postprocessor.
Postprocessor can be either a part of CAM system or independent Nevertheless, each
postprocessor is designed for a specific pair of CAM system and CNC control system
which may cause problems with compatibility. In the fourth stage the NC program is
transferred to the CNC machine where it’s executed as movements [6, 7, 8]. The process is
visualized on Figure 1.1.5.1.
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Figure 1.1.5.1 Numerical control program creation process [7].

1.2 Types of interpolation

In case of more complex machining, toolpaths are generally freeform curves. Any curved
contour of the workpiece can be approximated by a limited number of data points also
called knots. These can be connected by different types of curves [9] .

Interpolation is a mathematical method that consists of defining a function that passes
through n + 1 number of ordered data points: P;(x;,y;), i=0,1,...,n while x, <X < x,
[3]. If we search to determine f(x) in X, while X #x;,i=0,1,..,n it’s called an
interpolation problem if x, <x<x, . On the contrary if X <x,, it’s called an
extrapolation problem [10]. There are several methods of interpolation that vary in
accuracy, smoothness and number of data points needed. Following section describes
several interpolation methods which can be used to guide toolpath in CNC milling.

1.2.1 Linear

Linear interpolation or spline of the first order is the simplest of all interpolations. In case
of linear interpolation, the ordered data points ar e connected by straight lines [10]. The
toolpath curves are approximated by multiple lines in a process generally called
discretization [11].

Linear interpolation is commonly used because it’s easy to establish [6].

When using linear interpolation, the tool is moving point to point following a straight line.
The error highly depends on sampling, thus on number of points. The error decreases with
increasing number of points. When the tool is passing through the control points the error
between the desired curve and the machined profile is null in said point. Factors
influencing the value of geometrical error in all other parts are tool blade geometry and
feed per dent [6].

The continuous function connecting n + 1 knots Py, Py, ..., B, is composed of straight linear
segments P, P;,,, i =0,1,..,n—1. The linear interpolation function is defined as
described in equation (1) [12]:
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Linear interpolation is represented on Figure 1.2.1.1

Linear interpolation
T T T

9 10

Figure 1.2.1.1 Linear interpolation.

To illustrate the principle of linear interpolation, points situated on a circle with radius
equal to r = 5 were generated and connected with segments. On Figure 1.2.1.2, linear

interpolation was used to try to obtain interpolation of a circle.
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Figure 1.2.1.2 Linear interpolation of knots situated on a circle for different number of knots.

As can be seen on Figure 1.2.1.2, with increasing number of knots per length, the obtained
curve gets closer and closer to an actual circle.

Linear interpolation brings multiple disadvantages. The tool stops in every knot then
accelerate while moving to the next knot where it stops again. Therefore the velocity is
discontinuous in the junctions of every linear segment and high acceleration is needed. As
a result we obtain poorer quality surface finish and low accuracy. The fact that the tool is
repeatedly accelerating and decelerating with high frequency, results in long machining
time. The kinematics of linear interpolation has very low efficiency [11, 13].

To obtain better surface finish, we must shorten the length of segments between two
control points, i.e. use finer sampling. This results in greater number of control points
which significantly enlarges the size of NC data files that need to be transferred to the
controller. The large size of NC files is a major disadvantage of linear interpolation
because the memory of the CNC machine can process only a limited amount of data [6].
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1.2.2 Circular

Circular interpolation is a special type of interpolation that connects two data points by an
arc defined by its centre and its radius. Circular interpolation can operate either in a
clockwise or counter-clockwise motion [6].

For example in Siemens Sinumerik control systems, there are two functions that call
circular interpolation in the program [4]:

e G02: Clockwise circular interpolation,
e G03: Counter-clockwise circular interpolation.

Sinumerik control system enables us to program circular interpolation in three planes. The
plane in which the circular interpolation is going to be performed is chosen by one of
following functions [4]:

e G17: picks X-Y plane for circular interpolation,
e (18: picks X-Z plane for circular interpolation,
e G19: picks Y-Z plane for circular interpolation.

Some control systems are also able to perform 3D circular interpolation. Machined curve
then can be located in any plane given by the programmer, not only in the main planes of
the machine’s coordinate system [6]. We recognize internal and external circular
interpolation. Internal circular interpolation is commonly used to enlarge holes [14].

1.2.3 Spline interpolation

Curved parts of the workpiece might not be analytically describable but only approximated
by a certain number of control points (knots). Spline defines a curve consisting of parts of
polynomials of second or third order. How this curve is dependent on its knots differs for
every type of spline. Spline interpolation can be applied to connect digitized points through
a smooth curve. The smoothness of the spline is brings significant improvement compared
to linear interpolation [9, 15].
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P1 to P&: Predefined coordinates

Figure 1.2.3.1 Spline creating a smooth curve connecting 6 predefined knots [15].

1.2.3.1 A-spline

Term A-spline stands for Akima spline. It was introduced by Akima in 1977 as a new
interpolation method solving problems with undesired wiggles of the curve due to
oscillations. Akima proposed to use local aspect as if we tried to draw the curve by hand.
That means that the pieces of the curve are influenced only by a small number of
neighbour knots [16].

A-spline is a piecewise function composed of third degree polynomials smoothly
connected by a geometrical condition. Slope of the curve at every point is determined by
only five successive points where the concerned point is the middle with two points at each
side [16]

Using only five points at a time eliminates error from extreme differences between
neighbour knots, the error will show only locally and not on the whole curve meaning the
A-spline rarely oscillates which is a major advantage [16], [13].

Because of the local aspect, changing one control point will affect at most six neighbour
points [9].

With five points designated successively 1, 2, 3, 4, 5 we can determine the slope in the
central point 3 in multiple ways. The slope of point 3 in A-splines is calculated using
equation (2) [16].

_ (Imy — ms| * my + [my — my| x m3)
3 =

(2)

(Imy — ma| + |Imy — my|)

Where m,, m,, ms, m, stand for the slopes of line segments 72, 23,34,45 [16].
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This approach is not applicable in a special case when m; = m, # m3 = my. In this
particular case, the value of t is by convention equated to é(m2 + m3) [16].

Interpolation between two knots with coordinates (x;,y;) and (x,,y,) using the Akima
spline consist of connecting them with a polynomial function that passes directly through
them and slopes in the two knots are calculated as expressed in (3) [16].

To calculate the third degree polynomial between the two knots following two conditions
for every knot are used [16]. First condition ensures that the new polynomial function is
going to pass through the knots. In the second condition the slope in the knot is equalled to
the first derivative of the new polynomial. By applying these two principles we obtain two
pairs of following conditions (3), (4).

d
y=1y; and Lot forx = x; 3)
_ wo_ =
y =y, and = b forx = x, (4)

While these four conditions are enough to describe a unique third degree polynomial, this
polynomial can be expressed in other ways [16].

Akima chose following form (5) to describe the third degree polynomial connecting two
knots of the Akima spline:

y = po+ pi(x —x1) + pr(x —x)% + p3(x —x1)3 5)

Where coefficients are equal to expressions stated in (6) [16].

Po= M1
Gamy
3(y2 — 1
=|——=-2t; -t —
b2 [Xz—x1 1 2]/(352 X1) (6)

2(y2 =)
p3 = lt1 t+ t; _—2_ 2|/ = x1)?
X2—X1

While calculating the slope at one knot only two preceding knots and two subsequent knots
are used. This meant that for the last point of the Akima spline two additional knots must
be estimated which leads to potential error in this area [16].
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Figure 1.2.3.1.1 Representation of the A-spline interpolating 7 knots [15].

A-spline is especially well applicable for interpolation of curves with great changes of
slopes and step (staircase) functions [9].

1.2.3.2 B-spline

Term B-spline stands for Bezier spline. B spline consists of pieces of Bezier curves and
does not pass through the control points [13].

To understand the nature of B-spline we must first define what Bezier curves are.
Parametrical equation of Bezier curve is designated by equation (7) [17].

14
P(w) = Z PBi,(w)  Vu€l[0,1] 0
i=0

Expressions B;,,(u),V u € [0,1], represent basic (blending) functions and are calculated
by (8). It’s an ensemble of p+1 Bernstein basis polynomials of degree p. Expression
P; = [Py, Py,;]" designate a control point calculated using (7) [18].

p!
B;,(u) = Tw=0

Example of blending functions is demonstrated in (9) [19].

ut(1 —u)P 0<i<p

(8)
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Vu € [0,1]
Bo1(u)=1-u
Bo,(w) = (1 - u)?

(9)

Functions B; ,,(t) are polynomials of order n and they form a vector space of polynomials
of order inferior or equal to n.
As can be seen on the Bezier curve passes only through the first control point P and the
last control point P,. The overall shape of the Bezier curve is determined by other (interior)
control points [17].

& Are Length
u:Spling Parameter (ue[0... 1])

Figure 1.2.3.2 Bezier curve [17].
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Figure 1.2.3.3 Representation of B-spline [17].

With increasing number of control points the order of the Bezier curve increases as well.
To be able to use only lower order curves the solution of B-spline was introduced by Boor
for the first time as follows in (10) [17].

P = ) Nin()P (10)
i=0

While N; ,, (u)P; represent new blending functions. B-spline is segmented by a knot vector
U into parameter intervals. The curves in these intervals can be modified by nearest knots.

Most commonly used form of B-spline is NURBS (Non-uniform rational basis spline).
NURBS is a type of B-spline with the option to add weight to every knot. The greater the
weight is the more is the curved “pulled” more towards the knot. Nevertheless even
NURBS never passes directly though the points with the exception of the first and the last
point. That’s why the curve changes dramatically when we provide lesser knots.

B-splines are well compatible with CAD system. Most CAD systems use B-splines to
generate complex surfaces [17].
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B spline

P1 to P7: predefined coordinates

Figure 1.2.3.4 Representation of B-spline interpolating 7 knots [15].

1.2.3.3 C-spline

Term C-spline stands for cubic spline. It directly passes through data points and is
continuous in each of them. That’s why its first and second derivation (curvature) also
needs to be continuous in all data points. That is also a reason why it is the most
susceptible to be influenced by deviation of (x) out of all studied splines and is likely
oscillate in the proximity of extreme values of f(x) [12], [13].

C-splines are very well applicable if the knots appertain to analytically known functions,
for example conic sections or circles [9].

C-spline assesses third degree polynomials for every interval between two knots [X; , Xi+1]
[12].

Third degree polynomials are described as follows in equation (11) [12].
fi=ax3+bx*+cx+d;, x_,<x<x, i=12,..,n (11)

The second derivative in x; is designated as f; . First and second derivatives must be
continuous. Condition of continuity of the second derivative is defined as (12) [12].

fl'xic) =121 fl'tx) = f" i=12,..,n (12)
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Because the second derivative is linear, it is equal to (13):

X — X; X — Xi_1

f‘lll(x) — f‘ill —+ f‘ill

-1
Xi—1 — X Xi — Xj—1

(13)
Expression (x; — x;_, ) is then replaced by h; to simplify the previous expression (13) and
we obtain (14) [12]:

- X + 17 — Xi-1
hl fima hl— (14)

f'ill(x) f'lll

By integrating (14) two times and calculating integration constants equation (15) is
obtained [12].

" (Xi—x)3 " (x_xi—1)3 YVi-1 " h;
i) = fia—g =+ —p—— | _fHE] (x; =)

e (O

(15)

In expression (15) f;”; and f;'" are the only unknown variables. The polynomials f;(x) can
be determined once we find their second derivatives, f;". To determine the values of f;” the
condition of continuity of first derivatives (16) is used [12].

fi(x) = fil () i=1,2,..,n—1 (16)

By substituting (14) in (15) we obtain (17) [12]:

hifiZy + 2(hi + his D i7" + higa fif1 = 77— Vi — Y1) T (3’1 1= Vi) (17)

6
hi1
i=12,..,n
While n being the number of knots, we get n-1 linear equations for n+1 unknown values
of f;. Two additional conditions must be added. Two conditions for second derivatives on
the boundary of the interpolation interval were set. First condition (18) is for the first
polynomial function in the first knot X, and a second condition (19) for the last polynomial
function in the last knot x, [12].

1 (x) =0 (18)

n () =0 (19)
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Figure 1.2.3.5 Example of C-spline interpolating 7 knots. [15]

1.3 NC programs

To implement machining of a workpiece the tool path needs to be generated to control
respective tool-workpiece movements. NC programs are programmed following correct
syntax adapted for used control system [13].

1.3.1 Types of programming

We differentiate two types of programming such as absolute programming and incremental
programming [4].

1.3.1.1 Absolute programming

In absolute programming coordinates of all points are expressed in relation to the
coordinate system origin [4]. In Sinumerik this type of programming is called by function
G90 [4]. When using the G90, input is absolute dimensions while all data coordinates
refers to the workpiece zero [20]. While using absolute programming the diameter of the
piece is determined in axis X and its lengths in axis Z [4].

1.3.1.2 Incremental programming

In incremental programming coordinates of all points are expressed in relation to the last
point’s coordinates [4]. In Sinumerik this type of programming is called by function G91
[5]. After calling incremental programming by function G91, all input is in incremental
dimensions while each dimension refers to the contour’s point last input [20].
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1.3.2 Structure of the program

The structure of NC programs follows syntax specific to the control system of the machine.
Most of control systems use similar so called G programming language that has many
varieties but the most commonly used one is ISO language. Every command is composed
of a letter address and its numerical value. In general it consists of letter addresses and
numerical values. For better orientation in the programs, blocks (lines) are assigned a block
line number consisting of letter address N and number of the block. Blocks contain
commands and are executed in numerical order. The letter address can be any letter of the
alphabet but the most used are G and M. Every command might or might not have a
numerical value assigned to it. In Sinumerik control systems G functions are also called
preparatory functions and M functions can also be called auxiliary or Miscellaneous
functions. The functions and their utilisation vary for turning and for milling. While
Sinumerik 840D offers advanced forms of programming like multi-channel programming,
the basic programming language it uses is ISO-Code. Next passage states a few principal
functions in ISO dialect mode used in its G-code according to norm DIN66025 [5], [21].

1.3.2.1 Letter addresses
Table 1.3.2.1 Letter addresses [7] [18].

Absolute or incremental position in rotational axis A
Absolute or incremental position in rotational axis B
Absolute or incremental position in rotational axis C
Preparatory functions

Feed rate designation

Miscellaneous (auxiliary) functions

Block (line) number

Speed designation (of spindle)

Tool selection

Absolute or incremental position in linear axis X
Absolute or incremental position in linear axis Y
Absolute or incremental position in linear axis Z

N <X dwn ZIZMo|lo|w|>
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1.3.2.2 G functions
Table 1.3.2.2 G functions [9], [20].

GO Rapid traverse motion

Gl Linear interpolation

G2 Clockwise circular interpolation

G3 Counterclocwise circular interpolation

G4 Dwell time preset

G9 Exact stopping before continuing to the next block, diminution of
velocity

G17 X/Y plane selection for linear and circular interpolation

G18 X/Z plane selection for linear and circular interpolation

G19 Y/Z plane selection for linear and circular interpolation

G33 Threading with constant lead

G40 No tool radius compensation

G41 Tool radius compensation left of the workpiece contour

G42 Tool radius compensation right of the workpiece contour

G53 Frame suppression (in concerned block)

G54 First settable zero offset

Gb5 Second settable zero offset

G56 Third settable zero offset

G57 Fourth settable zero offset

G70 Input in inches

G71 Input in metric system

G74 Approaching reference point

G75 Approaching fixed point

G90 Absolute dimension input

GIa1 Incremental dimension input

G93 Inverse time federate coding

G944 Linear feed rate Fv in mm/min or inch/min

G95 Revolution feed rate Fv in mm/revolution or inch/revolution

G96 Constant velocity on

G97 Constant velocity off
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1.3.2.3 M functions
Table 1.3.2.3 M functions [9], [20].

MO Programmed stop

M1 Optional stop

M2 Main program and return to program beginning

M3 Spindle turning clockwise

M4 Spindle turning counterclockwise (CCW).

M5 Spindle stop

M6 Tool change

M17 Subroutine end

M30 Subroutine end and return to program beginning
M41-M45 Gear stage 1-5

1.4 Spline interpolation in different control systems

Today all control systems support linear interpolation and some form of circular
interpolation. If we intend to use spline interpolation, firstly we must verify if the control
system supports spline interpolation [13].

Next section treats interpolation options in three different control systems: Sinumerik,
Heidenhain and Fanuc.

1.4.1 Sinumerik

Sinumerik control systems produced by corporate company Siemens AG offer multiple
spline interpolation options. Sinumerik 840 control system is the most adapted to elaborate
spline interpolation and other smooth curves interpolation than other Sinumerik control
systems. Sinumerik 840 offers directly A-spline, B-spline and C-spline interpolation
programming. It is essential to point out that what the producer refers to as a B-spline is in
reality a NURBS [13].

The introduction of all three types of splines is similar.

General syntax for programing spline interpolation in Sinumerik line solution system [9]:
ASPLINE X...Y...Z..A..B...C...

BSPLINE X...Y...Z..A..B...C...

CSPLINE X...Y...Z...A..B...C...

Abbreviations used in this syntax refer to terms in Table 1.4.1.1 [9].

Table 1.4.1.1 Spline syntax parameters in Sinumerik control system.

ASPLINE introduction of A-spline into the program
BSPLINE introduction of B-spline into the program
CSPLINE introduction of C-spline into the program

X,Y,Z A, B,C |coordinates of knots in Cartesian coordinate system
values to be designate by the programmer
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1.4.1.1 Programming B-splines in Sinumerik

For B-splines we can also program other parameters [9]:

PW=<n>
SD=2

PL=<value>

Where abbreviations have following meaning stated in Table 1.4.1.2 [9].

Table 1.4.1.2 Additional parameters for B-spline knots in Sinumerik.

PW parameter of weight of each knot
SD degree of the curve
PL parameter of length between two knots

The syntax for writing a NURBS interpolation is following [13]:
BSPLINE SD=... X... Y... Z... F...

X.Y..Z. PL=
X.Y..Z. PL=

.. PW=_.
.. PW=._.




FSI VUT BAKALARSKA PRACE List 36

Abbreviations used in this syntax refer to following terms in Table 1.4.1.3 [13]:
Table 1.4.1.3 Abbreviations in syntax for NURBS spline interpolation in Sinumerik

BSPLINE introduction of B-spline into the program
SD degree of the curve

numbers to be designate by the programmer
X, Y, Z coordinates of knots in X,Y,Z axes

F feed-rate specification

PL parameter of length between two knots

PW =<n> parameter of weight of each knot

PW, SD and PL parameters are useable only for B splines and would not influence other
types if spline interpolation [9], [13].

PW = <n> represents the weight of every knot. It’s value can range from n= 0 to n=3 with
step of 0,0001. If n > 1, the curve is pulled significantly towards the knot in question. On
the other hand if f n < 1 the curve is pulled towards the knot slightly.

Distance between two knots is calculated automatically for optimal results but can also be
changed by the programmer using the PL parameter [13].

Sinumerik 840 also offers 3D NURBS interpolation meaning it uses multiple axes. This is
done by simultaneously programming two spatial curves. The first curve controls the tool
reference point. The second curve controls a second point distanced by constant distance
from the tool reference point. [13].

The syntax for writing a NURBS interpolation for multi-axis is following [13]:
BSPLINE SD=... F...

X..Y..Z. XH=. YH=. ZH=.. PL=...

XYoo Z.. XH=... YH=... ZH=... PL=...

While abbreviations used in this syntax refer to terms in

Table 1.4.1.4 Coordinated syntax for multi-axis NURBS in Sinumerik.

X, Y, Z coordinates of the data points of the first curve in X, Y, Z axes
XH, YH, ZH coordinates of data points of the second spatial curve

1.4.1.2 Programming A-spline and C-spline in Sinumerik

Syntaxes for programming A-spline and C-spline are similar in Sinumerik 840 control
system.

After introducing the splines it the program by commands of ASPLINE or CSPLINE and
entering the knot coordinates as described above, additional parameters can be added [13].

Parameters controlling transition at the beginning of spline block are stated in Table 1.4.1.5

[9].
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Table 1.4.1.5 Parameters for transition at the beginning of new spline block.

BAUTO no information about the transition comportment, beginning of the
curve is determined by the first knot

BNAT transition with zero curvature

BTAN tangential transition

Parameters controlling transition at the end of a spline block and their meaning are stated
in Table 1.4.1.6 [9].

Table 1.4.1.6 Parameters for transition at the end of last spline block.

EAUTO no information about the transition comportment, beginning of the
ENAT transition with zero curvature
ETAN tangential transition

l ENAT
/Q\ Zero curvature

“-.__ » S
Transition
tangential

‘1 )
BTN - . ey

Figure 1.4.1.1 Representation of transition between blocks of spline applicable for A-spline and C-
spline [15].

Entering these transition parameters into the B-spline program syntax won’t result in
malfunctioning or won’t generate an error code but it won’t affect the B-spline curve in
any way [9].

Sinumerik 840 also provides choices of linear, circular and polynomial interpolation.
Polynomial interpolation can be used to machine diverse curves that are approximated by a
polynomial including conic sections or power functions [9].
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Once an interpolation method is called, the point’s coordinates that follow will be taken as
knots for the interpolation. Calling another interpolation method will cancel previous
interpolation method.

1.4.2 Heidenhain

Even though the control systems iTNC produced by Heidenhain also offer smooth curve
programming, they don’t directly offer specific spline interpolation like Sinumerik. In the
following section the case of iTNC530 is going to be detailed.

The splines can be programmed using the general form of third degree polynomials. iTNC
offers to transfer spline from CAD systems in two, three, four or five axes polynomials
[22].

Notation of polynomials in X, Y, Z axes is described in (20) [13].

X(t)=K3X Xt3+ K2X Xt +K1X Xt+ X

Y(t) = K3Y X t3 + K2Y X t> + K1Y Xt +Y

Z(t) =K3Z xt3 +K2Z X t? +K1Z X t + Z (20)
te<0;1>

Notation of third degree polynomials in two rotary axes (here represented by letters A and
B, but other combinations of two axes out of of axis A, B and C are possible) can be
written as (21) [22].

A(t) = K3AXxt3 + K2AXt?+ K1AXt+ A

B(t) =K3BXt>*+K2BXt>*+KIBXt+B
While abbreviations used in syntax (21) stand for terms cited in Table 1.4.2.1 [22].
Table 1.4.2.1 Abbreviations in syntax for programming third degree polynomials in Heidenhein.

(21)

X(), Y(), Z(t) third degree polynomials for coordinate system axes X,Y,Z
A(t), B(t) third degree polynomials for rotary axes A and B
X, Y, Z,AB coordinated of the end point

KX3, KX2, KX1 polynomial coefficients for axis X

KY3, KY2, KY1 polynomial coefficients for axis Y

KZ3, KZ2, KZ1 polynomial coefficients for axis Z

KA3, KA2, KAl polynomial coefficients for axis A

KB3, KB2, KB1 polynomial coefficients for axis B

KB3, KB2, KB1 polynomial coefficients for axis B

Values of t vary from 0 to 1 while the step span can be modified [22].

It’s important to note that spline sequences cannot be furthermore edited once it is
transferred in to the iTNC control system with the exception of changing federate and
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changing M functions This fact the usage of this method for both reverse engineering and
machining of an analytical curve because CAD system still need to be used to generate the
spline before translating it into pieces of third degree polynomials by using a post-
processor [22].

1.4.3 Fanuc

Fanuc has also developed curve interpolation functions and NURBS interpolation for their
most advanced control system [13]. Fanuc 31i control system syntax will be elaborated in
the following section.

Fanuc control system offers only NURBS interpolation and uses it for so called Nano-
Smoothing. G06.2 is an inbuilt function of NURBS interpolation. Other spline
interpolation are not available. [23]

G functions and parameter used in Fanucs 31i for programming NURBS interpolation are
stated in Table 1.4.3.1.

Table 1.4.3.1 G functions and parameters used NURBS programming in Fanuc.

G06.2 NURBS interpolation, cancelled by other motion command:
G00,G01,G02 or G03

P rank of NURBS curve 2,3 or 4 (4 by default, otherwise based on CAD
model)

XYZ control points coordinates (three or more depending on number of axis)

R weight (by default R=1,0 if not specified)

K Knot

F Interpolation feedrate

G112 Polar coordinate interpolation mode

G113 Polar coordinate interpolation mode cancelling

G40 Cutter or tool nose radius compensation: cancel
Three-dimensional cutter compensation: cancel

Number of specified knot points equals to number of control points plus the value of rank.
Parameters weight R and knot K are both nine digit absolute value of the minimum data
unit of the reference axis — in millimetres: -999999,999 to 999999,999. In Fanuc control
systems, NURBS are never used in cutter radius compensation mode, G40 must be in
effect BEFORE calling G06.2 [23].

1.5 Comparison of interpolation methods for CNC

Especially in process of finishing it’s necessary to employ trajectories adapted to the
morphology of the machined surface. In case of warped surfaces, linear and circular
interpolations are not sufficient: while using linear interpolation, the acceleration is
variable and bezels (facets) are formed on the machined surface [6]. With sufficient
number of points, linear interpolation can meet set demands, but the acceleration
shortcoming would still lengthen the machining time. Circular interpolation isn’t sufficient
either because it is not always possible to fit a general smooth curve with pieces of circles
especially if only a limited number of points of the curve are known. [8], [14].
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To eliminate this defect more elaborate methods can be used: spline interpolation, NURBS
interpolation or polynomial interpolation. These methods enable us to machine complex
surfaces in less time because they are based on mathematical model of class C?> meaning
the acceleration is invariable during the whole process of machining [6], [8].

That’s why it’s favourable to implement spline interpolation in specific cases where only
limited number of points of the curve (or surface) is known.

On Figure 1.4.3.1 differences between three spline interpolations that were previously
described are pictured. The main distinction of the B-spline interpolation is that the curve
doesn’t pass directly through the knots. In case of NURBS this disadvantage can be
reduced by adding weight to each knot to pull the curve closer to the knot, yet it will never
pass through the points either. This can cause not sufficient geometrical precision when the
number of points is not sufficient.

A-Spling s
B-Spling ————

C-Spline

Figure 1.4.3.1 Comparison of A-spline, B-spline and C-spline interpolating same 7 knots [15].

To further develop practical usage of spline interpolation for CNC machining and limits of
each method, a series of experiments was designed and executed as described in the
following sections.
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2 DESIGN OF A CNC PROGRAM USING SPLINE
INTERPOLATION

Milling of an analytically describable contour was chosen in order to compare interpolation
methods described in the theoretical analysis.

The application aims to compare theoretical curve with a machined curved obtain by
machining using different interpolation methods while changing number of knots on the
curve length and analyse its influence.

Sinumerik 840 control system was chosen out of three control system studied in (1.4) as
the most suitable to conduct the practical study of spline interpolation because it offers
directly A-spline, B-spline and C-spline interpolation syntax. Sinumerik 840 control
system was employed at Brno University of Technology technological on its five-axis
CNC milling machine TAJMAC-ZPS MCV 1210 therefore it was possible to execute the
application there.

To test spline interpolation methods, knots on an analytically know curve needed to be
generated. A contour was generated in MATLAB programming platform and knots were
symmetrically placed on the contour for two types of knot distribution: polar and
equidistant. The knots were then implemented in subprograms after calling corresponding
method to interpolate the knots in the main program.

The main programs were written directly on the CNC milling machine. The subprograms
containing only the knot’s coordinates were created in MATLAB and imported to the
machine’s control system memory.

Interpolation methods were tested on both 2D and 3D closed contour.

MATLAB programming platform was used to generate coordinates of the knots based on
an analytically known contour. In this programming platform it was possible program
multiple scripts to generate knots with different parameters and have the script write their
coordinates in correct syntax directly into MPF files readable by the machine. These MPF
files were then used as subprograms. Various figures were also generated to visualise the
knots on the theoretical curve. Versions 2017b and 2018a of the platform were used, some
of their features aren’t available in older versions.

2.1 Creation of the contour

Experimental analytically known contour was chosen according to the following main
conditions:

e the curve must be closed in order to create a contour,

o the origin of correspondent Cartesian coordinate system must be situated in the centre
of the contour,

e the contour must have at least two axes of symmetry. In case of a closed contour,
problems with connection where the beginning and the end of the contour meet were
expected. That’s it was important to have a symmetrical contour in order to be able to
compare the part influenced by beginning and to a part beyond its influence,
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e the contour must have local maxima of different distance from origin r;.

Creation of an analytically describable symmetrical contour corresponding to previous
conditions was set as a goal. Polar curves with equation constituting of trigonometrical
functions sine and cosine and their multiplications or additions match this goal perfectly as
IS going to be further elaborated. The search for an equation of a suitable polar curve
followed.

2.1.1 Curve in polar coordinate system

A polar curve is constructed thanks to its equation in the polar coordinate system.
Coordinates of point A in polar coordinate system are defined by its distance from the
origin O called ra ( meaning ra = (OA)) and angle 6, between ra and one of the axes (most
commonly axis X of corresponding Cartesian coordinate system) as is displayed at figure
Figure 2.1.1.1 [24].

Polar coordinate system

Figure 2.1.1.1 Polar and Cartesian coordinate systems.

Transformation of polar coordinates to Cartesian coordinates is thanks to trigonometrical
functions sine and cosine of angle @ by equalling (22) [24].:

x4 = 14c08(6,)

Ya = 1asin(64) (22)
All points of a polar curve are defined by variable distance from the origin r as a function
of angle 6. A polar curve is therefore defined by an equation of a distance r that is a
function of angle, r = (0). [24]
MATLAB 2017b and 2018a offer function polarplot to generate a representation polar
curves. Polarplot’s parameters are equation of the distance from the origin r and a vector
theta.
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Simpler function called plot in older versions of the software can be also used while
explicitly posing x = rcos(6) and y = rsin(6) and plotting x and y coordinates in Cartesian
system. Both functions were used when choosing an equation of the contour.

2.1.2 Choosing an equation of the contour

To create a closed contour with origin in the middle of the contour it is necessary that theta
varies in total of 2w radians. If it starts for theta 0 = 0 radians it therefore should vary from
0 to 2m, polar curves with equation constituting of trigonometrical functions will create
closed contour because of their periodicity based on certain angle. Sine and cosine values
vary both from -1 to 1. It is therefore important to add an invariable superior to absolute
value of minimal value of the trigonometrical function if said minimum is negative, in
order to create a curve that will not pass through the origin of the coordinate system and
the value of r is always positive as illustrated on Figure 2.1.2.1.

90

120 60

150 30
— ) 2+{cos(4 "theta))

1.2+{cos(4 theta))

180 0

210 330

240 300

270

Figure 2.1.2.1 Curve not passing through origin creating a closed contour

Sine and cosine have period of 2w, while tangent and cotangent have period of m.
Nevertheless tangents and cotangent are not continuous functions, therefore their polar
representation does not conclude in a symmetrical contour. Tangents and cotangents are
by definition (23), (24).

_ sin(0)
tan = cos(0) (23)
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~ sin(6) (24)

Any fragments including fragments of sine and cosine in the denominator will cause
asymmetry of the polar curve, because of possible division by 0 for angles theta that results
in null sine or cosine and will resolve in discontinuity of the curve as represented on Figure
2.1.2.2. This includes functions tangent and cotangent. The equation of this contour
contains division by cosine of theta. As is well visible, the value cos(6 = 90°) = 0 causes
that limit lim( 1/cos (6 = 90°= w/2 rad)) is approaching the value of infinity, causing a
defect in that area. The same goes for value of theta 6 = 270° = 371/2 rad))
r = 50 + 1/(cos(theta))
90

200
120 60

150

150 30

210 330

240 300
270
Figure 2.1.2.2 Influence of including fragment with sine or cosine in the denominator in equation
of on the polar curve.

Using only sine and cosine and their additions or multiplications also ensures to symmetry
of the contour as long as the equation does not contain any other variable containing 6 as
illustrated in Figure 2.1.2.3.
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Adding a non-trigonometrical function of theta
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Figure 2.1.2.3 Deformed figure after adding a non-trigonometrical function of theta.

The blue curve has polar equation (25). While the red curve has for equation (26).

contour = 2+ cos(120) * cos(60) (25)

curve = 2+ cos(120) * cos(6x0) + 0 (26)

The only difference between the two equations (25) and (26) is the addition of constituent
+ 0 in (26), causing the curve to gradually increase the value of r; with increasing value of
theta and therefore the contour created will not form a closed contour. However addition of
the constant wouldn’t result in not creating a contour, it will only enlarge the distance of all
points form the origin of the coordinate system by the value of the constant.

As was stated only polar curves containing additions and multiplications of sine and cosine
were acceptable for creation of a closed symmetrical contour. A general form of a polar
contour that obliges all conditions previously set can be expressed as (27), where
expression trigo stands for a function containing only cosine and sine functions of theta
and their additions or multiplications and positive powers. A is a constant that does not
influence the shape of the curve only its overall size as can be remarked on Figure 2.1.2.4.

r =A% (B +trigo) (27)

Influence of value of invariable A on equation (28) is illustrated in Figure 2.1.2.4.
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rl =Ax (1.5 + cos(168) * sin(80) * sin(86)) (28)

Influence of invariable A
90

270
Figure 2.1.2.4 Influence of value of A.

As indicated by condition (29), B must be a constant superior to minimal value of function

trigo to ensure that the curve creates a contour and doesn’t pass through the origin of the
polar coordinate system.

B > min(trigo) (29)

Influence of value of B is illustrated in Figure 2.1.2.5.
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Influence of invariable B
20

B=15
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Figure 2.1.2.5 Influence of value of B.

Axes of symmetry

As number of axes at least 2 and different local maxima were set as a condition,
parameters influencing the number of axes of symmetry followed and number of local
maxima followed.

After experimenting with different multiplications of theta entering the cosine and sine
functions, following rules were found to be effective:

1) In case of functions with only multiplications of sine and cosine, the addition of all
angles that are appear in the trigonometrical functions divided by theta are equal to
number of local maxima present in interval 8 € [0 ; 2m]

For example:

trigo = 1.5+ cos(m*0)*sin(n*0)*cos(0*0)*sin(p*0)
m=2

4
4

n
0
p=2

add=m+n+p+o0+q=12




FSI VUT BAKALARSKA PRACE List 48

As addition of all variables of trigonometrical functions divided by theta is equal 12, there
should be 12 local maxima present as is apparent in the Figure 2.1.2.6.
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Figure 2.1.2.6 Twelve local maxima.

2) In case of pure multiplication case, it’s also possible to predict number of axes of
symmetry. If the addition of all variables of trigonometrical functions divided by theta
is dividable by 2" the polar curve will present at least 2% axes of symmetry.

In figure ... the addition number is equal to 12, that is dividable by both 2* and 2%, the
latter being superior the curve can be expected to have at least 4 axes of symmetry which is
the case.

3) In case of addition, the constituent with the sine or cosine with bigger multiple of theta
in the variable will dominate when it comes to number of maxima as presented

following example:

q=4

r=8;

trigo =5 + cos(q*0)+(r*0);

As r > q, it will dictate the number of maxima, which is indeed equal 8 as visible on
Figure 2.1.2.7.
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90

150

210

270

Figure 2.1.2.7 Eight local maxima.

4) When there is an addition of sine or cosine in the equation of the curve, it’s hard to
predict number of axes of symmetry.

5) Equations containing purely cosine functions or purely sine functions are generally

symmetrical by both x and y axes of correspondent Cartesian coordinate system as
illustrated in Figure 2.1.2.8.
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Purely cosine OR Purely sine
90

60

120

150

210

1.5+cos(2*theta)* cos(4*theta)
1.5+sin(2"theta)*sin(4*theta)
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270

Figure 2.1.2.8 Using only sine or cosine functions in the general form

Multiple contours were generated using the findings previously described.

A trigonometrical function containing only multiplications of sine and cosines was chosen
to facilitate prediction of the nature of the curves, especially its axes of symmetry.
Examples of generated contours are displayed on Figure 2.1.2.9 and Figure 2.1.2.10.
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Figure 2.1.2.9 Examples of generated polar contours 1.
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Figure 2.1.2.10 Examples of generated polar contours 2.

The curve with equation (30) was chosen as the curve to mill because it fitted the set
condition the best. As can be remarked on Figure 2.1.2.11, the contour presents 4 axes of

symmetry

4.5 + cos(60)cos(48)

(30)




FSI VUT BAKALARSKA PRACE List 53

4.5 + cos(6theta)cos(2theta)
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Figure 2.1.2.11 Chosen curve in polar coordinate system.

The contour was then augmented to have reasonable dimensions for milling and later
analysis of results. This was done by multiplying the whole equation by 4. Then we obtain
equation of the polar curve (31).

18 + 4 * cos(66) * cos(46) (31)

How the figure fits the workpiece is displayed on Figure 2.1.2.12.
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Figure 2.1.2.12 Contour on the workpiece in Cartesian coordinate system

2.1.3 Arclength

Arc length of the contour was calculated using a general formula for arc length (32) [25].

b dr\?
= 2 4 (== (32)
L Ja T +(d9> de

For the chosen contour it means calculating following integral (33).

2
f V(18 + 4 cos(26) cos(60))2 + (—8 cos(60) sin(20) — 24 cos(20) sin(60))2  (33)
0

The length of the curve was calculated to be 136,1895 mm, which was verified by
MATLAB function arclength© created by John D'Errico.

2.1.4 Minimal radius of curvature

To ensure that the chosen curve would be machinable with standard diameters of tools and
the machining would be realisable by one tool only, the radius of curvature of the contour
was studied. Its minimal value was decisive as radius of the tool must be inferior to the
minimal radius of curvature.

Rayon of curvature p is by definition reciprocal value of said curvature (34) [26].

p = E (34)

Geometrical representation of curvature is displayed on Figure 2.1.4.1.
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J

Figure 2.1.4.1 Representation of radius of curvature

For a curve with parametric equation in Cartesian coordinates, the curvature is calculated
by (35) [26].

|xlyll _ ylxlll

SRRk )

The equation (34) was employed in MATLAB script called radius_of _curvature available
in annexe. The minimal rayon of curvature was calculated rny, = 2.2966 mm. The rayon of
the tool used must therefore be inferior to this value and it was chosen to be ryo =2 mm.

2.2 Generating knots

Once the theoretical curve was determined, knots needed to be generated. Their

coordinates were then printed in .MFP files using the correct syntax for Sinumerik control

system described in 1.4.1.

Multiple distributions of knots are possible on a curve, for example [27]:

o distribution with constant arc length between every two knots, represented by dl on
Figure 2.1.4.1,

o distribution with constant angle of tangents, represented by da on Figure 2.1.4.1,

o distribution with constant second power of derivations of each section, represented by
df on Figure 2.1.4.1.
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Figure 2.1.4.1 Different distribution of points on a contour [27].

It was decided to compare two types of distribution of points: polar distribution and
equidistant distribution of knots. Three variations of polar distribution and three variations
of equidistant distribution of knots were created in order to study influence the number of
knots and the length between them on the accuracy of a chosen spline interpolation
method.

2.2.1 Polar distribution

As was elaborated in 1.1.4, most CNC machines work with Cartesian coordinate system.
The curve was generated in a polar coordinate system that is why the coordinates needed to
be transformed using relations (21) between the two systems as described in 2.1.1. This
relation was employed in MATLAB scripts to generate knots, but as the knots were
originally obtained from a polar equation they weren’t equidistantly spaced

The knots were distributed on the curve based on the step by with the value of theta
advanced from 0 to 2x in the polar equation of the curve. Smallest step of theta employed
was set at 1° = n/180 rad.

The number of points on the curve was therefore dependent on value of step theta. By
changing its value three series of knots were generated:

e first variation had maximal number of knots, with a knot every 1°, meaning total of 360
points were generated on interval,

e second variation had a knot places on the curve every 5° with total knot count equal to
360/5 = 72 knots,

e third variation had minimum number of knots, with a knot placed every 15° and
number of points 360/15 = 24 knots.




FSI VUT BAKALARSKA PRACE List 57
Table 2.2.1.1 Number of knots for three variations of polar distribution
Parameter = steptheta 1° 5° 15°
number of knot per curve 360 72 24

The values of step theta were chosen in order to keep the knot distribution symmetrical by

both x and y axis. That posed a condition (36) which must have been be met.

90
—€Z
steptheta

(36)

Polar distribution of knots is represented for all three variations of values of steptheta in

Figure 2.2.1.1, Figure 2.2.1.2 and Figure 2.2.1.3.

Theoretical curve and knots for angle = 1°
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Figure 2.2.1.1 Polar distribution of knot for steptheta 1°.
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Theoretical curve and knots for angle = 5°
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Figure 2.2.1.2 Polar distribution of knot for steptheta 5°.
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Theoretical curve and knots for angle =15°
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Figure 2.2.1.3 Polar distribution of knot for steptheta 15°.

2.2.2 Equidistant distribution

Second type of distribution employed was equidistant repartition of knots along the
contour meaning the distance between knots is constant. To generate equidistant points on
the curve in Cartesian (rectangular) coordinate system (O, x, y) a MATLAB function
interparc© created by John D'Errico. This function was implemented in the scripts to
generate knots for the equidistant type of distribution of knots. This function needs an
input of point on the curve and then employs interpolation methods to generate equidistant
points on the curve. It was possible to provide a lot of polar points as the equation of the
curve was known and it was possible to generate great number of points by entering small
value of step theta. Therefore the interpolation was very precise and we can use output of
interparc function as points on the theoretical contour. The function interparc was called on
a section of the curve in the first quadrant and thanks to symmetry of the curve and the
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origin of the coordinate system, the x and y knot coordinates had the same absolute value
but different sign in three other quadrants.

Number of points per quadrant = 45
T T

22 T T
20 -
#  Polar distribution
—&— Equidistant distribution
18 -
16 n
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12 n
>
10 m
8- .
6 .
4+ -
sk .
0 I I I 1 I
0 5 10 15 20
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Figure 2.2.2.1 Comparison of equidistant and polar distributions of knots in the first quadrant for
45 knots per quadrant.

Distance between knots was also calculated, but given the method of generating
equidistant points he distance between the points could not be varied directly. When
generating knots the number of knots per one quadrant was decisive for distance between
knots. Number of knot per quadrant were chosen to progressively decrease. The arc length
of the curve was calculated previously therefore it was also possible to calculate number of
points per length. After milling it will enable us to evaluate how this value influences the
precision of the chosen interpolation method.

Table 2.2.2.1 Influence of number of points on distance between the knots for equidistant
distribution

number of knots per quadrant 90 45 15
number of knots per contour 357 177 57
distance between knots (mm) 0,38148 0,76943 2,38929
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Three variations of equidistant distribution are represented as follow:

e 90 knots per quadrant are represented on Figure 2.2.2.2 and Figure 2.2.2.3,

Total number of points per one contour = 357
Number of points per quadrant = 90

......

...........

Figure 2.2.2.2 Equidistant distribution of knots for 90 knots per one quadrant.
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Figure 2.2.2.3 Equidistant distribution of knots represented in the first quadrant for 90 points per

guadrant.

45 knots per quadrant are represented on Figure 2.2.2.4 and Figure 2.2.2.5,
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Figure 2.2.2.4 Equidistant distribution of knots for 45 knots per one quadrant.
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Figure 2.2.2.5 Equidistant distribution of knots represented in the first quadrant for 45 points per
quadrant.
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155 knots per quadrant are represented on Figure 2.2.2.6 and Figure 2.2.2.7.

Total number of points per one contour = 57
Number of points per quadrant =15
b4

20 -
15 x X

107

=20 -15 -10 -5 0 5 10 15 20

Figure 2.2.2.6 Equidistant distribution of knots for 15 knots per one quadrant.
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Figure 2.2.2.7 Equidistant distribution of knots represented in the first quadrant for 15 points per
guadrant.

2.2.3 2D and 3D contouring

Two types of contouring were used: 2D and 3D contouring. Both methods aimed to
machine the chosen contour to depth of -6 mm (in z axis) and employed the knots
generated previously.

2.2.3.1 2D contouring

Firstly a method of 2D contouring was applied, with goal to mill the chosen contour with
constant value of z coordinate z = -6 mm. 2D contouring concerned only initial
experimentation and only polar distribution of knots was applied for 2D contouring as it
was decided to realise further experimentation directly on 3D contouring.

During the verification, some problems near the end of the curve occurred. The milled
curve was deformed in proximity the end and the beginning of the curve near theta 6 = 2x.
Splines are influenced by knots that precede and that ensue. Additional two sequences of
knots were added in order to eliminate the defect. One sequence was added before the main
sequence of knots generated previously and second after the main sequence of knots. The
goal was to overlap the points to eliminate the problem further developed in 3.7.2. Number
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of points added was varied and their influence was studied. New total number of knots
after adding the two sequences is stated in Table 2.2.3.1 for polar distribution and in Table
2.2.3.2 for equidistant distribution of knots.

Table 2.2.3.1Total number of knots for polar distribution of knots after adding knots

Parameter = steptheta 1° 5° 15°
number of knot per curve 360 72 24
number beginning knots 10 3 2
number of ending knots 10 3 2

Table 2.2.3.2 Total number of knots and distance between them for equidistant distribution of knots
after adding knots.

number of knots per quadrant 90 45 15
number of knots per contour 357 177 57
number beginning knots 12 6 2
number of ending knots 12 6 2
total number of points 381 189 61
distance between knots (mm) 0,38148 0,76943 2,38929

2.2.3.2 3D contouring

To eliminate imperfection of the curve beginning and ending, different approach needed to
be elaborated. Multiple strategies were possible. Tangential entry of the tool was necessary
not to intervene with the contour when approaching it. Creation of a contour in cylindrical
coordinate system was chosen as a solution.The strategy of progressive milling of the
contour was chosen to be employed. To ensure entry of the tool that would be tangential to
the desired curved, original 2D curve in polar coordinate system was transformed into a 3D
curve in cylindrical coordinate system by adding z coordinate to every knot generated.

The cylindrical coordinate system is similar to the polar coordinate system previously
described. It is possible to declare that polar coordinate system is a cylindrical coordinate
system with constant value of z = 0. [28]

Position of a point A is defined by the distance from the axis z of a correspondent
Cartesian coordinate system ra; angle between rp and axis x of correspondent Cartesian
system and its coordinate in axis z, that is identical to the z axis of the correspondent
Cartesian coordinate system. A representation of cylindrical coordinate system is outlined
in Figure 2.2.3.1.
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Cylindrical coordinate system

Zy

e

Figure 2.2.3.1 Cylindrical and Cartesian coordinate systems.

Points preceding the main contour were added at the beginning derived from the 3D
contour with positive z coordinate were added for tangential entry of the tool.

The z coordinate of the main contour that gradually evolve from 0 mm to -6 mm were
added. Then the tool circumscribe the contour with constant z coordinate equal to the
desired depth, z = -6 mm , before circumscribing the curve for the third time with gradually
increasing value of z going from -6 mm to O mm. The tool encircles the contour in total of
three times: first time for changing value of z form 0 to -6, then it encircles the contour one
time for constant value of z to mill all the material and then it exits the contour by
encircling the contour for the thirds time and without cutting. Points after the end of the
third contour were also added to ensure tangential exit of the tool.

Total number of knots for steptheta equal to 1° is displayed on Figure 2.2.3.2 in 3D view
and on Figure 2.2.3.4.




FSI VUT BAKALARSKA PRACE List 69

Theoretical curve and knots for angle = 1°
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Figure 2.2.3.2 Integrity of knots for polar distribution method with a knot every 1°

Total number of points per one contour= 12 + 357 +12
Number of points per quadrant = 90
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Figure 2.2.3.3 Additional knots for tangential entry of the tool.
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Theoretical curve and knots for angle = 1°

Figure 2.2.3.4 Integrity of points for polar distribution method with a knot every 1° viewed from
above

For both distributions, the same method to transform 2D curve into a 3D curve was
implemented. Vectors of x and y coordinated stayed the same and the vector of z
coordinates was generated three times: firstly z gradually varies from 0 to -6, then one with
constant value of z = -6.000 mm and finally third vector where z varies from -6 mm to 0
mm.
For the polar distribution, same x and y coordinates as the 2D variation were used and only
Z coordinates were added. The method was the same as for the 2D contour meaning a knot
was generated every 1°, 5° or every 15°.
The number of knots stated in the tables is always number of knots per one circumscription
of the contour. This means that for one complete 3D milling the total number of points in
the subprogram is equal to summation of knots at the beginning, knots at the end and three
times the number of points per one contour.

2.3 Creation of programs

Types of programs were written to realise the machining: main program and corresponding
subprograms. Using a subprogram aims to shorten the main program making it more
understandable and overall less cluttered.
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Main programs were written directly on the machines control station. The structure of all
main programs is the same. The main programs contain all the necessary machine
conditions. Then they call an interpolation method (linear or particular spline) and
correspondent subprograms containing the knots in correct syntax adapted for the
interpolation method.

All subprograms were generated in MATLAB and imported as .MFP files readable by the
CNC machine. The subprograms containing only knots coordinates were called upon by
the main programs after calling according interpolation method.

2.3.1 Methodology of creation of subprograms

Once the knots were generated, it was necessary to insert knots coordinates to a NC

For linear interpolation the command for linear interpolation function G1 was included in
the subprograms.

For A-spline and C-spline the subprograms were identical, because the syntax for
indicating its knots is same after calling the spline method in the main program.

For B-spline, a weight of knots was added. Constant weight PW = 3 was added to all knots
in B-spline subprogram. It’s the maximal programmable weight meaning it draws the
spline curve as close to the knots as possible. Add the weight is crucial as we want the
milled curve to pass through the knots or at least be as close to the theoretical knots as
possible.

The correct syntax is demonstrated in Table 2.3.1.1.
Table 2.3.1.1 Syntax for knots for different interpolation methods for Sinumerik control system.

Interpolation method syntax

A-spline, C-spline N... X... Y... Z-6.000
B-spline N... X...Y... Z-6.000 PW=3
linear interpolation Gl X...Y...Z...

2.3.2 Programs for 2D contouring

Every main program for 2D contouring firstly calls in total of seven subprograms of rough
specimen containing knots on seven gradually smaller contours and then calls the finishing
subprogram with knots situated of the final contour.

2.3.2.1 Rough specimen for 2D contouring

For rough specimen other augmented curves were generated to mill material around the
final curve to prepare the workpiece for milling of the studied contour without interfering
with the results. Number of contours necessary for the rough specimen was calculated
based on the diameter of the tool. When milling into aluminium alloy, it is important to
respect that no more than 70% of the diameter of the tool should be entering the
workpiece. Contours of rough specimen for 2D contouring are visualized in Figure
2.3.2.1.1.
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Figure 2.3.2.1.1 Rough specimen contours for 2D contouring.
Table 2.3.2.1.1 Examples of main programs for 2D contouring.
LINEAR A-SPLINE
N10 G54 N10 G54
N20 T="FR 4" N20 T="FR 4"
N30 M6 N30 M6
N40 G64 N40 G64
N50 SOFT N50 SOFT
N60 M3 S17000 M8 N60 M3 S17000 M8
N70 G1 210 F5000 N70 G1 210 F5000
N80 G1 z-2 F2000 N80 G1 z-2 F2000
N90 G1 X40 YO F1270 N90 G1 X40 YO F1270
N100 G42 N100 G42
N110 G1 X37 N110 G1 X37
;N115 GOTOF LABEL 1 BTAN ETAN
N120 POLAR STEPTHETA 1 LIN 1 N120 ASPLINE
N130 POLAR STEPTHETA 1 LIN 2 ;N130 GOTOF LABEL 1
N140 POLAR STEPTHETA 1 LIN 3 N140 POLAR STEPTHETA 15 1
N150 POLAR STEPTHETA 1 LIN 4 N150 POLAR STEPTHETA 15 2
N160 POLAR STEPTHETA 1 LIN 5 N160 POLAR STEPTHETA 15 3
N170 POLAR STEPTHETA 1 LIN 6 N170 POLAR STEPTHETA 15 4
N180 POLAR STEPTHETA 1 LIN 7 N190 POLAR STEPTHETA 15 5
;N185 LABEL 1: N200 POLAR STEPTHETA 15 6
N190 G1 X22 YO N210 POLAR STEPTHETA 15 7
N200 POLAR STEPTHETA 1 LIN 8 ;N220 LABEL 1:
N210 G40 N225 Gl X22 Y2 Z10
N220 G1 X40 YO F700 N230 G1 x17.387 Y-4.659 Z0.250
N230 G1 210 F5000 G42
N240 M5 BTAN ETAN
N250 M30 N235 ASPLINE
N240 POLAR STEPTHETA 15 8

N250 G40
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N260 G1 X40 YO F700
N270 Gl Z10 F5000
N280 M5
N290 M30
B-SPLINE C-SPLINE
N10 G54 N10 G54
N20 T="FR_4" N20 T="FR_4"
N30 M6 N30 M6
N40 G64 N40 G64
N50 SOFT N50 SOFT
N60 M3 S17000 M8 N60 M3 517000 M8
N70 G1 2z10 F5000 N70 G1 z10 F5000
N80 Gl z-2 F2000 N80 Gl z-2 F2000
N90 Gl X40 YO F1270 N90 Gl X40 YO F1270
N100 G42 N100 G42
N110 Gl X37 N110 Gl X37
;N115 GOTOF LABEL 1 BTAN ETAN
n120 BSPLINE N120 ASPLINE
N125 POLAR STEPTHETA 1 B 1 ;N130 GOTOF LABEL 1
N130 POLAR STEPTHETA 1 B 2 N140 POLAR STEPTHETA 15 1
N140 POLAR STEPTHETA 1 B 3 N150 POLAR STEPTHETA 15 2
N150 POLAR STEPTHETA 1 B 4 N160 POLAR STEPTHETA 15 3
N160 POLAR STEPTHETA 1 B 5 N170 POLAR STEPTHETA 15 4
N170 POLAR STEPTHETA 1 B 6 N190 POLAR STEPTHETA 15 5
N180 POLAR STEPTHETA 1 B 7 N200 POLAR STEPTHETA 15 6
;N185 LABEL 1: N210 POLAR STEPTHETA 15 7
N190 Gl X22 YO ;N220 LABEL 1:
N200 BSPLINE N225 Gl X22 Y2 710
N205 POLAR STEPTHETA 1 B 8 N230 G1 X17.387 Y-4.659 20.250

N210 G40

N220 G1 X40 YO F700
N230 G1 Z10 F5000
N240 M5

N250 M30

G42

BTAN ETAN

N235 ASPLINE

N240 POLAR STEPTHETA 15 8
N250 G40

N260 G1 X40 YO F700

N270 G1 Z10 F5000

N280 M5

N290 M30

2.3.2.2 Finishing for 2D contouring

Finishing consisted of one circumscription of the eight and smallest contour including the

overlap knots at the beginning and the end.

Extract from subprograms for finishing for 2D contouring are stated in Table 2.3.2.2.

Table 2.3.2.2 Extracts from subprograms of finishing for 2D contouring for 4 studied
interpolation method and steptheta 5° with total of 72 knots.
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Syntax of subprograms for A-spline and

C-spline Syntax of subprograms for B-spline

N10 X22.000 Y0.000 Z-6.000 N10 X22.000 YO0.000 Z-6.000 PwW=3
N20 X21.330 Y1.866 Z-6.000 N20 X21.330 Y1.866 Z-6.000 PW=3
N30 X19.577 ¥3.452 Z-6.000 N30 X19.577 ¥3.452 Z-6.000 PW=3
N40 X17.387 Y4.659 Z-6.000 N40 X17.387 Y4.659 Z-6.000 Pw=3
N50 X15.475 Y¥5.632 Z-6.000 N50 X15.475 Y5.632 Z-6.000 Pw=3
N60 X14.295 Y6.666 Z-6.000 N60 X14.295 Y6.666 Z-6.000 Pw=3
N70 X13.856 ¥8.000 Z-6.000 N70 X13.856 ¥8.000 Z-6.000 PW=3
N80 X13.774 Y9.645 Z-6.000 N80 X13.774 Y9.645 Z-6.000 PW=3
NO9O0 X13.523 Y11.347 Z-6.000 N90 X13.523 Y11.347 Z-6.000 PwW=3
N100 X12.728 Y12.728 Z-6.000 N100 X12.728 Y12.728 Z-6.000 Pw=3

Syntax of subprograms for linear
interpolation

N10 G1 X22.000 YO0.000 Z-6.000
N20 G1 X21.330 Y1.866 Z-6.000
N30 G1 X19.577 Y3.452 Z-6.000
N40 G1 X17.387 Y4.659 Z-6.000
N50 G1 X15.475 Y5.632 Z-6.000
N60 Gl X14.295 Y6.666 Z-6.000
N70 G1 X13.856 Y8.000 Z-6.000
N80 G1 X13.774 Y9.645 Z-6.000

N90 G1 X13.523 Y11.347 Z-6.000
N100 G1 X12.728 Y12.728 Z-6.000

2.3.3 Programs for 3D contouring

For both polar and equidistant distribution, X and Y coordinated are the same as for the 2D
solution, only Z coordinate was added accordingly as described in 2.2.3.2.

For the 3D contour, rough specimen and final contour were called by different main
programs. Rough specimen main programs called 4 subprograms with correspondent
method for 2D contours with constant z coordinate z = -6.000 mm. Final contour main
programs called only the corresponding last contour subprogram with the 3D contour.

2.3.3.1 Rough specimen for 3D solution

For rough specimen to prepare the workpiece, 2D contours were applied with Z coordinate
constant and equal to Z = -6.000 mm. Value of steptheta for rough specimen was chosen
to have total number of knots per curve similar to later applied finishing method. For
example for finishing with equidistant distribution with 177 points, rough specimen with
steptheta 2° was employed, with 180 points per contour was applied. Interpolation method
in rough specimen corresponded to interpolation method in finishing.

Because the workpieces were made form artificial wood, it was possible to realise rough
specimen with only 4 contours as it was possible not to respect the rule of 70% of the
diameter of the tool machining.




FSI VUT BAKALARSKA PRACE List 75
JZERN
wl ;/,. .- \ - : . |
."./,- o 7-\\\.- ‘l
10 ,/‘ / I | I‘\\ N
- - | / \\ L S
e NN N
NN )
DN s
10 - ) [ 7 g
1 /.I | I'
\ ]
20 \ /." S .
IV
| | | \\\. | / | | |

Figure 2.3.3.1 Curves for rough specimen for 3D contouring.

Correspondent 2D rough specimen programs employed before 3D finishing programs are

stated in Table 2.3.3.1.

Table 2.3.3.1 Rough specimens used before finishing 3D contouring.

3D finishing method

Rough specimen method

Equidistant, 357 knots, Linear

2D Polar, 360 knots, Linear

Equidistant, 357 knots, A-spline

2D Polar, 360 knots, A-spline

Equidistant, 357 knots, B-spline

2D Polar, 360 knots B-spline

Equidistant, 357 knots, C-spline

2D Polar, 360 knots, C-spline

Equidistant, 177 knots, Linear

2D Polar, 180 knots, Linear

Equidistant, 177 knots, A-spline

2D Polar, 180 knots, A-spline

Equidistant, 177 knots, B-spline

2D Polar, 180 knots, B-spline

Equidistant, 177 knots, C-spline

2D Polar, 180 knots C-spline

Equidistant, 57 knots, Linear

2D Polar, 72 knots, Linear

Equidistant, 57 knots, A-spline

2D Polar, 72 knots, A-spline

Equidistant, 57 knots, B-spline

2D Polar, 72 knots, B-spline

Equidistant, 57 knots, C-spline

2D Polar, 72 knots 5°, C-spline

Examples of rough specimen main programs are listed in Table 2.3.3.2.
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Table 2.3.3.2 Rough specimen main programs.

Rough specimen main program, linear
interpolation, polar distribution, steptheta 5°

Rough specimen main program, A-spline

interpolation, polar distribution, steptheta 5°

N10 G54

N20 T="FR_4"

N30 M6

N40 G64

N50 SOFT

N60 M3 S17000 M8
N70 Gl Z10 F5000
N80 Gl X40 YO F1530
NO9O G42

N100 Gl X37

N110 HRUB 1 LIN 1
N120 HRUB 1 LIN 2
N130 HRUB 1 LIN 3
N140 HRUB 1 LIN 4
N150 G40

N160 Gl X40 YO F700
N170 G1 210 F5000
N180 M5

N190 M30

N10 G54

N20 T="FR 4"

N30 M6

N40 G64

N50 SOFT

N60 M3 S17000 M8
N70 G1 210 F5000
N80 Gl X40 Y40 F1530
N90 G42

N100 Gl X37

N110 BTAN ETAN
N120 ASPLINE

N130 HRUB 1 1
N140 HRUB 1 2
N150 HRUB 1 3
N160 HRUB 1 4
N170 G40

N180 Gl X40 YO F700
N190 Gl Z10 F5000
N200 M5

N210 M30

Rough specimen main program, B-spline,
polar distribution, steptheta 5°

Rough specimen main program, C-spline,
polar distribution, steptheta 5°

N10 G54

N20 T="FR_4"

N30 M6

N40 G64

N50 SOFT

N60 M3 S17000 M8
N70 Gl 210 F5000
N80 Gl X40 YO F1530
N90 G42

N100 G1 X37
N110 BSPLINE
N120 HRUB 1 B
N130 HRUB 1 B
N140 HRUB 1 B
N150 HRUB 1 B
N160 G40

N170 G1 X40 YO F700
N180 G1 Z10 F5000
N190 M5

N200 M30

N10 G54

N20 T="FR 4"

N30 M6

N40 G64

N50 SOFT

N60 M3 S17000 M8
N70 G1 Z10 F5000
N80 G1 X40 YO F1530
N9O G42

N100 Gl X37

N110 BTAN ETAN
N120 CSPLINE

N130 HRUB 1 1
N140 HRUB 1 2
N150 HRUB 1 3
N160 HRUB 1 4
N170 G40

N180 Gl X40 YO F700
N190 G1 z10 F5000
N200 M5

N210 M30

2.3.3.2 Finishing for 3D contouring

Finishing for 3D contouring used its own main programs each containing calling

correspondent subprogram with knots with non-constant value of Z as described in 2.2.3.2.

Table 2.3.3.3 Example of finishing programs: 3D contouring, equidistant distribution with

parameter 45.
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Main program for linear interpolation

Main program for A-spline

N10 G54

N20 T="FR 4"

N30 M6

N40 G64

N50 SOFT

N60 M3 s17000 M8

N70 G1 z10 F1530

N80 MO

N90 G4 F2

N100 G42

N110 Gl X37 Y-15

N120 G1 X13.856 Y-8.000 Z0.500
N130 EKVI_POSTUPNE LIN 45
N140 G40

N150 Gl X30 Y30 F700

N160 G1 Z10 F5000

N10 G54

N20 T="FR_ 4"

N30 M6

N40 G64

N50 SOFT

N60 M3 S17000 M8

N70 G1 210 F1530

N80 MO

N90 G4 F2

N100 G42

N110 Gl X37

N120 BTAN ETAN

N130 ASPLINE

N140 X13.856 Y-8.000 Z0.500
N150 EKVI_POSTUPNE 45
N160 G40

N170 G1 X30 Y30 F700

N170 Y100 N180 Gl Z10 F5000

N180 M5 N190 Y100

N190 M30 N200 M5
N210 M30

Main program for B-spline Main program for C-spline
N10 G54

N10 G54 N20 T="FR 4"

N20 T="FR 4" -

- N30 M6

N30 M6

N40 G64 40 ce4

N50 SOFT N50 SOFT

N60 M3 s17000 M8

N70 G1 z10 F1530

N80 MO

NO90 G4 F2

N100 G42

N110 G1 X37

N120 BSPLINE

N130 X13.856 Y-8.000 Z0.500
PW=3

N140 EKVI POSTUPNE B 45
N150 G40

N160 G1 X30 Y30 F700
N170 G1 Z10 F5000

N180 Y100

N190 M5

N200 M30

N60 M3 s17000 M8

N70 G1 z10 F1530

N80 MO

N90 G4 F2

N100 G42

N110 G1 X40

N115 G1 X37

N120 BTAN ETAN

N130 CSPLINE

N140 X13.856 Y-8.000 Zz0.500
N150 EKVI POSTUPNE 45
N160 G40

N170 G1 X30 Y30 F700
N180 G1 Z10 F5000
N190 Y100

N200 M5

N210 M30
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3 EXPERIMENTAL VERIFICATION OF THE CNC PROGRAM
WITH SPLINE APPLICATION

3.1 CNC machine

The CNC machine used to implement spline interpolation was TAJIMAC-ZPS MCV 1210
with Sinumerik control system as displayed on Figure 2.3.3.1. It is a five axes milling
machine with linear axes X, Y, Z and two rotational axes A and C (as described in 1.1.4).
Basic characteristics of the machine are stated in Table 3.1.1. It’s also equipped with an
automatic tool changer that can contain up to 30 tools and touch probes RENISHAW OMP

400.
Table 3.1.1 Basic characteristics of TAJIMAC-ZPS MCV 1210
axis X axis 'Y axis Z axis A axis C
travel 1,000 mm 800 mm 600 mm +115° +200°
maximal velocity 40 m/min 40 m/min 40 m/min 60°/min 60°/min
maximal acceleration 5 m/s"2 5 m/s"2 5 m/s"2

Figure 2.3.3.1 TAJMAC-ZPS MCV 1210 milling machine.
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3.2  Workpiece
3.2.1 Workpiece for 2D contouring

Firstly an aluminium alloy 7475-T7351 was chosen in order to be able to machine the
contour more rapidly than if a steel alloy was used. Machining of an aluminium alloy also
generally results in relatively better surface quality in shorter machining time. [19]

The dimensions of the workpiece were chosen to fit the curve and minimize the material
used. A parallelepiped of following dimensions was used as a raw workpiece for 2D
contouring: 45x45x25 mm.

Figure 3.2.1.1 Workpieces for 2D contouring.

3.2.2 Workpiece for 3D contouring

For further 3D contouring 24 cubes of dimensions 45x45x45 mm from artificial wood
were prepared.

Figure 3.2.2.1 Workpieces for 3D contouring.
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3.3 Selection of the tool

The radius of the tool could interfere with the desired machined surface if it was too large
even though a function that compensates the radius is implemented in the program.
Maximal diameter of the tool was determined by calculating minimal radius curvature of
the chosen curve which was previously found out to be equal to ry, = 2.2966 mm in 2.1.4.
Therefore a tool with rayon equal to 2 mm was chosen.

The milling cutter employed in all experimentations was 04E3S50-12A04 SUMA
manufactured by PRAMET displayed on Figure 3.3.1. In all NC programs it is referred to
as “FR=4" because it was the indication entered in the NC system of the machine that
identifies all tools in the ATC.

—— &=

Figure 3.3.1 Milling cutter 04E3S50-12A04 SUMA by PRAMET [29]

3.4  Selection of cutting conditions

Cutting conditions later implemented in the program were set as follow in Table 3.4.1.
Table 3.4.1 Cutting conditions for both rough specimen and finishing.

N machine speed in 17,000 1/min
revolutions/minute (RPM)

f, feed/dent of cutter 0.025 mm/dent
Number of teeth of the 3
tool

D Diameter of the tool 4 mm

Vs Feed vs = 1,270 mm/min

Ve Cutting velocity Ve = 213.628 m/min

Lubricant was used only for 2D contouring (machining of the aluminium alloy) to cool
down the material and the tool in course of machining. As for 3D contouring, artificial
wood was used as material of the workpiece and did not need lubricating or cooling in set
conditions.

3.5 Procedure of the execution

For every method’s execution, the same procedure was followed:
e simulation of the rough specimen program,

e simulation of the main program,

e clamping of the workpiece,
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rough specimen program execution,
finishing program execution,
unclamping of the workpiece,

evaluation of machined surface positions under microscope.

3.6 Program simulation

All programs and subprograms were tested in simulation mode before actually machining
them. Example of simulation is displayed on Figure 3.6.1, in this case it was only the final
contour that was simulated, that’s why there is still material visible around the contour.

ke startu

£ 4 vena

anulace ptipra " y
m el

Figure 3.6.1 Example of final contour program simulation

3.7 Experimental verification of spline interpolation on 2D contouring

3.7.1 Clamping and coordinate system

Clamping of the workpiece corresponded to the chosen coordinate system.
Setting of workpiece zero point was realised thanks to a built in touch probe RENISHAW
OMP 400 and it was set to the centre of the face of the workpiece.
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/ 45 mm

45 mm

Figure 3.7.1.1 Coordinate system in relation to the workpiece for 2D contouring.

Figure 3.7.1.2 Setting the workpiece zero point with a built in probe RENISHAW.
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STATIONARY PART OF CLAMPING

Figure 3.7.1.3 Clamping of the workpiece

3.7.2 Rough specimen execution of 2D contour

Firstly a rough specimen program was called to machine material surrounding the studied
contour. It was important to ensure that rough specimen and the machining of the contour
were realised in one clamping to maintain the same coordinate system of the workpiece set
previously and not to move its origin. For every method a special rough specimen program
was employed using the same method and the same density of knots as the finishing
program, which eliminates interferences of the rough specimen curves with the studied
curve. Examples of workpieces just after rough specimen milling are displayed on Figure
3.7.2.1, Figure 3.7.2.2 and Figure 3.7.2.3.




FSIVUT

BAKALARSKA PRACE

List

84

Figure 3.7.2.2 Workpiece from artificial wood after rough specimen, first view.




FSI VUT BAKALARSKA PRACE List 85

Figure 3.7.2.3 Workpiece from artificial wood after rough specimen, second view.

3.7.3 Finishing execution of 2D contour

After rough specimen, correspondent finishing program was executed without unclamping
the workpiece. The machining time of finishing was measured.

3.8 Problems with 2D contours

Problems with connecting the beginning and the end of the contour posed a problem during
the execution of the programs. The defect was more prominent with decreasing number of
points.

Thanks to the simulations solutions to eliminate the defect at the end of the contour were
tested without wasting material.

Multiple strategies with additional knots were employed in both simulation and on wooden
workpieces in attempt to resolve the problem, but especially B-spline and A-spline did not
manage to create a completely symmetrical contour. Additional knots are represented on
Figure 3.8.1.
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Theoretical curve and knots for angle = 5°

Figure 3.8.1 Adding overlap knots at the beginning (red) and at the end (blue).

Adding overlap knots and varying the number of overlap knots did ameliorate the problem,
but did not eliminate it as seen on Figure 3.8.2. and Figure 3.7.3.3.
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Figure 3.8.2 Problematic area for 2D contouring.

Figure 3.7.3.3 Defect at the end of the curve for linear interpolation.
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First strategy was to add points after the end of contour repeating the same knots as at the
beginning of the contour. This method was found to be semi-efficient, but the contour was
still deformed at the end area. The solution of 3D contouring presented previously
followed.

3.9 Using 3D contouring as a solution

Progressive milling described in 2.2.3.2 was chosen to solve the problems of the tool
exiting the workpiece without interfering with the desired curve form. 24 wooden
workpieces of cubic form were used. The workpiece zero point was changed accordingly
as visualised on Figure 3.9.1.

/

45 mm

45 mm

45 mm

Figure 3.9.1 Representation of the Cartesian coordinate system in relation to the workpiece for 3D
solution

The programs for 3D contouring were then employed. Four workpieces using four
different interpolation method (A-spline, B-spline, C-spline and linear interpolation) were
compared for every variation of knots. In total of 12 workpieces for polar distribution and
12 workpieces for equidistant distribution were obtained.

In course of milling, the actual value of feed rate was observed and machining time of the
finishing program execution was measured.

24 machined contours were obtained as is displayed on Figure 3.9.2.
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e

POLAR DISTRIBUTION [ EQUIDISTANT DISTRIBUTION

Figure 3.9.2 All machined contours using 3D contouring.

3.10 Methodology of evaluating the surface positions

To compare the milled contours, surface positions were compared. Only 3D solutions were
compared as using 2D or 3D contouring would result in identical contour with the
exception of the first local maxima where the shape of the contour was influenced for 2D
contouring as was described previously in 3.8.

The accuracy of machined contours were Eleven control points were chosen in the second
quadrant at local maxima and minima and for certain values of steptheta chosen to obtain
different points from the knots in the programs. Local maxima in the second quadrant are
situated at 8 = 90° (control point 1), 8 = 135° (control point 6), 8 = 180° (control point 11)
while the local minima are located at angles 8 = 115° (control point 4) and 6 = 155°
(control point 8). Control points coordinates are stated in Table 3.10.1 and represented on
Figure 3.10.1 and Figure 3.10.2.
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Table 3.10.1 Control points.

control | steptheta = < (i) i)
point | angle (°) y
1 90,0 0,000 22,000
2 100,5 -3,989 | 19,366
3 107,5 -5,158 | 16,358
4 115,0 -6,666 | 14,296
5 1275 -10,512 | 13,700
6 135,0 -12,728 | 12,728
7 1475 -13,804 | 8,794
8 155,0 -14,296 | 6,666
9 167,5 -18,489 | 4,099
10 172,0 -20,373 | 2,863
11 180,0 -22,000 | 0,000
Contl:ol points
20 5 S
3
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6
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Figure 3.10.1 Control points on the theoretical contour.
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Control points

25

156

Figure 3.10.2 Control points in the second quadrant on the theoretical curve.

Measurements of the milled surface positions were originally meant to be performed by the
same probe as for setting the workpiece zero. It’s a built in probe meaning the
measurements can be realised right after finishing. Nevertheless the smallest diameter of
the probe available at the time in the workplace was 6 mm which is more than the minimal
curvature of the contour rendering accurate measurements impossible. It would also be
difficult to guarantee that the probe would approach the surface perpendicularly to the
surface. The machine’s table would have to be rotated meaning the coordinate system
would rotate with the clamped workpiece as well. Using the built in probe was therefore
not applied.




FSI VUT BAKALARSKA PRACE List 92

MarVision MM 420 workshop measuring microscope by company Mahr was used instead
to evaluate surface positions in order to compare the milled contours to the theoretical one.
MarVision MM 420 offers smallest magnifications of 0,7 and largest magnification 4. The
studied part imagery was directly transmitted to the computer as well as values of X and Y
coordinated in Cartesian coordinate system that is referred to positions of the table axis X
and Y.

Figure 3.10.3 MarVision MM 420 workshop measuring microscope

Firstly the location of the workpiece was clamped and the workpiece origin was
determined in order to be able to take surface positions in the Cartesian coordinate system
in which the contour was machined. In the workpiece origin, values of X and Y axis of the
table of MarVision were set to 0 value therefore both coordinate systems were identical.

Real surface positions in the second quadrant were then compared to the control points
generated previously. Y coordinate of the every control was point fixated and its real X
coordinate was verified. How much the real value of its X coordinate was different from
the theoretical value was then compared between methods. The only exception was the
first control point, where X value was fixated and Y coordinate was verified because it
wasn’t possible to fixate the Y coordinate as it was different from the theoretical value and
there wasn’t material of witch to take position of.




FSI VUT BAKALARSKA PRACE List 93

Figure 3.10.4 Clamping of the workpiece in MarVision.

3.11 Observations

For visualisation, local maxima of workpieces machined using equidistant distribution with
357 knot per contour viewed under microscope are displayed side by side for all used
interpolation method. In this case all methods were provided sufficient number of knots
and there wasn’t note any remarkable difference of surface positions as visible in on
figures in Table 3.11.1.
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Table 3.11.1 Comparison of performance of spline interpolation methods in vicinity of the first
local maxima for equidistant distribution with total of 357 knots.

Linear, equidistant distribution, 357 knots | A-spline, equidistant distribution, 357

B-spline, equidistant distribution, 357 C-spline, equidistant distribution, 357
knots knots

» 4

On the other hand the version with least points out of all applied varieties was polar
distribution with steptheta = 15° with only 24 knots per contour. It shows that the only
method which usage resulted in machining a contour closest to the theoretical contour was
C-spline interpolation. First local maxima obtained by this distribution of knots are
displayed in Table 3.11.2.
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Table 3.11.2 Comparison of performance of spline interpolation methods in vicinity of the first

local maxima.

Linear, polar distribution, 24 knots

A-spline, polar distribution, 24 knots

B-spline, polar distribution, 24 knots

C-spline, polar distribution, 24 knots

Second local maxima for this distribution milled using different spline methods is

displayed in Table 3.11.3.
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Table 3.11.3 Comparison of performance of spline interpolation methods in vicinity of the second
local maxima.

Linear, polar distribution, 24 knots A-spline, polar distribution, 24 knots

AN -

B-spline, polar distribution, 24 knots C-spline, poIr distribuion, 24 knots
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The differences between spline interpolation methods for polar distribution with 24 knots
(steptheta = 15°) were very visible even by naked eye as illustrated on Figure 3.11.1 and
demonstrate well the limits of each spline interpolation method.

Figure 3.11.1 Milled contours realised by spline interpolations for polar distribution of knots, 24
knots per contour.

When evaluating accuracy of linear interpolation method control points that are at the same
time local maxima or minima are identical with some of the knots. As linear interpolation
passes directly through the knots, it might augment its statistics about its accuracy. B-
spline does not pass through the knots therefore its inaccuracy in those control points was
seemingly bigger that of a linear interpolation method.
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Figure 3.11.2 Linear interpolation passing directly through a knot.
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Linear interpolation resulted in formation of facets as viewed under microscope on Figure
3.11.3 and Figure 3.11.4. The facets are also visible with naked eye as is illustrated on
Figure 3.11.5.

Figure 3.11.3 Linear, polar distribution, 24 knots, facets in second quadrant, first local maximum.

Figure 3.11.4 Linear, polar distribution, 24 knots, facets in second quadrant, second local
maximum.
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Figure 3.11.5 Visible facets on contour created using linear interpolation, polar distribution of 72
knots.
On the other hand, all employed spline interpolation resulted in smooth curves. Even
though the contour was not precise, it still was a smooth curve with better surface
roughness.




FSI VUT BAKALARSKA PRACE List 101

Figure 3.11.6 B-spline and A-spline interpolation for polar distribution with 24 knot per contour.

Following charts in 3.12.3 and 3.12.4 represent difference between theoretical coordinate
and measured coordinate for every control point from 1 to 11. For theoretical curve the
difference is equal to zero and represents perfect correspondence. Error is marked on radial
axis in millimetres.

3.12 Interpretation of measurements of surface position

Difference of the machined surface coordinate and control point coordinate generated in
3.10 and was measured for all 24 workpieces. Error in individual points and overall
accuracy in form of absolute mean error were calculated.

3.12.1 Error in individual control points

Error on individual points was calculated by subtracting the measured control point’s
coordinate form its theoretical value. The errors were then inserted in polar charts that
displays if the control point coordinate is located further from the origin or closer to the
origin of the Cartesian coordinate system of the workpiece.
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Control points
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101

Figure 3.12.1.1Control points in second quadrant.

The numbers of control points are on labelled on perimeter and the error is displayed in
millimetres on the radial axis. Zero error would be represented as on Figure 3.12.1.2.
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Figure 3.12.1.2 Representation of zero error of control points coordinates.

3.12.2 Absolute mean error of methods

To statistically evaluate the overall accuracy of spline interpolation methods, mean
absolute error was calculated for all employed methods. Mean absolute error (MAE) is the
average of all absolute errors and is defined as (37) [30].

N
1
MAE = NZIxi — x| (37)
l:

Where the abbreviations in (37) stand for [30]:
N ... .number of measured values

|x; — x| ... absolute error

X ... real value of x

X; ... measured value of x
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3.12.3 Accuracy of spline interpolations for polar distribution

3.12.3.1 Error of spline interpolations for polar distribution in individual control
points

Measured errors of control point coordinates obtained using different spline interpolation
methods with polar distribution of knots are visualised on Figure 3.12.3.1.1, Figure
3.12.3.1.2 and Figure 3.12.3.1.3.

POLAR 1° 360 knots

1
0,45

11 2
0,25

10

==em==f\_spline 1° e=B-gpline 1° C-spline 1° Linear 1° ==@m=Theoretical

Figure 3.12.3.1.1 Error coordinates of control points, polar distribution of 360 knots.
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POLAR 5° 72 knots
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Figure 3.12.3.1.2 Error of coordinates of control points, polar distribution of 72 knots.
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POLAR 15°, 24 knots
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Figure 3.12.3.1.3 Error of coordinate of control points, polar distribution of 24 knots.
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3.12.3.2 Mean absolute error of spline interpolations for polar distribution

The mean of absolute values of errors of coordinates in for chosen interpolation method for
all used equidistant distributions of knots are compared on Figure 3.12.3.2..
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Figure 3.12.3.2. Comparison of mean absolute error of spline interpolation method for polar
distribution of knots.
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The mean of absolute values of errors of coordinates in for employed interpolation

methods for polar distribution of 360 knots are compared on Figure 3.12.3.4.
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Figure 3.12.3.4 Mean absolute error of spline interpolations for polar distribution of 360 knots.
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The mean of absolute values of errors of coordinates in for employed interpolation
methods for polar distribution of 72 knots are compared on Figure 3.12.3.5.
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Figure 3.12.3.5 Mean absolute error of spline interpolations for polar distribution of 72 knots.
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The mean of absolute values of errors of coordinates in for employed interpolation
methods for polar distribution of 24 knots are compared on Figure 3.12.3.6.

POLAR

24 KNOTS
1,6
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0,6
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MEAN ABSOLUTE ERROR (MM)

0,2

INTERPOLATION METHOD

Figure 3.12.3.6 Mean absolute error of spline interpolations for polar distribution of 24 knots.
3.12.4 Accuracy of spline interpolations for equidistant distribution

3.12.4.1 Error of spline interpolations for equidistant distribution in individual
control points

Measured error of control points coordinates for equidistant distribution of knots are

visualised on Figure 3.12.4.1, Figure 3.12.4.2 and Figure 3.12.4.3.
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Figure 3.12.4.1 Difference of coordinates of control points, equidistant distribution of 357 knots.
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EQUIDISTANT, 177 KNOTS
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Figure 3.12.4.2 Difference of coordinates of control points, equidistant distribution of 177 knots.
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EQUIDISTANT, 57 KNOTS
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Figure 3.12.4.3 Difference of coordinates of control points, equidistant distribution of 357 knots.
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3.12.4.2 Mean absolute error of spline interpolations for equidistant distribution

The mean of absolute values of errors of coordinates in for chosen interpolation method for
all used equidistant distributions of knots are compared on Figure 3.12.4.4.
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Figure 3.12.4.4 Comparison of mean absolute error of spline interpolation method for equidistant
distribution of knots.
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The mean of absolute values of errors of coordinates in for employed interpolation
methods for equidistant distribution of 357 knots are compared on Figure 3.12.4.5.
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Figure 3.12.4.5 Mean absolute error of spline interpolations for equidistant distribution of 357
knots.
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The mean of absolute values of errors of coordinates in for employed interpolation

methods for equidistant distribution of 177 knots are compared on Figure 3.12.4.6.
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Figure 3.12.4.6 Mean absolute error of spline interpolations for equidistant distribution of 177

knots.

The mean of absolute values of errors of coordinates in for employed interpolation
methods for equidistant distribution of 57 knots are compared on Figure 3.12.4.7.
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Figure 3.12.4.7 Mean absolute error of spline interpolations for equidistant distribution of 57
knots.

3.12.5 Imperfection of used evaluation method

For versions with the highest number of knots, all methods were equally performant and
detected error was purely fault of imprecision of used evaluating method.

The employed surface position evaluation method contained some degree of inaccuracy for
multiple reasons:

e clamping of the workpiece when using the MarVision was imprecise and only a slight
turn of the workpiece would cause inaccuracy, as the coordinates system of the
workpiece and of the microscope’s table would not be identical,

e only 11 control points were compared,
e human error played a key role,

e some of the control point’s location made the evaluation harder and more susceptible to
human error.
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For example control point number 5 caused increase in error because it was difficult to
interpret its real position under the microscope and the slightest difference between
coordinate systems would cause grave imprecision as illustrated on Figure 3.12.5.1.
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Figure 3.12.5.1 Fifth control point verification for C-spline, polar distribution of knots, steptheta
15°.

3.13 Influence of spline interpolation method on machining time

Machining time of execution of finishing was measured for every method.

Even though feed rate was set as a constant, real feedrate was changing its value during the
execution. (it was displayed on the control station screen during the execution) Minimal
value of real feed rate was noted for every method.
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Table 3.13.1 Machining time and minimal value of real feedrate for different spline interpoaltion

methods.
Method POLAR 360 knots Linear | A-spline | B-spline | C-spline
Machining time (s) 27,17 22,34 26,04 28,28
Minimal Feedrate
(mm/min)
Method POLAR 72 knots Linear A-spline | B-spline | C-spline
Machining time (s) 37 21,2 19,47 20,65
Minimal Feedrate .
. oscilations
(mm/min)
Method POLAR 24s Linear | A-spline | B-spline | C-spline
Machining time (s) 20,28 18,27 15,8 17,93
Minimal Fe_e d rate 650 oscilations
(mm/min)
Method EQUIDISTANT 357 Linear | A-spline | B-spline | C-spline
Machining time (s) 30,42 20 23,32 20,59
Minimal Feed rate 650 1000 800 1000
(mm/min)
Method EQUIDISTANT 177 Linear | A-spline | B-spline | C-spline
Machining time (s) 32,45 23,76 20,31 20,6
Minimal Feed rate 500 900 1200 | 1300
(mm/min)
Method EQUIDISTANT 57 Linear | A-spline | B-spline | C-spline
Machining time (s) 35,29 22,41 18,97 19,97
Minimal Feed rate 200 60 1250 | 1100
(mm/min)

Ineffective kinetics of linear interpolation described in 1.2.1 caused longer machining time
for large number of knots. With lesser knots, linear interpolation deformed the contour
which influenced the machining time.

Most time effective for largest number of knots were A-spline and C-spline spline
interpolation. For lesser knot, B-spline interpolation resulted in smaller machining time
because it wasn’t pulled enough towards the knots and created much flatter curve. Real
feedrate while applying A-spline interpolation had tendency to decrease down the most out
of all spline interpolations especially in local minima. To resolve this problem Sinumerik
840D control system offers short spline blocks compression. It compresses short spline
block with greater number of knots and created new set of longer spline blocks. [9].
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3.14 Discussion

When the imperfection of the measurements is taken in account, a tolerance of mean
absolute error inferior to 0,08 mm can be set as a limit for which the employed method
interpolates the knots sufficiently. Pairing of methods and distributions that can be

considered pass this limit are stated in Table 3.14.1. and Table 3.14.2.

Table 3.14.1 Suitability of studied interpolation methods for equidistant distribution and given

input data.
Interpolation| . . . . Number of AiTgle Mean error -
method Distribution Knots 1E)etweecfl (mm) Suitability
nots (°)
A-spline Polar 360 1 0,050 OK
B-spline Polar 360 1 0,099 NOT
C-spline Polar 360 1 0,049 OK
Linear Polar 360 1 0,054 OK
A-spline Polar 72 5 0,041 OK
B-spline Polar 72 5 0,234 NOT
C-spline Polar 72 5 0,035 OK
Linear Polar 72 5 0,088 NOT
A-spline Polar 24 15 0,676 NOT
B-spline Polar 24 15 1,241 NOT
C-spline Polar 24 15 0,382 NOT
Linear Polar 24 15 0,665 NOT
Table 3.14.2 Suitability of studied interpolation methods for equidistant distribution and given
input data.
Interpolation| . . . . Number of PIHIEIIES Mean error S
method Distribution Knots ’ between (mm) Suitability
nots (mm)
A-spline | Equidistant 357 0,38148 0,057 OK
B-spline | Equidistant 357 0,38148 0,047 OK
C-spline | Equidistant 357 0,38148 0,059 OK
Linear Equidistant 357 0,38148 0,033 OK
A-spline | Equidistant 177 0,76943 0,025 OK
B-spline | Equidistant 177 0,76943 0,055 OK
C-spline | Equidistant 177 0,76943 0,046 OK
Linear Equidistant 177 0,76943 0,040 OK
A-spline | Equidistant 57 2,38929 0,050 OK
B-spline | Equidistant 57 2,38929 0,330 NOT
C-spline | Equidistant 57 2,38929 0,070 OK
Linear Equidistant 57 2,38929 0,114 NOT
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Equidistant distribution of knots seems more efficient and results in better accuracy even
for lesser number of knots. If we compare equidistant distribution with 57 knots and polar
distribution with 72 knots the obtained accuracy is comparable even though the number of
knot for the equidistant distribution was much higher.

B-spline interpolation was found to be the most inaccurate. The milled curved obtained by
B-spline interpolation was deformed much more when given lesser knots for both types
distribution of knots.

Linear interpolation results were ameliorated by the fact that 4 out of 11 control points
were also knots and linear interpolation passes through the knots (in contrast with B-spline
that never does). In reality the facets were present for 72 and less knots for polar
distribution and for 57 equidistant knots.

For studied polar distributions A-spline and C-spline were equally performant for 360
knots and starting from 72 knots and less, C-spline interpolated the knots significantly
better even though not even C-spline interpolation was sufficient to meet the limit set
previously. It’s therefore possible to pronounce that the limit for application of C-spline
interpolation lays between a knot every 5° and a knot every 15°.

For studied equidistant distributions A-spline and C-spline interpolations were equally
performant up until method with 57 knots were A-spline interpolation performed slightly
better but that can be caused by an imprecision of the evaluation method described in
3.12.5. For 57 equidistant knots, the distance between two knots is 2,389 mm both A-
spline and C-spline interpolate the knots sufficiently. The limit for distance between knots
for these two spline interpolation methods is therefore lower than 2,389 mm.

All spline interpolations had shorter machining time compared to linear interpolation,
illustrating better Kinetics of spline interpolation. While employing the linear interpolation
the tool has variable velocity and stops at every knot. It’s possible to machine using linear
interpolation with the same precision as with spline interpolations when the volume of
input data is large enough but with longer machining time.

When we provide enough knots every method of interpolation can be used. For linear
interpolation knots placed equidistantly 0,76943 mm apart resulted in sufficient accuracy
with mean absolute error inferior to set limit 0,8 mm. For bigger distance between the
knots, linear interpolation didn’t meet the criteria. B-spline as the second least performant
met the limit for the same value of 0,76943 mm between knots but didn’t for lesser knots
for equidistant neither for polar distribution. A-spline placed second with sufficient
accuracy even for only 72 knots spaced by angle 5° using the polar distribution and for
equidistant distribution, 2,38929 mm between knots was still sufficient for the A-spline to
validate. C-spline validated all employed methods except polar distribution of 24 knots
spaced 15° apart. A-spline and C-spline validated for same variations of methods, but C-
spline had lower mean absolute error and was therefore concluded to be the most
performant out of all used methods.
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C-spline interpolation was the most performant even with lesser knots needed. Especial
when the knots weren’t equidistantly spaced, C-spline wasn’t susceptible to differ from the
theoretical curve as much as other studied interpolation methods. A-spline was the second
most accurate, but manifested some decelerations due to short spline blocks and therefore
slightly longer machining time. B-spline was the most likely to deform the curve when
given lesser knots out of all studied splines.

Spline interpolations provide better results with lesser knots with the advantage of CNC
programs with smaller file size. For example finishing subprogram for equidistant 357
knots for linear interpolation has 40,6 kB while finishing subprogram for equidistant
distribution with 177 knots for C-spline has only 20 kB while obtaining similar precision.
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CONCLUSIONS

This study elaborated application of spline interpolations for CNC milling, its advantages
and limits. CNC programs employing spline interpolations were designed as a part of this
study on a closed symmetrical contour. The programs were then executed and accuracy of
spline interpolation methods was examined. Linear interpolation was studied to serve as a
comparison for spline interpolations.

Advantages of application of spline interpolations instead of linear interpolation for CNC
milling are following:

¢ smooth toolpath with better surface quality,
e reduction of machining time,

e less input data needed resulting in smaller file size of subprograms containing knot’s
coordinates.

The comparison of the milled curves using spline interpolation lead to following
conclusions:

e C-spline was the most adapted to precisely interpolate a curve even for less input data,
e A-spline placed second when it comes to accuracy of the milled curve,

e NURBS interpolation resulted in deformed curve when provided lesser knots because
curve wasn’t pulled enough to the knots, the maximal value of weight of the knots
programmable in Sinumerik control system had limited value PW = 3.

In conclusion the limit methods for different spline interpolation are:

e for A-spline: equidistant distribution with 2,38929 mm between knots,
o for B-spline: equidistant distribution with 0,76943 mm between knots,
e for C-spline: equidistant distribution with 2,38929 mm between knots,
o for linear interpolation: equidistant distribution with 0,76943 mm between knots.

Spline interpolation can in some cases replace linear interpolations and bring a significant
improvement for machining processes. Spline interpolation has potential to be applied in
reverse engineering to machine a new product based on an existing product without the
need to create its complex virtual model. Thus method can be employed to machine
analytically describable curves without using CAD/CAM systems. Spline interpolations
can be applied in reverse engineering or to realize milling of analytically known curves
without the need to create a CAD model. To determine limits of spline interpolation in
form of maximal distance between knots for every spline interpolation methods, further
experimentation is needed with more variations of number of knots per length and distance
between knots for equidistant distribution of knots.
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LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Unit Describtion
2D [] Two dimensional
3D [-] Three dimensional
ATC [-] Automatic Tool Changer
CAD [] Computer-Aided Design
CAM [] Computer-Aided Manufacturing
CNC [] Computer Numerical Control
ISO [] International Organization of Standardization
MAE [] Mean absolute error
NC [] Numerical Control
NURBS [] Non-uniform rational basis spline
PW [] Parameter of weight (for NURBS interpolation)
Symbol Unit Describtion
A B C [-] Rotational axes of CNC machine
D [mm] Diameter of the tool
G... [-] Preparatory functions
F [-] Feed rate designation
L [mm]
M [-] machine reference point
M. [-] miscellaneous (auxiliary) functions
N... [] block (line) number
N [mm] rayon of curvature
P [-] tool setup point
[-] reference point

It

radius of the tool
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distance of a point from the origin of a polar
r [mm] coordinate system
Ve [m.min™] cutting speed
Vi [m.min™] feed
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LIST OF APPENDICES

Appendice 1: CD-Rom containing all MATLAB 2018a scripts and NC programs







