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ABSTRAKT 

Tato práce se zaměřuje na využití různých typů splinové interpolace pro obrábění na 

číslicově řízených strojích. Cílem této práce je teoreticky popsat využití splinových 

interpolací při CNC frézování a následně stanovit a zhodnotit limity využití různých typů 

splinových interpolací na základně daného objemu vstupních dat. Součástí práce je 

vytvoření programu pro generaci různého počtu uzlových bodů na analyticky známé 

křivce. Následuje vložení uzlových bodů do vytvořeného CNC programu pětiosého 

obráběcího centra a poté jeho verifikace. Pro stejné uzlové body jsou aplikovány různé 

druhy interpolace pro následné porovnání metod a stanovení minimálního počtu bodů na 

délku křivky pro dosažené vyhovující přesnosti při použití dané interpolační metody. 

 

 

Klíčová slova 

spline, interpolace, CNC, NC, frézování, CAD, A-spline, B-spline, C-spline, NURBS 

 

ABSTRACT  

This study aims to describe application of spline interpolations for computer numerical 

control machines. The aim of this work is also to evaluate limits of application of different 

spline interpolation methods and to determine minimum input data for different methods. 

The thesis includes creation of a program to generate different number of knots on an 

analytically known curve. Then we input the knots in a NC program for five axes CNC 

milling machine and verification of the program. Knots are then interpolated by different 

splines to compare the methods to each other and determine minimal number of knots per 

curve length to obtain sufficient precision using the chosen method. 
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ROZŠÍŘENÝ ABSTRAKT 

Lineární interpolace je často využívaná metoda CNC obrábění a lze s ní dosáhnout velmi 

přesných tolerancí, pokud je definováno dostatečné množství vstupních dat (řídících bodů). 

Nicméně pro mnoho aplikací je vhodnější lineární interpolaci nahradit některým typem 

splinové interpolace. Splinová interpolace je v podstatě proložení uzlových bodů hladkými 

křivkami (polynomy druhého nebo třetího řádu), díky čemuž je kinematika pohybu 

nástroje hladší bez nadměrného zrychlování a zpomalování posuvu nástroje, než jak je 

tomu při využití lineární interpolace. Při splinových interpolací jsou přechody mezi 

jednotlivými uzlovými body hladké a nedochází k tvorbě fazetek jako v případě lineární 

interpolace. Menší objem vstupních dat pro splinové interpolace má dále za následek 

výrazné zmenšení velikosti NC programů, a tudíž menší nároky na paměť obráběcího 

stroje. [1] [2]. 

Splinové interpolace mají velký potenciál uplatnění například v reverzním inženýrství, kdy 

je součást vyrobena na základě omezeného počtu uzlových bodů definujících geometrii 

reálné součástky, bez nutnosti mnohdy zdlouhavého skenování, vytváření a optimalizování 

CAD modelu. Splinové interpolace se dají využít také při CNC obrábění součástí, jejichž 

geometrie je definována pouze za pomocí analyticky známých křivek. V případech, kdy 

jsou komplexní tvary obráběných součástí definovány pouze omezeným počtem řídících 

bodů je nutné tyto body aproximovat vhodnou funkcí tak, aby byla zajištěna nejvyšší 

přesnost obrábění  [1] [3]. 

Většina dostupných řídících systému jako například Heidenhain, Fanuc nebo Sinumerik 

umožňují využití základních interpolačních metod. Mezi nejzákladnější interpolační 

metody patří A-spline, B-spline a C-spline. A-spline je označení pro Akimův spline, B-

spline značí Beziérův spline a C-spline je zkratka pro kubický spline. Pro B-spline je 

charakteristické, že neprochází uzlovými body kromě prvního a posledního uzlu. Většinou 

je B-spline aplikován ve formě NURBS (Non-uniform rational basis spline) u kterého má 

každý uzel navíc parametr váhy. Čím větší váha bodu, tím více je splinová křiva 

přitahována k danému bodu. Nastavením velké váhy uzlů lze zmenšit chybu způsobenou 

tím, že B-spline uzlovými body přímo neprochází. Pro C-spline je typické, že má ze 

studovaných tří typů splinů největší sklon oscilovat. Pro A-spline je zase typický lokální 

aspekt, kdy je křivka v určité oblasti ovlivněna pouze pěti body najednou. Tím pádem A-

spline není příliš deformován skokovými změnami a je dobře aplikovatelný pro schodové 

funkce. Všechny tři typy, jejich definice a vlastnosti byly detailně popsány v teoretické 

části této práce [4] [5]. 

Využití splinových interpolací, kdy je geometrie součástky popsána za pomocí analyticky 

známe křivky, bylo analyzováno v experimentální části této práce. Nejprve byla 

definována analyticky známá křivka obráběné součásti, na níž bylo generováno různé 

množství uzlových bodů, které sloužily jako řídící body pro jednotlivé druhy splinových 

interpolací (A-spline, B-spline a C-spline) a pro lineární interpolaci. Cílem práce bylo 

stanovit vliv počtu a vzájemné vzdálenosti řídících bodů na přesnost a vhodnost 

jednotlivých splinových interpolací. Generování řídících bodů na analyticky známé křivce 

bylo realizováno dvěma různými způsoby za využití matematického softwaru MATLAB 

2017b. Prvním způsobem bylo generování bodů s polární distribucí, kdy byl měněn úhel v 

polárním systému mezi uzly.  Byly vytvořeny 3 variace pro úhel mezi každými dvěma 

sousedními body: 1°, 5° a 15°. Druhým způsobem bylo generování bodů s ekvidistantní 
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distribucí, kdy byla měněna délka oblouku mezi uzlovými body: 0,38148 mm, 0,76943 

mm a 2,38929 mm. 

Hlavní program splinových interpolací byl vytvořen v řídicím systému Sinumerik 840i. 

Řídící body vygenerované v programovací platformě MATLAB 2017b a MATLAB 2018a 

sloužily jako NC podprogramy pro splinové interpolace a lineární interpolaci. 

Experimentální ověření programů bylo realizováno na pětiosém frézovacím centru 

TAJMAC-ZPS MCV 1210 pro 24 různých variant obráběných kontur. 

Pomocí programu MATLAB bylo dále vygenerováno 11 kontrolních bodů v druhém 

kvadrantu příslušného kartézského souřadného systému. Souřadnice teoretických 

kontrolních bodů byly porovnány s pozicemi obrobených kontur, které byly naměřeny 

pomocí dílenského měřícího mikroskopu MarVision MM 420. Byly porovnány rozdíly 

mezi souřadnicemi jednotlivých bodů a také byla spočítána průměrná absolutní chyba 

každé metody. Porovnáním průměrných absolutních chyb všech použitých interpolačních 

metod pro stejný typ distribuce uzlů jsme získali přehled použitelnosti interpolačních 

metod pro použité variace distribuce uzlů na kontuře. Výsledky měření a zhodnocení 

použitelnosti dané interpolační metody pro danu distribuci uzlů jsou zaznamenány 

v tabulkách 1 a 2 

Tabulka 1 Použitelnost splinových interpolací pro ekvidistantní distribuci uzlů na kontuře. 

Interpoační 

metoda 

Distribuce 

uzlů 
Počet uzlů 

Vzdálenost 

mezi uzly 

(mm) 

Průměrná 

odchylka 

(mm) 

Požitelnost 

A-spline Ekvidistantní 357 0,38148 0,057 ANO 

B-spline Ekvidistantní 357 0,38148 0,047 ANO 

C-spline Ekvidistantní 357 0,38148 0,059 ANO 

Linear Ekvidistantní 357 0,38148 0,033 ANO 

A-spline Ekvidistantní 177 0,76943 0,025 ANO 

B-spline Ekvidistantní 177 0,76943 0,055 ANO 

C-spline Ekvidistantní 177 0,76943 0,046 ANO 

Linear Ekvidistantní 177 0,76943 0,040 ANO 

A-spline Ekvidistantní 57 2,38929 0,050 ANO 

B-spline Ekvidistantní 57 2,38929 0,330 NE 

C-spline Ekvidistantní 57 2,38929 0,070 ANO 

Linear Ekvidistantní 57 2,38929 0,114 NE 
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Tabulka 2 Použitelnost splinových interpolací pro polární distribuci uzlů na kontuře. 

Interpoační 

metoda 

Distribuce 

uzlů 
Počet uzlů 

Úhel mezi 

uzly 

Průměrná 

odchylka 

(mm) 

Použitelnost 

A-spline Polární 360 1 0,050 ANO 

B-spline Polární 360 1 0,099 NE 

C-spline Polární 360 1 0,049 ANO 

Linear Polární 360 1 0,054 ANO 

A-spline Polární 72 5 0,041 ANO 

B-spline Polární 72 5 0,234 NE 

C-spline Polární 72 5 0,035 ANO 

Linear Polární 72 5 0,088 NE 

A-spline Polární 24 15 0,676 NE 

B-spline Polární 24 15 1,241 NE 

C-spline Polární 24 15 0,382 NE 

Linear Polární 24 15 0,665 NE 

 

Pro oba typy distribuce uzlových bodů se C-spline interpolace prokázala jako nepřesnější 

metoda, následována A-spline interpolací. B-spline vykazoval velké nepřesnosti a křivku 

deformoval nejvíce.  

Limitní hodnoty (ze zkoumaných hodnot) pro použití splinových interpolačních metod pro 

obráběnou konturu, kdy je daná metoda aplikovatelná jsou: 

 pro A-spline: ekvidistantní distribuce s 2,38929 mm mezi jednotlivými uzly, 

 pro B-spline: ekvidistantní distribuce s 0,76943 mm mezi jednotlivými uzly, 

 pro C-spline: ekvidistantní distribuce s 2,38929 mm mezi jednotlivými uzly, 

pro lineární interpolaci: ekvidistantní distribuce s 0,76943 mm mezi jednotlivými uzly. 

Vliv zvolené interpolační metody na strojní čas byl také prozkoumán 

Výhody využití splinové interpolace oproti lineární interpolaci jsou následující: 

 hladká trajektorie nástroje a menší drsnost povrchu, 

 snížení strojního času 

 pro stejnou přesnost spline interpolacím stačí menší objem vstupních dat a tedy 

menší velikost NC programů. 
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INTRODUCTION 

Linear interpolation is a widely used method for CNC milling and can result in very 

accurate results when provided sufficient volume of input data. Nevertheless for many 

applications spline interpolations has potential to replace linear interpolation as they bring 

multiple advantages such as more perfect kinetics and lesser input data needed to obtain 

precise machined curve. Lesser input data mean smaller NC programs. Spline interpolation 

represent great potential to be employed in reverse engineering where a part is reproduced 

based on a pre-existing part possibly avoiding usage of CAD/CAM systems to create a 

numerical model firstly which can be a lengthy process. Other possible application is to 

machine analytically known curves while also skipping the CAD/CAM systems. [1, 2]. 

The latter application was tested as the experimental part of this study. A theoretically 

known contour was created and different numbers of points (also called knots in terms of 

interpolation) were generated as input data. Creation and execution of programs containing 

the generated knots was set as a goal. Multiple varieties of input data were designed to 

compare accuracy of three types of spline interpolation methods (A-spline, B-spline and C-

spline) for CNC milling. Number of knots was varied as well as the type of distribution of 

the knots along the contour. How these parameters influenced the applicability of chosen 

spline interpolation method was evaluated and limits for each method were established.  
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1 THEORETICAL ANALYSIS 

1.1 CNC MILLING 

1.1.1 Basic principles of CNC 

Computer Numerical Control abbreviated CNC represents the automation of machine tools 

and it aims to partially or entirely substitute manually controlled machining. In general, a 

CNC machine consists of following parts: machine tool itself and a control system. The 

machine tool structure consists of base, column, spindle, worktable, milling head and a tool 

[1]. 

Main objective of a CNC machine is to guide the tool path respectively to the machine’s 

coordinate system to machine the workpiece accordingly to the requirements [1]. 

Structure of CNC machines usually contains detectors to control different stages of the 

machining process. We differentiate three groups of detectors integrated in a CNC 

system [1]: 

 empiric detectors, 

 presence detectors, 

 real-time detectors.  

A CNC machine performs a sequence of commands based on the directives in the program. 

CNC machines can operate with minimal intervention of the operator or even unattended. 

The operator is needed for initial adjustments and fixation of the workpiece, therefore the 

skill level required of the operator is lowered compared to manual machining. Multiple 

machining operations can be performed in one workpiece clamping. Another major 

advantage of CNC is its high degree of accuracy ensuring repeatable and consistent results. 

Minimal intervention of the operator minimizes human error and therefore contributes to 

consistent results [3]. 

CNC machines are usually equipped with an automatic tool changer (ATC) that allows 

rapid change of tools which significantly decreases the machining time for operations that 

require tool change [3]. 

Replacing manual machining with CNC brings general productivity increase and better 

precision [3]. 

1.1.2 Milling 

Milling can be defined as a machining process that removes material from the surface of 

the workpiece by a milling cutter which performs a rotary movement while either the 

workpiece or the tool is advancing. Thus the main cutting movement is performed by the 

tool, and secondary movement can be performed either by the workpiece or by the tool. 

The cutting movement is discontinuous and milling cutters usually have multiple 

blades [4]. Diagram of general milling is displayed  on Figure 1.1.2.1. 
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Figure 1.1.2.1 Milling diagram. 

In case of so called conventional milling the workpiece is fed against the milling cutter [4]. 

The chip cross section progress from minimum to maximum as displayed in Figure 1.1.2.1. 

 

Figure 1.1.2.2 Conventional milling. 

In case of climb milling the workpiece fed with the milling cutter. The chip cross section 

progress from maximum to minimum as is displayed in Figure 1.1.2.3 [4]. 

 

Figure 1.1.2.3 Climb milling. 
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1.1.3 CNC milling 

CNC lathes and CNC milling machines can be differentiated. CNC lathes are used to 

machine rotational workpieces while CNC mills are in addition able to machine non-

rotational pieces. CNC milling machines with multiple axes are usually identifiable as 

milling machines. CNC milling machines are widely used thanks to their versatility to 

machine both rotational non-rotational surfaces [4]. 

Milling Machines can be classified by different criteria [3]: 

 by the number of axes: the number of axes varies from two to five or even more, 

 by the orientation of its linear axes: linear axes can be vertically or horizontally 

oriented, example of a vertical mill is displayed on Figure 1.2.3.1, 

 by the presence or absence of an automatic tool changer (ATC): vast majority of CNC 

machines are equipped with an ATC. There are various types of ATC system. 

 

Figure 1.1.3.1 Vertical CNC mill Mori Seiki GV 5035AX [4]. 

1.1.4 Coordinate systems in CNC machine 

CNC machines guide the reciprocal tool-workpiece movement in a coordinate system. 

CNC machines most commonly use right handed Cartesian coordinate system of pair-wise 

orthogonal axes X, Y, Z which are parallel to leading surfaces of the machine [5]. Different 

axis must correspond to the norm NF ISO 841:2004-09 [1].  

For milling: Z axis usually corresponds to the axis of the tool. The term horizontal mill 

refers to a Z axis mill. X axis should also be horizontal if possible [1]. Five axes CNC 

machines have also two rotational axes, either A, B or B, C or A, C [3]. 

Representation of a right handed Cartesian coordinate system with three correspondent 

rotational axis is displayed on Figure 1.1.4.1. 
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 Figure 1.1.4.1 Axes X, Y, Z, A, B, C of a coordinate system. 

Rotation can be achieved in multiple configurations. Either the workpiece or the tool can 

rotate around different axes. Reference points are placed in the coordinate system to 

determine tool-workpiece position [5]: 

 M: machine reference point, origin of the machine coordinate system, fixed by the 

machine manufacturer, cannot be modified by the user, 

 R: reference point – a point fixed by the machine manufacturer use for precise 

measurements and to set other in the course of the program,  

W: workpiece zero point – origin of the workpiece’s coordinate system in which all 

instruction in the program are referred to. Workpiece zero point is determinate by the 

creator of the program and can be re-defined at any point of the program, 

 T: tool mount reference point – the machine operator must enter the distance between 

point T and the tip of the tool, every tool in the ATC needs to have this distance 

measured in order to be usable, 

 P: tool setup point – beginning of the toolpath, after all tasks in the NC program are 

carried out, the tool returns to this point. 

Some of the reference points are displayed on Figure 1.1.4.2. 
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Figure 1.1.4.2 Reference points [5]. 

1.1.5 Trajectory programming 

CNC machining must meet functional specifications of the workpiece set by its designer 

[6]. 

CNC machines are operated by a numerical control (NC) program. 3D CAD model needs 

to be mathematically described and transformed into NC data readable by the machine. 

Creation of NC data consists of four stages. In the first stage the designer creates a CAD 

model of the workpiece. In the second stage the tool trajectories are calculated in a CAM 

system in form of CL data. In the third stage CL data are treated by the postprocessor. 

Postprocessor can be either a part of CAM system or independent Nevertheless, each 

postprocessor is designed for a specific pair of CAM system and CNC control system 

which may cause problems with compatibility. In the fourth stage the NC program is 

transferred to the CNC machine where it’s executed as movements [6, 7, 8]. The process is 

visualized on Figure 1.1.5.1. 
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Figure 1.1.5.1 Numerical control program creation process [7]. 

1.2 Types of interpolation 

In case of more complex machining, toolpaths are generally freeform curves. Any curved 

contour of the workpiece can be approximated by a limited number of data points also 

called knots. These can be connected by different types of curves [9] . 

Interpolation is a mathematical method that consists of defining a function that passes 

through n + 1 number of ordered data points: Pi(𝑥𝑖, 𝑦𝑖) ,   i = 0, 1, … , n  while  x0 < x̅ < xn 

[3]. If we search to determine f(x) in x̅, while x̅ ≠ xi , i = 0, 1, … , n  it’s called an 

interpolation problem if x0 < x̅ < xn . On the contrary if x̅ < x0, it’s called an 

extrapolation problem [10]. There are several methods of interpolation that vary in 

accuracy, smoothness and number of data points needed. Following section describes 

several interpolation methods which can be used to guide toolpath in CNC milling. 

1.2.1 Linear 

Linear interpolation or spline of the first order is the simplest of all interpolations. In case 

of linear interpolation, the ordered data points ar e connected by straight lines [10]. The 

toolpath curves are approximated by multiple lines in a process generally called 

discretization [11]. 

Linear interpolation is commonly used because it’s easy to establish [6]. 

When using linear interpolation, the tool is moving point to point following a straight line. 

The error highly depends on sampling, thus on number of points. The error decreases with 

increasing number of points. When the tool is passing through the control points the error 

between the desired curve and the machined profile is null in said point. Factors 

influencing the value of geometrical error in all other parts are tool blade geometry and 

feed per dent [6]. 

The continuous function connecting n + 1 knots P0, 𝑃1, … , 𝑃𝑛 is composed of straight linear 

segments Pi, 𝑃𝑖+1,   𝑖 = 0,1, … , 𝑛 − 1. The linear interpolation function is defined as 

described in equation (1) [12]: 
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f1(x) = y0
x−x1

x0−x1
+ y1

x−x0

x1−x0
                    x0 ≤ x ≤ x1 

f2(x) = y1
x−x2

x1−x2
+ y1

x−x1

x2−x1
                    x1 ≤ x ≤ x2 

fn(x) = yn−1
x−xn

xn−1−xn
+ yn

x−xn−1

xn−xn−1
         xn−1 ≤ x ≤ xn 

(1) 

Linear interpolation is represented on Figure 1.2.1.1 

 

Figure 1.2.1.1 Linear interpolation.  

To illustrate the principle of linear interpolation, points situated on a circle with radius 

equal to r = 5 were generated and connected with segments. On Figure 1.2.1.2, linear 

interpolation was used to try to obtain interpolation of a circle.  
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Figure 1.2.1.2 Linear interpolation of knots situated on a circle for different number of knots. 

As can be seen on Figure 1.2.1.2, with increasing number of knots per length, the obtained 

curve gets closer and closer to an actual circle. 

Linear interpolation brings multiple disadvantages. The tool stops in every knot then 

accelerate while moving to the next knot where it stops again. Therefore the velocity is 

discontinuous in the junctions of every linear segment and high acceleration is needed. As 

a result we obtain poorer quality surface finish and low accuracy. The fact that the tool is 

repeatedly accelerating and decelerating with high frequency, results in long machining 

time. The kinematics of linear interpolation has very low efficiency [11, 13]. 

To obtain better surface finish, we must shorten the length of segments between two 

control points, i.e. use finer sampling. This results in greater number of control points 

which significantly enlarges the size of NC data files that need to be transferred to the 

controller. The large size of NC files is a major disadvantage of linear interpolation 

because the memory of the CNC machine can process only a limited amount of data [6]. 



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 23 

1.2.2 Circular 

Circular interpolation is a special type of interpolation that connects two data points by an 

arc defined by its centre and its radius. Circular interpolation can operate either in a 

clockwise or counter-clockwise motion [6]. 

For example in Siemens Sinumerik control systems, there are two functions that call 

circular interpolation in the program [4]: 

 G02: Clockwise circular interpolation, 

 G03: Counter-clockwise circular interpolation. 

Sinumerik control system enables us to program circular interpolation in three planes. The 

plane in which the circular interpolation is going to be performed is chosen by one of 

following functions [4]: 

 G17: picks X-Y plane for circular interpolation, 

 G18: picks X-Z plane for circular interpolation, 

 G19: picks Y-Z plane for circular interpolation. 

Some control systems are also able to perform 3D circular interpolation. Machined curve 

then can be located in any plane given by the programmer, not only in the main planes of 

the machine’s coordinate system [6]. We recognize internal and external circular 

interpolation. Internal circular interpolation is commonly used to enlarge holes [14]. 

1.2.3 Spline interpolation 

Curved parts of the workpiece might not be analytically describable but only approximated 

by a certain number of control points (knots). Spline defines a curve consisting of parts of 

polynomials of second or third order. How this curve is dependent on its knots differs for 

every type of spline. Spline interpolation can be applied to connect digitized points through 

a smooth curve. The smoothness of the spline is brings significant improvement compared 

to linear interpolation [9, 15]. 
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Figure 1.2.3.1 Spline creating a smooth curve connecting 6 predefined knots [15]. 

 A-spline 1.2.3.1

Term A-spline stands for Akima spline. It was introduced by Akima in 1977 as a new 

interpolation method solving problems with undesired wiggles of the curve due to 

oscillations. Akima proposed to use local aspect as if we tried to draw the curve by hand. 

That means that the pieces of the curve are influenced only by a small number of 

neighbour knots [16]. 

A-spline is a piecewise function composed of third degree polynomials smoothly 

connected by a geometrical condition. Slope of the curve at every point is determined by 

only five successive points where the concerned point is the middle with two points at each 

side [16] 

Using only five points at a time eliminates error from extreme differences between 

neighbour knots, the error will show only locally and not on the whole curve meaning the 

A-spline rarely oscillates which is a major advantage [16], [13]. 

Because of the local aspect, changing one control point will affect at most six neighbour 

points [9]. 

With five points designated successively 1, 2, 3, 4, 5 we can determine the slope in the 

central point 3 in multiple ways. The slope of point 3 in A-splines is calculated using 

equation (2) [16]. 

 𝑡3 =
(|𝑚4 − 𝑚3| ∗ 𝑚2 + |𝑚2 − 𝑚1| ∗ 𝑚3)

(|𝑚4 − 𝑚3| + |𝑚2 − 𝑚1|)
 (2) 

Where 𝑚1, 𝑚2, 𝑚3, 𝑚4 stand for the slopes of line segments 12,̅̅ ̅̅  23,̅̅ ̅̅ 34,̅̅ ̅̅ 45̅̅ ̅  [16]. 
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This approach is not applicable in a special case when 𝑚 1 = 𝑚2 ≠ 𝑚3 = 𝑚4. In this 

particular case, the value of t is by convention equated to  
1

2
(𝑚2 + 𝑚3) [16]. 

Interpolation between two knots with coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2) using the Akima 

spline consist of connecting them with a polynomial function that passes directly through 

them and slopes in the two knots are calculated as expressed in (3) [16]. 

To calculate the third degree polynomial between the two knots following two conditions 

for every knot are used [16]. First condition ensures that the new polynomial function is 

going to pass through the knots. In the second condition the slope in the knot is equalled to 

the first derivative of the new polynomial. By applying these two principles we obtain two 

pairs of following conditions (3), (4). 

 
𝑦 =  𝑦1    and   

𝑑𝑦

𝑑𝑥
= 𝑡1              for 𝑥 = 𝑥1 

 
(3) 

 
𝑦 =  𝑦2   and    

𝑑𝑦

𝑑𝑥
= 𝑡2              for 𝑥 = 𝑥2 

 
(4) 

While these four conditions are enough to describe a unique third degree polynomial, this 

polynomial can be expressed in other ways [16]. 

Akima chose following form (5) to describe the third degree polynomial connecting two 

knots of the Akima spline: 

 
𝑦 =  𝑝0 + 𝑝1(𝑥 − 𝑥1) + 𝑝2(𝑥 − 𝑥1)

2 + 𝑝3(𝑥 − 𝑥1)
3 

 
(5) 

Where coefficients are equal to expressions stated in (6) [16]. 

 

𝑝0 = 𝑦1 

𝑝1 = 𝑡1 

𝑝2 = [
3(𝑦2 − 𝑦1)

𝑥2 − 𝑥1
− 2𝑡1 − 𝑡2] /(𝑥2 − 𝑥1) 

𝑝3 = [𝑡1 + 𝑡2 −
2(𝑦2 − 𝑦1)

𝑥2−𝑥1
] /(𝑥2 − 𝑥1)

2 

 

(6) 

While calculating the slope at one knot only two preceding knots and two subsequent knots 

are used. This meant that for the last point of the Akima spline two additional knots must 

be estimated which leads to potential error in this area [16]. 
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Figure 1.2.3.1.1 Representation of the A-spline interpolating 7 knots [15]. 

A-spline is especially well applicable for interpolation of curves with great changes of 

slopes and step (staircase) functions [9]. 

 B-spline 1.2.3.2

Term B-spline stands for Bezier spline. B spline consists of pieces of Bezier curves and 

does not pass through the control points [13]. 

To understand the nature of B-spline we must first define what Bezier curves are. 

Parametrical equation of Bezier curve is designated by equation (7) [17]. 

 𝑃(𝑢) =  ∑𝑃𝑖𝐵𝑖,𝑝(𝑢)         ∀ 𝑢 ∈ [0,1]

𝑝

𝑖=0

 (7) 

Expressions 𝐵𝑖,𝑝(𝑢), ∀ 𝑢 ∈ [0,1],   represent basic (blending) functions and are calculated 

by (8). It’s an ensemble of p+1 Bernstein basis polynomials of degree p. Expression 

𝑃𝑖 = [𝑃𝑥𝑖 , 𝑃𝑦𝑖]
𝑇 designate a control point calculated using (7) [18].  

 
𝐵𝑖,𝑝(𝑢) =

𝑝!

𝑖! (𝑝 − 𝑖)
𝑢𝑖(1 − 𝑢)𝑝−𝑖        0 ≤ 𝑖 ≤ 𝑝 

 

(8) 

Example of blending functions is demonstrated in (9) [19]. 
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∀ 𝑢 ∈ [0,1] 
𝐵0,1(𝑢) =  1 − 𝑢 

𝐵0,2(𝑢) =  (1 − 𝑢)2 

 

(9) 

Functions 𝐵𝑖,𝑛(𝑡)  are polynomials of order n and they form a vector space of polynomials 

of order inferior or equal to n. 

As can be seen on  the Bezier curve passes only through the first control point P0 and the 

last control point Pn. The overall shape of the Bezier curve is determined by other (interior) 

control points [17].  

 

Figure 1.2.3.2 Bezier curve [17]. 
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Figure 1.2.3.3 Representation of B-spline [17]. 

With increasing number of control points the order of the Bezier curve increases as well.  

To be able to use only lower order curves the solution of B-spline was introduced by Boor 

for the first time as follows in (10) [17]. 

 𝑃(𝑢) =  ∑𝑁𝑖,𝑛(𝑢)𝑃𝑖

𝑛

𝑖=0

 (10) 

 

While 𝑁𝑖,𝑛(𝑢)𝑃𝑖 represent new blending functions. B-spline is segmented by a knot vector 

𝑈⃗⃗  into parameter intervals. The curves in these intervals can be modified by nearest knots. 

Most commonly used form of B-spline is NURBS (Non-uniform rational basis spline). 

NURBS is a type of B-spline with the option to add weight to every knot. The greater the 

weight is the more is the curved “pulled” more towards the knot. Nevertheless even 

NURBS never passes directly though the points with the exception of the first and the last 

point. That’s why the curve changes dramatically when we provide lesser knots.  

B-splines are well compatible with CAD system. Most CAD systems use B-splines to 

generate complex surfaces [17]. 
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Figure 1.2.3.4 Representation of B-spline interpolating 7 knots [15]. 

 C-spline 1.2.3.3

Term C-spline stands for cubic spline. It directly passes through data points and is 

continuous in each of them. That’s why its first and second derivation (curvature) also 

needs to be continuous in all data points. That is also a reason why it is the most 

susceptible to be influenced by deviation of (x) out of all studied splines and is likely 

oscillate in the proximity of extreme values of f(x) [12], [13]. 

C-splines are very well applicable if the knots appertain to analytically known functions, 

for example conic sections or circles [9].  

C-spline assesses third degree polynomials for every interval between two knots [xi , xi+1]  

[12]. 

Third degree polynomials are described as follows in equation (11) [12]. 

 𝑓𝑖 = 𝑎𝑖𝑥
3 + 𝑏𝑖𝑥

2 + 𝑐𝑖𝑥 + 𝑑𝑖         𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖      𝑖 = 1,2, … , 𝑛 (11) 

The second derivative in xi is designated as fi
’’
. First and second derivatives must be 

continuous. Condition of continuity of the second derivative is defined as (12) [12]. 

 
𝑓𝑖

′′(𝑥𝑖−1) = 𝑓𝑖−1
′′         𝑓𝑖

′′(𝑥𝑖) =  𝑓𝑖
′′           𝑖 = 1,2, … , 𝑛 

 
(12) 



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 30 

Because the second derivative is linear, it is equal to (13): 

 𝑓𝑖
′′(𝑥) =  𝑓𝑖−1

′′  
𝑥 − 𝑥𝑖

𝑥𝑖−1 − 𝑥𝑖
+ 𝑓𝑖−1

′′
𝑥 − 𝑥𝑖−1

𝑥𝑖 − 𝑥𝑖−1
 (13) 

Expression (𝑥𝑖 − 𝑥𝑖−1 )  is then replaced by ℎ𝑖 to simplify the previous expression (13) and 

we obtain (14) [12]: 

 
𝑓𝑖

′′(𝑥) =  𝑓𝑖−1
′′  

𝑥𝑖 − 𝑥

ℎ𝑖
+ 𝑓𝑖−1

′′
𝑥 − 𝑥𝑖−1

ℎ𝑖
 

 

(14) 

By integrating (14) two times and calculating integration constants equation (15) is 

obtained [12]. 

 

𝑓𝑖(𝑥) =  𝑓𝑖−1
′′

(𝑥𝑖 − 𝑥)3

6ℎ𝑖
+ 𝑓𝑖

′′
(𝑥 − 𝑥𝑖−1)

3

6ℎ𝑖
+ [

𝑦𝑖−1

ℎ𝑖
− 𝑓𝑖−1

′′
ℎ𝑖

6
] (𝑥𝑖 − 𝑥)

+ [
𝑦𝑖

ℎ𝑖
− 𝑓𝑖

′
ℎ𝑖

6
] (𝑥 − 𝑥𝑖−1) 

 

(15) 

 

In expression (15) 𝑓𝑖−1
′′  and 𝑓𝑖

′′ are the only unknown variables. The polynomials 𝑓𝑖(𝑥) can 

be determined once we find their second derivatives, 𝑓𝑖
′′. To determine the values of 𝑓𝑖

′′ the 

condition of continuity of first derivatives (16) is used [12]. 

 𝑓𝑖
′(𝑥𝑖) = 𝑓𝑖+1

′ (𝑥𝑖)         𝑖 = 1, 2, … , 𝑛 − 1 (16) 

By substituting (14) in (15) we obtain (17) [12]: 

 
ℎ𝑖𝑓𝑖−1

′′ + 2(ℎ𝑖 + ℎ𝑖+1)𝑓𝑖
′′ + ℎ𝑖+1𝑓𝑖+1

′′ =
6

ℎ𝑖+1

(𝑦𝑖+1 − 𝑦𝑖) +
6

ℎ𝑖

(𝑦𝑖−1 − 𝑦𝑖) 

 𝑖 = 1,2, … , 𝑛 

(17) 

While n being the number of knots, we get n-1 linear equations for n+1 unknown values 

of  𝑓𝑖
′. Two additional conditions must be added. Two conditions for second derivatives on 

the boundary of the interpolation interval were set. First condition (18) is for the first 

polynomial function in the first knot x0 and a second condition (19) for the last polynomial 

function in the last knot xn [12]. 

 𝑓1
′′(𝑥0) = 0 (18) 

 𝑓𝑛
′′(𝑥𝑛) = 0  (19) 
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Figure 1.2.3.5 Example of C-spline interpolating 7 knots. [15] 

1.3 NC programs 

To implement machining of a workpiece the tool path needs to be generated to control 

respective tool-workpiece movements. NC programs are programmed following correct 

syntax adapted for used control system [13]. 

1.3.1 Types of programming 

We differentiate two types of programming such as absolute programming and incremental 

programming [4]. 

 Absolute programming 1.3.1.1

In absolute programming coordinates of all points are expressed in relation to the 

coordinate system origin [4]. In Sinumerik this type of programming is called by function 

G90 [4]. When using the G90, input is absolute dimensions while all data coordinates 

refers to the workpiece zero [20]. While using absolute programming the diameter of the 

piece is determined in axis X and its lengths in axis Z [4]. 

 Incremental programming 1.3.1.2

In incremental programming coordinates of all points are expressed in relation to the last 

point’s coordinates [4]. In Sinumerik this type of programming is called by function G91 

[5]. After calling incremental programming by function G91, all input is in incremental 

dimensions while each dimension refers to the contour’s point last input [20]. 



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 32 

1.3.2 Structure of the program 

The structure of NC programs follows syntax specific to the control system of the machine. 

Most of control systems use similar so called G programming language that has many 

varieties but the most commonly used one is ISO language. Every command is composed 

of a letter address and its numerical value.  In general it consists of letter addresses and 

numerical values. For better orientation in the programs, blocks (lines) are assigned a block 

line number consisting of letter address N and number of the block. Blocks contain 

commands and are executed in numerical order. The letter address can be any letter of the 

alphabet but the most used are G and M. Every command might or might not have a 

numerical value assigned to it. In Sinumerik control systems G functions are also called 

preparatory functions and M functions can also be called auxiliary or Miscellaneous 

functions. The functions and their utilisation vary for turning and for milling. While 

Sinumerik 840D offers advanced forms of programming like multi-channel programming, 

the basic programming language it uses is ISO-Code. Next passage states a few principal 

functions in ISO dialect mode used in its G-code according to norm DIN66025 [5], [21]. 

 Letter addresses 1.3.2.1

Table 1.3.2.1   Letter addresses [7] [18]. 

A Absolute or incremental position in rotational axis A 

B Absolute or incremental position in rotational axis B 

C Absolute or incremental position in rotational axis C 

G Preparatory functions 

F Feed rate designation 

M Miscellaneous (auxiliary) functions 

N Block (line) number 

S Speed designation (of spindle) 

T Tool selection 

X Absolute or incremental position in linear axis X 

Y Absolute or incremental position in linear axis Y 

Z Absolute or incremental position in linear axis Z 

 

  



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 33 

 G functions 1.3.2.2

Table 1.3.2.2 G functions [9], [20]. 

G0  Rapid traverse motion 

G1  Linear interpolation 

G2  Clockwise circular interpolation 

G3  Counterclocwise circular interpolation 

G4  Dwell time preset 

G9  
Exact stopping before continuing to the next block, diminution of 

velocity 

G17 X/Y plane selection for linear and circular interpolation 

G18 X/Z plane selection for linear and circular interpolation 

G19 Y/Z plane selection for linear and circular interpolation 

G33 Threading with constant lead 

G40 No tool radius compensation 

G41 Tool radius compensation left of the workpiece contour 

G42 Tool radius compensation right of the workpiece contour 

G53 Frame suppression (in concerned block) 

G54 First settable zero offset 

G55 Second settable zero offset 

G56 Third settable zero offset 

G57 Fourth settable zero offset 

G70 Input in inches 

G71 Input in metric system 

G74 Approaching reference point 

G75 Approaching fixed point 

G90 Absolute dimension input 

G91 Incremental dimension input 

G93 Inverse time federate coding 

G94 Linear feed rate Fv in mm/min or inch/min 

G95 Revolution feed rate Fv in mm/revolution or inch/revolution 

G96 Constant velocity on 

G97 Constant velocity off 
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 M functions 1.3.2.3

Table 1.3.2.3 M functions [9], [20]. 

M0 Programmed stop 

M1 Optional stop 

M2 Main program and return to program beginning  

M3 Spindle turning clockwise 

M4 Spindle turning counterclockwise (CCW). 

M5 Spindle stop 

M6 Tool change 

M17 Subroutine end 

M30 Subroutine end and return to program beginning 

M41-M45  Gear stage 1-5 

1.4 Spline interpolation in different control systems 

Today all control systems support linear interpolation and some form of circular 

interpolation. If we intend to use spline interpolation, firstly we must verify if the control 

system supports spline interpolation [13]. 

Next section treats interpolation options in three different control systems: Sinumerik, 

Heidenhain and Fanuc. 

1.4.1  Sinumerik 

Sinumerik control systems produced by corporate company Siemens AG offer multiple 

spline interpolation options. Sinumerik 840 control system is the most adapted to elaborate 

spline interpolation and other smooth curves interpolation than other Sinumerik control 

systems. Sinumerik 840 offers directly A-spline, B-spline and C-spline interpolation 

programming. It is essential to point out that what the producer refers to as a B-spline is in 

reality a NURBS [13]. 

The introduction of all three types of splines is similar. 

General syntax for programing spline interpolation in Sinumerik line solution system [9]: 

ASPLINE X... Y... Z... A... B... C... 

BSPLINE X... Y... Z... A... B... C... 

CSPLINE X... Y... Z... A... B... C...  

Abbreviations used in this syntax refer to terms in Table 1.4.1.1 [9]. 

Table 1.4.1.1 Spline syntax parameters in Sinumerik control system. 

ASPLINE  introduction of A-spline into the program 

BSPLINE  introduction of B-spline into the program 

CSPLINE introduction of C-spline into the program 

X, Y, Z, A, B, C coordinates of knots in Cartesian coordinate system 

...  values to be designate by the programmer 
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 Programming B-splines in Sinumerik 1.4.1.1

For B-splines we can also program other parameters [9]: 

PW=<n> 

SD=2 

PL=<value>        

Where abbreviations have following meaning stated in Table 1.4.1.2 [9]. 

Table 1.4.1.2 Additional parameters for B-spline knots in Sinumerik. 

PW  parameter of weight of each knot 

SD  degree of the curve 

PL  parameter of length between two knots  

The syntax for writing a NURBS interpolation is following [13]: 

BSPLINE SD=... X... Y... Z... F... 

X... Y... Z... PL=... PW=... 

X... Y... Z... PL=... PW=...     

  



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 36 

Abbreviations used in this syntax refer to following terms in Table 1.4.1.3 [13]: 

Table 1.4.1.3 Abbreviations in syntax for NURBS spline interpolation in Sinumerik 

BSPLINE  introduction of B-spline into the program 

SD  degree of the curve 

... numbers to be designate by the programmer  

X, Y, Z coordinates of knots in X,Y,Z axes 

F feed-rate specification 

PL parameter of length between two knots 

PW = <n> parameter of weight of each knot 

PW, SD and PL parameters are useable only for B splines and would not influence other 

types if spline interpolation [9], [13]. 

PW = <n> represents the weight of every knot. It’s value can range from n= 0 to n=3 with 

step of  0,0001. If  n > 1, the curve is pulled significantly towards the knot in question. On 

the other hand if f n < 1 the curve is pulled towards the knot slightly.  

Distance between two knots is calculated automatically for optimal results but can also be 

changed by the programmer using the PL parameter [13]. 

Sinumerik 840 also offers 3D NURBS interpolation meaning it uses multiple axes. This is 

done by simultaneously programming two spatial curves. The first curve controls the tool 

reference point. The second curve controls a second point distanced by constant distance 

from the tool reference point. [13]. 

The syntax for writing a NURBS interpolation for multi-axis is following [13]: 

BSPLINE SD=... F... 

X... Y... Z... XH=... YH=... ZH=... PL=... 

X... Y... Z... XH=... YH=... ZH=... PL=… 

While abbreviations used in this syntax refer to terms in  

Table 1.4.1.4  Coordinated syntax for multi-axis NURBS in Sinumerik. 

X, Y, Z coordinates of the data points of the first curve in X, Y, Z axes 

XH, YH, ZH coordinates of data points of the second spatial curve 

 Programming A-spline and C-spline in Sinumerik 1.4.1.2

Syntaxes for programming A-spline and C-spline are similar in Sinumerik 840 control 

system.  

After introducing the splines it the program by commands of ASPLINE or CSPLINE and 

entering the knot coordinates as described above, additional parameters can be added [13]. 

Parameters controlling transition at the beginning of spline block are stated in Table 1.4.1.5 

[9]. 
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Table 1.4.1.5 Parameters for transition at the beginning of new spline block. 

BAUTO  no information about the transition comportment, beginning of the 

curve is determined by the first knot 

BNAT transition with zero curvature 

BTAN tangential transition  

 Parameters controlling transition at the end of a spline block and their meaning are stated 

in Table 1.4.1.6 [9]. 

Table 1.4.1.6 Parameters for transition at the end of last spline block. 

EAUTO no information about the transition comportment, beginning of the 

curve is determined by the last knot ENAT transition with zero curvature 

ETAN tangential transition 

 

 

Figure 1.4.1.1 Representation of transition between blocks of spline applicable for A-spline and C-

spline [15]. 

Entering these transition parameters into the B-spline program syntax won’t result in 

malfunctioning or won’t generate an error code but it won’t affect the B-spline curve in 

any way [9]. 

Sinumerik 840 also provides choices of linear, circular and polynomial interpolation. 

Polynomial interpolation can be used to machine diverse curves that are approximated by a 

polynomial including conic sections or power functions [9]. 



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 38 

Once an interpolation method is called, the point’s coordinates that follow will be taken as 

knots for the interpolation. Calling another interpolation method will cancel previous 

interpolation method.  

 

1.4.2 Heidenhain 

Even though the control systems iTNC produced by Heidenhain also offer smooth curve 

programming, they don’t directly offer specific spline interpolation like Sinumerik. In the 

following section the case of iTNC530 is going to be detailed. 

The splines can be programmed using the general form of third degree polynomials. iTNC 

offers to transfer spline from CAD systems in two, three, four or five axes polynomials 

[22]. 

 Notation of polynomials in X, Y, Z axes is described in (20) [13]. 

 

𝑋(𝑡) = 𝐾3𝑋 × 𝑡3 + 𝐾2𝑋 × 𝑡2 + 𝐾1𝑋 × 𝑡 + 𝑋 

𝑌(𝑡) = 𝐾3𝑌 × 𝑡3 + 𝐾2𝑌 × 𝑡2 + 𝐾1𝑌 × 𝑡 + 𝑌 

𝑍(𝑡) = 𝐾3𝑍 × 𝑡3 + 𝐾2𝑍 × 𝑡2 + 𝐾1𝑍 × 𝑡 + 𝑍 

𝑡 ∈ < 0; 1 > 

 

(20) 

Notation of third degree polynomials in two rotary axes (here represented by letters A and 

B, but other combinations of two axes out of of axis A, B and C are possible) can be 

written as (21) [22]. 

 
𝐴(𝑡) = 𝐾3𝐴 × 𝑡3 + 𝐾2𝐴 × 𝑡2 + 𝐾1𝐴 × 𝑡 + 𝐴 

𝐵(𝑡) = 𝐾3𝐵 × 𝑡3 + 𝐾2𝐵 × 𝑡2 + 𝐾1𝐵 × 𝑡 + 𝐵 
(21) 

While abbreviations used in syntax (21) stand for terms cited in Table 1.4.2.1 [22]. 

Table 1.4.2.1 Abbreviations in syntax for programming third degree polynomials in Heidenhein. 

X(t), Y(t), Z(t) third degree polynomials for coordinate system axes X,Y,Z 

A(t), B(t) third degree polynomials for rotary axes A and B 

X, Y, Z, A, B coordinated of the end point 

KX3, KX2, KX1 polynomial coefficients for axis X 

KY3, KY2, KY1 polynomial coefficients for axis Y 

KZ3, KZ2, KZ1 polynomial coefficients for axis Z 

KA3, KA2, KA1 polynomial coefficients for axis A 

KB3, KB2, KB1 polynomial coefficients for axis B 

KB3, KB2, KB1 polynomial coefficients for axis B 

Values of t vary from 0 to 1 while the step span can be modified [22]. 

It’s important to note that spline sequences cannot be furthermore edited once it is 

transferred in to the iTNC control system with the exception of changing federate and 
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changing M functions This fact the usage of this method for both reverse engineering and 

machining of an analytical curve because CAD system still need to be used to generate the 

spline before translating it into pieces of third degree polynomials by using a post-

processor [22]. 

1.4.3  Fanuc 

Fanuc has also developed curve interpolation functions and NURBS interpolation for their 

most advanced control system [13]. Fanuc 31i control system syntax will be elaborated in 

the following section. 

Fanuc control system offers only NURBS interpolation and uses it for so called Nano-

Smoothing. G06.2 is an inbuilt function of NURBS interpolation. Other spline 

interpolation are not available. [23] 

G functions and parameter used in Fanucs 31i for programming NURBS interpolation are 

stated in Table 1.4.3.1. 

Table 1.4.3.1 G functions and parameters used NURBS programming in Fanuc. 

G06.2 NURBS interpolation, cancelled by other motion command:  

G00,G01,G02 or G03 

P rank of NURBS curve 2,3 or 4 (4 by default, otherwise based on CAD 

model) 

XYZ control points coordinates (three or more depending on number of axis) 

R weight (by default R=1,0  if not specified) 

K Knot 

F Interpolation feedrate 

G112 Polar coordinate interpolation mode 

G113 Polar coordinate interpolation mode cancelling 

G40 Cutter or tool nose radius compensation: cancel 

Three-dimensional cutter compensation: cancel 

Number of specified knot points equals to number of control points plus the value of rank. 

Parameters weight R and knot K are both nine digit absolute value of the minimum data 

unit of the reference axis – in millimetres: -999999,999 to 999999,999. In Fanuc control 

systems, NURBS are never used in cutter radius compensation mode, G40 must be in 

effect BEFORE calling G06.2 [23]. 

1.5 Comparison of interpolation methods for CNC 

Especially in process of finishing it’s necessary to employ trajectories adapted to the 

morphology of the machined surface. In case of warped surfaces, linear and circular 

interpolations are not sufficient: while using linear interpolation, the acceleration is 

variable and bezels (facets) are formed on the machined surface [6]. With sufficient 

number of points, linear interpolation can meet set demands, but the acceleration 

shortcoming would still lengthen the machining time. Circular interpolation isn’t sufficient 

either because it is not always possible to fit a general smooth curve with pieces of circles 

especially if only a limited number of points of the curve are known. [8], [14]. 
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To eliminate this defect more elaborate methods can be used: spline interpolation, NURBS 

interpolation or polynomial interpolation. These methods enable us to machine complex 

surfaces in less time because they are based on mathematical model of class C
2
 meaning 

the acceleration is invariable during the whole process of machining [6], [8]. 

That’s why it’s favourable to implement spline interpolation in specific cases where only 

limited number of points of the curve (or surface) is known. 

On Figure 1.4.3.1 differences between three spline interpolations that were previously 

described are pictured. The main distinction of the B-spline interpolation is that the curve 

doesn’t pass directly through the knots. In case of NURBS this disadvantage can be 

reduced by adding weight to each knot to pull the curve closer to the knot, yet it will never 

pass through the points either. This can cause not sufficient geometrical precision when the 

number of points is not sufficient.  

 

Figure 1.4.3.1 Comparison of A-spline, B-spline and C-spline interpolating same 7 knots [15]. 

To further develop practical usage of spline interpolation for CNC machining and limits of 

each method, a series of experiments was designed and executed as described in the 

following sections. 
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2 DESIGN OF A CNC PROGRAM USING SPLINE 

INTERPOLATION 

Milling of an analytically describable contour was chosen in order to compare interpolation 

methods described in the theoretical analysis. 

The application aims to compare theoretical curve with a machined curved obtain by 

machining using different interpolation methods while changing number of knots on the 

curve length and analyse its influence.  

Sinumerik 840 control system was chosen out of three control system studied in (1.4) as 

the most suitable to conduct the practical study of spline interpolation because it offers 

directly A-spline, B-spline and C-spline interpolation syntax. Sinumerik 840 control 

system was employed at Brno University of Technology technological on its five-axis 

CNC milling machine TAJMAC-ZPS MCV 1210 therefore it was possible to execute the 

application there.  

To test spline interpolation methods, knots on an analytically know curve needed to be 

generated. A contour was generated in MATLAB programming platform and knots were  

symmetrically placed on the contour for two types of knot distribution: polar and 

equidistant. The knots were then implemented in subprograms after calling corresponding 

method to interpolate the knots in the main program.  

The main programs were written directly on the CNC milling machine. The subprograms 

containing only the knot’s coordinates were created in MATLAB and imported to the 

machine’s control system memory.  

Interpolation methods were tested on both 2D and 3D closed contour. 

MATLAB programming platform was used to generate coordinates of the knots based on 

an analytically known contour. In this programming platform it was possible program 

multiple scripts to generate knots with different parameters and have the script write their 

coordinates in correct syntax directly into MPF files readable by the machine. These MPF 

files were then used as subprograms. Various figures were also generated to visualise the 

knots on the theoretical curve. Versions 2017b and 2018a of the platform were used, some 

of their features aren’t available in older versions. 

2.1 Creation of the contour 

Experimental analytically known contour was chosen according to the following main 

conditions: 

 the curve must be closed in order to create a contour, 

 the origin of correspondent Cartesian coordinate system must be situated in the centre 

of the contour, 

 the contour must have at least two axes of symmetry. In case of a closed contour, 

problems with connection where the beginning and the end of the contour meet were 

expected. That’s it was important to have a symmetrical contour in order to be able to 

compare the part influenced by beginning and to a part beyond its influence, 
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 the contour must have local maxima of different distance from origin ri. 

Creation of an analytically describable symmetrical contour corresponding to previous 

conditions was set as a goal. Polar curves with equation constituting of trigonometrical 

functions sine and cosine and their multiplications or additions match this goal perfectly as 

is going to be further elaborated. The search for an equation of a suitable polar curve 

followed. 

2.1.1 Curve in polar coordinate system 

A polar curve is constructed thanks to its equation in the polar coordinate system.  

Coordinates of point A in polar coordinate system are defined by its distance from the 

origin O called rA  ( meaning rA = (OA)) and angle 𝜃𝐴 between rA and one of the axes (most 

commonly axis X of corresponding Cartesian coordinate system) as is displayed at figure 

Figure 2.1.1.1 [24]. 

 

 

Figure 2.1.1.1 Polar and Cartesian coordinate systems. 

Transformation of polar coordinates to Cartesian coordinates is thanks to trigonometrical 

functions sine and cosine of angle φA by equalling (22) [24].: 

 
𝑥𝐴 = 𝑟𝐴cos (𝜃𝐴)  
𝑦𝐴 = 𝑟𝐴sin (𝜃𝐴) 

(22) 

All points of a polar curve are defined by variable distance from the origin r as a function 

of angle θ. A polar curve is therefore defined by an equation of a distance r that is a 

function of angle, r = f (θ). [24] 

MATLAB 2017b and 2018a offer function polarplot to generate a representation polar 

curves. Polarplot’s parameters are equation of the distance from the origin r and a vector 

theta.  
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Simpler function called plot in older versions of the software can be also used while 

explicitly posing x = rcos(θ) and y = rsin(θ) and plotting x and y coordinates in Cartesian 

system. Both functions were used when choosing an equation of the contour. 

2.1.2 Choosing an equation of the contour  

To create a closed contour with origin in the middle of the contour it is necessary that theta 

varies in total of 2π radians. If it starts for theta θ = 0 radians it therefore should vary from 

0 to 2π, polar curves with equation constituting of trigonometrical functions will create 

closed contour because of their periodicity based on certain angle. Sine and cosine values 

vary both from -1 to 1. It is therefore important to add an invariable superior to absolute 

value of minimal value of the trigonometrical function if said minimum is negative, in 

order to create a curve that will not pass through the origin of the coordinate system and 

the value of r is always positive as illustrated on Figure 2.1.2.1. 

 

Figure 2.1.2.1 Curve not passing through origin creating a closed contour 

Sine and cosine have period of 2π, while tangent and cotangent have period of π. 

Nevertheless tangents and cotangent are not continuous functions, therefore their polar 

representation does not conclude in a symmetrical contour.  Tangents and cotangents are 

by definition (23), (24). 

 
tan =  

sin(𝜃)

cos(𝜃)
 

 

(23) 
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𝑐𝑜t𝑎𝑛 =  

𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)
 

 

(24) 

Any fragments including fragments of sine and cosine in the denominator will cause 

asymmetry of the polar curve, because of possible division by 0 for angles theta that results 

in null sine or cosine and will resolve in discontinuity of the curve as represented on Figure 

2.1.2.2. This includes functions tangent and cotangent. The equation of this contour 

contains division by cosine of theta. As is well visible, the value cos(θ = 90°) = 0 causes 

that limit lim( 1/cos (θ = 90°= π/2 rad)) is approaching the value of infinity, causing a 

defect in that area. The same goes for value of theta θ = 270° = 3π/2 rad)) 

 

Figure 2.1.2.2 Influence of including fragment with sine or cosine in the denominator in equation 

of on the polar curve. 

Using only sine and cosine and their additions or multiplications also ensures to symmetry 

of the contour as long as the equation does not contain any other variable containing θ as 

illustrated in Figure 2.1.2.3. 
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Figure 2.1.2.3 Deformed figure after adding a non-trigonometrical function of theta. 

 The blue curve has polar equation (25). While the red curve has for equation (26). 

 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 =  2 + 𝑐𝑜𝑠(12𝜃) ∗ 𝑐𝑜𝑠(6𝜃) (25) 

 𝑐𝑢𝑟𝑣𝑒 =  2 + cos (12𝜃) ∗ 𝑐𝑜𝑠(6 ∗ 𝜃)  +  𝜃 (26) 

The only difference between the two equations (25) and (26) is the addition of constituent 

+ θ in (26), causing the curve to gradually increase the value of ri with increasing value of 

theta and therefore the contour created will not form a closed contour. However addition of 

the constant wouldn’t result in not creating a contour, it will only enlarge the distance of all 

points form the origin of the coordinate system by the value of the constant.  

As was stated only polar curves containing additions and multiplications of sine and cosine 

were acceptable for creation of a closed symmetrical contour. A general form of a polar 

contour that obliges all conditions previously set can be expressed as (27), where 

expression trigo stands for a function containing only cosine and sine functions of theta 

and their additions or multiplications and positive powers. A is a constant that does not 

influence the shape of the curve only its overall size as can be remarked on Figure 2.1.2.4. 

 𝑟 = 𝐴 ∗ (𝐵 + 𝑡𝑟𝑖𝑔𝑜) (27) 

Influence of value of invariable A on equation (28) is illustrated in Figure 2.1.2.4. 
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 𝑟1 = 𝐴 ∗  (1.5 + 𝑐𝑜𝑠(16𝜃) ∗ 𝑠𝑖𝑛(8𝜃) ∗ 𝑠𝑖𝑛(8𝜃)) (28) 

 

Figure 2.1.2.4 Influence of value of A. 

As indicated by condition (29), B must be a constant superior to minimal value of function 

trigo to ensure that the curve creates a contour and doesn’t pass through the origin of the 

polar coordinate system. 

 𝐵 > min (𝑡𝑟𝑖𝑔𝑜) (29) 

Influence of value of B is illustrated in Figure 2.1.2.5. 



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 47 

 

Figure 2.1.2.5 Influence of value of B. 

 

Axes of symmetry 

As number of axes at least 2 and different local maxima were set as a condition, 

parameters influencing the number of axes of symmetry followed and number of local 

maxima followed. 

After experimenting with different multiplications of theta entering the cosine and sine 

functions, following rules were found to be effective: 

1) In case of functions with only multiplications of sine and cosine, the addition of all 

angles that are appear in the trigonometrical functions divided by theta are equal to 

number of local maxima present in interval 𝜃 ∈  [0 ; 2𝜋] 

For example: 

trigo = 1.5+ cos(m*θ)*sin(n*θ)*cos(o*θ)*sin(p*θ) 

m = 2 

n = 4 

o = 4 

p = 2 

add = m + n + p + o + q =12 
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As addition of all variables of trigonometrical functions divided by theta is equal 12, there 

should be 12 local maxima present as is apparent in the Figure 2.1.2.6. 

 

Figure 2.1.2.6 Twelve local maxima. 

 

2) In case of pure multiplication case, it’s also possible to predict number of axes of 

symmetry. If the addition of all variables of trigonometrical functions divided by theta 

is dividable by 2
k
 the polar curve will present at least 2

k 
axes of symmetry.  

In figure … the addition number is equal to 12, that is dividable by both 2
1
 and 2

2
, the 

latter being superior the curve can be expected to have at least 4 axes of symmetry which is 

the case.  

3) In case of addition, the constituent with the sine or cosine with bigger multiple of theta 

in the variable will dominate when it comes to number of maxima as presented 

following example: 

q=4 

r=8; 

trigo = 5 + cos(q*θ)+(r*θ); 

As r > q, it will dictate the number of maxima, which is indeed equal 8 as visible on 

Figure 2.1.2.7. 
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Figure 2.1.2.7 Eight local maxima. 

4) When there is an addition of sine or cosine in the equation of the curve, it’s hard to 

predict number of axes of symmetry.  

5) Equations containing purely cosine functions or purely sine functions are generally 

symmetrical by both x and y axes of correspondent Cartesian coordinate system as 

illustrated in Figure 2.1.2.8. 
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Figure 2.1.2.8 Using only sine or cosine functions in the general form 

Multiple contours were generated using the findings previously described.  

A trigonometrical function containing only multiplications of sine and cosines was chosen 

to facilitate prediction of the nature of the curves, especially its axes of symmetry. 

Examples of generated contours are displayed on Figure 2.1.2.9 and Figure 2.1.2.10. 
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Figure 2.1.2.9 Examples of generated polar contours 1. 
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Figure 2.1.2.10 Examples of generated polar contours 2. 

 

The curve with equation (30) was chosen as the curve to mill because it fitted the set 

condition the best. As can be remarked on Figure 2.1.2.11, the contour presents 4 axes of 

symmetry 

 4.5 + cos(6θ)cos(4θ)  (30) 
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Figure 2.1.2.11 Chosen curve in polar coordinate system. 

The contour was then augmented to have reasonable dimensions for milling and later 

analysis of results. This was done by multiplying the whole equation by 4. Then we obtain 

equation of the polar curve (31). 

 

 18 + 4 ∗ 𝑐𝑜𝑠(6𝜃) ∗ 𝑐𝑜𝑠(4𝜃) (31) 

How the figure fits the workpiece is displayed on Figure 2.1.2.12. 
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Figure 2.1.2.12 Contour on the workpiece in Cartesian coordinate system 

2.1.3 Arc length 

Arc length of the contour was calculated using a general formula for arc length (32) [25].  

 𝐿 =  ∫   
𝑏

𝑎

√𝑟2 + (
𝑑𝑟

𝑑𝜃
)
2

𝑑𝜃 (32) 

For the chosen contour it means calculating following integral (33). 

 ∫ √(18 + 4 cos(2𝜃) cos(6𝜃))2 + (−8cos(6𝜃) sin(2𝜃) − 24 cos(2𝜃) sin(6𝜃))2
2𝜋

0

 (33) 

The length of the curve was calculated to be 136,1895 mm, which was verified by 

MATLAB function arclength© created by John D'Errico.  

2.1.4 Minimal radius of curvature 

To ensure that the chosen curve would be machinable with standard diameters of tools and 

the machining would be realisable by one tool only, the radius of curvature of the contour 

was studied. Its minimal value was decisive as radius of the tool must be inferior to the 

minimal radius of curvature. 

Rayon of curvature ρ is by definition reciprocal value of said curvature (34) [26]. 

 𝜌 =
1

𝐾
 (34) 

Geometrical representation of curvature is displayed on Figure 2.1.4.1. 
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Figure 2.1.4.1 Representation of radius of curvature 

For a curve with parametric equation in Cartesian coordinates, the curvature is calculated 

by (35) [26]. 

 𝐾 =
|𝑥′𝑦′′ − 𝑦′𝑥′′|

(𝑥′2 + 𝑦′2)3/2
 (35) 

The equation (34) was employed in MATLAB script called radius_of_curvature available 

in annexe. The minimal rayon of curvature was calculated rmin = 2.2966 mm. The rayon of 

the tool used must therefore be inferior to this value and it was chosen to be rtool = 2 mm. 

2.2 Generating knots  

Once the theoretical curve was determined, knots needed to be generated. Their 

coordinates were then printed in .MFP files using the correct syntax for Sinumerik control 

system described in 1.4.1.  

Multiple distributions of knots are possible on a curve, for example [27]: 

 distribution with constant arc length between every two knots, represented by dl on 

Figure 2.1.4.1, 

 distribution with constant angle of tangents, represented by da on Figure 2.1.4.1, 

 distribution with constant second power of derivations of each section, represented by 

df on Figure 2.1.4.1. 
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Figure 2.1.4.1 Different distribution of points on a contour [27]. 

It was decided to compare two types of distribution of points: polar distribution and 

equidistant distribution of knots. Three variations of polar distribution and three variations 

of equidistant distribution of knots were created in order to study influence the number of 

knots and the length between them on the accuracy of a chosen spline interpolation 

method. 

2.2.1 Polar distribution 

As was elaborated in 1.1.4, most CNC machines work with Cartesian coordinate system. 

The curve was generated in a polar coordinate system that is why the coordinates needed to 

be transformed using relations (21) between the two systems as described in 2.1.1. This 

relation was employed in MATLAB scripts to generate knots, but as the knots were 

originally obtained from a polar equation they weren’t equidistantly spaced 

The knots were distributed on the curve based on the step by with the value of theta 

advanced from 0 to 2π in the polar equation of the curve. Smallest step of theta employed 

was set at 1° = π/180 rad. 

The number of points on the curve was therefore dependent on value of step theta. By 

changing its value three series of knots were generated:  

 first variation had maximal number of knots, with a knot every 1°, meaning total of 360 

points were generated on interval, 

 second variation had a knot places on the curve every 5° with total knot count equal to 

360/5 = 72 knots, 

 third variation had minimum number of knots, with a knot placed every 15° and 

number of points 360/15 = 24 knots. 
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Table 2.2.1.1 Number of knots for three variations of polar distribution 

Parameter = steptheta 1° 5° 15° 

number of knot per curve 360 72 24 

The values of step theta were chosen in order to keep the knot distribution symmetrical by 

both x and y axis. That posed a condition (36) which must have been be met. 

 
90

𝑠𝑡𝑒𝑝𝑡ℎ𝑒𝑡𝑎
∈ 𝑍 (36) 

Polar distribution of knots is represented for all three variations of values of steptheta in 

Figure 2.2.1.1, Figure 2.2.1.2 and Figure 2.2.1.3. 

 

 

Figure 2.2.1.1  Polar distribution of knot for steptheta 1°. 
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Figure 2.2.1.2 Polar distribution of knot for steptheta 5°. 
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Figure 2.2.1.3 Polar distribution of knot for steptheta 15°. 

 

2.2.2 Equidistant distribution 

Second type of distribution employed was equidistant repartition of knots along the 

contour meaning the distance between knots is constant. To generate equidistant points on 

the curve in Cartesian (rectangular) coordinate system (O, x, y) a MATLAB function 

interparc© created by John D'Errico. This function was implemented in the scripts to 

generate knots for the equidistant type of distribution of knots. This function needs an 

input of point on the curve and then employs interpolation methods to generate equidistant 

points on the curve. It was possible to provide a lot of polar points as the equation of the 

curve was known and it was possible to generate great number of points by entering small 

value of step theta. Therefore the interpolation was very precise and we can use output of 

interparc function as points on the theoretical contour. The function interparc was called on 

a section of the curve in the first quadrant and thanks to symmetry of the curve and the 
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origin of the coordinate system, the x and y knot coordinates had the same absolute value 

but different sign in three other quadrants. 

 

Figure 2.2.2.1 Comparison of equidistant and polar distributions of knots in the first quadrant for 

45 knots per quadrant. 

Distance between knots was also calculated, but given the method of generating 

equidistant points he distance between the points could not be varied directly. When 

generating knots the number of knots per one quadrant was decisive for distance between 

knots. Number of knot per quadrant were chosen to progressively decrease. The arc length 

of the curve was calculated previously therefore it was also possible to calculate number of 

points per length. After milling it will enable us to evaluate how this value influences the 

precision of the chosen interpolation method.  

Table 2.2.2.1 Influence of number of points on distance between the knots for equidistant 

distribution 

number of knots per quadrant 90 45 15 

number of knots per contour 357 177 57 

distance between knots (mm) 0,38148 0,76943 2,38929 
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Three variations of equidistant distribution are represented as follow: 

 90 knots per quadrant are represented on Figure 2.2.2.2 and Figure 2.2.2.3, 

 

Figure 2.2.2.2 Equidistant distribution of knots for 90 knots per one quadrant. 
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Figure 2.2.2.3 Equidistant distribution of knots represented in the first quadrant for 90 points per 

quadrant. 

 45 knots per quadrant are represented on Figure 2.2.2.4 and Figure 2.2.2.5, 
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Figure 2.2.2.4 Equidistant distribution of knots for 45 knots per one quadrant. 
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Figure 2.2.2.5 Equidistant distribution of knots represented in the first quadrant for 45 points per 

quadrant. 
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 155 knots per quadrant are represented on Figure 2.2.2.6 and Figure 2.2.2.7. 

 

Figure 2.2.2.6 Equidistant distribution of knots for 15 knots per one quadrant. 
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Figure 2.2.2.7 Equidistant distribution of knots represented in the first quadrant for 15 points per 

quadrant. 

2.2.3 2D and 3D contouring  

Two types of contouring were used: 2D and 3D contouring. Both methods aimed to 

machine the chosen contour to depth of -6 mm (in z axis) and employed the knots 

generated previously.  

 2D contouring 2.2.3.1

Firstly a method of 2D contouring was applied, with goal to mill the chosen contour with 

constant value of z coordinate z = -6 mm. 2D contouring concerned only initial 

experimentation and only polar distribution of knots was applied for 2D contouring as it 

was decided to realise further experimentation directly on 3D contouring. 

During the verification, some problems near the end of the curve occurred. The milled 

curve was deformed in proximity the end and the beginning of the curve near theta θ = 2π. 

Splines are influenced by knots that precede and that ensue. Additional two sequences of 

knots were added in order to eliminate the defect. One sequence was added before the main 

sequence of knots generated previously and second after the main sequence of knots. The 

goal was to overlap the points to eliminate the problem further developed in 3.7.2. Number 
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of points added was varied and their influence was studied. New total number of knots 

after adding the two sequences is stated in Table 2.2.3.1 for polar distribution and in Table 

2.2.3.2 for equidistant distribution of knots. 

Table 2.2.3.1Total number of knots for polar distribution of knots after adding knots 

Parameter = steptheta 1° 5° 15° 

number of knot per curve 360 72 24 

number beginning knots 10 3 2 

number of ending knots 10 3 2 

 

Table 2.2.3.2 Total number of knots and distance between them for equidistant distribution of knots 

after adding knots. 

number of knots per quadrant 90 45 15 

number of knots per contour 357 177 57 

number beginning knots 12 6 2 

number of ending knots 12 6 2 

total number of points 381 189 61 

distance between knots (mm) 0,38148 0,76943 2,38929 

 3D contouring 2.2.3.2

To eliminate imperfection of the curve beginning and ending, different approach needed to 

be elaborated. Multiple strategies were possible. Tangential entry of the tool was necessary 

not to intervene with the contour when approaching it. Creation of a contour in cylindrical 

coordinate system was chosen as a solution.The strategy of progressive milling of the 

contour was chosen to be employed. To ensure entry of the tool that would be tangential to 

the desired curved, original 2D curve in polar coordinate system was transformed into a 3D 

curve in cylindrical coordinate system by adding z coordinate to every knot generated.  

The cylindrical coordinate system is similar to the polar coordinate system previously 

described. It is possible to declare that polar coordinate system is a cylindrical coordinate 

system with constant value of z = 0. [28] 

Position of a point A is defined by the distance from the axis z of a correspondent 

Cartesian coordinate system rA;  angle between rA and axis x of correspondent Cartesian 

system and its coordinate in axis z, that is identical to the z axis of the correspondent 

Cartesian coordinate system. A representation of cylindrical coordinate system is outlined 

in Figure 2.2.3.1. 
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Figure 2.2.3.1 Cylindrical and Cartesian coordinate systems. 

Points preceding the main contour were added at the beginning derived from the 3D 

contour with positive z coordinate were added for tangential entry of the tool.  

The z coordinate of the main contour that gradually evolve from 0 mm to -6 mm were 

added. Then the tool circumscribe the contour with constant z coordinate equal to the 

desired depth, z = -6 mm , before circumscribing the curve for the third time with gradually 

increasing value of z going from -6 mm to 0 mm. The tool encircles the contour in total of 

three times: first time for changing value of z form 0 to -6, then it encircles the contour one 

time for constant value of z to mill all the material and then it exits the contour by 

encircling the contour for the thirds time and without cutting.  Points after the end of the 

third contour were also added to ensure tangential exit of the tool.  

Total number of knots for steptheta equal to 1° is displayed on Figure 2.2.3.2 in 3D view 

and on Figure 2.2.3.4. 
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Figure 2.2.3.2 Integrity of knots for polar distribution method with a knot every 1° 

 

Figure 2.2.3.3 Additional knots for tangential entry of the tool. 

 

 

Beginning knots  End knots  
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Figure 2.2.3.4 Integrity of points for polar distribution method with a knot every 1° viewed from 

above 

For both distributions, the same method to transform 2D curve into a 3D curve was 

implemented. Vectors of x and y coordinated stayed the same and the vector of z 

coordinates was generated three times: firstly z gradually varies from 0 to -6, then one with 

constant value of z = -6.000 mm and finally third vector where z varies from -6 mm to 0 

mm.  

For the polar distribution, same x and y coordinates as the 2D variation were used and only 

Z coordinates were added. The method was the same as for the 2D contour meaning a knot 

was generated every 1°, 5° or every 15°.  

The number of knots stated in the tables is always number of knots per one circumscription 

of the contour. This means that for one complete 3D milling the total number of points in 

the subprogram is equal to summation of knots at the beginning, knots at the end and three 

times the number of points per one contour.  

2.3 Creation of programs 

Types of programs were written to realise the machining: main program and corresponding 

subprograms. Using a subprogram aims to shorten the main program making it more 

understandable and overall less cluttered.  
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Main programs were written directly on the machines control station. The structure of all 

main programs is the same. The main programs contain all the necessary machine 

conditions. Then they call an interpolation method (linear or particular spline) and 

correspondent subprograms containing the knots in correct syntax adapted for the 

interpolation method. 

All subprograms were generated in MATLAB and imported as .MFP files readable by the 

CNC machine. The subprograms containing only knots coordinates were called upon by 

the main programs after calling according interpolation method.  

2.3.1 Methodology of creation of subprograms 

Once the knots were generated, it was necessary to insert knots coordinates to a NC  

For linear interpolation the command for linear interpolation function G1 was included in 

the subprograms. 

For A-spline and C-spline the subprograms were identical, because the syntax for 

indicating its knots is same after calling the spline method in the main program.  

For B-spline, a weight of knots was added. Constant weight PW = 3 was added to all knots 

in B-spline subprogram. It’s the maximal programmable weight meaning it draws the 

spline curve as close to the knots as possible. Add the weight is crucial as we want the 

milled curve to pass through the knots or at least be as close to the theoretical knots as 

possible. 

The correct syntax is demonstrated in Table 2.3.1.1. 

Table 2.3.1.1 Syntax for knots for different interpolation methods for Sinumerik control system. 

Interpolation method syntax 

A-spline, C-spline N… X… Y… Z-6.000 

B-spline N… X… Y… Z-6.000 PW=3 

linear interpolation G1 X… Y… Z… 

2.3.2 Programs for 2D contouring 

Every main program for 2D contouring firstly calls in total of seven subprograms of rough 

specimen containing knots on seven gradually smaller contours and then calls the finishing 

subprogram with knots situated of the final contour. 

 Rough specimen for 2D contouring 2.3.2.1

For rough specimen other augmented curves were generated to mill material around the 

final curve to prepare the workpiece for milling of the studied contour without interfering 

with the results. Number of contours necessary for the rough specimen was calculated 

based on the diameter of the tool. When milling into aluminium alloy, it is important to 

respect that no more than 70% of the diameter of the tool should be entering the 

workpiece. Contours of rough specimen for 2D contouring are visualized in Figure 

2.3.2.1.1. 
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Figure 2.3.2.1.1 Rough specimen contours for 2D contouring. 

Table 2.3.2.1.1 Examples of main programs for 2D contouring. 

LINEAR A-SPLINE 
N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F5000 
N80 G1 Z-2 F2000 
N90 G1 X40 Y0 F1270 
N100 G42 
N110 G1 X37 
;N115 GOTOF LABEL_1 
N120 POLAR_STEPTHETA_1_LIN_1 
N130 POLAR_STEPTHETA_1_LIN_2 
N140 POLAR_STEPTHETA_1_LIN_3 
N150 POLAR_STEPTHETA_1_LIN_4 
N160 POLAR_STEPTHETA_1_LIN_5 
N170 POLAR_STEPTHETA_1_LIN_6 
N180 POLAR_STEPTHETA_1_LIN _7 
;N185 LABEL_1: 
N190 G1 X22 Y0 
N200 POLAR_STEPTHETA_1_LIN_8 

N210 G40 
N220 G1 X40 Y0 F700 
N230 G1 Z10 F5000  
N240 M5 
N250 M30 

 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F5000 
N80 G1 Z-2 F2000 
N90 G1 X40 Y0 F1270 
N100 G42 
N110 G1 X37 
BTAN ETAN 
N120 ASPLINE 
;N130 GOTOF LABEL_1 
N140 POLAR_STEPTHETA_15_1 
N150 POLAR_STEPTHETA_15_2 
N160 POLAR_STEPTHETA_15_3 
N170 POLAR_STEPTHETA_15_4 
N190 POLAR_STEPTHETA_15_5 
N200 POLAR_STEPTHETA_15_6 
N210 POLAR_STEPTHETA_15_7 
;N220 LABEL_1: 
N225 G1 X22 Y2 Z10 
N230 G1  X17.387  Y-4.659  Z0.250 
G42 
BTAN ETAN 
N235 ASPLINE 
N240 POLAR_STEPTHETA_15_8 
N250 G40 
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N260 G1 X40 Y0 F700 
N270 G1 Z10 F5000  
N280 M5 
N290 M30 

B-SPLINE C-SPLINE 
N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F5000 
N80 G1 Z-2 F2000 
N90 G1 X40 Y0 F1270 
N100 G42 
N110 G1 X37 
;N115 GOTOF LABEL_1 

n120 BSPLINE 
N125 POLAR_STEPTHETA_1_B_1 
N130 POLAR_STEPTHETA_1_B_2 
N140 POLAR_STEPTHETA_1_B_3 
N150 POLAR_STEPTHETA_1_B_4 
N160 POLAR_STEPTHETA_1_B_5 
N170 POLAR_STEPTHETA_1_B_6 
N180 POLAR_STEPTHETA_1_B_7 
;N185 LABEL_1: 

N190 G1 X22 Y0 

N200 BSPLINE 
N205 POLAR_STEPTHETA_1_B_8 

N210 G40 
N220 G1 X40 Y0 F700 
N230 G1 Z10 F5000  
N240 M5 
N250 M30 

 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F5000 
N80 G1 Z-2 F2000 
N90 G1 X40 Y0 F1270 
N100 G42 
N110 G1 X37 
BTAN ETAN 
N120 ASPLINE 
;N130 GOTOF LABEL_1 
N140 POLAR_STEPTHETA_15_1 
N150 POLAR_STEPTHETA_15_2 
N160 POLAR_STEPTHETA_15_3 
N170 POLAR_STEPTHETA_15_4 
N190 POLAR_STEPTHETA_15_5 
N200 POLAR_STEPTHETA_15_6 
N210 POLAR_STEPTHETA_15_7 
;N220 LABEL_1: 
N225 G1 X22 Y2 Z10 
N230 G1  X17.387  Y-4.659  Z0.250 
G42 
BTAN ETAN 
N235 ASPLINE 
N240 POLAR_STEPTHETA_15_8 
N250 G40 
N260 G1 X40 Y0 F700 
N270 G1 Z10 F5000  
N280 M5 
N290 M30 

 Finishing for 2D contouring 2.3.2.2

Finishing consisted of one circumscription of the eight and smallest contour including the 

overlap knots at the beginning and the end.  

Extract from subprograms for finishing for 2D contouring are stated in Table 2.3.2.2. 

Table 2.3.2.2 Extracts from subprograms of finishing for 2D contouring for 4 studied 

interpolation method and steptheta 5° with total of 72 knots. 

  



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 74 

Syntax of subprograms for A-spline and 

C-spline 
Syntax of subprograms for B-spline 

N10  X22.000  Y0.000  Z-6.000   
N20  X21.330  Y1.866  Z-6.000   
N30  X19.577  Y3.452  Z-6.000   
N40  X17.387  Y4.659  Z-6.000   
N50  X15.475  Y5.632  Z-6.000   
N60  X14.295  Y6.666  Z-6.000   
N70  X13.856  Y8.000  Z-6.000   
N80  X13.774  Y9.645  Z-6.000   
N90  X13.523  Y11.347  Z-6.000   
N100  X12.728  Y12.728  Z-6.000   

… 

N10  X22.000  Y0.000  Z-6.000  PW=3  
N20  X21.330  Y1.866  Z-6.000  PW=3  
N30  X19.577  Y3.452  Z-6.000  PW=3  
N40  X17.387  Y4.659  Z-6.000  PW=3  
N50  X15.475  Y5.632  Z-6.000  PW=3  
N60  X14.295  Y6.666  Z-6.000  PW=3  
N70  X13.856  Y8.000  Z-6.000  PW=3  
N80  X13.774  Y9.645  Z-6.000  PW=3  
N90  X13.523  Y11.347  Z-6.000  PW=3  
N100  X12.728  Y12.728  Z-6.000  PW=3  

… 

Syntax of subprograms for linear 

interpolation 
 

N10 G1 X22.000  Y0.000  Z-6.000   
N20 G1 X21.330  Y1.866  Z-6.000   
N30 G1 X19.577  Y3.452  Z-6.000   
N40 G1 X17.387  Y4.659  Z-6.000   
N50 G1 X15.475  Y5.632  Z-6.000   
N60 G1 X14.295  Y6.666  Z-6.000   
N70 G1 X13.856  Y8.000  Z-6.000   
N80 G1 X13.774  Y9.645  Z-6.000   
N90 G1 X13.523  Y11.347  Z-6.000   
N100 G1 X12.728  Y12.728  Z-6.000   

… 

 

2.3.3 Programs for 3D contouring 

For both polar and equidistant distribution, X and Y coordinated are the same as for the 2D 

solution, only Z coordinate was added accordingly as described in 2.2.3.2.  

For the 3D contour, rough specimen and final contour were called by different main 

programs. Rough specimen main programs called 4 subprograms with correspondent 

method for 2D contours with constant z coordinate z = -6.000 mm. Final contour main 

programs called only the corresponding last contour subprogram with the 3D contour. 

 Rough specimen for 3D solution 2.3.3.1

For rough specimen to prepare the workpiece, 2D contours were applied  with Z coordinate 

constant and equal to Z = -6.000 mm.  Value of steptheta for rough specimen was chosen 

to have total number of knots per curve similar to later applied finishing method. For 

example for finishing with equidistant distribution with 177 points, rough specimen with 

steptheta 2° was employed, with 180 points per contour was applied. Interpolation method 

in rough specimen corresponded to interpolation method in finishing. 

Because the workpieces were made form artificial wood, it was possible to realise rough 

specimen with only 4 contours as it was possible not to respect the rule of 70% of the 

diameter of the tool machining.  
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Figure 2.3.3.1 Curves for rough specimen for 3D contouring. 

Correspondent 2D rough specimen programs employed before 3D finishing programs are 

stated in Table 2.3.3.1. 

Table 2.3.3.1 Rough specimens used before finishing 3D contouring. 

3D finishing method Rough specimen method 

Equidistant, 357 knots, Linear 2D Polar, 360 knots, Linear 

Equidistant, 357 knots, A-spline 2D Polar, 360 knots, A-spline 

Equidistant, 357 knots, B-spline 2D Polar, 360 knots B-spline 

Equidistant, 357 knots, C-spline 2D Polar, 360 knots, C-spline 

Equidistant, 177 knots, Linear 2D Polar, 180 knots, Linear 

Equidistant, 177 knots, A-spline 2D Polar, 180 knots, A-spline 

Equidistant, 177 knots, B-spline 2D Polar, 180 knots, B-spline 

Equidistant, 177 knots, C-spline 2D Polar, 180 knots C-spline 

Equidistant, 57 knots, Linear 2D Polar, 72 knots, Linear 

Equidistant, 57 knots, A-spline 2D Polar, 72 knots, A-spline 

Equidistant, 57 knots, B-spline 2D Polar, 72 knots, B-spline 

Equidistant, 57 knots, C-spline 2D Polar, 72 knots 5°, C-spline 

Examples of rough specimen main programs are listed in  Table 2.3.3.2. 
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Table 2.3.3.2 Rough specimen main programs. 

Rough specimen main program, linear 

interpolation, polar distribution, steptheta 5° 

Rough specimen main program, A-spline 

interpolation, polar distribution, steptheta 5° 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F5000 
N80 G1 X40 Y0 F1530 
N90 G42 
N100 G1 X37 
N110 HRUB_1_LIN_1 
N120 HRUB_1_LIN_2 
N130 HRUB_1_LIN_3 
N140 HRUB_1_LIN_4 
N150 G40 
N160 G1 X40 Y0 F700 
N170 G1 Z10 F5000  
N180 M5 
N190 M30 

 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F5000 
N80 G1 X40 Y40 F1530 
N90 G42 
N100 G1 X37 
N110 BTAN ETAN 
N120 ASPLINE 
N130 HRUB_1_1 
N140 HRUB_1_2 
N150 HRUB_1_3 
N160 HRUB_1_4 
N170 G40 
N180 G1 X40 Y0 F700 
N190 G1 Z10 F5000  
N200 M5 
N210 M30 

Rough specimen main program, B-spline, 

polar distribution, steptheta 5°  

Rough specimen main program, C-spline, 

polar distribution, steptheta 5° 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F5000 
N80 G1 X40 Y0 F1530 
N90 G42 
N100 G1 X37 
N110 BSPLINE 
N120 HRUB_1_B_1 
N130 HRUB_1_B_2 
N140 HRUB_1_B_3 
N150 HRUB_1_B_4 
N160 G40 
N170 G1 X40 Y0 F700 
N180 G1 Z10 F5000  
N190 M5 
N200 M30 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F5000 
N80 G1 X40 Y0 F1530 
N90 G42 
N100 G1 X37 
N110 BTAN ETAN 
N120 CSPLINE 
N130 HRUB_1_1 
N140 HRUB_1_2 
N150 HRUB_1_3 
N160 HRUB_1_4 
N170 G40 
N180 G1 X40 Y0 F700 
N190 G1 Z10 F5000  
N200 M5 
N210 M30 

 Finishing for 3D contouring 2.3.3.2

Finishing for 3D contouring used its own main programs each containing calling 

correspondent subprogram with knots with non-constant value of Z as described in 2.2.3.2. 

Table 2.3.3.3 Example of finishing programs: 3D contouring, equidistant distribution with 

parameter 45. 
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Main program for linear interpolation Main program for A-spline 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F1530 
N80 M0  
N90 G4 F2 
N100 G42 
N110 G1 X37 Y-15 
N120 G1 X13.856  Y-8.000  Z0.500 
N130 EKVI_POSTUPNE_LIN_45  
N140 G40 
N150 G1 X30 Y30 F700 
N160 G1 Z10 F5000  
N170 Y100 
N180 M5 
N190 M30 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F1530 
N80 M0  
N90 G4 F2 
N100 G42 
N110 G1 X37 
N120 BTAN ETAN 
N130 ASPLINE 
N140 X13.856  Y-8.000  Z0.500  
N150 EKVI_POSTUPNE_45 
N160 G40 
N170 G1 X30 Y30 F700 
N180 G1 Z10 F5000  
N190 Y100 
N200 M5 
N210 M30 

Main program for B-spline  Main program for C-spline 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F1530 
N80 M0  
N90 G4 F2 
N100 G42 
N110 G1 X37 
N120 BSPLINE 
N130 X13.856  Y-8.000  Z0.500 

PW=3  
N140 EKVI_POSTUPNE_B_45 
N150 G40 
N160 G1 X30 Y30 F700 
N170 G1 Z10 F5000  
N180 Y100 
N190 M5 
N200 M30 

N10 G54 
N20 T="FR_4" 
N30 M6 
N40 G64 
N50 SOFT 
N60 M3 S17000 M8 
N70 G1 Z10 F1530 
N80 M0  
N90 G4 F2 
N100 G42 
N110 G1 X40 
N115 G1 X37 
N120 BTAN ETAN 
N130 CSPLINE 
N140 X13.856  Y-8.000  Z0.500 
N150 EKVI_POSTUPNE_45 
N160 G40 
N170 G1 X30 Y30 F700 
N180 G1 Z10 F5000  
N190 Y100 
N200 M5 
N210 M30 
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3 EXPERIMENTAL VERIFICATION OF THE CNC PROGRAM 

WITH SPLINE APPLICATION 

3.1 CNC machine 

The CNC machine used to implement spline interpolation was TAJMAC-ZPS MCV 1210 

with Sinumerik control system as displayed on Figure 2.3.3.1. It is a five axes milling 

machine with linear axes X, Y, Z and two rotational axes A and C (as described in 1.1.4). 

Basic characteristics of the machine are stated in Table 3.1.1. It’s also equipped with an 

automatic tool changer that can contain up to 30 tools and touch probes RENISHAW OMP 

400.  

Table 3.1.1 Basic characteristics of TAJMAC-ZPS MCV 1210 

 
axis X axis Y axis Z axis A axis C 

travel 1,000 mm 800 mm 600 mm ±115° ±200° 

maximal velocity 40 m/min 40 m/min 40 m/min 60°/min 60°/min 

maximal acceleration 5 m/s^2 5 m/s^2 5 m/s^2     

 

 

 

Figure 2.3.3.1 TAJMAC-ZPS MCV 1210 milling machine. 
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3.2 Workpiece 

3.2.1 Workpiece for 2D contouring 

Firstly an aluminium alloy 7475-T7351 was chosen in order to be able to machine the 

contour more rapidly than if a steel alloy was used. Machining of an aluminium alloy also 

generally results in relatively better surface quality in shorter machining time. [19]   

The dimensions of the workpiece were chosen to fit the curve and minimize the material 

used. A parallelepiped of following dimensions was used as a raw workpiece for 2D 

contouring: 45x45x25 mm. 

 

Figure 3.2.1.1 Workpieces for 2D contouring. 

3.2.2 Workpiece for 3D contouring 

For further 3D contouring 24 cubes of dimensions 45x45x45 mm from artificial wood 

were prepared. 

 

Figure 3.2.2.1 Workpieces for 3D contouring. 
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3.3 Selection of the tool 

The radius of the tool could interfere with the desired machined surface if it was too large 

even though a function that compensates the radius is implemented in the program.  

Maximal diameter of the tool was determined by calculating minimal radius curvature of 

the chosen curve which was previously found out to be equal to rmin = 2.2966 mm in 2.1.4. 

Therefore a tool with rayon equal to 2 mm was chosen.  

The milling cutter employed in all experimentations was 04E3S50-12A04 SUMA 

manufactured by PRAMET displayed on Figure 3.3.1. In all NC programs it is referred to 

as “FR=4” because it was the indication entered in the NC system of the machine that 

identifies all tools in the ATC. 

 

Figure 3.3.1 Milling cutter 04E3S50-12A04 SUMA by PRAMET [29] 

3.4 Selection of cutting conditions 

Cutting conditions later implemented in the program were set as follow in Table 3.4.1. 

Table 3.4.1 Cutting conditions for both rough specimen and finishing. 

N machine speed in 

revolutions/minute (RPM) 

17,000 1/min 

fz feed/dent of cutter 0.025 mm/dent 

z Number of teeth of the 

tool 

3 

D Diameter of the tool 4 mm 

vf Feed vf = 1,270 mm/min 

 

vc Cutting velocity vc = 213.628 m/min 

Lubricant was used only for 2D contouring (machining of the aluminium alloy) to cool 

down the material and the tool in course of machining. As for 3D contouring, artificial 

wood was used as material of the workpiece and did not need lubricating or cooling in set 

conditions. 

3.5 Procedure of the execution  

For every method’s execution, the same procedure was followed:  

 simulation of the rough specimen program, 

 simulation of the main program, 

 clamping of the workpiece, 
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 rough specimen program execution, 

 finishing program execution, 

 unclamping of the workpiece, 

 evaluation of machined surface positions under microscope. 

3.6 Program simulation 

All programs and subprograms were tested in simulation mode before actually machining 

them. Example of simulation is displayed on Figure 3.6.1, in this case it was only the final 

contour that was simulated, that’s why there is still material visible around the contour.  

 

 

Figure 3.6.1 Example of final contour program simulation 

3.7 Experimental verification of spline interpolation on 2D contouring 

3.7.1 Clamping and coordinate system 

Clamping of the workpiece corresponded to the chosen coordinate system.  

Setting of workpiece zero point was realised thanks to a built in touch probe RENISHAW 

OMP 400 and it was set to the centre of the face of the workpiece.  
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Figure 3.7.1.1 Coordinate system in relation to the workpiece for 2D contouring.  

 

 

 

 

Figure 3.7.1.2 Setting the workpiece zero point with a built in probe RENISHAW. 
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Figure 3.7.1.3 Clamping of the workpiece 

3.7.2 Rough specimen execution of 2D contour 

Firstly a rough specimen program was called to machine material surrounding the studied 

contour. It was important to ensure that rough specimen and the machining of the contour 

were realised in one clamping to maintain the same coordinate system of the workpiece set 

previously and not to move its origin. For every method a special rough specimen program 

was employed using the same method and the same density of knots as the finishing 

program, which eliminates interferences of the rough specimen curves with the studied 

curve.  Examples of workpieces just after rough specimen milling are displayed on Figure 

3.7.2.1, Figure 3.7.2.2 and Figure 3.7.2.3. 
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Figure 3.7.2.1 Workpiece after rough specimen. 

 

 

Figure 3.7.2.2 Workpiece from artificial wood after rough specimen, first view. 
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Figure 3.7.2.3 Workpiece from artificial wood after rough specimen, second view. 

 

3.7.3 Finishing execution of 2D contour 

After rough specimen, correspondent finishing program was executed without unclamping 

the workpiece. The machining time of finishing was measured.  

3.8 Problems with 2D contours 

Problems with connecting the beginning and the end of the contour posed a problem during 

the execution of the programs. The defect was more prominent with decreasing number of 

points. 

Thanks to the simulations solutions to eliminate the defect at the end of the contour were 

tested without wasting material. 

Multiple strategies with additional knots were employed in both simulation and on wooden 

workpieces in attempt to resolve the problem, but especially B-spline and A-spline did not 

manage to create a completely symmetrical contour. Additional knots are represented on 

Figure 3.8.1. 
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Figure 3.8.1 Adding overlap knots at the beginning (red) and at the end (blue). 

Adding overlap knots and varying the number of overlap knots did ameliorate the problem, 

but did not eliminate it as seen on Figure 3.8.2. and Figure 3.7.3.3. 
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Figure 3.8.2 Problematic area for 2D contouring. 

 

 

 

 

Figure 3.7.3.3 Defect at the end of the curve for linear interpolation. 
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First strategy was to add points after the end of contour repeating the same knots as at the 

beginning of the contour. This method was found to be semi-efficient, but the contour was 

still deformed at the end area. The solution of 3D contouring presented previously 

followed. 

3.9 Using 3D contouring as a solution 

Progressive milling described in 2.2.3.2 was chosen to solve the problems of the tool 

exiting the workpiece without interfering with the desired curve form. 24 wooden 

workpieces of cubic form were used. The workpiece zero point was changed accordingly 

as visualised on Figure 3.9.1. 

 

 

Figure 3.9.1 Representation of the Cartesian coordinate system in relation to the workpiece for 3D 

solution 

The programs for 3D contouring were then employed. Four workpieces using four 

different interpolation method (A-spline, B-spline, C-spline and linear interpolation) were 

compared for every variation of knots. In total of 12 workpieces for polar distribution and 

12 workpieces for equidistant distribution were obtained.  

In course of milling, the actual value of feed rate was observed and machining time of the 

finishing program execution was measured.  

24 machined contours were obtained as is displayed on Figure 3.9.2.  
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Figure 3.9.2 All machined contours using 3D contouring. 

3.10 Methodology of evaluating the surface positions  

To compare the milled contours, surface positions were compared. Only 3D solutions were 

compared as using 2D or 3D contouring would result in identical contour with the 

exception of the first local maxima where the shape of the contour was influenced for 2D 

contouring as was described previously in 3.8. 

The accuracy of machined contours were Eleven control points were chosen in the second 

quadrant at local maxima and minima and for certain values of steptheta chosen to obtain 

different points from the knots in the programs. Local maxima in the second quadrant are 

situated at θ = 90° (control point 1), θ = 135° (control point 6), θ = 180° (control point 11) 

while the local minima are located at angles θ = 115° (control point 4) and θ = 155° 

(control point 8). Control points coordinates are stated in Table 3.10.1 and represented on 

Figure 3.10.1 and Figure 3.10.2. 
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Table 3.10.1 Control points. 

control 

point 

label 

steptheta = 

angle (°) 
x (mm) y (mm) 

1 90,0 0,000 22,000 

2 100,5 -3,589 19,366 

3 107,5 -5,158 16,358 

4 115,0 -6,666 14,296 

5 127,5 -10,512 13,700 

6 135,0 -12,728 12,728 

7 147,5 -13,804 8,794 

8 155,0 -14,296 6,666 

9 167,5 -18,489 4,099 

10 172,0 -20,373 2,863 

11 180,0 -22,000 0,000 

 

Figure 3.10.1 Control points on the theoretical contour. 
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Figure 3.10.2 Control points in the second quadrant on the theoretical curve. 

Measurements of the milled surface positions were originally meant to be performed by the 

same probe as for setting the workpiece zero. It’s a built in probe meaning the 

measurements can be realised right after finishing. Nevertheless the smallest diameter of 

the probe available at the time in the workplace was 6 mm which is more than the minimal 

curvature of the contour rendering accurate measurements impossible. It would also be 

difficult to guarantee that the probe would approach the surface perpendicularly to the 

surface. The machine’s table would have to be rotated meaning the coordinate system 

would rotate with the clamped workpiece as well. Using the built in probe was therefore 

not applied. 
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MarVision MM 420 workshop measuring microscope by company Mahr was used instead 

to evaluate surface positions in order to compare the milled contours to the theoretical one. 

MarVision MM 420 offers smallest magnifications of 0,7 and largest magnification 4. The 

studied part imagery was directly transmitted to the computer as well as values of X and Y 

coordinated in Cartesian coordinate system that is referred to positions of the table axis X 

and Y. 

 

 

 

Figure 3.10.3 MarVision MM 420 workshop measuring microscope 

Firstly the location of the workpiece was clamped and the workpiece origin was 

determined in order to be able to take surface positions in the Cartesian coordinate system 

in which the contour was machined. In the workpiece origin, values of X and Y axis of the 

table of MarVision were set to 0 value therefore both coordinate systems were identical.  

 Real surface positions in the second quadrant were then compared to the control points 

generated previously. Y coordinate of the every control was point fixated and its real X 

coordinate was verified. How much the real value of its X coordinate was different from 

the theoretical value was then compared between methods. The only exception was the 

first control point, where X value was fixated and Y coordinate was verified because it 

wasn’t possible to fixate the Y coordinate as it was different from the theoretical value and 

there wasn’t material of witch to take position of.  
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Figure 3.10.4 Clamping of the workpiece in MarVision. 

3.11 Observations 

For visualisation, local maxima of workpieces machined using equidistant distribution with 

357 knot per contour viewed under microscope are displayed side by side for all used 

interpolation method. In this case all methods were provided sufficient number of knots 

and there wasn’t note any remarkable difference of surface positions as visible in on 

figures in Table 3.11.1. 
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Table 3.11.1 Comparison of performance of spline interpolation methods in vicinity of the first 

local maxima for equidistant distribution with total of 357 knots. 

Linear, equidistant distribution, 357 knots A-spline, equidistant distribution, 357 

knots 

 
 

B-spline, equidistant distribution, 357 

knots 

C-spline, equidistant distribution, 357 

knots  

  

On the other hand the version with least points out of all applied varieties was polar 

distribution with steptheta = 15° with only 24 knots per contour. It shows that the only 

method which usage resulted in machining a contour closest to the theoretical contour was 

C-spline interpolation. First local maxima obtained by this distribution of knots are 

displayed in Table 3.11.2. 
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Table 3.11.2 Comparison of performance of spline interpolation methods in vicinity of the first 

local maxima. 

Linear, polar distribution, 24 knots A-spline, polar distribution, 24 knots 

  

B-spline, polar distribution, 24 knots C-spline, polar distribution, 24 knots 

  

Second local maxima for this distribution milled using different spline methods is 

displayed in Table 3.11.3. 
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Table 3.11.3  Comparison of performance of spline interpolation methods in vicinity of the second 

local maxima. 

Linear, polar distribution, 24 knots A-spline, polar distribution, 24 knots 

 

 

 

 
B-spline, polar distribution, 24 knots C-spline, polar distribution, 24 knots 
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The differences between spline interpolation methods for polar distribution with 24 knots 

(steptheta = 15°) were very visible even by naked eye as illustrated on Figure 3.11.1  and 

demonstrate well the limits of each spline interpolation method. 

 

 

 

Figure 3.11.1 Milled contours realised by spline interpolations for polar distribution of knots, 24 

knots per contour. 

 

When evaluating accuracy of linear interpolation method control points that are at the same 

time local maxima or minima are identical with some of the knots. As linear interpolation 

passes directly through the knots, it might augment its statistics about its accuracy. B-

spline does not pass through the knots therefore its inaccuracy in those control points was 

seemingly bigger that of a linear interpolation method. 
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Figure 3.11.2 Linear interpolation passing directly through a knot. 
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Linear interpolation resulted in formation of facets as viewed under microscope on Figure 

3.11.3 and Figure 3.11.4. The facets are also visible with naked eye as is illustrated on 

Figure 3.11.5. 

 

Figure 3.11.3 Linear, polar distribution, 24 knots, facets in second quadrant, first local maximum. 

 

 

Figure 3.11.4 Linear, polar distribution, 24 knots, facets in second quadrant, second local 

maximum. 
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Figure 3.11.5 Visible facets on contour created using linear interpolation, polar distribution of 72 

knots. 

On the other hand, all employed spline interpolation resulted in smooth curves. Even 

though the contour was not precise, it still was a smooth curve with better surface 

roughness. 
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Figure 3.11.6 B-spline and A-spline interpolation for polar distribution with 24 knot per contour. 

Following charts in 3.12.3 and 3.12.4 represent difference between theoretical coordinate 

and measured coordinate for every control point from 1 to 11. For theoretical curve the 

difference is equal to zero and represents perfect correspondence. Error is marked on radial 

axis in millimetres.  

3.12 Interpretation of measurements of surface position  

Difference of the machined surface coordinate and control point coordinate generated in 

3.10 and was measured for all 24 workpieces. Error in individual points and overall 

accuracy in form of absolute mean error were calculated. 

3.12.1 Error in individual control points 

Error on individual points was calculated by subtracting the measured control point’s 

coordinate form its theoretical value. The errors were then inserted in polar charts that 

displays if the control point coordinate is located further from the origin or closer to the 

origin of the Cartesian coordinate system of the workpiece.  
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Figure 3.12.1.1Control points in second quadrant. 

 

The numbers of control points are on labelled on perimeter and the error is displayed in 

millimetres on the radial axis. Zero error would be represented as on Figure 3.12.1.2. 
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Figure 3.12.1.2 Representation of zero error of control points coordinates. 

3.12.2 Absolute mean error of methods 

To statistically evaluate the overall accuracy of spline interpolation methods, mean 

absolute error was calculated for all employed methods. Mean absolute error (MAE) is the 

average of all absolute errors and is defined as (37) [30]. 

 𝑀𝐴𝐸 =  
1

𝑁
∑|𝑥𝑖 − 𝑥|

𝑁

𝑖=1

 (37) 

Where the abbreviations in (37) stand for [30]: 

N … .number of measured values 

|𝑥𝑖 − 𝑥| … absolute error 

x … real value of x 

xi … measured value of x 
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3.12.3 Accuracy of spline interpolations for polar distribution 

 Error of spline interpolations for polar distribution in individual control 3.12.3.1

points 

Measured errors of control point coordinates obtained using different spline interpolation 

methods with polar distribution of knots are visualised on Figure 3.12.3.1.1, Figure 

3.12.3.1.2 and Figure 3.12.3.1.3. 

 

Figure 3.12.3.1.1 Error coordinates of control points, polar distribution of 360 knots. 
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Figure 3.12.3.1.2 Error of coordinates of control points, polar distribution of 72 knots. 
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Figure 3.12.3.1.3 Error of coordinate of control points, polar distribution of 24 knots. 
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 Mean absolute error of spline interpolations for polar distribution 3.12.3.2

The mean of absolute values of errors of coordinates in for chosen interpolation method for 

all used equidistant distributions of knots are compared on Figure 3.12.3.2.. 

 

Figure 3.12.3.2. Comparison of mean absolute error of spline interpolation method for polar 

distribution of knots. 
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The mean of absolute values of errors of coordinates in for employed interpolation 

methods for polar distribution of 360 knots are compared on Figure 3.12.3.4. 

 

Figure 3.12.3.4 Mean absolute error of spline interpolations for polar distribution of 360 knots. 

 

  



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 109 

The mean of absolute values of errors of coordinates in for employed interpolation 

methods for polar distribution of 72 knots are compared on Figure 3.12.3.5. 

 

Figure 3.12.3.5 Mean absolute error of spline interpolations for polar distribution of 72 knots. 
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The mean of absolute values of errors of coordinates in for employed interpolation 

methods for polar distribution of 24 knots are compared on Figure 3.12.3.6. 

 

Figure 3.12.3.6 Mean absolute error of spline interpolations for polar distribution of 24 knots. 

3.12.4 Accuracy of spline interpolations for equidistant distribution  

 Error of spline interpolations for equidistant distribution in individual 3.12.4.1

control points 

Measured error of control points coordinates for equidistant distribution of knots are 

visualised on Figure 3.12.4.1, Figure 3.12.4.2 and Figure 3.12.4.3. 
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Figure 3.12.4.1 Difference of coordinates of control points, equidistant distribution of 357 knots. 
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Figure 3.12.4.2 Difference of coordinates of control points, equidistant distribution of 177 knots. 

 

 

 



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 113 

 

Figure 3.12.4.3 Difference of coordinates of control points, equidistant distribution of 357 knots. 
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 Mean absolute error of spline interpolations for equidistant distribution 3.12.4.2

The mean of absolute values of errors of coordinates in for chosen interpolation method for 

all used equidistant distributions of knots are compared on Figure 3.12.4.4. 

 

Figure 3.12.4.4 Comparison of mean absolute error of spline interpolation method for equidistant 

distribution of knots. 
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The mean of absolute values of errors of coordinates in for employed interpolation 

methods for equidistant distribution of 357 knots are compared on Figure 3.12.4.5. 

 

Figure 3.12.4.5 Mean absolute error of spline interpolations for equidistant distribution of 357 

knots. 
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The mean of absolute values of errors of coordinates in for employed interpolation 

methods for equidistant distribution of 177 knots are compared on Figure 3.12.4.6. 

 

Figure 3.12.4.6 Mean absolute error of spline interpolations for equidistant distribution of 177 

knots. 

The mean of absolute values of errors of coordinates in for employed interpolation 

methods for equidistant distribution of 57 knots are compared on Figure 3.12.4.7. 



 

 

 

FSI VUT BAKALÁŘSKÁ PRÁCE List 117 

 

Figure 3.12.4.7 Mean absolute error of spline interpolations for equidistant distribution of 57 

knots. 

3.12.5 Imperfection of used evaluation method 

For versions with the highest number of knots, all methods were equally performant and 

detected error was purely fault of imprecision of used evaluating method. 

The employed surface position evaluation method contained some degree of inaccuracy for 

multiple reasons: 

 clamping of the workpiece when using the MarVision was imprecise and only a slight  

turn of the workpiece would cause inaccuracy, as the coordinates system of the 

workpiece and of the microscope’s table would not be identical, 

 only 11 control points were compared, 

 human error played a key role, 

 some of the control point’s location made the evaluation harder and more susceptible to 

human error. 
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For example control point number 5 caused increase in error because it was difficult to 

interpret its real position under the microscope and the slightest difference between 

coordinate systems would cause grave imprecision as illustrated on Figure 3.12.5.1.  

 

Figure 3.12.5.1 Fifth control point verification for C-spline, polar distribution of knots, steptheta 

15°. 

 

3.13 Influence of spline interpolation method on machining time  

Machining time of execution of finishing was measured for every method. 

Even though feed rate was set as a constant, real feedrate was changing its value during the 

execution. (it was displayed on  the control station screen during the execution) Minimal 

value of real feed rate was noted for every method. 
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Table 3.13.1 Machining time and minimal value of real feedrate for different spline interpoaltion 

methods. 

Method POLAR 360 knots Linear A-spline B-spline C-spline 

  Machining time (s) 27,17 22,34 26,04 28,28 

  
Minimal Feedrate 

(mm/min) 
        

  
    

  

Method POLAR 72 knots Linear A-spline B-spline C-spline 

  Machining time (s) 37 21,2 19,47 20,65 

  
Minimal Feedrate 

(mm/min) 
oscilations       

  
    

  

Method POLAR 24s Linear A-spline B-spline C-spline 

  Machining time (s) 20,28 18,27 15,8 17,93 

  
Minimal Feed rate 

(mm/min) 
650 oscilations     

  
    

  

Method EQUIDISTANT 357 Linear A-spline B-spline C-spline 

  Machining time (s) 30,42 20 23,32 20,59 

  
Minimal Feed rate 

(mm/min) 
650 1000 800 1000 

  
    

  

Method EQUIDISTANT 177 Linear A-spline B-spline C-spline 

  Machining time (s) 32,45 23,76 20,31 20,6 

  
Minimal Feed rate 

(mm/min) 
500 900 1200 1300 

  
    

  

Method EQUIDISTANT 57 Linear A-spline B-spline C-spline 

  Machining time (s) 35,29 22,41 18,97 19,97 

  
Minimal Feed rate 

(mm/min) 
200 60 1250 1100 

Ineffective kinetics of linear interpolation described in 1.2.1 caused longer machining time 

for large number of knots. With lesser knots, linear interpolation deformed the contour 

which influenced the machining time.  

Most time effective for largest number of knots were A-spline and C-spline spline 

interpolation. For lesser knot, B-spline interpolation resulted in smaller machining time 

because it wasn’t pulled enough towards the knots and created much flatter curve. Real 

feedrate while applying A-spline interpolation had tendency to decrease down the most out 

of all spline interpolations especially in local minima. To resolve this problem Sinumerik 

840D control system offers short spline blocks compression. It compresses short spline 

block with greater number of knots and created new set of longer spline blocks. [9]. 
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3.14 Discussion  

When the imperfection of the measurements is taken in account, a tolerance of mean 

absolute error inferior to 0,08 mm can be set as a limit for which the employed method 

interpolates the knots sufficiently. Pairing of methods and distributions that can be 

considered pass this limit are stated in Table 3.14.1. and Table 3.14.2. 

Table 3.14.1 Suitability of studied interpolation methods for equidistant distribution and given 

input data. 

Interpolation 

method 
Distribution 

Number of 

knots 

Angle 

between 

knots (°) 

Mean error 

(mm) 
Suitability 

A-spline Polar 360 1 0,050 OK 

B-spline Polar 360 1 0,099 NOT 

C-spline Polar 360 1 0,049 OK 

Linear Polar 360 1 0,054 OK 

A-spline Polar 72 5 0,041 OK 

B-spline Polar 72 5 0,234 NOT 

C-spline Polar 72 5 0,035 OK 

Linear Polar 72 5 0,088 NOT 

A-spline Polar 24 15 0,676 NOT 

B-spline Polar 24 15 1,241 NOT 

C-spline Polar 24 15 0,382 NOT 

Linear Polar 24 15 0,665 NOT 

Table 3.14.2 Suitability of studied interpolation methods for equidistant distribution and given 

input data. 

Interpolation 

method 
Distribution 

Number of 

knots 

Distance 

between 

knots (mm) 

Mean error 

(mm) 
Suitability 

A-spline Equidistant 357 0,38148 0,057 OK 

B-spline Equidistant 357 0,38148 0,047 OK 

C-spline Equidistant 357 0,38148 0,059 OK 

Linear Equidistant 357 0,38148 0,033 OK 

A-spline Equidistant 177 0,76943 0,025 OK 

B-spline Equidistant 177 0,76943 0,055 OK 

C-spline Equidistant 177 0,76943 0,046 OK 

Linear Equidistant 177 0,76943 0,040 OK 

A-spline Equidistant 57 2,38929 0,050 OK 

B-spline Equidistant 57 2,38929 0,330 NOT 

C-spline Equidistant 57 2,38929 0,070 OK 

Linear Equidistant 57 2,38929 0,114 NOT 
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Equidistant distribution of knots seems more efficient and results in better accuracy even 

for lesser number of knots. If we compare equidistant distribution with 57 knots and polar 

distribution with 72 knots the obtained accuracy is comparable even though the number of 

knot for the equidistant distribution was much higher. 

B-spline interpolation was found to be the most inaccurate. The milled curved obtained by 

B-spline interpolation was deformed much more when given lesser knots for both types 

distribution of knots. 

Linear interpolation results were ameliorated by the fact that 4 out of 11 control points 

were also knots and linear interpolation passes through the knots (in contrast with B-spline 

that never does). In reality the facets were present for 72 and less knots for polar 

distribution and for 57 equidistant knots. 

For studied polar distributions A-spline and C-spline were equally performant for 360 

knots and starting from 72 knots and less, C-spline interpolated the knots significantly 

better even though not even C-spline interpolation was sufficient to meet the limit set 

previously. It’s therefore possible to pronounce that the limit for application of C-spline 

interpolation lays between a knot every 5° and a knot every 15°. 

For studied equidistant distributions A-spline and C-spline interpolations were equally 

performant up until method with 57 knots were A-spline interpolation performed slightly 

better but that can be caused by an imprecision of the evaluation method described in 

3.12.5. For 57 equidistant knots, the distance between two knots is 2,389 mm both A-

spline and C-spline interpolate the knots sufficiently. The limit for distance between knots 

for these two spline interpolation methods is therefore lower than 2,389 mm. 

All spline interpolations had shorter machining time compared to linear interpolation, 

illustrating better kinetics of spline interpolation. While employing the linear interpolation 

the tool has variable velocity and stops at every knot. It’s possible to machine using linear 

interpolation with the same precision as with spline interpolations when the volume of 

input data is large enough but with longer machining time.  

When we provide enough knots every method of interpolation can be used. For linear 

interpolation knots placed equidistantly 0,76943 mm apart resulted in sufficient accuracy 

with mean absolute error inferior to set limit 0,8 mm. For bigger distance between the 

knots, linear interpolation didn’t meet the criteria. B-spline as the second least performant 

met the limit for the same value of 0,76943 mm between knots but didn’t for lesser knots 

for equidistant neither for polar distribution. A-spline placed second with sufficient 

accuracy even for only 72 knots spaced by angle 5° using the polar distribution and for 

equidistant distribution, 2,38929 mm between knots was still sufficient for the A-spline to 

validate. C-spline validated all employed methods except polar distribution of 24 knots 

spaced 15° apart.  A-spline and C-spline validated for same variations of methods, but C-

spline had lower mean absolute error and was therefore concluded to be the most 

performant out of all used methods. 
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 C-spline interpolation was the most performant even with lesser knots needed. Especial 

when the knots weren’t equidistantly spaced, C-spline wasn’t susceptible to differ from the 

theoretical curve as much as other studied interpolation methods. A-spline was the second 

most accurate, but manifested some decelerations due to short spline blocks and therefore 

slightly longer machining time. B-spline was the most likely to deform the curve when 

given lesser knots out of all studied splines. 

Spline interpolations provide better results with lesser knots with the advantage of CNC 

programs with smaller file size. For example finishing subprogram for equidistant 357 

knots for linear interpolation has 40,6 kB while finishing subprogram for equidistant 

distribution with 177 knots for C-spline has only 20 kB while obtaining similar precision.  
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CONCLUSIONS 

This study elaborated application of spline interpolations for CNC milling, its advantages 

and limits. CNC programs employing spline interpolations were designed as a part of this 

study on a closed symmetrical contour. The programs were then executed and accuracy of 

spline interpolation methods was examined. Linear interpolation was studied to serve as a 

comparison for spline interpolations.  

Advantages of application of spline interpolations instead of linear interpolation for CNC 

milling are following: 

 smooth toolpath with better surface quality, 

 reduction of machining time, 

 less input data needed resulting in smaller file size of subprograms containing  knot’s 

coordinates. 

The comparison of the milled curves using spline interpolation lead to following 

conclusions: 

 C-spline was the most adapted to precisely interpolate a curve even for less input data, 

 A-spline placed second when it comes to accuracy of the milled curve, 

 NURBS interpolation resulted in deformed curve when provided lesser knots because 

curve wasn’t pulled enough to the knots, the maximal value of weight of the knots 

programmable in Sinumerik control system had limited value PW = 3. 

In conclusion the limit methods for different spline interpolation are: 

 for A-spline: equidistant distribution with  2,38929 mm between knots, 

 for B-spline: equidistant distribution with 0,76943 mm between knots, 

 for C-spline: equidistant distribution with  2,38929 mm between knots, 

 for linear interpolation: equidistant distribution with 0,76943 mm between knots. 

Spline interpolation can in some cases replace linear interpolations and bring a significant 

improvement for machining processes. Spline interpolation has potential to be applied in 

reverse engineering to machine a new product based on an existing product without the 

need to create its complex virtual model. Thus method can be employed to machine 

analytically describable curves without using CAD/CAM systems. Spline interpolations 

can be applied in reverse engineering or to realize milling of analytically known curves 

without the need to create a CAD model. To determine limits of spline interpolation in 

form of maximal distance between knots for every spline interpolation methods, further 

experimentation is needed with more variations of number of knots per length and distance 

between knots for equidistant distribution of knots.  
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LIST OF SYMBOLS AND ABBREVIATIONS 

Abbreviation Unit Describtion 

2D [-] Two dimensional 

3D [-] Three dimensional 

ATC [-] Automatic Tool Changer 

CAD [-] Computer-Aided Design 

CAM [-] Computer-Aided Manufacturing 

CNC [-] Computer Numerical Control 

ISO [-] International Organization of Standardization 

MAE [-] Mean absolute error 

NC [-] Numerical Control 

NURBS [-] Non-uniform rational basis spline 

PW [-] Parameter of weight (for NURBS interpolation) 

 

Symbol Unit Describtion 

A, B, C [-] Rotational axes of CNC machine 

D [mm] Diameter of the tool 

G… [-] Preparatory functions 

F [-] Feed rate designation 

L [mm]  

M [-] machine reference point 

M… [-] miscellaneous (auxiliary) functions 

N… [-] block (line) number 

ρ [mm] rayon of curvature 

P [-] tool setup point 

R [-] reference point 

rt [mm] radius of the tool 
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r [mm] 
distance of a point from the origin of a polar 

coordinate system 

vc [m.min
-1

] cutting speed 

vf [m.min
-1

] feed 
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LIST OF APPENDICES  

 

Appendice 1:  CD-Rom containing all MATLAB 2018a scripts and NC programs 



 

 


