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Abstract
DSL Tools Generator is a tool for simplifying the development of domain-specific languages
by generating parts of their implementation (e.g. abstract syntax tree) in C# and tools for
using the language in a code editor. Based on an ANTLR4 grammar and a DSL configuration
file, it generates a server implementation for the Language Server Protocol and a language
support extension for Visual Studio Code that provides syntax highlighting, error reporting,
and basic code completion functionality. The developed tool can significantly reduce the time
and effort required for building a DSL with editor support.

Abstrakt
DSL Tools Generator je nástroj pro zjednodušení vývoje doménově specifických jazyků gen-
erováním částí jejich implementace (např. abstraktního syntaktického stromu) v jazyce C#
a nástrojů pro použití daného jazyka v editorech kódu. Podle zadané gramatiky a konfigu-
račního souboru vygeneruje implementaci serveru pro Language Server Protocol a rozšíření
pro Visual Studio Code, které poskytuje zvýrazňování syntaxe a syntaktických chyb a základní
doplňování kódu. Výsledkem práce je nástroj, který dokáže podstatně zkrátit čas a snížit úsilí
potřebné k vytvoření doménově specifického jazyka s podporou v editorech kódu.

Keywords
domain-specific language, code generation, Visual Studio Code, C#, Language Server Proto-
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Rozšířený abstrakt
Doménově specifické jazyky (DSL) jsou jazyky navržené s úzkým zaměřením na určitou
oblast, ve které pak nabízí čitelnou a stručnou syntaxi, více možností pro doménově speci-
fickou validaci a analýzu a další výhody. Běžnými příklady DSL jsou jazyky pro rozvržení
a stylování dokumentů (HTML, CSS), dotazování (SQL, GraphQL) a serializaci dat (Protobuf),
programování grafických shaderů (GLSL, HLSL) a tvorbu diagramů (DOT, Mermaid).

Úspěch takových jazyků je do velké míry ovlivněn kvalitou jeho podpory v editorech kódu. To
zahrnuje například zvýrazňování syntaxe (a sémantiky), hlášení chyb pomocí podtrhávání,
doplňování (našeptávání) kódu a zobrazení dokumentace při najetí myši (hover). Language
Server Protocol (LSP) umožňuje využití jednoho programu s touto funkcionalitou v mnoha
editorech kódu.

Zatímco pro ostatní programovací jazyky existuje několik nástrojů pro tvorbu DSL (např.
Xtext, JetBrains MPS, Spoofax, Langium, textX), pro C# (.NET) jich v současné době existuje
jen velmi málo.

Cílem této práce je vytvořit nástroj pro zjednodušení vývoje doménově specifických jazyků
generováním částí jejich implementace (např. abstraktního syntaktického stromu) v jazyce
C# a nástrojů pro použití daného jazyka v editorech kódu.

Jako generátor syntakticého analyzátoru byl zvolen nástroj ANTLR, který je dostatečně
flexibilní a navíc zpřístupňuje informace o gramatice i za běhu, což lze využít pro funkcionalitu
doplňování kódu. Také bylo nutné vyřešit problém stínování (shadowing) způsobeného rozdíly
v chování ANTLR lexerů a TextMate gramatik používaných pro zvýrazňování syntaxe. Nakonec
byl vyvinutý nástroj otestován vytvořením nástrojů pro dva doménově specifické jazyky: Avro
IDL a CSS.

Výsledkem práce je nástroj, který podle zadané gramatiky a konfiguračního souboru vy-
generuje implementaci serveru pro Language Server Protocol a rozšíření pro editor Vi-
sual Studio Code, které poskytuje zvýrazňování syntaxe a syntaktických chyb a základní
doplňování kódu. Vytvořený nástroj dokáže podstatně zkrátit čas a snížit úsilí potřebné
k vytvoření doménově specifického jazyka s podporou v editorech kódu.
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Chapter 1

Introduction

Domain-specific languages (DSLs) are languages that have been designed and optimized for
a specific narrow purpose, meaning the set of programs or models that they can describe is
constrained. However, their limited scope yields many benefits, such as readable and concise
syntax, more opportunities for domain-specific validation and analysis, and more. Common
examples of DSLs are languages for document layout and styling (HTML, CSS), data querying
(SQL, GraphQL) and serialization (Protobuf), graphics shader programming (GLSL, HLSL),
but also diagramming (DOT, Mermaid), tax or wage calculations, and healthcare.

Language support in a code editor is crucial to enable a fast feedback loop, increase pro-
ductivity, learnability, and discoverability. Without it, users lack confirmation and feedback
about the syntactic and semantic validity of their code and have to resort to looking up
documentation about the available features in external documentation.

Multiple DSL creation toolkits exist for Java and JavaScript; however, there are currently very
few tools for developing DSLs in the C# (.NET) ecosystem, aside from parser generators and
parsing libraries like ANTLR, Sprache and Pidgin.

The goal of this thesis is to design and implement a tool that can streamline the development
of domain-specific languages by generating tools for a given language, including language
support integration for existing code editors. Specifically, this involves analyzing a description
of the given language in the form of a formal grammar and producing the code for a language
server and its associated VS Code extension (communicating over the Language Server
Protocol). In most cases, the user will have to provide code that obtains the results of
semantic analysis for a given document and specify how to utilize its results in editor features
such as diagnostics (errors, warnings), semantic highlighting, and code completion.

The developed tool should be lightweight, not locked into specific editor or IDE (Eclipse,
IntelliJ, etc.), quick to install (as a command-line program) and easy to integrate into existing
codebases.
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Chapter 2

Domain-Specific Languages

This chapter describes the basics of domain-specific languages, when they are useful, and
explores the approaches used to implement them.

2.1 What is a DSL?

A domain-specific language (DSL) is a formal language designed and optimized for a particular
domain, based on abstractions and features that make it easy to express ideas in that domain.
Examples of such domains include:

• web design and development – HTML, CSS, SCSS, Wasp
• data querying and manipulation – SQL, GraphQL, Cypher, Gremlin, SPARQL, KQL, CQL,

OQL, TypeQL, BIMQL, PathQuery, PromQL, LogQL, HQL
• data storage and modeling – LookML, ERML, DBML
• data serialization and configuration – XML, JSON, CSON, YAML, TOML, Jsonnet, GCL
• shell scripting – Bash, Fish, ZSH, PowerShell
• build configuration – Makefile, CMake, Gradle, Cocoa Podfile
• hardware description – VHDL, Verilog, SystemVerilog, Lola, AHDL
• networking and interface description – P4, YANG, Protobuf schema, Avro IDL, Thrift
• GUI description languages – QML, Quid, Slint
• graphics programming – GLSL, HLSL, MSL, WGSL, Slang
• game development – GSC (scripting language used in Call of Duty games), Papyrus

(scripting language used in Bethesda games), PuzzleScript
• diagramming – DOT (GraphViz), GrGen, PlantUML, Mermaid, D2, blockdiag
• typesetting and markup – TEX, BibTeX, Typst, Markdown, Texy
• model checking, formal verification, simulation – PRISM, GAL, Promela, P, Modelica
• tax or wage calculations – RegelSpraak [2], a payroll DSL at DATEV [12]
• healthcare – ALPH
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Compared to general-purpose programming languages (GPLs), DSLs are more limited in
scope but offer greater productivity and conciseness within their domain. This makes them
easier to use for non-programmers, since they can work in an environment that uses concepts
from their area of expertise, including error messages, analysis results, etc. [11]

Separating the knowledge of the subject-matter expert from the technical aspects of the
system has many benefits – one of them being the ability to perform arbitrary static analysis
and validation on the code. Implementing domain-specific analysis on GPL code is usually
not viable1, except in cases where a compiler-as-a-service (like Roslyn for C#, Clang for C++)
or a sufficiently extensible compiler or linter (e.g. clippy for Rust or TSLint for TypeScript) is
available.

Domain-specific languages can be divided into external (a language with its own syntax,
requiring a separate parser) and internal (embedded into a host language and implemented
with its abstractions [11]; distinguished from a normal library API by having a language-like
flow; also called fluent interfaces) [5]. This thesis focuses exclusively on external DSLs.

DSLs can be used to specify behavior (via code generation or interpretation), require-
ments/tests, or to produce an output artifact like diagrams or documents. They might also
describe a model of some part of a system (e.g. to verify some of its properties).

Although many DSLs are targeted at programmers, a significant portion of them are intended
to be used by non-programmers, often subject-matter experts who have a lot of experience in
their domain.

Generic configuration languages like JSON, XML, YAML, when paired with schemas, can, in
some cases, be used as a lightweight alternative to DSLs – editors like VS Code are often able
to provide some amount of in-editor validation, code completion, hover documentation, etc.,
based on the provided schema.

At least some amount of editor support is essential for most DSLs to be able to succeed
and provides great value to their users. The most common type of editor support includes
real-time error checking, code completion, signature (parameter) help, and hover tooltips to
explore and explain syntax and semantics. Some types of editor support are not common
for programming languages, but are very useful for DSLs, like live preview (of the resulting
diagram or document) or an alternative view of the model (state machine, class hierarchy,
railroad diagram of a grammar, etc.).

2.2 Creating a DSL

The traditional approach to implementing a DSL or programming language is to create a
pipeline consisting of four basic stages:

1. lexical and syntax analysis (parsing) that transforms the input document (sequence
of characters) into a tree representation (parse tree). The parser can be either hand-
written, possibly using a parser combinator library, or generated by a parser generator
tool such as ANTLR, lex+yacc, or flex+bison.

1it would require not just a reliable parser for the programming language, but also an accurate semantic
analyzer (e.g. name binding, type-checking)
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abstract record AstNode;
abstract record Statement : AstNode;
record AssignStatement(string VarName, Expression Value) : Statement;
abstract record Expression : AstNode;
record StringLiteralExpression(string Value) : Expression;

Figure 2.1: Example of a definition of a simple AST class hierarchy in C# (using the Records
feature from C# 9.0)

2. transforming the parse tree into some kind of intermediate representation (IR) better
suited for further processing; often an abstract syntax tree (AST) or semantic model

3. performing analysis of the semantics: name binding (resolving references to defined
symbols), validation (checking that the code is valid according to the language’s speci-
fication), etc.

4. evaluating the code – either by interpreting it or by generating some kind of output
(e.g. code, graphics, sound)

The pipeline is often thought of in terms of two parts: a frontend (analysis) and a backend
(synthesis). This thesis focuses solely on the frontend.

Abstract Syntax Tree

The AST is a tree-like2 data structure commonly represented (in object-oriented languages)
using a class hierarchy where each class represents one type of node, and the attributes
and child nodes are stored in typed properties. In functional languages, the AST is usually
represented using algebraic data types, specifically discriminated unions.

Operations on an AST:

• traverse the AST – visit each child or descendant node

• attach data from semantic analysis to specific nodes – resolved/bound references,
expression types, diagnostics (errors, warnings, suggestions), etc.

• find a node at a given position in the document (needed for editor integration)

• edit and “unparse” (serialize back to source code) without losing formatting and
comments

2.3 Language Support

To get language support in an editor or IDE, the author would have to either build their
own development environment tailored to their language, or build an extension (plugin)

2when taking into account cross-references to other nodes, it becomes a graph, but even then, the primary
relation is still the containment relation (“contains” / “is child of”).
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for an existing code editor. This involves learning the language the editor is written in,
e.g. JavaScript or TypeScript in the case of VS Code, and reimplementing some of the logic
from the compiler – parsing, analysis, and validation.

Thanks to the Language Server Protocol (LSP), editor extensions themselves do not have to
perform any parsing or analysis of the documents being edited. Instead, they can send the
text to a language server (over a socket or standard input/output), which is responsible for
parsing and analyzing the document and provides the editor extension with information such
as diagnostics (errors and warnings), code completion suggestions (IntelliSense), signature
help, symbol documentation, and more.

Integration of the editor features with LSP can be largely delegated to libraries that handle
most of the LSP communication. However, if the language server offers custom request or
notification types, the extension author must implement them manually for the corresponding
editor.

One of the major benefits of LSP is that the server does not need to be implemented in the
same language as the editor extension (the client); therefore, it can reuse logic from (or even
be part of) the main language implementation.

Not all features of LSP can be used for all DSLs, as some of them rely on specific language
concepts or paradigms. The suitability of LSP (and the Debug Adapter Protocol) for domain-
specific languages was investigated in [4].

There are multiple design concerns for the concrete syntax of a language that influence what
kind of editor services might be beneficial to the user [11]:

Learnability – to make it possible for the user to learn about new concepts as they need
them (or as they encounter them in existing code), the editor can provide:

• code completion (to answer the question “what can I type here?”)

• real-time error checking (“can I do this?”)

• snippets (“what is the syntax for . . . ?”)

• hover/tooltips (“what is this?”)

• high-quality error messages (“why is this wrong?”)

• user-executable code fixes (“how can I correct this code?”)

A major factor influencing the learnability (and teachability) of a language is having access
to an online editor environment (often called a playground) that allows users to experiment,
try out new features, and share snippets of code with others, all without having to install any
software on their computer.

One could also imagine more involved forms of learning assistance (context-sensitive help),
such as a side panel with an overview of the syntax (perhaps using syntax diagrams, also
known as railroad diagrams) and/or semantics of the language that responds to the user’s
current position or selection in the document. Alternatively, a visualization (e.g. a class
diagram, finite-state machine) or preview (e.g. rendering result, an interactive simulation)
can also help users understand whether their expectations regarding the structure or meaning
of the code are correct.
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(a) Code Completion

(b) Inline Diagnostics (displayed by the Error Lens extension)

(c) Code Actions (d) Document Outline

Figure 2.2: Examples of editor services provided by VS Code and LSP

Writability – code completion and code snippets help accelerate common tasks when writing
code and decrease the need for looking up external documentation. Code Actions can
automate refactoring operations and fix errors or detected “code smells”.

Readability – documentation or other information can be displayed on hover (using tooltips)
or inline (using inlay hints – virtual text or other elements that are only a visual decoration
inside the editor area). Code folding can temporarily hide parts of the source code that
are not currently relevant. Code navigation can be facilitated with commands like Go To
Definition and Find All References.

2.3.1 Syntax Highlighting

For the purposes of this thesis, syntax highlighting means:
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1. pattern matching on characters in a document, line by line, based on a list of rules
defined using regular expressions – transforming each line into a sequence of tokens

2. assigning each token the corresponding color or font style (bold, italic, strike-through)

Notably, the TextMate editor for Mac used this simple (but relatively powerful) regex-based
highlighting system – its TextMate grammar format (.tmLanguage) is supported by other
editors (e.g. VS Code, Sublime Text).

Tokens in the TextMate system can have multiple scopes, which are symbols similar to class
names in CSS – themes contain selectors that target scope names and assign colors or font
styles to them.

A TextMate grammar consists of a list of rules that apply from top to bottom. Each rule
attempts to match characters using its regular expression from the current position. If a rule
successfully matches any characters, a token is produced with the rule’s configured scope
name and the matching starts again from the new position.

The regular expressions of rules are constrained to a single line. To produce multi-line tokens,
a different type of rule with separate begin and end patterns is needed.

There are other grammar formats for syntax highlighting, e.g. .sublime-syntax (also regex-
based, but more powerful, with an explicit stack of contexts), Monarch, etc.

Syntax highlighting is also used in places other than code editors, usually to highlight code
snippets in documents or websites. Popular libraries and tools for this purpose include
highlight.js, prism.js, Shiki, and Pygments (used by the minted package for LATEX.

2.4 DSL Development Frameworks and Language Workbenches

There are multiple frameworks and DSL development environments called language work-
benches that can be used to create a DSL relatively quickly, at least after having learned how
to use the tool, which often takes a nontrivial amount of time.

The Java ecosystem contains many projects that support the creation of DSLs with editor
support:

• Xtext (based on the Eclipse Modeling Framework and Ecore)

• Spoofax (also Eclipse-based)

• JetBrains MPS – a complete language workbench with a projectional3 editor

textX is a language and a tool for creating DSLs in Python [3]. From a grammar of the
language, it constructs a parser and a meta-model as a set of Python classes. It has support
for automatic resolving of references, error-reporting, debugging, and even visualization of
models using GraphViz. It has a playground page available online4 where users can try out
the textX language.

3projectional editing means the user directly manipulates the model/AST, which is then projected to text or
graphics

4https://textx.github.io/textx-playground/
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The textX-LS project that provides basic editor support for languages built with textX was
inactive for several years, but a new maintainer (Milan Šović, @AirmiX) was announced in
April 2024.

A similar project called Langium was started in 2021 by TypeFox and became part of the
Eclipse Foundation in 2023. It is a language engineering tool for TypeScript (Node.js) with
first-class support for the Language Server Protocol [10]. It uses the Chevrotain parser library.

There are also programming languages with support for language-oriented programming:
Rascal, Racket, and Raku. These have dedicated support for defining languages and their
behavior.
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Chapter 3

Language Server Protocol

The language server protocol (LSP) standardizes the communication between code editors
and language servers, which provide language-specific analysis and provide data for editor
services such as auto-completion, diagnostics, finding references, etc. This allows a single
language server to be reused in multiple editors with minimal effort1. [6]

As of January 2024, there are more than 240 language server implementations listed on the
official LSP website [6].

A language server is a program launched (and terminated) by the client (code editor) and
communicating only with that one client, usually over standard input/output or network
sockets (localhost only), although this is not defined by the LSP specification.

The server and client exchange JSON-RPC messages (requests, responses, and notifications)
described by the LSP specification [6]. There are many libraries (SDKs) that implement the
basic protocol handling logic available for most mainstream programming environments.

A language client is a part of a code editor or other development tool (either built-in or in
the form of an extension or plugin) that manages the lifetime of its corresponding language
server and handles the communication over LSP, including calling the appropriate APIs for
manipulating elements of the user interface of the editor, for instance, it might:

• show suggestions in a drop-down menu
• color or decorate a span of text or an entire line
• apply edits to a document
• display contextual help (e.g. signature help when the cursor is inside a function call)

3.1 Base Protocol

LSP is based on JSON-RPC version 2.0, which is a simple Remote Procedure Call protocol
where the server and the client send each other messages serialized as JSON documents.

1unless the language server uses an extended version of the protocol with custom message types that are not
handled by LSP libraries
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Figure 3.1: LSP communication example from [6]

The underlying transport mechanism can be anything, as long as both sides agree on it.
The specification requires LSP implementations to support communication over standard
input/output. Other options include network sockets and Inter-Process Communication
(IPC). [6]

3.2 Messages

The LSP contains the following categories of messages [6]:

• Lifecycle Messages – initialization, registration of capabilities, shutdown, tracing

• Document Synchronization – open/change/save/close notifications from the client

• Workspace Features – (file) create/rename/delete notifications from the client, work-
space (multi-document) edits (like automated refactorings), fetching configuration,
project-wide symbol search

• Language Features – Completions, Diagnostics, Folding, Formatting, Inlay Hints, Code
Lens, Semantic Highlighting, Code Actions, Finding/Highlighting/Resolving/Renaming
Symbol References and Definitions, Document Links

Since not all types of messages and LSP features are mandatory, the client and the server
send their capabilities during initialization to communicate which features they support [6].
Alternatively, if the client supports dynamic capability registration, the server can choose
to delay the announcement of a capability if it takes a significant amount of time to load
(and would block the server from being able to respond to requests for services that would
otherwise be available immediately).

12



3.3 Related Protocols and Formats

Multiple other protocols were created that follow the same principles as the Language Server
Protocol and even use the same underlying base protocol (the subset of LSP that is not specific
to language servers and can be reused in other protocols).

One of these is the Debug Adapter Protocol (DAP) that allows a single debugger to be reused
from any editor that supports this protocol. However, for historical reasons, DAP does not
use JSON-RPC like LSP does – it was based on the now-obsolete V8 debugging protocol.

Other protocols with an LSP-compatible base protocol include Build Server Protocol (BSP),
Graphical Language Server Protocol (GLSP) and MSTest Runner Protocol. In theory, a single
server could even support multiple of these protocols simultaneously.

LSIF is “a standard format for persisted code analyzer output”2 – a data format for storing
the data computed by LSP servers (or separate programs called indexers) for later retrieval
without access to the LSP server, e.g. for resolving references when viewing repository code
on the web. The web server probably does not know how to correctly configure and launch
the LSP server. However, the development environment or Continuous Integration do, so
they can persist (“dump”) all the information necessary for answering LSP requests on the
codebase into a file that is then read by the web server.

Sourcegraph has developed an alternative indexing format called SCIP.

2https://lsif.dev/
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Chapter 4

ANTLR

This chapter focuses on the ANTLR parser generator: why it is useful, how it is used, and its
strengths and weaknesses.

ANTLR (ANother Tool for Language Recognition) is a popular parser generator created by
Terence Parr. It is a Java program that accepts a grammar file (in an EBNF-like format) and
generates code for a lexer and parser for the described language (plus a listener and visitor
class for custom processing of the produced parse trees) in one of several supported target
programming languages (Java, C#, C++, JavaScript/TypeScript, Python, Dart, Go, PHP,
Swift) [8].

Version 4, released in 2013, brought some interesting improvements that are very helpful
when building editor support (mainly for code completion) and error handling. [7]

Users are not required to have extensive knowledge of traditional parsing theory (LL(1), etc.)
to write a grammar, since ANTLR4 supports unbounded look-ahead (thanks to the adaptive
prediction mechanism described in section 4.2 on page 16) and automatic elimination of
direct left recursion (parse trees are transformed back to match with the grammar). However,
indirect (two or more mutually left-recursive rules) or hidden left-recursion is not supported
(e.g. a rule like expr : ’not’? expr ’and’ expr would have to be split into two separate
rules, one with ’not’ and one without).

4.1 Usage

After invoking the ANTLR tool with the grammar file name as an argument, the following files
are generated: Lexer, Parser, Listener, Visitor (if the -visitor option is given), a .tokens file
listing the defined token types and their numeric values, and an .interp with data necessary
for simulating the parser using an interpreter.

To be able to instantiate the generated parser class, it is necessary to first construct a CharStream,
use it to create a Lexer, use it as the token source for a TokenStream, and finally create a
Parser with the TokenStream as input. The generated parser class includes parsing methods
for each parser rule defined in the grammar. These parse the previously provided token
stream into a parse tree and report any errors to all configured error listeners.
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grammar Ex; // generates class ExParser
// action defines ExParser member: enumIsKeyword
@members { bool enumIsKeyword = true; }
stat : expr '=' expr ';' #assignmentStat

| expr ';' #exprStat
;

expr : expr '*' expr #multExpr
| expr '+' expr #addExpr
| expr '(' expr ')' #funcCallExpr
| id #idExpr
;

id : ID | {!enumIsKeyword}? 'enum' ;
ID : [A-Za-z]+ ; // match letter-only identifiers
WS : [ \t\r\n]+ -> channel(HIDDEN) ; // ignore whitespace

void stat() {
switch (adaptivePredict("stat", callStack)) {

case 1:
expr(); match('='); expr(); match(';'); break;

case 2:
expr(); match(';'); break;

}
}

void stat() { / / p a r s e a c c o r d i n g t o r u l e s t a t
switch (adaptivePredict("stat", call stack)) {

case 1 : / / p r e d i c t p r o d u c t i o n 1
expr (); match(’=’); expr (); match(’;’);

break;

case 2 : / / p r e d i c t p r o d u c t i o n 2
expr (); match(’;’); break;

}

}

Figure 2. Recursive-descent code for stat in grammar Ex
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Figure 3. ATN for ANTLR rule stat in grammar Ex

input on-demand. The parser incrementally and dynamically
builds a lookahead DFA per decision that records a mapping
from lookahead sequence to predicted production number. If
the DFA constructed to date matches the current lookahead,
the parser can skip analysis and immediately expand the pre-
dicted alternative. Experiments in Section 7 show that ALL(*)
parsers usually get DFA cache hits and that DFA are critical to
performance.

Because ALL(*) differs from deterministic top-down meth-
ods only in the prediction mechanism, we can construct con-
ventional recursive-descent LL parsers but with an important
twist. ALL(*) parsers call a special prediction function, adap-
tivePredict, that analyzes the grammar to construct lookahead
DFA instead of simply comparing the lookahead to a statically-
computed token set. Function adaptivePredict takes a nonter-
minal and parser call stack as parameters and returns the pre-
dicted production number or throws an exception if there is no
viable production. For example, rule stat from the example in
Section 2.1 yields a parsing procedure similar to Figure 2.

ALL(*) prediction has a structure similar to the well-known
NFA-to-DFA subset construction algorithm. The goal is to dis-
cover the set of states the parser could reach after having seen
some or all of the remaining input relative to the current de-
cision. As in subset construction, an ALL(*) DFA state is the
set of parser configurations possible after matching the input
leading to that state. Instead of an NFA, however, ALL(*) sim-
ulates the actions of an augmented recursive transition net-
work (ATN) [27] representation of the grammar since ATNs
closely mirror grammar structure. (ATNs look just like syn-
tax diagrams that can have actions and semantic predicates.)
LL(*)’s static analysis also operates on an ATN for the same
reason. Figure 3 shows the ATN submachine for rule stat.

An ATN configuration represents the execution state of a
subparser and tracks the ATN state, predicted production num-
ber, and ATN subparser call stack: tuple (p, i, γ).4 Configu-
rations include production numbers so prediction can identify
which production matches the current lookahead. Unlike static
LL(*) analysis, ALL(*) incrementally builds DFA considering
just the lookahead sequences it has seen instead of all possible
sequences.

4 Component i does not exist in the machine configurations of GLL, GLR, or
Earley [8].

1

ID =
:1sD0
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ID )( ;
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(a) After x=y; (b) After x=y; and f(x);

Figure 4. Prediction DFA for decision stat

When parsing reaches a decision for the first time, adap-
tivePredict initializes the lookahead DFA for that decision by
creating a DFA start state, D0. D0 is the set of ATN subparser
configurations reachable without consuming an input symbol
starting at each production left edge. For example, construction
of D0 for nonterminal stat in Figure 3 would first add ATN
configurations (p, 1, []) and (q, 2, []) where p and q are ATN
states corresponding to production 1 and 2’s left edges and [] is
the empty subparser call stack (if stat is the start symbol).

Analysis next computes a new DFA state indicating where
ATN simulation could reach after consuming the first looka-
head symbol and then connects the two DFA states with an
edge labeled with that symbol. Analysis continues, adding new
DFA states, until all ATN configurations in a newly-created
DFA state predict the same production: (−, i,−). Function
adaptivePredict marks that state as an accept state and returns
to the parser with that production number. Figure 4a shows the
lookahead DFA for decision stat after adaptivePredict has an-
alyzed input sentence x=y;. The DFA does not look beyond =

because = is sufficient to uniquely distinguish expr’s produc-
tions. (Notation :1 means “predict production 1.”)

In the typical case, adaptivePredict finds an existing DFA
for a particular decision. The goal is to find or build a path
through the DFA to an accept state. If adaptivePredict reaches
a (non-accept) DFA state without an edge for the current looka-
head symbol, it reverts to ATN simulation to extend the DFA
(without rewinding the input). For example, to analyze a second
input phrase for stat, such as f(x);, adaptivePredict finds an
existing ID edge from the D0 and jumps to s1 without ATN
simulation. There is no existing edge from s1 for the left paren-
thesis so analysis simulates the ATN to complete a path to an
accept state, which predicts the second production, as shown
in Figure 4b. Note that because sequence ID(ID) predicts both
productions, analysis continues until the DFA has edges for the
= and ; symbols.

If ATN simulation computes a new target state that already
exists in the DFA, simulation adds a new edge targeting the ex-
isting state and switches back to DFA simulation mode starting
at that state. Targeting existing states is how cycles can appear
in the DFA. Extending the DFA to handle unfamiliar phrases
empirically decreases the likelihood of future ATN simulation,
thereby increasing parsing speed (Section 7).

3.1 Predictions sensitive to the call stack
Parsers cannot always rely upon lookahead DFA to make
correct decisions. To handle all non-left-recursive grammars,
ALL(*) prediction must occasionally consider the parser call
stack available at the start of prediction (denoted γ0 in Sec-
tion 5). To illustrate the need for stack-sensitive predictions,
consider that predictions made while recognizing a Java method
definition might depend on whether the method was defined

4 2014/3/24

Figure 4.1: An example ANTLR4 grammar with the corresponding generated parser code
(simplified) and ATN for the stat rule. Adapted from [9]
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ANTLR is quite flexible and extensible. The generated C# classes are marked as partial so
that the user can add members to them. Also, the templates used for code generation (using
the StringTemplate library) are overridable – if a template for a specific codegen target is
found in CLASSPATH, it replaces the default one.

4.2 Adaptive LL(*) and Augmented Transition Networks

Parsers generated by ANTLR4 use a unique parsing strategy called Adaptive LL(*) (ALL(*))
developed by Terence Parr, Kathleen Fisher, and Sam Harwell [9]. The major innovation
compared to LL(*) (used in ANTLR3) is that the grammar analysis is performed at parse-time
(just-in-time instead of ahead-of-time) and that it no longer uses any backtracking.

ALL(*) relies on a runtime representation of the grammar called the Augmented Transition
Network (ATN) [9]. It is a special type of a Recursive Transition Network (RTN), which is
itself a type of a transition network where the transitions between states might “call” another
transition network. RTNs are sometimes used for parsing natural languages.

The generated parser code looks mostly like an ordinary recursive-descent parser. The biggest
difference is how it predicts which decision to take when there are multiple alternative paths
forward. The adaptivePredict method is used to select the correct alternative. It works
by running an ATN interpreter from the current state, with a DFA-based cache to increase
performance.

ATNs in ANTLR can have various types of states and transitions: epsilon transitions, rule
transitions, atom transitions, set transitions, etc.

StarLoopEntryState
alt 1

alt 2

StarBlockStartState

alt 1

alt 2

·
·
·

alt n

ε

LoopEndStateε

StarLoopbackStateε

alt 1ε

alt 2

ε

alt n
ε

BlockEndState

ε

endε

begin

Figure 4.2: ATN of a (1 | 2 | ... | n)* block. Adapted from ANTLR Java API documenta-
tion1

The ATN is serialized as an array of integers as part of the generated code and also in
a separate *.interp file. Deserialization occurs at runtime in the ATNDeserializer class.

The runtime library of ANTLR also provides the ParserInterpreter and ParserATNSimulator
classes, which use the ATN to simulate an ANTLR4 parser without having to build the actual

1https://www.antlr.org/api/Java/org/antlr/v4/runtime/atn/ATNState.html
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source code into an executable binary2 – this is used for visualizing and debugging ANTLR
grammars in editor/IDE tools and also in the ANTLR Lab3 web application.

Since the ATN is just a slightly different form of the grammar, it can be used to drive
autocomplete functionality. After simulating transitions until the current cursor position,
we can collect all token or rule transitions available from the current state (after skipping
any epsilon transitions) and suggest them as code-completion items. This functionality is
available in the antlr4-c3 library by Mike Lischke4.

A disadvantage of this approach is that the ATN does not contain all the information from
the grammar. Specifically, labels are not stored in the ATN, so it is often necessary to wrap
tokens in extra rules to get more information from the code completion engine. For example,
instead of suggesting all identifiers, we might want to specifically suggest package names,
function names, etc. That requires adding a rule like packageName : ID ;.

2embedded actions (pieces of code in the target language) are not available without building the parser
3http://lab.antlr.org
4https://github.com/mike-lischke/antlr4-c3/
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Chapter 5

Design and Implementation of the
DSL Tools Generator

This chapter delves into the various aspects of the design and implementation of the DSL
Tools Generator. It begins with an examination of the project’s objectives and underlying
principles that guided the development process. Subsequently, it provides an overview of the
architecture: the inputs and outputs, how they are parsed, analyzed, and transformed, and
also how the generator reacts to changes to inputs. It also includes information about the
architecture of the code and how it was tested for correctness. In addition, it explores the
nuances of the four main code generation modules, the challenges that arose during their
development, and how their outputs fit together. The chapter also describes which parts of
the DSL tools have to be implemented by the user themselves.

A user is someone (likely a programmer) who uses the DSL Tools Generator program
to generate tools for a given DSL.
An end-user is someone who uses the DSL (and its tools) inside an editor. The end-user
might be the same person as the user, or it might be a completely different person, not
necessarily a programmer.

5.1 Goals and Principles

The goal is to implement a program that, given a grammar and a configuration file, generates
the code for tools that provide support for working with the given language. As described in
section 2.3 on page 6, the most straightforward way to provide editor support for a language
is with a combination of a language server and a corresponding editor extension (for an
existing code editor), communicating over LSP. Therefore, that is what the generator should
generate – after some initial configuration by the user. The end-user editing experience
should include syntax highlighting and semantic highlighting, real-time reporting of syntax
and semantic errors, and basic code completion.

This tool aims to be more lightweight than comparable tools (especially industrial-strength
language workbenches like Xtext and MPS). It targets the .NET ecosystem which lacks such
a tool. It should be installable as a simple command-line tool. To enable quick prototyping

18



C# Java Python JavaScript

standalone
language
workbenches

Xtext

MPS

tool
generators LangiumtextX

this project

parser
generators
and libraries ANTLR

ChevrotainSprache JavaCC Lark

Figure 5.1: An overview of how this tool fits into the larger ecosystem of similar tools.

and fast feedback loop, it should automatically regenerate outputs when one of the inputs
changes. Adding a DSL as a small component to an existing project should be straightforward.
Using the tool should be possible with just basic knowledge of parsers, and should not require
deep knowledge of parsing theory or lots of experience with metamodeling.

The VS Code code editor was chosen as the target for the generated editor extension, because
it is not only very popular (meaning that both users and end-users are likely to be familiar
with it), but also relatively easily extensible. A disadvantage of choosing VS Code is that
it relies on TextMate grammars to highlight syntax. That means that the generator should
be able to generate a TextMate grammar for basic syntax highlighting. TextMate grammars
tokenize input in a different way than ANTLR lexers (this is described in more detail in
section 5.10 on page 25). Any highlighting dependent on syntax or semantics (as opposed to
just tokens) can be accomplished using the Semantic Highlighting feature of LSP.

5.2 Architecture

Since one of the goals of this program is to be reactive, i.e. automatically react to changes
in input files, it uses Reactive Extensions for .NET to build a reactive pipeline. By composing
(chaining) operators on IObservable<T> objects, a pipeline is created that re-runs all relevant
generators when a new value of the input is available. The initial event emitters are based
on a single ChangeToken (from a PhysicalFileProvider1) for each input file. There are only
two input files at the moment, the grammar (.g4) and configuration (dtg.json) files, but
future versions could possibly read other files, for example, the .interp files emitted by
ANTLR that contain details about the ATN.

1both available in the Microsoft.Extensions.FileProviders package
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The project consists of multiple separate generators that can be run individually or all at once.
However, which ones are actually run is configured by the user. Currently, there are four gen-
erators: LanguageServerGenerator, AstCodeGenerator, VscodeExtensionGenerator, and
TmLanguageGenerator.

grammar (.g4),
configuration (.json)

grammar  (.g4)

DSL Tools
Generator

User
(DSL developer)

ANTLR

uses (with X as input)
X

writes/generates

VSCode extension (TypeScript)

End-user

DSL implementation (C#)

Lexer, Parser, Visitor, Listener

AST builder

LSP language server

custom language-specific
analysis logic

LSP

runtime data flow (approximate)

Syntax Highlighter
(.tmLanguage.json)

AST
explorer

Figure 5.2: Overview of the architecture of the DSL Tools Generator.

Currently, the language server and AST code generators output code in C#, but this could
later be extended to other target languages. The AST generator is split into model generation
and model-to-text transformation phases, so only the second stage would have to be written
for an additional target language.

The code generators internally use a custom IndentedTextWriter class and a C# feature
called interpolated string handlers to generate fairly readable code with the appropriate in-
dentation and formatting, even when inserting multiline strings through string interpolation.

Most of the functionality is tested using a test suite consisting of a total of 139 tests (including
individual data rows of parameterized tests) using the xUnit testing framework. Most of
these are tests of the TextMate grammar generation and AST code generation.
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5.3 User Interface

A command-line interface was a natural choice for a tool used by programmers to generate
source code. However, there is still the possibility of adding a companion VS Code extension
(with a graphical user interface) in the future.

The generator needs a way of configuring the output directory paths, language/extension
identifiers, and many other (mostly optional) settings. This is done in a JSON configuration
file, dtg.json, located in the project folder. A command dtg generate dtgConfigSchema
is available for generating a JSONSchema file used by VS Code to provide completion
and documentation for the various available options. The JSON parser component used
(System.Text.Json) is configured to allow comments and trailing commas, making editing
less painful and giving users the possibility to document their configuration choices.

The System.CommandLine package is used to parse command-line arguments and also to
provide tab-completion in terminals. The command dtg generate or dtg watch runs all con-
figured generators (once, or inwatchmode). Alternatively, the dtg generate command can be
given the name of the generator to run (ast, tmLanguage, vscodeExtension, languageServer)
to run only a single generator, optionally in watch mode specified using the --watch option.

5.4 Parser Generator

For the generated tools to be able to process the AST of the documents in the defined language,
they need a way to parse the input into a tree representation (i.e. a parse tree, which can then
be converted into an AST). To generate the parser, the ANTLR parser generator was chosen,
including its grammar definition (meta)language. Not only is it quite popular, meaning that
a significant portion of our target users already know it, it is also quite permissive in what
grammars it accepts (ALL(*) vs. LL(k)). ANTLR has a runtime representation (ATN) of the
grammar, which is useful for code completion and error handling. It is able to generate code
in several target languages, which gives us the flexibility to target more languages in the
future as well.

5.5 Language Definition

There are multiple options regarding the optimal way to describe the DSL so that the generator
can automatically generate a syntax highlighter and an AST data structure:

a) define a custom DSL for describing DSLs (a metalanguage)

b) use an existing metalanguage (e.g. a grammar definition language of a parser generator
like ANTLR)

c) use a data serialization or configuration format like JSON, XML, YAML, or TOML

Option a) offers a lot of flexibility, but in this case combining b) and c) is enough and brings
some additional benefits. Adopting ANTLR’s grammar definition language allows users to
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reuse existing grammars, and projects that already use ANTLR can seamlessly upgrade to
using DSL Tools Generator and get editor support “for free”. Using JSON (more precisely, JSON
with Comments, sometimes abbreviated as jsonc) for the configuration file with a custom
JSONSchema allows editors such as VS Code to offer basic validation and completion support.

An ANTLR grammar can either be a combined grammar, containing rules for both the lexer
and the parser, or be separated into a lexer grammar and a parser grammar that references
the lexer’s .tokens file via the tokenVocab grammar option. The lexer rules can be reused as
token definitions for syntax highlighting, and the parser rules can serve as the basis from
which to infer the structure of the AST. The rest is specified in the configuration file.

5.6 Grammar Analysis

To analyze the input language description, we could either build a custom parser of the
ANTLR grammar definition language or use a third-party library.

An alternative approach of extracting the information from the official ANTLR tool (written in
Java) in some manner could potentially bring some benefits, such as always having data from
the source of truth, thus hypothetically future-proofing this project (although the ANTLR
project is quite stable). However, getting the data from Java to .NET is not straightforward.
The IKVM project which provides interoperability between Java and .NET only supports
Java 8 at the moment, while ANTLR requires at least Java 11).

The Antlr4Ast C# library by Alexandre Mutel was chosen. It provides an AST of the grammar
definition – figure 5.3 shows what types of nodes it might contain.

The AST code generator and TextMate grammar generation modules each perform some
analysis on elements of the grammar in order to be able to produce correct output.

VAR : DOLLAR (a..z)+ ;
STRING_LIT : '"' ~[\r\n]*? '"' ;
COMMENT : '//' ~[\r\n]* -> channel(HIDDEN) ;
WS : [ \t\r\n] -> skip ;
fragment DOLLAR : '$' ;

stmt : 'return' (expr | ) #returnStmt

| VAR ':=' val=expr #varDeclStmt

;

parser 
rule

(labeled)
alternatives

fragment rule

lexer 
rules

literal empty element (ɛ)

character range

(negated)
character set

lexer command

token reference*

(labeled) block
with 2 alternatives

rule reference

Figure 5.3: Overview of the various types of nodes in the AST of an ANTLR grammar (using
terminology from the Antlr4Ast library.)
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5.7 AST Code Generation

The developed tool automatically generates the class hierarchy for an AST based on the
parser rules defined in the grammar. Each rule is analyzed using pattern matching, a target-
independent code generation model is created and then transformed (serialized) into code.
Currently, only the transformation of the model into C# code is supported, but other target
languages can be added in the future.

The model mainly describes the semantics of the code to be generated – information about
the node classes (name, base class, what rule they were derived from, etc.), their properties
and subclasses, but also how to map data from the parse tree to nodes of the AST.

An AstBuilder class (subclass of the BaseVisitor class generated by ANTLR) is generated
that visits each node and builds an AST node with data mapped from the parse tree. The
simplest case would be retrieving the text of the only ID token – context.ID().GetText(),
or of a labeled token – context.varName.Text.

To know how to access the right parts of the parse tree to retrieve data for child nodes without
a label, the grammar is traversed using an element counting algorithm that assigns each
node two indices within the parse tree (see figure 5.4): the child node index and the index
among child nodes of the same type. For example, a specific NUMBER token might be the third
child node but only the first NUMBER token of its parent. In some cases, one or both indices
are unknown (for instance, after a repeated or optional element).

ID
1

0
ID

3

1

ID
5

2

ID
3

1
'import'
0

'from'
2

'as'
2

'except'
4

ID
1
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1
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?

?'import'
0

'from'
2
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Figure 5.4: Syntax element numbering. The number outside the boxes is the index of that
parse tree node within its parent’s list of child nodes. The number inside the box is the
the index within child nodes of the same type. A question mark indicates that the index is
unknown (cannot be statically determined).

For each parser rule, one or more node classes are generated with properties inferred from
the syntax elements:

• a child node (rule reference) is mapped to a property of the child node’s type
(e.g. Expression Value)

• a labeled token is mapped to a string property (e.g. string VariableName)

• an unlabeled token is mapped to a string property if the token name looks like
something important (like identifier, literal, value, name, value, type)
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• an optional literal or token reference is mapped to a bool property,
e.g. isAbstract=’abstract’? → bool IsAbstract

• a delimited list of elements (e.g. NUM (’,’ NUM)* or expr (COMMA expr)+) is mapped
to a list property, whose type is IList<T> where T is either string (token text) or the
node class (e.g. Expression)

• recurse into blocks

For a rule with labeled alternatives, a node (sub)class is generated for each alternative:

expr : ID #idExpr | NUM #numExpr ;
↓

public abstract partial record Expression : AstNode;
public partial record IdentifierExpression(string Identifier) : Expression;
public partial record NumberExpression(string Number) : Expression;

The names of properties are based on the element’s label (if present) or the name of the
referenced rule or token and then pluralized (using the Humanizer library) if needed. For
instance, NUMBER+ would be mapped to a property named Numbers.

The list of properties is postprocessed to rename or merge any duplicates, i.e. multiple prop-
erties with the same name. For example, (expr ’+’ expr) would generate two properties
named Expression, so they are renamed to LeftExpression and RightExpression.

5.8 Language Server Code Generation

The tool can automatically generate C# code for a language server that uses the OmniSharp
LSP library. The generated code includes the following functionality:

• document synchronization handling

• live diagnostics – errors discovered by the ANTLR lexer and parser are automatically
collected and reported to the LSP client (and then displayed in VS Code) immediately

• custom notification type for reporting AST data (to be displayed in the AST Explorer
view)

• base class for semantic highlighting – can be overridden by the user to inspect the
AST node and highlight it accordingly

• default hover handler implementation

• TCP server mode for quick development with hot-reload

• a basic code completion handler

The generated code includes an adapted version of the code from the antlr4-c3 library created
by Mike Lischke and ported to C# by Jonathan Philipps, which provides code completion
functionality for parsers generated by ANTLR. It finds possible tokens or rules that could
follow the current position in the document by walking through the parser’s ATN.
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5.9 VS Code Extension Generation

Currently only generation of (desktop) VS Code extensions is implemented; however, the
same .vsix extension package should also work in other compatible editors like VSCodium,
Eclipse Theia or Gitpod (although this was not tested). Support for VS Code for the Web2 and
other code editors might be added in the future.



.vscode/launch.json VS Code launch configurations

.vscode/tasks.json NPM tasks to compile the extension

 vscode-extension Extension root folder (named by the user)

 src

extension.ts Defines the behavior of the extension
ASTProvider.ts TreeDataProvider for the AST Explorer view

 syntaxes

example.tmLanguage.json
TextMate grammar for syntax highlighting, gener-
ated separately by the TmLanguageJson generator

package.json Extension manifest (configuration)
language-configuration.json Editor behavior configuration
tsconfig.json TypeScript compiler configuration
.vscodeignore Files to ignore when packaging the extension

After the extension is started via the debugger in VS Code, it connects to the language server
over TCP – the user is expected to launch the server manually (and restart it if necessary).
This has the benefit of easily allowing active development of the language server, including
restarting it or applying changes via the hot-reload functionality of the .NET Runtime. As
soon as the connection is lost, the language client tries to reconnect after 10 seconds, but
the user can force reconnection later using the “XYZ: Restart Language Server” command
(where XYZ is the extension’s configured display name).

When publishing the extension, the language server project is automatically built with the
output directory set to a LanguageServer directory within the extension. When installed and
activated inside VS Code, the language client will launch the executable of the language
server (and manage its lifetime) and connect to it over standard input/output.

An AST Explorer is included that shows the AST as an interactive tree view component that
allows browsing of the child nodes and properties of individual nodes of the AST. This
becomes especially useful once the user adds additional properties for semantic analysis.

5.10 Syntax Highlighting

The process of translating an ANTLR lexer grammar into a TextMate grammar for syntax
highlighting consists of the following steps:

2https://vscode.dev/
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Figure 5.5: An optional AST Explorer view that shows the hierarchy of AST nodes in a VS Code
tree view component.

1. walk over the grammar’s AST (provided by the Antlr4Ast library) and collect all
rules for translation – implicit token rules (from literals in combined grammar’s parser
rules) and explicit lexer rules defined in the combined grammar or in a lexer grammar
“imported” via the tokenVocab option

2. for each lexer rule, generate the corresponding TextMate rule that matches the same
input

3. reorder the generated TextMate rules (the order of rules in a TextMate grammar is
important)

4. assign a TextMate scope name to each rule (used by selectors in color themes to set
the token’s color and font style)

5. serialize as a .tmLanguage.json file

Translating an ANTLR lexer rule into a TextMate rule

A set of ANTLR lexer rules can be translated into a sequence of equivalent TextMate rules by
traversing the rule’s ASTs and recursively generating a regular expression for each node. The
rules’ ASTs together can be viewed as a forest of trees with cross-references to other trees
(rules) – traversing the rule references might lead to infinite recursion, so tracking the chain
(stack) of visited rules is necessary.

Each syntax element (literal, token reference, character set, etc.) has an appropriate transla-
tion into a regular expression. These are listed in table 5.1 on the next page.

If the element was marked as optional (?) or repeated (+ or *), the suffix is appended to the
regular expression. Care must be taken to ensure that the suffix applies to the element as
a whole and not just its last part. For example, to make a pattern like abc optional, it would
be incorrect to produce a pattern like abc?, since that would only make c optional. Instead,
the whole pattern must be enclosed in a group3: (?:abc)?.

3A non-capturing group (?:...) is preferred, as it does not affect the numbering of capturing groups.
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element original form
translated
(regular expression) explanation

alternative
𝛼 𝛽 𝛾 𝑅(𝛼)𝑅(𝛽)𝑅(𝛾)

’a’ ’b’ [0-9] ab[0-9]

alternative list
𝛼|𝛽|𝛾 𝑅(𝛼)|𝑅(𝛽)|𝑅(𝛾)

’a’ | ’b’ | [0-9] a|b|[0-9]

literal ’if’ if

character set
[ab0-9]) [ab0-9]

[^a] [\^a] ^ must be escaped
~[\r\n] [^\r\n] negation

lexer block
(’a’ | ’b’ | [0-9]) [ab0-9]

(’^’ | ’a’) [\^a] ^ must be escaped
~(’\r’ | ’\n’) [^\r\n] negation

range ’a’..’z’ [a-z]

wildcard . .

token (rule)
reference

DIGIT 𝑅(𝐴(DIGIT)) use the regex for
the referenced rule

EOF \z end of file

𝑅(𝑒) denotes the regular expression for element 𝑒.
𝐴(𝑟) denotes the alternative list for rule 𝑟.

Table 5.1: Overview of the translations of various types of syntax elements to a regular
expression for the Oniguruma regex engine.
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Special handling is given to rules that match keywords. These are additionally enclosed in
word boundary anchors (\b) to prevent unwanted matches. These anchors are only placed at
those sides of the rule that are determined to start/end with a word character, since a pattern
like \b(?:@import)\b would only ever match right after a word.

Lexer rules in ANTLR might be marked as case insensitive, in which case the pattern is
enclosed with the equivalent regex syntax:

SELECT_KW options { caseInsensitive=true; } : 'select' ;
↓

(?i:select)

The “Shadowing” Problem

There is a side effect of the translation between ANTLR grammars and TextMate grammars. It
is caused by the differences in behavior between ANTLR-generated lexers and TextMate-based
syntax highlighters when multiple rules can match the same input. Unlike ANTLR lexers,
TextMate highlighters move on after finding the first rule that finds a match, regardless of
its length. That means that if there is a rule further down the list that could match more
characters, it will not be considered, as the engine has already advanced to the next character.

This means that some rules may never match any characters because they are completely or
partially shadowed by other rules, which causes the syntax highlighting to appear incorrect
and broken.

    DIV : '/' ;
COMMENT : '//' ~[\r\n]* ;
    CMD : '/find' ;

    INT : [0-9]+ ;
    HEX : '0x' [0-9a-f]+ ;

 ACCESS : ( 'read'
| 'readwrite' ) ;

a / b
// read me
/find ijk

42
0x15af15

read x
readwrite y

a / b
// read me
/find ijk

42
0x15af15

read x
readwrite y

input actual expected

Figure 5.6: An example of a grammar that contains three instances of the shadowing problem
if translated naively into TextMate grammar patterns: as long as DIV is always tried first,
COMMENT and CMD will never match any input as the first slash character will already have
been consumed by DIV. A similar situation, but with non-literal rules, happens with INT and
FLOAT, the latter can never match anything. This problem can also occur inside a single rule,
namely in blocks with multiple alternatives.

Reordering

The generated TextMate rules are sorted according to the following ordering:
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#\d{3}
#\d+

#0
#01
#012
#0123
#01234
#012345

× × ✔

#0
#01
#012
#0123
#01234
#012345

#0
#01
#012
#0123
#01234
#012345

#\d+
#\d{3} ?

Figure 5.7: An example of two rules that partially shadow each other. This problem cannot
be solved by simple reordering of the two rules.

1. shadowing mitigation patterns

2. keyword rules (since they have word boundary anchors and so are unlikely to produce
unwanted matches; also, they are in danger of being shadowed (dominated) by more
general rules like ID : [a-zA-Z_])

3. all other rules, in an order that prevents unwanted shadowing

The picked approximation (complexity – number of descendants of the rule in the grammar)
is not very accurate, but most cases where it would cause a problem in practice (involving
keywords) will be solved by using word boundary anchors.

Assigning a TextMate scope name

The generated TextMate rules will not do anything at all unless they have a TextMate scope
name that can be targeted by selectors in color themes to actually assign a color to the token.

The chosen solution is to consider carefully chosen heuristics and conventions to guess the
correct scope name. The user can always override this choice by specifying the desired scope
name for a given rule.

1. use the TextMate scope name explicitly specified by the user, if available

2. keyword if the rule is a keyword rule

3. variable if the rule name suggests an identifier or name of something

4. constant.numeric if the rule name suggests a numeric literal

5. comment if the rule name suggests a comment

6. string if the rule name suggests a string/text/characters
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Shadowing Mitigation Patterns

If the automatic (approximate) rule ordering fails to prevent rule shadowing, the user can add
a rule conflict item to the configuration file. The generator will add a special anti-shadowing
rule to the top of the TextMate grammar. The regex pattern of this rule is constructed from the
underlying (“conflicting”) rules’ patterns such that the one that matches the most characters
is selected.

The basic idea is to try each sub-pattern and remember the position at the end of the match
and then, if all sub-patterns found a match, compare which of the match-end positions is
farther from the start (or equivalently closer to the end) of the string.

Unfortunately, storing and later comparing an arbitrary position is not one of the operations
available in the Oniguruma regex flavor used by TextMate grammars. However, we can
instead store the rest of the line after each match. Then, if the rest of the line after the second
sub-pattern’s match (rest2) is a suffix of the rest of the line after the first sub-pattern’s match
(rest1), 𝐿1 matched fewer characters.

(?=(?<L1>\d:\d)      (?<rest1>.*)$) pre-match L1
(?=(?<L2>\d:\d:\d|\d)(?<rest2>.*)$)    pre-match L2
(?:(?<L1match>\k<L1>)(?!.+?\k<rest2>$) match L1 if it's not shorter than L2

|(?<L2match>\k<L2>)) otherwise match L2

Figure 5.8: Pattern that finds the longer match of two sub-patterns (named 𝐿1 and 𝐿2).
Whitespace added only for readability and is not part of the pattern.

v = f(1:5:6).val;⏎

v = f(1:5:6).val;⏎

v = f(1:5:6).val;⏎

v = f(1:5:6).val;⏎

\d:\d:\d

\d:\d:\d

\d:\d

\d:\d

1.
L1match

L1match

rest1

rest1

L2match

L2match

rest2

rest2

2.

3.

4.

Figure 5.9: Illustration of the trick used to find the pattern that matches the most characters
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Chapter 6

Testing and Evaluation

This chapter will describe how the developed tool was tested by creating two independent
sets of DSL tools and will evaluate the quality of the results and the effort required to achieve
them.

An ideal language for testing purposes should be complex enough to be able to test most
features of the DSL Tools Generator. This means that it should have multiple token types,
some of them being highlighted differently based on additional context from the syntax
or semantics, opportunities for validation of semantics and for code completion based on
previous declarations, etc.

6.1 Avro IDL

One such language is Avro IDL, an Interface Description Language with a C-like syntax
created as an alternative to schemas defined in JSON for the Apache Avro data serialization
system [1]. An Avro IDL file defines a single protocol and may also contain import statements
and named schema declarations (records, enums, and fixed-length types). A grammar of the
Avro IDL language is available in its GitHub repository1.

After downloading the grammar file into an empty directory named AvroIDL, a basic C#
console project was created using the command dotnet new. The necessary dependencies
(ANTLR and the OmniSharp LSP library) were added using the following commands:

dotnet add package Antlr4.Runtime.Standard
dotnet add package OmniSharp.Extensions.LanguageServer --version 0.19.9

A configuration file was created specifying the name of the grammar file, the name of the
C# project file, the output paths, the path to the ANTLR tool, the namespaces in which to
place the generated files, and VS Code extension name and ID.

At this point, the generated VS Code extension was already capable of providing basic syntax
highlighting of an example Avro IDL file.

Then adding a few lines of C# code was needed to start the language server if the --ls
command-line argument is given and to initialize any options for the language server. This in-

1https://github.com/apache/avro/blob/main/share/idl_grammar/org/apache/avro/idl/Idl.g4
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cludes registering any LSP request handlers (written by the user or as part of the generated lan-
guage server code), in this case the BasicHoverHandler and BasicCodeCompletionHandler.

After manually starting the language server2 and starting debugging of the VS Code extension,
the AST explorer view and a basic hover and code completion functionality was available
(see figures 6.1 and 6.2).

Figure 6.1: An example Avro IDL file being edited using the VS Code extension and language
server generated automatically using DSL Tools Generator (before any manual adjustments).

Next, the following highlighting improvements were achieved by adding a custom handler
derived from the generated BasicSemanticTokensHandler:

• classify (highlight) identifiers in declarations or references to a named schema (record,
enum, etc.) as types

• classify keywords as identifiers when used as identifiers (Avro IDL allows using keywords
as identifiers)

• classify schema properties (e.g. @order) as the decorator token type

• classify enum members as the enum member token type
2Manually starting the server is only needed during development, where it provides the benefit of being able

to debug and restart the server arbitrarily from a development environment
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Figure 6.2: The default LSP hover request handler (BasicHoverHandler) – can be overridden
to display arbitrary plain or formatted text based on the AST node.

A simple semantic analysis step was added that collects named schema declarations into
a symbol table and displays them as suggestions using a custom CompletionHandler when a
type is expected (see figure 6.4 on the following page).

The created editor support is comparable to and, in some aspects, exceeds the main VS Code
extension for Avro IDL3 by StreetSideSoftware, which only provides basic syntax highlighting.

6.2 CSS

The same approach was taken with the CSS (Cascading Style Sheets) language, with the
following differences:

• the grammar was written manually to only contain a subset of CSS

• the language ID was arbitrarily set to FCSS to distinguish it from the CSS language
support built into VS Code

• code completion items were sourced from a pre-defined list of element (tag) names
and property names and values instead of using a symbol table

The created tools are shown in figures 6.5 and 6.6.

6.3 Evaluation

For both of the tested languages, the DSL Tools Generator was able to successfully generate
a VS Code extension with syntax highlighting and a language server with an AST data
structure. However, while it does streamline tool creation, several areas for improvement
have been identified, suggesting many opportunities for future development.

One possible improvement would be to reduce the number of initial setup steps, for example,
by creating a template for the dotnet new command that would automatically install the
required dependencies and create a sample configuration file. Also, the AST generator could
detect situations where all alternatives of a rule have an element with the same label, so the
property could be lifted into the base class. Semantic highlighting could be further improved –

3https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.avro
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Figure 6.3: An example Avro IDL file being edited using the VS Code extension and language
server created using DSL Tools Generator, after manual adjustments to semantic highlighting.

Figure 6.4: Code completion menu after adding a simple CompletionHandler that offers
items from the symbol table as suggestions.
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(a) Syntax and semantic highlighting of CSS inside
VS Code (includes manual adjustments to the high-
lighting of class, property and tag names, and of
at-rule keywords like @media).

(b) Code completion suggesting property
names inside CSS rules.

Figure 6.5: The created language support for (a subset of) CSS

Figure 6.6: An example of a diagnostic (a syntax error in this case) sent by the language
server and displayed by VS Code.
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the user could specify highlighting rules in the configuration file using some kind of selectors.
Code completion is a complex feature and, while currently functional, does not always return
the most useful suggestions in a given moment.

36



Chapter 7

Conclusion

The goal of this thesis was to design and implement a program capable of generating tools for
using a domain-specific language (DSL) in a code editor like VS Code. First, DSLs themselves
and the options for adding editor support for them was discussed. Then, the Language
Server Protocol (LSP) was described. The next chapter focused on ANTLR and how its
unique ATN feature can be utilized for code completion functionality. Subsequently, the
thesis explored the design choices, methodologies, and challenges encountered during the
implementation – including the approach taken to resolve the shadowing problem caused
by differences in matching behavior between ANTLR lexers and TextMate grammars used
for syntax highlighting. Finally, the developed tool was tested and evaluated by using it to
create editor support for two DSLs, Avro IDL and CSS.

The DSL Tools Generator is capable of saving a significant amount of time and effort when
creating editor support for a DSL. Compared to manual implementation approaches that
require manually defining an AST data structure and learning about TextMate grammars,
the Language Server Protocol, and various technical details, the process of creating tools for
DSLs was accelerated. The generator successfully generates a VS Code extension with syntax
highlighting and a language server with an auto-generated AST data structure inferred from
the grammar. The AST can be analyzed by user code for a semantic analysis step, for example,
to provide domain-specific validation or code completion results.

The generator also supports features that further improve the developer experience, e.g. by
automatically rerunning the generator when the grammar or configuration is modified, or
by allowing debugging and restarting the language server with automatic reconnection
from the generated VS Code extension. It also includes an AST Explorer view that helps
in understanding the structure of the AST and seeing any data attached by the semantic
analyzer.

7.1 Future Work

Areas where the generator could be improved and extended include:
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• generating extensions/plugins for other editors than VS Code: Visual Studio 2022,
IntelliJ IDEA, Vim or Neovim, Emacs, web-based editors: the web version of VS Code,
Monaco, CodeMirror, Ace

• implement other features of the Language Server Protocol: Code Actions, Inlay Hints,
Code Lens, Formatting. . .

• use the developed generator to replace the JSON-based configuration mechanism with
a custom DSL for defining DSLs (a metalanguage)

• investigate options for adding support for other related protocols: Debug Adapter
Protocol (DAP) and Build Server Protocol (BSP)

• implement more target languages for code generation

• implement native AST ”un-parsing“ to make the ASTs serializable back into source code
(without losing formatting and comments) so that the DSL developer can implement
code actions and automated refactorings (extract function, extract to local variable, etc.)

– this could be done by storing trivia (whitespace, comments, skipped/erroneous
text) as part of token data, like Roslyn, the C# and VB.NET compiler
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