
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
F A K U L T A INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

TOOLS GENERATOR FOR DOMAIN-SPECIFIC
LANGUAGES
GENERÁTOR NÁSTROJŮ PRO DOMÉNOVĚ SPECIFICKÉ JAZYKY

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DANIEL KOSÍK
AUTOR PRÁCE

SUPERVISOR Ing. ZBYNĚK KŘIVKA, Ph.D.
VEDOUCÍ PRÁCE

B R N O 2024

Bachelor's Thesis Assignment
Institut:
Student:
Programme:
Title:
Category:

Department of Information Systems (DIFS)
Kosík Daniel
Information Technology

Tools Generator for Domain-Speci f ic Languages
Compiler Construction

156284

Academic year: 2023/24

Assignment:

1. Familiarize yourself with ANTLR, the topic of domain-specific languages, and development
environments with a focus on domain-specific languages.

2. Analyze the existing tools for generating tools for programming languages.
3. Based on the consultations with the supervisor, design a tool capable of generating the tools

necessary to use the language in the Visual Studio Code environment (or equivalent). Support
various domain-specific languages.

4. Implement the tool and test it on at least two domain-specific languages (as agreed with the
supervisor).

5. Evaluate the achieved results and compare them with existing tools.

Literature:
• Parr, T.: The Definitive ANTLR 4 Reference. 2nd Edition, Pragmatic Bookshelf, 2013.
• Parr, T: Language Implementation Patterns - Techniques for Implementing Domain-Specific

Languages. Pragmatic Bookshelf, 2009.
• Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional, 2010.
• Voelter, M.: DSL engineering - designing, implementing and using domain-specific languages.

CreateSpace Independent Publishing Platform, 2013. Available at: dslbook.org.

Requirements for the semestral defence:
• First three items.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Křivka Zbyněk, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: 1.11.2023
Submission deadline: 9.5.2024
Approval date: 30.10.2023

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

http://dslbook.org
https://www.fit.vut.cz/study/theses/

Abstract
DSL Tools Generator is a tool for s impl i fy ing the development of domain-specific languages
by generating parts of their implementat ion (e.g. abstract syntax tree) i n C# and tools for
using the language i n a code editor. Based on an ANTLR4 grammar and a DSL configuration
file, it generates a server implementat ion for the Language Server Protocol and a language
support extension for V isua l Studio Code that provides syntax highl ight ing, error reporting,
and basic code completion functionality. The developed tool can significantly reduce the time
and effort required for bu i ld ing a DSL w i th editor support.

Abstrakt
DSL Tools Generátor je nástroj pro zjednodušení vývoje doménově specifických jazyků gen
erováním částí jej ich implementace (např. abstraktního syntaktického stromu) v jazyce C#
a nástrojů pro použití daného j a zyka v editorech kódu. Podle zadané gramat iky a konfigu
račního souboru vygeneruje implementaci serveru pro Language Server Protocol a rozšíření
pro Visual Studio Code, které poskytuje zvýrazňování syntaxe a syntaktických chyb a základní
doplňování kódu. Výsledkem práce je nástroj, který dokáže podstatně zkrátit čas a snížit úsilí
potřebné k vytvoření doménově specifického jazyka s podporou v editorech kódu.

Keywords
domain-specific language, code generation, V isua l Studio Code, C# , Language Server Proto
col , code editor, syntax highl ight ing, regular expression, TextMate grammar

Klíčová slova
doménově specifický jazyk, generování kódu, V i sua l Studio Code, C# , Language Server
Protocol, editor kódu, zvýrazňování syntaxe, regulární výraz, TextMate gramatika

Reference
KOSIK, Danie l . Tools Generator for Domain-Specific Languages. Brno, 2024. Bachelor's thesis.
Brno Univers i ty of Technology, Faculty of Information Technology. Supervisor Ing. Zbynek
Kf ivka, Ph.D.

Rozšířený abstrakt
Doménově specifické jazyky (DSL) j sou jazyky navržené s úzkým zaměřením n a určitou
oblast, ve které pak nabízí čitelnou a stručnou syntaxi , více možností pro doménově speci
fickou va l idac i a analýzu a další výhody. Běžnými příklady D S L j sou jazyky pro rozvržení
a stylování dokumentů (HTML, CSS) , dotazování (SQL, GraphQL) a serializaci dat (Protobuf),
programování grafických shaderů (GLSL, HLSL) a tvorbu diagramů (DOT, Mermaid) .

Úspěch takových jazyků je do velké míry ovlivněn kvalitou jeho podpory v editorech kódu. To
zahrnuje například zvýrazňování syntaxe (a sémantiky), hlášení chyb pomocí podtrhávání,
doplňování (našeptávání) kódu a zobrazení dokumentace při najetí myši (frover). Language
Server Protocol (LSP) umožňuje využití jednoho programu s touto funkcional i tou v mnoha
editorech kódu.

Zatímco pro ostatní programovací j azyky existuje několik nástrojů pro tvorbu D S L (např.
Xtext, JetBrains MPS, Spoofax, Langium, textX), pro C# (.NET) j ich v současné době existuje
j en ve lmi málo.

Cílem této práce je vytvořit nástroj pro zjednodušení vývoje doménově specifických jazyků
generováním částí jej ich implementace (např. abstraktního syntaktického stromu) v jazyce
C# a nástrojů pro použití daného jazyka v editorech kódu.

Jako generátor syntakticého analyzátoru by l zvolen nástroj A N T L R , který je dostatečně
flexibilní a navíc zpřístupňuje informace o gramatice i za běhu, což lze využít pro funkcionalitu
doplňování kódu. Také bylo nutné vyřešit problém stínování (shadowing) způsobeného rozdíly
v chování ANTLR lexerů a TextMate gramatik používaných pro zvýrazňování syntaxe. Nakonec
byl vyvinutý nástroj otestován vytvořením nástrojů pro dva doménově specifické jazyky: Avro
IDL a CSS.

Výsledkem práce je nástroj, který podle zadané gramat iky a konfiguračního souboru vy
generuje implementac i serveru pro Language Server Protoco l a rozšíření pro editor V i -
sual Studio Code, které poskytuje zvýrazňování syntaxe a syntaktických chyb a základní
doplňování kódu. Vytvořený nástroj dokáže podstatně zkrátit čas a snížit úsilí potřebné
k vytvoření doménově specifického jazyka s podporou v editorech kódu.

Tools Generator for Domain-Specific Languages

Declaration
I hereby declare that this Bachelor's thesis was prepared as an or ig inal work by the author
under the supervis ion of Ing. Zbyněk Křivka, Ph.D. I have l isted a l l the l i terary sources,
publications and other sources, wh i ch were used dur ing the preparation of this thesis.

Danie l Kosík
May 9, 2024

Acknowledgements
I wou ld l ike to thank my supervisor Ing. Zbyněk Křivka, Ph.D. for his advice and guidance.

Contents

1 Introduction 3

2 Domain-Specific Languages 4
2.1 What is a DSL? 4
2.2 Creat ing a DSL 5
2.3 Language Support 6

2.3.1 Syntax Highl ight ing 8
2.4 DSL Development Frameworks and Language Workbenches 9

3 Language Server Protocol 11
3.1 Base Protocol 11
3.2 Messages 12
3.3 Related Protocols and Formats 13

4 ANTLR 14
4.1 Usage 14
4.2 Adaptive LL(*) and Augmented Transit ion Networks 16

5 Design and Implementation of the DSL Tools Generator 18
5.1 Goals and Principles 18
5.2 Architecture 19
5.3 User Interface 21
5.4 Parser Generator 21
5.5 Language Definit ion 21
5.6 Grammar Analysis 22
5.7 AST Code Generation 23
5.8 Language Server Code Generation 24
5.9 VS Code Extension Generation 25
5.10 Syntax Highl ight ing 25

6 Testing and Evaluation 31
6.1 Avro IDL 31
6.2 CSS 33
6.3 Evaluat ion 33

7 Conclusion 37
7.1 Future Work 37

Bibliography 39

1

List of Acronyms

ALL(*) Adaptive LL (*) . 16
A N T L R ANother Tool for Language Recognition. 3, 5, 14, 24, 26, 28, 37
AST Abstract Syntax Tree. 6, 9, 20, 22, 23, 25, 33 , 37
A T N Augmented Transit ion Network. 16, 17, 19, 21 , 24, 37

BSP Bu i l d Server Protocol . 13, 38

DAP Debug Adapter Protocol . 7, 13, 38
DFA Deterministic Finite Automaton. 16
DSL Domain-Specif ic Language. 4, 9, 18, 21 , 37, 38

E B N F Extended Backus-Naur Form. 14

GLSP Graphical Language Server Protocol . 13
GPL General-purpose Programming Language. 5

IDE Integrated Development Environment. 6, 17
IDL Interface Descript ion Language. 31 , 37
IPC Inter-Process Communicat ion. 12

J S O N JavaScript Object Notat ion. 2, 38
JSON-RPC J S O N Remote Procedure Ca l l . 11, 13

LSIF Language Server Index Format. 13

LSP Language Server Protocol . 7, 10, 11, 13, 18, 24, 32, 37, 38

M P S (JetBrains) Me ta Programming System. 9, 18

N P M (originally) Node Package Manager. 25

R T N Recursive Transit ion Network. 16

SDK Software Development Kit. 11

TCP Transmission Contro l Protocol . 24, 25

VS Code V isua l Studio Code. 3, 19, 22, 24 -26 , 3 1 - 3 5 , 37, 38

2

Chapter 1

Introduction

Domain-specific languages (DSLs) are languages that have been designed and opt imized for
a specific narrow purpose, meaning the set of programs or models that they can describe is
constrained. However, their l imited scope yields many benefits, such as readable and concise
syntax, more opportunities for domain-specific val idat ion and analysis, and more. Common
examples of DSLs are languages for document layout and styl ing (HTML, CSS) , data querying
(SQL, GraphQL) and serial ization (Protobuf), graphics shader programming (GLSL, H L S L) ,
but also d iagramming (DOT, Merma id) , tax or wage calculations, and healthcare.

Language support i n a code editor is cruc ia l to enable a fast feedback loop, increase pro
ductivity, learnabil ity, and discoverability. Wi thout it, users lack confirmation and feedback
about the syntactic and semantic va l id i ty of their code and have to resort to l ook ing up
documentat ion about the available features i n external documentat ion.

Mult ip le DSL creation toolkits exist for Java and JavaScript; however, there are currently very
few tools for developing DSLs i n the C# (.NET) ecosystem, aside from parser generators and
parsing libraries l ike ANTLR , Sprache and P idg in .

The goal of this thesis is to design and implement a tool that can streamline the development
of domain-specif ic languages by generating tools for a given language, inc lud ing language
support integration for existing code editors. Specifically, this involves analyzing a description
of the given language in the form of a formal grammar and producing the code for a language
server and its associated V S Code extension (communicat ing over the Language Server
Protocol) . In most cases, the user w i l l have to provide code that obtains the results of
semantic analysis for a given document and specify how to uti l ize its results i n editor features
such as diagnostics (errors, warnings) , semantic highl ight ing, and code completion.

The developed too l should be l ightweight , not locked into specific editor or IDE (Eclipse,
IntelliJ, etc.), quick to instal l (as a command-line program) and easy to integrate into existing
codebases.

3

Chapter 2

Domain-Specific Languages

This chapter describes the basics of domain-specif ic languages, w h e n they are useful , and
explores the approaches used to implement them.

2.1 What is a DSL?

A domain-specific language (DSL) is a formal language designed and opt imized for a particular
domain, based on abstractions and features that make it easy to express ideas i n that domain.
Examples of such domains include:

• web design and development - H T M L , CSS, SCSS, Wasp

• data querying and manipulat ion - SQL, GraphQL, Cypher, Greml in, SPARQL, KQL, CQL,
OQL, TypeQL, B IMQL, PathQuery PromQL, LogQL, H Q L

• data storage and model ing - L ookML , E R M L , D B M L

• data serial ization and configuration - X M L , JSON, CSON, Y A M L , T O M L , Jsonnet, GCL

• shell scripting - Bash, F ish, Z S H , PowerShel l

• bu i ld configuration - Makefi le, CMake , Gradle, Cocoa Podfile

• hardware description - V H D L , Veri log, SystemVerilog, Lo la , A H D L

• networking and interface description - P4, Y A N G , Protobuf schema, Avro IDL, Thrift

• GUI description languages - Q M L , Qu id , Slint

• graphics programming - GLSL , H L S L , M S L , WGSL , Slang

• game development - G S C (scripting language used i n Ca l l of D u t y games), Papyrus
(scripting language used i n Bethesda games), PuzzleScript

• d iagramming - D O T (GraphViz) , GrGen , P l an tUML , Merma id , D2 , blockdiag

• typesetting and markup - TjX, BibTeX, Typst, Markdown , Texy

• model checking, formal verif ication, s imulat ion - PR ISM, GAL , Promela, P, Mode l i ca

• tax or wage calculations - RegelSpraak [2], a payrol l DSL at DATEV [12]

• healthcare - A L P H

4

Compared to general-purpose p rog ramming languages (GPLs) , DSLs are more l im i t ed in
scope but offer greater productiv i ty and conciseness w i th in their domain. This makes them
easier to use for non-programmers, since they can work in an environment that uses concepts
from their area of expertise, inc lud ing error messages, analysis results, etc. [11]

Separat ing the knowledge of the subject-matter expert f rom the technical aspects of the
system has many benefits - one of them being the abil i ty to perform arbitrary static analysis
and va l idat ion on the code. Implement ing domain-specif ic analysis on GPL code is usual ly
not v iable 1 , except i n cases where a compiler-as-a-service (like Roslyn for C#, Clang for C + +)
or a sufficiently extensible compiler or l inter (e.g. dippy for Rust or TSLint for TypeScript) is
available.

Domain-speci f ic languages can be d iv ided into external (a language w i t h its o w n syntax,
requiring a separate parser) and internal (embedded into a host language and implemented
w i th its abstractions [11]; distinguished from a normal l ibrary API by having a language-like
flow; also called/Zuent interfaces) [5]. This thesis focuses exclusively on external DSLs.

DSLs can be used to specify behavior (via code generat ion or interpretat ion) , require
ments/tests, or to produce an output artifact l ike diagrams or documents. They might also
describe a model of some part of a system (e.g. to verify some of its properties).

Al though many DSLs are targeted at programmers, a significant port ion of them are intended
to be used by non-programmers, often subject-matter experts who have a lot of experience in
their domain.

Generic configuration languages l ike JSON, X M L , Y A M L , when paired w i th schemas, can, i n
some cases, be used as a l ightweight alternative to DSLs - editors like VS Code are often able
to provide some amount of in-editor validation, code completion, hover documentation, etc.,
based on the provided schema.

At least some amount of editor support is essential for most DSLs to be able to succeed
and provides great value to their users. The most common type of editor support includes
real-time error checking, code completion, signature (parameter) help, and hover tooltips to
explore and exp la in syntax and semantics. Some types of editor support are not common
for programming languages, but are very useful for DSLs, l ike live preview (of the result ing
d iagram or document) or an alternative v iew of the mode l (state machine, class hierarchy,
rai l road diagram of a grammar, etc.).

2.2 Creating a DSL

The tradi t ional approach to imp lement ing a DSL or p rog ramming language is to create a
pipel ine consisting of four basic stages:

1. lexical and syntax analysis (parsing) that transforms the input document (sequence
of characters) into a tree representation (parse tree). The parser can be either hand
written, possibly using a parser combinator library, or generated by a parser generator
tool such as ANTLR , lex+yacc, or f lex+bison.

1it would require not just a reliable parser for the programming language, but also an accurate semantic
analyzer (e.g. name binding, type-checking)

5

a b s t r a c t record AstNode;
a b s t r a c t record Statement : AstNode;
record A s s i g n S t a t e m e n t (s t r i n g VarName, Expression Value) : Statement;
a b s t r a c t record Expression : AstNode;
record S t r i n g L i t e r a l E x p r e s s i o n (s t r i n g Value) : Expression;

Figure 2.1: Example of a definition of a simple AST class hierarchy i n C# (using the Records
feature from C# 9.0)

2. transforming the parse tree into some k ind of intermediate representation (IR) better
suited for further processing; often an abstract syntax tree (AST) or semantic model

3. performing analysis of the semantics: name b ind ing (resolving references to defined
symbols), val idation (checking that the code is val id according to the language's speci
fication), etc.

4. evaluating the code - either by interpreting it or by generating some k ind of output
(e.g. code, graphics, sound)

The pipel ine is often thought of i n terms of two parts: afrontend (analysis) and a backend
(synthesis). This thesis focuses solely on the frontend.

Abstract Syntax Tree

The AST is a tree-l ike 2 data structure commonly represented (in object-oriented languages)
us ing a class h ierarchy where each class represents one type of node, and the attributes
and chi ld nodes are stored i n typed properties. In funct ional languages, the AST is usual ly
represented using algebraic data types, specifically discriminated unions.

Operations on an AST:

• traverse the AST - visit each chi ld or descendant node

• attach data f rom semantic analysis to specific nodes - resolved/bound references,
expression types, diagnostics (errors, warnings, suggestions), etc.

• f ind a node at a given posit ion in the document (needed for editor integration)

• edit and "unparse " (serialize back to source code) w i thout los ing formatt ing and
comments

2.3 Language Support

To get language support i n an editor or IDE, the author w o u l d have to either bu i ld their
o w n development environment ta i lored to their language, or bu i ld an extension (plugin)

2 when taking into account cross-references to other nodes, it becomes a graph, but even then, the primary
relation is still the containment relation ("contains" / "is child of").

6

for an exist ing code editor. This involves l earn ing the language the editor is wr i t t en in ,
e.g. JavaScript or TypeScript i n the case of V S Code, and re implement ing some of the logic
from the compiler - parsing, analysis, and val idat ion.

Thanks to the Language Server Protocol (LSP), editor extensions themselves do not have to
perform any pars ing or analysis of the documents be ing edited. Instead, they can send the
text to a language server (over a socket or standard input/output) , wh i ch is responsible for
parsing and analyzing the document and provides the editor extension w i th information such
as diagnostics (errors and warnings) , code complet ion suggestions QntelliSense), signature
help, symbol documentat ion, and more.

Integration of the editor features w i th LSP can be largely delegated to l ibraries that handle
most of the L S P communicat ion . However, i f the language server offers custom request or
notification types, the extension author must implement them manual ly for the corresponding
editor.

One of the major benefits of LSP is that the server does not need to be implemented i n the
same language as the editor extension (the client); therefore, it can reuse logic from (or even
be part of) the ma in language implementat ion.

Not a l l features of LSP can be used for a l l DSLs, as some of them rely on specific language
concepts or paradigms. The suitabil i ty of LSP (and the Debug Adapter Protocol) for domain-
specific languages was investigated i n [4].

There are multiple design concerns for the concrete syntax of a language that influence what
k ind of editor services might be beneficial to the user [11]:

Learnability - to make it possible for the user to learn about new concepts as they need
them (or as they encounter them i n existing code), the editor can provide:

• code complet ion (to answer the question "what can I type here?")

• real-time error checking ("can I do this?")

• snippets ("what is the syntax for . . . ?")

• hover/tooltips ("what is this?")

• high-qual i ty error messages ("why is this wrong?")

• user-executable code fixes ("how can I correct this code?")

A major factor inf luencing the learnabi l i ty (and teachability) of a language is having access
to an online editor environment (often called a playground) that allows users to experiment,
try out new features, and share snippets of code w i th others, al l without having to instal l any
software on their computer.

One could also imagine more involved forms of learning assistance (context-sensitive help),
such as a side panel w i t h an overview of the syntax (perhaps us ing syntax diagrams, also
known as railroad diagrams) and/or semantics of the language that responds to the user's
current posi t ion or selection in the document. Alternatively, a visualization (e.g. a class
diagram, finite-state machine) or preview (e.g. rendering result, an interactive simulation)
can also help users understand whether their expectations regarding the structure or meaning
of the code are correct.

7

r e t u r n a

1 0 add
\0] age

f u n c t i o n get 10] DEFAULT_AGE
re t u r n " Dason";

}
(a) Code Completion

f u n c t i o n getAge() {
return abc; could not f i n d d e f i n i t i o n f o r "abc~

}

(b) Inl ine Diagnostics (displayed by the Error Lens extension)

await l s . R u n A s y n c (c o n n e c t i o n) ;

Quick Fix

} Add .ConfigureAwait(trLie)

Fix All: Add .ConfigureAwait(true)

Surround With

Else statement

Foreach statement

Console.WriteLine

#if

More...

More Actions...

Extract method

Extract local function

(c) Code Act ions

v OUTLINE f£p

1=) DEFAULT.F ILE JMAME int

[0] fu l l F i l eName string

[0] age int

v 0 norma l ize (string fileName) y Sort By: Posi t ion

© helper ()

® a d d (int a, int b)

v "H Person

0 ge tAge ()

•y Fo l low Cursor

•y Filter o n Type

Sort By: N a m e

Sort By: Ca tegory

(d) Document Outline

Figure 2.2: Examples of editor services provided by VS Code and LSP

Writability - code completion and code snippets help accelerate common tasks when wri t ing
code and decrease the need for l ook ing up external documentat ion. Code Act ions can
automate refactoring operations and fix errors or detected "code smells".

Readability - documentation or other information can be displayed on hover (using tooltips)
or inl ine (using inlay hints - v i r tual text or other elements that are only a v isual decoration
inside the editor area). Code fo ld ing can temporar i ly h ide parts of the source code that
are not current ly relevant. Code navigat ion can be faci l i tated w i t h commands l ike Go To
Definition and Find All References.

2.3.1 Syntax Highl ight ing

For the purposes of this thesis, syntax highlighting means:

8

1. pattern match ing on characters i n a document , l ine by l ine, based on a list of rules
defined using regular expressions - transforming each line into a sequence of tokens

2. assigning each token the corresponding color or font style (bold, italic, strike-through)

Notably, the TextMate editor for Mac used this simple (but relatively powerful) regex-based
h igh l ight ing system - its TextMate g rammar format (. tmLanguage) is supported by other
editors (e.g. VS Code, Sublime Text).

Tokens i n the TextMate system can have mult iple scopes, wh i ch are symbols s imi lar to class
names i n CSS - themes contain selectors that target scope names and assign colors or font
styles to them.

A TextMate g rammar consists of a list of rules that apply f rom top to bot tom. Each rule
attempts to match characters using its regular expression from the current position. If a rule
successfully matches any characters, a token is produced w i t h the rule's conf igured scope
name and the matching starts again from the new posit ion.

The regular expressions of rules are constrained to a single l ine. To produce multi- l ine tokens,
a different type of rule w i th separate begin and end patterns is needed.

There are other grammar formats for syntax highl ighting, e.g. . sublime-syntax (also regex-
based, but more powerful, w i th an explicit stack of contexts), Monarch , etc.

Syntax highl ight ing is also used in places other than code editors, usual ly to highl ight code
snippets i n documents or websites. Popular l ibraries and tools for this purpose include
highlight.js, prism.js, Shiki, and Pygments (used by the minted package for frTjjX.

2.4 DSL Development Frameworks and Language Workbenches

There are mult ip le frameworks and DSL development environments called language work
benches that can be used to create a DSL relatively quickly, at least after having learned how
to use the tool, wh i ch often takes a nontr iv ia l amount of t ime.

The Java ecosystem contains m a n y projects that support the creat ion of DSLs w i t h editor
support:

• Xtext (based on the Eclipse Modeling Framework and Ecore)

• Spoofax (also Eclipse-based)

• JetBrains MPS - a complete language workbench w i th a projectional3 editor

textX is a language and a too l for creat ing DSLs i n Py thon [3]. F r o m a g rammar of the
language, it constructs a parser and a meta-model as a set of Python classes. It has support
for automatic resolving of references, error-reporting, debugging, and even v isual izat ion of
models using GraphViz . It has a p layground page available on l ine 4 where users can try out
the textX language.

3 projectional editing means the user directly manipulates the model/AST, which is then projected to text or
graphics

4 h t t p s : / / t e x t x . g i t h u b . i o / t e x t x - p l a y g r o u n d /

9

The textX-LS project that provides basic editor support for languages bui l t w i t h textX was
inactive for several years, but a new mainta iner (M i l an Sovic, @AirmiX) was announced i n
A p r i l 2024.

A s imi lar project cal led Langium was started i n 2021 by TypeFox and became part of the
Eclipse Foundat ion i n 2023. It is a language engineering tool for TypeScript (Node.js) w i th
first-class support for the Language Server Protocol [10]. It uses the Chevrotain parser library.

There are also p rog ramming languages w i t h support for language-oriented programming:
Rascal , Racket, and Raku . These have dedicated support for def ining languages and their
behavior.

10

Chapter 3

Language Server Protocol

The language server protocol (LSP) standardizes the communicat ion between code editors
and language servers, w h i c h provide language-specific analysis and provide data for editor
services such as auto-complet ion, diagnostics, finding references, etc. This allows a single
language server to be reused i n mult iple editors w i th m in ima l effort 1. [6]

As of January 2024, there are more than 240 language server implementations listed on the
official LSP website [6].

A language server is a program launched (and terminated) by the client (code editor) and
communica t ing on ly w i t h that one client, usual ly over s tandard input/output or network
sockets (l o c a l h o s t only) , although this is not defined by the LSP specification.

The server and client exchange JSON-RPC messages (requests, responses, and notifications)
described by the LSP specification [6]. There are many libraries (SDKs) that implement the
basic protocol handl ing logic available for most mainstream programming environments.

A language client is a part of a code editor or other development tool (either bui l t - in or i n
the form of an extension or plugin) that manages the lifetime of its corresponding language
server and handles the communicat ion over LSP, inc lud ing ca l l ing the appropriate APIs for
manipulat ing elements of the user interface of the editor, for instance, it might:

• show suggestions i n a drop-down menu

• color or decorate a span of text or an entire line

• apply edits to a document

• display contextual help (e.g. signature help when the cursor is inside a function call)

3.1 Base Protocol

LSP is based on J S O N - R P C version 2.0, w h i c h is a simple Remote Procedure Ca l l protoco l
where the server and the cl ient send each other messages ser ia l ized as J S O N documents.

unless the language server uses an extended version of the protocol with custom message types that are not
handled by LSP libraries

11

Development
Tool

User opens document

User edits document

User executes
"Goto def in i t ion"

User closes document

Language Server Protocol

(JSON-RPC)

Notification: textDocument/didOpen; Poroms: document

Language
Server

Notification: textDocument/didChange; Poroms: {documentURI, changes!

Notification: textDocument/publ ishDiagnostics; Poroms: Diagnostic^

Request: textDocument/def ini t ion Poroms: (documentURI, position)

Response: textDocument/def in i t ion; Result: Location

Notification: textDocument/didClose; Poroms: documentURI

Server publishes
errors and warnings

Figure 3.1: LSP communicat ion example from [6]

The under l y ing transport mechan ism can be anything, as long as bo th sides agree on it.
The specif ication requires L S P implementat ions to support communicat ion over standard
input/output . Other options inc lude ne twork sockets and Inter-Process Communica t i on
(IPC). [6]

3.2 Messages

The LSP contains the fo l lowing categories of messages [6]:

• Lifecycle Messages - in i t ia l i zat ion, registration of capabilities, shutdown, tracing

• Document Synchronization - open/change/save/close notifications from the client

• Workspace Features - (file) create/rename/delete notifications from the client, work
space (mult i -document) edits (l ike automated refactorings), fetching configuration,
project-wide symbol search

• Language Features - Completions, Diagnostics, Folding, Formatting, Inlay Hints, Code
Lens, Semantic Highl ighting, Code Actions, Finding/Highlighting/Resolving/Renaming
Symbol References and Definitions, Document Links

Since not a l l types of messages and L S P features are mandatory, the cl ient and the server
send their capabilities during init ial izat ion to communicate which features they support [6].
Alternatively, i f the cl ient supports dynamic capability registration, the server can choose
to delay the announcement of a capabi l i ty i f it takes a significant amount of t ime to load
(and wou ld block the server f rom be ing able to respond to requests for services that wou ld
otherwise be available immediate ly) .

12

3.3 Related Protocols and Formats

Mult ip le other protocols were created that follow the same principles as the Language Server
Protocol and even use the same underly ing base protocol (the subset of LSP that is not specific
to language servers and can be reused i n other protocols).

One of these is the Debug Adapter Protocol (DAP) that allows a single debugger to be reused
from any editor that supports this protocol . However, for histor ical reasons, D A P does not
use JSON-RPC like LSP does - it was based on the now-obsolete V8 debugging protocol.

Other protocols w i th an LSP-compatible base protocol inc lude Bu i l d Server Protocol (BSP),
Graphical Language Server Protocol (GLSP) and MSTest Runner Protocol. In theory, a single
server could even support mult iple of these protocols simultaneously.

LSIF is " a standard format for persisted code analyzer ou tput " 2 - a data format for storing
the data computed by LSP servers (or separate programs called indexers) for later retrieval
wi thout access to the LSP server, e.g. for resolving references when v iewing repository code
on the web. The web server probably does not know how to correctly configure and launch
the L S P server. However, the development environment or Cont inuous Integration do, so
they can persist ("dump") a l l the information necessary for answer ing LSP requests on the
codebase into a file that is then read by the web server.

Sourcegraph has developed an alternative index ing format called SCIP.

2 h t t p s : / / l s i f . d e v /

13

https://lsif.dev/

Chapter 4

ANTLR

This chapter focuses on the A N T L R parser generator: why it is useful, how it is used, and its
strengths and weaknesses.

A N T L R (ANother Tool for Language Recognition) is a popu lar parser generator created by
Terence Parr. It is a Java program that accepts a grammar file (in an EBNF- l ike format) and
generates code for a lexer and parser for the described language (plus a listener and visitor
class for custom processing of the produced parse trees) i n one of several supported target
p rog ramming languages (Java, C# , C + + , JavaScript/Type Script, Python, Dart , Go , PHP,
Swift) [8].

Vers ion 4, released i n 2013 , brought some interest ing improvements that are very he lp fu l
when bui ld ing editor support (mainly for code completion) and error handl ing. [7]

Users are not required to have extensive knowledge of traditional parsing theory (LL(1), etc.)
to write a grammar, since A N T L R 4 supports unbounded look-ahead (thanks to the adaptive
predict ion mechan ism described i n section 4.2 on page 16) and automatic e l iminat ion of
direct left recursion (parse trees are transformed back to match wi th the grammar). However,
indirect (two or more mutual ly left-recursive rules) or h idden left-recursion is not supported
(e.g. a rule l ike expr : 'not'? expr 'and' expr w o u l d have to be split into two separate
rules, one w i th 'not' and one wi thout) .

4.1 Usage

After invoking the ANTLR tool w i th the grammar file name as an argument, the fol lowing files
are generated: Lexer, Parser, Listener, Visitor (if the - v i s i t o r option is given), a . tokens file
l isting the defined token types and their numeric values, and an . i n t e r p w i th data necessary
for s imulat ing the parser using an interpreter.

To be able to instantiate the generated parser class, it is necessary to first construct a CharStream,
use it to create a Lexer, use it as the token source for a TokenStream, and f inal ly create a
Parser w i th the TokenStream as input. The generated parser class includes parsing methods
for each parser rule defined i n the grammar. These parse the previously prov ided token
stream into a parse tree and report any errors to al l configured error listeners.

14

grammar Ex; // generates c l a s s ExParser
// a c t i o n d e f i n e s ExParser member: enumlsKeyword
Smembers { bool enumlsKeyword = tr u e ; }
s t a t : expr '=' expr ';' #assignmentStat

| expr ';' #exprStat

expr : expr '*' expr #multExpr
| expr '+' expr #addExpr
| expr ' (' expr ') ' #funcCallExpr
| i d #idExpr

i d : ID | {!enumlsKeyword}? 'enum' ;
ID : [A-Za-z]+ ; // match l e t t e r - o n l y i d e n t i f i e r s
WS : [\t\r\n]+ -> channel(HIDDEN) ; // ignore whitespace

void s t a t () {
switch (a d a p t i v e P r e d i c t (" s t a t " , c a l l S t a c k)) {

case 1 :
e x p r () ; match('='); e x p r () ; matchC ; ') ; break;

case 2:
e x p r () ; match(';'); break;

>
}

Figure 4.1: A n example A N T L R 4 grammar w i t h the corresponding generated parser code
(simplified) and A T N for the s t a t rule. Adapted from [9]

15

A N T L R is quite flexible and extensible. The generated C# classes are marked as p a r t i a l so
that the user can add members to them. Also, the templates used for code generation (using
the StringTemplate l ibrary) are overridable - i f a template for a specific codegen target is
found in CLASSPATH, it replaces the default one.

4.2 Adaptive LL(*) and Augmented Transition Networks

Parsers generated by A N T L R 4 use a unique parsing strategy called Adaptive LL(*) (ALL(*))
developed by Terence Parr, Kath leen Fisher, and Sam Harwe l l [9]. The major innovat ion
compared to LL(") (used i n ANTLR3) is that the grammar analysis is performed at parse-time
(just-in-time instead of ahead-of-time) and that it no longer uses any backtracking.

ALL(*) relies on a runt ime representation of the grammar called the Augmented Transit ion
Network (ATN) [9]. It is a special type of a Recursive Transit ion Network (RTN) , w h i c h is
itself a type of a transition network where the transitions between states might " c a l l " another
transit ion network. RTNs are sometimes used for parsing natural languages.

The generated parser code looks mostly like an ordinary recursive-descent parser. The biggest
difference is how it predicts which decision to take when there are multiple alternative paths
forward. The a d a p t i v e P r e d i c t me thod is used to select the correct alternative. It works
by runn ing an A T N interpreter f rom the current state, w i t h a DEA-based cache to increase
performance.

ATNs i n A N T L R can have various types of states and transit ions: epsi lon transit ions, rule
transitions, atom transitions, set transitions, etc.

begin ;-

alt 1
alt 2

StarBlockStartState

alt n

StarLoopbackState

' a l t l i

BlockEndState

^

£ LoopEndState LoopEndState W*K
- • i end)

Figure 4.2: ATN of a (1 | 2
t i on 1

n) * block. Adapted from ANTLR Java API documenta-

The A T N is ser ia l ized as an array of integers as part of the generated code and also in
a separate * . i n t e r p file. Deserial izat ion occurs at runt ime i n the A T N D e s e r i a l i z e r class.

The runtime l ibrary of ANTLR also provides the P a r s e r l n t e r p r e t e r and ParserATNSimulator
classes, which use the ATN to simulate an ANTLR4 parser without having to bui ld the actual

1https://www.an t l r . o r g / a p i / J a v a / o r g / a n t l r / v 4 / r u n t i m e / a t n / A T N S t a t e . html

16

https://www.an
http://tlr.org/api/Java/org/antlr/v4/runtime/atn/ATNState

source code into an executable b ina ry 2 - this is used for v isua l i z ing and debugging A N T L R
grammars i n editor/IDE tools and also i n the ANTLR Lab3 web application.

Since the A T N is just a sl ightly different form of the grammar, it can be used to drive
autocomplete functionality. After s imulat ing transit ions u n t i l the current cursor posit ion,
we can collect a l l token or rule transit ions available f rom the current state (after sk ipping
any epsi lon transit ions) and suggest them as code-complet ion items. This funct ional i ty is
available i n the antlr4-c3 l ibrary by Mike L i schke 4 .

A disadvantage of this approach is that the A T N does not conta in a l l the in format ion from
the grammar. Specifically, labels are not stored i n the ATN , so it is often necessary to wrap
tokens i n extra rules to get more information from the code completion engine. For example,
instead of suggesting a l l identifiers, we might want to specifically suggest package names,
function names, etc. That requires adding a rule l ike packageName : ID ;.

2embedded actions (pieces of code in the target language) are not available without building the parser
3 h t t p : / / l a b . a n t l r . o r g
4 h t t p s : / / g i t h u b . c o m / m i k e - l i s c h k e / a n t l r 4 - c 3 /

17

http://antlr.org
http://thub.com/mike-lischke/antlr4-c3/

Chapter 5

Design and Implementation of the
DSL Tools Generator

This chapter delves into the various aspects of the design and implementat ion of the DSL
Tools Generator. It begins w i t h an examinat ion of the project's objectives and under ly ing
principles that guided the development process. Subsequentiy it provides an overview of the
architecture: the inputs and outputs, how they are parsed, analyzed, and transformed, and
also how the generator reacts to changes to inputs. It also includes in format ion about the
architecture of the code and how it was tested for correctness. In addi t ion, it explores the
nuances of the four m a i n code generat ion modules, the challenges that arose dur ing their
development, and how their outputs fit together. The chapter also describes wh i ch parts of
the DSL tools have to be implemented by the user themselves.

A user is someone (l ikely a programmer) who uses the DSL Tools Generator program
to generate tools for a given DSL.
A n end-user is someone who uses the DSL (and its tools) inside an editor. The end-user
might be the same person as the user, or it might be a completely different person, not
necessarily a programmer.

5.1 Goals and Principles

The goal is to implement a program that, given a grammar and a configuration file, generates
the code for tools that provide support for work ing w i th the given language. As described in
section 2.3 on page 6, the most straightforward way to provide editor support for a language
is w i t h a combinat ion of a language server and a corresponding editor extension (for an
existing code editor), communicating over LSP. Therefore, that is what the generator should
generate - after some in i t ia l configuration by the user. The end-user edi t ing experience
should include syntax highl ight ing and semantic highl ight ing, real-time report ing of syntax
and semantic errors, and basic code completion.

This too l aims to be more l ightweight than comparable tools (especially industrial-strength
language workbenches like Xtext and M P S) . It targets the .NET ecosystem wh i ch lacks such
a tool . It should be installable as a simple command- l ine tool . To enable quick prototyping

18

parser
generators
and libraries

tool
generators

standalone
language
workbenches

C#

Sprache

Java Python JavaScript

JavaCC Lark

ANTLR

Xtext

MPS

textX

Chevrotain

Langium

Figure 5.1: A n overview of how this tool fits into the larger ecosystem of s imi lar tools.

and fast feedback loop, it should automatical ly regenerate outputs w h e n one of the inputs
changes. Add ing a DSL as a small component to an existing project should be straightforward.
Using the tool should be possible w i th just basic knowledge of parsers, and should not require
deep knowledge of parsing theory or lots of experience w i th metamodel ing.

The VS Code code editor was chosen as the target for the generated editor extension, because
it is not only very popular (meaning that both users and end-users are l ike ly to be fami l iar
w i t h it) , but also relat ively easily extensible. A disadvantage of choosing V S Code is that
it relies on TextMate grammars to highl ight syntax. That means that the generator should
be able to generate a TextMate grammar for basic syntax highl ight ing. TextMate grammars
tokenize input i n a different way than A N T L R lexers (this is described i n more detai l i n
section 5.10 on page 25). Any highl ighting dependent on syntax or semantics (as opposed to
just tokens) can be accomplished using the Semantic Highlighting feature of L S P

5.2 Architecture

Since one of the goals of this program is to be reactive, i.e. automatical ly react to changes
in input files, it uses Reactive Extensions for .NET to bu i ld a reactive pipel ine. B y composing
(chaining) operators on I0bservable<T> objects, a pipeline is created that re-runs al l relevant
generators w h e n a new value of the input is available. The in i t ia l event emitters are based
on a single ChangeToken (from a P h y s i c a l F i l e P r o v i d e r 1) for each input file. There are only
two input files at the moment, the g rammar (. g4) and conf igurat ion (dtg. j son) files, but
future versions could possibly read other files, for example, the . i n t e r p files emitted by
A N T L R that contain details about the ATN .

1 both available in the Microsoft .Extensions. F i l eProv iders package

19

The project consists of multiple separate generators that can be run indiv idual ly or al l at once.
However, which ones are actually run is configured by the user. Currently, there are four gen
erators: LanguageServerGenerator, AstCodeGenerator, VscodeExtensionGenerator, and
TmLanguageGenerator.

ANTLR ANTLR

>

grammar (.g4)
k

grammar (.g4),
configuration (. j son)

grammar (.g4),
configuration (. j son) DSL Tools

Generator
/

™ \

User
(DSL developer)

X
uses (with X as input)

-> writes/generates

-> runtime data flow (approximate)

DSL implementation (C#)

Lexer, Parser, Visitor, Listener <-s

-->

AST builder

custom language-specific
analysis logic

LSP language server

LSP

VSCode extension (TypeScript)

Syntax Highlighter
(.tmLanguage.json)

AST
explorer

End-user

Figure 5.2: Overview of the architecture of the DSL Tools Generator.

Currently, the language server and AST code generators output code i n C# , but this could
later be extended to other target languages. The AST generator is split into model generation
and model-to-text transformation phases, so only the second stage wou ld have to be written
for an addit ional target language.

The code generators internal ly use a custom IndentedTextWriter class and a C # feature
called interpolated string handlers to generate fair ly readable code w i t h the appropriate i n
dentation and formatting, even when inserting multi l ine strings through string interpolation.

Most of the functionality is tested using a test suite consisting of a total of 139 tests (including
ind iv idua l data rows of parameter ized tests) us ing the xllnit test ing framework. Most of
these are tests of the TextMate grammar generation and AST code generation.

20

5.3 User Interface

A command-l ine interface was a natural choice for a tool used by programmers to generate
source code. However, there is sti l l the possibil ity of adding a companion VS Code extension
(with a graphical user interface) i n the future.

The generator needs a way of conf iguring the output directory paths, language/extension
identifiers, and many other (mostly optional) settings. This is done i n a J S O N configuration
file, dtg. json, located i n the project folder. A c ommand dtg generate dtgConfigSchema
is available for generat ing a J S O N S c h e m a file used by V S Code to provide complet ion
and documentat ion for the various available options. The J S O N parser component used
(System. Text. Json) is configured to al low comments and tra i l ing commas, mak ing edit ing
less painful and giving users the possibi l i ty to document their configuration choices.

The System.CommandLine package is used to parse command- l ine arguments and also to
provide tab-completion i n terminals. The command dtg generate or dtg watch runs al l con
figured generators (once, or i n watch mode). Alternatively, the dtg generate command can be
given the name of the generator to run (ast, tmLanguage, vscodeExtension, languageServer)
to run only a single generator, optionally i n watch mode specified using the —watch option.

5.4 Parser Generator

For the generated tools to be able to process the AST of the documents i n the defined language,
they need a way to parse the input into a tree representation (i.e. a parse tree, which can then
be converted into an AST) . To generate the parser, the A N T L R parser generator was chosen,
inc luding its grammar definition (meta)language. Not only is it quite popular, meaning that
a significant port ion of our target users already know it, it is also quite permissive i n what
grammars it accepts (ALL(*) vs. LL (k)) . A N T L R has a runt ime representation (ATN) of the
grammar, wh ich is useful for code completion and error handl ing. It is able to generate code
i n several target languages, w h i c h gives us the f lex ibi l i ty to target more languages i n the
future as we l l .

5.5 Language Definition

There are multiple options regarding the optimal way to describe the DSL so that the generator
can automatical ly generate a syntax highl ighter and an AST data structure:

a) define a custom DSL for describing DSLs (a metalanguage)

b) use an existing metalanguage (e.g. a grammar definition language of a parser generator
l ike ANTLR)

c) use a data serial ization or configuration format l ike J S O N , X M L , Y A M L , or T O M L

Option a) offers a lot of flexibility, but i n this case combining b) and c) is enough and brings
some addi t ional benefits. Adop t ing ANTLR ' s g rammar def init ion language al lows users to

21

reuse exist ing grammars, and projects that already use A N T L R can seamlessly upgrade to
using DSL Took Generator and get editor support "for free". Using J S O N (more precisely, JSON
with Comments, sometimes abbreviated as jsonc) for the conf igurat ion file w i t h a custom
JSONSchema allows editors such as VS Code to offer basic val idation and completion support.

A n A N T L R grammar can either be a combined grammar, containing rules for both the lexer
and the parser, or be separated into a lexer grammar and a parser grammar that references
the lexer's . tokens file v ia the tokenVocab grammar option. The lexer rules can be reused as
token definitions for syntax h igh l ight ing , and the parser rules can serve as the basis f rom
wh i ch to infer the structure of the AST. The rest is specified i n the configuration file.

5.6 Grammar Analysis

To analyze the input language descript ion, we could either bu i ld a custom parser of the
A N T L R grammar definition language or use a third-party library.

A n alternative approach of extracting the information from the official ANTLR tool (written in
Java) i n some manner could potentially br ing some benefits, such as always having data from
the source of t ruth , thus hypothet ical ly future-proofing this project (although the A N T L R
project is quite stable). However, getting the data from Java to .NET is not straightforward.
The IKVM project w h i c h provides interoperabi l i ty between Java and .NET only supports
Java 8 at the moment, whi le A N T L R requires at least Java 11).

The Antlr4Ast C# l ibrary by Alexandre Mute l was chosen. It provides an AST of the grammar
definit ion - figure 5.3 shows what types of nodes it might contain.

The A S T code generator and TextMate g rammar generat ion modules each perform some
analysis on elements of the grammar i n order to be able to produce correct output.

(labeled) block
with 2 alternatives

empty element (e)

parser
rule

stmt

literal

\
: ' r e t u r n ' (e x p r #returnStmt [(labeled)

| VAR ': = ' vaL=expr #varDecLStmt J alternatives

> \^ ^ rule reference

token reference* character range

lexer
rules

/
VAR : DOLLAR (a..z)+

STRING_LIT : " " ~ [\ r \ n] * ?

COMMENT : '//' ~ [\ r \ n] * ->

WS : [\ t \ r \ n] -> s k i p - ; —

fragment DOLLAR : '$' ; } fragment rule

(negated)
character set

channel(HIDDEN)

—— lexer command

Figure 5.3: Overview of the various types of nodes i n the AST of an A N T L R grammar (using
terminology from the Antlr4Ast library.)

22

file:///t/r/n

5.7 AST Code Generation

The developed too l automat ical ly generates the class h ierarchy for an A S T based on the
parser rules defined in the grammar. Each rule is analyzed using pattern matching, a target-
independent code generation model is created and then transformed (serialized) into code.
Currently, only the transformation of the model into C# code is supported, but other target
languages can be added i n the future.

The mode l ma in ly describes the semantics of the code to be generated - information about
the node classes (name, base class, what rule they were derived from, etc.), their properties
and subclasses, but also how to map data from the parse tree to nodes of the AST.

A n A s t B u i l d e r class (subclass of the B a s e V i s i t o r class generated by ANTLR) is generated
that visits each node and bui lds an A S T node w i t h data mapped f rom the parse tree. The
simplest case wou ld be retr ieving the text of the on ly ID token - c on t ex t . ID() .GetText () ,
or of a labeled token - context .varName.Text .

To know how to access the right parts of the parse tree to retrieve data for chi ld nodes without
a label , the g rammar is traversed us ing an element count ing a lgor i thm that assigns each
node two indices w i th in the parse tree (see figure 5.4): the ch i ld node index and the index
among chi ld nodes of the same type. For example, a specific NUMBER token might be the third
ch i ld node but on ly the first NUMBER token of its parent. In some cases, one or both indices
are unknown (for instance, after a repeated or optional element).

' i m p o r t ' ID

"from'

"from" I D 1

" i m p o r t ' I D 9

-<
3

e l v • a s 1 r n 1

ID

' e x c e p t '

•as"

T D 2

5

ID *

Figure 5.4: Syntax element number ing . The number outside the boxes is the index of that
parse tree node w i t h i n its parent's list of ch i ld nodes. The number inside the box is the
the index w i t h i n ch i ld nodes of the same type. A question mark indicates that the index is
unknown (cannot be statically determined).

For each parser rule, one or more node classes are generated w i th properties inferred from
the syntax elements:

• a ch i ld node (rule reference) is mapped to a property of the chi ld node's type
(e.g. Express ion Value)

• a labeled token is mapped to a s t r i n g property (e.g. s t r i n g VariableName)

• an unlabe led token is mapped to a s t r i n g property i f the token name looks l ike
something important (like identifier, literal, value, name, value, type)

23

• an optional l i teral or token reference is mapped to a bool property,
e.g. i s A b s t r a c t = ' a b s t r a c t ' ? —> bool I s A b s t r a c t

• a del imited list of elements (e.g. NUM (' , ' NUM)* or expr (COMMA expr)+) is mapped
to a list property, whose type is IList<T> where T is either s t r i n g (token text) or the
node class (e.g. Expression)

• recurse into blocks

For a rule w i th labeled alternatives, a node (sub)class is generated for each alternative:

expr : ID #idExpr | NUM #numExpr ;

I
p u b l i c a b s t r a c t p a r t i a l record Expression : AstNode;
p u b l i c p a r t i a l record I d e n t i f i e r E x p r e s s i o n (s t r i n g I d e n t i f i e r) : Expression;
p u b l i c p a r t i a l record NumberExpression(string Number) : Expression;

The names of properties are based on the element's labe l (if present) or the name of the
referenced rule or token and then p lura l i z ed (using the Humanizer l ibrary) i f needed. For
instance, NUMBER+ wou ld be mapped to a property named Numbers.

The list of properties is postprocessed to rename or merge any duplicates, i.e. multiple prop
erties w i t h the same name. For example, (expr ' + ' expr) wou ld generate two properties
named Expression, so they are renamed to Lef t E x p r e s s i o n and RightExpression.

5.8 Language Server Code Generation

The tool can automatically generate C# code for a language server that uses the OmniSharp
LSP library. The generated code includes the fo l lowing functionality:

• document synchronization handling

• live diagnostics - errors discovered by the A N T L R lexer and parser are automatically
collected and reported to the LSP client (and then displayed i n VS Code) immediately

• custom notification type for reporting AST data (to be displayed in the AST Explorer
view)

• base class for semantic highlighting - can be overr idden by the user to inspect the
AST node and highl ight it accordingly

• default hover handler implementat ion

• TCP server mode for quick development w i th hot-reload

• a basic code completion handler

The generated code includes an adapted version of the code from the antlr4-c3 l ibrary created
by Mike Lischke and ported to C# by Jonathan Philipps, w h i c h provides code complet ion
funct ional i ty for parsers generated by A N T L R . It finds possible tokens or rules that could
fol low the current posit ion i n the document by wa lk ing through the parser's ATN.

24

5.9 VS Code Extension Generation

Current ly on ly generat ion of (desktop) V S Code extensions is implemented ; however, the
same . v s i x extension package should also work i n other compatible editors l ike VSCod ium,
Eclipse Theia or Gitpod (although this was not tested). Support for VS Code for the Web2 and
other code editors might be added i n the future.

.vscode/launch.j son

.vscode/tasks.json

& vscode-extension

s r c

e x t e n s i o n . t s

ASTProvider. t s

syntaxes

L example.tmLanguage.json

package.json

language-configuration.json

t s c o n f i g . j s o n

.vscodeignore

VS Code launch configurations

NPM tasks to compile the extension

Extension root folder (named by the user)

Defines the behavior of the extension

TreeDataProvider for the AST Explorer view

TextMate grammar for syntax highlighting, gener
ated separately by the TmLanguageJson generator

Extension manifest (configuration)

Editor behavior configuration

TypeScript compiler configuration

Files to ignore when packaging the extension

After the extension is started v ia the debugger i n VS Code, it connects to the language server
over TCP - the user is expected to l aunch the server manua l l y (and restart it i f necessary).
This has the benefit of easily a l lowing active development of the language server, inc lud ing
restart ing it or app ly ing changes v i a the hot-reload funct ional i ty of the .NET Runt ime. As
soon as the connect ion is lost, the language cl ient tries to reconnect after 10 seconds, but
the user can force reconnect ion later us ing the "XYZ : Restart Language Server" c ommand
(where XYZ is the extension's configured display name) .

W h e n publ ish ing the extension, the language server project is automatical ly bui l t w i t h the
output directory set to a LanguageServer directory w i th in the extension. When installed and
activated inside V S Code, the language cl ient w i l l l aunch the executable of the language
server (and manage its lifetime) and connect to it over standard input/output.

A n AST Explorer is inc luded that shows the AST as an interactive tree v iew component that
allows brows ing of the ch i ld nodes and properties of ind i v idua l nodes of the AST . This
becomes especially useful once the user adds addit ional properties for semantic analysis.

5.10 Syntax Highlighting

The process of t ranslat ing an A N T L R lexer g rammar into a TextMate g rammar for syntax
highl ight ing consists of the fo l lowing steps:

2 h t t p s : //vscode.dev/

25

v- AST EXPLORER

v • Program

^ Statements = ILisf 1

v • VariableDeclarationStatement

ft IsConstant = true

v • Type Type Boolean IsConstant = true

> • TypeDeclaration ClassDeclaration

P Identifi er = "int"

ft IsM issing = false

Figure 5.5: A n optional AST Explorer v iew that shows the hierarchy of AST nodes i n a VS Code
tree v iew component.

1. walk over the grammar's AST (provided by the Antlr4Ast l ibrary) and collect all
rules for translation - impl ic i t token rules (from literals i n combined grammar's parser
rules) and explicit lexer rules defined i n the combined grammar or i n a lexer grammar
" impor ted " v ia the tokenVocab option

2. for each lexer rule, generate the corresponding TextMate rule that matches the same
input

3. reorder the generated TextMate rules (the order of rules i n a TextMate g rammar is
important)

4. assign a TextMate scope name to each rule (used by selectors i n color themes to set
the token's color and font style)

5. serialize as a . tmLanguage. j s on file

Translat ing an A N T L R lexer rule into a TextMate rule

A set of A N T L R lexer rules can be translated into a sequence of equivalent TextMate rules by
traversing the rule's ASTs and recursively generating a regular expression for each node. The
rules' ASTs together can be v iewed as a forest of trees w i t h cross-references to other trees
(rules) - traversing the rule references might lead to infinite recursion, so tracking the chain
(stack) of visited rules is necessary.

Each syntax element (l iteral, token reference, character set, etc.) has an appropriate transla
t ion into a regular expression. These are l isted in table 5.1 on the next page.

If the element was marked as optional (?) or repeated (+ or *), the suffix is appended to the
regular expression. Care must be taken to ensure that the suffix applies to the element as
a whole and not just its last part. For example, to make a pattern like a be optional, it wou ld
be incorrect to produce a pattern l ike abc?, since that wou ld only make c optional. Instead,
the whole pattern must be enclosed in a g roup 3 : (? : abc)?.

3 A non-capturing group (? : . . .) is preferred, as it does not affect the numbering of capturing groups.

26

element original form
translated
(regular expression) explanation

alternative
a ß 7 R(a)R(P)R(r/)

alternative
' a ' 'b' [0-9] ab[0-9]

alternative list
<x\ßh R(a)\R(f3)\R(7)

alternative list
' a ' 1 'b' 1 [0-9] a|b|[0-9]

l i teral ' i f i f

character set

[ab0-9]) [ab0-9]

character set [A a] [\Aa] A must be escaped character set

~ [\ r \ n] [A \ r \ n] negation

lexer block

(' a ' 1 'b' 1 [0-9]) [ab0-9]

lexer block (' A ' 1 ' a ') [\Aa] A must be escaped lexer block

~ (' \ r ' 1 '\n') [A \ r \ n] negation

range ' a ' . . ' z ' [a-z]

w i ldcard

token (rule)
reference

DIGIT R(A(DIGIJ)) use the regex for
the referenced rule token (rule)

reference
EOF \z end of file

R(e) denotes the regular expression for element e.
A(r) denotes the alternative list for rule r .

Table 5.1: Overv iew of the translations of various types of syntax elements to a regular
expression for the Oniguruma regex engine.

27

Special hand l ing is given to rules that match keywords. These are addi t ional ly enclosed i n
word boundary anchors (\b) to prevent unwanted matches. These anchors are only placed at
those sides of the rule that are determined to start/end wi th a word character, since a pattern
like \b(?:@import)\b wou ld only ever match right after a word .

Lexer rules i n A N T L R might be marked as case insensitive, i n w h i c h case the pattern is
enclosed w i th the equivalent regex syntax:

SELECT_KW options { c a s e l n s e n s i t i v e = t r u e ; } : ' s e l e c t ' ;

I
(? i : s e l e c t)

The "Shadowing " Problem

There is a side effect of the translation between ANTLR grammars and TextMate grammars. It
is caused by the differences i n behavior between ANTLR-generated lexers and TextMate-based
syntax highl ighters w h e n mult ip le rules can match the same input. Un l ike A N T L R lexers,
TextMate highl ighters move on after f ind ing the first rule that finds a match, regardless of
its length. That means that i f there is a rule further d o w n the list that cou ld match more
characters, it w i l l not be considered, as the engine has already advanced to the next character.

This means that some rules may never match any characters because they are completely or
part ia l ly shadowed by other rules, w h i c h causes the syntax h ighl ight ing to appear incorrect
and broken.

DIV : '/' ; a / b a / b
COMMENT : '//' ~ [\ r \ n] * ; / / r e a d me // read me

CMD : ' / f i n d ' ; / f i n d i j k / f i n d i j k

INT : [0 - 9]+ • 42 42
HEX : •0x' [0 - 9 a - f] + ; 0 x l 5 a f l 5 0 x l 5 a f l 5

ACCESS : ('read' r e a d x r e a d x
' r e a d w r i t e ') ; r e a d w r i t e y r e a d w r i t e y

input actual expected

Figure 5.6: A n example of a grammar that contains three instances of the shadowing problem
i f translated naive ly into TextMate g rammar patterns: as long as DIV is always tr ied first,
COMMENT and CMD w i l l never match any input as the first slash character w i l l a lready have
been consumed by DIV. A similar situation, but w i th non-literal rules, happens w i th INT and
FLOAT, the latter can never match anything. This problem can also occur inside a single rule,
namely i n blocks w i th mult iple alternatives.

Reordering

The generated TextMate rules are sorted according to the fol lowing ordering:

28

\ d { 3 }

\ d +

\ d +

\ d { 3 } ?

#0
#01
#012
#0123
#01234
#012345

#0
#01
#012
#0123
#01234
#012345

#0
#01
#012
#0123
#01234
#012345

X X
Figure 5.7: A n example of two rules that part ial ly shadow each other. This problem cannot
be solved by simple reordering of the two rules.

1. shadowing mit igat ion patterns

2. keyword rules (since they have word boundary anchors and so are unl ike ly to produce
unwanted matches; also, they are i n danger of being shadowed (dominated) by more
general rules l ike ID : [a-zA-Z_])

3. a l l other rules, i n an order that prevents unwanted shadowing

The picked approximation (complexity - number of descendants of the rule i n the grammar)
is not very accurate, but most cases where it wou ld cause a prob lem i n practice (involving
keywords) w i l l be solved by using word boundary anchors.

Assigning a TextMate scope name

The generated TextMate rules w i l l not do anything at al l unless they have a TextMate scope
name that can be targeted by selectors i n color themes to actually assign a color to the token.

The chosen solution is to consider careful ly chosen heuristics and conventions to guess the
correct scope name. The user can always override this choice by specifying the desired scope
name for a given rule.

1. use the TextMate scope name expl icit ly specified by the user, i f available

2. keyword i f the rule is a keyword rule

3. v a r i a b l e i f the rule name suggests an identifier or name of something

4. cons tan t , numeric i f the rule name suggests a numeric l iteral

5. comment i f the rule name suggests a comment

6. s t r i n g i f the rule name suggests a string/text/characters

29

Shadowing Mit igat ion Patterns

If the automatic (approximate) rule ordering fails to prevent rule shadowing, the user can add
a rule conflict i tem to the configuration file. The generator w i l l add a special anti-shadowing
rule to the top of the TextMate grammar. The regex pattern of this rule is constructed from the
underly ing ("conflicting") rules' patterns such that the one that matches the most characters
is selected.

The basic idea is to try each sub-pattern and remember the posit ion at the end of the match
and then, i f a l l sub-patterns found a match, compare w h i c h of the match-end positions is
farther from the start (or equivalently closer to the end) of the string.

Unfortunately, storing and later comparing an arbitrary position is not one of the operations
available i n the Oniguruma regex flavor used by TextMate grammars. However, we can
instead store the rest of the line after each match. Then, i f the rest of the line after the second
sub-pattern's match (rest2) is a suffix of the rest of the line after the first sub-pattern's match
(r e s t l) , L\ matched fewer characters.

(? = (? < L l > \ d : \ d) (? < r e s t l > . *) $) p r e - m a t c h l j

(? = (? < L 2> \ d : \ d : \ d | \ d) (? < r e s t 2 > . *) $) p r e - m a t c h L2

(? : (?<Llmatch>\k<Ll>) (? ! . + ?\k<rest2>$) m a t c h I , i f it 's no t shor t e r t h a n L2

| (?<L2match>\k<L2>)) o the rw i s e m a t c h L2

Figure 5 .8 : Pattern that finds the longer match of two sub-patterns (named L\ and L 2) .
Whitespace added only for readabi l i ty and is not part of the pattern.

\d:\d
1. v = f (1 : 5 : 6) . v a l ; ^

Llmatch r e s t l

2. V
\d: \d: \d

= f (1 : 5 : 6]) . v a l ;
L2match rest2

3. V
\d:\d

= f (1 : 5 : 6]
• " "Ti

) . v a l ;
Llmatch rest2

4. V
\d: \d: \d

= f (l : 5 . : 6 :) . v a l ;
L2match r e s t l

Figure 5 .9: Il lustration of the trick used to find the pattern that matches the most characters

30

Chapter 6

Testing and Evaluation

This chapter w i l l describe how the developed tool was tested by creating two independent
sets of DSL tools and w i l l evaluate the quality of the results and the effort required to achieve
them.

A n ideal language for test ing purposes should be complex enough to be able to test most
features of the DSL Tools Generator, This means that it should have mult ip le token types,
some of them be ing h ighl ighted differently based on addi t iona l context f rom the syntax
or semantics, opportunit ies for va l idat ion of semantics and for code complet ion based on
previous declarations, etc.

6.1 Avro IDL

One such language is Avro IDL, an Interface Descr ipt ion Language w i t h a C-l ike syntax
created as an alternative to schemas defined i n J S O N for the Apache Avro data serial ization
system [1]. A n Avro IDL file defines a single protocol and may also contain import statements
and named schema declarations (records, enums, and fixed-length types). A grammar of the
Avro IDL language is available i n its G i tHub repository 1 .

After down load ing the g rammar file into an empty directory named AvroIDL, a basic C#
console project was created us ing the c ommand dotnet new. The necessary dependencies
(ANTLR and the OmniSharp LSP library) were added using the fo l lowing commands:

dotnet add package Antlr4.Runtime.Standard
dotnet add package OmniSharp.Extensions.LanguageServer — v e r s i o n 0.19.9

A conf igurat ion file was created speci fying the name of the grammar file, the name of the
C# project file, the output paths, the pa th to the A N T L R tool , the namespaces i n w h i c h to
place the generated files, and VS Code extension name and ID.

At this point, the generated VS Code extension was already capable of providing basic syntax
highl ight ing of an example Avro IDL file.

Then add ing a few l ines of C # code was needed to start the language server i f the — I s
command-line argument is given and to init ial ize any options for the language server. This in-

1 h t t p s : / / g i thub.com/apache/avro/blob/main/share/idl_grammar/org/apache/avro/idl/Idl.g4

31

http://thub.com/apache/avro/blob/main/share/idl_grammar/org/apache/avro/idl/Idl.g4

eludes registering any LSP request handlers (written by the user or as part of the generated lan
guage server code), i n this case the Bas icHoverHandler and BasicCodeComplet ionHandler .

After manual ly starting the language server 2 and starting debugging of the VS Code extension,
the A S T explorer v i ew and a basic hover and code complet ion funct ional i ty was available
(see figures 6.1 and 6.2).

File Edit Select ion V iew G o

EXPLORER

> OPEN EDITORS

v AST EXPLORER
V • dIFile

V • ' r o toco l ProtocolDedaration

Doc = null

> P SchemaPropert ies = ILisťl

> * Name Identifier
V * Body ProtocolDeclarationB...

> Imports = ILisťl

ß> NamedSchemas = ILL.

> • F ixedDeclarat ionN. . .

> • EnumDeclarat ion. . .

> • RecordDeclarat ion. . .

> • RecordDeclarat ion. . .

> • RecordDeclarat ion. . .

> • RecordDeclarat ion. . .

> Messages = ILisťl

IsMissing = false

ParserContext = Proto...
> OUTLINE

> TIMELINE

> DSL

P [Extension Development Host] dsl

avroexample.avdl

1 (anamespace("org.apache.avro. t e s t ")

2

3
4
5

6

7

8
9

10

11

12

13

14
15

16

17

18

19
20

21

22

23

24

p r o t o c o l S i m p l e {
/** a f i x e d */
f i x e d MD5(16);

@ a l i a s e s ([" o r g . f o o . K i n d O f "])

enum K i n d { F00, BAR, BAZ }

e r r o r S i m p l e E r r o r {

s t r i n g message;

i n t e r r o r C o d e = - l j

}

r e c o r d T e s t R e c o r d {
s t r i n g (3 o r d e r (" i g n o r e ") name;
K i n d (3order(" d e s c e n d i n g ") k i n d ;
MD5 hash;

}

r e c o r d Dob {

@ l o g i c a l T y p e (" t i m e s t a m p - m i c r o s ")

l o n g f i n i s h T i m e ;

u n i o n { n u l l , s t r i n g } o p t i o n a l S t r i n g l

/** a j o b i d */ s t r i n g j o b i d ;

n u l l ;

Figure 6.1: A n example Avro IDL file being edited using the VS Code extension and language
server generated automatically using DSL Tools Generator (before any manual adjustments).

Next, the fo l lowing h igh l ight ing improvements were achieved by add ing a custom handler
derived from the generated BasicSemant icTokensHandler :

• classify (highlight) identifiers i n declarations or references to a named schema (record,
enum, etc.) as types

• classify keywords as identifiers when used as identifiers (Avro IDL allows using keywords
as identifiers)

• classify schema properties (e.g. border) as the decorator token type

• classify enum members as the enum member token type

2 Manual ly starting the server is only needed during development, where it provides the benefit of being able
to debug and restart the server arbitrarily from a development environment

32

Position: (l i n e : 38, c h a r : 1)

Token: [§328, 754: 757='enum' , <12> J39:0]

AST node: E n u m D e c l a r a t i o n

enum K i n d { F00, BAR, BAZ }

Figure 6.2: The default LSP hover request handler (BasicHoverHandler) - can be overridden
to display arbitrary p la in or formatted text based on the AST node.

A simple semantic analysis step was added that collects named schema declarations into
a symbol table and displays them as suggestions using a custom CompletionHandler when a
type is expected (see figure 6.4 on the fo l lowing page).

The created editor support is comparable to and, i n some aspects, exceeds the main VS Code
extension for Avro IDL 3 by StreetSideSoftware, which only provides basic syntax highlighting.

6.2 CSS

The same approach was taken w i t h the CSS (Cascading Style Sheets) language, w i t h the
fol lowing differences:

• the grammar was wr i t ten manual ly to only contain a subset of CSS

• the language ID was arbi trar i ly set to FCSS to d ist inguish it f rom the CSS language
support bui l t into V S Code

• code complet ion items were sourced f rom a pre-defined list of element (tag) names
and property names and values instead of using a symbol table

The created tools are shown i n figures 6.5 and 6.6.

6.3 Evaluation

For both of the tested languages, the DSL Tools Generator was able to successfully generate
a V S Code extension w i t h syntax h igh l i ght ing and a language server w i t h an A S T data
structure. However, wh i l e it does streamline too l creation, several areas for improvement
have been identif ied, suggesting many opportunities for future development.

One possible improvement would be to reduce the number of in i t ia l setup steps, for example,
by creat ing a template for the dotnet new c ommand that w o u l d automat ical ly insta l l the
required dependencies and create a sample configuration file. Also, the AST generator could
detect situations where al l alternatives of a rule have an element w i th the same label, so the
property could be lifted into the base class. Semantic highl ighting could be further improved -

3 h t t p s : //ma r k e t p l a c e . v i s u a l s t u d i o . c o m / items? itemName=streetsidesof twa re. avro

33

http://rketplace.visualstudio.com/

>^ File Edit Selection View Go ••• -> I P [Extension Development Host] dsl

EXPLORER ••• = avroexample.avdl

> OPEN EDITORS 1 @ n a m e s p a c e (" o r g . a p a c h e . a v r o . t e s t ")

v AST EXPLORER 2 p r o t o c o l S i m p l e |{

* dIFile 3 /** a f i x e d */

• Protocol ProtocolDeclaration 4 f i x e d MD5(16);

>

ft Doc = null

ft SchemaProperties = IList'1

5

6

7

@a l i a s e s ([" o r g . f o o . K i n d O f "])

enum K i n d { F00, BAR, BAZ }
> 9 i\iame identifier 8

• Body ProtocolDeclarationB... 9 e r r o r S i m p l e E r r o r {
> ft Imports = ILisfl 10 s t r i n g message;

ft NamedSchemas = ILi... 11 i n t e r r o r C o d e = -1;

> • FixedDeclarationN... 12 }
> • EnumDeclaration... 13

> • RecordDeclaration... 14 r e c o r d T e s t R e c o r d {

> • RecordDeclaration...

> • RecordDeclaration...

> • RecordDeclaration...

15

16

17

18

19

20

21

s t r i n g (S t o r d e r (" i g n o r e ") name;

K i n d @ o r d e r (" d e s c e n d i n g ") k i n d ;

MD5 hash;

}

r e c o r d Job {

(3 1 o g i c a l T y p e ("timestamp- m i c r o s ")

ft Messages = IList'1

ft IsMissing = false

ft ParserContext = Proto...

15

16

17

18

19

20

21

s t r i n g (S t o r d e r (" i g n o r e ") name;

K i n d @ o r d e r (" d e s c e n d i n g ") k i n d ;

MD5 hash;

}

r e c o r d Job {

(3 1 o g i c a l T y p e ("timestamp- m i c r o s ")

ft IsMissing = false 22 l o n g f i n i s h T i m e ;

> OUTLINE 23 u n i o n { n u l l , s t r i n g } o p t i o n a l S t r i n g l

> TIMELINE 24 /** a j o b i d */ s t r i n g j o b i d j

> DSL 25 }

= n u l l ;

Figure 6 .3: A n example Avro IDL file being edited using the VS Code extension and language
server created using DSL Took Generator, after manual adjustments to semantic highlighting.

I I IS -J I I u J I I j

a r r a y < s t r i n g > names;

i i - i n t token

<h Job

Kind

E : local_timestamp_ms to...

1? lo n g token

1? map token

• mapType ru l e

0 0 MD5

Figure 6.4: Code complet ion menu after add ing a simple CompletionHandler that offers
items from the symbol table as suggestions.

34

hei lo.fcss

1

2

3

4

5

6

7

8

9

i e
11

12

13

14

15

16

17

18

19

20

button {
background: c u r r e n t C o l o r ;
f o n t - w e i g h t : b o l d ;

}
.green b u t t o n {

c o l o r : green;
}
p.important {

f o n t - w e i g h t : 406;

}
I
(Smedia p r i n t {

t a b l e t d {
f o n t - w e i g h t : b o l d ;

}
d i v {

b a c k g r o u n d : r e d ;

}
}
@font-face { f o n t - f a m i l y : A r i a ; }

(a) Syntax and semantic h ighl ight ing of CSS inside
VS Code (includes manua l adjustments to the h igh
l i gh t ing of class, p rope r t y and tag names , and of
at-rule keywords l ike @media).

.green button {
c o l o r : green;

ft background
ft background-color

p. im ft c o l o r
F l d e c l a r a t i o n r u l e

} ft f o n t - s i z e
ft font-weight

(aimed n propertyName r u l e

• s t y l e R u l e r u l e

(b) Code complet ion suggesting property
names inside C S S rules.

Figure 6.5: The created language support for (a subset of) CSS

10

11

12

13

14

e x t r a n e o u s i n p u t ' p r i n t ' e x p e c t i n g { ' } ' , ID} (F C S S _ E r r o r)

View Problem (Alt+F8) No quick fixes available

UTPUT

p r i n t

PROBLEMS 1 DEBUG CONSOLE Filter (e.g. text, **/*.ts, !*... Y E? =

hello.fcss T:\test 1

® extraneous input 'print' expecting {'}', ID} (FCSS_Error) [Ln 13, Col 3]

Figure 6.6: A n example of a diagnostic (a syntax error i n this case) sent by the language
server and displayed by VS Code.

35

file://T:/test

the user could specify highl ighting rules in the configuration file using some k ind of selectors.
Code completion is a complex feature and, whi le currently functional, does not always return
the most useful suggestions in a given moment.

36

Chapter 7

Conclusion

The goal of this thesis was to design and implement a program capable of generating tools for
using a domain-specific language (DSL) i n a code editor like VS Code. First, DSLs themselves
and the options for add ing editor support for them was discussed. Then , the Language
Server Protoco l (LSP) was described. The next chapter focused on A N T L R and h o w its
unique A T N feature can be u t i l i z ed for code complet ion functionality. Subsequently, the
thesis explored the design choices, methodologies, and challenges encountered dur ing the
implementat ion - inc lud ing the approach taken to resolve the shadowing prob lem caused
by differences i n match ing behavior between A N T L R lexers and TextMate grammars used
for syntax highl ight ing. Finally, the developed too l was tested and evaluated by us ing it to
create editor support for two DSLs, Avro IDL and CSS.

The DSL Tools Generator is capable of saving a significant amount of t ime and effort when
creat ing editor support for a DSL. Compared to manua l implementat ion approaches that
require manua l l y def ining an A S T data structure and learn ing about TextMate grammars,
the Language Server Protocol, and various technical details, the process of creating tools for
DSLs was accelerated. The generator successfully generates a VS Code extension wi th syntax
highl ighting and a language server w i th an auto-generated AST data structure inferred from
the grammar. The AST can be analyzed by user code for a semantic analysis step, for example,
to provide domain-specific val idat ion or code complet ion results.

The generator also supports features that further improve the developer experience, e.g. by
automatical ly r e runn ing the generator w h e n the grammar or configuration is modif ied, or
by a l l owing debugging and restart ing the language server w i t h automatic reconnect ion
from the generated V S Code extension. It also includes an A S T Explorer v i ew that helps
i n unders tand ing the structure of the A S T and seeing any data attached by the semantic
analyzer.

7.1 Future Work

Areas where the generator could be improved and extended include:

37

• generating extensions/plugins for other editors than V S Code: V i sua l Studio 2022,
Intel l iJ IDEA, V i m or Neovim, Emacs, web-based editors: the web version of V S Code,
Monaco, CodeMirror , Ace

• implement other features of the Language Server Protocol : Code Actions, Inlay Hints,
Code Lens, Format t ing . . .

• use the developed generator to replace the JSON-based configuration mechanism w i th
a custom DSL for def ining DSLs (a metalanguage)

• investigate options for add ing support for other re lated protocols: Debug Adapter
Protocol (DAP) and Bu i l d Server Protocol (BSP)

• implement more target languages for code generation

• implement native AST „un-parsing" to make the ASTs serializable back into source code
(without losing formatt ing and comments) so that the DSL developer can implement
code actions and automated refactorings (extract function, extract to local variable, etc.)

- this could be done by storing tr iv ia (whitespace, comments, skipped/erroneous
text) as part of token data, l ike Roslyn, the C# and VB .NET compiler

38

http://VB.NET

Bibliography

[1] LDL Language [online]. Apache, Oct 2023 [cit. 2024-04-30]. Available at:
https://avro.apache.Org/docs/1.11.1 / i d l - l a n g u a g e / .

[2] C O R S I U S , M . , H O P P E N B R O U W E R S , S., L O K I N , M . , B A A R S , E. , S Ä N G E R S V A N C A P P E L L E N ,

G . et al . RegelSpraak: a CNL for executable tax rules specification. In: Proceedings of the
Seventh International Workshop on Controlled Natural Language (CNL 2020/21). 2021 .

[3] D E J A N O V I C , I., V A D E R N A , R., M I L O S A V L J E V I C , G . and V U K O V I C , Z . TextX: A Python tool

for Domain-Specif ic Languages implementat ion. Knowledge-Based Systems. 2017,
vol . 115, p. 1-4. DOI: 10.1016/j.knosys.2016.10.023. ISSN 0950-7051. Available at:
http://www.sciencedirect.com/science/article/pii/S095070511 63041 78.

[4] E N E T , J . , B O U S S E , E. , T I S I , M . and S U N Y E , G . O n the Suitabi l i ty of LSP and DAP for

Domain-Specif ic Languages. In: IEEE. 2023 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C). Västeräs,
Sweden: IEEE Computer Society, October 2023, p. 353 -363 . DOI:
10 .1109/MODELS-C59198.2023.00066. ISBN 979-8-3503-2498-3. Available at:
https://hal.science/hal-04245594.

[5] F O W L E R , M . and P A R S O N S , R. Domain-specific languages. 1st ed. Upper Saddle River,
N J : Addison-Wesley 2010. ISBN 9 7 8 - 0 - 3 2 1 - 7 1 2 9 4 - 3 .

[6] Official page for Language Server Protocol [online]. Microsoft, 2017. Last updated
2022-05-23 [cit. 2024-01-17]. Available at:
h t t p s : / / m i c r o s o f t . g i t h u b . i o / l a n g u a g e - s e r v e r - p r o t o c o l / .

[7] P A R R , T. The Definitive ANTLR 4 Reference. 2nd ed. Pragmatic Bookshelf, 2013. ISBN
978-1-93435-699-9.

[8] P A R R , T. and H A R W E L L , S. ANTLR [online], [cit. 2024-03-25]. Available at:
h t t p s : //www.antlr.org/.

[9] P A R R , T., H A R W E L L , S. and F I S H E R , K. Adaptive LL(*) parsing: The Power of Dynamic

Analysis. In: B L A C K , A. P. and M I L L S T E I N , T. D., ed. Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems Languages &
Applications. New York, NY, USA: A C M , October 2014, vol . 49, p. 579 -598 . SPLASH.
DOI: 10.1145/2660193.2660202. ISBN 9781450325851 . Available at:
h t t p s : //www.an t l r . o r g / p a p e r s / a l l s t a r - t e c h report.pdf.

[10] Documentation \ Langium. TypeFox, 2022. Available at: https://langium.org/docs/.

39

https://avro.apache.Org/docs/1
http://www.sciencedirect.com/science/article/pii/S09507051
https://hal.science/hal-04245594
https://microsoft.github.io/language-server-protocol/
http://www.antlr.org/
http://www.an
http://tlr.org/papers/alls
https://langium.org/docs/

[11] V Ö L T E R , M . , B E N Z , S., D I E T R I C H , C , E N G E L M A N N , B . , H E L A N D E R , M . et al .

DSL Engineering: Designing, Implementing and Using Domain-Specific Languages.
Self-published, 2013. I S B N 978-1-4812-1858-0. Available at: http://www.dslbook.org.

[12] V Ö L T E R , M . , K O S C E J E V , S., R I E D E L , M . , D E I T S C H , A. and H I N K E L M A N N , A.

A Domain-Specif ic Language for Payrol l Calculations: A n Experience Report from
DATEV. In: B U C C H I A R O N E , A., C I C C H E T T I , A., C i c c o z z i , F. and P I E R A N T O N I O , A.,

ed. Domain-Specific Languages in Practice: with JetBrains MPS. Cham: Springer
International Publ ishing, 2021 , p. 93 -130 . DOI: 10.1007/978-3-030-73758-0. ISBN
978-3-030-73758-0. Available at: http://voelter.de/data/pub/PayrollDSL.pdf.

40

http://www.dslbook.org
http://voelter.de/data/pub/PayrollDSL.pdf

