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Chapter 1 

Introduction 

In the seventh century before Christ, Egyptians believed they are the oldest nation in the 
world. The former king, Psantek I., wanted to confirm this assumption. The confirmation 
was based on the idea that children, who cannot learn to speak from adults, will use innate 
human language. That language was supposed to be Egyptian. For this purpose, Psantek I. 
took two children from a poor family and let them to grow up in care of a shepherd in an 
environment, where nobody was allowed to speak with these children. Although the test 
ultimately failed, it brings us testimony that already in old Egypt, people somehow felt the 
importance of languages (the whole story you can see in The story of psychology by Morton 
Hunt). 

In 1921, Ludwig Wittgenstein published a philosophical work (Logisch-philosophische 
Abhandlung) containing claim that says "The limits of my language mean the limits of my 
world". In the computer science, this claim is doubly true. Languages are a way how people 
express information and ideas in terms of computer science or information technology. In 
essence, any task or problem, which a computer scientist is able to describe, can be described 
by a language. The language represents a problem and all sentences belonging into this 
language are its solutions. 

Fact about the limitation by languages led to the birth of a new research area referred to 
as theory of formal languages studying languages from a mathematical point of view. The 
main initiator was linguist Noam Chomsky, who, in the late fifties, introduced hierarchy of 
formal languages given by four types of language generators. By this work, Noam Chom­
sky inspired many mathematicians and computer scientists so they began to extend this 
fundamental hierarchy by adding new models for language definition. Because the theory 
of formal languages examines the languages from the precise mathematical viewpoint, its 
results are significant for many areas in information technology. Models, which are studied 
by the theory, are used in compilers, mathematical linguistics, bioinformatics, especially ge­
netics and simulation of natural biology processes, artificial intelligence, computer graphics, 
computer networks, and others. 

The classical formal language theory uses three approaches to define formal languages: 
Grammatical approach, where the languages are generated by grammars, automata ap­
proach, where the languages are recognized by automata, algebraic approach, where the 
languages are defined by some language operations. 

To be more precise, in the grammatical approach, a grammar generates its language by 
application of derivation steps replacing sequences of symbols by other sequences according 
to its prescribed rules. The symbols can be terminal or nonterminal, and the sequences of 
these symbols are called strings. In a single derivation step, the grammar, by application 
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of its rule, replaces a part of string by some other string. Any string, which contains no 
nonterminal symbol and which can be generated from a start nonterminal by application 
of a sequence of derivation steps, belongs to the language of the grammar. The language 
of the grammar is represented by the set of such generated strings. 

While a grammar generates language, an automaton represents formal algorithm by 
which the automaton can recognize correctly made sequences of symbols belonging into the 
language the automaton defines. More specifically, an automaton has string written on its 
input tape. By application of prescribed rules, it processes the string symbol by symbol 
and changes its current state to determine whether the string belongs to the language 
represented by the automaton. If so, the string is accepted by the automaton. The set of 
all strings accepted by the automaton is the language that the automaton defines. 

1.1 Objectives of the Thesis 

A l l models, investigated in the theory of formal languages, are designed to reflect needs 
of given information technology. Today, when a task distribution, parallel and coopera­
tion process are extremely popular, the main attention is focused on controlled models and 
systems of models. The necessity of efficient data processing, computer networks, parallel 
architectures, parallel processing, and nature motivated computing devices justify studying 
of these approaches in terms of the theory of formal models, where the mechanisms rep­
resenting these approaches are called systems of formal models. The main motivation for 
investigation of systems lies in a possibility to distribute a task into several smaller tasks, 
which are easier to solve and easier to describe. These tasks can be solved sequentially or in 
parallel, and usually, due a communication, the cooperating models are more efficient than 
the models themselves. The thesis concentrates on these modern approaches and brings 
new, or generalized, formal mechanisms and results into the theory. More specifically, this 
thesis mainly deals with systems of automata and grammars and studies their properties. 

M y thesis, at first, continues with studying of sequential grammar systems, known 
as cooperating distributed grammar systems (shortly CD grammar systems). These were 
introduced in the late eighties as a model for blackboard problem solving. The main 
idea standing behind the C D grammar systems is in a cooperation of well-known simple 
grammars working on a shared string under a cooperation protocol. Unfortunately, the 
increased efficiency, obtained from the cooperation, is given by higher degree of ambiguity 
and non-determinism, what is unpleasant for a practical purpose. The thesis introduces 
several restrictions limiting the ambiguity or non-determinism, and investigates their effect 
on the systems. 

The further investigation builds on the work of Lukas and Meduna, who, in 2006, 
introduced a new variant of parallel grammar systems named as multi-generating grammar 
systems. In contrast with classic widely studied parallel communicating grammar systems, 
where included grammars are used as supporting elements and the language of a parallel 
grammar system is generated by one predetermined grammar, these new systems take into 
account strings from all their grammars. The final strings are obtained from all generated 
strings by a string operation. The thesis introduces two versions of automata counterpart to 
these grammar systems and proves their equivalence. Thereafter, the investigated systems 
are generalized and a fundamental hierarchy of these systems is established. Finally, the 
thesis suggests systems based on mentioned approaches as a direct translator of natural 
languages and parser of languages generated by a specific type of controlled grammars. 
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Chapter 2 

Notation and Basic Definitions 

In this work, we assume the reader is familiar with the formal language theory (see [54]) 
and the basic aspects of computational linguistics (see [61]). 

For a set, Q, \Q\ denotes the cardinality of Q. Let K C No is a final set. Then, 
max(K) = k, where k G K and for all h € K, k > h; and min(K) = I, where I G K and for 
all h G K, I < h. Furthermore, let (X, >) is an ordered set and A C X. We say that i £ l 
is an upper and lower bound of A, if for all a G A, a < x and x < a, respectively. The least 
upper bound is called supremum, written as sup(A). Conversely, the greatest lower bound 
is known as infimum, denoted inf(A). 

For an alphabet, V, V* represents the free monoid generated by V (under the operation 
concatenation). The identity of V* is denoted by e. Set V+ = V* — {e}; algebraically, V+ 

is thus the free semigroup generated by V. For every string w G V*, \w\ denotes the length 
of w, (w)R denotes the mirror image of w, and for A G V, occur(A, w) denotes the number 
of occurrences of A in w. For a, b G Z , function max(a, b) returns the greater value from a 
and b. 

A finite automaton, FA, is a quintuple M = (Q,Y,,5,qo,F), where Q is a finite set of 
states; E is an alphabet; qo G Q is the initial state; 5 is a finite set of transition rules of 
the form qa —>• p, where p,q G Q, and a G E U {e}; and F C Q is a set of final states. 
A configuration of M is any string from QT,*. For any configuration qay, where a G E , 
y G E * , q £ Q, and any r = qa p <E 5, M makes a move from configuration goy to 
configuration py according to r, written as qay py[r], or simply gay py. =̂>* and 

represent transitive-reflexive and transitive closure of respectively. If iu G E * and 
qow =̂>* / , where / G F , then u> is accepted by M and qow =̂>* / is an acceptance of w in 
M. The language of M is defined as L ( M ) = {w\ w G E*,c/o^ / is a n acceptance of 
w}. 

A partially blind k-counter automaton, fc-PBCA, is finite automaton M = (Q, E , 5, qo, F) 
with k integers v = (vi,..., Vk) in NQ as an additional storage. Transition rules in 5 are of 
the form pa —> qt, where p, q G Q, a G E U {e}, and i G Z*. As a configuration of fc-PBCA 
we understand any string from Q E * N Q . Let xi = paw(v\,..., Vk) and X2 = Qw(v[, • • • ,v'k) 
be two configurations of M and r = pa —>• q{t\,...,tk) G o, where (ui + i i , . . . , Vk + 
tk) = ( ui)---) ufc)- Then, M makes a move from configuration xi to %2 according to r, 
written as % i ^> X2[r], or simply % i ^> X2- ^* and represent transitive-reflexive and 
transitive closure of =>, respectively. The language of M is defined as L ( M ) = {w\ w G 
E*,q0w(0,...,0)^* f(0,...,0),f eF}. 

A pushdown automaton, P D A , is a septuple M = (Q, E , T , <5, go, -^o, where Q is a 
finite set of states; E is an alphabet; qo G Q is the initial state, T is a pushdown alphabet; 5 is 
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a finite set of transition rules of the form Zqa —>• 7p, where p,q G Q, Z G T, and o G E U {e}: 
7 G T*; ZQ G T is the initial pushdown symbol; and F C Q is a set of final states. A 
configuration of M is any string from T*QT,*. For any configuration xAqay, where x G T*, 
y G E*, g G Q, and any r = A / a —>• 7p G <5, M makes a move from configuration xAqay to 
configuration X7py according to r, written as xAqay =4> arypyfr], or simply xAqay =4> x^py. 
=4>* and represent transitive-reflexive and transitive closure of respectively. If 
io G E* and Z^q^w =4>* / , where / G F, then u> is accepted by M and Z^q^w =4>* f is an 
acceptance of w in M . The language of M is defined as L(M) = {w\ w G E*, Zoqow =4>* f 
is an acceptance of u>}. 

A k-turn PDA is a P D A in which the length of the pushdown tape alternatively increases 
and decreases at most fc-times during any sweep of the pushdown automaton. 

A context-free grammar, C F G , is quadruple G = (N,T,P, S), where N and T are 
disjoint alphabets of nonterminal and terminal symbols, respectively; S G N is the start 
symbol of G; and P is a finite set of grammar rules of the form A —>• a, where 4 £ JV, 
and a G (A?" U T ) * . Furthermore, if a G T*NT*, we say that the grammar is linear, L N G 
for short, and if a G TiV, we say that the grammar is right-linear, R L N G for short. A 
sentential form of G is any string from (N UT)* . Let u,v G (A?" U T ) * and r = A -> a £ P . 
Then, G makes a derivation step from u to v according to r, written as uAv =4> itm;[r], or 
simply uAv =4> um>. Let =4>* and denote transitive-reflexive and transitive closure of 
=>. The language of G is defined as L(G) = {w\ S =4>* w,w G T*}. 

A phrase-structure grammar is a quadruple G = (N,T,S, P), where N and T are 
alphabets such that A" n T = 0, 5 G A", and P is a finite set of productions of the form 
a —>• P, where a G N+ and /? G (A7" U T)*. If a —>• /? G P , it = xoaxi , and u = xo/3xi, where 
xo ,x i G V*, then it =4> u [a —>• /?] in G or, simply, u ^ v. Let =4>+ and =4>* denote the 
transitive closure of =4> and the transitive-reflexive closure of respectively. The language 
of G is denoted by L(G) and defined as L(G) = { » G T*| S ^ * w}. 

A programmed grammar (see [34]) is a septuple G = (A", T, S, P, A, cr, 4>), where 

• A" and T are alphabets such that A" n T = 0, 

• SeN, 

• P is a finite set of productions of the form A —>• /?, where 4 G JV and A is a finite set 
of labels for the productions in P . 

• A can be interpreted as a function which outputs a production when being given a 
label, 

• a and <fi are functions from A into the 2 A . 

For (x, n ) , (y, r2) G (A" U T)* x A and A(r i ) = («—>• /?), we write (x, r\) =4> (y, r2) iff either 
x = X\UX2, y = X\f3x2 and ri G cr(n), or x = y, and rule a —>• j3 is not applicable to x, and 
T2 G 

The language of G is denoted by L(G) and defined as L(G) = {w\ w G T*, (S,ri) =4>* 
{w,r2), for some r\,r<i G A}. Let «5?(P, ac) denote the class of languages generated by 
programmed grammars. If (j)(r) = 0, for each r G A, we are led to the class Jz?(P). 

Let G be a programmed grammar. For a derivation D : S= w\ =>• u>2 =>• . . . =>• u>„ = to, 
u; G T*, of G, ind(D,G) = max ({occur(wi, N)\ 1 < i < n}), and for w G T*, ind{w,G) = 
min({ind(D, G) | L> is a derivation of ID in G}). The index ofG is ind{G) = sup({ind(w,G)\ 
w G L(G)}). For a language L in the class JSf(P) generated by programmed grammars, 
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ind(L) = inf({ind(G)\ L(G) = L}. For the class i f ( P ) , Sfn(P) = {L\ L G jgf(P) and 
ind(L) < n, for n > 1} (see [34]). 

A matrix grammar, M A T , is a pair H = (G,C), where G = (N,T,P,S) is a context-
free grammar and C C P* is a finite set of strings denoted as matrices. A sentential 
form of H is any string from (N U T)*. Let it, v be two sentential forms. Then, we say 
that H makes a derivation step from u to v according to r, written as u =>• u[m], or 
simply it =4> w, if m = p i . . . pm G C and there are uo, . . . , vm, where vo = u, vm = v, 
and vo =4> ui[pi] =^ • • • =^ v m [p m ] in G. Let =4>* and =4>+ denote transitive-reflexive and 
transitive closure of =>. The language of H is defined as L(H) = {w\ S =4> wi[mi] 
wn[mn],wn = w, m i , Tnn G C, w G T*, n > 0}. The class of languages generated by 
matrix grammars is denoted by ££{MAT). 

The classes of regular languages, linear languages, context-free languages, context-
sensitive languages, and recursively enumerable languages are denoted by R E G , LIN, 
C F , CS, and R E , respectively. 
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Chapter 3 

State of the A r t 

Unlike the classic formal languages and automata theory, which studies models accepting 
or generating language by one automaton or grammar, a modern computer science aims 
to distribute this computation. The main reasons follow from necessities and possibilities 
of computer networks, distributed databases, parallel processors, etc., which give us new 
terms such as distribution, communication, concurrency, and parallelism. 

A formal system is defined as a set of formal models working together under a specified 
protocol. Such systems have many advantages. For example, they allow to model distribu­
tion, the generative or accepting power of used models usually increases, the (descriptional) 
complexity of a language decreases, there is a possibility of parallel cooperation, etc. 

The main role in the theory of formal systems is played by cooperation protocols and 
used formal models. This chapter considers four basic classes of systems of formal models: 
sequential grammar systems, parallel grammar systems, sequential automata systems, and 
parallel automata systems. 

3.1 Cooperating Distributed Grammar System 

A cooperating distributed grammar system, CD grammar system for short, was first intro­
duced in [57] related to two-level grammars. Several years later, by investigation of this 
system in relation with multi-agent systems and blackboard problem solving architectures 
in [18], studies of C D grammar systems became an intense research area. 

A C D grammar system consists of finite number of grammars, called components. These 
symbolize agents. The common sentential form, which the agents sequentially modify ac­
cording to a mode given by a certain protocol, represents the current state of the problem 
to be solved. The authors of [18] considered five modes under which agents work: *-mode 
- the active agent works as long as it wants; t-mode - the active agent works as long as it 
is able to work; and, > k,< k, and = k modes correspond to a time limitation of agents 
activity, when the active agent has to make i steps for i > k,i < k, and i = k, respec­
tively. If a terminal string is generated, the problem is solved (see definitions 3.1 through 
3.4 specifying C D grammar systems in terms of formal languages). 

Definition 3.1 (Cooperating distributed grammar system) 
A cooperating distributed grammar system, a CD grammar system for short, is an (n + 3)-
tuple r = (N, T, 5, P i , . . . , Pn), where N, T are alphabets such that N ' n T = 0, V = N UT', 
S <E N, and Gi = (N, T, Pi, S), 1 < i < n, is a context-free grammar. 
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Definition 3.2 (Mode of derivation in C D grammar systems) 
Let T = (N, T, S, Pi,..., Pn) be a C D grammar system. 

• For every i = 1,2,... ,n, terminating derivation by i th component, written as =^p., 
is defined as 

x =4>p. y iff x =4>p. y and there is no z G £* such that y =4>p{ z. 

• For every i = 1,2, ...,n, k-steps derivation by i th component, written as =^pf is 
defined as 

x =^pf y iff there are x\,..., xu+i and for every j = 1,... , k, Xj =4>p{ Xj+i. 

, n, at most k-steps derivation by i th component, written as 

x =4>p\fc y iff x =^pf y for some k' < k. 

, n, at least k-steps derivation by i th component, written as 

x ^ p ^ y iff x =^pf y for some k' > k. 

Definition 3.3 (Language generated by a C D grammar system) 

Let T = (N, T, S, Pi,..., Pn) be a C D grammar system and / G D be a mode of derivation, 
where Z? = U {< k, = k, > k\ k G N}. Then, the language generated by T, Lf(T), is 

Lf(T) = { w G T * | S WI . . . =^v, u ; m = w,m > 1,1 < j < m, 1 < i 7 - < n\. 

Definition 3.4 (Classes of languages generated by C D grammar systems) 
The classes of languages generated by C D grammar systems we denote by «5?(CD, n, / ) , 
where / G {*, t] U {= k, < k, > k\ k G N}, and n G N U {oo} is the number of components. 

By the following theorems, we summarize selected basic results regarding the power of 
CD grammar systems. 

Theorem 3.5 C F = i f (CD, l,t) = i f (CD, 2, t) C i f (CD, 3, t) = i f (CD, oo, t) C CS. 

Theorem 3.6 If / G {= 1, > 1, *} U {< k\ k > 1}, then i f (CD, oo, / ) = C F . 

Theorem 3.7 C F = i f ( C D , l , / ) C i f (CD, 2, / ) C i f ( C D , r , / ) C i f (CD,cx ) , / ) C 
i f (MAT) , for all / G {= k, > k\ k > 2} and r > 3. 

Other Variants of C D Grammar Systems 

The standard C D grammar systems, defined above, use only conditions saying when the 
enabled component can, or has to, stop working on a sentential form. Selection of com­
ponent for work is non-deterministic. However, in [21], [19], [27], [5], etc., you can find 

• For every i = 1,2,... 
=^p\fc, is defined as 

• For every i = 1,2,... 
=$%k, is defined as 
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discussions about many variants of C D grammar systems with several approaches how to 
select working components. 

As a natural extension of C D grammar systems, Mitrana and Paun introduced a hybrid 
cooperating distributed grammar systems in [62] and [68]. In contrast with C D grammar 
systems, where all components work in the same mode, these systems consists of components 
working in different modes. 

The generative power of C D grammar systems can be increased by teams. This idea 
was introduced and has been firstly investigated in [44]. Formally, a CD grammar sys­
tem with teams is defined as a tuple F = (N, T, S, Pi,..., Pn, Ri,..., Rm), where F = 
(N, T, S, Pi,..., Pn) is an ordinary C D grammar system and Ri C { P 1 ; . . . , Pn} is a team, 
for a l H = 1,.. . , m. At one moment, components from a team simultaneously rewrite corre­
sponding part of a shared sentential form. Precisely, x =^ y iff x = X1A1X2 • • • xsAsxs+i, 
y = xiyixi... xsysxs+i, for all j = 1,..., s + 1, Xj G (N U T)*, and for all k = 1,..., s, 
At —> Vk £ P £ Ri- For this one step derivation, fc-steps derivation, at most fc-steps 
derivation, at least A:-steps derivation, and derivation of any number of steps are defined as 
usual. Only terminating derivation has three variants, where the active team stops working 
if the team as a whole cannot perform any further step, no component can apply any of its 
rules, or at least one component cannot rewrite any symbol of the current sentential form 
(see [44, 37, 69]). 

Besides mentioned variants, many others appear in the literature from the introduction 
of ordinary C D grammar systems in [57] and [18] up to these days, e.g. C D grammar 
systems with external storage (see [31, 76, 32, 35]), C D grammar systems consisting of 
different components (see [78, 39, 49, 23]), hierarchical systems (see [2]), deterministic 
systems (see [59]), etc. 

3.2 Parallel Communicating Grammar Systems 

Parallel communicating grammar systems, PC grammar systems for short, were introduced 
in [70]. These systems consist of a finite number of grammars (components), which work 
on their own sentential form. The components are synchronized and make derivation steps 
concurrently. During derivation, the communication is performed through special query 
symbols. Whenever at least one component generates a query symbol, all components 
suspend generating and the grammar system makes a communication step—that is, for 
every component in the system, each occurrence of a query symbol in its sentential form 
is replaced by the sentential form of the component to which the query symbol is pointing 
to. One component of the system is called master and the language of the master is the 
language of P C grammar system. 

Similarly as in the case of C D grammar systems, the theory of formal languages studies 
different variants of P C grammar systems, such as 

• returning P C grammar systems, where each component that has sent its sentential 
form to another starts from the start nonterminal: 

• centralized P C grammar systems, where only the master can generate query symbols: 

• non-synchronized P C grammar systems, where all components include rules of the 
form A —>• A for every nonterminal symbol A; 

• P C grammar system with communication by commands, where each component has a 
control language and in a certain situation all components send their current sentential 
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form to other components owning a control language to which the sentential form 
belongs to: 

• P C grammar systems with languages given by concatenation of all strings over ter­
minal symbols after the end of generation: 

• P C grammar systems using query strings instead of query symbols, where the commu­
nication steps is done after at least one component generates a query string pointing 
to another component: 

• P C grammar systems, where components make different number of steps: 

• and many others, see [21], [20], [42], [72], etc. 

Probably the most important features of parallel communicating grammar systems are 
communication protocol and types of used components together with the way they work. 
Further important feature is synchronization. Habitually, the synchronization of compo­
nents is done by an universal clock (each component make one derivation step in each time 
unit), but others synchronization mechanisms are also studied (see [21], [67], [25]). Two 
of the most natural variants are synchronization by rules, which can be applied simulta­
neously, and synchronization by nonterminals, which can be rewritten at the same time 
unit. Both these approaches Lukas and Meduna used in [55] and [46], where they have 
investigated multi-generative grammar systems. 

Multi-Generative Grammar Systems 

Multi-generative grammar systems are a variant of parallel communicating grammar sys­
tems, where the communication is provided only by synchronization. This synchronization 
restricts either rules, which can be used for each common derivation step, or nonterminals, 
which can be simultaneously rewritten. For successful generation, all components have to 
produce sentences at the same time. Lukas and Meduna have considered three types of 
languages defined by multi-generative grammar systems—languages consisting of all sen­
tences produced by all components, languages consisting of concatenations of all sentences 
produced by all components, and languages consisting of sentences produced by the first 
component of a multi-generating grammar system. 

Definition 3.8 (Multi-generative nonterminal synchronized grammar system) 

A multi-generative nonterminal synchronized grammar system, G N , is an (n + l)-tuple 

r = (Gi,..., Gn, Q), where 

• Gi = (Ni, Ti, Pi, Si) is a context-free grammar, for a l H = 1,... , n, 
• Q is a finite set of control n-tuples of the form (A\,..., An), where Ai G Ni for all 

i = 1,. . . , n. 

Definition 3.9 (Multi-generative rule synchronized grammar system) 

A multi n-generative rule synchronized grammar system, G R , is an (n + l)-tuple 

r = (Gi,..., Gn, Q), where 

• Gi = (Ni, Ti,Pi, Si) is a context-free grammar for all i = 1,..., n, 
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• Q is a finite set of control n-tuples of the form ( n , . . . , r n ) , where G Pj for all 
i = 1,... , n. 

Definition 3.10 (Multi-sentential form) 
Let T = (Gi,..., Gn, Q) be either G N or GR. Then a multi-sentential form is an n-tuple 
X = (xi,..., xn), where Xi G (Tj U iVj)* for a l H = 1,...,n. 

Definition 3.11 (Derivation step in GN) 
Let T = (Gi,...,Gn,Q) be a G N , let x = (uiAiVi,..., unAnvn), x' = (uixivi,..., 
UnXnvn), be two multi-sentential forms, where Ai G Ni,Ui,Vi,Xi G (iVj U Tj)* for all 
i = 1,..., n. Let —?• Xj G Pj for all i = 1,... , n, and (^4i , . . . , ^4n) G Q. Then, x 
directly derives written as x =̂  x'-

Definition 3.12 (Derivation step in GR) 
Let T = (Gi,...,Gn,Q) be a GR, let x = (uiAivi,..., unAnvn), x' = (uixivi,..., 
unxnVn), be two multi-sentential forms, where Ai G Ni,Ui,Vi,Xi G (iVj U Tj)* for all 
i = 1,..., n. Let rj:^4j —>• x% G Pj for all i = 1,..., n, and ( n , . . . , rn) G Q. Then, x 
directly derives written as x =^ x' • 

Definition 3.13 (Multi-language generated by G N and GR) 
Let T = (Gi,..., Gn, Q) be either G N or G R . Then, the n-language generated by T, n -L( r ) , 
is 

n -L(r ) = {(wi,.. .,wn)\ (Si, ...,Sn)=>* (wi,.. .,wn), Wi G T* for all i = 1,... ,n}. 

Definition 3.14 (Languages of G N and GR) 
Let r = ( G i , . . . , Gn, Q) be either G N or GR. Then, we define 

• the language generated by T in union mode, LU(T)), as 

n 

LU(T) = (J {wi\ (wi,.. .,wn) G n-L(r)} , 
i=l 

• the language generated by F in concatenation mode, L,(F), as 

L . ( r ) = {wi ...wn\ (wi,..., wn) G n-L(T)}, 

• the language generated by F in first-component-selection mode, Li(F)), as 

Li(F) = {wi\ (wi,.. .,wn) G n-L(r)} . 

Definition 3.15 (Canonical multi-generative grammar systems) 
We say, that G N and G R are canonical if all the components of G N and G R can make 
only the leftmost derivations, i.e. only the leftmost nonterminal can be rewritten in each 
sentential form. Canonical multi-generative rule synchronized grammar systems and cano­
nical multi-generative nonterminal synchronized grammar systems are denoted by C G R 
and C G N , respectively. 
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R E G 

Figure 3.1: Hierarchy of languages (it is considered that k > 2 and / G {U, • , 1}) 

Convention 3.16 If there is an attention on the number of components in a multi-
generative grammar system, we use terms n-generative grammar system, n -GN, n-GR, 
n-CGR, n - C G N , sentential n-form, and n-language, for some positive integer n, rather 
than multi-generative grammar system, G N , GR, C G N , C G R , multi-sentential form, and 
multi-language, respectively. 

Definition 3.17 (Classes of n -GN, n - C G N , n-GR, and n - C G R n-languages) 
Let X G {GN, C G N , GR, C G R } . The class of n-languages of n-X, ££{nX), is defined as 
JC(nX) = {n-L\ n-L is an n-language generated by n-X}. 

Definition 3.18 (Classes of n -GN, n-GR, n - C G N , and n - C G R languages) 
Let X G {GN, C G N , GR, C G R } and / € {U, • , 1}. The class of languages generated by an 
n-X in /-mode, 5£{n-' X), is defined as 5£{n-' X) = {L\ L is a language generated in the 
/-mode by n-X}. 

Let's say that ^(XPC,Y) with X G { e , C , N , N C } and Y G {REG, CF} denote the 
classes of languages generated by XPC grammar systems with unlimited number of com­
ponents, where N and C before P C say that P C grammar systems are non-returning and 
centralized, respectively, and furthermore, Y = R E G and Y = C F mean that the com­
ponents of the systems are regular grammars and context-free grammars, respectively. In 
Figure 3.1 you can see several important relationships between the classes of languages 
defined by parallel grammar systems. The results are taken from [72], [55], and [46]. 
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3.3 Automata Systems 

Automata and automata systems are used in many areas of computer science. One can find 
them in computer networks, formal analysis and verifications, pattern matching, parallel 
computers, D N A computing, artificial intelligence, etc. In this section, we briefly outline 
several important cooperating models in terms of theory of formal languages. 

A multiprocesor automaton is based upon finite automata, called processors. These 
processors are coordinated by a central arbiter determining which processor is to become 
active or inactive (an inactive processor preserves its configuration) at a given step. The 
only informations that the arbiter has for decision about automata activities are the current 
state of each automaton and number of steps proceeding by active automata (see [7]). 

Similar system to the multiprocessor automata allows to share information about current 
states of processors. In such system, each automaton makes a move with respect of the 
current input symbol and states of all automata. If we reduce all these automata to one with 
multiple reading head, we make equivalent model called multi-head automaton (see [71]). 

In relation to automata, [29] has firstly investigated an idea to apply strategies akin to 
those that cooperating distributed grammar systems use. For this purpose, Mitrana and 
Dassow introduced special types of multi-stack pushdown automata. However, they do not 
form the automata counterpart of C D grammar systems. This was introduced and has been 
studied in [24] under the name distributed pushdown automata system. 

A distributed pushdown automata system contains a shared one-way input tape, one 
reading head, and finite number of components having their own pushdown and finite sets 
of states. At any moment, only one component is active. According to a cooperation 
protocol, the active component must perform k, at least k, at most k, for k > 1, or it must 
work as long as it is able to perform a move. 

Parallel communicating automata systems have been investigated both with finite au­
tomata and pushdown automata as components. The first variant, parallel communicating 
finite automata system, was introduced by Martin-Vide, Mateescu, and Mitrana in [48]. 
Finite automata in such systems work independently but on a request, they communi­
cate by states to each other. More precisely, the finite automata are entitled to request the 
current state of any other component. In [48] has been discussed several variants, where con­
tacted automaton after communication is/is not returned to the initial state (returning/non-
returning parallel communication automata systems), or, only one automaton has/all au­
tomata have the right to ask the current state from the others (centralized/non-centralized 
parallel communication automata systems). By application of these strategies on pushdown 
automata, the investigation was continued in [22], where the attention is focused especially 
on communication by stacks, i.e. on request an asked automaton send the content of its 
pushdown to requesting automata which push it on their pushdowns). 

In the same way as in the case of grammar systems discussed above, you can find many 
other variants of automata systems in the literature (see [74, 75, 65, 58, 66, 26]). Generally, 
we can say that the theory of formal languages reflects the approaches used in grammar 
systems into automata systems and studies the accepting power of given systems in relation 
to component represented by automata working in many different ways. 
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3.4 New Definitions and Selected Results 

3.4.1 Restrictions on C D Grammar Systems 

Formal language theory has investigated various left restrictions placed on derivations in 
grammars working in a context-free way. In ordinary context-free grammars, these restric­
tions have no effect on the generative power. In terms of regulated context-free grammars, 
the formal language theory has introduced a broad variety of leftmost derivation restrictions, 
many of which change their generative power (see [3, 6, 28, 30, 33, 36, 38, 41, 50, 51, 52, 53]). 
In terms of grammars working in a context-sensitive way, significantly fewer left derivation 
restrictions have been discussed in the language theory. Indirectly, this theory has placed 
some restrictions on the productions so the resulting grammars make only derivations in a 
left way (see [3, 6]). This theory also directly restricted derivations in the strictly leftmost 
way so the rewritten symbols are preceded only by terminals in the sentential form during 
every derivation step (see [50]). In essence, all these restrictions result in decreasing the 
generative power to the power of context-free grammars (see page 198 in [73]). This section 
generalizes the discussion of this topic by investigating regularly controlled cooperating dis­
tributed grammar systems (see Chapter 4 in [73]) whose components are phrase-structure 
grammars restricted in some new ways. 

Now, we define the restrictions on derivations in phrase-structure grammars. In the 
following, we consider V as the total alphabet of G = (N,T,P,S), i.e. V = J V U T . 
Derivation-restriction of type I: Let I G N and let G = (N, T, P, S) be a phrase-structure 
grammar. If there is a —>• j3 G P, u = xoaxi, and v = xofixi, where XQ G T*N*, x\ G V*, 
and occur^oa, N) < I, then u z<*4> v [a —>• j3\ in G, or simply u z<*4> v. 

The fc-fold product of z<*4>, where k > 0, is denoted by t < ^ k . The reflexive-transitive 
closure and transitive closure of z<*4> are denoted by t <^* and ;< s^> +, respectively. 

Derivation-restrictions of type II and III Let m, h G N . W{m) denotes the set of all 
strings x G V* satisfying 1 given next. W(m, h) denotes the set of all strings x G V* 
satisfying 1 and 2. 

1. x G (T*N*)mT*: 

2. (y G sub(x) and \y\ > h) implies alph(y) n T ^ 0. 

Let u G V*N+V*, v G V*, and u =^ v. Then, u ô=4> v in G, if u,v G W(m, h); and if 
it, v G W(m), u mo=4> v in G. 

The fc-fold product of J^o^ and mo=4> are denoted by m°^k a n d m°=^fc> respectively, 
where k > 0. The reflexive-transitive closure and transitive closure of ^o=^ are denoted by 
ô=4>* and ™o=4>+ , respectively; and the reflexive-transitive closure and transitive closure 

of TO°=^ a n d m ° = ^ are denoted by mo=4>* and mo=4>+, respectively. 

Convention 3.19 Let T = (iV, T, S, P\,..., Pn) be a C D grammar system with phrase-
structure grammars as its components and V = N U T be the total alphabet of T. Fur­
thermore, let u G V*N+V*, v G V*, k > 0. Then, we write u i<^kpt v, u m&^p. v, and 
u mo=4>p. v to denote that u t<^k v, u ™o=^fc v, and u mo=4>fc v, respectively, was performed 
by Pi. Analogously, we write u i<^*p. v, u m°^*p. v, u m°^*p. v, u i<^~p. v, u m°^~p. v, 
u mo^~p. v, u m°^-p. v, and u m°^-p. v. 

Let T = (N, T, S, Pi,..., Pn) be a C D grammar system with phrase-structure gram­
mars as its component and C be a control language. Then, \L (T) = {w G T*\ S /O^-p^ 
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w\ jO=^p. • • • z°=^p Wp = w,P > ^ ij ^ n,l < j < p, i\i2 • • • ip G C}, NL (F, m, h) = 

{w G T*\ S m ••• m^pip

 wP = W>P ^ 1 ' 1 ^ *J < n . 1 < J < 
p, i i i 2 • • • G C } , N ^ C ( r , m ) = G T*| 5 m o ^ P . toi mc^P. ... m<*>P. wp = w,p > 

%\ ?2 %V 
1,1 < ij < n, 1 < j < P, «1̂ 2 • • - iP & C}. 

Let l,m,h G N and let T = (A?-, T,S,P\,... ,Pn) be a C D grammar system with phrase-
structure grammars. We define the following classes of languages. 

J ^ ( i C D R E G ) = { i L c ( r ) | C G REG} 

^ ( N C D R E G ( m , / j ) ) = { N L c ( r , m , / i ) | C G REG} 

J ^ ( N C D R E G ( m ) ) = {NLc(F,m)\ C G REG} 

For these classes, the following theorems are established. 

Theorem 3.20 Let I G N . Then, C F = J ^ ( i C D R E G ) . 

Theorem 3.21 R E = J ^ ( N C D R E G ( 1 ) ) . 

Theorem 3.22 jSfm(P) = i f ( N C D R E G ( m , /»)), for any m > 1 and /» > 1. 

3.4.2 Parallel Systems of Formal Models 

In my thesis, we introduce two n-accepting restricted pushdown automata systems repre­
senting automata counterpart of multi-generative grammar systems (see Section 3.2). First, 
we define n-accepting state-restricted pushdown automata systems. By using prescribed 
n-state sequences, the restrictions of these systems determines which of the components 
perform a move and which of them do not. Second, we define n-accepting move-restricted 
pushdown automata systems, where the restriction precisely determines which transition 
rule can be used in each of the n components. Both of these systems define sets of n-tuples 
of strings (n-languages). 

After that, we generalize the theory of n-languages and discussed hybrid canonical 
rule-synchronized n-generative grammar systems and hybrid n-accepting move-restricted 
automata systems, where components with different generative and accepting power can be 
used in one grammar and automata system, respectively. More specifically, we investigate 
grammar systems, which combine right-linear grammars, linear grammars, and context-
free grammars; and automata systems, which combine finite automata, 1-turn pushdown 
automata, and pushdown automata in one instance. 

A hybrid canonical rule-synchronized n-generative grammar system, H C G R ^ 1 >->*») for 
short, is an n + 1-tuple F = (Gi,..., Gn, Q), where 

• Gi = {Ni,Ti, Pi, Si) is a right-linear, linear, or context-free grammar for every i = 
1,... ,n , 

• Q is a finite set of n-tuples of the form ( n , . . . , rn), where ri G Pi for every i = 1,... , n, 
and 

• for all i = 1,..., n, U G { R L N G , L N G , C F G } denotes type of i th component. 
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A sentential n-form of HCGR*-' 1 ) is an n-tuple x = O^i: • • •: xn), where £j G (iVj U Tj)* 
for a l i i = 1,... , n. 

Consider sentential n-forms, x = (u\A\v\,..., unAnvn) and x' = ( ^ l ^ i ^ i j • • • >u nx nv n) 
with 

• Ai e Ni, 

• «i G T*, 

• Ui.Si G (NUT)*, 

• rj = —>• Xi G Pj, for al lz = 1,... , n, and 

• ( n , . . . , r„ ) G Q. 

Then, X =^ x ' , and =4>* and =4>+ are its reflexive-transitive and transitive closure, respec­
tively. 

The n-language of T is defined as n-L(T) = {(wi,..., wn)\ (Si,..., Sn) =4>* (wi,..., wn), 
Wi G T*, for all 1 < i < n}. 

A hybrid n-accepting move-restricted automata system, denoted HMAS*-'1''"''™-1, is de­
fined as an n + 1-tuple i? = ( M i . . . , Mn, ^£>) with M , as a finite or (1-turn) pushdown au­
tomaton for all i = 1,... , n, and with $ as a finite set of n-tuples of the form ( n , . . . , rn), 
where for every j = l,...,n, Vj G Sj in Mj. Furthermore, for all i = l , . . . , n , ti G 
{FA, 1-turn P D A , P D A } indicates the type of i th automaton. 

A n n-configuration is defined as an n-tuple x = (xi, • • •, xn), where for all % = 1,... , n, x% 
is a configuration of M j . Let x = (xii • • • > xn) and x' = (x'n • • • > x n) be two n-configurations, 
where for a lH = 1,.. . , n, xi x\ [ri] in M j , and (ri,..., rn) G ̂ , then -d makes computation 
steps from n-configuration x to n-configuration denoted X x'> a n d m the standard 
way, and denote the reflexive-transitive and the transitive closure of respectively. 

Let xo = (a?i< îj • • •, xn^n) be the start and Xf = • • • > Qn) be a final n-configuration 
of H M A S ^ 1 - ' * " ) , where for all i = 1,... , n, Wj is the input string of M j and <7j is state 
of M j . The n-language of HMAS^1'"'*™) is defined as n-L(°d) = {(ui,... ,un)\ xo ^* 
Xf and for every i = 1,... , n, M j accepts}. 

In a special case, where all components are of type X, we write nX instead of (X,..., X). 
If there is no attention on the number and type of components, we write H M A S and H C G R 
rather than H M A S ( t l ' - ' * n ) and H C G R ( t l ' - ' * n ) , respectively. 

^(HMAS^ 1 ' - '*™)) and Jgf(HCGR^1'-'*™)) are the classes of n-languages accepted by 
H M A S ^ 1 ' - ' * " ) and n-lan guages generated by HCGR*-'1''"''™-1, respectively. 

The basic hierarchy of such systems is given by Figure 3.2. 

3.4.3 Rule-Restricted Transducers 

In formal language theory, there exist two basic translation-method categories. The first 
category contains interprets and compilers, which first analyse an input string in the source 
language and, after that, they generate a corresponding output string in the target language 
(see [1], [60], [64], [43], or [77]). The second category is composed of language-translation 
systems or, more briefly, transducers. Frequently, these trasducers consist of several com­
ponents, including various automata and grammars, some of which read their input strings 
while others produce their output strings (see [4], [40], [63], and [79]). 
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J ^ ( H M A S " r i J A ) 

/ 

J ^ ( H C G R ( R L N G ' " - ' R L N G ' C F G ) ) 

JSf(HCGR> 

j2?(HMAS n ) J ^ ( H C G R " n i j i N U ) 

Figure 3.2: Hierarchy of n-languages for n > 2 

Although transducers represent language-translation devices, language theory often 
views them as language-defining devices and investigates the language family resulting from 
them. In essence, it studies their accepting power consisting in determining the language 
families accepted by the transducer components that read their input strings. Alternatively, 
it establishes their generative power that determines the language family generated by the 
components that produce their strings. The thesis contributes to this vivid investigation 
trend in formal language theory. 

In this section, we introduce three new variants of transducer, referred to as rule-
restricted transducer, based upon a finite automaton and a context-free grammar. In addi­
tion, a restriction set controls the rules which can be simultaneously used by the automaton 
and by the grammar. 

A n rule-restricted transducer, RT for short, is a triplet T = (M,G,^f), where M = 
(Q, E , 5, qo, F) is a finite automaton, G = (N, T, P, S) is a context-free grammar, and $f is a 
finite set of pairs of the form (r\,r2), where n and r2 are rules from 5 and P, respectively. 

A 2-configuration of RT is a pair x = (x, y), where x G QT,* and y G ( iVUT)*. Consider 
two 2-configurations, x = (pa-vi, uAv2) and %' = (qvi,uxv2) with A G N, u, vi, x G (iVUT)*, 
v\ G E*, a G E U {e}, and p,q G Q. If pav\ gvifri] in M, uAvi =>• uxv2\r'2\ in G, and 
{r\,r<i) G ^ , then F makes a computation step from x' to written as x =^ x'• I n the 
standard way, and are transitive-reflexive and transitive closure of respectively. 

The 2-language of F, 2-L(F), is 2-L(r) = {(u;i,u; 2)| ( g 0 ^ i , S) ^* (f,w2), wi G E*, 
u>2 G T*, and / G F } . From the 2-language we can define two languages: 

• L ( r ) i = {i£7i| (w1,w2) G 2-L(r)}, and 

• L ( r ) 2 = {«; 2 | (wi,w2) G 2-L(r)}. 

By Jzf(RT), ££[RT)\, and =Sf (RT)2, the classes of 2-languages of RTs, languages accepted 
by M in RTs, and languages generated by G in RTs, respectively, are understood. The 
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generative and accepting power are given by the following theorems. 

Theorem 3.23 ^(RT)2 &(MAT). 

O G 

Theorem 3.24 ££{RT)X U ££(k-PBCA). 
fe=i 

Although the investigated system is relatively powerful, in defiance of weakness of mod­
els they are used, non-deterministic selections of nonterminals to be rewritten can be rela­
tively problematic from the practical point of view. Therefore, the effect of a restriction, 
in the form of leftmost derivations placed on the grammar in RTs, has been examined. 

Let r = ( M , G, *) be an RT with M = (Q, E , S, q0, F) and G = (N, T, P, S). Further­
more, let x = (pavi,uAv2) and x' = (qv\,uxv2) be two 2-configurations, where A G A", 
v2, x G (A" U T)*, u G T*, v\ G E*, a G E U {e}, and p,q £ Q. F makes a computation step 
from % to x'i written as x =>lm x'i if a n d only if pav\ =4> qv\[ri] in M, uAv2 =>• m r i ^ ^ ] 
in G, and ( r i , r 2 ) G In the standard way, =^*m and are transitive-reflexive and 
transitive closure of =4>zm, respectively. 

The 2-language of F with G generating in the leftmost way, denoted by 2-L;m(r), is 
defined as 2-L Z m(r) = {(wi, w2)\ (qowi,S) ^*lm (f,W2), wi G E*, w2 G T*, and / G F}: 
we call T as leftmost restricted RT; and we define the languages given from 2-L;m(r) as 
£jm(r)i = {^i| (^1 ,^2) G 2-L Z m(r)} and Lhm(F)2 = {w2\ (w1,w2) G 2-L Z m(r)}. By 
Ji?(RTim), Ji?(RTim)i, and Ji?(RTim)2, we understand the classes of 2-languages of leftmost 
restricted RTs, languages accepted by M in leftmost restricted RTs, and languages gen­
erated by G in leftmost restricted RTs, respectively. The leftmost restriction effects the 
generative and accepting power as the following theorem says. 

Theorem 3.25 i f ( i ? T Z m ) 2 = C F and ££(RTlm)x = C F . 

Unfortunately, the price for the leftmost restriction, placed on derivations in the context-
free grammar, is relatively high and both accepting and generative ability of RT with the 
restriction decreases to C F . 

In the thesis, RTs have been extended with the possibility to prefer a rule over another— 
that is, the restriction sets contain triplets of rules (instead of pairs of rules), where the 
first rule is a rule of FA, the second rule is a main rule of C F G , and the third rule is an 
alternative rule of C F G , which is used only if the main rule is not applicable. 

A n RT with appearance checking, R T a c for short, is a triplet F = ( M , G , ^ ) , where 
M = (Q, E , 5, go, F) is a finite automaton, G = (A7, T, P, S) is a context-free grammar, and 
^ is a finite set of triplets of the form {r\,r2,r^) such that r\ G 5 and r2, r% G P. 

Let x = {pav\,uAv2) and x' = (qvi,uxv2), where A G N, v2,x,u G (A 7 U T ) * , v\ G E*, 
a G E U {e}, and p,q<EQ, be two 2-configurations. F makes a computation step from x 
to x' 1 written as x ^> if and only if for some (ri,r2, n ) G ^ , pav\ gwifri] in M, and 
either 

• uAv2 uxv2[r2] in G, or 

• uAv2 14x^2^3] in G and r2 is not applicable on uAv2 in G. 

The 2-language 2-L(F) and languages L(T)i, L(F)2 are defined in the same way as usual. 
The classes of languages defined by the first and the second component in the system are 
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denoted by i f ( i ? T a c ) i and i f ( i ? T a c ) 2 , respectively. The power of the RTs with appearance 
checking is declared by the following theorem. 

Theorem 3.26 i f ( i ? T a c ) 2 = R E and Sf(RTac)i = RE-

3.5 Thesis Summary and Further Investigation 

My PhD thesis discusses and studies formal languages and systems of formal models. Its 
main results are published or submitted in [16, 56, 8, 9, 10, 11, 17, 12, 14, 13, 15]. This 
section summaries these results. 

The thesis was focused on a study of systems of formal models which plays important 
role in the modern information technology and computer science. Since the introduction of 
CD grammar systems, many other systems were studied and systems of formal models have 
become a vivid research area. A i m of the thesis was to further investigate properties of the 
systems of formal models to their better understanding. This research can be divided into 
several main parts. 

In the first part, we continued in studying of regularly controlled C D grammar systems, 
where we used phrase-structure grammars as components, and introduced three new restric­
tions on derivations in these systems. The first restriction requires that derivation rules 
could be applied within the first I nonterminals, for given I > 1. Although phrase-structured 
grammars define all languages from R E , regularly controlled C D grammar systems with 
phrase-structure grammars as components under such restriction generate only context-free 
languages. One may ask, how strong the control language must be to leave the generative 
power unchanged. Our assumption is that linear languages are sufficient, but a rigorous 
proof has not yet been done. The second restriction allows to have only limited number of 
undivided blocks of nonterminals in each sentential form during any successful derivation. 
It has been proven that this restriction has no effect on the generative power of these C D 
grammar systems even in the case when the restriction allows only one such block. On 
the other hand, the restriction limiting the maximum length and number of the blocks 
decreases the generative power of these systems to the classes i f m (P) representing infinite 
hierarchy, with respect of m, lying between the classes of linear and context-sensitive lan­
guages. Notice that m is maximal number of blocks and C F — i f m ( P ) ^ 0. Question 
whether the stronger control language effects the generative power of C D grammar systems 
with phrase-structure grammars subject to the third restriction is still open. 

The second part deals with parallel grammar and automata systems based upon CFGs 
and PDAs, respectively. More specifically, we introduced two variants of n-accepting re­
stricted pushdown automata systems, accepting n-tuples of interdependent strings, as coun­
terparts of canonical n-generating nonterminal/rule synchronized grammar systems based 
upon context-free grammars. Both types of the automata systems consist of n PDAs, for 
n > 2, and one restriction-set. In the case of n-accepting state-restricted automata sys­
tems, the restriction-set allows to suspend and resume some automata during computation 
in relation to combination of current states of the PDAs . In the case of n-accepting move-
restricted automata systems, the restriction-set determines which combination of transition 
rules used in the common computation step are permitted. We have proven that these n-
accepting restricted automata systems are able to accept such n-languages that the canon­
ical n-generating grammar systems can generate and vice versa. Furthermore, we have 
established fundamental hierarchy of n-languages generating/accepting by these canonical 
multi-generating rule synchronized grammar/n-accepting rule-restricted automata systems 
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with different types of components. First of all, we have shown that both these systems 
are equivalent even if we combine R L N G s with CFGs in the grammar systems and FAs 
with PDAs in the automata systems. After that, we have established the hierarchy given 
by Figure 3.2 (—>• and mean C and =, respectively), where it can be seen, inter alia, that 
canonical n-generating rule synchronized grammar systems based upon linear grammars are 
significantly weaker than n-accepting move-restricted automata systems, with two 1-turn 
PDAs and n — 2 FAs as components. 

The second part of the research can be continued by better approximation of power of the 
state/move-restricted automata systems based upon FAs (especially in relation to string-
interdependences), or by investigation of restarting and/or stateless finite and pushdown 
automata as the components of discussed automata systems. 

In the last part, we have suggested rule-restricted systems for processing of linguistically 
motivated languages. In this part, we introduced three variants of rule-restricted translating 
systems based upon finite automaton and context-free grammar. At first, we have proven 
that leftmost restriction placed on derivation in the context-free grammar effects both the 
generative and accepting power of such systems. In addition, we introduced a rule-restricted 
transducer system with appearance checking, where the restriction-set ^ is a set of 3-tuples 
containing one rule of the FA and two rules of the C F G . For the common computation step, 
the system has to use the first and second rules of a 3-tuple, if it is possible; otherwise, 
it can use the first and third rules from the 3-tuple. This system is able to recognize and 
generate any language from R E . Thereafter, some examples of natural language translating 
are given. 

The investigation of processing of linguistically motivated languages continued by gene­
ralization of T C grammars that generate the language under path-based control introduced 
in [47]. We have considered T C grammars that generate their languages under n-path 
control by linear language which were introduced in [45]. 

We have demonstrated that for L G n-path-TC under assumption that L is generated 
by T C grammar {G, R) in which G and R are unambiguous and, furthermore, G is restricted 
to be L L grammar, there is parsing method working in polynomial time. This method check 
whether or not the paths of the derivation tree t of x G L{G) belongs to control language 
R in the time of building of t. Moreover, when we consider L R parser for L G n-path-TC 
under assumption that L is generated by T C grammar (G, R) in which G has bounded 
ambiguity (i.e. G is unambiguous or m-ambiguous) and unambiguous language R G LIN, 
there is also a parsing method working in polynomial time. 

However, the open question is whether there is polynomial time parsing method 

• if G is not L L , 

• if G is ambiguous. 

It is also of interest to quantify the worst case of the parsing complexity more precisely. 
The open investigation area is represented by the transformation of n-path TC gram­

mars into some normal forms based on Chomsky normal form of underlying context-free 
grammar which would lead to possibility to use parsing methods based on transformation 
to Chomsky normal form. 
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Chapter 4 

Abstract 

My PhD thesis continues with study of grammar and automata systems. First of all, it 
deals with regularly controlled C D grammar systems with phrase-structure grammars as 
components. Into these systems, three new derivation restriction are placed and their effect 
on the generative power of these systems are investigated. Thereafter, the thesis defines 
two automata counterparts of canonical multi-generative nonterminal and rule synchro­
nized grammar systems, generating vectors of strings, and it shows that these investigated 
systems are equivalent. Furthermore, the thesis generalizes definitions of these systems and 
establishes fundamental hierarchy of n-languages (sets of n-tuples of strings). In relation 
with these mentioned systems, automaton-grammar translating systems based upon finite 
automaton and context-free grammar are introduced and investigated as a mechanism for 
direct translating. At the end, in the thesis introduced automata systems are used as the 
core of parse-method based upon n-path-restricted tree-controlled grammars. 
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