VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING

ÚSTAV STROJÍRENSKÉ TECHNOLOGIE

INSTITUTE OF MANUFACTURING TECHNOLOGY

OPTIMALIZACE SVAŘOVACÍCH PARAMETRŮ PŘI LASEROVÉM SVAŘOVÁNÍ S PŘÍDAVNÝM STUDENÝM DRÁTEM

OPTIMIZATION OF WELDING PARAMETERS DURING LASER WELDING WITH ADDITIONAL COLD WIRE

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Jan Venc

VEDOUCÍ PRÁCE SUPERVISOR

doc. RNDr. Libor Mrňa, Ph.D.

BRNO 2021

Zadání diplomové práce

Ústav:	Ústav strojírenské technologie
Student:	Bc. Jan Venc
Studijní program:	Strojní inženýrství
Studijní obor:	Strojírenská technologie
Vedoucí práce:	doc. RNDr. Libor Mrňa, Ph.D.
Akademický rok:	2020/21

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Optimalizace svařovacích parametrů při laserovém svařování s přídavným studeným drátem

Stručná charakteristika problematiky úkolu:

Optimalizovat svařovací parametry při laserovém svařování s přídavným studeným drátem. Bude optimalizováno pro díly z austenitické korozivzdorné oceli. Optimalizace bude prováděna s ohledem na pohledovou kvalitu svaru, převýšení svaru a vzniklé svarové vady.

Cíle diplomové práce:

Osvojit si technologie laserového svařování včetně rozšíření při svařování s přídavným studeným drátem. Osvojit si základy metalografie a vyhodnocení řezů svarů s ohledem na jejich geometrii a svarové vady.

Seznam doporučené literatury:

BENKO B., FODEREK P., KOSEČEK M., BIELAK R.I: Laserové technológie,1.vyd., Bratislava, Vydavateĺstvo STU, 2000, edice 4859, ISBN 80-227-1425-9.

DULEY W.W.: Laser welding, New York 1999, A.Wiley-Interscience publication, ISBN 0-471-24679-4.

KANNATEY-ASIBU, E.: Principles of Materials Processing, John Wiley&Sons, Inc. Publication, 2009, ISBN 978-0-470-17798-3.

MORAVEC, Jaromír. Teorie svařování a pájení II: Speciální metody svařování. Liberec: TUL, 2008. ISBN 978-80-7372.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2020/21

V Brně, dne

L. S.

doc. Ing. Petr Blecha, Ph.D. ředitel ústavu doc. Ing. Jaroslav Katolický, Ph.D. děkan fakulty

ABSTRAKT

VENC Jan: Optimalizace svařovacích parametrů při laserovém svařování s přídavným studeným drátem.

Diplomová práce se zabývá optimalizací procesních parametrů pro svařování odvodňovacího žlabu pomocí laserového svazku s přídavným studeným drátem. Součást je vyráběna z austenitické korozivzdorné Cr-Ni oceli X5CrNi 18-10 (1.4301, ČSN 17 240) o tloušťce plechu 1,5 mm. U vzorků byla pro ověření mechanických vlastností provedena příčná zkouška tahem. Následovala makroskopická kontrola zaměřená na rozměry svaru a přítomnost svarových vad. Na závěr byla mikroskopickou kontrolou určena struktura svarového kovu a základního materiálu. Na základě vyhodnocených zkoušek byly doporučeny optimální svařovací parametry.

Klíčová slova: laser, svařování laserem, studený drát, korozivzdorná ocel,

ABSTRACT

VENC Jan: Optimization of welding parameters during laser welding with additional cold wire.

This diploma thesis deals with the optimization of process parameters of welding a drainage channel using a laser beam with an additional cold wire. This channel is made of austenitic Cr-Ni stainless steel X5CrNi 18-10 (1.4301, ČSN 17 240) with a sheet thickness 1,5 mm. Mechanical properties of samples were checked by using transverse tensile test. Subsequently, the samples were macroscopically inspected focusing on dimensions of the weld and the presence of weld defects. Finally, the structure of the weld metal and fundamental material was evaluated by using microscopic control. Based on evaluation tests, the optimal welding parameters were recommended.

Keywords: laser, laser welding, cold wire, stainless steel

BIBLIOGRAFICKÁ CITACE

VENC, Jan. Optimalizace svařovacích parametrů při laserovém svařování s přídavným studeným drátem [online]. Brno, 2021 [cit. 2021-05-15]. Dostupné z: https://www.vutbr.cz/studenti/zav-prace/detail/132378. Diplomová práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav strojírenské technologie. Vedoucí práce Libor Mrňa.

ČESTNÉ PROHLÁŠENÍ

Tímto prohlašuji, že předkládanou diplomovou práci jsem vypracoval samostatně, s využitím uvedené literatury a podkladů, na základě konzultací a pod vedením vedoucího diplomové práce.

V Brně dne 21.5.2021

Podpis

PODĚKOVÁNÍ

Tímto děkuji panu doc. RNDr. Liborovi Mrňovi, PhD. za cenné připomínky a rady týkající se zpracování diplomové práce a panu Ing. Kamilovi Podanému, PhD. za provedení mechanických zkoušek. Dále děkuji firmě ACO Industries k.s. a jejím zaměstnancům za umožnění realizace experimentu, poskytnutí potřebných dokumentů a konzultace. Děkuji také své rodině a přítelkyni za podporu během studia.

OBSAH

Abstrakt Bibliografická citace Čestné prohlášení Poděkování Obsah ÚVOD	Zadání	
Bibliografická citace Čestné prohlášení Poděkování Obsah ÚVOD	Abstrakt	
Čestné prohlášení Poděkování Obsah ÚVOD	Bibliografická citace	
Odskováni Obsah ÚVOD	Čestné prohlášení	
Obsah 9 Í VOD	Poděkování	
Obsan		
UVOD. 9 1 ROZBOR STÁVAJÍCÍHO STAVU 10 1.1 Možnosti optimalizace. 11 2 ROZDĚLENÍ LASERŮ 13 2.1 Polovodičové lasery 14 2.2 Pevnolátkové lasery 15 2.2.1 Tyčové lasery (Nd:YAG) 16 2.2.2 Dískové lasery 17 2.2.3 Vláknové lasery 17 2.3.4 Vláknové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 22 3.3 Interakce laserového svazku s materiálem 23 3.4 Metody laserového svazku s materiálem 25 3.4.2 Laserové svaťování s přídavným materiálem 25 3.4.3 Hybridní svaťování 26 3.5 Vaťovácí parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 36 5.2 Experimentální část A 38 5.3.1 Tahová zkouška experimentu A	Ubsan Yana a	
1 ROZBOR STAVAJICIHO STAVU 10 1.1 Možnosti optimalizace 11 2 ROZDĚLENÍ LASERŮ 13 2.1 Polovadičové lasery 14 2.2 Pevnolátkové lasery 15 2.1.1 ryčové lasery 16 2.2 Diskové lasery 17 2.2.3 Vláknové lasery 17 2.2.3 Vláknové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 22 3.3 Interakce laserového svažku s materiálem 23 3.4 Metody laserového svažování 24 3.4 J Laserové svařování se přídavným materiálem 25 3.4.2 Laserové svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušen svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35	UVOD	9
1.1 Možnosti optimalizace 11 2 ROZDĚLENÍ LASERŮ 13 2.1 Polovodičové lasery 14 2.2 Pevnolátkové lasery 15 2.2.1 Tyčové lasery (Nd:YAG) 16 2.2.2 Diskové lasery 17 2.3 Vláknové lasery 18 2.3 Plynové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 22 3.3 Interakce laserového svažku s materiálem 23 3.3 Interakce laserového svařování 24 3.4.1 Laserové svařování s přídavného materiálu 25 3.4.3 Hybridní svařování s přídavného materiálu 25 3.4.3 Hybridní svařování s přídavného materiálu 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení laserem 36 5.1 Svařování laserem 36 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu B 44 5.3.1 Tahová zkouška experimentu B 45 5.3.2 Makroskopie experimentu B 45	1 ROZBOR STÁVAJÍCÍHO STAVU	10
2 ROZDĚLENI LASERÚ 13 2.1 Polovodičové lasery 14 2.2 Pevnolátkové lasery 15 2.2.1 Tyčové lasery 16 2.2.2 Diskové lasery 17 2.2.3 Vláknové lasery 18 2.3 Plynové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 23 3.3 Interakce laserového svažku s materiálem 23 3.4 Metody laserového svažování 24 3.4.1 Laserové svařování s přídavného materiálu 25 3.4.2 Laserové svařování s přídavným materiálem 26 3.5 Švařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 42 5.3.3 Mikroskopie experimentu B 46 5.3.4 Makroskopie experimentu B 54 6 TEC	1.1 Možnosti optimalizace	
2.1 Polovodičové lasery 14 2.2 Pevnolátkové lasery 15 2.2.1 Tyčové lasery (Nd:YAG) 16 2.2.2 Diskové lasery 17 2.3 Vláknové lasery 18 2.3 Plynové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 23 3.3 Interakce laserového svažku s materiálem 23 3.4 Metody laserového svažku s materiálem 23 3.4 Metody laserového svažování 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování bez přídavného materiálem 26 3.5 Švařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2.2 Metalografie experimentu A 29 5.2.2 Metalografie experimentu A 42 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ	2 ROZDĚLENÍ LASERŮ	13
2.2 Pevnolátkové lasery 15 2.2.1 Tyčové lasery (Md:YAG) 16 2.2.2 Diskové lasery 17 2.3.3 Vláknové lasery 18 2.3 Plynové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 22 3.3 Interakce laserového svazku s materiálem 23 3.4 Metody laserového svažování 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování s přídavným materiálem 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5 S.1 Svařování laserem 36 5 3.1 Tahová zkouška experimentu A 39 5 2.2 Metalografie experimentu A 42 5 3.1 Tahová zkouška experimentu B 46 5 3.2 Makroskopie experimentu B 46 5 3.2 Makroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ	2.1 Polovodičové lasery	14
2.2.1 Tyčové lasery (Nd:YAG). 16 2.2.2 Diskové lasery. 17 2.2.3 Vláknové lasery. 18 3.3 Plynové lasery. 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim. 21 3.1 Kondukční režim. 22 3.2 Penetrační režim. 22 3.3 Interakce laserového svažku s materiálem. 23 3.3.4 Metody laserového svařování 24 3.4.1 Laserové svařování bez přídavného materiálu. 25 3.4.2 Laserové svařování s přídavným materiálem 25 3.4.3 Hybridní svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2.1 Tahová zkouška experimentu A 38 5.2.2 Metalografie experimentu A 42 5.3.3 Mikroskopie experimentu B 46 5.3.2 Makroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 5	2.2 Pevnolátkové lasery	15
2.2.2 Diskové lasery 17 2.2.3 Vláknové lasery 18 2.3 Plynové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 23 3.3 Interakce laserového svažku s materiálem 23 3.4 Metody laserového svažku s materiálem 23 3.4 Metody laserového svařování 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.3.2 Metalografie experimentu A 39 5.3.3 Mikroskopie experimentu B 45 5.3.3 Mikroskopie experimentu B 44 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59	2.2.1 Tyčové lasery (Nd:YAG)	16
2.2.3 Vláknové lasery 18 2.3 Plynové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 23 3.3 Interakce laserového svažvu s materiálem 23 3.4 Metody laserového svažování 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování s přídavného materiálu 25 3.4.3 Hybridní svařování 26 3.5 Švařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 39 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 46 5.3.3 Mikroskopie experimentu B 46 5.3.3 Mikroskopie experimentu B 59 Seznam použitých zdrojů 59 Seznam použitých symbolů a zkratek 59 Seznam tabulek 52 </td <td>2.2.2 Diskové lasery</td> <td>17</td>	2.2.2 Diskové lasery	17
2.3 Plynové lasery 20 3 LASEROVÉ SVAŘOVÁNÍ 21 3.1 Kondukční režim 22 3.2 Penetrační režim 23 3.3 Interakce laserového svazku s materiálem 23 3.4 Metody laserového svařování 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování s přídavným materiálem 25 3.4.3 Hybridní svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 39 5.3.3 Tahová zkouška experimentu B 46 5.3.3 Mikroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam obřázků 59	2.2.3 Vláknové lasery	
3 LASEROVE SVAROVANI 21 3.1 Kondukční režim 22 3.2 Penetrační režim 23 3.3 Interakce laserového svazku s materiálem 23 3.4 Metody laserového svařování 24 3.4 Metody laserového svařování 24 3.4 Metody laserového svařování 25 3.4.1 Laserové svařování bez přídavným materiálem 25 3.4.2 Laserové svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 39 5.3.3 Mikroskopie experimentu B 46 5.3.1 Tahová zkouška experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam obrázků 59	2.3 Plynové lasery	20
3.1 Kondukční režim 22 3.2 Penetrační režim 23 3.3 Interakce laserového svazku s materiálem 23 3.4 Metody laserového svažvu s materiálem 23 3.4 Metody laserového svažvu s materiálem 23 3.4 Metody laserového svažvu s materiálem 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování s přídavným materiálem 25 3.4.3 Hybridní svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Sez	3 LASEROVÉ SVAŘOVÁNÍ	21
3.2 Penetrační režim 23 3.3 Interakce laserového svažku s materiálem 23 3.4 Metody laserového svařování 23 3.4 Metody laserového svařování 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování sez přídavným materiálem 25 3.4.2 Laserové svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A. 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam použitých symbolů a zkratek 59 Seznam tabulek Seznam příloh	3.1 Kondukční režim	
3.3 Interakce laserového svažvů s materiálem 23 3.4 Metody laserového svažování 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování s přídavným materiálem 25 3.4.3 Hybridní svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 49 5.3.2 Metalografie experimentu B 45 5.3.3 Mikroskopie experimentu B 46 5.3.4 Makroskopie experimentu B 44 5.3.5 Tahová zkouška experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam použitých zdrojů 59 Seznam půloh 59	3.2 Penetrační režim	
3.4 Metody laserového svařování 24 3.4.1 Laserové svařování bez přídavného materiálu 25 3.4.2 Laserové svařování s přídavným materiálem 25 3.4.3 Hybridní svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 39 5.3.1 Tahová zkouška experimentu B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam použitých symbolů a zkratek 59 Seznam tabulek Seznam příloh	3.3 Interakce laserového svazku s materiálem	
3.4.1 Laserove svařování bez přídavného materialu. 25 3.4.2 Laserové svařování s přídavným materiálem 25 3.4.3 Hybridní svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam použitých symbolů a zkratek 59 Seznam tabulek Seznam příloh	3.4 Metody laserového svařování	
3.4.2 Laserove svarovani s pridavnym materialem 25 3.4.3 Hybridní svařování 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam použitých symbolů a zkratek 59 Seznam příloh 50	3.4.1 Laserové svařování bez přídavného materiálu	
3.4.3 Hybridni svarovani 26 3.5 Svařovací parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam obrázků 59 Seznam použitých symbolů a zkratek 59 Seznam použitých symbolů a zkratek 59 Seznam příloh 59	3.4.2 Laserove svařovaní s přídavným materialem	
3.5 Svarováci parametry 27 3.6 Vady svarových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam použitých zdrojů 59 Seznam obrázků 59 Seznam polžitých zdrojů 59 Seznam polžitých symbolů a zkratek 59 Seznam polžitých symbolů a zkratek 59 Seznam polěnků 59 Seznam polěnků 59	3.4.3 Hybridni svařováni	
3.6 Vady svárových spojů 28 3.7 Zkoušení svarových spojů 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam použitých symbolů a zkratek 59 Seznam potřích symbolů a zkratek 59 Seznam potřích symbolů a zkratek 59	3.5 Svarovaci parametry	
3.7 Zkoušeni svarových spoju 29 4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ 34 5 EXPERIMENTY A JEJICH VYHODNOCENÍ 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam obrázků Seznam potřích symbolů a zkratek Seznam potřích 58	3.6 Vady svarovych spoju	
4 SVARITELNOST KOROZIVZDOKNYCH OCELI	5.7 ZKOUSENI SVAFOVYCH SPOJU	
5 EXPERIMENTY A JEJICH VYHODNOCENI 35 5.1 Svařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam obrázků 52 Seznam tabulek 52 Seznam příloh 54	4 SVARITELNUST KURUZIVZDURNYCH UCELI	
5.1 Švařování laserem 36 5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 46 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam obrázků Seznam tabulek Seznam příloh 50	5 EXPERIMENTY A JEJICH VYHODNOCENI	
5.2 Experimentální část A 38 5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam obrázků 52 Seznam tabulek 52 Seznam příloh 52	5.1 Svařování laserem	
5.2.1 Tahová zkouška experimentu A 39 5.2.2 Metalografie experimentu A 42 5.3 Experimentální část B 45 5.3.1 Tahová zkouška experimentu B 46 5.3.2 Makroskopie experimentu B 48 5.3.3 Mikroskopie experimentu B 54 6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ 58 7 ZÁVĚRY 59 Seznam použitých zdrojů 59 Seznam obrázků 52 Seznam tabulek 52 Seznam příloh 52	5.2 Experimentální část A	
5.2.2 Metalografie experimentu A	5.2.1 Tahová zkouška experimentu A	
5.3 Experimentalni cast B	5.2.2 Metalografie experimentu A	
5.3.1 Tanova zkouška experimentu B	5.3 Experimentalni cast B	
5.3.2 Makroskopie experimentu B	5.3.1 Tanova zkouska experimentu B	40
6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ	5.3.2 Makroskopie experimentu B	
 6 TECHNICKO-EKONOWICKE ZHODNOCENI	5.5.3 Mikroskopie experimentu B	
 7 ZAVERY	6 TECHNICKO-EKONOMICKE ZHODNOCENI	
Seznam použitých zdrojů Seznam použitých symbolů a zkratek Seznam obrázků Seznam tabulek Seznam příloh	7 ZAVERY	59
Seznam použitých symbolů a zkratek Seznam obrázků Seznam tabulek Seznam příloh	Seznam použitých zdrojů	
Seznam obrázků Seznam tabulek Seznam příloh	Seznam použitých symbolů a zkratek	
Seznam tabulek Seznam příloh	Seznam obrázků	
Seznam příloh	Seznam tabulek	
	Seznam příloh	

ÚVOD [3, 4, 5, 6, 7]

V dnešní době, kdy je trendem zvyšování nároků na přesnost výroby dílců, dodržení jejich tvarové složitosti, úsporu výrobních nákladů nebo zkrácení výrobních časů, dochází k vývoji technologií, které jsou požadované nároky schopny splnit. Do těchto technologií v neposlední řadě patří i svařování pomocí laserového paprsku.

Tato metoda spojování součástí má mnoho výhod, lze ji plně automatizovat při zachování velice kvalitního svarového spoje. Velkou výhodou laseru je jeho rozmanitost, mimo různé způsoby svařování a řezání umožňuje povrchovou úpravu výrobků nebo navařování nových vrstev materiálu. Různé aplikace laserového svařování jsou uvedeny na obr. 1.

Svařování probíhá zpravidla bez přídavného materiálu, což může pro některé typy svarů způsobovat problémy zahrnující propadlý svarový spoj apod. Řešením je doplnění laserového paprsku přídavným materiálem pomocí podávacího zařízení. Eliminace svarových vad ale není jediným důvodem této aplikace. Materiál je přidáván i pro legování svarového kovu nebo pro vytvoření převýšeného svaru. Technologie laserového svařování s přídavným materiálem nachází své uplatnění v různých průmyslových odvětvích, od automobilového průmyslu až po odvodňovací systémy.

Obr. 1 Svařování laserem [6], [7]

1 ROZBOR STÁVAJÍCÍHO STAVU [1, 8, 9, 10, 11, 12]

Řešená součást slouží k odvodu procesních kapalin z podlahy do kanalizace, je jednou z hlavních částí odvodňovacího systému. Interní firemní označení ve společnosti ACO Industries k. s. je "komerční žlab". Roční produkce této součásti je přibližně 5000 ks. Na

obr. 2 je znázorněn řešený žlab společně s označeným místem, které je nutné svařovat s přídavným materiálem.

Firma ACO je nadnárodní společnost zabývající se vnitřním i venkovním odvodňováním budov s vedoucím postavením v Evropě. Má 30 výrobních závodů na 4 kontinentech a zaměstnává přibližně 4800 lidí. Největší výrobní závod v České republice se nachází v Přibyslavi, kde je zaměstnáno přibližně 700 lidí.

Obr. 2 Řešená součást [9]

V současnosti je řešená součást svařována metodou MAG. Laserem se z tabule plechu vypálí rozvin součásti, který je následně na ohraňovacím lise ohnut do požadovaného tvaru a dojde k zavaření rohů a tím k utěsnění součásti. Na obr. 3 je zobrazen náčrt žlabu se základními rozměry, tloušťka plechu je 1,5 mm. Současná metoda je nevhodná pro svařování tohoto typu žlabů, zejména kvůli malé rychlosti svařování a nevhodnosti použití v prostředí, kde je vyžadována hygienická čistota.

Žlab se vyrábí z austenitické Cr-Ni korozivzdorné oceli X5CrNi18-10 (dle jiných norem

17 240, AISI 304 a 1.4301). Tento materiál je dle ČSN 41 7240 vhodný pro svařování, odolný proti chemikáliím nízké 0 normálních koncentraci a při teplotách. Lze ho použít v prostředích, které vyžadují vysokou čistotu produktu. Je dobře tvářitelný a po svařování není tepelné nutné zpracování. Mechanické vlastnosti a chemické složení jsou uvedeny v tabulce 1. Tyto rozsahy hodnot jsou vyňaty z materiálového listu.

Obr.3 Základní rozměry žlabu [9]

Chemické	Prvek	С	Cr	Ni	Mn	Si	Р	S
složení	[hm. %]	$\le 0,07$	17,5-19,5	8-10,5	≤2	≤1	≤ 0,045	≤ 0,015
Mechanické vlastnosti	R _{p0,2} [MPa]		R _m [MPa]		A ₈₀ [%]	Žíhán	o [°C]
	min 230		540-750		min	45	1000-	-1100

Tab.1	Vlastnosti	svařovaného	materiálu	[12]
-------	------------	-------------	-----------	------

Materiálový list ČSN 41 7240 je uveden v příloze 1.

1.1 Možnosti optimalizace [1, 5, 6, 12, 13, 14, 15, 16, 17]

Na začátku je nutné zvolit jakou technologií se bude daná součást svařovat. Je důležité najít variantu, která bude produktivnější a efektivnější než stávající MAG. Každá metoda má své výhody i nevýhody, proto je nutné zvolit tu nejvhodnější pro danou výrobu.

 Svařování plazmou – využívá plazmu jako zdroj dynamického a tepelného působení na materiál. Ta vzniká ionizací plynu při průchodu elektrickým obloukem. Princip plazmového svařování vychází z metody svařování TIG, kde oblouk hoří mezi základním materiálem a netavící se elektrodou v ochranné atmosféře, ale díky

dalšímu vývoji je produktivnější. Charakterizuje se vysokou koncentrací energie a teplotou. Zdrojem tepla pro natavení materiálů je úzký svazek vysokotlakého plazmatu, který má teplotu 10 000 až 30 000 °C (obr. 4). Jako plazmový plyn se používá argon, helium, vodík nebo jejich směsi. Metoda dosahuje relativně velkých rychlostí svařování (15 až 85 cm·min⁻¹) a produktivity.

Obr. 4 Plazmový paprsek [16]

Svařování metodou TIG – metoda tavného svařování, kde oblouk hoří mezi netavící se wolframovou elektrodou a základním materiálem (obr. 5). Svarovou lázeň a elektrodu chrání inertní plyn vysoké čistoty (minimálně 99,995 %), používá se argon, helium nebo směs těchto plynů. Malé tloušťky plechů lze svařovat bez přídavného materiálu, provádí se tak impulsním proudem, při kterém se v čase

pravidelně mění intenzita proudu mezi základním a impulsním proudem. Celkový čas dán součtem časů pulsního cyklu je a základního proudu. Krátké pulsy s frekvencí 1 až 20 MHz se používají pro svařování tenkých materiálů (0,2 až 0,8 mm), dlouhé pulsy 1 až 10 sec pro tloušťky 4 až 6 mm. Svařovací rychlost musí být v rovnováze s frekvencí impulsů. Uplatňuje se pro svařování korozivzdorných a žárupevných ocelí. V porovnání s metodou svařování plazmou disponuje nižší rychlostí svařování, má nižší produktivitu a není vhodná na tenké materiály.

Obr. 5 Svařování metodou TIG [15]

 Svařování laserem – v porovnání s běžnými tavnými metodami svařování jako je MAG nebo TIG umožňuje svařování laserovým paprskem zúžit paprsek na velmi malý průřez s průměrem až 10 μm. Hustota dopadové energie může dosahovat až 10¹³ W·cm⁻². Pro svařování se používá rozsah 10⁷-10⁹ W·cm⁻². Při svařování tenkých plechů se energie ještě sníží a to na 10⁶ W·cm⁻², díky malému vnesenému teplu dochází k vysoké rychlosti ochlazování. Velmi dobré výsledky jsou dosaženy při svařování vysokolegovaných ocelí. Hlavní výhodou v porovnání se svařováním plazmou je několikanásobně vyšší svařovací rychlost, z čehož plyne zvýšení produktivity výroby. V neposlední řadě mnohem tišší chod a snadná automatizace.

Obr. 6 Svařování laserem [17]

Z uvedených možností se pro sériovou výrobu dané součásti jeví laser jako vhodná volba pro změnu technologie výroby, a to i přes svou podstatně vyšší pořizovací cenu. Je tak zvoleno na základě strojních možností firmy a dané produkce tohoto typu žlabu. V případě potřeby není problém produkci navýšit.

2 ROZDĚLENÍ LASERŮ [18, 19, 20, 21, 22, 23, 24]

V dnešní době se v průmyslu používá pět hlavních typů laserů, které jsou společně se základními parametry uvedeny v tabulce 2. Jednotlivé typy laserů se pak dělí dle různých parametrů, ať už rozdílnou konstrukcí, vlastnostmi laserového záření nebo aplikací v průmyslu. Dělí se například podle:

- aktivního prostředí
- typu buzení
- vlnové délky optického záření, které vysílají
- provozního režimu
- vhodnosti použití atd.

Podle aktivního prostředí se lasery dělí na plazmatické, kapalinové, plynové, polovodičové a pevnolátkové. Mohou být buzeny opticky, elektricky, tepelnými změnami, chemicky apod. Dle časového provozního režimu se dělí na kontinuální a pulsní, případně impulsní. Vystupuje-li z laseru pouze jeden impuls mluvíme o impulsním laseru, pokud z laseru vystupují pravidelně se opakující impulsy, jedná se o laser pulsní.

V současnosti jsou běžně používající CO₂ a Nd:YAG lasery nahrazovány diskovými, diodovými a hlavně vláknovými, které disponují vyšší účinností i životností.

Laser	Vlnová délka [nm]	Typ buzení	Účinnost [%]	Provozní režim	Výkon	Použití	Životnost [h]
		laserové		kontinuální	až 6 kW	řezání, svařování	
Nd:YAG	1064	diody	~7	pulsní	~100 W	značení, gravírování	~10 000
		lampy	~3	pulsní	~600 W	svařování	~1000
CO.	10,600	radio	~10	kontinuální	10-250 W	značení, gravírování	~20 000
CO_2	10 000	IICKVCIICIIC		/ pulsní	až 5 kW	řezání, svařování	
		elektricky	~20		až 20 kW	řezání, svařování	-
Diskový	1070	laserové diody	~15	kontinuální	až 16 kW	řezání, svařování	~25 000
				kontinuální	až 80 kW	řezání, svařování	
Vláknový	1070	laserové diody	~30	kvazi kontinuální	~1,2 kW	značení, gravírování,	~100 000
				pulsní	~100 W	mikroobrábění	
Diodový	808- 1070	elektricky	~60	kontinuální	až 20 kW	svařování, kalení, navařování	~15 000

Tab. 2 Základní přehled průmyslových laserů [19]

Pozn. Pro pulsní režim je uvedena hodnota středního výkonu.

2.1 Polovodičové lasery [19, 20, 21, 22, 23, 24, 25, 26, 35, 36, 37, 38, 39, 40, 41]

Aktivní prostředí polovodičových laserů je tvořeno elektricky buzeným polovodičem s P-N přechodem, nejčastěji je to laserová dioda. Do místa styku polovodičových materiálů se přivede elektrický proud, který emituje záření, které se dále šíří a zesiluje v rovině dotyku. Optický rezonátor tvoří leštěné čelní plochy polovodiče kolmé k P-N přechodu. Laserová dioda je zobrazena na obrázku 7.

Obr. 7 Schéma laserové diody [41]

V porovnání s ostatními druhy laserů se fyzikální princip liší, neprobíhá zde přechod elektronů mezi diskrétními hladinami. U polovodičových laserů je to přechod mezi valenčním a vodivostním pásmem polovodiče. Pro přechod přes zakázaný pás je za pomocí fotonů dodána dostatečná energie.

Hlavní výhodou polovodičů je, že mají velikost zakázaného pásma v intervalu 1 až 4 elektronvolty. To je ideální velikost pro tvorbu infračerveného a viditelného světla. Absorpce fotonu v polovodiči je znázorněna na obrázku 8.

Nejběžnější materiál pro polovodičové lasery je směs galia (Ga) a dalších prvků, například arzenu (As), hliníku (Al), fosforu (P) a dalších.

Obr. 8 Absorpce fotonu v polovodiči [35]

Diodové lasery patří do skupiny polovodičových laserů. Záření je tedy generováno přímo v PN přechodu polovodiče procházejícím elektrickým proudem. Základním prvkem je emitor velmi malých rozměrů (řádově µm), který generuje záření o výkonu několik wattů (W). Emitory se skládají do řad (z angl. *"diode bars"*), které obsahují až 50 těchto prvků. Ze zmíněných řad se potom sestavují stohy (z angl. *"diode stacks"*), které pracují s výstupním výkonem až stovek wattů. Spojením několika stohů je dosaženo výkonu v řádech kW. Toto je znázorněno na obr. 9.

Plocha, do které lze fokusovat paprsek, je v porovnání s jinými typy laserů větší, proto se tyto lasery uplatňují zejména pro svařování, kalení nebo navařování.

Obr. 9 Spojení emitorů ve stohy [39]

2.2 Pevnolátkové lasery [19, 25, 26, 28, 29, 30, 31, 32, 33]

Aktivní prostředí pevnolátkových laserů je tvořeno monokrystalickou nebo amorfní látkou s přídavnými aktivačními prvky tzv. aktivátory. Aktivátorem může být jeden z elementů ze skupiny železa (Ni, Co, Cr) nebo lantanoidy (Nd, Gd, Sm, Yb). Základním materiálem pevnolátkových laserů je matrice, která určuje většinu fyzikálních a chemických vlastností. Pro materiál matrice je požadována chemická stabilita, mechanická pevnost, tepelná odolnost a dobré mechanické opracování (leštění povrchů pro optickou kvalitu). Nejčastějším materiálem matrice jsou krystaly, lze ale použít i sklo nebo keramiku. Jednou z nejpoužívanějších matricí je YAG ($Y_3Al_5O_{12}$, yttrium aluminium granát), dále se běžně používá fluorit (CaF₂) nebo korund (Al₂O₃).

Pevnolátkové lasery dělíme dle typu na:

- tyčové,
- diskové,
- diodové,
- vláknové.

Rozdíl mezi tyčovým, diskovým a vláknovým laserovým zdrojem je v geometrii aktivního prostředí. Velice důležitým parametrem laserového zdroje je jeho účinnost, která je značně ovlivněna způsobem buzení a geometrií aktivního prostředí. Druhy pevnolátkových laserů společně s geometrií aktivních prostředí jsou zobrazeny na obrázku 10.

Obr. 10 Druhy pevnolátkových laserů [19]

2.2.1 Tyčové lasery (Nd:YAG) [19, 20, 21, 22, 25, 27, 32, 34]

Aktivní prostředí tvoří YAG krystal (yttrium aluminium granát) dopovaný ionty neodymu (Nd) nebo yterbia (Yb). Tyto lasery mohou být buzené výbojkami (LPSS – *lamp pumped solid state*), ale jejich účinnost přeměny elektrické energie na energii světelnou je velice nízká. Je to způsobeno tím, že velká část energie výbojky se nevyužije a přemění se na teplo, proto je nutné chlazení. Buzení pomocí výbojek je na obr.11.

Obr.11 Nd:YAG buzený pomocí LPSS [19]

V současnosti se Nd:YAG lasery buzené pomocí LPSS používají převážně v pulsním režimu pro laserové svařování a vrtání. Výhodou je vysoká energie pulsu (až 100 J·m⁻¹s⁻¹), která je pro tyto aplikace nezbytná. Ovšem pro jejich nízkou účinnost, krátké životnosti výbojek, vysoké provozní náklady a velké nároky na chlazení jsou v dnešní době nahrazovány jinými typy laserů.

pomocí Lasery buzené laserové diody (DPPS - diode pumped solid state) mají vyšší účinnost a kvalitnější laserový svazek. Rozlišují se dva typy uspořádání buzení dle rezonátoru. Boční (transversální) a zadní buzení (tzv. end-pumped). Bočním buzením lze dosáhnout vyšších výkonů, ale kvalita svazku je nižší. Schéma bočního buzení pomocí laserových diod je znázorněno na obrázku 12.

Obr.12 Boční buzení pomocí laserových diod [19]

U zadního buzení získáváme lepší kvalitu svazku, ale nižší výkon. U tohoto typu buzení se záření z laserových diod vede do YAG krystalu pomocí optického vlákna. Což je výhoda, protože diody nemusí být umístěny v rezonátoru. Zadní buzení laserovými diodami je na obr. 13.

Obr.13 Zadní buzení pomocí laserových diod [19]

DPPS Nd:YAG laser má využití hlavně v pulsním režimu (v tzv. Q-spínaném pulsním režimu), ve kterém laser generuje velice krátké pulsy (řádově nanosekundy) s výkonem do 100W. Používá se pro značení a gravírování kovů, plastů a dalších materiálů. Pro svou nízkou účinnost jsou tyto lasery nahrazovány jinými typy, které v porovnání s Nd:YAG nabízejí vyšší účinnost a kvalitnější laserový svazek.

2.2.2 Diskové lasery [19, 20, 21, 22, 24, 25, 27, 42, 43, 44]

Diskový laser vznikl modifikací pevnolátkového laseru Nd:YAG. Na rozdíl od klasického Nd:YAG laseru je tento krystal vybroušen do tvaru tenkého disku, který má tloušťku 100 až 200 mikrometrů a průměr okolo 100 milimetrů. Aktivní prostředí Nd:YAG je většinou nahrazeno prostředím Yb:YAG, které obsahuje stejný krystal, ale je dopováno ionty ytterbia.

K buzení diskových laserů se používá zařízení, které umožňuje vícenásobné dopady budícího záření. To je přiváděno optickým vláknem a je absorbováno celou tloušťkou aktivního prostředí, tím je dosažena účinnost až 90 %. Společně s chladičem, který je nalepen na jeden konec disku, se dosahuje rovnoměrně rozloženého paprsku a rovného teplotního profilu. Tato kombinace disponuje velice kvalitním laserovým paprskem při široké škále výkonu. Zjednodušené schéma diskového laseru je na obr. 14.

Obr. 14 Schéma diskového laseru [42]

Malá tloušťka disku může výrazně snížit účinnost absorbování záření. Pro zvýšení celkového výkonu laseru se používá tzv. škálování výkonu, což lze chápat jako proces pro opakovatelné zvýšení výstupního výkonu. Škálování lze provézt dvěma způsoby. První možností je měnit výstupní výkon na disk přímou regulací výkonu čerpacího zdroje. Druhý způsob je sériové uspořádání několika disků, díky čemuž se dosáhne zvýšení výstupního výkonu bez změny kvality paprsku. Preferovanější je druhá varianta.

Firma Trumpf vyrábí diskové lasery pod názvem TruDisk, které nabízí výstupní výkon až 16 kW. Je to docíleno zapojením čtyř disků do série, přičemž každý z nich má jmenovitý výstupní výkon roven 4 kW.

2.2.3 Vláknové lasery [19, 20, 21, 22, 24, 25, 45, 46, 47, 48, 49, 50, 51]

Aktivní prostředí vláknových laserů tvoří křemíkové vlákno o průměru několika mikrometrů a délce až několika metrů. Nejčastěji je dopované ionty ytterbia (Yb), erbia (Er), neodymu (Nd) nebo thulia (Tm), které se během výroby přimísí do jádra ve formě malých částic. Vlákno je díky své geometrii efektivně chlazeno vzduchem, což má příznivý vliv na vedení laserového paprsku vláknem. Z velké části jsou tak omezeny termo – optické problémy, které vznikají vedením světla. Princip vláknového laseru je zobrazen na obrázku 15.

Obr. 15 Princip vláknového laseru [19]

V současnosti se vláknové lasery konstruují s dvouplášťovým optickým vláknem. Tato struktura je vidět na obrázku 16.

Pro buzení vláknových laserů se používají laserové diody. Diodové záření prochází přes venkovní plášť, který budí nízko výkonným laserovým paprskem střední optické vlákno.

Vnitřní vlákno je dopované některým ze zmíněných prvků (např. ytterbiem) a vzniká zde laserový paprsek. Venkovní optické vlákno má poměrně velký průřez. Díky tomu je do něj možné přivézt velký optický výkon. Má také nižší index lomu v porovnání s dopovaným jádrem a přivedená energie tak stále prochází skrze jádro a budí další ionty.

Obr. 16 Struktura dvojitého optického vlákna [48]

Optický rezonátor u vláknových laserů netvoří dvě rovnoběžná zrcadla. Jsou zde použity tzv. Braggovské mřížky nebo dichroická zrcadla. Braggovské mřížky jsou speciální struktury vytvořené přímo na aktivním jádře optického vlákna. Jsou vytvořené UV laserem, který změní strukturu vlákna a vytvoří tzv. "zrcátka", která odrážejí optické záření pouze dané vlnové délky. Zjednodušený princip buzení jádra vláknového laseru je na obr. 17.

Obr. 17 Princip buzení vláknového laseru [49]

Největší výhodou vláknových laserů je propojení laserových diod dalším vláknem, aniž by musely být použity jiné optické prvky. Laserový svazek je velmi kvalitní a může být fokusován na paprsek velmi malého průměru. Schéma vláknového laseru, včetně přivedení potřebné budící energie optickým vláknem do aktivního prostředí, je znázorněno na obrázku 18.

Mezi další výhody vláknových laserů patří:

- způsob chlazení díky geometrii vlákna je chlazeno po celé své délce a není tak vyžadován speciální chladící systém.
- vysoká účinnost vláknové lasery mají celkovou účinnost 25-35 %.
- kvalitní výstupní svazek běžné laserové diody konvertují záření v široký a nekvalitní svazek. Optické vlákno dokáže fokusovat světlo do jednoho velice kvalitního laserového svazku.

 kompaktní a robustní konstrukce – dílčí části vláknového laseru jsou spojeny svárem, je tak eliminováno časté složité nastavování a servis. Mají velkou životnost a jsou téměř nenáročné na obsluhu.

2.3 Plynové lasery [19, 20, 21, 22, 24, 25, 27, 52, 53, 54]

Plynové lasery jsou v průmyslu nejčastěji používané lasery. Jejich výkon se pohybuje od několika kilowatt až po miliwatty. Aktivní prostředí těchto laserů je tvořeno směsí plynů. Je tvořeno buď jednotlivými atomy nebo molekulami a často s příspěvkem dalších prvků, které mají doprovodné pomocné funkce.

Plynové lasery mohou pracovat jak v kontinuálním, tak ale i v pulsním režimu. Inverze populace hladin, jako předpoklad pro tvorbu stimulované emise, se ve většině případů dosahuje čerpáním plynu elektrickým výbojem. Existují ale i lasery využívající chemickou reakci nebo zřídka jsou čerpány opticky. Během provozu je plyn často ve stavu plazmy, která obsahuje výraznou koncentraci elektricky nabitých částic.

Prvním a zároveň do nedávna nejrozšířenějším plynovým laserem je červeně zářící He-Ne laser. V průmyslové praxi a v medicíně má však největší zastoupení CO_2 laser. Tyto typy laserů jsou v průmyslu nejčastěji používané, pracují jak v kontinuálním, tak v pulsním režimu. Aktivním prostředím těchto typů laserů je směs oxidu uhličitého, helia a dusíku $(CO_2 + He + N_2)$. Molekuly dusíku jsou vybuzeny vysokofrekvenčními proudy nebo elektrickým výbojem do metastabilního vibračního módu, kde nepružnými srážkami předávají energii molekulám oxidu uhličitého. Při návratu molekul oxidu uhličitého do základního stavu vzniká záření o vlnové délce 10,6 µm. Přidané helium plní funkci chlazení a zároveň přispívá k přechodu molekul CO_2 do základního stavu.

Podle typu proudění plynné směsi rozdělujeme CO₂ lasery na lasery s podélným prouděním ("*fast axial flows*"), které disponují vysoce kvalitním výstupním svazkem určeným pro řezání a vrtání, a s příčným prouděním ("*cross flow*"), kde se výstupní svazek horší kvality používá pro svařování a povrchové úpravy. Výkon CO₂ laserů má široký rozsah, pohybuje se od jednotek wattů až po několik kilowattů (až 20 kW) s celkovou účinností přibližně 10 %. Velkou nevýhodou vlnové délky je ve vedení laserového paprsku, protože ji nelze vést optickými vlákny. Používá se pouze systém složitých zrcadel.

Nejnovější typ průmyslových CO₂ laserů je tzv. "slab" laser, jedná se o difúzně chlazený deskový laser. Chlazení je realizováno difúzí tepla skrze vodou chlazené deskové měděné elektrody. Mezi měděnými elektrodami je velmi malá mezera, díky tomu je intenzita chlazení velice dobrá a není nutné vynucené proudění plynu, díky čemuž je i jeho spotřeba velice nízká. Jeden zásobník použité plynné směsi vydrží při nepřetržitém provozu až jeden rok. Výstupní výkon deskového laseru se pohybuje v intervalu od 0,5 až 2,5 kW.

3 LASEROVÉ SVAŘOVÁNÍ [7, 19, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]

Svařování laserovým svazkem hraje důležitou roli v dnešním průmyslu. Je to jedna z nejdůležitějších a nejuniverzálnějších svařovacích metod pro spojování pokročilých materiálů. Jedná se o relativně mladou metodu spojování materiálů, ovšem s velkým potenciálem a nevyčerpanou zásobou oblastí pro výzkum. Proces tvorby svarového spoje je velmi komplexní a složitá záležitost. Je ovlivňován fyzikálními a metalurgickými účinky. Rovnováha mezi těmito účinky je předpoklad pro vznik kvalitního svaru s velmi dobrými mechanickými vlastnostmi. Laserové svařování lze za pomocí manipulátorů a robotů automatizovat, vzniká kvalitní, kontinuální svarový spoj při zachování malých provozních nákladů.

Svařováním je ovlivněn materiál v okolí svarového spoje, jehož původní vlastnosti degradují. To může být problém zvláště u jemnozrnných pevnostních ocelí, kde v tepelně ovlivněné oblasti dochází k poklesu mechanických vlastností. Problémy, které vznikají při konvenčním svařování běžnými obloukovými metodami mohou být z části potlačeny použitím laserového paprsku vysoké intenzity.

Princip svařování laserem tkví ve fokusaci laserového svazku do velmi malé plochy, který interaguje s materiálem a dochází k ohřevu svařované součásti (obr. 19). Aby došlo k natavení materiálu musí být rychlost ohřevu několikanásobně vyšší než rychlost odvodu tepla. Ovšem díky vysoké rychlosti svazku a jeho velké energii je vnesené teplo malé v porovnání s obloukovými metodami. Znamená to menší tepelně ovlivněnou oblast, menší deformace, menší zbytková pnutí a jemnější strukturu. Usměrněný laserový paprsek a svazek elektronů mají největší hustotu energie ze všech známých energetických zdrojů. Porovnání s ostatními metodami je v tabulce č. 3.

Obr. 19 Schéma laserového svařování [56]

Metoda	Hustota energie [W·cm ⁻²]	Svařovací rychlost [m·min ⁻¹]	Šířka svaru [mm]	Hloubka průvaru [mm]
Laser	$10^{7} - 10^{9}$	10	0,1-0,5	10
El. svazek	10^{8}	0,5-5	0,03	50
Plazma	106	0,5-5	1	6
El. oblouk	10^{4}	0,5-3	2	4
Plamen	10 ³	0,01	3	3

Tabulka 3 Porovnání svařovacích parametrů s ostatními metodami [7]

3.1 Kondukční režim [25, 55, 57, 64]

Kondukční svařovací režim probíhá s hustotou energie výkonu nižším než 10^6 W·cm⁻², při kterém dochází k velmi malému odpařování materiálu. Laserový paprsek interaguje s povrchem základního materiálu, který odvádí vnesené teplo dál do materiálu. Energie svazku je při kondukčním svařování dodávána pouze skrze kondukci tepla. Hloubka průvaru je limitována tepelnou vodivostí materiálu, díky tomu je maximální hloubka průvaru pouze několik desetin až jeden milimetr. Hloubka svarového kovu také většinou nepřesahuje jeho šířku. Povrch svarového spoje vytvořený kondukčním režimem je rovný, je tedy minimální převýšení svaru.

Pokud není rychle teplo odváděno dál do materiálu, vzroste teplota svarového kovu nad odpařovací. Vzniká pára kovu, hloubka průvaru se razantně zvýší a svařovací proces přejde do penetračního režimu.

Vznik svarového spoje u kondukčního svařování lze zjednodušeně popsat že tak. laserový paprsek dopadne na povrch materiálu, přitom část energie se absorbuje a část se odrazí. Energie, která byla pohlcena vytvoří na povrchu taveninu a ta v závislosti na čase zvětšuje svůj objem. Tavenina svařovaného materiálu se prohlubuje dál do materiálu, dokud se nevyrovná množství přivedeného tepla za jednotku času, teplu odvedenému. Tvorba svaru kondukčním svařováním ie znázorněna na obrázku č. 20.

Obr. 20 Kondukční režim [57]

Tento režim svařování nachází své uplatnění hlavně pro spojování tenkostěnných součástí, například v elektrotechnice. Používá se zejména kvůli hladkému zaoblenému tvaru svaru, který se dále nemusí opracovávat.

3.2 Penetrační režim [25, 55, 57, 64]

Penetrační režim pracuje s velkou energetickou hustotou laserového svazku a to nad 10⁶ W·mm⁻². Laserový paprsek díky tomu způsobuje velmi rychlé tavení svařovaného materiálu a jeho následné vypařování. Na povrchu svařované součásti se vytvoří dutina (keyhole), která díky svému tvaru zlepší absorpci energie svazku díky několikanásobnému odrazu paprsku po stěnách dutiny. Vytváří se paroplynový kanál s průměrem až dvojnásobku průměru ohniska s hlubokou penetrací.

Vzniklý paroplynový kanál je ohraničen slabou vrstvou tekutého kovu. Stabilita kanálu je zajištěna rovnováhou mezi silami od vypařování materiálu a silami od povrchového napětí

a hydrostatického tlaku taveniny. Na přední straně kanálu je materiál ohříván na teplotu odpařování a díky reakčnímu tlaku par se roztavený kov přesouvá okolo paroplynového kanálu do zadní části lázně. Tam chladne, zaplňuje dutinu vzniklou paroplynovým kanálem a po ztuhnutí kovu vytváří svarový spoj.

Výsledný svar je velice hluboký a úzký, jeho hloubka je až desetkrát větší, než je jeho šířka. Hloubka průvaru dosahuje hodnoty až 25 mm. Tento režim svařování se vyznačuje především velkou účinností a vysokou rychlostí svařování, díky níž je malá tepelně ovlivněná oblast. Používá se pro svařování materiálů velkých tlouštěk nebo při svařování několika vrstev materiálu najednou. Penetrační režim je na obr. 21.

Obr. 21 Penetrační režim [57]

3.3 Interakce laserového svazku s materiálem [25, 34, 55, 66, 67]

Při kontaktu laserového paprsku se základním svařovaným materiálem dochází k lokálnímu ohřevu, ten je určen mnoha parametry. Některé z nich lze během procesu svařování upravovat a cíleně tak měnit například polohu ohniska, energetickou hustotu výkonu, tvar impulsu atd. Existují však i parametry, které není možné během procesu pozorovat a měnit, je to odrazivost materiálu, jeho tepelná vodivost, měrné teplo a další.

Vzhledem k dynamice celého procesu laserového svařování vzniká spousta parametrů, které přímo ovlivňují jeho stabilitu. Jedná se například o kolísání proudění laserového paprsku, narušení účinků plazmy nebo dynamické nestability roztaveného kovu společně s odpařováním během procesu svařování. Všechny tyto parametry mohou mít přímý vliv na okamžitou vnesenou energii, ohrožující mechanické vlastnosti finálního svarového spoje.

Základním parametrem pro zpracování materiálů pomocí laserového paprsku je absorpce. Absorpce materiálu může být vylepšena změnou několika parametrů. Je závislá na teplotě, drsnosti povrchu, vlnové délce, oxidaci povrchu, změně v morfologii atd. Závislost absorpce kovů na změně vlnové délky je znázorněna na obr. 22.

Obr. 22 Závislost absorpce na vlnové délce [66]

Z obrázku je zřejmé, že plynové CO_2 lasery jsou v současné době nahrazovány lasery pevnolátkovými. Vlnová délka laserového záření průmyslových pevnolátkových laserů je přibližně 1 µm, zatímco pro CO_2 lasery to je přibližně 10 µm. Pro hodnotu vlnové délky 1 µm má většina používaných materiálů několikanásobně vyšší absorpci laserového záření. Pro dosažení požadované energetické hustoty výkonu při kontaktu se svařovaným materiálem potom postačí menší výstupní výkon z laseru. Společně s mnohem vyšší účinností pevnolátkových laserů se z nich stávají jasné jedničky na trhu průmyslových laserů.

3.4 Metody laserového svařování [25, 57]

Laserové svařování je proces, při kterém je laserový paprsek fokusován do malého bodu na materiálu a dochází k jeho natavování. Je to metoda svařování používaná zejména tam, kde je vyžadována velká rychlost svařování a přesný, kvalitní svar bez nečistot, trhlin a pórů. Tato metoda svařování je zpravidla bezelektrodová a bezkontaktní, díky čemuž se zvyšuje stabilita celého procesu. Rozlišujeme tři základní druhy laserového svařování a to:

- bez přídavného materiálu
- s přídavným materiálem
- hybridní technologie

3.4.1 Laserové svařování bez přídavného materiálu [59, 60, 63]

Laserové svařování bez přídavného materiálu je nejjednodušší aplikací. Není nutné řešit problematiku přívodu přídavného materiálu pomocí podávacího zařízení. Fokusovaný paprsek dopadá pouze na svařovaný materiál a dochází tak k tavení pouze základního materiálu, což značně zjednodušuje celý proces. Natavený materiál se spojí a vytváří požadovaný svarový spoj. Svařování bez přídavného materiálu vyžaduje přesnou přípravu svařovaných součástí. Případná mezera mezi součástmi vede, díky fokusaci laserového svazku do malého bodu, ke vzniku nekvalitního spoje. Svařováním bez přídavného materiálu mohou také vznikat svarové vady v podobě propadení svaru na jeho konci. Tento způsob je zároveň nevhodný na koutové svary. Schéma laserového svařování bez přídavného materiálu je zobrazeno na obrázku 23.

Obr. 23 Schéma laserového svařování bez přídavného materiálu [59]

3.4.2 Laserové svařování s přídavným materiálem [59, 55, 61, 69]

V současné době se však pod pojmem laserové svařování neskrývá pouze metoda bez

přídavného materiálu. Pro doplnění svarového kovu nebo vyplnění mezery pro mezi svařovanými součástmi se do materiálu přivádí přídavný materiál (obr. 24). Tento způsob svařování nachází své uplatnění automobilovém převážně V průmyslu. Kde složité tvary, například karoserií, vyžadují velice složité přípravkování, které ovšem nemusí zaručit dokonalé sesazení vylisovaných dílců. Přidaný materiál pomáhá při tvorbě těsného i pohledového svarového spoje.

Obr. 24 Laserové svařování s přídavným materiálem [61]

Přídavný materiál může být ve formě drátu, nebo prášku. Svařování s přídavným drátem se dělí na dvě základní metody. Laserové svařování se studeným drátem (z anglického "*cold wire welding"*) a s horkým drátem (z anglického *"hot wire welding"*). Na povrch svařovaných součástí je, kromě laserového svazku, podavačem přiváděn materiál ve formě drátu. Velice důležitým parametrem je rychlost podávání drátu, který stejně jako výkon nebo rychlost svařování ovlivňuje výslednou kvalitu svaru. Varianta se studeným drátem je použita v této práci a bude více rozebrána v praktické části.

3.4.3 Hybridní svařování [59, 65, 70, 71, 72]

Hybridní laserové svařování je proces, při kterém je technologie laseru kombinována s jinou obloukovou metodou svařování při zachování jedné svarové lázně. Doplňující obloukové metody se liší v závislosti na přítomnosti přídavného materiálu. Pokud je nutné použít přídavný materiál, lze použít metodu MIG. Pro aplikace nevyžadující přítomnost přídavného materiálu, je možné využít metodu svařování TIG s netavící se elektrodou.

Primárním zdrojem energie je laserová technologie, která zajistí hluboké provaření, a přitom štíhlý svár. Oblouková metoda jako sekundární energetický zdroj zvyšuje stabilitu procesu, spolehlivost a efektivitu stejně tak jako kvalitu svarového spoje. Hybridní svařování je v dnešní době teprve rozvíjeno, v průmyslu má však větší zastoupení kombinace s metodou MIG. Teplo z obloukové metody má několik využití, dá se použít jako předehřev nebo dohřev materiálu, případně k prodloužení doby, kdy je kov v tekutém stavu, pro eliminaci některých svarových vad.

Hybridní svařování se používá například v lodním průmyslu, kde se tak svařují desky velkých rozměrů. Mezery mezi deskami jsou velké, takže je samotný laserový svazek nemůže překlenout. Proto se kombinuje s metodou MIG, kde hořák MIG překlene mezeru mezi deskami a uzavře jí přídavným drátem. Schéma hybridní technologie je na obr. 25.

Obr. 25 Schéma hybridního svařování [72]

3.5 Svařovací parametry [9, 25]

Základní svařovací parametry, které mohou být v průběhu svařovacího procesu měněny, jsou uvedeny v tabulce 4. Tyto parametry mají přímý vliv na vznik a kvalitu svarového spoje. Změna těchto parametrů a její vliv na svar bude dále rozebrána v experimentální části práce.

Parametr	Značka	Jednotka
Výkon laseru	Р	[W]
Rychlost svařování	Vs	$[\mathrm{mm}\cdot\mathrm{s}^{-1}]$
Rychlost podávání drátu	Vd	[m·min ⁻¹]

Tabulka 4 Základní parametry laserového svařování [9]

Měnitelné parametry procesu a jejich stručný popis:

- Výkon laseru jedná se o teplotní parametr vyjadřující vliv laserového paprsku na materiál. Jeho velikost ovlivňuje hloubku průvaru. Změna výkonu přímo úměrně ovlivňuje šířku i hloubku svaru. Čím větší výkon, tím větší je i průvar. Hodnota výkonu se však může měnit v závislosti na modelu laseru.
- Rychlost svařování označuje velikost dráhy, kterou urazí zdroj laserového paprsku v kontaktu se svařovaným materiálem za jednotku času. Pokud je výstupní výkon konstantní, tak rychlost svařování určuje množství energie přivedené do základního materiálu.

Pro malou rychlost svařování dochází kolem paroplynového kanálu k natavení okolního materiálu a ke zvětšení hloubky a šířky svaru. Současně se zvětšuje i tepelně ovlivněná oblast. Díky pomalejšímu odvodu tepla klesá tvrdost svarového kovu, tvrdost proto souvisí i s tloušťkou svařovaného materiálu. Materiály větší tloušťky odvedou teplo mnohem rychleji a v porovnání například s tenkými plechy má svar větší tvrdost. Zvýšení svařovací rychlosti pochopitelně zmenšuje hloubku průvaru a šířku svaru vinou snížení dodané energie.

Velká rychlost svařování má pozitivní dopad na celou řadu faktorů. Je zde méně vneseného tepla, s rostoucí rychlostí se zmenšuje šířka spoje, hrubnutí zrn je minimální stejně jako deformace svařence a zbytkové pnutí. Korozivzdorné oceli svařené laserovým svazkem neztrácejí tolik korozní odolnost v porovnání s obloukovými metodami. Stejně tak vrubová houževnatost je velmi dobrá při srovnání s obloukovými metodami.

Rychlost podávání drátu – volbou nevhodné rychlosti podávání drátu a současně pokud je mezi svařovanými součástmi mezera, může dojít k zatečení materiálu do této mezery. Vzniklý svár může být lokálně propadlý a je nerovnoměrný. Při dostatečné rychlosti podávání drátu jsou tyto problémy eliminovány. Rychlost podávání navíc určuje tvar svaru, při větším množství drátu je svar vypouklý, což má pozitivní dopad na pevnost.

3.6 Vady svarových spojů [18, 25, 32, 51, 68, 73, 74, 75, 76]

Kvalita svarového spoje je určena především druhem svařovaného materiálu a technologií, kterou bude svar vytvořen. Je posuzován z hlediska tvaru, chemického složení, celistvosti, velikosti a mechanických vlastností. Vada je obecně definována jako odchylka od normou předepsaných vlastností, technickými podmínkami nebo smluvním vzorkem. Součást je způsobilá pro použití v provozu, pokud jsou svary bez vad, případně s přípustnými vadami. Přípustnost vad stanovuje druh, velikost a četnost vad v závislosti na tvaru a typu svařované konstrukce a jejího použití. Klasifikaci vad kovových materiálů vytvořených tavným svařováním definuje norma ČSN EN ISO 6520-1. Druhy vad jsou rozděleny do 6 skupin, některé z nich jsou uvedeny v tabulce 5. Každý druh vady má své referenční číslo a obsahuje i vysvětlení. V tab. 5 toto není uvedeno.

Číslo skupiny	Název skupiny	Označení vady	
1	Trhliny	Trhlina, mikrotrhlina, podélná trhlina, příčná trhlina, hvězdicová trhlina, kráterová trhlina,	
2	Dutiny	Dutina, plynová dutina, pór, rovnoměrná pórovitost, shluk pórů, řádek pórů, protáhlý pór, červovitý pór, povrchový pór,	
3	Pevné vměstky	Pevný vměstek, struskový vměstek, tavidlový vměstek, oxidický vměstek, kovový vměstek,	
4	Studené spoje a neprůvary	Studený spoj a neprůvar, studený spoj, neprůvar (nedostatečný průvar), neprovařený kořen, jehlice.	
5	Vady tvaru a rozměru	Vada tvaru, zápal (vrub), souvislý zápal, vrub v kořeni,	
6	Různé vady	Dotyk elektrodou, rozstřik, vytržený povrch, stopa po broušení,	

Tabulka 5 Svarové vady [18]

Stejně jako při všech metodách svařování, tak i pro vytváření spojů laserem dochází ke vzniku vad snižujících kvalitu svaru. Na jejich vznik má vliv rychlost svařování, hustota výkonu laserového svazku, postup svařování nebo například nečistoty na ochranném skle. Příčiny vad vytvořených laserovým nebo elektronovým svařováním a jejich přípustnost nebo nepřípustnost popisuje norma ČSN EN ISO 13919-1. Tato norma také obsahuje stupně jakosti povrchu svarového kovu (viz tab. 6), jednotlivé spoje na stejném výrobku mohou mít rozdílný stupeň jakosti.

Tabulka 6	Stupně	jakosti	svarového	spoje	[76]
-----------	--------	---------	-----------	-------	------

Skupina	Stupeň jakosti
D	nízký
С	střední
В	vysoký

Nejčastější příčiny svarových vad způsobených laserem a jejich prevence představuje norma ČSN EN 1011-6. Proláklina na vrchní straně svaru nebo přílišné převýšení kořene je způsobeno gravitací. K převýšení svaru, ale i kořene dochází také díky příčnému smrštění svařence. Neprůvar je nejčastěji způsoben nastavením nedostatečného výkonu svazku, vysokou rychlostí svařování nebo nevhodným nastavením ohniskové vzdálenosti. Dutina vzniká kvůli přítomnosti nečistot ve svarovém spoji, odpařením kovu nebo nestabilní keyhole. Při příliš rychlém ochlazení mohou vznikat trhliny. Znečištění svarového spoje může způsobit i póry. Svarové vady vytvořené laserovým svařováním jsou zobrazeny na obr. 26.

Obr. 26 Nejčastější vady po laserovém svařování [32]

3.7 Zkoušení svarových spojů [18, 32, 77, 78, 79, 80, 81, 82]

Při tvorbě svaru jakoukoliv metodou svařování mohou vznikat vady. Pro zjištění těchto vad a zajištění bezpečnosti a spolehlivosti součásti, se provádějí dva druhy zkoušek, a to nedestruktivní a destruktivní testování. Proces nedestruktivního zkoušení svarů probíhá bez deformace, snížení kvality svaru a porušení celistvosti nejen svaru, ale i celé součásti. To znamená, že součást je po provedení zkoušky funkční, takže je zkoušku možné provádět jak během výroby, tak i na konci celého procesu.

Pomocí některých zařízení lze odhalit vnější, ale i vnitřní svarové vady. Nedestruktivní metody jsou děleny dle polohy výskytu svarové vady. Pokud je vada povrchová, nebo těsně pod povrchem, tak se používají metody vizuální, kapilární nebo metoda magnetická prášková. Ovšem pro vnitřní vady se používá například ultrazvuk, nebo rentgen. Základní typy nedestruktivního zkoušení svarů, jejich označení a norma a základní vybavení k provedení těchto zkoušek, jsou shrnuty v tab. 7.

Druh vad	Typ zkoušky	Základní zařízení	Norma	Označení
Vnější vady Vnitřní vady	Vizuální zkouška	Zrak, lupa, endoskop, posuvné měřítko, svítidla	ČSN EN ISO 17637	VT
	Penetrační (kapilární) metoda	penetrační kapalina, vývojka, emulgátor, odmašťovač, odstraňovač penetrantu (čistič)	ČSN EN ISO 3452-1	PT
	Magnetická prášková metoda	magnetický suchý prášek/ suspenze roztoku magnetického prášku, stejnosměrný/střídavý proud nebo elektromagnet	ČSN EN ISO 9934-1, ČSN EN ISO 17638	MT
	Ultrazvuková zkouška	zkušební sondy připojené na obrazovku	ČSN EN ISO 16810, ČSN EN ISO 17640	UT
	Rentgenová zkouška	film (radiogram), rentgenový přístroj/zdroj gama záření	ČSN EN ISO 17363-1	RT

Tabulka 7 Základní nedestruktivní zkoušky [18]

V experimentu bude z nedestruktivních metod použita pouze vizuální zkouška. Ta bude provedena před samotným procesem svařování a také po jeho dokončení. Minimální intenzita osvětlení použitá při testování je 350 lx, ovšem doporučená je 500 lx. Maximální dovolená vzdálenost oka od pozorovaného objektu je 600 mm a současně úhel mezi okem a povrchem svaru nesmí být větší než 30 ° (obr. 27). Pro kontrolu svaru nebude nutné použití nepřímé kontroly pomocí zrcátek nebo kamer, jelikož svařovaný materiál bude dobře přístupný pro oční kontrolu.

Obr. 27 Vizuální kontrola svaru [82]

Pro zjištění mechanických vlastností svaru jsou nedestruktivní metody testování svarů nepoužitelné. K jejich určení je nutná deformace vzorku. Destruktivním zkoušením se ověřují vlastnosti svařovaných materiálů a samotných svarů. Výstupem je garance odolnosti proti vnějším vlivům, jako je charakter zatížení, teplota nebo okolní prostředí. Dále se díky nim zjišťuje strukturní stav svaru, což zahrnuje stabilitu, výskyt svarových vad atd. Nejčastější destruktivní zkoušky svarů jsou v tabulce 8 společně s normou metody a výčtem mechanických vlastností, které lze danou zkouškou zjistit.

Typ zkoušky	Mechanické vlastnosti	Norma
Zkouška tahem	mez kluzu, mez pevnosti, tažnost, kontrakce	ČSN EN ISO 6892-1
Zkouška ohybem	deformační schopnost – prodloužení, úhel ohybu	ČSN EN ISO 5173
Zkouška rázem v ohybu metodou Charpy	vrubová houževnatost	ČSN EN ISO 148-1
Zkouška rozlomením	detekce vnitřních vad	ČSN EN ISO 9017
Makroskopická a mikroskopická kontrola svarů	hodnocení struktury – vady, struktura zrn, morfologie a orientace atd.	ČSN EN ISO 17639
Zkouška tvrdosti podle Vickerse	tvrdost	ČSN EN ISO 6507-1
Zkouška tvrdosti podle Brinella	tvrdost	ČSN EN ISO 6506-1
Zkouška tvrdosti podle Rockwella	tvrdost	ČSN EN ISO 6508-1
Zkoušení mikrotvrdosti	mikrotvrdost	ČSN EN ISO 9015-2

Tabulka 8 Základní destruktivní zkoušky [18]

Z uvedených destruktivních zkoušek bude v experimentu použita tahová zkouška. Ta představuje základní metodu testování svarů pro posouzení pevnostních a plastických charakteristik. Princip spočívá v upnutí normalizované tyče, která je ve většině případů opatřena osazením pro uchycení, do trhacího stroje. V trhacím stroji je zkušební součást (obr. 28) za definovaných podmínek (rychlost zatěžování, teplota) deformována. Jedná se o jednoosé tahové namáhání mezi dvěma příčníky, které probíhá od nulové hodnoty zatížení až do bodu, kde dojde k porušení zkušební tyče. Výsledkem tahové zkoušky je tahový diagram, který zobrazuje závislost zatížení na prodloužení tyče. Zkoušku popisuje norma ČSN EN ISO 4136. Výstupem ze zkoušky jsou mechanické vlastnosti:

- mez kluzu Re [MPa],
- mez pevnosti Rm [MPa],
- tažnost A [%],
- kontrakce Z [%].

Obr. 28 Rozměry vzorku pro zkoušku tahem

Dalšími zkouškami, které budou v experimentální části provedeny, jsou makroskopické a mikroskopické kontroly svarů. Jsou to zkoušky, při nichž se vyhodnocuje čistota materiálu, mikrostruktura materiálu, tepelně ovlivněné oblasti svarového kovu a makrostruktura spoje. To zahrnuje například strukturu zrn, trhliny za studena i za horka, vměstky, studené spoje, dutiny, velikosti zrn, hranice zrn, lamelární praskání atd.

Rozdíl mezi mikroskopií a makroskopií je ve velikosti zvětšení. Pokud je zvětšení vzorku menší jak 50x, tak se jedná o makroskopické zkoumání, které zahrnuje i kontrolu pouhým okem. Při zvětšení zkoumaného materiálu 50x - 500x je možná kontrola v oblasti mikroskopické. Ta se provádí pomocí elektronového nebo optického mikroskopu. Pro pozorování mikrostruktury je velice důležitá a správná příprava zkoumaného vzorku. Postup metalografické zkoušky:

- odběr vzorku musí být proveden bez mechanického i tepelného ovlivnění struktury. Nesmí být deformován a teplota nesmí přesáhnout teploty fázových přeměn.
- preparace vzorku pro zachování povrchové vrstvy je vzorek zalit nebo zalisován do formy. Po umístění vzorku do formy je pro zalévání za studena stěžejní, aby plocha vzorku, která bude pozorována, byla v dotyku se dnem formy. Poté je forma vyplněna zalévací hmotou, která se nechá následně vytvrdit. Používá se například hmota epoxidová, akrylátová aj. Pro zabránění vzniku vzduchových bublin je možné zalévání za studena provézt ve vakuu. Za tepla je zalisování prováděno při působení velkých sil (30 – 50 kN) ve vyhřívané formě lisu (100 – 180 °C). Vzorek umístěný do formy je zasypán pryskyřicí a za definovaných podmínek je zalisován do formy.
- broušení vzorku je prováděno pro odstranění nerovností a nečistot z pozorované plochy, a to mechanizovaně nebo ručně. Při ručním broušení se nejčastěji používají brusné papíry obsahující Al₂O₃ nebo SiC. Pro mechanizované odstranění nerovností se používají metalografické brusky. Přičemž je vzorek přitlačován na rotující brusný papír. Přitlačování může být realizováno poloautomaticky, kdy je vzorek přitlačován ručně, nebo automaticky, kdy je vzorek upnut do přípravku a za definovaných podmínek je přitlačen na brusný papír.
- leštění vzorku pro odstranění vrcholů povrchových nerovností minimálním úběrem materiálu se používá leštící kotouč. Do procesu leštění zasahuje kromě kotouče (obr. 29) také leštící medium, to tvoří buď pasta, prášek nebo suspenze obsahující například diamant, Al₂O₃ nebo Cr₂O₃.

Obr. 29 Leštící kotouč

 leptání vzorku – používá se pro zkoumání mikrostruktury, proto je prováděno pouze tam, kde je to vyžadováno. V závislosti na druhu zkoumaného materiálu a požadavcích na pozorování je rozlišováno několik metod leptání, například chemické, plošné, elektrolytické nebo tepelné leptání.

Další metodou testování svarových spojů je měření mikrotvrdosti podle Vickerse. Tuto zkoušku popisuje norma ČSN EN ISO 6507-1. Je založena na vtlačování pravidelného čtyřbokého jehlanu do zkoušeného materiálu definovaným zatížením F. Vtlačovaný jehlan je diamantový a má vrcholový úhel 136 ° (obr. 30). Po odlehčení jsou na vzorku změřeny délky dvou úhlopříček d₁ a d₂. Pro měření mikrotvrdosti je hodnota zatěžující síly v rozsahu od 0,01 N do 1 N. Aby byly výsledky relevantní, tak

se délka úhlopříček musí pohybovat v intervalu 0,02 mm až 1,4 mm. Pro výpočet tvrdosti je nutné znát zatěžující sílu a aritmetický průměr z délek vtisku. Výstupem je bezrozměrné číslo, které značí napěťový charakter. Jiná možnost zjištění tvrdosti je z délek úhlopříček vtisku porovnáním s tabulkou. Jednotka tvrdosti je HV, za tuto značku je vždy doplněna přibližná hodnota zatížení například HV0,1. Výhodou zkoušky mikrotvrdosti zjištění tvrdosti je jednotlivých strukturních složek.

Obr. 30 Zkouška tvrdosti dle Vickerse [18]

4 SVAŘITELNOST KOROZIVZDORNÝCH OCELÍ [9, 83, 84, 85, 86, 87, 88, 89, 90, 91]

Pro výrobu žlabů se nejčastěji používá austenitická korozivzdorná ocel X5CrNi 18-10, případně X2CrNiMo 17-12-2. Hlavním a nejvýznamnějším legujícím prvkem korozivzdorných ocelí je chrom. S nárůstem obsahu chromu se zvyšuje i odolnost proti korozi v oxidačním prostředí. Aby byla zaručena odolnost proti korozi v normálním prostředí, musí být obsah chromu větší než 11,7 %. Nicméně pro zajištění korozivzdornosti i po svaření se oceli legují 18 % chromu.

Svařování austenitických korozivzdorných ocelí je náročný proces, protože v porovnání s nízkolegovanými mají vyšší tepelnou roztažnost, a to až o 50 %. Velká tepelná roztažnost má nepříznivý vliv na vznik deformací nebo zbytkových pnutí. Další rozdíl proti nízkolegovaným ocelím je větší elektrický odpor, ale nižší tepelná vodivost. Svařitelností korozivzdorných ocelí a obecným zásadám a pokynům se věnuje norma ČSN EN 1011-3. Na svařitelnost mají největší vliv tři základní nežádoucí faktory:

- vznik trhlin za horka jejich příčinou je přítomnost prvků (S, P, Si, Ti, Nb), které snižují plastické vlastnosti kovu při jeho tuhnutí nebo vytvářejí nízkotavitelná eutektika společně s niklem nebo železem. Obsah síry je možné snížit přidáním manganu, který vytváří sulfidy a ty jsou následně vyloučeny formou strusky. Vliv fosforu lze zmenšit díky delta feritu, protože se v něm rozpouští.
- precipitace karbidů chromu při teplotách v intervalu 425 815 °C dochází k vylučování karbidů chromu na hranicích zrn. To způsobuje snížení obsahu chromu v pasivační vrstvě a tím ztrátu odolnosti proti korozi. Řešením je přidání stabilizačních prvků (Nb, Ti) případně snížení přítomnosti uhlíku pod 0,03 hm. %.
- vznik σ-fáze ten má za následek zkřehnutí součásti. Pokud je vysoký obsah chromu (od 20%) vzniká při teplotách 500 – 800 °C σ-fáze. Je to křehká a tvrdá intermetalická sloučenina, jejíž vznik je nejčastěji podpořen přítomností feritotvorných a karbidotvorných prvků, zvýšeným obsahem delta feritu, heterogenitou složení a dalšími faktory.

Obecně lze austenitické korozivzdorné oceli svařovat téměř jakoukoliv technologií. Většinou se svařují bez předehřevu, při zachování ochrany svarových ploch, a to včetně kořenu svaru. Je doporučeno nepřekračovat hodnotu teploty interpass vyšší než 150 °C.

Austenitické korozivzdorné oceli se při svařování s přídavným materiálem spojují materiálem stejného chemického složení, nebo výše legovaným. A to nejen kvůli zachování dobré korozní odolnosti základního materiálu a svarového kovu, ale i pro bezpečné svařování bez vzniku trhlin za tepla. Protože se v menší produkci budou vyrábět žlaby i z materiálu X2CrNiMo 17-12-2, bude tento materiál použit i jako přídavný. Jeho chemické složení, které je vyňato z materiálového listu (příloha 2), je uvedeno v tabulce 9.

			Ch	emické sl	ožení [%]				
Prvek	C Si Mn P				S	N	Cr	Ni	Мо
Dle normy	≤0,03	≤1,00	≤2,00	≤0,045	≤0,03	≤0,11	16,5-18,5	10-13	2-2,5

Tabulka 9 Chemické složení oceli X2CrNiMo 17-12-2 [91]

5 EXPERIMENTY A JEJICH VYHODNOCENÍ [9, 11, 84]

Řešenou součástí je žlab sloužící pro odvod kapalin z podlah větších objektů (například v komerčních kuchyních). Z rozvinu žlabu je ohraňovacím lisem vytvořen požadovaný tvar součásti, která je následně plně zavařena (viz kapitola 1) a poté doplněna (přivařováním) dalšími díly odvodňovacího systému. Po následném moření a doplnění plastových komponent je díl připraven pro použití v provozu, což je vidět na obr. 31.

Obr. 31 Kompletní žlab [9]

V současnosti je řešená součást svařovaná metodou MAG, která je ale pro danou sériovost nevhodná. Úkolem práce je zjistit, zda je možné svar na pohledové ploše vytvářet laserovým svazkem s přídavným studeným drátem. Přídavný materiál je zde kvůli následnému broušení této plochy, proto je důležité, aby zde byl spoj s převýšením svaru. Propadlý kořen je v této části žlabu nepřípustnou vadou. K posouzení vhodnosti použití laserové technologie poslouží provedené experimenty společně s vyhodnocením vlivu použitých parametrů svařování.

V experimentální části bylo vytvořeno 9 vzorků z plechového polotovaru z austenitické korozivzdorné oceli X5CrNi 18-10 s přídavným materiálem z oceli X2CrNiMo 17-12-2. K oběma korozivzdorným ocelím je v tabulce č. 10 uvedeno chemické složení, které je vyňaté z atestu. Atesty obou materiálů jsou uvedeny v příloze 3 a 4.

		Cher	mické s	ložení [%]				
Prvek	C	Si	Mn	Р	S	N	Cr	Ni	Mo
X5CrNi 18-10	0,025	0,38	1,4	0,036	0,001	0,069	18,12	8,03	-
X2CrNiMo 17-12-2	0,019	0,54	1,34	0,037	0,003	0,038	16,59	10,03	2,05

|--|

Tvar a rozměry všech vzorků jsou identické, rozměry tabulí před svařením jsou 150x150 mm a po svaření tedy 150x300 mm. Oba plechy mají tloušťku 1,5 mm a jsou spojeny pomocí tupého svaru. Před samotným procesem svařování byly pro lepší vzájemnou polohu vzorků na obou koncích vytvořeny bodové svary metodou TIG. Tzv. nabodování bylo provedeno také kvůli tomu, aby se eliminovalo složité přípravkování a aby při průchodu laserového svazku nedošlo ke zvětšení mezery mezi plechy a nedošlo tak k jejich neprovaření.

Pro tento experiment není třeba užití předehřevu, dohřevu nebo následného tepelného zpracování. Vzorky budou svařeny laserovým paprskem s použitím přídavného studeného drátu, pozice svařování PA (vodorovná shora).

Parametry procesu, které byly popsány v kapitole 3.5, budou měněny v závislosti na vizuální kontrole svaru. Podle převýšení svaru, stability procesu a vizuální kvality svaru se mění nastavení výkonu svazku, rychlosti svařování a rychlosti podávání přídavného drátu. Tímto způsobem získané vzorky budou následně připraveny na příčnou zkoušku tahem a pozorování makro a mikrostruktury.

5.1 Svařování laserem [9]

Vlastní experimenty byly provedeny ve společnosti ACO Industries k.s. v Přibyslavi pomocí robotizovaného pracoviště (obr. 32). Svařování probíhalo v uzavřené laserové buňce, která je z důvodu bezpečnosti uzavřená ze všech stran. Obsluhující personál musí mít při pobytu v buňce speciální ochranné brýle. Pracoviště disponuje i kamerovým systémem, kde zachycená projekce je vysílána vně buňky. Ostatní pracovníci tak vidí aktivitu v buňce v reálném čase a ví, kdy je z hlediska bezpečnosti možné vstoupit dovnitř.

Obr. 32 Robotické pracoviště [9]

Firma ACO vyrábí na tomto pracovišti i jiné druhy odvodňovacích systémů, pro které většinou není nutné vytvářet pevnostní svary, proto je dostačující kondukční režim svařování, při kterém většinou není vyžadováno, aby byl kořen svaru provařený. Vyžadován je svar s co nejhladším povrchem a požadované těsnosti.
Pro tyto účely je využíván polovodičový laser. Zdroj laserového záření je od společnosti Laserline a nese označení LDM 2500-60. Výkon zdroje je 2500 W s měnitelnou vlnovou délkou pohybující se v intervalu od 920 nm až do 980 nm. Vedení laserového záření je

realizováno optickým vláknem o průměru 600 µm ze zdroje do svařovací hlavy, která nese označení OTS5. Ta je připevněna na polohovacím průmyslovém robotu KUKA KR 30-60, který je zobrazen na obrázku 33.

Ochranný plyn je při režimu svařování s přídavným drátem přiváděn trubicí, kterou je zároveň veden i přídavný materiál. Průměr podávací hubice je 20 mm a drát svírá se základním materiálem při kontaktu s vrchní plochou svaru úhel 45°. Ohnisková vzdálenost je 222 mm a kvalita paprsku BPP je 66 mm·mrad.

Podávání drátu je zajištěno hlavním podavačem od firmy Fronius pod označením Fronius KD 7000

Obr. 33 Průmyslový robot KUKA KR 30-60 [9]

(obr. 34), průměr přídavného drátu je 0,8 mm. Lepší vedení drátu zajišťuje pomocný podavač taktéž od společnosti Fronius. Podmínkou pro svařování korozivzdorných ocelí je přidávání materiálu o stejném chemickém složení, nebo výše legovaný. V této práci je pro svařování vzorků použit přídavný materiál s označením X2CrNiMo 17-12-2.

Obr. 34 Podavač Fronius KD 7000

Před experimentem byla řešena problematika přípravkování. Plechy jsou svařovány v poloze PA tupým svarem, proto byla jako dostačující systém upnutí zvolena metoda uchycení pomocí upínek. Ty přitlačovaly svařovaný materiál ke svařovacímu přípravku, kvůli zamezení pohybu plechů vlivem vneseného tepla. Riziko vzniku mezery mezi plechy bylo eliminováno díky

bodovým svarům, což značně zjednodušuje upnutí vzorků. Upnutí vzorku do přípravku je vidět na obrázku 35. Před samotným procesem svařování byla ještě provedena simulace pohybu, při níž byla kontrolována trajektorie paprsku, zda se pohybuje po hranách spojovaných materiálů. Následovalo seřízení průtoku ochranného plynu, který proudí po hraně svařovaných materiálů, a nakonec byl zahájen samotný proces svařování.

Obr. 35 Upnutí vzorku do přípravku

Vzorky nebyly před spojením nijak upravovány, nebylo to ani žádoucí. Cílem totiž je pracovat s materiály v takovém stavu, v jakém přijdou z předchozích operací. Dělení polotovarů materiálů je realizováno laserovým řezáním, kde pro tloušťku 1,5 mm je dosaženo dostačující kvality plochy po řezu.

5.2 Experimentální část A

Před vytvořením prvních vzorků byly vyzkoušeny některé kombinace procesních parametrů. Tyto svary byly hodnoceny pouze vizuální kontrolou, protože na první pohled je evidentní, jestli je nastavený výkon příliš vysoký a dochází k propálení plechu, nebo je naopak příliš malý a nedochází k tavení materiálu a vzniku svarového spoje. Svařovací rychlost i rychlost podávání drátu lze také přibližně určit. Z těchto zkušebních svarů byl vybrán jeden, který nabízel vizuálně nejkvalitnější svar a jehož procesní parametry byly použity pro první svařovaný vzorek. Svařovací parametry výchozího vzorku jsou uvedeny v tabulce 11.

Svařovací parametry pro první vzorek					
Parametr Hodnota Jednotka					
Výkon laseru	2500	[W]			
Svařovací rychlost	10	$[\mathrm{mm}\cdot\mathrm{s}^{-1}]$			
Rychlost podávání drátu	2,2	[m·min ⁻¹]			

Tabulka	11	Výchozí	svořovací	narametry
Tabuika	11	v ychozi	svarovaci	parametry

Po aplikaci prvních svařovacích parametrů a následné vizuální kontroly svaru byly navrženy další parametry, kde se ve většině případů změnil pouze jeden z nich. Následovala opětovná

vizuální kontrola. Takto bylo vytvořeno celkem 9 vzorků, jejichž svařovací parametry jsou přehledně uvedeny v tabulce 12.

Číslo vzorku	Výkon laseru [W]	Svařovací rychlost [mm·s⁻¹]	Rychlost podávání drátu [m·min ⁻¹]	Úhel natočení hlavy [°]
1	2500	10	2,2	90
2	2300	10	2,2	90
3	2100	10	2,2	90
4	2100	10	2	90
5	2300	10	2	90
6	2500	10	2,4	90
7	2500	10	2,4	70
8	2500	8	2,4	70
9	2500	6	2,4	70

Tabulka 12 Procesní parametry vzorků

Svařování probíhalo ve směru tlačení drátu. Vzorek byl prvně laserem nataven a poté do něj byl přidáván drát. Pro vzorky s číslem 7, 8 a 9 byla laserová hlava natočena, úhel mezi hlavou a svařovaným materiálem nebyl 90° jako v předešlých případech, ale přibližně o 20 ° menší. Tato úprava byla provedena z důvodu vytvoření přídavným ostřejšího úhlu mezi drátem a svařovanou součástí. Ten zlepšuje způsob přívodu drátu, který není vtlačován do materiálu, ale přiváděn nad něj. Poloha konce drátu je přibližně 1 mm nad povrchem svařovaných plechů. V tomto bodě dochází k natavování drátu a promísení se svarovou lázní součásti. Natočená hlava společně s podávací hubicí je zobrazena na obrázku 36.

Obr. 36 Natočení laserové hlavy

5.2.1 Tahová zkouška experimentu A [12]

Tahové zkoušky probíhaly na hydraulickém zkušebním stroji ZD40 /400kN/. Na tomto zařízení se dají provádět tahové, ohybové a tlakové zkoušky materiálů do zatížení 400 kN s řízenou rychlostí zatěžování a počítačovým zpracování dat ze zkoušky. Další informace a technické parametry jsou uvedeny v příloze 5. Jako první byla provedena zkouška vzorku bez svarového spoje pro ověření mechanických vlastností výchozího materiálu. Mechanické vlastnosti materiálu X5CrNi 18-10 jsou dle materiálového listu uvedeny v tabulce 13.

Korozivzdorná ocel X5CrNi 18-10					
Mez kluzu Rp0,2 295 [MPa]					
Mez pevnosti Rm	490-686	[MPa]			
Tažnost A ₈₀	51	[%]			

Tabulka 13 Základní mechanické vlastnosti [12]

Díky velkému rozptylu hodnot meze pevnosti byla pro upřesnění provedena zkouška tahem. Z plechu byly vyřezány 3 vzorky dle rozměrů z kapitoly 3.7. Ještě před přetrhnutím každé tyče byla změřena její šířka v měřené části pro zajištění korektnosti výsledků. Rychlost zatěžování byla 10 MPa·s⁻¹. Po následném přetržení na zkušebním stroji byla určena tažnost materiálu. V tomto případě byla délka měřené části 80 mm, proto je potřeba uvézt tažnost s označením A₈₀.

V průběhu zkoušky byla měřena závislost zatěžující síly na prodloužení. Z naměřených hodnot je nejjednodušší vykreslení závislosti napětí na dráze příčníku. Grafické znázornění této závislosti je na obr. 37. Z tahové křivky lze obecně odečíst mez kluzu, která je buď výrazná a patrná přímo z diagramu, nebo je nutné zavézt smluvní mez kluzu "Rp_{0,2}". Tu je možné zjistit

sestrojením rovnoběžky s částí grafu, kde je platný Hookův zákon vzdálenou 0.2 % z původní délkv zkušebního tělesa. To by platilo i pro toto vyhodnocení, ale trhací zařízení je propojeno s počítačem, kde pomocí programu je přímo odečtena smluvní mez kluzu, pevnosti tažnost. mez i Výsledky jednotlivých vzorků a jejich průměrné hodnoty společně s odchylkou jsou uvedeny v tabulce 14. Hodnoty mezí kluzu nabývaly velkého rozptylu, to bylo

Obr. 37 Grafický výstup tahové zkoušky prvního vzorku

způsobeno proklouznutím některých vzorků v čelistech trhacího stroje (obr. 38). Pro posouzení vhodnosti parametrů však mez kluzu není rozhodující, proto v tabulce není uvedena.

Číslo vzorku	Rm [MPa]	F _{max} [N]	A80 [%]
1	639,5	23 392	55,6
2	634,8	23 803,6	53,75
3	633,8	23 690,4	53,75
Průměr	637,4±30	23 628,6	54,4

Tabulka 14 Výsledky tahové zkoušky základního materiálu

Kvůli rozptylu hodnot u meze pevnosti byla zavedena odchylka. Výsledné hodnoty budou sloužit jako výchozí mechanické vlastnosti pro porovnání se svařovanými vzorky. Během optimalizace svařovacích parametrů budou jednotlivé vzorky vyhodnocovány pomocí vizuální zkoušky, příčné zkoušky tahem a na závěr metalografickému zkoumání a technickoekonomickému zhodnocení.

Obr. 38 Vzorek po tahové zkoušce základního materiálu

Po ověření vlastností následovala tahová zkouška svařovaných vzorků. Meze pevnosti Rm, maximální síly F_{max} a tažnosti A_{80} pro každý ze vzorků, jsou uvedeny v tabulce 15.

Číslo vzorku	Mez pevnosti Rm [MPa]	Maximální síla F _{max} [N]	Tažnost A ₈₀ [%]
1	633,3	23 438,5	32,9
2	594,4	22 006	28,3
3	566,7	20 921,3	25,4
4	540,6	19 984	21,3
5	605,1	22 354	33,3
6	651,5	24 093,7	36,7
7	635,9	23 501,3	32,5
8	656,2	24 262,9	45,4
9	657,3	24 275,5	44

Tabulka 15 Výsledky tahové zkoušky vzorků

Mez pevnosti prvního vzorku leží ve stanovené odchylce, u vzorku ale došlo k porušení ve svarovém kovu. Vzorky 2, 3 a 4 vykazují citelný pokles meze pevnosti a tažnosti, všechny byly porušeny ve svarovém kovu. Pro vzorek číslo 6 byla hraniční hodnota pro porušení materiálu naměřena vyšší, ovšem i tento vzorek společně se sedmým pokusem neobstál tahovou zkouškou. Došlo k porušení ve svarovém kovu. Tvar vzorku po zkoušce a viditelné proklouznutí v čelistech je na obrázku 39.

Obr. 39 Vzorek č. 6 po tahové zkoušce

Z uvedených vzorků obstály zkoušku pouze ty s označením 8 a 9, které byly porušeny mimo svar. U nich byl ale průřez v místě svaru skoro dvojnásobný, což může být důvod pro porušení mimo svar. Svařovaný žlab bude po svaření broušen na téměř konstantní tloušťku plechu, je tedy důležité, aby dostatečnou pevnost v tahu vykazoval i po broušení. Z těchto důvodů je nelze okamžitě označit za vhodné a optimální. Těleso vzorku č. 8 i č. 9 po zkoušce tahem je zobrazeno na obrázku 40.

Obr. 40 Vzorky č. 8 a 9 po tahové zkoušce

5.2.2 Metalografie experimentu A [18]

Metalografické výbrusy byly realizovány na Ústavu přístrojové techniky Akademie věd České republiky dle normy ČSN EN ISO 17639. V první fázi bylo potřeba vyříznout ze vzorku část svaru, která má být podrobena kontrole makrostruktury. Vyřezání materiálu na požadovaný rozměr a tvar bylo realizováno pomocí kotouče na speciální přesné pile Struers Secotom-60 (obr. 41a). Důležitým faktorem během řezání je použití intenzivního chlazení, aby bylo zamezeno tepelnému ovlivnění materiálu. Po očištění od řezné kapaliny a odmaštění byly výsledné vzorky zalisovány do pryskyřice. To probíhalo pomocí automatického lisu (obr. 41b), a to z důvodu lepší manipulace.

a) laboratorní pila Struers Secotom-60, b) automatický lis Struers Citopress-1

Obr. 41 Zařízení pro přípravu metalografických výbrusů

Následovaly operace broušení a leštění. Vzorky byly umístěny do přístroje Struers Tegramin-20 (obr. 42), což je jednokotoučová bruska/leštička. A následně do něho byl upnut SiC brusný kotouč a byl spuštěn proces broušení. Pro tepelné neovlivnění materiálu byly vzorky

v celém průběhu procesu chlazeny procesní kapalinou. V další operaci byly vzorky leštěny diamantovou pastou s velikostí zrna 1 µm pomocí textilního kotouče. Po absolvování těchto operací by už vzorky mohly být vloženy pod mikroskop s následným vyhodnocením. Ale pro lepší viditelnost struktury bylo ještě provedeno leptání povrchu. Leptalo se po dobu 3 sekund modifikovaným leptadlem Marble, které je složené z 20 g síranu měďnatého (modrá skalice), 50 ml kyseliny sírové, 100 ml kyseliny chlorovodíkové a 100 ml vody. Následně došlo k opláchnutí vodou a methanolem. Touto operací je proces přípravy vzorků dokončen a lze přejít k vyhodnocení makrostruktury.

Obr. 42 Bruska/leštička Tegramin-20

Snímky pro vyhodnocení makrostruktury byly pořízeny pomocí stereomikroskopu Olympus SZ61 (obr. 43) a zpracovány v programu Olympus Stream. Měřena byla vždy šířka svaru, jeho výška bez převýšení, a nakonec i celková výška včetně převýšení svaru. Na snímcích je tedy vždy na levé straně zobrazena kóta měřící hloubku průvaru od vrchní plochy plechu a na pravé

straně celková výška svarového kovu (včetně převýšení svaru). Austenitická korozivzdorná ocel X5CrNi 18-10 má velmi špatnou tepelnou vodivost, proto u tohoto materiálu nelze najít tepelně ovlivněnou oblast.

Výstupem z kontroly makrostruktury bylo posouzení velikosti svaru, přítomnost svarových vad, tvar svaru a propad či převýšení lícní strany a kořene svaru.

Obr. 44 zobrazuje makroskopické snímky některých vzorků. Na obrázku 44a je vzorek č. 2, převýšení svaru je přibližně 0,7 mm, což je dostačující pro následné broušení, ale je zde zřejmé neprovaření po celé tloušť ce plechu, díky čemuž při tahové zkoušce došlo k porušení ve svarovém kovu. Stejný problém nastává i pro vzorky č. 4 a 7 (obr. 44b, obr. 44c).

Obr. 43 Stereomikroskop

a) vzorek č. 2, b) vzorek č. 4, c) vzorek č. 7, d) vzorek č. 9
 Obr. 44 Makroskopické snímky vybraných vzorků

Dle kapitoly 5.2.1 vydržely tahovou zkoušku pouze vzorky 8 a 9, č. 9 je znázorněn na obr. 44d. Zde je převýšení svaru dostatečné a vhodné pro následné broušení. Z tvaru svaru je ale zřejmé, že rychlost svařování byla v porovnání s rychlostí podávání drátu "zbytečně" malá. Kořen svaru je zde propadlý a celková výška je přibližně 3,7 mm, což je více jak dvojnásobek tloušťky výchozího materiálu.

Výsledky makrostruktury z prvního svařovacího experimentu nejsou optimální a nelze s jistotou označit svařovací parametry jednoho ze vzorků jako vhodné pro svařování pohledové plochy žlabu. Společně s výsledky z příčné zkoušky tahem, které určili jako vhodné pouze dva vzorky z devíti, bylo rozhodnuto o provedení ještě jednoho experimentu.

5.3 Experimentální část B

Pro přesnější a relevantnější posouzení vlivu svařovacích parametrů na kvalitu svarového spoje byl proveden druhý experiment. Parametry pro druhý experiment byly voleny podobně jako pro vzorky s označením 8 a 9 z předešlého pokusu, které jako jediné prokázaly jistou vhodnost použití.

Na začátku experimentu byly vytvořeny dva vzorky se stejnými parametry jako vzorky 8 a 9 z předchozího pokusu. Důvod byl jednoznačný, a to ověření pevnosti svaru i po obroušení na téměř konstantní průřez plechu. Pro další vzorky zůstala neměnná velikost výkonu laseru i úhel odklonu drátu vůči základnímu materiálu. Z poznatků z předchozího experimentu bylo rozhodnuto pro všechny vzorky použít maximálního výkonu laseru, a to 2500 W. Proměnnými parametry byly pouze velikost rychlosti svařování a velikost rychlosti podávání přídavného drátu. Celkem bylo vytvořeno 6 nových vzorků, které jsou společně s použitými procesními parametry uvedeny v tab. 16. Pro lepší rozlišení s prvním experimentem je za číslem vzorku uvedeno písmeno 'B'.

Číslo vzorku	Výkon laseru [W]	Svařovací rychlost [mm.s ⁻¹]	Rychlost podávání drátu [m.min ⁻¹]	Úhel natočení hlavy [°]
1B	2500	8	2,4	70
2B	2500	6	2,4	70
3B	2500	8	2	70
4B	2500	6	2	70
5B	2500	8	2	70
6B	2500	10	2	70

Tabulka 16 Svařovací parametry druhého experimentu

V tabulce jsou uvedeny dva vzorky se stejnými proměnnými. Rozdíl mezi nimi je ve vzdálenosti plechů. Pro téměř všechny vzorky nebyla vytvořena mezera, kromě vzorku číslo 3B. Ten je vytvořen tak, že svařované plechy byly ustaveny a nabodovány s předem definovanou vzdáleností mezi nimi, a to přibližně 0,5 mm. Důvod vzniku této mezery je pro ověření stability procesu a vytvoření kvalitního svarového spoje i pro žlaby, které vlivem možné nepřesnosti z předchozí operace ve výrobě (ohraňování), mohou tuto mezeru obsahovat.

Vzhled jednotlivých svarových spojů je zobrazen na obrázku 45.

a) vzorek 1B, b) vzorek 2B, c) vzorek 3B, d) vzorek 4B, e) vzorek 5B, f) vzorek 6B Obr. 45 Vzhled svarových spojů

5.3.1 Tahová zkouška experimentu B

Stejně jako v prvním experimentu následovala tahová zkouška pro ověření mechanických vlastností svarových spojů. Výsledky jsou uvedeny v tabulce 17.

Číslo vzorku	Mez pevnosti Rm [MPa]	Maximální síla F _{max} [N]	Tažnost A ₈₀ [%]
1B	634,1	23 524,4	44
2B	652,3	24 166,9	39,4
3B	633,8	23 546,4	35,4
4B	634,6	23 577,7	33,8
5B	629,9	23 370,7	34,4
6B	634,6	23 511,9	43,3

Tabulka 17 Mechanické vlastnosti svarů pro experiment B

Druhý experiment byl realizován z jiné dodávky materiálu než první. Naměřené hodnoty se tak mohou v porovnání s výsledky z prvního experimentu lehce lišit. Drobný rozdíl je však kompenzován zavedenou odchylkou. Listy obsahující chemické složení a přibližné mechanické vlastnosti pro každý z experimentů jsou vloženy v příloze 3 a 6.

První dva vzorky byly před samotnou tahovou zkouškou zbroušeny na téměř konstantní tloušťku materiálu. K porušení obou vzorků došlo mimo svarový kov. Naměřené smluvní meze kluzu a meze pevnosti leží v intervalu odchylky, která byla na začátku stanovena. Vzorky po tahové zkoušce jsou uvedeny na obr. 46.

Obr. 46 Vzorky č. 1B a 2B po tahové zkoušce

Následně byly ostatní plechy bez jakékoliv další úpravy upnuty do trhacího stroje a byla provedena příčná zkouška tahem. Došlo k porušení všech vzorků mimo svarový kov, což zvyšuje vhodnost použití všech svařovacích parametrů z pohledu mechanických vlastností. Nejvyšší tažnost vykazuje vzorek číslo 1B s naměřenou hodnotou 44 % (výchozí stav je přibližně 54,4 %).

Obr. 47 zobrazuje závislosti napětí na dráze, kterou urazil upínací příčník. Tahové diagramy jsou pro lepší přehlednost rozděleny do dvou tak, že první obsahuje vzorky 1B až 3B a druhý 4B až 6B, přičemž oba diagramy jsou doplněny o data z tahové zkoušky základního materiálu. Z obou grafů je zřejmé, že jednotlivé hodnoty napětí se výrazně neliší od výchozího materiálu a jsou tedy srovnatelné. Na obr. 47b je viditelné zmíněné proklouznutí v čelistech trhacího stroje. Příčník zde pro vzorek č. 4B urazil větší vzdálenost než č. 6B, čili by měl mít větší tažnost, ta byla ale vypočtena lépe pro první zmíněný.

a) Tahový diagram prvních třech vzorků, b) Tahový diagram vzorků 4B, 5B a 6B
 Obr. 47 Tahový diagram pro druhý experiment

5.3.2 Makroskopie experimentu B

Pro vyhodnocení makrostruktury bylo znovu nutné projít procesem přípravy metalografie. Vzorky byly připraveny za stejných podmínek a stejnými operacemi jako v prvním experimentu. Vyleštěné vzorky byly vloženy do přípravku a pomocí stereomikroskopu Olympus SZ61 byly vytvořeny snímky. Měřena byla opět šířka svaru, hloubka průvaru a celková výška včetně převýšení svaru.

Na obr. 48 je uveden makroskopický snímek vzorku č. 1B. Celková šířka svaru je v horní části 3,65 mm a s postupem do materiálu se zužuje. Svar je téměř symetrický s dobrým převýšením nad základním materiálem ale s neúplným provařením kořene. Převýšení je vhodné po celé délce svaru. Hloubka svaru měřená od vrchní plochy je 1,34 mm a celková výška svarového kovu činí 2,31 mm. Hranice mezi svarovým kovem a základním materiálem jsou velice dobře viditelné, tepelně ovlivněná oblast se zde vůbec nevyskytuje. Na snímku nejsou viditelné žádné ze svarových vad a také zde není znatelné zhrubnutí zrna.

Obr. 48 Makroskopický snímek vzorku č. 1B

Šířka svarového kovu se u vzorku č. 2B zvětšila na 4,01 mm. Je to způsobeno snížením rychlosti svařování a díky tomu k dodání většího množství vneseného tepla. Svařovací rychlost pro druhý vzorek byla 6 mm·s⁻¹. Jak je ale viditelné ze snímků makrostruktury, zvětšení šířky svaru není tak významné, jako hloubka průvaru a celková výška svarového kovu. Pro tento vzorek je kořen převýšený a výška svaru od vrchní plochy plechu je 2,01 mm. Celková výška včetně převýšení je 2,83 mm.

Svar je symetrického charakteru s postupným zužováním směrem do materiálu. Největší šířka je v lícní rovině vzorku. Převýšení je dostatečné a není zaznamenáno žádné propadnutí po celé délce svaru. Hranice mezi svarovým kovem a základním materiálem je velice dobře

viditelná. Ani v tomto vzorku se nevyskytují žádné ze svarových vad a není patrné zhrubnutí zrna. Makroskopický snímek vzorku číslo 2B je na obrázku 49.

Obr. 49 Makroskopický snímek vzorku č. 2B

Pro vzorek číslo 3B byla uměle vytvořena mezera mezi svařovanými plechy pro ověření stability procesu při nepřesné předchozí výrobní operaci, a to přibližně 0,5 mm. Rychlost svařování byla stejná jako pro první vzorek 8 mm·s⁻¹. Celková šířka svarového kovu je 3,67 mm, což přibližně odpovídá šířce svarového kovu u prvního vzorku, který se svařoval stejnou rychlostí. Díky snížení rychlosti podávání přídavného drátu a zároveň díky mezeře mezi svařovanými plechy došlo k lepšímu provaření celé tloušťky materiálu. Svar má dobré převýšení v jeho vrchní části. Převýšení v oblasti kořene není striktně vyžadováno a je tak dostatečné. Výška svaru, měřená od vrchní plochy základního materiálu až po nejnižší bod převýšeného kořene, je 1,73 mm, což při tloušťce plechu 1,5 mm odpovídá převýšení kořene o hodnotě přibližně 0,2 mm. Celková výška svarového kovu, včetně návaru na lícní ploše svaru, je 2,32 mm.

Svarový spoj není vlivem mezery úplně symetrický, nicméně má největší šířku na vrchní ploše a odtud se postupně zužuje směrem do materiálu. Hranice mezi základním materiálem a svarovým kovem je dobře viditelná a není patrný vznik tepelně ovlivněné oblasti. Stejně tak opět nedošlo k výraznému zhrubnutí zrn. V horní části svaru by se mohla vyskytovat svarová vada v podobě póru. Rozměr póru by byl nevyhovující, pokud by svými rozměry překročil mezní hodnoty stanovené normou ČSN EN ISO 13919-1. V tomto místě však není hrozbou, protože tato oblast bude další operací odstraněna. Snímek ze zkoumání makrostruktury je na obr. 50.

Obr. 50 Makroskopický snímek vzorku č. 3B

Na obrázku 51 je snímek z pozorování makrostruktury čtvrtého vzorku. Pro ten byla snížena rychlost podávání přídavného drátu na 2 m·min⁻¹ při rychlosti svařování 6 mm·s⁻¹. Menší svařovací rychlostí je zapříčiněno roztažení svarového spoje a jeho šířka tedy činí 4,15 mm. Díky menšímu množství přidaného drátu není výška převýšení tak velká jako v předchozích dvou případech. Kořen je provařený a taktéž vystouplý jako jeho lícní část. Výška svaru od vrchní plochy po spodní cíp je 2,03 mm, celková, zahrnující i převýšení svarového spoje, potom činí 2,54 mm.

Svar není úplně symetrický a je lehce vypouklý na pravé straně. Největší šířka je na lícní straně svaru, odtud dochází k zužování až ke kořeni, kde je svar nejužší. Hranice přechodu ze svarového kovu do základního materiálu je opět velice dobře rozeznatelná a ani v tomto případě není viditelná tepelně ovlivněná oblast. Zhrubnutí zrna není patrné a nejsou přítomny žádné svarové vady. Převýšení svaru na lícní straně je dostatečné, jeho výška je 0,51 mm. Po celé délce svaru je návar dostatečný bez lokálních propadů.

Obr. 51 Makroskopický snímek vzorku č. 4B

Vzorek číslo 5B se svařoval téměř totožnými parametry jako první z tohoto experimentu. Změnou bylo snížení rychlosti podávání drátu na 2 m·min⁻¹. Změna byla provedena, protože pro vzorek č. 1 bylo po vizuální kontrole převýšení vyhodnoceno jako dost velké, až zbytečné. Snížením se tedy ověřuje dostatečný "návar" na vyráběném žlabu. Šířka svarového spoje je 3,56 mm, ten je nejširší v horním místě, kde je základní materiál v kontaktu se svarem. Odtud se zužuje směrem do materiálu.

I tento vzorek měl kořen dostatečně provařený, ale jeho šířka je v porovnání se šířkou celého svaru téměř poloviční. Celková výška svarového spoje je 2,52 mm, přičemž převýšení kořene je, při tloušť plechu 1,5 mm, přibližně 0,3 mm. Část svaru, která přesahuje přes základní materiál, je rovna hodnotě přibližně 0,7 mm, což je dostačující převýšení pro následující broušení.

Svar není dokonale symetrický, na levé straně je patrné výraznější zúžení. Hranice mezi svarovým kovem a základním materiálem je dobře viditelná a spoj je bez výrazné tepelně ovlivněné oblasti. Zhrubnutí zrna není evidentní a spoj je bez přítomnosti svarových vad. Makroskopický snímek vzorku číslo 5B je vidět na obrázku 52.

Obr. 52 Makroskopický snímek vzorku č. 5B

Posledním svařovaným vzorkem je číslo 6B. V porovnání s předchozím byla změna pouze v rychlosti svařování, tento se svařoval rychlostí 10 mm·s⁻¹. Díky zvýšení svařovací rychlosti je výsledný svar štíhlejší a nižší. Celková šířka je 3,28 mm, kde největší je v horní části svaru, v místě kontaktu se základním materiálem. V kořenové oblasti je svar přibližně třetinové šířky. Výška svaru, měřená od lícní plochy základního materiálu po spodní cíp kořenu, je 1,72 mm. Celková výška včetně převýšení vrchní strany i kořenu je 2,33 mm, což znamená lícní převýšení přibližně 0,61 mm. To je dostatečně velké po celé délce spoje. Jako ve všech případech je hranice přechodu ze základního materiálu do svarového kovu dobře viditelná. Spoj je bez výrazné tepelně ovlivněné oblasti a nedošlo k výraznému zhrubnutí zrn.

V tomto svarovém spoji se vyskytuje vada v podobě póru, a to ve svarovém kovu. Jsou viditelné 2 póry a jejich přípustnost je nutné určit dle normy ČSN EN ISO 13919-1. Rozměry póru by byly nevyhovující, pokud by byly překročeny mezní hodnoty stanovené normou. V této normě je pro nejpřísnější stupeň jakosti uvedeno, že největší rozměr póru musí být menší než 0,3 násobek tloušťky. Plech má tloušťku 1,5 mm, takže mezní hodnota je 0,45 mm. Na vzorku byla změřena jako největší hodnota vzdálenost přibližně 0,25 mm, což je menší než mezní hodnota a rozměr dutin je tak vyhovující. Makroskopický snímek vzorku číslo 6B je zobrazen na obr. 53.

Obr. 53 Makroskopický snímek vzorku č. 6B

V tabulce 18 jsou přehledně shrnuty vlastnosti zjištěné z makroskopie. Nejvhodnější vzorky z pohledu makroskopie jsou zeleně zvýrazněny.

Číslo vzorku	Celk. šířka svaru [mm]	Celk. výška svaru [mm]	Převýšení pro broušení [mm]	Póry
1B	3,65	2,31	1,27	Ne
2B	4,01	2,83	0,82	Ne
3B	3,67	2,32	0,59	Ano (malé rozměry)
4B	4,15	2,54	0,51	Ne
5B	3,56	2,52	0,72	Ne
6B	3,28	2,33	0,61	Ano (malé rozměry)

Tabulka 18 Shrnutí výsledků ze zkoumání makroskopie

5.3.3 Mikrostruktura vybraných svarů z experimentů série B [92]

Na ÚPT AV ČR byly vytvořeny mikroskopické snímky, použité zvětšení pomocí objektivů bylo 20x, 50x a 150x. Rozhodujícím faktorem je vždy měřítko, které je uvedené v pravém spodním rohu. Snímky byly pořízeny z oblasti svaru, přechodu ze svarového kovu do základního materiálu a ze základního materiálu. Příprava vzorků probíhá obdobně jako pro zkoumání makrostruktury. V první fázi jsou broušeny na SiC papíře se zrnitostí 120 dále 240 a nakonec 500. Následuje leštění diamantovou pastou s velikostí částic 9 μm, 3 μm a na závěr 1 μm. Poslední operací před samotným pozorováním a tvorbou snímků mikrostruktury je leptání. Leptalo se směsí Vilella-Bain a to po dobu 15 sekund.

Před snímáním byla ještě dle Schäfflerova diagramu odhadnuta struktura. Pro určení fází, které by se ve struktuře mohli vyskytovat, je nutné určit niklový a chromový ekvivalent. Ty jsou určeny dle chemického složení, které je uvedené v atestu. Pro dané typy ocelí existuje několik typů výpočtů ekvivalentů, kde každý dává rozdílné výsledky. Niklový ekvivalent je počítán podle vzorce (5.1)

 $Ni_e = \% Ni + 30 \cdot \% C + 0.5 \cdot \% Mn = 8.03 + 30 \cdot 0.025 + 0.5 \cdot 1.4 = 9.48.$ (5.1) Pro vynesení bodu v diagramu je nutné spočítat ještě ekvivalent chromu. Ten je definován podle vzorce (5.2)

 $Cr_e = \% Cr + \% Mo + 1.5 \cdot \% Si + 0.5 \cdot \% Nb = 18.12 + 1.5 \cdot 0.38 = 18.69.$ (5.2)

Kromě působení laserového svazku je do procesu přiváděn i přídavný materiál ve formě drátu. Chemické složení drátu není totožné s chemickým složením svařovaného materiálu. Proto je nutné určit oba ekvivalenty i pro přídavnou korozivzdornou ocel. Chemické složení je vyňato z atestu. Dosazením do vzorce (5.1) je získán niklový ekvivalent.

 $Ni_e = \% Ni + 30 \cdot \% C + 0.5 \cdot \% Mn = 10 + 30 \cdot 0.024 + 0.5 \cdot 1.29 = 11.365.$

Obdobně dosazením do vzorce (5.2) je vypočítán ekvivalent chromu.

 $Cr_e = \% Cr + \% Mo + 1,5 \cdot \% Si + 0,5 \cdot \% Nb = 16,68 + 2,09 + 1,5 \cdot 0,51 = 19,535.$

Díky výpočtu všech potřebných hodnot lze do diagramu zaznačit body, které předurčují výslednou strukturu. Diagram společně s oběma body je na obr. 54.

Obr. 54 Schäfflerův diagram [92]

Korozivzdorná ocel X5CrNi 18-10 se dle diagramu nachází v oblasti A+M+F, přítomnost martenzitu je s ohledem na obsah uhlíku nepravděpodobná. Svar je navíc legován ocelí X2CrNiMo 17-12-2, kterou tvoří austenit společně s delta feritem. Výsledná struktura tak bude tvořena austenitem, který bude doplňovat delta ferit.

Obr. 55 zobrazuje mikroskopický snímek základního materiálu X5CrNi 18-10. Použité měřítko pro přiblížený snímek je vyznačené v pravém spodním rohu a činí 10 μ m. Z obrázku je zřejmé, že struktura základního materiálu je tvořena matricí austenitu. Ta je doplněna delta feritem, který je přítomen ve dvou typech morfologie. Skeletálním, což jsou osamocené krátké "černé" jehlice, a laťkovým, který je viditelný jako blok rovnoběžných tmavých čar.

Obr. 55 Mikroskopické snímky základního materiálu

Na obr. 56 je zobrazena mikrostruktura vzorku číslo 5B. Snímek zobrazuje přechod ze základního materiálu do svarového kovu. Hranice přechodu je velice dobře viditelná. Vlivem rychlého ochlazování a malé tepelné vodivosti se při laserovém svařování těchto typů ocelí prakticky netvoří tepelně ovlivněná oblast (TOO). Struktura je tvořena matricí austenitu s doplněním fáze delta feritu. Ve svarovém kovu a v přechodu je viditelné větší množství delta feritu v porovnání s množstvím v základním materiálu. Množství delta feritu se obecně svařováním zvyšuje. Vlivem velké rychlosti ochlazování se tavenina ve větším množství přemění na delta ferit, zbytek je tvořen austenitem. V detailu snímku ze svarového kovu je vidět opět rozdílná morfologie delta feritu, přítomny jsou oba druhy, zbytek je tvořen austenitem.

Obr. 56 Mikroskopické snímky vzorku č. 5B

Mikroskopický snímek vzorku č. 6B (obr. 57) znázorňuje přechod ze základního materiálu do svarového a detail ze svarového kovu. Struktura je tvořena matricí austenitu, která je doplněna o delta ferit. Hranice přechodu základního materiálu do svarového kovu je velice dobře viditelná. Je na ní stejně jako u vzorku č. 5B větší množství delta feritu. Podíl delta feritu a austenitu nebylo možné přesně vyčíslit, protože nebyl k dispozici feritometr na kvantitativní určení % feritu. Vizuálně je ale množství delta feritu v obou vzorcích přibližně stejná.

Obr. 57 Mikroskopické snímky vzorku č. 6B

6 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ [9]

Pro ekonomické zhodnocení je důležité znát čas svařování součásti jednotlivými metodami a cenu za hodinu provozu. Porovnávány budou technologie svařování MAG a svařování laserem včetně modifikace přídavného studeného drátu. Jednotlivé parametry jsou uvedeny v tabulce 19.

	MAG	Laser
Svařovací čas [s]	30	22,7
Jednotkový čas pracoviště [min]	12	5
Cena za hodinu provozu [Kč]	671,4	998
Pořizovací cena [Kč]	200 000	2 500 000

Tabulka 19 Porovnání metody MAG a laseru [9]

Na řešeném žlabu je celková délka svaru 354 mm. Pro metodu MAG by to znamenalo 30 s čistého času svařování. Na žlabu ale nejsou pouze rovné kontinuální svary, tvar žlabu je členitý a ve spojení s ručním zakládáním a vedením oblouku je celkový čas pro svařování změřen 12 minut na kus. Čas zahrnuje i ruční manipulaci s výrobkem, jeho otáčení a další drobné práce.

Svařování laserovým svazkem probíhá rozdílnou rychlostí svařování. Části žlabu, které se nesvařují s přídavným drátem jsou svařovány rychlostí 20 mm·s⁻¹. Svařování pohledové plochy bylo předmětem práce, ta bude tedy svařována rychlostí 10 mm·s⁻¹. Čistý svařovací čas tak činí 22,7 s. Celkový čas svařování laserem včetně upínání, přejezdu mezi svary apod. je 5 minut na jeden žlab.

Ekonomický přínos je možno vyjádřit pomocí ceny za hodinu provozu svařovacího zařízení MAG v porovnání s cenou za hodinu provozu laseru. Svařování žlabu metodou MAG trvá 12 minut, díky známé ceně za hodinu provozu lze jednoduchým výpočtem spočítat cenu za svařování, ta činí 134,3 Kč. Laserovým svazkem je součást vyrobena za 5 minut, což při ceně 998 Kč za hodinu provozu, znamená celkově 83,2 Kč za jeden svařovaný žlab. Úspora činí 51,1 Kč na jeden žlab.

Roční produkce je přibližně 5000 kusů, při tomto množství se ročně uspoří 255 500 Kč. Laserové zařízení se nepoužívá pouze pro tento typ výrobků, proto by nebylo nutné počítat návratnost na investici do zařízení. Pokud by se ale stroj používal pouze pro tento typ žlabů byla by návratnost přibližně 9,8 let. V tabulce 20 jsou shrnuty finanční i časové náklady na výrobu 1, 1000 a 5000 kusů žlabů.

Metoda	Cena za svařování [Kč]			Čas výroby [min.]		
svařování	1 ks	1000 ks	5000 ks	1 ks	1000 ks	5000 ks
MAG	134,3	134 300	671 500	12	12 000	60 000
LASER	83,2	83 200	416 000	5	5000	25 000

Tabulka 20 Finanční a časové náklady pro svařování žlabů

7 ZÁVĚRY

Řešená součást slouží pro odvod procesních tekutin z podlah komerčních kuchyní. Je vyráběna z austenitické korozivzdorné chrom-niklové oceli X5CrNi 18-10 (1.4301, ČSN 17 240). Žlab je v současné době svařovaný metodou MAG, která ale není vhodná pro tvorbu těchto spojů ať už z hygienických důvodů nebo pro svou časovou náročnost.

Po zvážení jiných možných technologií svařování bylo vybráno laserové svařování s přídavným studeným drátem. Přídavný materiál je z austenitické korozivzdorné chrom-nikl-molybdenové oceli X2CrNiMo 17-12-2. Použití tohoto materiálu má prostý důvod. Žlaby se v menší míře vyrábějí i z tohoto materiálu čili aby se nestalo, že bude ušlechtilejší materiál legován méně ušlechtilým. Tato technologie byla vybrána na základě strojního vybavení firmy a vhodnosti zařízení pro danou výrobu.

Vytvořené zkušební svary byly podrobeny svarovým zkouškám. Ze vzorků byly vyřezány tělesa pro příčnou zkoušku tahem a pro metalografii. V prvním experimentu bylo vytvořeno 9 vzorků s různými procesními parametry. Po absolvování svarových zkoušek bylo zjištěno, že určitou vhodnost prokázali pouze poslední dva. Tyto skutečnosti pro vybrání nejvhodnějších parametrů nestačily a bylo tak rozhodnuto o realizování ještě jednoho experimentu.

Parametry procesu druhého experimentu byly voleny podobně jako vyhovující svary z předchozího experimentu. Po vizuální kontrole prvních vzorků bylo zřejmé, že rychlost podávání přídavného drátu byla zbytečně velká. Došlo ke snížení rychlosti podávání na 2 m/min a vytvoření dalších 4 vzorků. Celkem bylo vytvořeno 6 vzorků, pro které následovala příčná zkouška tahem a zkoumání makrostruktury a mikrostruktury.

Posouzením makrostruktury byly zjištěny šířky svarů a jejich výška včetně převýšení nad základní materiál. Vzorek číslo 6B vykázal svarové vady v podobě pórů, ty byly změřeny a posouzeny podle normy ČSN EN ISO 13919-1. Velikost a četnost vad je vyhovující. Na konec bylo provedeno zkoumání mikrostruktury pro vzorky č. 5B a 6B. Struktura je tvořena matricí austenitu s doplněním fáze delta feritu. Podíl jednotlivých složek se pro oba vzorky výrazně nemění.

Na základě provedených mechanických a metalografických zkoušek lze pro svařování daného dílu doporučit parametry uvedené v tabulce 21.

Výkon [W]	Rychlost svařování	Rychlost podávání	Odklon laserové hlavy
	[mm∙s⁻¹]	drátu [m∙min ⁻¹]	[°]
2500	10	2	20

Tabulka 21 Doporučené svařovací parametry

SEZNAM POUŽITÝCH ZDROJŮ [2]

- VENC, Jan. Návrh designu žlabu s ohledem na hygienické požadavky. Brno, 2019. Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/116667. Bakalářská práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav strojírenské technologie. Vedoucí práce Kamil Podaný.
- 2. CITACE PRO. *Generátor citací* [online]. 2021 [cit. 2021-05-16]. Dostupné z: http://citace.lib.vutbr.cz/info
- 3. KOŘÁN, Pavel. Využití laseru v průmyslu: Minulost a současnost. *Lasery a optika* [online]. 9.9.2014 [cit. 2021-2-15]. Dostupné z: http://www.lao.cz/lao-info-49/vyuziti-laseru-v-prumyslu--minulost-a-soucasnost-313
- 4. Historie vývoje laseru. *Leonardo technology* [online]. [cit. 2021-2-15]. Dostupné z: http://www.lt.cz/e-learning/laser/historie-vyvoje-laseru
- 5. TRUMPF. *Svařování laserovým paprskem* [online]. TRUMPF, 2021 [cit. 2021-2-15]. Dostupné z: https://www.trumpf.com/cs_CZ/reseni/pouziti/svarovani-laserovym-paprskem/?LS=
- 6. Laserové svařování. *Blumenbecker* [online]. [cit. 2021-2-16]. Dostupné z: https://www.blumenbecker.com/cz/prumyslova-automatizace/prumyslove-roboty/laserove-svarovani
- MRŇA, Libor. *Technologie využívající laser: Svařování laserem* [online]. [cit. 2021-03-10]. Dostupné z: http://ust.fme.vutbr.cz/svarovani/opory.html. Prezentace. Vysoké učení technické
- 8. ACO Industries k.s. [online]. [cit. 2021-03-10]. Dostupné z: http://www.acoindustries.cz/home/
- 9. Interní dokumenty. Přibyslav: ACO Industries, 2021
- STANĚK, Vojtěch. Optimalizace procesu výroby vpusti [online]. Brno, 2012
 [cit. 2021-3-17]. Dostupné
 z: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=51781.
 Diplomová práce. VUT. Vedoucí práce Kamil Podaný.
- 11. Atest svařované oceli X5CrNi 18-10. Isbergues, Francie, 2021-03-07.
- 12. X5CrNi 18-10. Korozivzdorná austenitická ocel: ocel 17 240. 2021
- Svařování TIG seznámení. Svářečky-elektrody [online]. Quick-servis [cit. 2021-3-17].
 Dostupné z: https://www.svarecky-elektrody.cz/svarovani-tig-zakladni-seznameni/t-39/t-120
- SVARTOP. Rozdíl mezi MIG nebo MAG. [online]. Město Touškov, ©2019 [cit. 2021-03-17]. Dostupné z: https://www.svartop.cz/clanky/rozdil-mezi-mignebomag/

- 15. The beauty of TIG. *Canadian Fabrication & Welding* [online]. 2015 [cit. 2021-3-18]. Dostupné
 z: https://www.canadianmetalworking.com/canadianfabricatingandwelding/article/wel
 ding/the-beauty-of-tig
- 16. Sváření plasmou. *Sváření svářečky* [online]. Euronic, 2013 [cit. 2021-3-18]. Dostupné z: http://www.svareni.eu/metoda-svareni-plasmou/
- VANDERWERT, Terry. Today's laser welding. *Welding productivity* [online]. [cit. 2021-3-18]. Dostupné z: https://weldingproductivity.com/article/todays-laser-welding/
- RÝZNAROVÁ, Martina. Studium vlivu procesních parametrů na vlastnosti heterogenního svaru martenzitické korozivzdorné oceli s uhlíkovou ocelí při laserovém svařování s rozmítáním svazku [online]. Brno, 2019 [cit. 2021-3-17]. Dostupné z: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=193052. Diplomová práce. VUT. Vedoucí práce Libor Mrňa.
- KOŘÁN, Pavel. Seriál na téma lasery: Hlavní typy laserů používaných v průmyslu. *Lasery a optika* [online]. 2013, 19.2.2013 [cit. 2021-3-18]. Dostupné z: http://www.lao.cz/lao-info-49/serial-na-tema-lasery---hlavni-typy-laseru-pouzivanych-v-prumyslu-128
- 20. LASCAM SYSTEMS S.R.O. *Rozdělení laserů* [online]. 2015 [cit. 2021-02-08]. Dostupné z: http://www.lascam.cz/rozdeleni-laseru/
- 21. ŠULC, Jan. Klasifikace laserů. *Úvod do laserové techniky* [online]. Prezentace [cit. 2021-3-17]. Dostupné z: https://people.fjfi.cvut.cz/sulcjan1/ult/ulat_08.pdf
- CHMELÍČKOVÁ, Hana. Laserové technologie v praxi I.: Pevnolátkové lasery [online]. Olomouc, 2011 [cit. 2021-3-17]. Dostupné z: http://fyzika.upol.cz/cs/system/files/download/vujtek/texty/ltp1_4prez.pdf
- ŘASA, Jaroslav a Radka JINDROVÁ. Lasery, laserové technologie a stroje slaserem. *Měření ve strojírenství* [online]. 17.7.2006, 2006(7,8) [cit. 2021-4-17]. Dostupné z: https://www.mmspektrum.com/clanek/lasery-laserove-technologie-astroje-s-laserem
- 24. DUŠEK, Jiří. Hlavní typy laserů používaných v průmyslu. *Mega blog* [online]. 28.2.2013 [cit. 2021-4-17]. Dostupné z: https://www.mega-blog.cz/lasery/hlavni-typy-laseru-pouzivanych-v-prumyslu/
- MIKEŠ, David. Svařování hliníkových slitin pomocí vysokovýkonového polovodičového laseru [online]. BRNO, 2015 [cit. 2021-3-17]. Dostupné z: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=101766. Diplomová práce. VUT. Vedoucí práce Libor Mrňa.
- 26.KOŘÁN, Pavel. Průmyslové lasery: svařovací lasery. Průmyslové spektrum [online].
2012, 11.4.2012 [cit. 2021-3-9]. Dostupné
z: https://www.mmspektrum.com/clanek/prumyslove-lasery-2-svarovaci-lasery

- NOVÁK, Miroslav. Průmyslové lasery: Hlavní typy laserů v průmyslové praxi. *Průmyslové spektrum* [online]. 4.9.2012 [cit. 2021-3-8]. Dostupné z: https://www.mmspektrum.com/clanek/prumyslove-lasery-4-hlavni-typy-laseru-vprumyslove-praxi
- ROZSYPAL, Oldřich. Posouzení vlastností heterogenních tupých svarů metodami svařování laserem a svazkem elektronů [online]. Brno, 2015 [cit. 2021-4-10]. Dostupné z: https://dspace.vutbr.cz/xmlui/bitstream/handle/11012/40504/final-thesis.pdf?sequen ce=6&isAllowed=y. Diplomová práce. VUT. Vedoucí práce Libor Mrňa.
- 29. SHKOTOVA, Viktoriia. Vliv procesních parametrů na drsnost řezu při laserovém dělení korozivzdorné oceli tl. 8 mm [online]. Brno, 2018 [cit. 2021-5-1]. Dostupné z: https://dspace.vutbr.cz/xmlui/bitstream/handle/11012/83219/final-thesis.pdf?sequence=6&isAllowed=y. Bakalářská práce. VUT. Vedoucí práce Libor Mrňa.
- 30. DOČEKAL, Miroslav. Měření drsnosti řezných hran při laserovém dělení kovů Yb-YAG laserem [online]. Brno, 2013 [cit. 2021-5-2]. Dostupné z: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=64576. Bakalářská práce. VUT. Vedoucí práce Libor Mrňa.
- 31. PODANÝ, Petr. Porovnání drsnosti řezných hran při dělení materiálu CO2 a YbYAG laserem [online]. Brno, 2016 [cit. 2021-5-10]. Dostupné z: https://dspace.vutbr.cz/xmlui/bitstream/handle/11012/61149/final-thesis.pdf?sequen ce=8&isAllowed=y. Bakalářská práce. VUT. Vedoucí práce Libor Mrňa.
- NĚMEČEK, Tomáš. Svařování jemnozrnných ocelí typu Domex vláknovým YbYAG laserem [online]. Brno, 2012 [cit. 2021-5-10]. Dostupné z: https://dspace.vutbr.cz/xmlui/bitstream/handle/11012/6063/final-thesis.pdf?sequence=6&isAllowed=y. Diplomová práce. VUT. Vedoucí práce Libor Mrňa.
- 33. Rozdělení laserů. *Laserové a optické technologie* [online]. 2015, 2.8.2015 [cit. 2021-5-10]. Dostupné z: https://www.lascam.cz/rozdeleni-laseru/
- 34. MRŇA, Libor. Technologie využívající laser: Základy laserové techniky [online]. [cit. 2021-04-13]. Dostupné z: http://ust.fme.vutbr.cz/svarovani/img/opory/hsv_specialni_metody_svarovani_zakla dy_laserove_techniky_2013_mrna.pdf. Prezentace. Vysoké učení technické
- ROUPEC, Tomáš. *Laserový zdroj s optovláknovým výstupem* [online]. Brno, 2019 [cit. 2021-5-11]. Dostupné z: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne. php?file_id=192542. Bakalářská práce. VUT. Vedoucí práce Petr Drexler.
- PASCHOTTA, Rüdiger. 2008. Semiconductor Lasers. RP Photonics encyklopedia [online]. [cit. 2015-04-13]. Dostupné z: http://www.rpphotonics.com/semiconductor_lasers.html
- 37. PASCHOTTA, Rüdiger. 2008. *Diode bars. RP Photonics encyklopedia* [online]. [cit. 2015-04-13]. Dostupné z: http://www.rp-photonics.com/diode_bars.html

- LUKÁŠ, Michal. Laserové diody: Princip funkce laserových diod. *Elektrorevue* [online]. Olomouc, 1.10.2001 [cit. 2021-4-3]. Dostupné z: http://www.elektrorevue.cz/clanky/01034/index.html#generacesvetla
- High Powered Diode Laser Optics. *PowerPhotonic* [online]. 2016 [cit. 2021-4-3].
 Dostupné z: http://www.powerphotonic.com/applications/high-powered-diode-laseroptics
- 40. PASCHOTTA, Rüdiger. 2008. *Diode Stacks. RP Photonics encyklopedia* [online]. [cit. 2015-05-13]. Dostupné z: http://www.rp-photonics.com/diode_stacks.html
- LUGIATO, Luigi, Franco PRATI a Massimo BRAMBILLA. The semiconductor laser. *Nonlinear optical systems*. 1. Cambridge: Cambridge University Press, 2015, s. 177-191. Dostupné z: doi:10.1017/CBO9781107477254.018
- 42. PASCHOTTA, Rüdiger. 2008 *Thin-disk Lasers. RP Photonics encyklopedia* [online]. [cit. 2015-05-8]. Dostupné z: http://www.rp-photonics.com/thin_disk_lasers.htm
- 43. Diskový laser. *TRUMPF* [online]. Praha: TRUMPF [cit. 2021-4-17]. Dostupné z: https://www.trumpf.com/cs_CZ/produkty/laser/diskovy-laser/
- 44. HAVRILLA, David a Rüdiger BROCKMANN. Třetí generace diskových laserů. *Pohony ve strojírenství* [online]. 2009, 18.11.2009, (11) [cit. 2021-4-17]. Dostupné z: https://www.mmspektrum.com/clanek/treti-generace-diskovych-laseru
- 45. PASCHOTTA, Rüdiger. 2008. *Fiber lasers. RP Photonics encyklopedia* [online]. [cit. 2015-04-13]. Dostupné z: http://www.rp-photonics.com/fiber_lasers.html?s=ak
- BAZALOVÁ, Lucie. Porovnání vlastností pevnolátkových laserů [online]. Brno, 2012 [cit. 2021-5-8]. Dostupné z: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=53332. Bakalářská práce. VUT. Vedoucí práce Jaroslav Kubíček.
- PASCHOTTA, Rüdiger. 2008. Double-clad Fibers. RP Photonics encyklopedia [online]. [cit. 2015-02-13]. Dostupné z: http://www.rpphotonics.com/double_clad_fibers.html
- 48. Princip vláknového-Fiber laseru. *Leonardo technology* [online]. [cit. 2021-3-9]. Dostupné z: http://www.lt.cz/e-learning/laser/princip-vlaknoveho-fiber-laseru
- 49. Vláknové lasery. *Věda kolem nás* [online]. Praha: Akademie věd ČR [cit. 2021-3-19]. Dostupné z: https://www.ufe.cz/sites/default/files/Media/vlaknove_lasery.pdf
- 50. PETERKA, Pavel. Vláknové lasery dobývají svět. *Optické systémy* [online]. Akademie věd ČR, 16-19 [cit. 2021-5-7]. Dostupné z: https://www.ufe.cz/sites/default/files/Media/12_peterka_21_stoleti-panorama.pdf

- 51. SHIWEI, Zhang, Sun JUNHAO, Zhu MINHAO, Zhang LIN, Nie PULIN a Li ZHUGUO. Fiber laser welding of HSLA steel by autogenous laser welding and autogenous laser welding with cold wire methods. *Journal of Materials Processing Technology* [online]. 2020, 2020, (1), 275 [cit. 2021-5-7]. ISSN 0924-0136. Dostupné z: https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S092401361 9303255
- 52. Princip CO2 laseru. *Leonardo technology* [online]. [cit. 2021-4-17]. Dostupné z: http://www.lt.cz/e-learning/laser/princip-co2-laseru
- 53. ŠMÍD, Jiří. Slab, Innoslab, kotoučový, nebo vláknový laser? *Inovace / Technologie* [online]. 2007, 14.3.2007, 2007(3) [cit. 2021-3-10]. Dostupné z: https://www.mmspektrum.com/clanek/slab-innoslab-kotoucovy-nebo-vlaknovy-laser
- 54. PASCHOTTA, Rüdiger. 2008 *CO*₂ *lasers. RP Photonics encyklopedia* [online]. [cit. 2015-04-13]. Dostupné z: http://www.rp-photonics.com/thin_disk_lasers.htm
- 55. MRŇA, Libor. Aktuální možnosti v laserovém svařování. MM Průmyslové spektrum [online]. Praha: MM publishing, 2018, 2018(1) [cit. 2021-02-10]. ISSN 1212-2572. Dostupné z: https://www.mmspektrum.com/clanek/aktualnimoznosti-v-laserovemsvarovani.html
- 56. ZHOU, Qi, Cao LONGCHAO a Xiang HUANG. Prediction of angular distortion in the fiber laser keyhole welding process based on a variable-fidelity approximation modeling approach [online]. 1.3.2018 [cit. 2021-5-19]. Dostupné z: https://www.researchgate.net/figure/Schematic-plot-of-laser-weldingprocess_fig1_322868455
- 57. KOŘÁN, Pavel. *Laserové svařování I. Lao: Lasery a optika* [online]. 18. 2. 2013 [cit. 2021-03-15]. Dostupné z: http://www.lao.cz/lao-info-49/serial-na-tema-lasery--laserove-svarovani-i-laser-welding-134
- 58. KOŘÁN, Pavel. Poslední trendy ve svařování laserem. Spojování a dělení materiálu [online]. 2009, 7.10.2009, (10) [cit. 2021-5-17]. Dostupné z: https://www.mmspektrum.com/clanek/posledni-trendy-ve-svarovani-laserem
- 59. IONIX. 2015. Laser welding [online]. 2015 [cit. 2015-05-13]. Dostupné z: http://ionix.fi/en/technologies/laser-processing/laser-welding/
- PRIMUS, Tomáš. Technologie svařování laserem. *Czech lasers* [online]. 2018
 [cit. 2021-4-17]. Dostupné z: https://czechlasers.cz/studovna/laserovy-den-pro-stredniskoly/
- 61. Laser welding: Efficiency and Strength. *Alfa Metal Machinery* [online]. 13.7.2017 [cit. 2021-4-19]. Dostupné z: https://blog.alfamm.ro/laser-welding-efficiency-strength/
- 62. OLIVEIRA, João Pedro a Zhi ZENG. *Laser Welding*. MDPI Multidisciplinary Digital Publishing Institute, 2020. ISBN 9783039288618.

- 63. DULEY, Walter. *Materials and Manufacturing Processes* [online]. 14. 1. Hoboken: Wiley, 1999. ISBN 0-471-24679-4. ISSN 1042-6914.
- 64. AMBROŽ, Oldřich, Bohumil KANDUS a Jaroslav KUBÍČEK. *Technologie svařování a zařízení: učební texty pro kurzy svářečských inženýrů a technologů*. Ostrava: Zeross, 2001, 395 s. ISBN 80-85771-81-0.
- 65. MRŇA, Libor a Petr HORNÍK. Pokročilé metody laserového svařování. Automatizace výrobních systémů ve strojírenské výrobě. Měření ve strojírenství. Lineární technika, odměřování. Logistika, manipulační technika. [online]. 2017, 8.3.2017, 2017(3) [cit. 2021-4-17]. Dostupné z: https://www.mmspektrum.com/clanek/pokrocile-metody-laseroveho-svarovani
- 66. HERRMANN, Dirk a Peter HERZOG. Laser welding of copper. *Industrial laser solutions* [online]. 2013, 1.1.2013 [cit. 2021-5-17]. Dostupné z: https://www.industrial-lasers.com/welding/article/16485604/laser-welding-of-copper
- 67. ŠPLÍCHAL, Jan. Dělení materiálů laserovým paprskem je stále na vzestupu zájmu. *Konstrukce 2021* [online]. 2020, 9.10.2020 [cit. 2021-4-17]. Dostupné z: https://konstrukce.cz/svarovani-a-deleni-materialu/deleni-materialu-laserovym-paprskem-je-stale-na-vzestupu-zajmu-591
- 68. SUDER, W., S. GANGULY, S. WILLIAMS a B.Y.B. YUDODIBROTO. Penetration and mixing of filler wire in hybrid laser welding. *Journal of Materials Processing Technology* [online]. 2021(1) [cit. 2021-4-5]. ISSN 0924-0136. Dostupné z: https://www.sciencedirect.com/science/article/pii/S0924013620304623
- 69. NĚMEČEK, Stanislav. Laserové svařování s přídavným drátem. *Průmyslové spektrum* [online]. 2015 [cit. 2021-4-10]. Dostupné z: https://www.mmspektrum.com/clanek/laserove-svarovani-s-pridavnym-dratem
- 70. Hybridní svařování. TRUMPF [online]. [cit. 2021-3-21]. Dostupné z: https://www.trumpf.com/cs_CZ/reseni/pouziti/svarovani-laserovym-paprskem/hybridni-svarovani/
- 71. IONIX. 2015. Hybrid laser welding [online]. [cit. 2015-03-13]. Dostupné z: http://ionix.fi/en/technologies/laser-processing/hybrid-laser-welding/
- 72. FERNANDES, Camila, Natália LOPES DO VALE, Tiago Felipe Abreu SANTOS a Severino Urtiga FILHO. *Investigation of transverse shrinkage and angular distortion caused by hybrid laser-arc welding* [online]. 3.4.2020 [cit. 2021-5-20]. Dostupné z: doi:10.1007/s00170-020-05343-5
- 73. KARLSSON, J. a A.F.H. KAPLAN. Analysis of a fibre laser welding case study, utilising a matrix flow chart. *Applied Surface Science*. 9. Amsterdam: Elsevier, 2011, s. 4113-4122. ISBN 0169-4332.
- 74. ČSN EN ISO 6520-1 (050005). *Svařování a příbuzné procesy Klasifikace geometrických vad kovových materiálů*. Část 1: Tavné svařování. Praha: Český normalizační institut, 2008.

- ČSN EN 1011-6 (052210). Svařování Doporučení pro svařování kovových materiálů.
 Část 6: Laserové svařování. Praha: Český normalizační institut, 2006.
- 76. ČSN EN ISO 13919-1 (050335). Svařování Svarové spoje zhotovené elektronovým a laserovým svařováním Směrnice pro určování stupňů jakosti. Část 1: Ocel. Praha: Český normalizační institut, 1998.
- ČSN EN ISO 17637 (051180). Nedestruktivní zkoušení svarů Vizuální kontrola tavných svarů. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2018.
- 78. ČSN EN ISO 4136. *Destruktivní zkoušky svarů kovových materiálů Příčná zkouška tahem*. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2013.
- 79. ČSN EN ISO 17639 (051128). Destruktivní zkoušky svarů kovových materiálů Makroskopická a mikroskopická kontrola svarů. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2014.
- ČSN EN ISO 9015-2 (051134). Destruktivní zkoušky svarů kovových materiálů Zkoušení tvrdosti. Část 2, Zkoušení mikrotvrdosti svarových spojů. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2018.
- BLAHUTA, Ladislav. Nedestruktivní zkoušky svarů [online]. [cit. 2021-04-13].
 Dostupné z: https://docplayer.cz/4239492-Nedestruktivni-zkousky-svaru.html Prezentace.
- POTANKO, Andrej. Nedestruktivní metody zkoušení svarů [online]. Brno, 2019 [cit. 2021-4-17]. Dostupné z: https://dspace.vutbr.cz/xmlui/bitstream/handle/11012/192161/finalthesis.pdf?sequence=1&isAllowed=y. Bakalářská práce. VUT. Vedoucí práce Marián Sigmund.
- 83. MARTINEC, Jiří, Zdeněk ŠVEIDLER a Jiří JANOVEC. Korozivzdorné materiály: základní typy ocelí a doporučení pro jejich svařitelnost. *Konstrukce* [online]. 2.12.2014 [cit. 2021-4-17]. Dostupné z: http://old.konstrukce.cz/clanek/korozivzdorne-materialyzakladni-typy-oceli-a-doporuceni-pro-jejich-svaritelnost/
- 84. Atest oceli X2CrNiMo 17-12-2. Isbergues, Francie, 2021-03-07.
- CUNAT, Pierre-Jean. Svařování korozivzdorných ocelí [online]. 3. Lucembursko: Euro Inox, 2007 [cit. 2021-4-17]. ISBN 978-2-87997-177-3. Dostupné z: https://www.worldstainless.org/Files/issf/non-imagefiles/PDF/Euro_Inox/BrochureWeldability_CZ.pdf
- Korozivzdorné oceli: vlastnosti [online]. Lucembursko: Euro Inox, 2002
 [cit. 2021-4-15]. ISBN 2-87997-082-2. Dostupné
 z: https://www.cedinox.es/opencms901/export/sites/cedinox/.galleries/publicaciones-tecnicas/StainlessSteelProperties_CZ.pdf

- NAĎ, Tomáš. Svařování tenkostěnných potrubí z korozivzdorných ocelí [online]. Brno, 2020 [cit. 2021-5-17]. Dostupné z: https://dspace.vutbr.cz/xmlui/bitstream/handle/11012/192242/final-thesis.pdf?sequence=1&isAllowed=y. Bakalářská práce. VUT. Vedoucí práce Jaroslav Kubíček.
- 88. NEJEDLÝ, Zdeněk. Mechanické a technologické vlastnosti duplexních ocelí v závislosti na hodnotě pren [online]. Brno, 2014 [cit. 2021-5-17]. Dostupné z: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=86490. Diplomová práce. VUT. Vedoucí práce Antonín Záděra.
- 89. Charakteristika korozivzdorných materiálů a základní informace o použití, zpracování, svařování a možné korozi. *Italinox* [online]. 2020 [cit. 2021-5-17]. Dostupné z: https://www.italinox.cz/plechy/charakteristika-materialu/strana-2
- 90. ČSN EN 1011-3. Svařování Doporučení pro svařování kovových materiálů Část 3: Obloukové svařování korozivzdorných ocelí. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2018.
- 91. X2CrNiMo 17-12-2: Korozivzdorná austenitická Ocel 17 349. 2021
- ŠUMSKÝ, Ladislav. Žáruvzdorné oceli pro energetický průmysl [online]. Praha, 2017
 [cit. 2021-5-17]. Dostupné z: https://core.ac.uk/download/pdf/128480394.pdf.
 Bakalářská práce. ČVUT. Vedoucí práce Pavlína Hájková.

Označení	Legenda	Jednotka
A_{80}	Tažnost	[%]
А	Austenit	[-]
BPP	Beam Parameter Product	[mm∙mrad]
Cr _e	Chromový ekvivalent	[-]
ČSN	Česká státní norma	[-]
d_1, d_2	Úhlopříčky vtisku	[µm]
EN	Evropská norma	[-]
F	Ferit	[-]
F _{max}	Maximální zatížení	[N]
HV	Tvrdost podle Vickerse	[-]
ISO	International organization for standardization	[-]
Μ	Martenzit	[-]
MAG	Metal Active Gas	[-]
MIG	Metal Inert Gas	[-]
Nie	Niklový ekvivalent	[-]
Р	Výkon laseru	[W]
\mathbf{R}_{m}	Mez pevnosti	[MPa]
$R_{p0,2}$	Smluvní mez kluzu	[MPa]
S	Dráha příčníku	[mm]
TIG	Tungsten Inert Gas	[-]
TOO	Tepelně ovlivněná oblast	[-]
$\mathbf{V}_{\mathbf{d}}$	Rychlost podávání drátu	[m·min⁻¹]
Vs	Rychlost svařování	$[\text{mm}\cdot\text{s}^{-1}]$
YAG	Yttrium Aluminium Granát	[-]

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

σ Tahové napětí

[MPa]

SEZNAM OBRÁZKŮ

Obr. 1 Svařování laserem [6], [7]	9
Obr. 2 Řešená součást [9]	10
Obr. 3 Základní rozměry žlabu [9]	10
Obr. 4 Plazmový paprsek [16]	11
Obr. 5 Svařování metodou TIG [15]	11
Obr. 6 Svařování laserem [17]	12
Obr. 7 Schéma laserové diody [41]	14
Obr. 8 Absorpce fotonu v polovodiči [35]	14
Obr. 9 Spojení emitorů ve stohy [39]	15
Obr. 10 Druhy pevnolátkových laserů [19]	15
Obr. 11 Nd:YAG buzený pomocí LPSS [19]	16
Obr. 12 Boční buzení pomocí laserových diod [19]	16
Obr. 13 Zadní buzení pomocí laserových diod [19]	17
Obr. 14 Schéma diskového laseru [42]	17
Obr. 15 Princip vláknového laseru [19]	18
Obr. 16 Struktura dvojitého optického vlákna [48]	18
Obr. 17 Princip buzení vláknového laseru [49]	19
Obr. 18 Schéma vláknového laseru [49]	19
Obr. 19 Schéma laserového svařování [56]	21
Obr. 20 Kondukční režim [57]	22
Obr. 21 Penetrační režim [57].	${23}$
Obr. 22 Závislost absorpce na vlnové délce [66].	24
Obr. 23 Schéma laserového svařování bez přídavného materiálu [59]	25
Obr. 24 Laserové svařování s přídavným materiálem [61]	25
Obr. 25 Schéma hybridního svařování [72]	26
Obr. 26 Nejčastější vady po laserovém svařování [32]	29
Obr. 27 Vizuální kontrola svaru [82]	30
Obr. 28 Rozměry vzorku pro zkoušku tahem	31
Obr. 29 Leštící kotouč	32
Obr. 30 Zkouška tvrdosti dle Vickerse [18]	33
Obr. 31 Kompletní žlah [9]	35
Obr. 32 Robotické pracoviště [9]	36
Obr. 33 Průmyslový robot KUKA KR 30-60 [9]	37
Obr. 34 Podavač Fronius KD 7000	37
Obr. 35 Upputí vzorku do přípravku	38
Obr. 36 Natočení laserové hlavy	39
Obr. 37 Grafický výstup tahové zkoušky prvního vzorku	40
Obr. 38 Vzorek no tahové zkoušce základního materiálu	41
Obr. 39 Vzorek č 6 po tahové zkoušce	41 42
Obr. 39 v Zorek č. 0 po tahové zkoušce	$\frac{+2}{42}$
Obr. 41 Zařízení pro přípravu metalografických výbrusů	13
Obr. 42 Bruska/leštička Tegramin_20	43
Obr. 13 Stereomikroskon	+3 ΔΔ
Obr. 44 Makroskonické snímky vybraných vzorků	 ///
Obr. 45 Vzhled svarových spojů	-++ //6
Obr. 46 Vzorky č. 1B. a 2B. no tahové zkoušce	40
Obr. 47 Tahový diagram pro druhý experiment	+/
Obr. 48 Makroskonický snímek vzerku č. 10	4/ /0
Обі. чо тлактовкоріску вішнек удогки с. т.В	40

Obr. 49 Makroskopický snímek vzorku č. 2B	49
Obr. 50 Makroskopický snímek vzorku č. 3B	50
Obr. 51 Makroskopický snímek vzorku č. 4B	51
Obr. 52 Makroskopický snímek vzorku č. 5B	52
Obr. 53 Makroskopický snímek vzorku č. 6B	53
Obr. 54 Schäfflerův diagram [92]	54
Obr. 55 Mikroskopické snímky základního materiálu	55
Obr. 56 Mikroskopické snímky vzorku č. 5B	56
Obr. 57 Mikroskopické snímky vzorku č. 6B	57
1 · ·	

SEZNAM TABULEK

Tab. 1 Vlastnosti svařovaného materiálu [12]	. 10
Tab. 2 Základní přehled průmyslových laserů [19]	. 13
Tab. 3 Porovnání svařovacích parametrů s ostatními metodami [7]	. 22
Tab. 4 Základní parametry laserového svařování [9]	. 27
Tab. 5 Svarové vady [18]	. 28
Tab. 6 Stupně jakosti svarového spoje [76]	. 28
Tab. 7 Základní nedestruktivní zkoušky [18]	. 30
Tab. 8 Základní destruktivní zkoušky [18]	. 31
Tab. 9 Chemické složení oceli X2CrNiMo 17-12-2 [91]	. 34
Tab. 10 Chemické složení korozivzdorných ocelí [11,84]	. 35
Tab. 11 Výchozí svařovací parametry	. 38
Tab. 12 Procesní parametry vzorků	. 39
Tab. 13 Základní mechanické vlastnosti [12]	. 40
Tab. 14 Výsledky tahové zkoušky základního materiálu	. 40
Tab. 15 Výsledky tahové zkoušky vzorků	. 41
Tab. 16 Svařovací parametry druhého experimentu	. 45
Tab. 17 Mechanické vlastnosti svarů pro experiment B	. 46
Tab. 18 Shrnutí výsledků ze zkoumání makroskopie	. 53
Tab. 19 Porovnání metody MAG a laseru [9]	. 58
Tab. 20 Finanční a časové náklady pro svařování žlabů	. 58
Tab. 21 Doporučené svařovací parametry	. 59

SEZNAM PŘÍLOH

- Příloha 1 Materiálový list X5CrNi 18-10 [12]
- Příloha 2 Materiálový list X2CrNiMo 17-12-2 [91]
- Příloha 3 Atest materiálu X5CrNi 18-10 [11]
- Příloha 4 Atest materiálu X2CrNiMo 17-12-2 [84]
- Příloha 5 Hydraulický zkušební stroj ZD40
- Příloha 6 Atest materiálu X5CrNi 18-10 z druhého experimentu
| 1.4301
Číselné ozn | ačení | (
C | Cr-Ni aus
ocel odoli | tenitick
ná koroz | á
zi | X5CrNi18-10
Značka | | | | | | |
|---|-------------------------|------------------------|-----------------------------|-------------------------|-----------------------|-----------------------|----------|------------------|--|--|--|--|
| Chemické | é složení (| [hm. %] ⁷) | | | | | | | | | | |
| С | Si | Mn | Р | S1) | Cr | Ni | | N ⁸) | | | | |
| max 0,07 | max 1,00 | max 2,00 | max 0,045 | max 0,015 | 17,5–19,5 | 8,00-10 |),5 m | ax 0,11 | | | | |
| Normy EN | | | | | | • | | | | | | |
| [1] 10088-1,-2, -3[6] 10222-5[11] 10270-3[16] 10312[2] 10028-7[7] 10250-4[12] 10272[17] 10088-4,-5[3] 10151[8] 10263-5[13] 10294-2[18] 10357[4] 10216-5[9] 10264-4[14] 10296-2[5] 10217-7[10] 10269[15] 10297-2 | | | | | | | | | | | | |
| Mechanic | ké vlastn | osti | | | | | | | | | | |
| Polotovar, no | rma | | C ²) [1][2][17] | H ³) [1][2] | [17] P ⁴) | [1][2][17] | T⁵) [1][| 12][17] | | | | |
| Rozměr t, d (r | nm] | | ≤8 | ≤13,5 | | ≤75 | ≤160 | >160≤250 | | | | |
| Stav | | | | po rozp | ouštěcím žíhán | í (+AT) | | | | | | |
| Mez kluzu R _{pt} | _{1,2} [MPa] mi | n | 230 | | 210 | | 19 | 90 | | | | |
| Mez kluzu R _{p1} | _{i,o} [MPa] mi | n | 260 | | 250 | | 22 | 25 | | | | |
| Mez pevnosti | R _m [MPa] | | 540-750 | | 520-720 | | 500- | -700 | | | | |
| Tažnost A [% | podél mir | 1 | | - | | | 45 | - | | | | |
| | příčně mi | n | | 45 | | | - | 35 | | | | |
| Nárazová prác | ce KV ₂ [J] | podél min | - | | 100 | | 100 | - | | | | |
| | | příčně min | - | - 60 | | | - | 60 | | | | |
| | $KV_{2}^{-196}[J]$ | příčně min | - | | | - | - | | | | | |

Polotovar, norma	3		p	ásy [3]		[4] [1	trubky [5] [14 5] [16]	1	výkov [6] [1	ky 7]	duté [1	i tyče 3]		
Rozměr t _R [mm]			:	≤ 3			≤ 60		≤ 25	0	-	-		
Stav			zpev stude	něný za ena (+C)	1)	po ro žíh	zpouště ání (+AT	cím p)	o rozpou žíhání (·	štěcím +AT)	po rozpo žíhání	ouštěcím (+AT)		
Mez kluzu R _{p0,2}	[MPa] min	1		-			195		200		19	95		
Mez kluzu R _{p1,0}	[MPa] mir	n		-			230		230		2	25		
Mez pevnosti R _m	[MPa]		700-	-1500 ^s))	5	00–700		500-7	00	500-	-700		
Tažnost A 196	podél mir	n		-			40		45		4	5		
Idzilust A [70	příčně mi	in		-			35		35		3	5		
Nárazová práce	KV ₂ [J]	podél min	-			100			100		-	-		
		příčně min		-			60		60		-	-		
	KV2 ¹⁹⁶ [J] příčně mi			-			60		60			-		
Polotovar, norma			dráty vál			lcované, tyče a drát			ažené [8]		upev prvi	vňovací vy [10]		
Rozměr t, d [mm		>5≤50 >5≤10 >			>10≤25≥2≤5>5≤			5 >2≤5	≥5≤	10 ≤ 35	≤160			
Stav	Rozmër t, d [mm] Stav				+ AT + AT + nebo +AT+PE			C + AT	+ AT + +	+ C + AT LC	+C700	+AT		
Mez kluzu R [MF	Pa]					-	-	-	-	-	350	190		
Mez pevnosti R _n	[MPa]		max max 650 820			max 780	max 700	max 650	max 750	max 700	700-	500- -700		
Tažnost A [%]			-		_		-	_	-	-	20	45		
Kontrakce Z [%]	min		65		_		60	65	60	60	-	-		
Nárazová práce	KV ₂ [J] min		-		_			_		_	80	100		
	KV ₂ -196 [J] n	nin	-		_			-		-	50	60		
Tvrdost			_		_			_		_	-	-		
Polotovar, norma	3						les	klé tyče	e [17]					
Rozměr t, d [mm	1]		≤1	16	2	>16≤	40	>40≤	63 >	63≤16	60 >16	0≤250		
Stav						po	rozpou	štěcím	žíhání (+	AT)				
Mez kluzu R _{p0,2}	[MPa] mir	n	40	0					190					
Mez pevnosti R _m	Mez pevnosti R _m [MPa]			950	(600-8	50	580-8	50	5	600-700			
Tažnost A [%]	podél min			i			30			45		-		
Takinoach [/0]	příčně mi	in					-				35			
Nárazová	podél mir	1	-					100			-			
práce KV ₂ [J]	příčně mi	n					-				60			

Polotovar, norma						(drát	na lana l	91				
Bozměr d [mm]			< () 20	<u>\040</u>	< 0.50	>0	80<10	0 51	75 <	2 00	>2.50	<3.00
Stav				,20	20,10	- 0,00	20,			10-	- 2,00	72,00	-0,00
Mez kluzu B	IPal min		-		_			_	Т	_			_
Mez nevnosti B.	MPa1 min	1	20	50	10	00		1750	+	155	0	1450	
Tažnost A [%]			20	-	13			-	+		0	-	
Kontrakce 7 [%]				-	_			_	+	_			_
Polotovar norma						dr	St na	nružiny	[11]				
Polotoval, norma			- (0.20 1.100 - 1.25 - 2.00 - 2.50 - 4.25 - 5.00							0.0	~ 10.00	
			21	= 0,20 71,00 = 1,20 72,00 = 2,00 74,20 = 0,00 70,00									≤ 10,00
Mar kluru D IM	Del					Idre	any z		a (+0	/			
Mez Kluzu R _{p0,2} [IW			-	-	1705	4750	45	-		-		4475	-
Mez pevnosti Rm [I	MPaj		2000-	-2150	1/25-	-1/50	15	25-155	1	\$50-1	1400	11/5	-1250
laznost A [%]				-	-			-	_	-			-
Kontrakce Z [%]			-	-	-	-		-		-			-
Mechanické v	lastno	sti za zv	ýšen	ých/s	nížen	ých t	epl	ot					
Min. hodnoty meze	kluzu R _{pQ}	₂ a R _{p1,0} a r	neze pe	vnosti F	R _m při zv	výšenýc	h te	plotách (stav +	AT)			
Teplota [°C]		100	150	200	250	300	0	350	400	00 450		500	550
Mez kluzu [MPa]	R _{p0} ;	2 155	140 127		118	11()	0 104		9	5	92	90
	R _{p1,}	₀ 191	172	157	145	13	5) 129 1		12	22	120	120
Mez pevnosti R _m [M	Pa]	450	420	400	390	380) 380		380 3		75	360	335
Hodnoty modulu pru	užnosti E	při normáli	ní a zvý	šených :	teplotác	h	_						
Teplota [°C]	0.0-1	20	_	100		200	+	300	_	4	JU 70		500
Modul pruznosti E [GPaj	200		194	101	180		1/9		1	12		105
Min. mechanicke via	astnosti p	ri snižeriyc	n tepiot	acn (no	rma (2)		_					100	
Teplota [*C]	a]	2	0	_	-80		+	-1	50	_		-190)
Mez Kluzu R _{p0,2} [MP	d] 2]	25	0		270	, ,	+	3	15			400	
Pevnost R. [MPa]	aj	50	20	_	300	,	+	11	00			1250)
Tažnost A [%]		4	5		35		+	3	0			30	,
Evzikální vlas	1		1			1							
Hustota	Měrn	á tepelná	Teplo	otní sou	činitel	1	Tene	Iná					
	kaj	pacita	ſ	oztažno	sti	v	odiv	vost	Elektrický odpor při 20 °C				
ρ [kg.m ⁻³]	kg ⁻¹ .K ⁻¹]		α [K ⁻¹]		λ_t	W.n	n-1 K-1]	[Ω •mm ² •m ⁻¹]					
7900		500	(2	18,0-10 0–500	-6 °C)		15	15		0,73			

Odolnost degradačním procesům
Odolnost mezikrystalové korozi
– po zcitlivění: ne
Dosažitelné hodnoty pevnosti v tahu (+C) a smluvní meze kluzu $R_{p0,2}$ (+CP)
ve stavu za studena zpevněném (2H)
+ C 700 ($R_m = 700-850$ MPa) + C 850 ($R_m = 850-1000$ MPa) + C 1000 ($R_m = 1000-1150$ MPa) + C 1150 ($R_m = 1150-1300$ MPa) + C 1300 ($R_m = 1300-1450$ MPa) + C P 350 ($R_{pQ,2} = 350-500$ MPa) + C P 500 ($R_{pQ,2} = 350-700$ MPa) + C P 500 ($R_{pQ,2} = 700-900$ MPa) + C P 700 ($R_{pQ,2} = 900-1100$ MPa) + C P 1100 ($R_{pQ,2} = 1100-1300$ MPa) Tenelné znracování
Partneuštša(ž(hán) 1000 1100 % anhlazevist ve vadě teho svohla ze vrdvohu
Zpracování pružin Válcování za studena + popuštění 250 °C / 24 h až 450 °C / 30 min – ochlazovat na vzduchu
Tváření za tepla
1200–900 °C ochlazovat na vzduchu
Obrábění
Požadované řezné rychlosti podle normy [13] – obrábění na hrubo 190 m/min – obrábění na jemno 240 m/min
Ostatní vlastnosti
Nemagnetovatelná ocel běžné jakosti
Použití
Pro obecné použití v korozním prostředí. Různé součásti např. v potravinářském průmyslu (ocel je svařitelná, dobře leštitelná, zvlášť hlubokotažná, odolná proti opotřebení).

Porovnání s	e zahraniční	ni materiály	1									
EU	RO	Česl	ká republika	Něm	ecko							
X5CrNi18-10	EN 10088	17 240	ČSN 41 7240	X5CrNi18-10	DIN 17440							
Frai	ncie	Vel	ká Británie	Itá	ilie							
Z6CN18-09	NF A36-209	304S15	BS 970-1	X5CrNi1810KW,KT,KG	-							
IS	0		USA	Ru	sko							
X5CrNi18-10	ISO 6931-2	08Ch18N10 GOST 563										
X5CrNi18-10 ISO 6931-2 304 ASTM A167 08Ch18N10 GOST 5632 Japonsko Čína – SUS 304 JIS G3448 0Ch18N9 GB 4239 – –												
Japonsko Čína – SUS 304 JIS G3448 0Ch18N9 GB 4239 – – Pozpámky												
Poznámky												
 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	celle K obraden je 8–0,030 %, pro le 8–0,030 %, pro le válcovaný pás lcovaný plech tvarová ocel, leskl 2700 ($R_m = 700-8!$ = 1000-1150 MPa, 00 MPa, A = min vedeného chemick x 0,040 %, [11] - S = max 0, ax 1,00 %] - Cr = 17,0–19,5 [5], [10], [12] a [1]	é výrobky 50 MPa, A = min A = min 5 %), + 1 %) sho složení v násl 030 %, 5 7] N = max 0,10	%	: 850—1000 MPa, A = 1300 MPa, A = min 3	= min 12 %), 3 %), + C1300							

Příloha 2 Materiálový list oceli X2CrNiMo 17-12-2

1.44 Číselné	04 označe	ení		Ci	·-Ni- ocel	Mo au odoli	uste ná l	eni (or	tická ozi	i) 2	(2Cr Znači	NiMo1 _{ka}	7-12-2
Chemic	:ké s	ložení	[hm.	%] ¹	7)										
С	S	i I	Mn	P		S1)	C	[Ni ²)	M)	N ¹⁶))	Cu ¹²)
max 0,030	max	1,00 ma	(2,00	max 0	,045 n	nax 0,015	16,5-	18,5	10,0-	13,0	2,00-	2,50 m	ax 0,	,11 n	nax 1,00
Normy E	Normy EN								•			-		- 1	
[1] 10088- [2] 10028- [3] 10216- [4] 10217- [5] 10222-	-1,-2,- -7 -5 -7 -5	3,-4,-5		6] 102 7] 102 8] 102 9] 102 9] 102	50-4 63-5 69 72 294-2	[11 [12 [13 [14	1] 102 2] 102 3] 103 4] 103	96-2 97-2 12 57							
Mechai	nické	é vlastr	iosti												
Polotovar,	norma	1			C3)	H⁴)	P ⁶)		T®) DT	18)	1	B²) TS®)		V³)	V110)
Rozměr t, t	t _R (mm	1]		≤8 ≤13,5 ≤75 ≤160 >1					60≤25	0	≤ 60		≤250	≤250	
Stav					po rozpouštěcím žíhání (+A							AT)			
Mez kluzu	R _{p0,2}	[MPa] m	in		240	20		200			190		190	200	
Mez kluzu	R _{p1,0}	[MPa] m	in		270	60		235			225		225	235	
Mez pevno	osti R _m	[MPa]			530-68	30 520-	-670	570		00		490690	4	490-690	500-700
Tožnost A	10/ 1	podél m	n			-	-		40 –			40	4		-
Idzilust A	[70]	příčně m	in			40	45		-	30		30		35	30
Nérazová r	oráca k	av ru	pode	él min	-	10	00		100	-		100		100	100
INGI GLUNG		(¥2 [J]	příči	ně min	-	6	0		-	60		60		60	60
	ł	(V ₂ ⁻¹⁹⁶ [J]	příči	ně min	-	6	0		-	60		60		60	-
Polotovar							l	")						U ¹³)	
Rozměr t, (d (mm]			≤ 10	>10≤1	5 >16	≤63	>63≤10	50 >16	60≤250	≤ 160		≤ 35	≤ 25
Stav								_				+ AT	+	C700	+ C800
Mez kluzu R _{p0,2} [MPa] min					400	380	2	00		200		200		350	500
Mez pevnosti R _m [MPa]					600-9	30 580-93	0 500	-830	5	00–70	0	500-700) 70	0850	800-1000
Tažnost A. [%] podél min						25	1	30	40		-	40		20	12
Tažnost A [%] příčně min						-		-	-		30	-		-	-
Νάτατομά τ	él min	-		1	100			-	100		80	80			
Marazuva		(42 [J]	příči	ně min		-		-	-		60 –			-	-
	ł	(V ₂ -196 [J]	příči	në min	1 –			_	-		-	-		50	-

Příloha 2 Materiálový list oceli X2CrNiMo 17-12-2

Polotovar			T ⁶) < 25													
Rozměr d [mm]					≤ 3§	5						≤ 25				
Stav					; +C70	zpevni)0	ěný tva	ářenír	n za s	tudena	1 (2H) +C80	0			
Mez kluzu R _{p0,2} [M	Pa] min				350)						500				
Mez pevnosti R _m [N	IPa]			7	00-8	50					80	0–10	00			
Tažnost A [%] min					20							12				
Polotovar								D14)							
Rozměr t, d [mm]			>5 ≤ 50 >5 ≤ 10 >10 ≤ 25 ≥					≥ 2	≤5	>ն≤	25	>2 :	≤5	>5 ≤ 10		
Stav			+ AT nebo +AT + PE		+ A1	T + C		+	AT +	C + A	ſ	+ A1	(+ C +	AT + LC		
Mez kluzu R [MPa]			-	-	_		-	-	-	-		-	-	-		
Mez pevnosti R _m [N	IPa] max		650	7	80	7	50	67	70	65	0	- 72	20	700		
Tažnost A [%]		-	-	_		_	-	_	-		-	-	-			
Kontrakce Z [%] mi	n		68	-					6	68			63	3		
Nárazová práce KV	[J]		-			_			-	-			-			
Tvrdost			-			_			-	-			_			
Mechanické v	lastnos	sti za	zvýšer	výšených/snížených teplot												
Min. hodnoty meze	kluzu R _{p0,2}	a R _{p1,0}	a meze p	evnosti	i R _m p	oři zvý	šenýci	h teplotáci		otách (stav +A						
Teplota [°C]		100	150	200)	250	300) (350	400	4	450	500	550		
Mez kluzu [MPa]	R _{pQ2}	165	150	137	7	127	119)	113	108	1	103	100	98		
	R _{p10}	200	180	16	5	153	145	5	139	135		130	128	127		
Mez pevnosti R _m [M	IPa]	430	410	390)	385	380)	380	380		375	360	335		
Hodnoty modulu pr	užnosti E	ofi norr	nální a zvý	šenýci	h tepl	lotách										
Teplota [°C]		20)	100	$ \rightarrow$	2	00	+	300		4	100	_	500		
Modul pružnosti E [20	0	194		1	86		179		1	72		165			
Mechanické vlastno	sti při nízl	ých tep	lotách (in	f. údaj	e)											
		Rp	_{1,2} [MPa]		R _{p1}	ιο (MF	Pa]		R _m [MPa]				A [%]			
	-80		275			355		_	840				40			
Teplota [°C]		315			415		_	1	070		40					
	-196		350			450			1200				35			

Příloha 2 Materiálový list oceli X2CrNiMo 17-12-2

Část 3

Fyzikální vlast	inosti			
Hustota	Měrná tepelná kapacita c. [J. ko ⁻¹ K ⁻¹]	Teplotní součinitel roztažnosti or [K ⁻¹]	Tepelná vodivost A IW m ⁻¹ K ⁻¹ 1	Elektrický odpor při 20 °C [Ω·mm ² ·m ⁻¹]
8000	500	18,0-10 ⁻⁶ (20–500 °C)	15	0,75
Odolnost degr	adačním proce	sům		
Odolnost mezikrysta – v dodávaném stav – po zcitlivění: ano	ilové korozi (EN ISO 3 u: ano	3651-2)		
Svařování				
Doporučené tepelné	zpracování po svařov	vání 960)1040 °C15)	
Tepelné zprac	ování			
Rozpouštěcí žíhání	102	0–1120 °C ochla	zovat ve vodě nebo ry	ychle na vzduchu
Tváření za tep	la			
1150-850 °C	ochlazovat na vz	zduchu		
Obrábění				
Požadované řezné ry – obrábění na hrubo – obrábění na jemn	vchlosti podle normy o 190 m/min o 240 m/min	[10]		
Ostatní vlastní	osti			
Nemagnetovatelná o	cel běžné jakosti			
Použití				
Součásti zařízení v ch části pracující při zvý	emickém průmyslu, v šených i nízkých teplo	e výrobě celulózy, bare tách.	ev, mýdel, textilu, v ml	ékárnách a pivovarech. Sou-

Porovnání se zahraničními materiály

		,						
EUI	RO	Česká n	epublika	Německo				
X2CrNiMo17-12-2	EN 10088	17 349	ČSN 41 7349	X2CrNiMo17-12-2	DIN 17440			
Fran	icie	Velká L	Británie	Itálie				
Z2CND17-12 NF A35-577		316S11	BS 970-1	X2CrNiMo17-12-2	UNI 6904			
IS	0	U	SA	Rus	sko			
X2CrNiMo17-12-2	ISO 9328-7	316L	ASTM A182	-	-			
Japoi	nsko	ČI	ina	-	-			
SUS 316L	JIS G4303	00Cr17Ni14Mo2	GB T1220	_	-			

Poznámky

_	,
1)	Pro tyče, dráty, profily, lesklé výrobky a odpovídající polotovary platí max. obsah S 0,030%. Jednotlivé rozsahy obsahu S poskytují možnost zlepšení určitých vlastností. Pro výrobky určené k obrábění je doporučen a povo- len obsah S = 0,015–0,030 %, pro svařitelnost řízený obsah S = 0,008–0,030 %, pro leštitelnost obsah S = max 0.015 %.
2) 3)	Pokud je třeba pro zvláštní účely, např. pro válcování bezešvých trub za tepla, minimalizovat obsah delta feritu nebo dosáhnout nízké magnetické permeability je možné zvýšit max. obsah Ni na 14,5 % C – za studena válcovaný nás
4) 5) 6)	H – za tepla válcovaný pás P – za tepla válcovaný plech
) 7) 8)	TB – trubky bezešvé TS – trubky svaľované
⁹) 10 11	V – výkovky (podle normy [5])) V1 – výkovky (podle normy [6])) L – lesklé tyče
12 13 14) Pouze podle normy [7]) U – upevňovací prvky) D – dráty válopvaná, tvíše a dráty tažené pro pišchování a protlačování za studena.
15 16 17) Nedopručeno, pokud se svaľuje stabilizovaným přidavným kovem) Podle [2], [8], [9] a [1] (pouze část -4 a -5) N = max 0,10 %) Podle [10] is P = max 0.040 %. S = 0.015 = 0.020 % a N = max 0.10 %
	11 OUIC LIULIC I = IIIAA 0.040 /0. 3 = 0.013-0.030 /0 a N = IIIAA 0.10 /0

¹⁸) DT – duté tyče, podle [10]

Příloha 3 Atest materiálu X5CrNi 18-10

				AD	4 MILL C	MILL CERTIFICATE BS EN 10204/3.1 CERTIFICAT DE RECEPTION NF EN 10204/3.1											70951-0	1 V01	AD
(٦ſ)6L	ð	M	CERTI	CERTIFICAT DE RECEPTION NF EN 10204/3.1 ABNAHMEPRUEFZEUGNIS DIN EN 10204/3.1													
	U				Ausgeste	llt im Ei	nvemehmen	mit dem 1	rüv süt) - Auf Gege	nzeichn	ung wir	d verzi	chtet	100				
Apen	m - St	ainless France	c		Issued in Etabli en	accorda accord a	nce with TU avec le TÜV	V SÜD - V SÜD - Dé	Verifications spense de	on is not req contresigna	uired ture								
6233	m Isba	gues			AD 2000	Merkbl	att WO - PEI	D 2014/68	EU Anne	zx I.Point 4.3	8								
FRA	ICE																		
				AD	1 150 9001	:2015 - L	ATF 16949:2	016 - ISO 1	4001;201	5					205				
Manu	factur	er's works on	fer nu	mber	Sarveyo	r's mari	t T	12	Purcha	iser and/or o	onsigne	e			Parel	aser's or	ier numb	er	
Werk	auftrag	mande usine p gsturtimer	roducti	nce	Stempel	e resper des		12	Bestelle	rr und/oder E	uire Empfaen	ger			Kund	abestellna	e chent antror		
8047	7704/	03-61854/1		A0	8 Werkssachverstaendigen 203 ITALINOX S.R.O.								2018-	OUP-20			AD		
Prod	uct - I	Produit - Era	zeugni	is					ZDEB	RADSKA S	8/59				Custo	mer artic	le number	r	
BOBI	E LA	ED COIL dinee a froi	D						251 01	RICANY	JAZLO	VICE			Artika	cle client ihummer i	des Kunde		
KALI	GEWA	LZTES BAND			REPUBLIQUE TCHEQUE								406						
Steel	desig	nation		BU	Z Finis	њ [Steelmakin;	process							270 Produ	et deliver	y conditio	×n	AD
Désig Stabil	ation	de l'acier			Présent	ation	Mode d'élab	oration de Electric a	Facier - S	stahlherstelle e - VOD/AO	ingverfa D - Cor	hren tiraraa	casting		Etat d	e livraison	du produi	it - Liefé	rzustand
EN 10	028-7 /	16 - W2-W10 -	1.4307		Austreaming Proc.proces: Electric are turnace - VODAOD - Continuous casting Proc.fabric: Four à are - VODAOD - Coulée continue							Soluti	on treated	4					
EN 10	068-27	14 - 1.4307			2B 2B	2D Fertigungsablauf: Elektro-Ofen - VOD/AOD - Stranggussanlage							Hyper Local	trempe : nasarel+a	bzeschred	104 kt	0 C MIN		
ASIN	SA 240	0/17 - TYPE 3	94L		2B 2B		Any supple Prescription	mentary r s suppléme	equirementaires -	ents Zusätzliche	Anforde	ningen			Farre	d Air			
EN 10	068-4 /	09 - 1.4307			2B							- Dist			Air fo	rcé Gebl	aese Luft		BO
11 Jai d. 34 J															12. 1				20
Identi	ficatio fication	a of the produ du produit - Ia	ace dentifiz	tierung des	Erzeugnisse	8		Γ	Di Dimension	imensions ns - Abmess	ungen				Number Nb de pi	of pieces boes - Stue	1	2	
MEL	TED P	N BELGIUM,	MAD	E IN FRAI	NCE	Th	ickness	B09	Width		B10 1	ength		B1					
Coil	h inn 1	and Mr.	He	at n.	here also bela	Eps	aisseur - Sta	erke	Largeur	r - Breite	1	ongueu	ır - Lae	nge	Net weig	ht .	B13	22	20 KCS
N.Bo	nne - H R	and Nr. 9227	N.1	334 Source - Sc	metz Nr. 770		1,500 n	1/11	15	500,00 mm					Pouds net	- nemo Ca	wicht		1/0 KGS
	0	/ === /				CHE	MICAL AN	ALVSIS -	ANALY	SE CHIMI	OUE - 0	CHEM	ISCHE	ZUSA	MMENSE	TZUNG			
			С	Si	Mn	Ni	Cr	Mo	Ti	N	S	1	P						
Requ	red -E	xigé %mini				8,00	17,50					+							-
Anfor	derung	. %maxi	0,030	0,75	2,00	10,50	19,50			0,100	0,0150	0,04	15						
		Cast Analysis nalyse coulée	0,025	0,38	1,40	8,03	18,12			0,069	0,0010	0,03	56						
	Anal	yse Schmelze	c	71 07	2 673	C73 C74 C75 C76 C77 C78 C79					19	C80	C81	C82	C83	C84	6	85 CB	
Positi	ve mak	rial identificat	ion car	ried out : C	ĸ								1						D5
Tests Verw	de véri chslun	fication de la c greuefung wu	onform rde dure	ité de la m chgefaehrt	ance fournis : OK	: : OK													
Ļ				·			C04					C9	13						
Loca	10n (1)		MECHA	NICAL PR	OPERT	TES - PROI	RIETES	MECAN	dQUES - M	ECHA!	NISCH	E WEF	RTE	Case Inc.	three diffe			C2
	Dires	tion (2)	_	Yield or r	pennure - T trool streps	emperat th	Tensile	- Rounte	niperatur	Liongation	after to	cture	Harde	655	iest temper	ool streps	th Terrs	ile sir.	Describe
		Required	_	Limite d'é	lasticité	m.	Résistan	ce à la trac	tion	Allongemen	t après r	upt.	Dureté		imite d'éla	sticité	Résis	rt. MPa	Allongement
		Exige Anfordence		Denngren		ara Role:	zogfesti	point	atra	nucudennu	ng 1	• ·	HBM/*	-	Rengrenze	MPa Relation	Zugfe	sigkei.	truchdehnur
		- minutes ang	mini	220		250	-	520	-		43	5	an wi	+	Rp0.275	Rp1%	· *	ull	
	-	200.0	mixi	202		379		700			-	-	201			<u> </u>	—		
1	T	00	xmed Xotenu	293		328		649			53	1	175	"					
2	т	Erge	bnisse		C11	0	14		C12	619		C15	177	7 C31	016	, I	317	C18	61
		impact strength	h test		311	0	orrosion test		JIL	010	-	010		0.01	010	t		010	01
	E.	Essai de résilie	moe	,		Tes	t de corrosie	HD.											
\vdash	ACT	C40 120	ACTORNO I	C44		ilu	ON CONCEPTION OF		-		-	+		+		<u> </u>	+		
						EN P	80 3651-2 :	OK	041	C50		C51		C50	C53		354	C55	CO
Loca	tion o	f the sample	(D)	C42	The	The delivery is in accordance with the order Orvanisati									A: ation inse	B: ection	0	D:	C5
Emple	cemen	t de l'échantilk	00		La fo	La fourniture est conforme aux exigences de la commande Organisme									ne et/ou se	rvice contr	ôle		
Lage des Probenabschnittes 1. Front - Début - Anfang						eterung	entspricht de	en Isestellb	edingung	gen .			201	Deberwi	crungsabb	arung			AD
 Back - Fin - Ende Middle - Milliou - Mitte 						ďespódi	tion		190	11110132	5-1525	55		Qu	ality Control				
Dire	tion -	of the test of		n	C01 Liefe	ing in	eummer	measures	ment : vi	ithout abice	tion		A10	15/	01/2019 Laureat DUBOIS				
Orian	ation d	les éprouvettes	cuta (2	.,	Contr	ole de m	sarquage, d'a	spect et de	dimensi	ous : satisfai	sants			1.50	Laurent DUBOIS				
Probe	rrichtu	ng rse - Travers -	Quer		Pruef	Pruefung der Stempelung, des Oberflaechenospekts und der The inspec Abmessungen : ohne Beanstandung Le reservon						pector		4	Bu	toris			
	Damo Vict		-			201 Der Werks							a same	_ <		-			
L.I	ongitu	dinal - Long - I	actigs		C02	2 D01 Der Werks								RESECTIVETS	taendige		_	200	

Příloha 4 Atest materiálu X2CrNiMo 17-12-2

	חר	זמר	ิล	nn	MILL CERT	CERT	IFIC/ F DE	ATE BS RECEI	EN 1020 PTION N	14/3.1 F EN 10	0204/3.1					N-Nr	-N 19105	85418	-01 V01		A03
Apena Apena 62330 FRAN	m - St m Isb) Isber VCE	tainless Franc ergues gues	ب	191	Ausges Issued i Etabli e AD 200	ellt im l n accore n accore 0 Merki	Einver fance d avec blatt V	mehmen with TÜV le TÜV : W0 - PED	mit dem T V SÜD - V SÜD - Dis 2014/68	TÜV SÜD /erificatio spense de EU Anne	 Auf Gegr Auf Gegr and req contresignation x 1.Point 4.3 	mzeich uired nure 3	inung w	ird ver	zichtet	A02					
				AG	1 150 900	1:2015 -	IATE	16949:20	016 - 150 1	4001:2013	5					-					
Manu	factur	er's works or	der nur	nber	Survey	or's ma	rk [Purcha	ser and/or o	ronsig	nee			Purch	haser's ord	er nun	nber		\neg
N° de Werky	la com auftra	imande usine p isrummer	voductr	ice	Cachet Sterrme	de l'exp I des	ert	\boldsymbol{v}	12	Client e Bestelle	t/ou destinat r und/oder E	taire Emofac	meer			Nº de Kund	commande enbestellru	e client mmer			
8049	1280/	04-65437/1		AG	Werkss	Werkssachverstaendigen 203 ACCIAI VENI										UAPS	916 APR 3	16L 2B			A07
Prod COLD BOBR	uct - l ROLL	Produit - Er ED COIL MINEE A FRO	zeugni ID	is						43100	OBEL 4/A PARMA					Custo N.arti Artiko	omer articl cle client elnummer o	le numl jes Kur	ber aden		
NAL1	UEW/A	LCIES BAND							B01	ITALI	6					A06	AD9				
Steel	desig	nation		80	¹² Fin	ish	Stee	Imaking	process	Desire 6	s-blb		6. h			C70 Produ	act deliver	y cond	ition		
Stahlb	ezeich	de l'acier nung			Ausfu	tation shrung	Pred	i.proces:	Electric a	re fumace	t - VOD/AO	ingver D - Ca	nanren ontirnuot	us casti	ng	Etat d	e livraison	du pro	duit - Liet	erzusta	nd
EN 10	028-7/	16 - W2-W10 -	1.4404	1.4401	2	в	Proc Ferti	afabric.: igungsabi	Four à arc lauf: Elekt	- VOD/A tro-Ofen -	AOD - Could - VOD/AOE	ée cont) - Stra	tinue inggussi	anlage		Soluti	ion treated	I	10	40 C X	INTN
EN 10 EN 10	088-27 088-47	14 - 1.4404 -1/ 09 - 1.4404 -1/	4401		2	2B Any supplementary requirements B03								B03 Locsu	ngsgeg]+al	bgeschi	eckt	10 0 1			
ASTM	A 240 SA 24	/ 17 - TYPE 31 0 / 17 - TYPE 3	6L -TY 316L -TY	PE 316 YPE 316	2	2B Prescriptions supplémentaires - Zusätzliche Anforderungen 2B ST 009 REV.4									Force	d Air					
CORR	TEST	ASTM & 362-F	OK.	112.210	2	8	510	009 REV	4							Air fo	ecé Gebl	aese La	£1		B04
ASTM	A4807 MR 01	A480M ASMI 15 / ISO 15156-1	E SA 490 ./190 15	/SA 480M 156-3 NA	CE MR 010	/ 150 1	7945														206
Identi	ficatio	n of the prod	uct			807				Di	imensions					Number	of pieces	B	08		
Identi MEL	fication FED I	1 du produit - I N BELGIUM,	dentifiz , MADI	ierung des E IN FRA	Erzeugnis NCE	eugnisses E				imension	ns - Abmess	ungen			D+	Nb de pi	èces - Stue	ekzahl		1	
Coil r			He	at n.		Epaisseur - Staerke				Width 810 Length Largeur - Breite Longueur - Laenge						Net weig	Net weight B13				\neg
N.Bob	ine - E	Sand Nr.	NO	Coulée - Se	hmelz Nr.	z Nr. 1,500 mm					1000,00 mm					Poids net	t - netto Ge	wicht	11	960 K	GS
	9	1130		904	4040							IOLE - CHEMISCI									_
			C	Si	Mn		EMIC	Cr.	Mo	ANALI	SE CHIMI		- CHEN	P	E ZUS/	AMMENSE	IZUNG		-		\neg
Requi	ired -E	xieć Smini	-	- 51		10,00 16,50 2,000			2.000			- 3	-			-			+	-	\neg
Anfor	derung	, %maxi	0,030	0,75	2,00	2,00 13,00 18,00 2,500					0,100	0,013	50 0,0	045							
	A Anal	Cast Analysis nalyse coulée yse Schmelze	0,024	0,51	1,29	10,0	0	16,68	2,090		0,033	0,004	43 0,0	136	~	1				9E	<i>(</i> 96
Positi	ve mat	erial identificat	tion can	ried out : C	ж <u> с</u>	5	014		0.0	5 C77 C78 C79 C80					00	002	000		<u>~ (</u>	45	D52
Tests Verw	de véri schslur	fication de la c gpruefung wu	onform rde dure	ité de la m :hgefuehrt	ance four : OK	ie : OK	CO	4					c	:93							
Loca	ion (1)		MECHA	NICAL P	ROPER	TIES	- PROP	RIETES	MECAN	IQUES - M	ECH	ANISC	HE W	ERTE						C20
	Direc	tion (2)	_	Room ten Vield or a	iperature -	Fempés eth	ature a	unbiante Tensile S	- Raumter Strepath	mperatur	Elegantice	after i	fracture	Hard	ness	Test temper Vield or pro	ature (°C) : oof streer	i fh Tr	nsile str	Elear	CO3
	20104	Required	_	Limite de	lasticité		1	Résistanc	ce à la trac	tion	Allongemen	t après	rupt.	Dure	ć	Limite d'éla	sticité	Ré	sist. MPa	Along	iensent.
		Exigé Anfordemen		Delingren	20	MPa	-	zugfestig	pseit 1	MPa]	Bruchdehnu	ng	79	Haert	e /1	Dehngrenze	MPa	Za	gfestigkeit	Bruché	xhrung
		Amouerung	mini	Rp0.2 240	70	270	+		530			54	40	HBW	9	Kp0.2%	Kp1%	+	Rm		\neg
		-	maxi	303	_	122	+		680				41	2	17			+		<u> </u>	_
1	Т	06	tained Obtenu	292		323			618				51	1	00						
2	т	Erge	bnisse		C11		C14			C12	C13		C15	1	61 C31	C16		17	C18		C19
\vdash		impact strength	h test				Сопо	sion test		- 16	- 10		2.0			010	Ť		0.0		
	Ker	Essai de résili bschlagzaehig	t		Т	est de Korro	corrosion sionstest	n													
		C40 t(°c)		C44														\top		1	
				040		EN	180 3	3651-2 :0	DK	D51	C50 Internal cleare	linese	C51		C52	C53	B:	54 C	C55		C05
Loca	tion o	f the sample	e(1)	042	The	he delivery is in accordance with the order Organisat							isation insp	ection	<u></u>	b		087			
Empla Lare	cemen les Pro	t de l'échantill benabschrittes	on		La f Die	oumitur lieferur	e est o g ente	conforme pricht de	aux exige n Bestellb	nces de la edineuro	ia commanda ten	2		204	Organie Ueberse	ane et/ou ser	rvice contri cilung	ôle			405
1.1	Front -	Début - Anfar	g		Pac	cking list						and the second					AU3				
2.1	9ack - Middle	Fin - Ende - Milieu - Mit	tte		Avi	d'expé	dition	mer		190	040810117	78-79	964	£10	Qu	uality Con	trol				
Dire	tion o	of the test pi	eces (2	9	Ma	iking, in	nspect	tion and	measuren	A10 asurement : without objection 08/04				/04/2019 Laurent DUBOIS							
Orient	ation o	les éprouvettes		~	Con	trôle de	marqu	uage, d'as	spect et de	dimensio	ons : satisfai	sants									
T. T	ransve	rse - Travers -	Quer		Abr	Pruenung der Stempelung, des Oberflaechenaspekts und der The inspec Abmessungen : ohne Beanstandung Le ressons							inspector Autoris								
L. L.	ongitu	dinal - Long - I	Laengs		C02	Abmessungen : ohne Bearstandung Le respons 102 poil Der Werks								rikssachvers	taendige		9		Z02		

Příloha 5 Hydraulický zkušební stroj ZD40

Stroj umožňuje provádět tahové, tlakové a ohybové zkoušky materiálů do 400 KN s řízením rychlosti zatěžování a programovým zpracováním zkoušek. Je vybaven vestavěným inkrementálním délkovým snímačem polohy příčníku s rozlišením 0,01 mm a snímačem síly s řídící jednotkou EDC 60.

Řídící jednotka EDC 60 je vysoce precizní elektronické zařízení speciálně konstruované pro řízení servo-hydraulických zkušebních strojů. Je vyráběna speciálně pro aplikace řízení zkušebních strojů a využívají ji přední evropští výrobci universálních zkušebních strojů. Jednotka je opatřena programem pro zkoušky kovů s možností provádět zkoušky bez PC u jednoduchých aplikací bez použití průtahoměru.

Technické parametry:

- Výrobce: HBM /SRN/
- Měřící rozsah: 8 ÷ 400 kN
- Chyba měření síly: 1/100 jmenovitého rozsahu síly, tj. ± 1 % odpovídá třídě přesnosti 1
- Měřící rozsah měření dráhy: 0 ÷ 280 mm
- Chyba měření dráhy: ±0,01 mm
- sériové rozhraní RS 232 pro komunikaci s nadřazeným PC COM1 pro PC s FIFO s maximální rychlostí 115 KB
- inkrementální vstup pro napojení snímače dráhy

Počítač je vybaven programem M-TEST v.1.7 pro tahovou, tlakovou a ohybovou zkoušku kovových materiálů dle EN 10001-2 s vyhodnocením výsledků, grafickým zpracováním.

Řídící jednotka EDC 60

Příloha 6 Atest materiálu X5CrNi 18-10 z druhého experimentu

							Туре	Inspection	n Certificat	e 3.1 AD-2000 E	EN10204			Number	10721295	908	Issued On	19/	04/2021
							ONS approved acc AD-2000 W0 with Carl 01 202 IC-08 5131 by TUV Rheinland (0035), cert. PED 2014/68/UE Annex I §4.3 by TUV Rheinland (0035) Material acc. AD-2000 W2 - W10 in ref to EN10028-7 Material acc. AD2000 W2 - W10 in ref to EN10028-7 Material acc. AD2000 W2 - W10 in ref to EN10028-7												
Customer ITALINOX S.R.O. ZDEBRADSKA 58/59 251 01 RICANY - JAZLOVICE CZ							Consignee ITALINOX S.R.O. ZDEBRADSKA 58/59 251 01 RICANY - JAZLOVICE CZ						Delivery Nn 8351118782 Qualit Of 19/04/2021 Q.M.II Delivery note nr 1007004512 Plant			y Control Pages UQM. A.Venturini (J. H. H. 4/7 Of Gazoldo			
Material Norm/Grade LXF002 EN10028-7,EN1 Description Quality/Qualità LXF002 1,50 X 1500 X 3020 4307/304L NOP X2CrNi18-9, W1							0088-2,EN10088-4, ASTM A240, ASME SA240, ASTM A IR1.4307, 304L, X5CrNi18-10, 1.4301, 304						480, ASME	SA480		Order Nr 119124	9961/190 .	Client Ord OIP-12 Client Dat 9/15/20	er 03/2020 APRI e 20
Item Identification Nr Hi 1 21XA017362 01 2 21XA017363 01 3 21XA017364 0		Heat 0539530 0539530 0539530	Heat Qua 1539530 884 1539530 894 1539530 894 1539530 895		tity KG KG KG		onal toleran: -2	ces/						Steel Processing/ Electric arc fumace VOD/AOD casting, heat threatment /anne forced air cooling	, continuous aling at 1050°	Mark T - Orgai C,	ester/ nization inspec	tion: CQ3	
4	21XAU17365 0039530 900 KG											- ASME norms acc. Sec. II Part A Ed. 2019		Terms	Terms of Delivery/				
Identifi	ication Nr Che	mical Type	Mark		C (%)		Si (%)	Mn (%)	P (%)	S (%)	N (%)	Cr (%)	Ni (%)						
21XA017362 21YP004162 .030						0	.330	1.760	.0310	.0010	.0640	18.02	0 8.060						
21XA017363 21YP004162 .030					0	.330	1.760	.0310	.0010	.0640	18.02	0 8.060							
21XA017364 21YP004162 .030			0	.330	1.760	.0310	.0010	.0640	18.02	0 8.060									
21XA017365 21YP004162 .030				.330	1.760	.0310	.0010	.0640	18.02	0 8.060									
Identification Nr Test position Test direction Mark			Mark			Rm [N/mm²]	Rp 0.: (N/mr	2 RP 1 1 ²] [N/mm ²]	A80 (%)	A50 (%)	HRB B	HRB T							
21XA	017362 B		T		21YP00416	2		626	287	327	51.9	55.1	82	81					
21XA	017363 B		Т		21YP00416	2		626	287	327	51.9	55.1	82	81					
21XA	017364 B		Т		21YP00416	2		626	287	327	51.9	55.1	82	81					
21XA	.017365 B		Т		21YP00416	2		626	287	327	51.9	55.1	82	81					
Test Position/Posizione Prova T≕coil head C≃midde legth B≕coil end		Test Dire T=transv L=longitu D=diagoi	Test Direction/Directione Prova Testransverse L=longitudinal D=diagonal		about tensile test: ced of counter signature agreed by TUV Rheinland (01/03/2012)				2)		Oth - Dir - Co	er controls: mensions within rrosion Test EN	tolerances, spectrometrical ider I ISO3651-2 Method A and AST	ntity test OK 1M A262 pract	E OK				
Remari - Surf - We r - Doc - Norr - Durz	rks: face finish 2B certify that products lis cument validated acc. 6 ms are intended in the ability: NPD	ted above com N10204 par. 5 valid edition at	oly with order requiremen the time of the order	ts	- - -{	Regulated Intended DoP avail surface fin	d Substance Uses: Buildi lable at http: nish 2B	is: NPD ing Constructio //www.marceg	ons or Civi gaglia.com	Engineering Ibrochure/e/qua	lity/dop.html							0474 13 MARCEG SP V. Breckell, 9 4061 - Gazete Wartow - Bay	AGLIA DALTES 311 4:2009