
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

CLOUD COMPUTING APPLICATION DESIGN PATTERNS
NÁVRHOVÉ VZORY V CLOUD COMPUTING APLIKACÍCH

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MATĚJ KOLESÁR
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

BRNO FACULTY 1 r UNIVERSITY OF INFORMATION 1

• G F T E C H N O L O G Y TECHNOLOGY

Master's Thesis Assignment |||||||||||||||||||
143978

Institut: Department of Information Systems (UIFS)
Student: Kolesar Matej, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Information Systems and Databases
Title: Cloud Computing Application Design Patterns
Category: Software Engineering
Academic year: 2022/23

Assignment:

1. Become familiar with cloud computing environments, types of applications for these environments
and how to provide services. Explore application development capabilities for cloud computing
environments and the resources offered by their providers.

2. Learn how to design cloud computing applications and the most commonly used design patterns.
3. Design a sample application, which could be used to demonstrate design patterns for cloud

computing applications and which could be deployed at available providers.
4. After consulting with the manager, implement the proposed application and describe the sample

use of the mentioned design patterns.
5. Thoroughly document the design procedure and implementation of the application parts where

individual design patterns were applied: describe each pattern, assumptions and consequences of
its application, the specific application procedure, result and other possibilities. Verily in practice
that the pattern had the expected benefits (e.g., better application scalability).

6. Evaluate the results and publish them as open-source.

Literature:
• D. Comer: The cloud computing book: the future of computing explained. First edition. ISBN 978-0-

367-70680-7
• Ch. M. Moyer: Building applications in the cloud: concepts, patterns, and projects. Upper Saddle

River, NJ , Addison-Wesley, 2011. ISBN 978-0-321-72020-7
• Ch. Fehling, F. Leynman, F. Rette, W. Schupeckand P. Arbitter: Cloud Computing Patterns.

Springer-Verlag Wien, 2014. ISBN 978-3-7091-1568-8

Requirements for the semestral defence:
Items 1, 2, and 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Rychlý Marek, RNDr., Ph.D.
Kolář Dušan, doc. Dr. Ing.
1.11.2022
17.5.2023
24.10.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
This thesis aims to demonstrate available c loud patterns which solve existing problems that
are experienced i n the cloud environment. Various cloud patterns are first analysed from
a high-level view and then further studied on a lower component level. These components
and architectures provide certain solutions depending on the use case of the appl icat ion. A
demo appl icat ion is designed to showcase these design patterns and how they behave. The
implementation is done using kubernetes and it is deployed to A W S . The chosen architecture
uses microservices. The appl icat ion consists of 2 designs. The first one shows the A W S
advantages and the second one can be deployed on private clouds but also on A W S . A t the
end, experiments are performed that verify whether the used patterns had the expected
results.

Abstrakt
Cieľom tejto práce je demonštrovať existujúce cloudove vzory, ktoré riešia problémy v cloud
prostrediach. Rôzne cloudove vzory sú analyzované najprv na vyššej úrovni z pohľadu ar
chitektúry aplikácie a následne aj na nižších úrovniach pre jednotlivé komponenty. T ieto
architektúry a komponenty poskytujú výhodu v istých situáciách a záleží na správaní ap
likácie, ako veľmi zjednodušia a zlepšia využívanie cloud prostredia. Je navrhnutá demo
aplikácia, ktorá ma 2 návrhy. Prvý návrh používa servisy, ktoré vyzdvihujú výhody A W S
a druhý návrh možno nasadiť v súkromných cloudoch ale aj na A W S . Aplikácia je nasad-
zovaná pomocou kubernetov a používa microservisy ako zvolenú architektúru. Po nasadení
sú nad aplikáciou urobené experimenty, ktoré slúžia na overenie použitých vzorov a či mal i
očakávané dopady na aplikáciu.

Keywords
Cloud , C l oud computing, C l oud design patterns, Microservice Architecture, Automat ion ,
Kubernetes, Java

Klíčová slova
Cloud , C l o u d computing, C l oud Návrhové vzory, Architektúra microservis, Automatizácia,
Kubernetes, Java

Reference
K O L E S A R , Mate j . Cloud Computing Application Design Patterns. Brno , 2023. Master 's
thesis. B rno University of Technology, Faculty of Information Technology. Supervisor
R N D r . Marek Rychlý, P h . D .

Rozšířený abstrakt
Cloud comput ing sa stal neoddeliteľnou súčasťou modernej počítačovej infrastruktury vďaka
mnohým výhodám, ako je f lexibil ita, škálovateľnosť a nákladová efektívnosť. S rastúcou
zložitosťou cloudových prostredí sa však objavilo niekolko problémov, ktoré je potrebné
riešiť. V tejto súvislosti je cieľom tejto práce poskytnúť analýzu dostupných vzorov cloudu,
ktoré môžu pomôcť tieto problémy riešiť.

Práca sa začína prehľadom existujúcich cloudových vzorov, po ktorom nasleduje analýza
ich funkčnosti a použiteľnosti na vysokej úrovni. Následne sa práca hlbšie venuje nižším
komponentom vzorov a skúma, ako ich možno využiť v rôznych prípadoch použitia. Vzory
sú analyzované od návrhových vzorov pre architektúru aplikácie. Súčasťou práce je tak
tiež analýza rôznych architektúr a výhod, ktoré poskytujú v určitých situáciách. Následne
sú analyzované detailnejšie komponenty, ktoré sú väčšinou zamerané na jeden konkrétny
problém a v návrhu celej aplikácie sa opakujú častejšie. Jeden z týchto vzorov je kompo-
tent na vyrovnávanie záťaže v cloude, ktorý zabezpečuje správnu distribúciu správ medzi
inštanciami servisov. Okrem vyrovnávania záťaže sú analyzované aj komponenty, ktoré
zabezpečujú lepšiu škálovateľnosť a komunikáciu medzi servismi. Taktiež sú analyzované
štýly, ktoré môžu nastať a ako je možné jednotlivé typy využiť. Konečným cieľom je ukázať
potenciál cloudových vzorov pr i riešení bežných problémov vyskytujúcich sa v prostredí
cloudu. Následne je navrhnutá aplikácia, ktorej účelom bude aplikovať tieto vzory. Návrh
aplikácie je rozoberaný po jednotlivých funkčných častiach aplikácie a jednotlivé časti sú
analyzované do detai lu. Je popísané aké je predpokladané správanie aplikácie a aké dáta
sú očakávané.

N a implementáciu jednotlivý microservisov a business logiky je použitý jazyk Java
a framework spring boot. Tento framework poskytuje množstvo funkcií vrátane ľahko
použiteľných rozhraní A P I , efektívneho smerovania požiadaviek a vyrovnávania zataze,
ktoré sú nevyhnutné na budovanie škálovateľných a odolných mikroslužieb. Vyspelý ekosys
tém Java navyše ponúka širokú škálu nástrojov a knižníc, ktoré možno využiť na zlepšenie
vývoja a nasadenia mikroslužieb v cloude. Niektoré z týchto nástrojov zahŕňajú Docker pre
kontajnerizáciu a Kubernetes pre orchestráciu, ktoré bol i použité v tejto práci. Okrem toho
kompat ib i l i ta Java s populárnymi cloudovými plat formami, ako sú Amazon Web Services
(AWS) , Microsoft Azure a Google C l oud P la t form (G C P) , umožňuje jednoduché nasadenie
a škálovanie mikroslužieb. N a zabezpečenie efektívnej a spoľahlivej prevádzky mikroslužieb
v cloude musia vývojáři Java zvážiť faktory, ako je výkon, bezpečnosť a monitorovanie. Dá
sa to dosiahnuť použitím profilovacích nástrojov, bezpečnostných knižníc a protokolovacích
a monitorovacích framework.

N a demonštráciu účinnosti vybraných vzorov je implementovaná aplikácia s využitím
populárneho nástroja na orchestráciu kontajnerov Kubernetes a nasadená najednej z popred
ných cloudových platforiem Amazon Web Services (AWS) . Zvolenou architektúrou pre
demonštračnú aplikáciu sú mikroslužby, ktoré v porovnaní s monol i t ickou architektúrou
poskytujú lepšiu škálovateľnosť, odolnosť a f lexibi l i tu. Demonštračná aplikácia je navrhnutá
tak, aby prezentovala dva rôzne návrhy: jeden, ktorý vyzdvihuje výhody A W S , a druhý,
ktorý možno nasadiť v súkromných cloudoch aj na A W S . Druhý návrh zdôrazňuje prenos
nosť a f lexibi l i tu cloudových vzorov, pretože ich možno prispôsobiť rôznym prostrediam a
prípadom použitia.

Nakoniec sú vykonané experimenty na vyhodnotenie výkonnosti a efektívnosti cloudových
vzorov použitých v demonštračnej aplikácii. Výsledky týchto experimentov potvrdzujú, že
vybrané vzory skutočne poskytujú očakávané výsledky z hľadiska škálovateľnosti, odolnosti
a výkonu.

N a záver táto práca predstavuje analýzu cloudových vzorov a ich použitie p r i riešení
bežných problémov v prostredí c loudu. Demonštračná aplikácia navrhnutá pomocou K u -
bernetes a nasadená na A W S slúži ako praktický príklad potenciálu cloudových vzorov,
pričom vykonané experimenty potvrdzujú ich účinnosť. Tento výskum prispieva k lepšiemu
pochopeniu cloud comput ingu a poskytuje cenné poznatky pre vývojárov a architektov
pracujúcich s cloudovými aplikáciami.

Cloud Comput ing Appl icat ion Design Patterns

Declaration
I hereby declare that this Masters 's thesis was prepared as an original work by the author
under the supervision of R N D r . Marek Rychlý, P h . D . A l l the relevant information sources
that were used for this thesis are properly cited and included in the references list.

Matěj Kolesár
M a y 16, 2023

Acknowledgements
I would like to thank my thesis supervisor, R N D r . Marek Rychlý, P h . D . for his t ime and
willingness to help when I was not sure how to proceed and for the patience that he had
while discussing a l l the problems that were encountered.

Contents

1 I n t r o d u c t i o n 4

2 C u r r e n t s t a t e o f c l o u d s o l u t i o n p r o v i d e r s 6
2.1 Ex i s t ing cloud computing solutions 6
2.2 C l oud location 7
2.3 Concrete providers 9
2.4 Container and orchestration solutions 9

3 C l o u d a r c h i t e c t u r e d e s i g n p a t t e r n 11
3.1 I D E A L properties 11
3.2 N-tier C l o u d App l i ca t ion 12
3.3 Event-driven architecture 13
3.4 Microservice 14

3.4.1 Impact on qual i ty and management 15

4 C l o u d c o m p o n e n t p a t t e r n s 17
4.1 C l oud Workloads 17
4.2 D a t a storage 20
4.3 Database options 21
4.4 C l oud communicat ion 23
4.5 Mul t i t enancy patterns 25
4.6 C loud management 26
4.7 Diagrams 28

5 D e m o a p p l i c a t i o n D e s i g n 30

6 I m p l e m e n t a t i o n 34
6.1 Components implementat ion 34

6.1.1 Load balancers/Services 34
6.1.2 Deployments 35
6.1.3 P V C 36
6.1.4 Rbac 37
6.1.5 Secrets 38
6.1.6 He lm charts 38

6.2 Microservices 39
6.2.1 S Q L database 39
6.2.2 User management 39
6.2.3 F i l e management 40

1

6.2.4 B i l l i ng
6.2.5 Noti f icat ion
6.2.6 R a b b i t M Q

6.2.7 Storage

7 E x p e r i m e n t s

8 C o n c l u s i o n

B i b l i o g r a p h y

A F i l e s t r u c t u r e

B D e p l o y m e n t m a n u a l

List of Figures

2.1 Compar ison between SaaS, PaaS and Iaas 8

3.1 Example of three tier appl icat ion in c loud environments [18] 13

4.1 Workload used for traffic i n static and elastic scaling [18] 19
4.2 Message oriented middle w i th standard components and message processing

types. [18] 26
4.3 Legend of diagram components that are used in design 29

5.1 Design of demo appl icat ion 30
5.2 A W S design 31
5.3 Architecture of the storage solution 32
5.4 M u l t i tenant solutions. Left we have shared appl icat ion logic and schema

based D B , right is dedicated components and D B isolation, the approach for
shared component and shared database w i th tenant identif ication field is not
displayed 33

6.1 E R diagram for database. Database is created in user management 40

6.2 Database setup pr imary w i th read only replicas 41

7.1 Kubernetes dashboard view w i th available metrics. Deployed on local machine. 44

B . l A W S bi l l ing dashboard 57

3

Chapter 1

Introduct ion

Cloud computing is a field that is gaining more and more popular i ty i n recent times. U n
fortunately, the cloud environment is different from the usual environment that some pro
grammers may be used to. This difference, i f not handled properly, can result in the final
appl icat ion not being able to uti l ize a l l of the features and benefits that are available i n the
cloud environment. A s such, identifying key areas and problems that can commonly occur
in c loud environment is key to be able to properly design an appl icat ion that can uti l ize
the cloud efficiently In this thesis, these correct approaches and the proper recommended
solutions are going to be referred to as cloud comput ing patterns. Patterns w i l l allow us to
standardize certain situations and propose ways to handle them. The patterns can occur in
many forms, from situations that are very specific and are opt imized for certain data flow
to more high level ideas that should be present through the appl icat ion.

This thesis w i l l a im to introduce the most common types of challenges that can occur,
how and when they occur, and list available design patterns that handle these issues cor
rectly. Chapter 2 is focused on a brief introduct ion of a l l types of available solutions that are
based on the provided resources. Afterwards, the locations of these resources are compared
and the benefits of each solution are l isted. After this analysis, the current biggest cloud
providers are l isted w i th some of the services that they offer. A t the end of the chapter,
the most common technologies that are used and benefit the most from the cloud environ
ment are mentioned. Chapter 3 first introduces the I D E A L properties that are expected
in the cloud environment. W i t h the core properties established, patterns that adhere to
these properties are chosen. The focus is then to introduce the event driven architecture,
n-tier architecture and microservices. A s the chosen solution is the microservice architec
ture, a deeper investigation into the properties and behaviour of this solution is performed.
K e y areas that microservices need are identified and later used when creating the design.
Chapter 4 introduces the components from which the chosen solution is created. These
components are present in a l l types of architectures and some require a close to mandatory
use in the cloud environment. The first analysed part is the workload type that the com
ponents can experience. Different types of workload are identified. These workloads are
taken into account when creating the microservices i n the design as the goal is to showcase
al l types of workloads. Next, the different types of storage solution are analysed and the
one that fits the best is chosen for the design. Then, the database solutions are analysed as
they are a core functionality i n nearly every appl icat ion. Afterwards, the communicat ion
interfaces are described and established. The chapter ends w i th a look into the management
components that help to monitor the cloud, automate the solution and provide a secure
network. A t the end of the chapter, the structure of the diagrams is proposed as there is

4

no current standard and each provider uses his own design. Chapter 5 goes into the actual
designs that were created. The only difference is that one design is opt imized for use in
A W S where the message broker and the storage solutions is substituted w i th A W S solu
tions. The rest of the chapter goes into the challenges that the appl icat ion faces and how
they are handled. The behaviour is analyzed for each use case and the designed solution is
explained. Chapter 6 goes into the implementat ion details and explains what kubernetes
files are created and their purpose in the solution. After the kubernetes files are explained,
another brief description is given to each microservice, where the behaviour of the exact
microservice is defined and available communicat ion interfaces are explored. Chapter 7
is focused on the deployment of the implemented appl icat ion on A W S . The chapter also
includes experiments, which are performed to test whether the patterns that were used in
the design have the expected effect. M a n y of the patterns are based on the proper design
of the appl icat ion, w i th which many problems that could occur are handled preemptively.
The rest of the design patterns are mostly component based and are separated into groups
depending on what is the expected benefit from the pattern.

5

Chapter 2

Current state of cloud solution
providers

Cloud comput ing has become an important part of the current i n the current day and age,
offering organizations the abi l i ty to leverage powerful comput ing resources on a flexible,
on-demand basis. There are many cloud computing solutions available, each w i th their
own unique features, advantages, and l imitat ions. In this chapter, we w i l l explore some
of the most widely used cloud comput ing solutions, inc luding Infrastructure as a Service
(IaaS), P la t form as a Service (PaaS), Software as a Service (SaaS) and Funct ion as a
Service (FaaS). We w i l l examine the technical aspects of these solutions, inc luding their
architecture, deployment models, scalability, and security considerations. Addit ional ly , we
w i l l explore the key providers in the cloud comput ing market, inc luding Amazon Web
Services, Microsoft Azure, Google C l oud P lat form, and others. Current ly, there are many
approaches and comput ing models to choose from. A l l these solutions provide different
benefits and contain different features. Depending on how we look at i t , we can divide
them between solutions based on infrastructure or solutions based on a concrete cloud
provider.

2.1 E x i s t i n g c loud c o m p u t i n g solutions

In cloud computing, there are a few different models that are available for use. They are
usually separated into four models: Infrastructure as a Service (IaaS), P la t form as a Service
(PaaS), Software as a Service (SaaS) and Funct ion as a Service (FaaS). The comprehensive
comparison can be seen in figure 2.1.

IaaS

Infrastructure as a service (IaaS) [35] is a c loud service which supplies the needed storage,
networking servers, and v i r tual izat ion resources. This form of service removes the need
for an on-premise data center and the management and maintenance of physical servers
is the responsibil ity of the IaaS provider. The client has more flexibil ity and can instal l
what software they need, but are responsible for security updates on their software as no
software, inc luding OS, is provided by the IaaS provider. The IaaS provider is hosting
these resources in either a publ ic cloud, private c loud or hybr id cloud. One of the existing
solutions is for example A W S E C 2 .

G

P a a S

Plat form as a service (PaaS) [38] [12] is a cloud service which provides comput ing mecha
nisms for deploying applications, designing applications for the cloud, pushing applications
to their deployment environment, using services, migrat ing databases or a bu i ld integra
t ion tool . PaaS have features like bui l t farms, rout ing layers, or schedulers that dispatch
workloads to different v i r tua l machines. M a n y of the current solutions for PaaS have a
container foundation for running platform tools(i.e. Openshift, C l o u d Foundry, Tsuru).
There are s t i l l differences between how these platforms handle certain problems. Whi l e
C loud Foundry handles stateful services by running them in V M s and stateless in contain
ers, Openshift does not differentiate and runs both of them in containers. Some existing
examples are A W S Elast ic Beanstalk, Windows Azure and Openshift.

SaaS

Software as a service (SaaS) [15] [46] is a software d istr ibut ion model i n which a cloud
provider provides software and makes it available to end users over the internet. A software
provider w i l l either host the appl icat ion and related data using its own servers, databases,
networking and comput ing resources, or it may be an independent software vendor (ISV)
that contracts a c loud provider to host the appl icat ion in the provider's data center. In this
model, the provider is responsible for the setup, maintenance and support of the software
and the client receives ready made solutions. In comparison to t radi t ional software that
runs on operating systems, SaaS is in most cases deployed on an existing PaaS system or
a specialized SaaS infrastructure. Some of the existing solutions include B M C Software,
Cybe rArk , A W S Cohesity.

F a a S

Funct ion as a service (FaaS) [7], or more commonly known as serverless computing model,
allows the cloud provider to flexibly control the d is tr ibut ion of computer resources. In this
model, the management of resources and dynamica l provisioning is the responsibil ity of the
cloud provider. Therefore, the cloud client is relieved of the responsibil ity of managing,
scaling, or provisioning any servers. Users upload their code, which is then executed by the
cloud provider and scaled automatical ly in response to the volume of incoming requests.
As the customer only pays for the precise resources and t ime that their code uses, this
might result i n cost savings. Some of the existing solutions are Amazon Lambda , Google
functions, Azure Functions.

2.2 C l o u d locat ion

Cloud comput ing can also be looked from the point of deployment. The most used options
are to either to use private c loud where the user has to deploy the appl icat ion and handle
al l the management, uti l ize the options of vendors and to rent their infrastructure or, the
most common case, a hybr id one where the user has some local private c loud but also needs
to scale while using publ ic cloud. Usual ly, private cloud consist of a data storage while the
applications run on the publ ic cloud.

7

IaaS
(Infrastructure-as-a-service)

User Access/Identity

PaaS
(Platform-as-a-service)

User Access/Identity

SaaS
(Software-as-a-service)

User Access/Identity

Application

Guest OS

Application

Guest OS

Application

Guest OS

Virtualization Virtualization Virtualization

Network Network Network

Infrastructure Infrastructure Infrastructure

Physical Physical Physical

Cloud Service Provider
Responsibility

Customer
Responsibility

Figure 2.1: Compar ison between SaaS, PaaS and Iaas.

P r i v a t e c l o u d

Private c loud [37] is a solution for cloud comput ing which is not accessible to the publ ic but
only certain individuals and groups. It requires that companies invest into architecture,
mainta in this architecture and are responsible for a l l accompanying cost. They are also
responsible for a l l security measures that are needed from physical security to network
security. Usually, there is no sharing of infrastructure, no mul t i tenancy issues and zero
latency for local applications and users which simplifies some problems faced in publ ic
clouds.

P u b l i c c l o u d

Pub l i c c loud [26] is defined as computing services offered by third-party providers over
the publ ic Internet, making them available to anyone who wants to use or purchase them.
They may be free or sold on-demand, al lowing customers to pay only per usage for the
C P U cycles, storage, or bandwidth they consume. In this model, the cost of maintenance
need for hardware and physical security is moved to the owner of the cloud. Possessing a
large number of wide spread world resources enables providers to offer a consumer different
choices to select appropriate resources while considering the qual i ty of service (QoS).

8

H y b r i d c l o u d

A hybr id c loud is one in which applications are running in a combination of different
environments. H y b r i d c loud comput ing approaches are widespread because almost no one
today relies entirely on the publ ic cloud. A n example of this could be an on-premises data
center, and a publ ic c loud computing environment.

2.3 Concrete providers

After determining what type of service is the most useful one, there are many options.
There are many providers that offer publ ic cloud or can be used in a hybr id setup. These
providers operate large data centers filled w i th comput ing resources such as servers, storage,
and networking equipment, which they make available to customers.

A W S

Amazon Web Services (AWS) [1] [22] is one of the oldest cloud providers and provides a
range of comput ing services like cloud storage, database service, analytics, network, mobile
computing and enterprise services. A W S services are delivered to customers v ia a network of
A W S server farms located throughout the world. Fees are based on a combination of usage
(known as a „Pay-as-you-go" model), hardware, operating system, software, or networking
features chosen by the subscribe, required availability, redundancy, security, and service
options. Currently, A W S has 30 availabi l i ty regions in the world.

A z u r e

Azure [31] is Microsoft 's c loud comput ing platform, and it offers a similar range of services
to A W S , w i th a focus on cloud computing, storage, database, analytics, and art i f ic ial intel
ligence (AI). Azure has mult iple capabilit ies such as software as a service (SaaS), platform
as a service (PaaS) and infrastructure as a service (IaaS) and has the needed support for
integration w i th other Microsoft services.

G o o g l e c l o u d

Google C l o u d [2] is the newest of these platforms, and it offers a smaller range of services,
w i th a focus on cloud computing, storage, and analytics, as well as a number of machine
learning and A I services. Google c loud provides infrastructure as a service, platform as
a service, and serverless comput ing environments. One of the downsides is that it lacks
S M T P support and the default components that are necessary need around 12% of the
available R A M (percentage depends on machine).

2.4 Conta iner and orchestrat ion solutions

Our main focus for deployment are going to be containers [41], specifically docker containers,
which is one of the most wide spread deployments methods. As the name suggests, the main
component i n this approach is a container. A container is a standard unit of software that
packages up the code and a l l its dependencies so the appl icat ion runs quickly and reliably
from one comput ing environment to another.

9

D o c k e r

Docker [41] is a set of plat form as a service (PaaS) products that provides a facil ity to
automate applications when they are deployed into containers. Docker adds an extra layer
of deployment to the containerized applications to allow to execute the applications. It is
designed to provide a lightweight environment in which code can be run efficiently and,
moreover, it provides an extra facil ity of the proficient work process to take the code from
the computer for testing before product ion.

K u b e r n e t e s

Kubernetes [9] is an open-source container orchestration system that allows users to manage
and deploy large numbers of containers at scale. Kubernetes provides features such as
automatic scaling, self-healing, and load balancing, which make it easier to deploy and
manage applications in the cloud. Th is can be useful for applications that need to handle
large volumes of traffic or data, or that require high availabi l i ty and resilience. Kubernetes
works directly w i th the container through Containerd, or replacing Docker w i th a runtime
that is compliant w i th the Container Runt ime Interface.

O p e n s h i f t

OpenShift [40] is a service(PaaS) built around Kubernetes. It provides addi t ional features
and tools that make it easier to develop, deploy, and manage applications in the cloud.
OpenShift also integrates w i th a number of other technologies, such as Jenkins and G i t ,
which can be used to automate the appl icat ion development and deployment process.

10

Chapter 3

Cloud architecture design pattern

One of the most important parts when creating an appl icat ion for c loud environment is
the chosen architecture. Cer ta in architecture designs benefit greatly from the features that
cloud environments provide. There are certain properties that are expected to fully uti l ize
the advantages of the cloud. These properties are isolated state, d istr ibut ion, elasticity,
automated management, and loose coupling (I D E A L properties) [18]. As ide from these
general properties another major part are the data types which the appl icat ion w i l l use.
We w i l l concentrate on the general properties as there are many types of data and it is not
possible to analyze a l l of them in-depth.

3.1 I D E A L propert ies

Before looking at different architecture choices that are available, it is necessary to define
properties that should be present i n them to fully uti l ize the advantages of the cloud.
The properties w i l l be defined from a high level and should give a general view of what
is expected i n the architectures. I D E A L properties (isolated state, d istr ibut ion, elasticity,
automated management, and loose coupling) [18] can be applied to a l l levels when designing
the architecture or component behaviour.

I so la t ed S ta t e

Isolated state is meant to separate the state information of a microservice from other
microservices as much as possible. The state information represents the data state of
the interaction w i th an appl icat ion and the data handled by the appl icat ion. Ideally, the
data is handled through data stores. This isolation enables easier scaling and resiliency
w i th respect to failures of the appl icat ion.

D i s t r i b u t i o n

Dist r ibut ing the appl icat ion functionality among mult iple components to be deployed on
mult iple c loud resources represents another essential step. Appl icat ions have to consider
the d istr ibut ion and the scaling support of their c loud environments to effectively uti l ize it .
One of the options for applications is to rely on redundant components.

This can especially be the case if the c loud provider assures environment-based avail
ability, which is the avai labi l i ty of the complete environment and not of single I T resources
hosted in it .

11

In practise, the functionality of the appl icat ion is div ided into mult iple independent
components that provide a certain function. These components are separated and split
up depending on the architecture into a tier based architecture 3.2, event based 3.3 or
microservice architecture 3.4.

E l a s t i c i t y

Elast ic i ty allows the appl icat ion to provision and decommission resources while the ap
pl icat ion is running. This act ion occurs without affecting the user and it is possible to
either increase the available resources (vertical scaling) or increase the number of instances
(horizontal scaling).

A u t o m a t e d M a n a g e m e n t

Automated management is needed to prompt ly react to changes w i th in the appl icat ion or
environment and apply the needed changes(i.e. change resource al location, restart service,
etc.). For this , the management system needs to have the abi l i ty to see the state of each
service and have a defined behaviour i n case of component failure to know which operations
to execute to fix the problem. Th is should ideally be done without human interaction.

Loose c o u p l i n g

Loose coupling ensures us that calls between applications, scaling, deployment, failure han
dl ing or updat ing are handled independently. Th is is by keeping the dependencies between
components to a min imum.

Information exchange between applications and their ind iv idua l components as well as
associated management tasks, such as scaling, failure handl ing, or update management can
be simplif ied significantly if appl icat ion components can be treated indiv idual ly and the
dependencies among them are kept to a min imum.

3.2 N - t i e r C l o u d A p p l i c a t i o n

In an N-tier architecture [5] [42] the appl icat ion is separated into mult iple tiers which consist
of s imilar logic. These appl icat ion can have a closed architecture where a tier can only cal l
the next tier which is under it or an open tier architecture where a tier can cal l any of the
tiers below it.

Depending on the degree of separation there are the following designs:

1. 2 tier architecture where the data access is separated from the rest of the appl icat ion

2. 3 tier architecture which has a presentation tier, business tier and data access tier

3. 4 tier architecture which has a presentation tier, data service tier, business tier and
data access tier

There are more tiers available but they are not usually used and are only useful i n special
circumstances.

Two-tier applications provide the m in ima l separation from data tier. The i r implemen
tat ion is in most cases easier at the cost f lexibil ity and the adaptat ion or change of features.

12

A three-tier appl icat ion compared to a two-tier separates the presentation tier and business
tier. The functionality of these tiers is as follows:

The Presentation tier is the topmost tier of an appl icat ion. Th is is the tier seen when
using the software(Interface, web pages). B y using the software we access web pages. Its
main function is to communicate w i th the appl icat ion tier. Th is t ier passes information
which is given by the user in terms of keyboard actions and mouse clicks to the appl icat ion
tier.

The App l i ca t i on tier is also known as the Business logic tier. In this tier, we can find
logic controls and functionality that processes data received from the presentation tier and
database tier. It acts as an intermediary between the presentation and database tier.

The Database tier is the tier that stores data i n the storage. It contains methods that
connect to the database and performs the required actions needed. These are Insert, update
or delete. The three tier architecture can be seen in the following figure 3.1.

Presentation Tier Business Logic Tier Data Tier

Figure 3.1: Example of three tier appl icat ion in cloud environments [18]

3.3 E v e n t - d r i v e n architecture

A n event-driven architecture [33] consists of event producers that generate a stream of
events, and event consumers that l isten for the events.

In most cases, events are created immediately after an action occurs, so consumers can
respond to events right after they are created. Consumers and producers are decoupled. A
producer does not know which consumer is l istening to the events and a customer does not
know other consumers or the producer of the event. There are many types of consumers.
These include Compet ing Consumers pattern, where consumers pu l l messages from a queue
and a message is processed just once i f note error occurs, Selective Consumer or Event-
Dr iven Consumer.

A n event driver architecture can also work w i th the publish/subscribe (pub/sub) model
or event streaming model. In the pub/sub model, the messaging infrastructure keeps track
of subscriptions. W h e n an event is published, it sends the event to each subscriber. Events
are not stored and only sent to current subscribers, which means that new subscribers can
not receive or see already published events. In the case of event streaming, events are
wri t ten to a log. Events are str ict ly ordered and durable. A client can read from any part

13

of the stream and is responsible for advancing its posit ion in the stream. Th is allows client
to see historic events.

These types architecture is ideally used to process real-time information w i th m in imum
time lag, complex event processing, aggregation over t ime window and high volume and
high velocity of data.

3.4 Microserv ice

A microservices architecture [45] [16] consists of a collection of smal l , independent appl i
cations. Each microservice can be deployed independently, scaled independently and has
a single responsibility. Single responsibil ity is meant from a functional view, for exam
ple, reading a file, val idat ing content and providing l i tt le modif ication before sending it to
other microservices. B y breaking down applications into smaller, self-contained services,
microservices enable developers to work on ind iv idua l services independently, without im
pacting other parts of the appl icat ion. W i t h this approach, it is possible to use mult iple
different technologies as long as they are compatible w i th their respective interfaces.

Microservices have many unique characteristics compared to other t radi t ional architec
tures like S O A . The attributes that usual ly different from other existing approaches are
size, bounded context and independency.

The size is should be smaller when compared to typ ica l services. They should be smal l
enough to be developed, tested, and deployed independently, while also being large enough
to provide meaningful business value. Ideally, a microservice should be able to be developed
and deployed by a smal l team, w i th m in ima l dependencies on other services. The size of a
microservice can vary and the size difference can be fairly significant. However, it should be
designed to be easily maintainable and extendable, w i th a clear separation of functionality.
The benefits of smaller microservices are improved agility, faster development cycles, and
easier deployment, as well as easier scaling and better fault tolerance.

Bounded context is a key concept i n Domain-Dr iven Design (DDD) that refers to the
idea of defining explicit boundaries around a part icular domain or subdomain of an appl i
cation. The idea is to create a clear separation of concerns between different parts of the
appl icat ion, and to define explicit boundaries and interfaces between them. A bounded
context defines the scope of a microservice, which represents a specific business capabi l i ty
or functionality. Each microservice should have a clear and well-defined bounded context,
which helps to ensure that it has a clearly defined purpose, and that it has a clear under
standing of the data and behavior that it needs to manage. B y defining bounded contexts,
developers can design microservices that are highly cohesive and loosely coupled, which
helps to minimize dependencies between services and makes it easier to manage and evolve
the appl icat ion over time. Th is approach also enables teams to work more independently
and w i th greater autonomy, since each team can focus on a specific bounded context without
needing to coordinate w i th other teams.

Independency, which refers to the abi l i ty of each microservice to function independently
w i th m in ima l dependencies on other services or components, represents another important
concept. This means that each microservice should have a clear and well-defined purpose,
and should be able to operate autonomously, without needing to rely on other services or
components for its functionality. Th is does not mean that the microservices can not have
any dependencies but the communicat ion to other services should be through well-defined
interfaces and ideally loosely coupled.

14

After establishing the main differences, the key characteristics can be summarized into
the following:

1. F lex ib i l i t y - A system is able to keep up w i th the ever-changing business environment
and is able to support a l l modifications that are necessary for an organisation to stay
competitive on the market

2. Modu lar i t y - A system is composed of isolated components where each component
contributes to the overall system behaviour rather than having a single component
that offers ful l functionality

3. Evo lu t i on - A system should stay maintainable while constantly evolving and adding
new features

3 .4 .1 I m p a c t o n q u a l i t y a n d m a n a g e m e n t

To better grasp the impact that microservices have, it is necessary to look at the qual i ty of
the underly ing system.

The availabi l i ty and rel iabi l i ty of microservices [45] is a major concern since they are
distr ibuted across different systems. Avai labi l i ty can be impacted by network failures,
hardware failures, or software bugs. However, microservices offer several advantages that
can improve availability. B y breaking down the system into smaller services, each service
can be scaled independently, al lowing for better resource al location and fault isolation.
Addit ional ly , since services are loosely coupled, failures in one service w i l l not affect the
availabil ity of other services

Since microservices are designed to be loosely coupled, this results i n the fact that the
services are designed to have m in ima l dependencies on one another. Th is feature enhances
the maintainabi l i ty of a system by reducing the cost of modifying services, f ixing errors,
or adding new functionality. However, it is s t i l l possible to compromise maintainabi l i ty
by wr i t ing complex and messy code. To address this issue, the „you bu i ld it , you run i t "
principle has emerged as an addit ional means of promoting maintainabi l i ty in microservices.
Th is principle emphasizes the responsibil ity of ind iv idua l teams to bui ld and run their
services, which fosters a deeper understanding of each service's business capabilit ies and
roles. B y increasing v is ibi l i ty and accountability, this principle can help to ensure that the
services remain maintainable and scalable over time.

The performance of microservices can vary depending on several factors, inc luding the
specific implementation, the number of services, and the communicat ion protocols used.
Wh i l e in-memory calls are much faster than sending messages over the network, the promi
nent factor that negatively impacts performance in the microservices architecture is com
municat ion over a network. Th is is due to the network latency being much greater than
that of memory. In addit ion, restrictions on the size of microservices indirect ly contribute
to the performance degradation by increasing the ratio of messages sent over the network
compared to in-memory calls. Therefore, proper p lanning and A P I design are crucia l to
min imiz ing the amount of communicat ion over the network and achieving opt imal perfor
mance. Systems w i th well-bounded contexts and fewer connections between services w i l l
experience less degradation due to looser coupling and fewer messages sent. W h e n de
signed and implemented correctly, microservices can offer superior performance compared
to monol i thic architectures by al lowing services to be scaled independently.

Due to the independent nature of each component in a microservices architecture, it
becomes possible to test each component separately, which greatly enhances the testabil ity

15

of ind iv idua l components as compared to a monol i thic architecture. Addit ional ly , this
isolation allows for a more focused testing scope, which can be adjusted based on the
size of changes made. W i t h microservices, it is possible to isolate parts of the system
that have undergone changes and test them independently from the rest of the system.
However, integration testing can become challenging, especially i n a large system w i th
mult iple connections between components. A l though each service can be tested separately,
interactions between mult iple services can lead to anomalies.

16

Chapter 4

Cloud component patterns

In this chapter we w i l l look at what type of situations can be encountered in the cloud
and how they can be solved. These are mostly very specific problems that are handled
w i th special components. F rom problems w i th balancing workloads, to different opt ion of
storage solutions, different database solutions, mult iple choice for forms of communications
and finally different ways of managing and monitor ing a l l these solutions.

4.1 C l o u d W o r k l o a d s

One of the major incentives for moving to cloud based solutions is the option to manage
workloads. Work load management is a major part as it influences the scaling of the ap
pl icat ion. According to the workloads, the resources are provisioned or decommissioned
to the needs of the appl icat ion. This is done to ensure the increase capacity (concurrent
users) and rel iabi l i ty of applications. It also used to save cost on resource in case of lower
workloads dur ing non-peak hours.

S t a t i c w o r k l o a d

Static workload [18] is a type of workload that is characterised by a nearly constant demands
over a period of t ime. As such, there is no need to adjust the required resources and the
resources are acquired in advance.

In ideal scenarios static workload is much better than elastic workload as there are the
following benefits:

• Predictabi l i ty - static workloads are more predictable than dynamic workloads, which
makes it easier to p lan and allocate resources to handle them. Th is can help to improve
the efficiency and rel iabi l i ty of the cloud computing environment.

• Cost-effectiveness - static workloads do not require frequent changes to resource allo
cation, they can often be handled w i th a fixed set of resources. Th is can help to reduce
costs and improve the overall cost-effectiveness of the cloud comput ing environment.

• Re l iab i l i ty - static workloads are more predictable, so they can be more easily man
aged and maintained. This can help to improve the overall rel iabi l i ty and upt ime of
the cloud comput ing environment.

17

E l a s t i c w o r k l o a d

Elast ic workloads [24] [32] are the most common type of workloads and they are tasks
or applications that are expected to change frequently. To handle this type of workload
reliably, the abi l i ty to dynamical ly and automatical ly scale up or down the amount of
computing resources used based on the current and anticipated demand is needed. This
allows applications to quickly and easily adjust their resources to meet changing demands.
B y their nature, elastic workloads are harder to manage than static workloads. The main
advantage of elastic workload is that not many applications can depend on static workload
in the real world. A s such, being able to dynamical ly adjust the resources can decrease
the energy consumption and be more cost effective while being able to provide the quality
similar to appl icat ion that expect static workloads. The workload w i l l be div ided into 2
main types. Workloads that are predictable are usually about events that are known but
it is unsure how many resources the appl icat ion requires. The other type is unpredictable
workloads, where the need to scale up and down dynamical ly is needed.

P r e d i c t a b l e w o r k l o a d s

Predictable workload changes [18] are periodic workload and are a very common in the
real world (i.e. weekly status reports, rush hour, periodical ly scheduled task, e tc .) . These
types of periodic tasks and routines occur in nearly a l l system and having a model allowing
the decommissioning of resources dur ing non-peak times can increase the cost effectiveness
of the appl icat ion. A special type of periodic workflow are once in a life t ime workloads
that have peaks in big t ime intervals and are usual ly correlated to certain events or tasks.
Continuously changing workloads [34] are usual i n applications that experience steady con
tinuous growth or decline. These changes are usually based on historic data or knowledge
about the appl icat ion and as such provision or decommission resources is done w i th the
same rate as the workload changes are expected.

U n p r e d i c t a b l e W o r k l o a d changes

Unpredictable workloads [18] are based on unexpected increases or decreases in traffic to
the appl icat ion. Unplanned provisioning and decommissioning of I T resources is required to
provide an uninterrupted and reliable service. The necessary provisioning and decommis
sioning of resources is, therefore, automated to al ign the resource numbers to the changing
workload. One main factor for unpredictable is the t ime needed for resource provisioning.
Provis ioning of resources may take up to several minutes as such unpredictable changes
may have certain bottlenecks t i l l the resources are available. The same applies to decom
missioning resources when they are no longer needed.

L o a d ba l ance r

Load balancers [20] are ideal components to deal w i th problems regarding workloads. For
mal ly defined load balancing is the process of d is tr ibut ing a set of tasks over a set of
resources, w i th the a im of making their overall processing more efficient. Load balancing
can optimize the response t ime and avoid unevenly overloading some compute nodes while
other compute nodes are left idle. There are many existing a lgor i thm for load balancing
and they require metrics so they can be applied correctly. The metrics w i l l be div ided into
the following ones:

18

Elastic Scaling

Time
Experienced Workload IT Resources

Time

-a
to
o

Periodic scaling

Time

Predicted Workload

•o
as
o

Ö

Once in a life time scaling

Time

Experienced Workload IT Resources

Figure 4.1: Workload used for traffic in static and elastic scaling [18]

Throughput - this metric is used to calculate the number of processes completed per
unit time.

Response t ime - it measures the tota l t ime that the system takes to serve a submitted
task.

Makespan - it is used to calculate the max imum completion t ime or the t ime when
the resources are allocated to a user.

Scalabi l i ty - it is the abi l i ty of an algor i thm to perform uniform load balancing in the
system according to the requirements upon increasing the number of nodes.

Fault tolerance - it determines the capabi l i ty of the a lgor i thm to perform load bal
ancing in the event of some failures in some nodes.

Migra t ion t ime - the amount of t ime required to transfer a task from an overloaded
node to an under-loaded one

19

• Energy consumption - it calculates the amount of energy consumed by a l l nodes.
Load balancing helps to avoid overheating and therefore reducing energy usage by
balancing the load across a l l the nodes.

There are many options for existing solutions on how to handle load balancing. There
is going to be a deeper investigation into the following one:

• Na tura l Phenomena-Based Load Balanc ing [20] - several load balancing strategies
that are inspired by natura l phenomena or biological behavior, for example, Ant -
Colony, Honey-Bee, and Genetic algorithms.

• Agent-Based Load Balanc ing agent [20] - the dynamic nature of cloud computing is
suitable for agent-based techniques. A n agent is a piece of software that functions
automatical ly and continuously decides for itself and figures out what needs to be
done to satisfy its design objectives. A multi-agent system comprises a number of
agents, which interact w i th each other. To be successful, the agents have to able to
cooperate, coordinate and negotiate w i th each other. Cooperat ion is the process of
working together, coordination is the process of reaching a state i n which their actions
are well suited, and in negotiation process, some parameters are agreed.

• General load balancing technique [20] - these load balancers include algorithms for
F i rs t - In-F i rs t -Out (F IFO) , M i n - M i n , M a x - M i n , Throt t led , and Equa l l y Spread Cur
rent Execut ion Load.

In the cloud environment, the load balancers may have many different responsibilities.
Some may just distr ibute the load while others can also change the amount of provisioned
resources. The load balancers that can also change the resources provisioned w i l l be refered
to as elastic load balancers. A n elastic load balancer [27] is a management component that
is provided w i th information from a load balancer that spreads out synchronous requests
from human users or other appl icat ion components among mult iple component instances.
Based on the number of d istr ibuted requests and possibly other ut i l i zat ion information,
the required number of required component instances is determined. W h e n determined,
the necessary provisioning or decommissioning operations to reflect this number in the
appl icat ion are executed. The elastic load balancer invokes these operations provided by
the interface of the elastic infrastructure or the elastic platform. A pract ica l implementat ion
of this is i n Kubernetes the Hor izontalPodAutoscaler (HPA) , which handles the scaling of
the pods.

4.2 D a t a storage

Data storage is one of the more popular usages of c loud environments. The incentive to
move data to c loud storage is first from an availabi l i ty standpoint, where the data can be
accessed as long as there is a working connection to the cloud storage. Another incentive
is if publ ic c loud providers are used w i th their existing solutions, then there is no need to
invest into on-premise architecture, which is not only a cost saving but also simplifies the
maintenance of the storage and possible future expansion if needed. The main advantages
that the cloud storage provides is a large pool of storage, w i th three significant attributes:
access v ia Web services A P I s on a non persistent network connection, immediate avai labi l i ty
of very large quantities of storage, and pay for what you use. It supports rap id scalability.

20

The following sections w i l l dive into the different storage types and when they should be
used.

F i l e S to rage

Fi le storage [18] is a hierarchical storage system in the cloud that provides shared access
to files. M a n y applications need to access shared files and require a file system. Th is type
of storage is often supported w i th a network-attached storage (NAS) server. Some of the
available solution by vendors are Amazon E F S , Azure Fi les.

B l o c k S torage

Block storage [29] [30] offers v i r tua l hard drives as IaaS often used for v i r tua l servers offered
in an elastic infrastructure. Storage in such services is organised as blocks. This emulates
the type of behaviour seen in tradi t ional disks or tape storage through storage v ir tual izat ion.
Blocks are identified by an arbi trary and assigned identifier by which they may be stored
and retrieved, but this has no obvious meaning in terms of files or documents. One of the
few options to differentiate files is to separate the block storage into volumes. In cloud,
there is usually a block storage system which serves as a middleware layer that accesses
the stored files. These systems usual ly handle load balancing, cache efficiency, and storage
cluster management. Some of the existing solutions by vendors are Amazon Elast ic Block
Store, Azure Disk Storage, Persistent Disk.

Instance stores are another form of cloud-hosted block-level storage. They are best used
for temporary storage such as caching or temporary files, w i th persistent storage held on a
different type of server.

O b j e c t S to rage

Object storage [6] is a data storage architecture that can store large unstructured data. This
includes videos, photos, web pages, audio files, sensor data, and other types of web content.
Objects are discrete units of data that are stored in a structural ly flat data environment.
There are no folders, directories, or complex hierarchies as i n a file-based system. Every
objects consists of data, metadata that describes the object and a unique ID that is used to
locate the object. Th is flat architecture removes some issue of complexity and scalabil ity
that exists in standard hierarchical file systems. Current available solution for object stores
include Amazon S3, Google C l o u d Store (GCS) , Swift and M i n l O .

4.3 Database options

Database is an organized collection of data. Th is data is either structured and then it is
most l ikely better to use a relational database, or it is semi-structured/unstructured where
the N o S Q L databases are more l ikely to be used. Wh i l e the standard S Q L types are more
r ig id due to the A C I D principle and their requirement for consistency, N o S Q L databases
are ideal for cloud environments as they already have characteristics that are similar. F i rs t ,
we w i l l look at the C A P theorem that describes the ways we can handle distr ibuted data.
Th is is important for N o S Q L as they can be eventually consistent.

The C A P theorem [8] [36] states that any distr ibuted data store can provide only two
of the following three guarantees:

21

1. Consistency - every read receives the most recent write or an error.

2. Avai labi l i ty - every request receives a (non-error) response, without the guarantee
that it contains the most recent write.

3. Par t i t i on tolerance - the system continues to operate despite an arbitrary number of
messages being dropped (or delayed) by the network between nodes.

W h e n a network part i t ion failure happens, it must be decided whether to cancel the opera
t ion and thus decrease the avai labi l i ty but ensure consistency or proceed w i th the operation
and thus provide avai labi l i ty but risk inconsistency.

N o S Q L

A N o S Q L (not only SQL) [21] database is used to store and retrieve data in other format
than tradi t ional relational databases. Nowadays N o S Q L is used as an umbrel la term for
unstructured or semi-structured databases. A s such we usual ly look for certain character
istics that they need to fulfil l. These characteristics are simple and flexible non-relational
data models, abi l i ty to scale horizontally, provide high availability, usual ly they do not sup
port A C I D principles and are B A S E systems (Basical ly Available, Soft state, Eventual ly
consistent) [11]. These characteristics make N o S Q L data stores especially suitable for use
in c loud environments.

Key-value database [25] is a type of N o S Q L database that is commonly used in cloud en
vironments. In a key-value store, data is organized and accessed using unique keys, and each
key is associated w i th a corresponding value. Key-value storage is simple and efficient, and
it is often used for high-speed, high-volume data access and retrieval. Document databases
(Document Oriented Database) are a type of N o S Q L database where the underly ing storage
structure used is a 'document'. Each Document Store differs i n its implementation of data,
however every solution assumes that data is enclosed and encoded in some standard format
which may be X M L , B S O N , P D F , J S O N or other standard formats. Each document is
represented by a unique key which is a str ing (UR I or path). A n A P I or a query language
is provided for fast retrieval of documents on the basis of its content (e.g. a query that
retrieves a l l the documents in which certain field is set to some part icular value).

Other types of N o S Q L databases include G r a p h Database, C o l u m n Oriented Databases,
Mul t id imens iona l Databases but we w i l l not analyze a l l of them.

Some of the key advantages and features of N o S Q L databases in the cloud are:

• H igh performance - N o S Q L databases are designed for fast, efficient data access and
retrieval. This makes them ideal for applications that need to process large amounts
of data quickly, such as real-time analytics, search, and caching.

• Simple and flexible data model - most N o S Q L databases use a model, which makes
it easy to store, manage, and access data. This allows users to easily add, update,
and retrieve data using unique keys, without the need for complex schemas or data
structures.

• Scalabi l i ty - N o S Q L databases can be easily scaled up and down as needed, making
it suitable for applications that require high availabi l i ty and scalability. Th i s can
be useful i n cloud environments, where resources are often shared and allocated on
demand.

22

• Fault tolerance - N o S Q L databases are often designed to be fault-tolerant, w i th bui l t-
in mechanisms for data replication, backup, and recovery. Th is can help protect
against data loss and downtime in the event of hardware or software failures.

R e l a t i o n a l D a t a b a s e

In relational database [25] [23] [13], data elements are stored in tables where each column
represents an attr ibute of a data element w i th a well-defined semantic. These attributes
may be used in data queries to make them more expressive. Furthermore,table columns
may have dependencies in the way that entries i n one table co lumn must also be present
in a corresponding co lumn of a different table. These dependencies are enforced dur ing a l l
data manipulat ions. Another core functionality is part i t ioning to allow better scalability.
Database part i t ioning serves for two purposes: to scale a single database to mult iple nodes,
useful when the load exceeds the capacity of a single machine, and to enable more granular
placement and load balance on the back-end machines compared to placing entire databases.

The database can be realised directly on top of an IaaS cloud and are provided by the
cloud prov ider (Amazon E C 2) . It can also be realised in the PaaS c loud(Amazon Relat ional
Database Service, Microsoft S Q L Azure). Another opt ion is to use it as SaaS (PostgreSQL).
Wh i l e IaaS allows to better configure more details, SaaS makes it easier to use the database
out of the box, but can have problems w i th configurability.

4.4 C l o u d communica t ion

This chapter w i l l focus on the most common communicat ion types that are used between
applications. The most common one is the R E S T interface which can provide us w i th syn
chronous or asynchronous communicat ion. The main focus w i l l be on synchronous R E S T ,
as for asynchronous, there are other options available for asynchronous communicat ion
type. The difference between synchronous and asynchronous communicat ion is not as im
portant to showcase R E S T . A good solution to showcase asynchronous implementat ion are
Message-oriented Middleware (M O M) which are based on a message provider and a message
consumer.

R E S T

R E S T [19] [28] is an architectural style for designing distr ibuted, scalable systems. R E S T
is often used in cloud comput ing to provide AP I s , or appl icat ion programming interfaces,
that allow applications and services to communicate and exchange data over the internet.
Despite that, there are some disadvantages that the R E S T design has that are more visible
in c loud environments. They can sometimes be inflexible and fragile. That is most seen
in cases where there are needed modifications to already implemented use cases. Th is can
make it less adaptable and scalable compared to other approaches in some cases.

Message - o r i en t ed m i d d l e w a r e

Message-oriented middleware [17] [14] (M O M) is a type of software that is used to facilitate
communicat ion and data exchange between different applications and services in a cloud
environment. M O M allows applications and services to send and receive messages asyn
chronously, without the need for direct connections or interactions between them. This

23

makes it easier to bu i ld complex, distr ibuted systems that can scale and adapt to changing
workloads and requirements.

One common use case for M O M in the cloud is to decouple different components of
a system. For example, a cloud-based e-commerce plat form might use M O M to separate
the front-end user interface from the back-end services that handle inventory management,
payment processing, and order fulfillment. This allows each component to operate inde
pendently and asynchronously, which makes the system more resilient and scalable.

Another use case for M O M in the cloud is to enable real-time data processing and event-
driven architectures. For example, a cloud-based social media platform might use M O M
to process and analyze incoming data from user posts and interactions in real t ime. This
allows the platform to generate insights, make recommendations, and take actions based
on the data, without the need for batch processing or long delays.

In addi t ion to these use cases, M O M can also be used in the cloud to support messag
ing patterns such as publish/subscribe, request/response, and point-to-point. Th is allows
applications and services to send and receive messages using different communicat ion styles
and protocols, which can be useful i n a variety of scenarios. There are also many possibilities
on how to consume messages [18].

1. Exact ly-once delivery - i n this delivery type, there are no duplicate messages. Th is is
because the consumers are not idempotent. To solve this upon creation of messages,
each message is associated w i th a unique message identifier. Th is identifier is used to
filter message duplicates dur ing their traversal from sender to receiver.

2. At-least-once delivery - i n this delivery type, there is no need to care about the dupl i
cation of messages and therefore it shal l s t i l l be ensured that messages are received.

3. Timeout-based delivery - in this delivery type, the message is not removed from the
queue right after the client receives it . If a message is properly received, it is not
deleted immediately after it has been read by a client, but is only marked as being
invisible. In this state, a message may not be read by another client. After a client
has successfully processed the message, it sends an acknowledgement to the message
queue and upon reception, the message is deleted.

4. Transaction-based delivery - i n this delivery format the queue participates i n a trans
action. A l l operations involved in the reception of a message are, therefore, performed
under one transact ional context guaranteeing A C I D behavior.

Depending on the solution that is used, different terminology can be used. The focus
w i l l be mainly on R a b b i t M Q [3] as it is the message broker that is used in the demo
appl icat ion. The terminology that is recommended by the developers of R a b b i t M Q wi l l
be used and explained. In this context, producing means nothing more than sending. A
program that sends messages is a producer. A queue is the name for the post box where the
data is sent. A l though messages flow through applications, they can only be stored inside
a queue. A queue is only bound by the host's memory and disk l imits and it is essentially a
large message buffer. M a n y producers can send messages that go to one queue, and many
consumers can try to receive data from one queue. Consuming has a similar meaning to
receiving. A consumer is a program that mostly waits to receive messages. Note that the
producer, consumer, and broker do not have to reside on the same host. Th is is the case
in most applications. A n appl icat ion can be both a producer and consumer.

24

From the design of the message-oriented middleware, the following features that are
useful for c loud environment are expected:

• Asynchronous - allows applications and services to send and receive messages asyn
chronously, without the need for direct connections or interactions between them.
This makes it easier to bu i ld complex, distr ibuted systems that can scale and adapt
to changing workloads and requirements.

• Decoupl ing - can be used to decouple different components of a system, al lowing them
to operate independently and asynchronously. This makes the system more resilient
and scalable, and it allows each component to evolve and be updated without affecting
the others.

• Real-t ime processing - enables real-time data processing and event-driven architec
tures, al lowing systems to generate insights, make recommendations, and take actions
based on incoming data in real t ime. This can be useful in a variety of scenarios, such
as social media, e-commerce, and IoT.

• F lex ib i l i t y - allows applications and services to use different messaging patterns and
protocols, such as publish/subscribe, request/response, and point-to-point. This
makes the system more flexible and adaptable, and it allows different components
to communicate in the way that is most appropriate for each scenario.

• Scalabi l i ty - support large volumes of messages and high concurrency, making it easier
to bu i ld systems that can scale up and down as needed. This can be useful in cloud
environments, where resources are often shared and allocated on demand.

The different models of delivery and the inner workings from a high level point of view
can be seen in figure 4.2.

4.5 M u l t i t e n a n c y patterns

In cloud computing, mult i tenancy [44] [12] means that mult iple customers of a cloud vendor
are using the same comput ing resources. Despite the fact that they share resources, cloud
customers are not aware of each other, and their data is kept total ly separate. Mul t i t e
nancy is a crucia l component of c loud computing as the only proper way to not allow any
way for mult i tenancy to exist would be resource sharing. D a t a mult i-tenancy is the most
explored approach under multitenancy, and is often implemented on top of a database.
There are three main approaches for data management in a mult itenant deployment: sep
arate databases, shared database w i th separate schemas and shared database w i th shared
schemas. Aside from these, there can also be mul t i tenant behaviour on middleware. This
comes comes w i th a big security issue as is described in [4] where this approach leads to
many security issues identified by security experts. Altogether, there are three types of
components that can exist i n mu l t i tenant environment as defined in [18]:

• Dedicated components - some also called single tenant because in this approach,
components are specifically developed to be used by different tenants. They ensure
isolation between tenants by control l ing tenant access, processing performance used,
and separation of stored data. It also allows for the most customizabi l i ty options as
are no dependencies on the behaviour of other tenants.

25

Message-or ien ted M i d d l e w a r e

Route

Transform

•
•

=1

Exnctty-once At-tevst-once
Delivery Delivery

Transaction-based Timenut based
Delivery Delivery

Figure 4.2: Message oriented middle w i th standard components and message processing
types. [18]

• Tenant-isolated - this type of component allows to share resources of components
while completely separating the logic of tenants. Th is causes dupl ic i ty dur ing the
implementation and harder maintenance but allows resource sharing.

• Shared Component - these components are used by a l l tenants but the logic of the
component handles tenant specific behaviour. This model is most prone to security
issues but also provides very good resource management.

4.6 C l o u d management

The following section w i l l focus on patterns that are used i n management to deploy moni
tor and manage deployed solutions in a cloud environment [39]. Patterns of this category
describe how management functionality can be integrated w i th components providing ap
pl icat ion functionality. We w i l l operate on the assumption that there exists a container
management systems and analyse the characteristics of such system. F i rs t , we need to
define the problem that these systems address. A s containerisation had a big increase in re
cent types, it d id come w i th an increase in complexity. W i t h different types of architectures
and solutions, there came a need to properly deploy, manage and monitor these resources.
We w i l l analyze the problems one by one and provide solutions to them.

R e s o u r c e u t i l i z a t i o n a n d p e r f o r m a n c e

Resource profi l ing [47] is needed to monitor the state of the cloud. To be effective, resource
management needs to achieve an appropriate balance between adjusting resource allocations
in response to detected changes in demand, and adjusting resource allocations in response
to predicted demand, w i th predictions typical ly being based on historical measurements.

26

This is done by first collecting metrics from the environment (i.e. C P U usage, memory
usage, etc..) and their analysis. Afterwards, there are defined procedures on how to handle
these situations and whether to provision or decommission resources. This management
of resources allows us to better uti l ize resource for appl icat ion that needs them, which in
returns increases performance. The solution for this is to have a standardized monitor ing
system which monitors whether a container is running or not. As ide from that, there is a
need to monitor the resource usage for each component. Th is is i n most cases not a problem
and each container has its C P U and memory statistics.

A u t o m a t i o n a n d o r c h e s t r a t i o n

Container orchestration [10] is a method that allows cloud and appl icat ion providers to
specify how to choose, deploy, monitor, and dynamical ly manage the configuration of mul t i -
container packaged applications in the cloud. Dur ing runtime, container orchestration han
dles the deployment, execution, and maintenance phases. Typical ly, container orchestrators
provide several key features, inc luding resource l imi t control, scheduling, load balancing,
health check, fault tolerance, and autoscaling. B y using resource l imi t control, providers
can reserve a specific amount of C P U and memory for each container, which can be used
to make scheduling decisions and prevent interference among containers. Container man
agers provide A P I s that l imi t the amount of memory and C P U used and the specific C P U ,
which leverages the resource l imit control features. However, while a container can con
sume a l l available resources on the under ly ing system, container managers set restrictions
on resource ut i l i zat ion. There are many actions the orchestrations can do.

The scheduling feature in container orchestration determines how many containers
should be placed on part icular nodes based on resource constraints or node affinity More
advanced schedulers can be integrated as external components. Load balancing is respon
sible for d is tr ibut ing the workload among mult iple container instances. The default pol icy
is usually round-robin, but more complex policies can be implemented using external load
balancers. Hea l th checks are used to ensure that a container is able to handle requests, and
they typical ly involve checking T C P / U D P / S S H ports for connectivity and H T T P requests
for proper response.

Fault tolerance i n container orchestration can be achieved through two main methods:
replica control and high availabi l i ty control.

• Repl ica control involves maintaining a specified number of container replicas. Hea l th
checks are used to identify any faulty containers, which are then destroyed and re
placed w i th new instances to mainta in the desired number of replicas.

• H igh availabi l i ty control refers to the abi l i ty of a system to continue operating even in
the event of hardware or software failures. Th i s can be achieved through techniques
such as load balancing, automatic failover, and data replication.

Autoscal ing allows to automatical ly add and remove containers. The implemented pol i
cies are threshold based (on C P U and memory uti l ization) but in some cases it is possible
to plug-in more sophisticated autoscaler or to define custom autoscaling policies.

Avai labi l i ty controllers provide the capabi l i ty to set up several orchestration managers
to have continuous control over the appl icat ion, in the event of a failure or overload of an
orchestrator node. The same method used to create high availabi l i ty controllers can also
be ut i l ized for bui ld ing scalable controllers.

27

S e c u r i t y

Cloud security [43] is a shared responsibil ity w i th your cloud service provider. C l o u d man
agement plays a very active role in protecting your data, applications, and services i n cloud
environments. To establish a secure appl icat ion, a proper authentication method must be
provided. Th i s could be achieved by having an authorizat ion server w i th which a l l compo
nents communicate or is used for at least the login val idation. Leading cloud management
tools offer machine-learning capabilities for robust threat intelligence and detection and
help streamline security monitor ing and processes. There are many security issues that
come w i th cloud solutions.

One of them is the separation of data storage. Wh i l e it is more cost effective to not
have on-premise infrastructure, the removal also means a lack of control and inabi l i ty to
verify the security. Th is requires the customer to have full trust that the cloud provider is
providing measures to ensure the safety of the data physical ly and also prevents data leaks.
There are many more security issues as can be seen in table 4.1.

Security Topic Security issues

V M s image management
Cryptographic overhead due to large size images
V M s theft and malicious code injection
Overlooked image repositor

V i r t u a l machine monitor

Hypervisor failure, single point of failure
Un-trusted V M M components
Transparency of V M M
Lack of monitor G U I
V M M separation, inspection, and interposit ion

Network v i r tua l i zat ion
Twofold traffic, l imi ted network access,
inappl icabi l i ty of standard security mechanisms

Mob i l i t y

Packet sniffing and spoofing
V M cloning
V M mobi l i ty
Generat ion of unt ru th configurations

Issues in v i r tua l machine

Side-channel attack
V M data extraction
F i l t r a t i on attack
Memory dedupl icat ion

Malware
Spreading of malware onto V M s
Metamorphic engines

Table 4.1: L ist of possible of the vulnerabil it ies i n cloud. [43]

4.7 Diagrams

There is no universally accepted standard for representing microservices i n diagrams, and
different organizations may use different approaches depending on their specific needs and
preferences. One standard that is used is based on the diagrams from A W S and one custom
box like diagram where the microservices w i l l be represented w i th boxes which contain their
names.

28

Addit ional ly , microservices architecture is highly modular and dynamic, w i th services
being added, removed, and modified frequently. This means that any diagram representing
a microservices architecture must be able to adapt to changes in the system over t ime. The
definitions of the custom diagrams are i n the following figure 4.3. For the A W S diagram,
there is an official documentation where the components are described.

Symbol

The arrows indicate the
connection between

services and which way the
communication happens

(<name>

Represent a relational
database

Description

Represent a queue inside
rabbitMQ. The name is the

queue name

Represent a relational
database

Symbol

<MS name>

RabbitMQ

Description

The white box represent
stateless microservice with

their name being written
inside the box

The orange box is used to
represent rabbitMQ. As we

did not implement it and
are mostly interested in the

queue

Represent the object
storage. In our case that

will be minIO

Figure 4.3: Legend of diagram components that are used in design.

2 9

Chapter 5

Demo appl icat ion Design

The focus of this chapter w i l l be on design of an appl icat ion taking into account the patterns
that were mentioned in the previous chapters 3 and 4. In order to do that, it is first needed
to establish what our demo appl icat ion should do and what behaviour do we expect. The
appl icat ion w i l l be used by different users to save files to the cloud. The users w i l l be able
to save files, delete files or share their existing files w i th other users. W h e n they share their
file, the user that they shared it w i th w i l l be notified about i t . Users w i l l be periodical ly
bi l led for the provided service.

This is the main functionality that the appl icat ion should provide. Some of the imple
mentation w i l l not be done(e.g. actual emai l sending for notif ication or bil l ing) as it does
not necessarily add anything to the verification of the patterns. W i t h that in mind , there
are 2 designs that are created. The first design does not use any of the services provided
by the provider. B y services are meant FaaS 2.1 or SaaS 2.1. On ly IaaS 2.1 or PaaS 2.1
wi l l be used. Th is can be seen in the figure 5.1.

Billing User management

RabbitMQ

I Notifications

File management

Notifications

>̂ File metadata

minIO

Figure 5.1: Design of demo appl icat ion

30

The second design w i l l use some of the services that A W S provides. Main ly , the storage
solution w i l l be swapped to S3 and the message broker to A m a z o n M Q . This is done to see
the impact of removing these services from the node. The design can be seen in the figure
5.2.

Figure 5.2: A W S design

The following sections w i l l go through the design process and explain the reasoning
behind each component.

F i l e s torage

The first design was based on what was needed to be done regarding the actual files. The
design was done under the assumption that the data consists of smaller files (up to 5Mb) ,
as they can be kept in memory before sending them to the object storage. If the files were
bigger, there would be a different approach used, where the component would become a
stateful one, which would enable the files to be saved to a file storage that is mapped to the
component. This would allow the download to resume in cases where there is interference
that causes the transfer to crash. In case this would not be performed, the user would
have to upload the same file from the beginning. Another reason is that i f each file were
of bigger size (at least 1GB) , there would a problem to load them into the memory a l l at
once. Th is would also add another level of complexity where the part ia l ly uploaded file
would need to be handled in case where the user does not resume the upload. A s the plan
is to handle smaller file sizes, the opt ion for par t ia l updates is not as cr i t ica l since the

31

chance that the transfer fails is smaller and even if it fails, the time required for uploading
is small . The storage type that w i l l be used is object storage 4.2 as there is no need for the
complexity of the standard file storage and no use for the advantages of the block storage
that works better w i th big files and a lower volume of data. W i t h a l l of this established, a
file management component was created. This component would handle the upload of files
and update the metadata for files.

File management

RabbitMQ

f . (\
M Tile metadata 1 J File metadata

PostgreSQL

minIO

Figure 5.3: Architecture of the storage solution

U s e r m a n a g e m e n t

The second challenge of the appl icat ion is how to handle users. W h e n it comes to the
management of users, we need to establish the complexity between changing the permissions
and sharing files for users. There are 3 approaches possible that were specified in the section
4.5 for multitenant system.

1. In the first approach, we w i l l be to have a database w i th separate schemas that
w i l l handle access per tenant. Th is w i l l reduce the resources but make for a more
complicated design as we need separate queries and access to schemas.

2. In the second approach, we w i l l use separate databases. The expectation is to see an
increase in resources ut i l i zat ion as more instances are active.

3. The last approach w i l l be to have shared schemas but have a tenant identifier i n the
tables schema.

In the appl icat ion, there is no need to differentiate between tenant. However, a solution
that experiments w i th this w i l l also be tr ied. For testing purpose, it w i l l be slightly read
justed so that it is testable. A s such, the best approach is to choose the last approach. If
sign-in w i th external sources like google, twitter or facebook is included, then it would be
better to use one of the other approaches as they would have different models that are used
for authenticat ion. These approaches do not transfer the user name and password, instead
they use a securely transferred code that is based on your account.

Aside from the multitenant use case that we can show on the user management, it w i l l
also serve as the microservice where the scaling w i l l be the most verified. The reason for
that is that it interacts or provides data to many other services so if this microservice has
some problems, there is a higher chance to see it propagate to other microservices.

32

Database tenant separation by Schemas and shared
components

User
management

LoadBalancer

User schema

Database separation and dedicated components

User
management

LoadBalancer

User
management

LoadBalancer

Figure 5.4: M u l t i tenant solutions. Left we have shared appl icat ion logic and schema based
D B , right is dedicated components and D B isolation, the approach for shared component
and shared database w i th tenant identif ication field is not displayed

D a t a b a s e s o l u t i o n

Another part of the appl icat ion is the database. The relat ional database w i l l not be that
different from how it is normal ly used. A load balancer is attached to the database which
w i l l send the requests to the correct databases. One of the important things is to divide the
replicas of the database into read only and read/write databases. If this divis ion is used,
it improves the load on the databases. W i t h this, one database replica becomes the source
of t ru th while the other two w i l l get the data from the main write database.

C o m m u n i c a t i o n b e tween serv ices

Another challenge that needs to be solved is how the microservices w i l l communicate w i th
each other. There are 2 ma in types that w i l l be used: synchronous and asynchronous
communicat ion. Synchronous communicat ion w i l l be performed using restful A P I s and
asynchronous communicat ion is done using the message broker.

Server less

Serverless w i l l be i n an interesting posit ion as its main purpose would be evaluating the
changed load on the cloud after removing certain components. The components that w i l l be
analyzed are the storage where the A W S S 3 object storage is used as a substitute for M i n l O .
Another component w i l l be message broker where A m a z o n M Q substitutes the R a b b i t M Q
but only part ia l ly as the R a b b i t M Q implementat ion that A m a z o n M Q provides is used.

3 3

Chapter 6

Implementation

In this chapter, we w i l l go into the actual code implementation, show how the code looks
like to create the needed services and how it is a l l configured. We wi l l separate this first
into components and establish what they should contain and then go into each microservice
and how the used components are needed and ut i l ized there. In the microservice part, the
behaviour that is expected from each microservice is defined. Moreover, the interfaces that
they provide are l isted to further show what resources w i l l be used.

6.1 Components implementat ion

The following section w i l l describe the basic configuration needed to realize the patterns
mentioned i n chapter 3 . We w i l l go through the implementat ion in Kubernetes and it w i l l
be explained what each field is used for.

6 .1 .1 L o a d ba l ance r s/Se r v i c e s

The service is used as a separation layer, between the pods and the rest of the environment,
which manages the traffic. This allows pods to be created dynamical ly w i th different names
while a l l other microservices communicate w i th the pods through the service. The service
layer can also be used as the load-balancer which handles the incoming traffic to the pods.
W i t h this, it is made sure that a l l applications can only see the service and not the pods.
It also allows us to efficiently handle dynamic scale-up/scale-down as the service handles
al l the traffic and knows where the pods are. The following is a basic template for a service
in Kubernetes.

apiVersion: v l

kind: Service

metadata:

name: <service-name>

spec:

selector:

app: <service_selector>

ports:

- name: http

port: <container_port>

3 4

targetPort: <target_port>

type: <service_type>

The spec section defines the specifications for the Service resource. The selector section
specifies the label selector for the Service resource, which is set to match pods w i th labels
app: <service_selector>. This selector is used to associate the Service resource w i th the
pods that provide the service.

The ports section defines the port on which the service listens and which port it exposes.
There are 2 values the name identif ication for the port, the port that is accessible i n the
container and the target port that w i l l be available i n the service and exposed to other
services.

A t the end, the type field specifies the type of the Service resource. In our solution, this
is used to establish load-balancers for deployments but also classic services.

6.1.2 D e p l o y m e n t s

In the demo appl icat ion, deployments are used to establish the basic setup of the microser-
vice. Deployments provide a simple way to update the appl icat ion without downtime, by
creating a new ReplicaSet w i th the updated Pods, and then gradually scaling down the old
ReplicaSet and scaling up the new one. W i t h Deployments, it is possible to ro l l back to a
previous version of the appl icat ion i f a new release has issues. Deployments also enables
performing rol l ing updates and rollbacks, which means that it is possible to update the ap
pl icat ion i n a controlled and automated way, without r isking any downtime or disruptions.

apiVersion: apps/vl

kind: Deployment

metadata:

name: f ile-management

spec:

replicas: <number_of_replicas>

selector:

matchLabels:

app: file-management

template:

metadata:

labels:

app: f i1e-management

spec:

containers:

- name: file-management

image: matthew9164/filemanagement:1.0.5

ports:

- containerPort: 8090

As it is in service here, also the spec section defines the specification of the deployment.
Th is w i l l be the case i n other Kubernetes components. The replicas field sets the number
of in i t ia l replicas of the deployment. The selector section specifies the label selector for the
deployment resource.

3 5

The template section provides a template for creating the pods that the Deployment
w i l l manage. The metadata field defines the labels for the pod. The spec field specifies the
containers running w i th in the pod. In our case, it w i l l specify the image that w i l l be used
and which ports are available internally i n the container.

6.1.3 P V C

Persistent Volume C l a i m 1 (P V C) is a request for a specific amount of storage to be provi
sioned dynamical ly by a storage provider. P V C s abstract the underly ing storage medium,
such as a physical disk or a cloud storage service, from the P o d that uses it , al lowing for
easy migrat ion of Pods between nodes and clusters.

P V C s provide a way to manage storage resources i n a decoupled manner from the
Pod , so that the P o d can access storage without being aware of the underly ing storage
infrastructure. P V C s are used to define the requirements for the storage needed by a Pod ,
such as the access mode (read/write), storage class name, and size.

W h e n a P o d requests a P V C , Kubernetes looks for an available P V that matches the
requirements specified i n the P V C . If a suitable volume is found, Kubernetes binds the P V C
to the volume, and the volume is mounted into the Pod . If no suitable volume is found,
Kubernetes dynamical ly provisions a new P V that matches the requirements specified in
the P V C .

P V C s are essential for stateful applications, such as databases, that require persistent
storage across P o d restarts and rescheduling. P V C s also provide a way to manage storage
resources i n a scalable and dynamic way, without requiring manual intervention.

In summary, P V C s provide a way to manage storage resources i n a decoupled and
dynamic manner i n Kubernetes. They allow Pods to access storage without being aware
of the underly ing storage infrastructure, and they provide a scalable and dynamic way to
manage storage resources in a Kubernetes cluster.

apiVersion: v l

kind: PersistentVolumeClaim

metadata:

Name the volume chain

name: db-persistent-volume-claim

spec:

storageClassName: manual

accessModes:

Allow ReadWrite to multiple pods

- ReadWriteMany

PVC requesting resources

resources:

requests:

the PVC storage

storage: 8Gi

apiVersion: v l

Kind for volume chain

kind: PersistentVolume

1 https: //kubernetes.io/docs/concepts / storage / persistent-volumes /

3 6

metadata:

Name the persistent chain

name: postgresdb-persistent-volume

Labels for identifying PV

labels:

type: l o c a l

app: postgresdb

spec:

storageClassName: manual

capacity:

PV Storage capacity

storage: 8Gi

A db can write and read from volumes to multiple pods

accessModes:

- ReadWriteMany

Specify the path to persistent volumes

hostPath:

path: "/data/db"

The P V file contains the field k ind that represents the type which is Persistent Volume. The
metadata section provides a name for the resource and labels for identif ication purposes,
such as type: local and app: postgresdb.

The spec section defines the specifications for the Persistent Volume resource, including
the storageClassName as manual and the capacity as 8 G B . The accessModes are set to
ReadWri teMany, which indicates that the volume can be read and wri t ten by multiple
pods. F inal ly , the hostPath section specifies the path to persist the volumes, which is set
to „/data/db". Overal l , this file defines a persistent volume that can be used by multiple
pods for read and write operations and stores data i n the specified path.

6 .1 .4 R b a c

R B A C allows administrators to define roles and permissions for users or groups of users,
which are then used to restrict access to resources w i th in the cluster. R B A C is used to
l imit access to resources such as Pods, Services, Conf igMaps, and Secrets, as well as to
Kubernetes A P I s and commands.

apiVersion: rbac.authorization.k8s.io/vl

kind: ClusterRoleBinding

metadata:

name: admin-user

roleRef:

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

name: cluster-admin

subjects:

- kind: ServiceAccount

name: admin-user

namespace: kubernetes-dashboard

3 7

The roleRef section defines the Cluster Role resource to b ind to, which is a bui l t - in cluster-
admin role w i th an ap iGroup of rbac.authorization.k8s.io and a k ind of ClusterRole . The
subjects section specifies the user to whom the role is being bound, which is a ServiceAc-
count named admin-user w i th in the kubernetes-dashboard namespace. Overal l , this file
grants cluster-admin permissions to the specified ServiceAccount w i th in the given names
pace.

6.1.5 Secre ts

Secrets are stored as base64-encoded data in Kubernetes, and are mounted as volumes or
defined as an environment variables into the P o d that needs to access the secret. Secrets
are used to transfer the needed credentials or data that should not be easily visible and
it is recommended to save secret separately from the rest of the deployment. For our use
case, where security of these credentials is not in scope of this thesis, it is kept i n the same
location for s impl ic i ty and visibil ity.

apiVersion: v l

kind: Secret

metadata:

name: minio-root-user

data:

root-user: dXNlcg==

root-password: cGFzc3dvcmQ=

Secret object is named „minio-root-user". The Secret contains two pieces of sensitive
information: a root user and a root password for a system or application.

The metadata section includes the name of the Secret, „minio-root-user", and other
optional information such as labels that can be used to organize and categorize the Secret.

The data section includes the base64-encoded str ing representation of the root user and
root password values. In this example, the root user is „user" and its base64-encoded value
is „dXNlcg==" . Similarly, the root password is „password" and its base64-encoded value
is „cGFzc3dvcmQ=".

6.1.6 H e l m cha r t s

He lm charts are a Kubernetes package manager that uses Y A M L files to define the various
resources required to run an appl icat ion, inc luding deployment files, service files, and config
maps. In addit ion, He lm charts contain templates that allow for customizat ion of these
resources based on specific values or parameters. He lm charts provide several advantages,
including simplif ied management and upgrading of complex applications through the abi l
ity to package a l l necessary resources i n a single chart. They also offer customizat ion of
Kubernetes resources through templates and a bui l t - in dependency management system.
However, He lm charts may be more complex to create and mainta in compared to custom
deployment files, especially for simpler applications. They also add an addit ional layer of
complexity to the infrastructure, which can make issue resolution and problem debugging
more challenging.

38

6.2 Microservices

In this section, we w i l l go through the microservices and what we expect from them. F i rs t ,
we w i l l shortly look at the implementat ion and introduce the data they work w i th and
how they do it . The custom microservice that are created are wr i t ten i n Java using the
spring boot framework 2 . They have a standard separation into layers which may seem
similar to the N-tier architectures.2. One of the notable technologies for this is the spring
cloud l ibrary, which could enable a more dynamic configuration of the microservices and
has already implemented some of the features mentioned i n the previous sections(circuit
breaker, service-to-service calls, leadership election...), but as this concepts are hidden
in the l ibrary and automatical ly configured when using some of the provided function, it
was decided not to obfuscate the functionality. So more simple frameworks were used for
communicat ion and the patterns were either implemented expl ic i t ly (circuit braker) or are
present i n Kubernetes deployment are therefore are not language bound.

6.2.1 S Q L da tabase

The relational database used i n the demo appl icat ion is P o s t g r e S Q l A A n out-of-the box
solution is used since we need only m in ima l configuration. A s for the actual design of the
table, a very simple design w i th 2 tables is used. The design can be seen in the following
figure 6.1.

This database w i l l be used for saving the users in our appl icat ion. The other purpose w i l l
be to save some metadata about files. A l though there is an option to save these metadata
w i th files to our object storage as both M i n I O and S 3 support custom metadata, but they
require to download the whole file to access them. W i t h this in mind , the metadata is saved
to the database and a l l operations pertaining files w i l l have to provide correct propagation
in case when the files from the storage are deleted or updated in any way.

6.2.2 U s e r m a n a g e m e n t

The user management is our custom microservice which w i l l handle requests pertaining to
user operations. It w i l l also be used i n the use case where files are shared between users
and give the correct permissions to files to the correct user. Th is microservice w i l l be used
to showcase proper scaling up or down depending various criter ia such as C P U usage and
memory usage. It w i l l also show the mult i tenant approach 4.5 and while it was needed it
in our example appl icat ion it w i l l showcase the benefit and drawback of the pattern.

The implementat ion is done in Java using the spring boot framework. The microservices
provides an A P I interface for communicat ion and needs active connections to the database
and R a b b i t M Q .

The interface is accessible using swagger offers the following operations

• POST /users - create a new user

• GET /users/id - get user w i th concrete id

• GET /users - get list of a l l users

• PUT /users/id - update user w i th id

2https://spring.io/
3 https: / / www.postgresql.org/docs/15/index.html

3 9

https://spring.io/
http://www.postgresql.org/docs

users

PK FOREIGN KEY (account idt

PK users pkey (user tid)

u s e r j i d uuid N O T N U L L

emails varchar(255) N U L L

user_name varchar(255) N U L L

pe rm iss ions j s t varchar(255) N U L L

account_id uuid N U L L

age int4 N U L L

date_of_birth date N U L L

is_active bool N U L L

phone_numbervarchar(255) N U L L

1..n

0..1

shared_files

PK FOREIGN KEY (file tid)

PK FOREIGN KEY (user tid)

PK shared files pkey (user tid. file tid)

u s e r j i d uuid N O T N U L L

f i l e j i d varchar(255) N O T N U L L

1..n

CONSTRAINT account pkey (accound tid)

accound_tid uuid N O T N U L L

amount varchar(255) N U L L

billing_date date N U L L

permissions varchar(255) N U L L

FOREIGN KEY (user id) R E F E R E N C E S usersluse

file pkey (file tid)

f i l e j i d varchar(255) N O T N U L L

a d d j n f o varchar(255) N U L L

"name" varchar(255) N U L L

original_name varchar(255) N U L L

"s ize" varchar(255) N U L L

u s e r j d uuid N O T N U L L

creation date date N U L L

0..1

Figure 6.1: E R diagram for database. Database is created in user management

• DELETE /users/id - delete an user w i th having given id

• PUT /users/f ilesld/share/userld - share a existing file w i th an user

• POST /users/share/userld - create an entry for file that is saved i n the storage.
The user ld is used to identify the owner

6.2.3 F i l e m a n a g e m e n t

Fi le management w i l l also showcase proper scalabil ity on increasing traffic load. It w i l l be
also the microservice that is responsible for handl ing the upload of the files to the storage.
Th is w i l l also showcase the circuit breaker pattern where i n case where the s3 download
does not work it w i l l upload to a backup storage provider where it w i l l be saved for a l imited
amount of time.

The implementat ion is done in Java using the spring boot framework. The microservices
provide an A P I interface for communicat ion and need active connections to the storage and
R a b b i t M Q .

The interface is accessible using swagger offers the following operations:

POST / f i l e s - save file to storage and propagate changes to database

40

Figure 6.2: Database setup pr imary w i th read only replicas

• GET / f i l e s / i d - retrieve file from storage w i th the given id

• DELETE /f i l e s / u s e r l d - delete file from storage and propagate change to user man
agement to update the reference in database

6.2.4 B i l l i n g

The b i l l ing microservice w i l l occur on t imer based events. The design of this microsevice
should behave w i th the predictable load in mind . As such, there w i l l be an automatic job
that w i l l scale the microservice down and up every day. The microservice w i l l run outside
of the usual peak hours, which is between 1 to 4 am. Dur ing this time, it w i l l operate
normal ly where it gets the user information and calculates bil ls for users. Th is calculat ion
functionality is just mocked as it is outside the scope of this thesis to send actual emails
w i th bil ls to users emai l addresses. The microservice starts w i th a ca l l to the endpoint from
the job to start processing the bi l l ing.

6.2.5 N o t i f i c a t i o n

The notif ication microservice w i l l serve as the main microservice to show the benefit of
asynchronous communicat ion using message brokers which in our case is done using Rab-
b i t M Q . The normal behaviour of the microservice is to be connected w i th a listener to an
existing queue where it waits for a message. The default behaviour of R a b b i t M Q is message

41

delivery w i th a round robin system. Thanks to this, even if the appl icat ion is scaled up and
there are mult iple listeners to the queue, only 1 single message is delivered and there are
no duplicate messages. After receiving the message, the microservice should send an email
notif ication to the user that a file was shared w i th h im. Th is functionality is also mocked,
same as in bi l l ing, as there is no need to send the actual email to show this behaviour.

6.2.6 R a b b i t M Q

R a b b i t M Q 4 is used as our message broker. It makes it possible for us to decouple the
communicat ion efficiently while also serving as a temporary storage for messages. The
deployment w i l l be done w i th existing w i th A m a z o n M Q on A W S and w i th custom deploy
ments of R a b b i t M Q . As in the case w i th the storage, the A W S solution runs outside of
the environment and therefore decreases the load that is run on the cluster. The created
resources in R a b b i t M Q can be seen in the following table 6.1. The queues, as can be seen
from their name, are going to be used for notifications or file data.

E x c h a n g e n a m e E x c h a n g e t y p e Q u e u e n a m e Q u e u e t y p e
file-metadata-exchange topic file, queue classic
notification-exchange topic notification.queue classic

Table 6.1: Created exchanges and queues in R a b b i t M Q

6.2.7 S to rage

The storage solution w i l l be between two types of object storage. The first one is M i n I O 5 ,
which w i l l be deployed same as the other microservices. The other solution is S3 , which
w i l l be used on A W S to see how it compares to M i n I O and to see the benefit of c loud hosted
services provided by the solution provider.

4https://www.rabbitmq.com/documentation.html
5 https: / / min.io / docs / minio/kubernetes / upstream /
6https://aws. amazon.com/s3/

4 2

https://www.rabbitmq.com/documentation.html
https://aws
http://amazon.com/s3/

Chapter 7

Exper iments

This chapter w i l l focus on the experiments that should verify i f the applied patterns had
the expected result. We div ided the interesting patterns by the following characteristics:
Performance, Resource consumption, Scalibil ity, Fault tolerance and one more general cate
gory where we experiment w i th special patterns. The experiments w i l l be performed on one
node and a l l services w i l l run on that node. The only exception is when we run A m a z o n M Q
and S3 as they w i l l represent the serverless architecture i n this example. For the metrics,
we w i l l main ly look at C P U and memory load. There are other metrics like storage space
ut i l i zat ion or latency but there was no interesting performance difference to include them.

F irst , it is needed to be defined how these metrics are obtained. For this purpose, the
Kubernetes Metrics API is used. Th is A P I is also needed for the H P A as they depend
on the measured metrics. The commands to see the current resource consumption are the
following:

$ kubectl top node

NAME CPU(cores) CPU
0

/, MEMORY (bytes) MEMORY
0

/,

docker-desktop 275m 1°/ 631 IMi 39°/

$ kubectl top pod file-management-7bb9cbf564-f55tt

NAME CPU(cores) MEMORY(bytes)

file-management-7bb9cbf564-f55tt lm 153Mi

Another view that is used is the kubernetes-dashboard 1 , which provides a better view
for the cluster along w i th a timeline for the resource consumption on the node and pods.

To actual ly be able to tel l i f the experiments perform how it is expected, there is a
need to know the C P U and memory usage i n the default state. L im i t s to these resources
have to be set so that no noisy-neighbour effect occurs where one service w i l l start to fail
because other services used a l l available resources before it could access them. A s can be
seen i n table 7.1, i n the default state w i th no load, there is only negligible C P U usage. The
only one w i th an increased load is the message broker which requires more C P U to operate.
However, even in this case, the usage is st i l l negligible. O n the memory side, the custom
microservices required somewhere between 300-400 M B , which is expected for a Java spring
boot appl icat ion. O n the other hand, R a b b i t M Q only had a memory usage around 150 M B
while the expected usage is i n the range of 256-512 M B . After an investigation, it was found
out that this is mostly due to the fact that not many plugins are loaded and only a few
queues are needed i n our appl icat ion.

1 https: //kubernetes.io/docs/tasks / access-application-cluster / web-ui-dashboard /

43

Memory Usage

.1. ^ *•*)

Pods

Images

app.kjbernetes.lo/c
omponent: rabbftm
q

-abbit-mq-cluster-
server-0

aostgresdb-
5b9bf77c46H6h6q

jser-management-
7656Bcbb4d-6zw4x

rabbitmq:3.11.1G-m
anagemerrt

pcstgres

niatthew9164AJser
management! .3.3

app.kubernetes.io/n
ame: rabbit-mq^lus d o c k e r _ d e s k t o p

app.kübernetes.io/p
art-of: rabbitmq

Show all

app: postgresdb

file-metadata-
77b94B75d5-dtn7b

mattliew91&4/filem
etadBtal.Z.Q

pod-template-has
h: 5b9bf77c46

app: user-ma nag em

pod-template-has
hi: 76568cbb4d

app: file-metadata

pod-template-has
h: 77b94875d5

docker-desktop

docker-desktop

docker-desktop

Status Restarts CPU Usage (cores) JS™̂ J s a 9 e Created 4-

...'•> d."v.;:
I ago

Running 1

Running 0 I a day ago

Running 0 I a day ago

Figure 7.1: Kubernetes dashboard view w i th available metrics. Deployed on local machine.

C P U % M E M O R Y
F i l e management <1 ~153 M B
Fi l e metadata <1 ~144 M B
User management <1 ~200 M B
Notif ications <1 ~ 8 2 M B
B i l l i ng <1 ~110 M B
PostgreSQL <1 ~100 M B
R a b b i t M Q <2 ~150 M B
Storage <2 ~100 M B

Table 7.1: Default usage of C P U and memory

As such the following memory constraints are set on the resources:

• F i l e management - m i n 256 M B , max 512 M B

• User management - m in 256 M B , max 512 M B

. Notif ications - m i n 256 M B , max 512 M B

. B i l l i ng - m i n 256 M B , max 512 M B

. PostgreSQL - m i n 64 M B , max 256 M B

. R a b b i t M Q - m i n 256 M B , max 512 M B

44

• Storage - m i n 256 M B , max 512 M B

The reason for the low and max imum constraint is to reduce the effect between microservices
and for our purpose, there is not much difference between 1 G B a 512MB usage as the
interesting behaviour occurs when the microservices reach their l imi t . To make sure that
the Java Memory Mode l does not interfere w i th the memory consumption dur ing the testing
of the memory lead, the garbage collector is set to the Eps i lon G C 2 . The used flags to make
this possible were -XX:+UnlockExperimentalVMOptions and -XX:+UseEpsilonGC.

Scal ing

The first experiment w i l l be based around the proper scaling in the cloud environment. For
this, the user management w i l l be experimented w i th where there are 2 endpoints which
are used to either test memory usage or increase the C P U load. For the testing itself, there
are going to be G E T requests which are sent to the endpoints of the appl icat ion. These
G E T requests are send to 2 endpoints that are pr imar i ly for increasing memory and one
for increasing C P U usage. The rate of the requests w i l l be increased overtime to reach the
l imit . The max imum scaling is set to 5 pods w i th the default being 3 pods. The monitored
resources which should be reached are C P U usage of 82% and memory usage of 82%. The
first test is without the autoscaler enabled to ensure that there is enough requests produced
so that the applications l imits are reached and that scaling is needed. The result without
the scaling can be seen in the following table 7.2 w i th the peak values that were reached.
The result were as expected, the memory load caused the appl icat ion to crash, which is
the behaviour of the epsilon garbage collector when it runs out of memory. The C P U test
caused quite a significant increase in memory along w i th the C P U intensive operation and
this is again due to the garbage collector that was set which reduced the option for memory
opt imizat ion.

C P U % M E M O R Y %
Memory test 31% 100%
C P U test 100% 93%

Table 7.2: Performance for tests w i th no scaling

Now w i th the H P A 4.1 autoscaler up and running, the deployment was able to handle
the previous load. Wh i l e the pods could s t i l l crash, it requires a much higher rate of
requests (around a 200% increase) to be sent to the pod. Wh i l e it now was able to handle
the rate of requests, one problem that was observed is that when the load increased too
quickly, there was s t i l l a chance for the pods to crash as the needed pod d id not start the
new instance of the microservice. Due to this, it was essential to slowly increase the load
and not overload it at once. The number of requests should not exceed 100 sent requests per
second but this is specific to the environment. This problem could have been avoided w i th
better garbage collecting as our garbage collector really impacted this problem. W i t h the
same load that caused the crash under the epsilon gc, the standard serial garbage collector
or the G l garbage collector could handle the memory way more efficiently and such a crash
d id not occur. The results can be seen in table 7.3 w i th the values being after the scaling
took place. One smal l detai l in the table is even though the scaling threshold was set to

2https://blogs.oracle.com/javamagazine/post/epsilon-the-jdks-do-nothing-garbage-collector

45

https://blogs.oracle.com/javamagazine/post/epsilon-the-jdks-do-nothing-garbage-collector

80% of memory usage, the result exceeded it to 82%. This happened due to the upper l imit
for replicas that was reached.

C P U % M E M O R Y %
Memory test 3% 82%
C P U test 72% 76%

Table 7.3: Performance for tests w i th scaling. Number of pods increased from 3 to 5

To be absolutely sure that the scaling d id happen because the target ut i l i zat ion was hit ,
the log of the autoscaler can be used where the message describing the change is present.
Th is can be seen in the following log.

#kubectl describe user-management-hpa

Conditions:

Type Status Reason Message

ScalingLimited False DesiredWithinRange the desired count i s within

the acceptable range

Events:

Reason From Message

SuccessfulRescale horizontal-pod-autoscaler New size: 5;

reason: cpu resource u t i l i z a t i o n (percentage of request)

above target

Fai lure handl ing

Another part to test is the abi l i ty of the appl icat ion to handle failure of components. Th is
w i l l showcase the usage of the message broker who decouples the dependencies between
services and enables asynchronous communicat ion. This was very apparent when one service
was overloaded while the other was st i l l managing the traffic. If the overloaded microservice
was a listener to a queue i n R a b b i t M Q , it would s t i l l be able to process a l l the requests
as they are saved in the queue. The requests were saved to R a b b i t M Q and as such the
microservice that was not able to keep up had enough t ime to process a l l requests. The file
management metadata microservice w i l l be used to demonstrate this pattern of decoupling.
The exact use case is when a new file is created, it is saved to the storage and a message is
sent through R a b b i t M Q to update the metadata in the database. There is the file metadata
service, which is created for the purpose of handl ing this data. If it was sent directly to
the metadata service and the service would be unavailable, then a backup plan is needed to
decide where to save this data or a different way of how to handle the request. W i t h this
approach, it is sent to the message broker who keeps the message unt i l the microservice is
up, thus not impending the appl icat ion as a whole. Bu t this also opens another question.
W h a t to do when the message broker is also down? The advantage is that, on average, the
message brokers are bui l t to be high-availabil ity and w i th this characteristic, they should
provide more stability. Bu t if a crash st i l l occurs, there are many ways to handle this. One
is to have some local cache i n the microservice where the data is saved. Another one is
to have a circuit breaker which either fails-fast or has a backup method. In our case, it
could be having a direct connection to the metadata service i n case of this failure. Bu t the

46

developers would have to be careful to not misuse this connection and only use this i n case
of emergency. For simplicity, the fail-fast approach was chosen as the back up connection
is straightforward and would not needlessly complicate the setup in our case.

The experiment w i l l first test what would happen if the file metadata service would not
be available and then what would happen when the message broker is not available.

M u l t i t e n a n c y pat tern

The mult i tenancy pattern in cloud is quite interesting. The user management microservice
was deployed as shared where there are three shared components and the isolation was made
on the database layer and another version where the components are isolated and deployed
as three separate services while there is also separation in the database on a specific tenant
id . Under normal load where there is no need for scaling, the performance is nearly identical
w i th the dedicated components performing slightly better. Th is was mostly due to some
smal l differences in the implementat ion and the need to differentiate between requests in
the shared component. Th is can be seen in the following table 7.4.

C P U % M E M O R Y %
Dedicated component 18% 72%
Shared component 20% 68%

Table 7.4: M u l t i tenancy testing w i th under normal load.

The interesting s i tuat ion happens when the load is increased, but just for one tenant.
The shared components behaved material ly better as the load was properly distr ibuted.
O n the other hand, for the dedicated components, while two of the pods were w i th similar
usage as before, one pod needed to scale up, increasing the number of pods from three
to four. Due to the overhead need i n the new pod, a bigger resource consumption was
observed. Th is can be seen in the table 7.5.

C P U % M E M O R Y %
Dedicated component 23% 72%
Shared component 21% 56%

Table 7.5: M u l t i tenancy testing under load. Number of pods increased from 3 to 5.

Serverless

To properly show the serverless function on the cloud, the storage and message broker are
used. The M i n I O storage w i l l be swapped for the A W S solution S3 and R a b b i t M Q w i l l be
swapped for A m a z o n M Q , which s t i l l gives the option between A c t i v e M Q and R a b b i t M Q .
The most important part for this is the comparison of how much the load on the node is
impacted and also how the latency increases when the solution is moved to another location.
Wh i l e i n private cloud, everything from P V C , P V to the storage providers had to be set
up. In A W S , there is just some need for manual configuration of the S3 object storage and
A m a z o n M Q . There is also the responsibil ity to establish an identity provider so that the
microservices in that are i n A W S E K S 3 can communicate w i th S3 and A m a z o n M Q . One

3https://aws. amazon.com/eks/

47

https://aws
http://amazon.com/eks/

metric that was found to be of interest was the latency change when the services are moved
to the A W S provided solutions. B u t after a few experiments, there was no mater ia l increase
in latency, so w i th that i n mind , latency was removed from the table. This was done by
verifying the latency to the cloud by sending H T T P requests from the local machine and
also from inside the cloud. The ma in point to consider is that it was s t i l l i n the same
availabil ity zone.

The result w i th the system in the default state d id not change much in terms of memory
percentage used but d id change i n the to ta l consumption of memory as when we combine
the set max imum for both services, the saved resources that were obtained without the
system even being active are around 250 M B . This can be seen in the table 7.6.

C P U % M E M O R Y %
In cloud 1 72
A W S solution 1 65

Table 7.6: No load in cloud

As when there was actual load on the system, then the result became more obvious,
which can be seen in table 7.7.

C P U % M E M O R Y %
In cloud 34 89
A W S solution 13 72

Table 7.7: S imulat ing average load. Stats are for Kubernetes node where the pods are
running.

Asynchronous pat tern

To properly show one of the most important characteristics, the notif ication microservice
w i l l be used. For the experimenting, many files w i l l be shared and a notif ication to inform
the user is created. Thanks to the asynchronous decoupling that R a b b i t M Q provides, even
in case of failure of the notif ication, microservice the flow is not interrupted. The same
behaviour was observed if the notif ication microservice failed and was deployed again at a
later t ime. The peak resources consumption can be seen in the following table 7.8.

C P U % M E M O R Y %
Notif ications 23 78
User management 12 73
R a b b i t M Q 10 10

Table 7.8: Load while generating notif ication

T i m e based pat tern

The last experiment w i l l be w i th the b i l l ing microservice. The comparison w i l l be between
when the microservice is running without load and w i th load. Considering that it is active

18

only for a few hours, the cost and resources that w i l l be saved can be calculated precisely.
It w i l l be performed while showing the I D E A L properties 3.1 and the predictable workload
pattern 4.1. It also showcases different patterns that previous microservices used as load
balancers. If we count the default resource consumption of the service then the cost to run
it would be from a memory point of view 100MB of taken up space. It would also use a
very smal l percentage of C P U so that it can run . For the purpose of this experiment the
t ime was changed to a more appropriate t ime and the microservice was left running only
for 10 minutes before it was scaled down. The scale-up and scale-down worked correctly
and it this case the opt imizat ion of resources is evident as the microservice d id not take up
any resources dur ing the down time and the only needed resources are for the automated
cron job for this service.

4 9

Chapter 8

Conclusion

The ma in objective of this thesis was to introduce the cloud environment challenges, ex
plore a variety of solutions available from cloud providers, and analyse what are the best
practices to effectively uti l ize these resources. Chapters 2, 3 and 4 introduce several ap
proaches for handl ing the complex challenges that can occur in the cloud environment.
One of the key insights gathered from this thesis is the importance of adopting a holistic
approach to c loud environment design. A wide range of factors needs to be considered,
such as workload requirements, resource requirements, and cost considerations, which can
be adjusted to the specific needs for each user. W i t h a l l these factors i n mind , a proper
design of the appl icat ion is needed. Another key insight gained from these chapters is
the value of leveraging automation and orchestration tools to simplify and automate the
cloud management. B y automat ing routine tasks and deploying resources w i th predeter
mined configurations that are standardized, the risk of fatal errors is reduced. W i t h a l l this
knowledge in mind , a demo appl icat ion that should demonstrate some of the patterns that
were investigated in this thesis was created. The tests mostly focused on scalability, failure
handl ing and asynchronous communicat ion. Different experiments were performed on this
appl icat ion to verify whether the patterns that are used in the appl icat ion work correctly.
These experiments helped to verify the patterns worked under our expectations and the
demo appl icat ion was published as open source.

As for future improvements that could be made, not a l l patterns were tested and there
are certainly s t i l l some interesting use cases that can be experimented wi th . Due to time
constraints, only the most essential metrics, such as C P U and memory, were monitored.
Wh i l e they are considered to be among the most important metrics, there is s t i l l a number
of other interesting metrics that could be monitored and the chosen solutions a l l support
prometheus integration for custom metrics. As ide from the cloud patterns, a comparison
between providers and their solutions could be intr iguing, as the performance increase when
using A W S provided solutions was not negligible but users are bi l led for these service so
they need to design their appl icat ion w i th these costs in mind .

50

Bibl iography

[1] AWS Documentation [online]. 2021 [cit. 2022-12-10]. Available at:
https://aws.amazon.com/getting-started/cloud-essentials/?pg=gs.

[2] Google Cloud overview [online]. 2021 [cit. 2022-12-10]. Available at:
h t t p s : //cloud.google.com/docs/overview.

[3] RabbitMQ [online]. 2021 [cit. 2023-11-5]. Available at:
h t t p s : / /www.rabbitmq.com/documentation.html.

[4] A L J A H D A L I , H . , A L B A T L I , A . , G A R R A G H A N , P., T O W N E N D , P., L A U , L . et al .

Mult i -Tenancy i n C l o u d Comput ing . In: I E E E . 2014 IEEE 8th International
Symposium on Service Oriented System Engineering. A p r i l 2014, p. 344-351. D O I :
10.1109/SOSE.2014.50. I S B N 978-1-4799-3616-8.

[5] A L S E E L A W I , N . S., A D N A N , E . K . , H A Z I M , H . T. , A L R I K A B I , H . and N A S S E R , K .

Design and implementat ion of an e-learning plat form using N - T I E R architecture.
International Associat ion of Onl ine Engineering. 2020. ISSN 1865-7923.

[6] A N W A R , A . , C H E N G , Y . , G U P T A , A . and B U T T , A . R. Taming the C l o u d Object

Storage w i th M O S . In: Proceedings of the 10th Parallel Data Storage Workshop. New
York, N Y , U S A : Associat ion for Comput ing Machinery, 2015, p. 7-12. P D S W '15.
D O I : 10.1145/2834976.2834980. I S B N 9781450340083. Available at:
https://doi.org/10.1145/2834976.2834980.

[7] B A L D I N I , I., C A S T R O , P., C H A N G , K . , C H E N G , P., F I N K , S. et a l . Serverless

Computing: Current Trends and Open Problems. 2017.

[8] B R E W E R , E . C A P twelve years later: How the,, rules" have changed. Computer.
I E E E . 2012, vol. 45, no. 2, p. 23-29. ISSN 1558-0814.

[9] B U R N S , B . , B E D A , J . , H I G H T O W E R , K . and E V E N S O N , L . Kubernetes: up and

running. 1st ed. „ O 'Re i l l y Media , Inc.", 2022. 1-15 p. I S B N 9781491935675.

[10] C A S A L I C C H I O , E . Container orchestration: A survey. Systems Modeling:
Methodologies and Tools. Springer. 2019, p. 221-235.

[11] C H A N D R A , D . G . B A S E analysis of N o S Q L database. Future Generation Computer
Systems. Elsevier. 2015, vol. 52, p. 13-21. ISSN 0167-739X.

[12] C O M E R , D . E . The Cloud Computing Book: The Future of Computing Explained.
Chapman and H a l l / C R C , 2021. I S B N 978-0367706807.

51

https://aws.amazon.com/getting-started/cloud-essentials/?pg=gs
http://google.com/docs/overview
http://www.rabbitmq.com/documentation.html
https://doi.org/10.1145/2834976.2834980

[13] C U R I N O , C , J O N E S , E . , P O P A , R., M A L V I Y A , N . , W U , E . et a l . Re lat ional C loud : A

Database-as-a-Service for the C loud . In: CIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings. A p r i l 2 0 1 1 , p. 2 3 5 - 2 4 0 . I S B N 9 7 8 - 9 - 5 3 2 3 - 3 0 5 0 - 2 .

[14] C U R R Y , E . Message-Oriented Middleware. In: M A H M O U D , Q. H . , ed. Middleware for
Communications. Chichester, Eng land: John Wi l ey and Sons, 2 0 0 4 , chap. 1, p. 1 - 2 8 .
D O I : 1 0 . 1 0 0 2 / 0 4 7 0 8 6 2 0 8 4 . c h l . I S B N 9 7 8 - 0 - 4 7 0 - 8 6 2 0 6 - 3 . Available at:

ht tp ://www.edwardcurry.org/publications/curry_MfC_M0M_04.pdf.

[15] C U S U M A N O , M . C l o u d comput ing and SaaS as new comput ing platforms.
Communications of the ACM. A C M New York, N Y , U S A . 2 0 1 0 , vol. 5 3 , no. 4 ,
p. 2 7 - 2 9 . I SSN 0 0 0 1 - 0 7 8 2 .

[16] D R A G O N I , N . , G I A L L O R E N Z O , S., L A F U E N T E , A . L., M A Z Z A R A , M . , M O N T E S I , F .

et a l . Microservices: yesterday, today, and tomorrow. Present and ulterior software
engineering. Springer. 2 0 1 7 , p. 1 9 5 - 2 1 6 .

[17] E T Z K O R N , L . H . Introduction to Middleware: Web Services, Object Components, and
Cloud Computing. Chapman and H a l l / C R C , 2 0 1 7 . 6 1 7 - 6 2 6 p. I S B N 9 7 8 - 1 4 9 8 7 5 4 0 7 1 .

[18] F E H L I N G , C , L E Y M A N N , F . and R E T T E R , R. Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applications. Springer, 2 0 1 4 .
I S B N 9 7 8 - 3 - 7 0 9 1 - 1 5 6 8 - 8 .

[19] G E S S E R T , F . , F R I E D R I C H , S., W I N G E R A T H , W. , S C H A A R S C H M I D T , M . and R I T T E R ,

N . Towards a Scalable and Unif ied R E S T A P I for C l o u d D a t a Stores. In:
P L Ö D E R E D E R , E . , G R U N S K E , L., S C H N E I D E R , E . and U L L , D. , ed. 44- Jahrestagung

der Gesellschaft für Informatik, Big Data - Komplexität meistern, INFORMATIK
2014, Stuttgart, Germany, September 22-26, 2014. G l , 2 0 1 4 , P - 2 3 2 , p. 7 2 3 - 7 3 4 . L N I .
I S B N 9 7 8 - 3 - 8 8 5 7 9 - 6 2 6 - 8 . Available at: https://dl.gi.de/20.500.12116/2975.

[20] G H O M I , E . J . , R A H M A N I , A . M . and Q A D E R , N . N . Load-balancing algorithms in

cloud computing: A survey. Journal of Network and Computer Applications.
Elsevier. 2 0 1 7 , vol. 8 8 , p. 5 0 - 7 1 . I SSN 1 7 4 1 - 8 5 7 7 .

[21] G R O L I N G E R , K. , H I G A S H I N O , W . A. , T I W A R I , A . and C A P R E T Z , M . A . Da ta

management in cloud environments: N o S Q L and N e w S Q L data stores. Journal of
Cloud Computing: advances, systems and applications. Springer. 2 0 1 3 , vol. 2 , no. 1,
p. 1 - 2 4 . ISSN 2 1 9 2 - 1 1 3 X .

[22] G U P T A , B . , M I T T A L , P. and M U F T I , T . A Review on Amazon Web Service (AWS) ,
Microsoft Azure & Google C l oud P la t form (G C P) Services. In: Proceedings of the 2nd
International Conference on ICT for Digital, Smart, and Sustainable Development,
ICIDSSD 2020, 27-28 February 2020, Jamia Hamdard, New Delhi, India. E A I ,
M a r c h 2 0 2 1 . D O I : 1 0 . 4 1 0 8 / e a i . 2 7 - 2 - 2 0 2 0 . 2 3 0 3 2 5 5 . I S B N 9 7 8 - 1 - 6 3 1 9 0 - 2 9 2 - 5 .

[23] H A R R I N G T O N , J . L . Relational database design and implementation. Morgan
Kau fmann, 2 0 1 6 . I S B N 9 7 8 - 0 1 2 8 0 4 3 9 9 8 .

[24] H E R B S T , N . R., K O U N E V , S. and R E U S S N E R , R. Elast ic i ty i n cloud computing: Wha t
it is, and what it is not. In: K E P H A R T , J . O., P u , C . and Z H U , X . , ed. 10th

5 2

http://www.edwardcurry.org/publications/curry_MfC_M0M_04.pdf
https://dl.gi.de/20.500.12116/2975

international conference on autonomic computing (ICAC 13). 2013, p. 23-27. I S B N
978-1-931971-02-7.

[25] J A T A N A , N . , P U R I , S., A H U J A , M . , K A T H U R I A , I. and G O S A I N , D . A survey and

comparison of relat ional and non-relational database. International Journal of
Engineering Research & Technology. Citeseer. 2012, vol. 1, no. 6, p. 1-5. ISSN
2278-0181.

[26] J U L A , A . , S U N D A R A R A J A N , E . and O T H M A N , Z . C l oud comput ing service

composit ion: A systematic l iterature review. Expert systems with applications.
Elsevier. 2014, vol. 41, no. 8, p. 3809-3824. ISSN 0957-4174.

[27] K H I Y A I T A , A . , B A K K A L I , H . E . , Z B A K H , M . and K E T T A N I , D . E . Load balancing

cloud computing: State of art. 2012 National Days of Network Security and Systems.
I E E E . 2012, p. 106-109. D O I : 10.1109/JNS2.2012.6249253. ISSN 978-1-4673-1052-9.

[28] L A B L A N S , M . , B O R G , A . and U C K E R T , F . A R E S T f u l interface to pseudonymization
services i n modern web applications. BMC medical informatics and decision making.
B i o M e d Centra l . 2015, vol. 15, no. 1, p. 1-10. ISSN 1472-6947.

[29] L E Y M A N N , C . F . F. , R E T T E R , R., S C H U P E C K , W . and A R B I T T E R , P. Cloud

computing patterns. 2014. I S B N 978-3-7091-1568-8.

[30] L i , J . , W A N G , Q . , L E E , P. P. and S H I , C . A n in-depth analysis of c loud block storage
workloads in large-scale product ion. In: I E E E . 2020 IEEE International Symposium
on Workload Characterization (IISWC). 2020, p. 37-47. I S B N 978-1-7281-7645-1.

[31] M A R T I N E K U A N . Microsoft Azure well-architected framework - azure architecture
center. 2022 [cit. 2022-12-10]. Available at:
https: //learn.microsof t.com/en-us/cLZure/architecture/f ramework/.

[32] M A S D A R I , M . and K H O S H N E V I S , A . A survey and classification of the workload
forecasting methods in cloud computing. Cluster Computing. Springer. 2020, vol. 23,
no. 4, p. 2399-2424. ISSN 1386-7857.

[33] M I C H E L S O N , B . M . Event-driven architecture overview [online]. 2006 [cit. 11-5-2023].
Available at: https://elementallinks.com/el-reports/

EventDrivenArchitecture0verview_ElementalLinks_Feb2011 .pdf.

[34] M O L D O V A N , D . , C O P I L , G . , T R U O N G , H . - L . and D U S T D A R , S. M E L A : Mon i to r ing

and Ana lyz ing E last ic i ty of C l oud Services. In: 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science. 2013, vol. 1, p. 80-87.
D O I : 10.1109/CloudCom.2013.18. I S B N 978-0-7695-5095-4.

[35] M O R E N O V O Z M E D I A N O , R., M O N T E R O , R. S. and L L O R E N T E , I. M . Iaas cloud

architecture: F r om vir tual ized datacenters to federated cloud infrastructures.
Computer. 1st ed. I E E E . 2012, vol. 45, no. 12, p. 65-72. ISSN 0018-9162.

[36] M O Y E R , C . M . Building Applications in the Cloud: Concepts, Patterns, and Projects.
Pearson Educat ion India, 2011. I S B N 978-0321720207.

53

https://elementallinks.com/el-reports/

[37] O L O W U , M . , Y I N K A B A N J O , C , M I S R A , S. and F L O R E Z , H . A secured private-cloud

computing system. In: Springer. International Conference on Applied Informatics.
2019, p. 373-384. I S B N 978-3-030-32475-9.

[38] P Ä H L , C . Container izat ion and the paas cloud. IEEE Cloud Computing. I E E E . 2015,
vol . 2, no. 3, p. 24-31. ISSN 2325-6095.

[39] P Ä H L , C , B R O G I , A . , S O L D A N I , J . and J A M S H I D I , P . C l o u d container technologies: a

state-of-the-art review. IEEE Transactions on Cloud Computing. I E E E . 2017, vol. 7,
no. 3, p. 677-692. ISSN 2168-7161.

[40] P Ä H L , C . and L E E , B . Containers and Clusters for Edge C l oud Architectures - A
Technology Review. In: 2015 3rd International Conference on Future Internet of
Things and Cloud. August 2015, p. 379-386. D O I : 10.1109/FiCloud.2015.35. I S B N
978-1-4673-8103-1.

[41] R A D , B . B . , B H A T T I , H . J . and A H M A D I , M . A n introduct ion to docker and analysis
of its performance. International Journal of Computer Science and Network Security
(IJCSNS). International Journa l of Computer Science and Network Security. 2017,
vol . 17, no. 3, p. 228-232. ISSN 1738-7906.

[42] S H A N , T . C . and H U A , W . W . Solut ion architecture for n-tier applications. In:
I E E E . 2006 IEEE International Conference on Services Computing (SCC'06). 2006,
p. 349-356. I S B N 0-7695-2670-5.

[43] S I N G H , A . and C H A T T E R J E E , K . C l o u d security issues and challenges: A survey.
Journal of Network and Computer Applications. 2017, vol. 79, p. 88-115. D O I :
https://doi.Org/10.1016/j.jnca.2016.l l .027. ISSN 1084-8045. Available at:
h t t p s : //www. sciencedirect.com/science/axticle/pii/S1084804516302983.

[44] S I R I W A R D A N A , P . , F R E M A N T L E , P . , A Z E E Z , A . , L E E L A R A T N E , D. , P E R E R A , S. et a l .

Mult i - tenant S O A Middleware for C l oud Comput ing . In: 2013 IEEE Sixth
International Conference on Cloud Computing. Los Alamitos , C A , U S A : I E E E
Computer Society, J u l 2010, p. 458-465. D O I : 10.1109/CLOUD.2010.50. I S B N
978-0-7695-5028-2. Available at:
https://doi.ieeecomputersociety.org/10.1109/CL0UD.2010.50.

[45] T H Ö N E S , J . Microservices. IEEE software. I E E E . 2015, vol. 32, no. 1, p. 113-116.
ISSN 1937-4194.

[46] T S A I , W . , B A I , X . and H U A N G , Y . Software-as-a-service (SaaS): perspectives and
challenges. Science China Information Sciences. Springer. 2014, vol. 57, no. 5,
p. 1-15. ISSN 1869-1919.

[47] Y O U S A F Z A I , A . , G A N I , A . , M D . N O O R , R., S O O K H A K , M . , T A L E B I A N , H . et a l .

Cloud resource al location schemes: review, taxonomy, and opportunities. Knowledge
and Information Systems, february 2017, vol. 50, p. 350-364. D O I :
10.1007/sl0115-016-0951-y. I SSN 0219-3116.

54

https://doi.Org/10.1016/j.jnca.2016.ll.027
http://sciencedirect.com/science/axticle/pii/S1084804516302983
https://doi.ieeecomputersociety.org/10.1109/CL0UD.2010.50

Append i x A

Fi le structure

Structure of included files.
DIP

b i l l i n g

FileManagement - Microservice source code

UserManagement - Microservice source code

deployment_dev - Kubernetes f i l e s for deployment

b i l l i n g

f ilemanagement

f ilemetadata

kubernetes-ui

metrics

minio

notifications

postgres

promentheus

rabbitmq

scripts -folder for scripts that were used during experiments

shared - shared configuration for microservices

FileMetadata - Microservice source code

Notifications - Microservice source code

5 5

Append i x B

Deployment manual

The demo appl icat ion is available at https://github.com/MatejKolesar/DIP. Each mi -
croservice contains a R E A D M E file w i th the needed steps for the creation of an image
for the microservice. The folder deployment_dev/shared contains configurations for the
shared microservices and a l l changes to the environment variables for the microservices
come from that point. The concrete changes of the image versions are i n the deployment
files for each microservice.

To deploy each microservice from scratch you need to create the image first. Each
microservice has a R E A D M E which describes this process.

P r e r e q u i s i t e s

• Kubec t l

• He lm

• Opt iona l - only needed i f you want to compile from scratch:

— Java 11 or higher

— Spring Boot framework

— Spring D a t a J P A

Deployment on local

This guide w i l l walk you through the process of setting up a local environment. O n a local
environment, there is no security that is inherently present on A W S .

P r e r e q u i s i t e s

Before you can deploy a Kubernetes appl icat ion, you ' l l need to have the following prereq
uisites instal led on your local machine:

• Docker

• Kubernetes C L I (kubectl)

• M in ikube (or a similar Kubernetes distribution)

• A containerized appl icat ion (Docker image) that you want to deploy

56

https://github.com/MatejKolesar/DIP

AWS Billing Dashboard i „ f 0

Page refresh time: Sunday, 14 May 2023 at 19:11.21 CEST

AWS summary mfo

Current month's total forecast Current MTD balance

USD 74.02 USD 46.50
Total number of active services Total number of active AWS accounts

7 1

Figure B . l : A W S bi l l ing dashboard

S t e p 1: S t a r t a K u b e r n e t e s C l u s t e r

The first step to deploying a Kubernetes appl icat ion local ly is to start a Kubernetes cluster.
To do this, you can use a tool like M in ikube , which allows you to create a single-node
Kubernetes cluster on your local machine. To start a new cluster w i th Min ikube , run the
following command in your terminal :

#minikube start

S t e p 2: D e p l o y t h e S a m p l e A p p l i c a t i o n

1. Clone the sample appl icat ion repository from G i thub .

2. Open the Kubernetes deployment Y A M L file and update the variables w i th your
A m a z o n M Q broker and S3 bucket information.

3. Ensure that you can access the E K S cluster from the terminal .

4. Deploy the sample appl icat ion to your E K S cluster using kubect l apply.

Deployment on A W S

This guide w i l l walk you through the process of setting up an Elast ic Kubernetes Service
(EKS) cluster w i th A m a z o n M Q and S3. Before t ry ing on A W S be sure that you have an
active A W S subscription as the free tier that they offer does not cover much and there is
no warning for going over the free tier. For the current b i l l ing use the bi l l ing dashboard
located under the profile tab. A n d also be sure to delete a l l created resources when they
are not used as they run 24/7 and the b i l l increases.

P r e r e q u i s i t e s

Before you begin, make sure you have the following:

• A n A W S account

• The A W S C L I instal led on your local machine

• The kubect l command-l ine too l installed

• A V P C configured in an availabil i ty zones (ideally i n your region)

57

• A s e c u r i t y g r o u p o r i d e n t i t y p r o v i d e r t h a t a l l o w s t ra f f i c b e t w e e n t h e s u b
ne ts

S t e p 1: C r e a t e a n E K S C l u s t e r

1. Open the Amazon E K S console and click the „Create cluster" button.

2. Choose a name for your cluster and select the Kubernetes version you want to use.

3. Under Networking, select the V P C and subnets you created earlier.

4. Choose the number of nodes and the instance type you want to use for your worker
nodes.

S t ep 2: C r e a t e a n A m a z o n M Q B r o k e r

1. Open the A m a z o n M Q console and click „Create a broker."

2. Choose the broker engine you want to use and the instance type you want to use for
your broker nodes.

3. Configure the networking settings for your broker.

4. Choose a name for your broker and review your settings.

5. Create your broker.

S t ep 3: C r e a t e a n S3 B u c k e t

1. Open the Amazon S3 console and click „Create bucket."

2. Choose a globally unique name for your bucket.

3. Choose the region where you want to store your bucket.

4. Configure any addit ional settings you need for your bucket.

5. Create your bucket.

S t ep 4: D e p l o y a n d C o n f i g u r e t h e S a m p l e A p p l i c a t i o n

1. Clone the sample appl icat ion repository from G i thub .

2. Open the Kubernetes deployment Y A M L file and update the variables w i th your
A m a z o n M Q broker and S3 bucket information.

3. Ensure that you can access the E K S cluster from the terminal .

4. Deploy the sample appl icat ion to your E K S cluster using kubectl apply.

58

