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ABSTRACT
This thesis describes the mathematical modeling of a permanent magnet synchronous
motor under a stator winding’s inter-turn short circuit fault, the discretization of obtained
model, and the model-based fault relevance diagnostics. A description of a shorted ma-
chine is formed in the stator variables assuming the series-parallel winding connection
and transformed into the rotor reference frame using extended Clarke’s and Park’s trans-
formation matrix. A discrete-time equivalent of the designed model is formed based
on the linear time-varying systems approach, considering the electrical angular velocity
time-varying parameter with a defined integral. The discrete-time model is transformed
into the stator reference frame to maximize the persistence of input signals. The fault
relevance diagnostics are then realized based on the recursive parametric estimation of
the discrete-time model. In addition, one chapter is dedicated to the control system
description since the short circuits may affect state variables differently depending on
the control system architecture and tuning. The experimental validation of the presented
ideas follows at the end of each chapter.

KEYWORDS
Discrete-time systems, failure analysis, fault detection, mathematical analysis, inter-turn
short circuits, mathematical model, model checking, parameter estimation, permanent
magnet motors, time-varying systems, vector control.

ABSTRAKT
Tato práce popisuje matematické modelování mezizávitových zkratů fázového vinutí syn-
chronního motoru s permanentními magnety, diskretizaci odvozeného modelu a diagnos-
tiku závažnosti zkratu založenou na referenčním modelu. Popis zkratovaného stroje je
vytvořen v proměnných statoru s uvažováním sérioparalelního zapojení vinutí a následně
transformován do referenčního rámce rotoru pomocí rozšířené Clarkové a Parkovy trans-
formační matice. Diskrétní ekvivalent navrženého modelu je vytvořen pomocí definované
diskretizace lineárních časově variantních systémů, přičemž je uvažováno, že elektrická
úhlová rychlost je časově variantní parametr s definovaným integrálem. Diskrétní mo-
del je transformován do referenčního rámce statoru, aby se maximalizovala perzistence
vstupních signálů. Diagnostika závažnosti zkratu je poté realizována pomocí rekurzivního
parametrického odhadu diskrétního modelu. Jedna z kapitol je věnována i popisu řídicího
systému, neboť zkraty mohou ovlivnit stavové proměnné různým způsobem v závislosti
na architektuře a volbě parametrů řídicího systému. Za každou kapitolou následuje ex-
perimentální ověření prezentovaných myšlenek.

KLÍČOVÁ SLOVA
Systémy s diskrétním časem, analýza poruch, detekce poruch, matematická analýza,
mezizávitové zkraty, matematický model, ověření modelu, odhad parametrů, motory s
permanentními magnety, časově variantní systémy, vektorové řízení.
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ROZŠÍŘENÝ ABSTRAKT
Cílem této práce je především návrh diagnostického algoritmu pro detekci závažnosti
mezizávitových zkratů statoru synchronního motoru s permanentními magnety. Po-
žadavkem je, aby tento algoritmus běžel v reálném čase na dostupném procesoru
AURIX application kit TC277. Tento procesor tedy musí být schopen navržený
algoritmus spočítat za méně než 100𝜇𝑠 daných periodou vzorkování. V této práci
je závažnost zkratu interpretována jako časově variantní parametr modelu motoru,
který je detekován algoritmem parametrického odhadu s proměnným koeficientem
zapomínání. Návrh algoritmu je poté rozdělen do několika logických kroků: tvorba
matematického modelu, diskretizace navrženého modelu a návrh algoritmu pro re-
kurzivní odhad parametrů diskrétního ekvivalentu. Jedna z kapitol je také věnována
návrhu a ladění řídicího systému, neboť významným způsobem ovlivňuje chování
motoru při dané poruše a některé proměnné použité při výpočtu akčních zásahů
jsou vstupními signály algoritmu identifikace parametrů.

Při tvorbě matematického popisu mezizávitových zkratů se vychází z modelu
zdravého motoru definovaného v literatuře. Jelikož má vinutí motoru rozprostřené
parametry, je při modelování zkratů uvažována lineární distribuce odporu, indukčno-
stí a toku od permanentních magnetů. Aby navržený model lépe popisoval reálný
motor, je definován pro sérioparalelní zapojení fázového vinutí. Společně s diferen-
ciálními rovnicemi popisujícími proud jednotlivými statorovými fázemi je stanoven i
elektromechanický krouticí moment zkratovaného motoru na základě analýzy en-
ergie ve vazebním poli stroje. Výsledný model je poté transformován do refe-
renčního rámce rotoru pomocí rozšířené Clarkové a Parkovy transformační matice.
Vzniklý popis umožňuje zkratovaný motor popsat pomocí jeho zdravého modelu a
diferenciální rovnice popisující proud zkratem s definovaným odporem. Závažnost
zkratu potom udává poměr zkratovaných závitů cívky na statorové fázi ku celkovému
počtu závitů této cívky. Validace navrženého modelu je poté realizována srovnáním
měřeného zkratového proudu a zpětně indukovaných napětí se simulovanými hod-
notami, přičemž je motor v generátorickém režimu hnaný dynamometrem. Validace
je realizována pro tři různá zapojení vinutí motoru.

Za účelem řízení stroje v referenčním rámci rotoru je použito zapojení pro dy-
namickou kompenzaci vazeb mezi jednotlivými složkami proudu. Výzkum autora v
oblasti analytického ladění parametrů řídicího systému synchronního motoru s per-
manentními magnety je v této práci rozšířen tak, aby se maximalizovala robustnost
řídicí smyčky a nemohlo při vzniku zkratu dojít k nestabilitě. Jelikož se při identi-
fikaci závažnosti zkratu využívá informace o úhlové rychlosti, je v rámci řídicího sys-
tému popsán i pozorovatel úhlové rychlosti a jeho implementace s diskrétním časem,
která zachová dynamiku sledování úhlu a rychlosti. Dále jsou popsány transformace



z proměnných statoru do referenčního rámce rotoru a modulace napětí prostorovým
vektorem. Řídicí systém je poté nahrán do procesoru a odzkoušen pro tři různá
zapojení vinutí na reálném motoru.

Spojitý model zkratovaného motoru je diskretizován na základě definovaného an-
alytického řešení lineárních časově variantních systémů. Je uvažováno, že elektrická
úhlová rychlost je časově proměnným parametrem, jehož integrací je elektrický úhel
natočení. Na základě tohoto poznatku lze vyjádřit matici přechodů daného systému,
a dokonce lze určit i semianalytický diskrétní model. Tento model je poté trans-
formován do referenčního rámce statoru, kde jsou vstupní napěťové signály harmo-
nické průběhy. Oproti referenčnímu rámci rotoru je tedy zajištěna větší perzistence
napěťových vstupů, což je výhodné pro parametrickou identifikaci. Diskrétní model
je v simulaci srovnaný se spojitým, který byl již validován na základě měření na
skutečném stroji.

Aby bylo možné provést rekurzivní parametrický odhad, je nejprve diskrétní
model zjednodušen na identifikaci závažnosti zkratu v konkrétní fázi a následně
transformován do formy, ve které je jedna složka proudu zatížená zkratem a druhá
sleduje chování zdravého motoru. Díky tomuto uspořádání je možné odhadovat
parametry zdravé části motoru i v situaci, kdy je přítomen mezizávitový zkrat.
Parametry zdravé části jsou odhadovány pomocí rekurzivního algoritmu s proměn-
ným koeficientem zapomínání, aby bylo možné reflektovat mírné změny elektrických
parametrů s provozními podmínkami. Dále je zavedena transformace proudové
složky motoru zatížené zkratem tak, aby se potlačil vliv zdravých parametrů a k
identifikaci zůstali pouze parametry související se zkratem. Tyto jsou poté identi-
fikovány obdobným algoritmem jako zdravé parametry. Rozdíl spočívá v nastavení
spodní meze koeficientu zapomínání, kdy u parametrů souvisejících se zkratem je
tato mez podstatně nižší a její dosažení indikuje přítomnost mezizávitového zkratu.
Za pomoci identifikovaných parametrů je poté spočítána normalizovaná závažnost
zkratu, která udává, jaká část cívky na vinutí je zkratována nulovým odporem.
Takto definovaný algoritmus je navíc rozšířen o filtraci signálů pro identifikaci adap-
tivním filtrem, aby bylo dosaženo potlačení rušivých harmonických složek. V této
práci je rovněž prezentována analýza rušivých vlivů. Algoritmus detekce závažnosti
zkratu je odzkoušen jak v rámci simulace se simulovaným rušením, tak na reálném
pohonu.
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Introduction
Permanent magnet synchronous motors (PMSMs) are classified as surface-mounted
(SPMSMs) and interior (IPMSMs), depending on the position of the permanent
magnets. The electrical model of the IPMSM is more complex than that of the
SPMSM, but its characteristics better fit the requirements of today’s hybrid and
electric vehicles.

An inter-turn short circuit or an inter-turn fault (ITF) in the stator winding is
the consequence of insulation failures between two or more turns in the same phase.
It is the most common fault in electrical machines after bearing failures. ITFs
usually occurs due to moisture ingress inside the motor’s case, a thermal breakdown
between the turns, or another failure. For example, a shattered bearing can get
stuck between the coil turns and cause a short circuit. Shorted turns configure an
extra circuit loop coupled to flux linkages by other motor windings and the rotor
magnets. Owing to the low impedance and high-coupled flux linkage voltage, a
high-fault current is thus induced in the shorted winding, which generates ohmic
loss and heat that further weaken the surrounding insulation material [1]. This self-
heating circle can lead to the machine break down and poses a potential fire hazard.
According to the previous statements, there is a high demand for quick and reliable
diagnostics of ITF and fault current compensation.

The diagnostics of ITFs exploit two main principles. One is based on processing
measured signals and finding patterns that correspond to the fault relevance [2] -
[5]; this principle can be highly accurate but is not suitable for online implemen-
tation because the embedded device must process large data packets. The other
then identifies the resistance, inductance, and other parameters of a shorted phase,
which depend on the fault relevance [6] - [9]. However, to achieve the proper func-
tioning of this principle, a relatively precise mathematical description of the fault
has to be provided together with a suitable discrete-time equivalent. Otherwise, the
fault relevance can not be extracted from the identified parameters with sufficient
precision. In some cases, both principles are combined to improve the diagnostic
capabilities [10]. This thesis will discuss a novel model-based detection of inter-turn
short circuit fault relevance.

Traditionally, many authors describe ITF models in the stator variables. This
description is easily formable and allows modeling the asymmetry of the stator
windings parameters. However, since the control system is usually defined in the
rotor reference frame, it is welcome to transform the model described in stator
variables into the rotor reference frame as well. Chapter 1 then aims to develop a
simple mathematical ITF model in the rotor reference frame for fast simulations and
fault detection using the model-based condition monitoring. The model is formed

12



in the stator variables, assuming a series-parallel winding connection in Section 1.1.
Then the extended transformation matrix is presented in Section 1.2, and the model
is transformed into the rotor reference frame in Section 1.3. Model is then realized
in MATLAB Simulink environment as described in Section 1.4. In Section 1.5, the
validation of the model is provided. For this purpose, the real machine is driven
by a dynamometer to the angular velocity setpoint, and currents and electromotive
force are measured and compared with the simulated values.

In real applications, a motor is controlled to the velocity setpoint using two
cascade control loops. Therefore, the architecture of controllers and their tuning
significantly impacts the state variables during the fault. Hence, Chapter 2 discusses
the implemented control system. Firstly, an analytical control system parameters
tuning is presented in Section 2.1. Then in Section 2.2, the discrete-time equivalent
of the designed control system is calculated, and the integral windup phenomenon is
handled. Section 2.3 deals with the realization and discrete-time implementation of
an angle tracking observer for velocity estimation, and Section 2.4 describes input
and output signals transformations and the min-max space vector modulation of
the voltage requests. The proposed control system is then applied to control the
experimental motor in Section 2.5.

Since this thesis aims for online model-based fault relevance diagnostics and the
parametric estimation algorithms primarily support the discrete-time models, the
defined continuous-time model must be discretized. Chapter 3 then presents a novel
semianalytic discretization of the machine’s model. Firstly, the healthy part of the
model is discretized in Section 3.1, and then the fault current model’s discrete-time
equivalent is derived in Section 3.2. In Section 3.3, both model parts are combined
and transformed into the stator reference frame, where the persistence of input
signals is higher than in the rotor reference frame. Discrete-time model is then
compared with the continuous one in Section 3.4.

The algorithm for the fault relevance identification is designed in Chapter 4. In
Section 4.1, the discrete-time model is redefined to achieve a description suitable
for the parametric estimation. Then the system noise analysis and adaptive filter
design follow in Section 4.2. The filter is designed to suppress the periodic distortion
in measured currents. Section 4.3 describes the recursive parametric estimation
algorithm implemented in this thesis. In Section 4.4, the realization of the fault
relevance diagnostic algorithm in MATLAB Simulink is discussed. Section 4.5 then
presents the verification of the algorithm within the simulation, and Section 4.6
describes the algorithm validation on the experimental motor.

13



1 Inter-turn short circuits modeling
For the purpose of inter-turn short circuit modeling, a model of a healthy IPMSM
has to be specified. This model provides necessary information about a magnetic
flux distribution inside a motor. As mentioned by Sul in [11], the voltages across
the stator windings 𝑢𝑎, 𝑢𝑏, 𝑢𝑐 are defined as in⎡⎢⎢⎣

𝑢𝑎

𝑢𝑏

𝑢𝑐

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

⎤⎥⎥⎦ ·

⎡⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

⎤⎥⎥⎦+ d
d𝑡

⎡⎢⎢⎣
𝜆𝑎

𝜆𝑏

𝜆𝑐

⎤⎥⎥⎦ (1.1)

where 𝑅𝑠 is the equivalent resistance of each stator winding (series resistance),
𝑖𝑎, 𝑖𝑏, 𝑖𝑐 are the currents flowing in the stator windings, and 𝜆𝑎, 𝜆𝑏, 𝜆𝑐 are the to-
tal fluxes linking each stator winding, consisting of the flux linkages of the phase
windings and the permanent magnets. For a sinusoidal flux distribution, the total
fluxes linking are ⎡⎢⎢⎣

𝜆𝑎

𝜆𝑏

𝜆𝑐

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

⎤⎥⎥⎦ ·

⎡⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

⎤⎥⎥⎦+

⎡⎢⎢⎣
𝜆𝑎,𝑝𝑚

𝜆𝑏,𝑝𝑚

𝜆𝑐,𝑝𝑚

⎤⎥⎥⎦ . (1.2)

In (1.2), the phase-self and mutual inductances of the stator windings are defined
as in (1.3) and the fluxes of the permanent magnets that link the stator windings
as in (1.5). We have

𝐿𝑎𝑎 = 𝐿𝑠 + 𝐿𝑚 cos (2𝜃𝑒) 𝐿𝑎𝑏 = 𝐿𝑏𝑎 = −𝐿𝑠

2 + 𝐿𝑚 cos
(︂

2𝜃𝑒 − 2𝜋
3

)︂
𝐿𝑏𝑏 = 𝐿𝑠 + 𝐿𝑚 cos

(︂
2𝜃𝑒 + 2𝜋

3

)︂
𝐿𝑎𝑐 = 𝐿𝑐𝑎 = −𝐿𝑠

2 + 𝐿𝑚 cos
(︂

2𝜃𝑒 + 2𝜋
3

)︂
𝐿𝑐𝑐 = 𝐿𝑠 + 𝐿𝑚 cos

(︂
2𝜃𝑒 − 2𝜋

3

)︂
𝐿𝑏𝑐 = 𝐿𝑐𝑏 = −𝐿𝑠

2 + 𝐿𝑚 cos (2𝜃𝑒) . (1.3)

In (1.3), 𝐿𝑠 is the average phase-self inductance of each of the stator windings, and
𝐿𝑚 denotes the fluctuation in the phase-self inductance and mutual inductance with
changing rotor electrical angle 𝜃𝑒. These inductances can be expressed using 𝑑-axis
and 𝑞-axis inductances:

𝐿𝑠 = 𝐿𝑑 + 𝐿𝑞

3 𝐿𝑚 = 𝐿𝑑 − 𝐿𝑞

3 . (1.4)

The permanent magnet fluxes that link the stator windings are

𝜆𝑎,𝑝𝑚 = 𝜆𝑝𝑚 cos (𝜃𝑒)

𝜆𝑏,𝑝𝑚 = 𝜆𝑝𝑚 cos
(︂
𝜃𝑒 − 2𝜋

3

)︂
𝜆𝑐,𝑝𝑚 = 𝜆𝑝𝑚 cos

(︂
𝜃𝑒 + 2𝜋

3

)︂
. (1.5)
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In (1.5), 𝜆𝑝𝑚 stands for the permanent magnets flux linkage.
As mentioned by Krause et al. in [12], the electromagnetic torque of the IPMSM

can be established based on the total energy in the coupling field as in

𝑇𝑒 = 𝑝

⎡⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

⎤⎥⎥⎦
𝑇

·

⎛⎜⎜⎝1
2
𝜕L
𝜕𝜃𝑒

⎡⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

⎤⎥⎥⎦+ 𝜕

𝜕𝜃𝑒

⎡⎢⎢⎣
𝜆𝑎,𝑝𝑚

𝜆𝑏,𝑝𝑚

𝜆𝑐,𝑝𝑚

⎤⎥⎥⎦
⎞⎟⎟⎠ (1.6)

where 𝑝 stands for the number of pole pairs and L is the inductance matrix as in
(1.2).

Traditionally, many authors describe ITF in the stator variables using the sim-
plified winding architecture models [13]-[14]. These models assume that the stator
winding is concentrated into one coil segment (Fig. 1.1), and the inductive couplings
in a whole winding are affected by the ITF.

𝑎2 𝑎1 𝑖𝑎

𝑅𝑓 𝑖𝑓

𝑢𝑎

𝑏
𝑖𝑏

𝑐

𝑖𝑐

𝑢𝑏

𝑢𝑐

Fig. 1.1: Simplified three-phase winding under the ITF

This assumption leads to a relatively simple expression of the fault current 𝑖𝑓 ; how-
ever, the modeled fault current value is highly overrated due to the demanding
inductive couplings. Typically, the phase winding of a motor consists of segments
that are geometrically separated from each other. The main advantage of this ar-
rangement is that the ITF cannot easily spread across the whole winding. Due to
the segregation, there are also mutual inductances in the same phase; however, such
inductances are significantly lower than those that occur due to the ITF and can
be neglected. The ITF then affects inductances related only to one coil segment,
not a whole winding. Gu presented the models that incorporate different winding
configurations (three coils in series or three coils in parallel) in [15]. However, a
model of the faulty IPMSM can be formed in a more general way, assuming that the
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phase winding comprises 𝑛𝑝 branches connected in parallel, and each of the branches
consists of 𝑛𝑠 coils in series. Figure 1.2 shows a universal phase winding connection
applicable in determining a more accurate model of a faulty IPMSM.

𝑢𝑎
𝑖𝑎≈

𝑎𝑛𝑝,1𝑎𝑛𝑝,2

≈

𝑎𝑛𝑝,𝑛𝑠

≈

𝑎2,1𝑎2,2

≈

𝑎2,𝑛𝑠

𝑎1,1𝑎1,2

≈

𝑎1,𝑛𝑠

𝑖𝑓

𝑅𝑓

Fig. 1.2: Segregated phase ’a’ winding under the ITF

1.1 Model in the stator variables
Due to the presence of an inter-turn short circuit in phase ’a’ (Fig. 1.2), an additional
fault current 𝑖𝑓 occurs. This current flows through the short circuit resistance 𝑅𝑓

and can be described by an additional differential equation. Assuming that the coil
segments 𝑎𝑥,𝑦 have an equivalent resistance 𝑛𝑝

𝑛𝑠
𝑅𝑠 and inductance 𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎, the previous

connection can be simplified into the form presented in Figure 1.3.

𝑢𝑎
𝑖𝑎𝑎𝑝

𝑎𝑓𝑎ℎ𝑎𝑠
𝑖𝑓

𝑅𝑓

𝑖𝑝

Fig. 1.3: Simplified segregated phase ’a’ winding under the ITF

The ITF causes the division of phase segment 𝑎1,1 into two parts. The part of the
coil that is marked as 𝑎ℎ is not shorted, and thus the current 𝑖𝑎 − 𝑖𝑝 flows through
this coil segment. The current 𝑖𝑎 − 𝑖𝑝 is then divided into the current that flows
through the short circuit 𝑖𝑓 and the current that flows through the shorted part
of the winding 𝑎𝑓 . This portion of the phase current is described by 𝑖𝑎 − 𝑖𝑝 − 𝑖𝑓
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and contributes to the energy in the coupling field and thus to the electromagnetic
torque. The voltage across the winding part 𝑎𝑓 is expressed as 𝑢𝑎𝑓

= 𝑅𝑓 𝑖𝑓 and the
voltage across the winding parts 𝑎𝑠 and 𝑎ℎ satisfies 𝑢𝑎𝑠𝑎ℎ

= 𝑢𝑎 − 𝑢𝑎𝑓
= 𝑢𝑎 −𝑅𝑓 𝑖𝑓 .

The parameters of the equivalent winding model are related to the healthy ma-
chine parameters and the fault relevance ratio 𝑥𝑓 . This parameter expresses the ratio
between the number of shorted turns 𝑁𝑓 and the number of total turns 𝑁 of the
shorted phase winding segment; then, 𝑥𝑓 = 𝑁𝑓/𝑁 . The resistances of the healthy
𝑎ℎ, the faulty 𝑎𝑓 , the series 𝑎𝑠, and the parallel 𝑎𝑝 winding parts are expressed as in

𝑅𝑎𝑠 = (𝑛𝑠 − 1)𝑛𝑝

𝑛𝑠

𝑅𝑠 𝑅𝑎𝑝 = 𝑛𝑝

𝑛𝑝 − 1𝑅𝑠

𝑅𝑎ℎ
= (1 − 𝑥𝑓 )𝑛𝑝

𝑛𝑠

𝑅𝑠 𝑅𝑎𝑓
= 𝑥𝑓𝑛𝑝

𝑛𝑠

𝑅𝑠. (1.7)

The following table then describes the inductive couplings inside a machine under
the ITF:

Tab. 1.1: Inductive couplings inside a machine under the ITF

Stator part 𝑎𝑠 𝑎𝑝 𝑎ℎ 𝑎𝑓 𝑏 𝑐

𝑎𝑠
(𝑛𝑠−1)𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎 0 0 0 (𝑛𝑠−1)

𝑛𝑠
𝐿𝑎𝑏

(𝑛𝑠−1)
𝑛𝑠

𝐿𝑎𝑐

𝑎𝑝 0 𝑛𝑝

𝑛𝑝−1𝐿𝑎𝑎 0 0 𝐿𝑎𝑏 𝐿𝑎𝑐

𝑎ℎ 0 0 (1−𝑥𝑓)2
𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎

𝑥𝑓(1−𝑥𝑓)𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎

(1−𝑥𝑓)
𝑛𝑠

𝐿𝑎𝑏
(1−𝑥𝑓)

𝑛𝑠
𝐿𝑎𝑐

𝑎𝑓 0 0 𝑥𝑓(1−𝑥𝑓)𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎

𝑥2
𝑓 𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎

𝑥𝑓

𝑛𝑠
𝐿𝑎𝑏

𝑥𝑓

𝑛𝑠
𝐿𝑎𝑐

𝑏 (𝑛𝑠−1)
𝑛𝑠

𝐿𝑏𝑎 𝐿𝑏𝑎
(1−𝑥𝑓)

𝑛𝑠
𝐿𝑏𝑎

𝑥𝑓

𝑛𝑠
𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝑐 (𝑛𝑠−1)
𝑛𝑠

𝐿𝑐𝑎 𝐿𝑐𝑎
(1−𝑥𝑓)

𝑛𝑠
𝐿𝑐𝑎

𝑥𝑓

𝑛𝑠
𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

Similarly, the permanent magnet fluxes that link the phase ’a’ winding parts are
defined as in

𝜆𝑎𝑠,𝑝𝑚 = (𝑛𝑠 − 1)
𝑛𝑠

𝜆𝑎,𝑝𝑚 𝜆𝑎𝑝,𝑝𝑚 = 𝜆𝑎,𝑝𝑚

𝜆𝑎ℎ,𝑝𝑚 = (1 − 𝑥𝑓 )
𝑛𝑠

𝜆𝑎,𝑝𝑚 𝜆𝑎𝑓 ,𝑝𝑚 = 𝑥𝑓

𝑛𝑠

𝜆𝑎,𝑝𝑚. (1.8)

Based on the parameters described in (1.7), (1.8), and table 1.1, the voltage and
flux equations of the phase ’a’ under the ITF are formed as in⎡⎢⎢⎣

𝑢𝑎𝑠𝑎ℎ

𝑢𝑎𝑓

𝑢𝑎

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝑛𝑝𝑅𝑠 0 0

0 𝑥𝑓

𝑛𝑠
𝑛𝑝𝑅𝑠 0

0 0 𝑛𝑝

𝑛𝑝−1𝑅𝑠

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎣
𝑖𝑎 − 𝑖𝑝

𝑖𝑎 − 𝑖𝑝 − 𝑖𝑓

𝑖𝑝

⎤⎥⎥⎦+ d
d𝑡

⎡⎢⎢⎣
𝜆𝑎𝑠𝑎ℎ

𝜆𝑎𝑓

𝜆𝑎𝑝

⎤⎥⎥⎦
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⎡⎢⎢⎣
𝜆𝑎𝑠𝑎ℎ

𝜆𝑎𝑓

𝜆𝑎𝑝

⎤⎥⎥⎦ = L𝑓 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖𝑎 − 𝑖𝑝

𝑖𝑎 − 𝑖𝑝 − 𝑖𝑓

𝑖𝑝

𝑖𝑏

𝑖𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎣
(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝜆𝑎,𝑝𝑚

𝑥𝑓

𝑛𝑠
𝜆𝑎,𝑝𝑚

𝜆𝑎,𝑝𝑚

⎤⎥⎥⎦ (1.9)

where

L𝑓 =

⎡⎢⎢⎢⎢⎢⎣
(𝑛𝑠−2𝑥𝑓 +𝑥2

𝑓)𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎

𝑥𝑓(1−𝑥𝑓)𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎 0

(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝐿𝑎𝑏

(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝐿𝑎𝑐

𝑥𝑓(1−𝑥𝑓)𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎

𝑥2
𝑓 𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎 0 𝑥𝑓

𝑛𝑠
𝐿𝑎𝑏

𝑥𝑓

𝑛𝑠
𝐿𝑎𝑐

0 0 𝑛𝑝

𝑛𝑝−1𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

⎤⎥⎥⎥⎥⎥⎦ .
(1.10)

Substituting for voltages in (1.9) and transforming the current vector provides the
following form of the voltage and flux equations:

⎡⎢⎢⎣
𝑢𝑎

0
𝑢𝑎

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝑛𝑝𝑅𝑠 𝑅𝑓 −

(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝑛𝑝𝑅𝑠

𝑥𝑓

𝑛𝑠
𝑛𝑝𝑅𝑠 −𝑥𝑓

𝑛𝑠
𝑛𝑝𝑅𝑠 −𝑅𝑓 −𝑥𝑓

𝑛𝑠
𝑛𝑝𝑅𝑠

0 0 𝑛𝑝

𝑛𝑝−1𝑅𝑠

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎣
𝑖𝑎

𝑖𝑓

𝑖𝑝

⎤⎥⎥⎦+ d
d𝑡

⎡⎢⎢⎣
𝜆𝑎𝑠𝑎ℎ

𝜆𝑎𝑓

𝜆𝑎𝑝

⎤⎥⎥⎦

⎡⎢⎢⎣
𝜆𝑎𝑠𝑎ℎ

𝜆𝑎𝑓

𝜆𝑎𝑝

⎤⎥⎥⎦ = L*
𝑓 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖𝑎

𝑖𝑓

𝑖𝑝

𝑖𝑏

𝑖𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎣
(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝜆𝑎,𝑝𝑚

𝑥𝑓

𝑛𝑠
𝜆𝑎,𝑝𝑚

𝜆𝑎,𝑝𝑚

⎤⎥⎥⎦ (1.11)

where

L*
𝑓 =

⎡⎢⎢⎢⎢⎢⎣
(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝑛𝑝𝐿𝑎𝑎 −𝑥𝑓(1−𝑥𝑓)𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎 −

(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝑛𝑝𝐿𝑎𝑎

(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝐿𝑎𝑏

(︁
1 − 𝑥𝑓

𝑛𝑠

)︁
𝐿𝑎𝑐

𝑥𝑓

𝑛𝑠
𝑛𝑝𝐿𝑎𝑎 −𝑥2

𝑓 𝑛𝑝

𝑛𝑠
𝐿𝑎𝑎 −𝑥𝑓

𝑛𝑠
𝑛𝑝𝐿𝑎𝑎

𝑥𝑓

𝑛𝑠
𝐿𝑎𝑏

𝑥𝑓

𝑛𝑠
𝐿𝑎𝑐

0 0 𝑛𝑝

𝑛𝑝−1𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

⎤⎥⎥⎥⎥⎥⎦ .
(1.12)

Comparing voltages in (1.11) leads to the algebraic expression of the current flowing
through the parallel branch 𝑖𝑝. We have

𝑖𝑝 = 𝑛𝑝 − 1
𝑛𝑝

(︂
𝑖𝑎 − 𝑥𝑓

𝑛𝑠

𝑖𝑓

)︂
. (1.13)

If the number of shorted turns approaches 0; then 𝑥𝑓 = 0 and the current flowing
through the parallel branch satisfies 𝑖𝑝 = 𝑛𝑝−1

𝑛𝑝
𝑖𝑎. Hence, the current of the main

branch is given as 𝑖𝑎−𝑖𝑝 = 1
𝑛𝑝
𝑖𝑎 and the currents flowing through all parallel branches

are equal. If 𝑥𝑓 ̸= 0, then the current flowing through the main branch is given as
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𝑖𝑎 − 𝑖𝑝 = 1
𝑛𝑝
𝑖𝑎 + 𝑛𝑝−1

𝑛𝑝

𝑥𝑓

𝑛𝑠
𝑖𝑓 , yielding in increase of the current in the branch that

contains an ITF.
The algebraic expression (1.13) reduces the order of the differential equation

system (1.11). Therefore, the model of IPMSM with segregated windings under an
ITF can be formed in the stator variables as in

⎡⎢⎢⎢⎢⎢⎣
𝑢𝑎

𝑢𝑏

𝑢𝑐

0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑥̄*

𝑓𝑅𝑠 0 0 𝑅*
𝑓

0 𝑅𝑠 0 0
0 0 𝑅𝑠 0

𝑥*
𝑓𝑅𝑠 0 0 −𝑥*

𝑓𝑅𝑠 −𝑅*
𝑓

⎤⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

𝑖𝑓

⎤⎥⎥⎥⎥⎥⎦+ d
d𝑡

⎡⎢⎢⎢⎢⎢⎣
𝜆𝑎𝑠𝑎ℎ

𝜆𝑏

𝜆𝑐

𝜆𝑎𝑓

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝜆𝑎𝑠𝑎ℎ

𝜆𝑏

𝜆𝑐

𝜆𝑎𝑓

⎤⎥⎥⎥⎥⎥⎦ = L𝑓,𝑐 ·

⎡⎢⎢⎢⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

𝑖𝑓

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
𝑥̄*

𝑓𝜆𝑎,𝑝𝑚

𝜆𝑏,𝑝𝑚

𝜆𝑐,𝑝𝑚

𝑥*
𝑓𝜆𝑎,𝑝𝑚

⎤⎥⎥⎥⎥⎥⎦ (1.14)

where

L𝑓,𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥̄*

𝑓𝐿𝑎𝑎 𝑥̄*
𝑓𝐿𝑎𝑏 𝑥̄*

𝑓𝐿𝑎𝑐 −𝑥*
𝑓 𝑥̄

*
𝑓𝐿𝑎𝑎 + 𝐿𝑓

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐 −𝑥*
𝑓𝐿𝑏𝑎

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐 −𝑥*
𝑓𝐿𝑐𝑎

𝑥*
𝑓𝐿𝑎𝑎 𝑥*

𝑓𝐿𝑎𝑏 𝑥*
𝑓𝐿𝑎𝑐 −𝑥*

𝑓
2𝐿𝑎𝑎 − 𝐿𝑓

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.15)

The parameters 𝑥*
𝑓 , 𝑥̄*

𝑓 , 𝑅*
𝑓 and 𝐿𝑓 are calculated out of the segregated winding

parameters as in

𝑥*
𝑓 = 𝑥𝑓

𝑛𝑠

𝐿𝑓 = 𝑥*
𝑓

2𝑛𝑝(𝑛𝑠 − 1)𝐿𝑎𝑎

𝑥̄*
𝑓 = 1 − 𝑥𝑓

𝑛𝑠

𝑅*
𝑓 = 𝑥*

𝑓 𝑥̄
*
𝑓 (𝑛𝑝 − 1)𝑅𝑠 +𝑅𝑓 . (1.16)

If an ITF occurs in phase ’a’, only the current 𝑖𝑎 and current 𝑖𝑎 − 𝑖𝑓 , flowing
through the 𝑎𝑓 segment, contribute to the electromagnetic torque. The fault current
𝑖𝑓 then affects the energy in the coupling field and the electromagnetic torque nega-
tively. The electromagnetic torque formula is formed using the transformed current
vector and inductance matrix L𝑓,𝑐 as

𝑇𝑒 = 𝑝

⎡⎢⎢⎢⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

𝑖𝑎 − 𝑖𝑓

⎤⎥⎥⎥⎥⎥⎦

𝑇

·

⎛⎜⎜⎜⎜⎜⎝
1
2
𝜕L𝑓,𝑐

𝜕𝜃𝑒

⎡⎢⎢⎢⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

𝑖𝑓

⎤⎥⎥⎥⎥⎥⎦+ 𝜕

𝜕𝜃𝑒

⎡⎢⎢⎢⎢⎢⎣
𝑥̄*

𝑓𝜆𝑎,𝑝𝑚

𝜆𝑏,𝑝𝑚

𝜆𝑐,𝑝𝑚

𝑥*
𝑓𝜆𝑎,𝑝𝑚

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ . (1.17)
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1.2 Extended transformation matrix
The model defined in the stator variables (1.14), and (1.17) can be transformed into
the rotor reference frame using Clarke’s transformation matrix, which transforms
the model from the stator variables (𝑎𝑏𝑐) into the stator reference frame 𝛼 − 𝛽,
and Park’s transformation matrix, which transforms the model from 𝛼 − 𝛽 into
the rotor reference frame 𝑑 − 𝑞. Due to the ITF, another differential equation
related to the fault occurs and these transformation matrices have to be extended.
The extension of the transformation matrices aims to transform the stator voltages
and currents into the rotor reference frame 𝑑 − 𝑞 and to preserve the fault current
𝑖𝑓 . Hence, four state variables and three inputs are transformed into the three
state variables and two inputs, which leads to the wide rectangular transformation
matrix with three rows and four columns. The extended transformation matrix
is then formed using the extended Clarke’s Γ𝑐,𝑒𝑥𝑡 and Park’s Γ𝑝,𝑒𝑥𝑡 transformation
matrices as Γ𝑒𝑥𝑡 = Γ𝑝,𝑒𝑥𝑡 · Γ𝑐,𝑒𝑥𝑡. We have

Γ𝑐,𝑒𝑥𝑡 = 2
3

⎡⎢⎢⎢⎢⎣
1 −1

2 −1
2 0

0
√

3
2 −

√
3

2 0

0 0 0 3
2

⎤⎥⎥⎥⎥⎦ Γ𝑝,𝑒𝑥𝑡 =

⎡⎢⎢⎣
cos (𝜃𝑒) sin (𝜃𝑒) 0

− sin (𝜃𝑒) cos (𝜃𝑒) 0
0 0 1

⎤⎥⎥⎦ . (1.18)

The extended transformation matrix reads

Γ𝑒𝑥𝑡 = 2
3

⎡⎢⎢⎢⎢⎢⎣
cos (𝜃𝑒) cos

(︁
𝜃𝑒 − 2𝜋

3

)︁
cos

(︁
𝜃𝑒 + 2𝜋

3

)︁
0

− sin (𝜃𝑒) − sin
(︁
𝜃𝑒 − 2𝜋

3

)︁
− sin

(︁
𝜃𝑒 + 2𝜋

3

)︁
0

0 0 0 3
2

⎤⎥⎥⎥⎥⎥⎦ . (1.19)

The non-square matrix (1.19) does not have an inverse. However, this matrix has
rank 3, allowing us to find a right-hand pseudoinverse that enables transformation
from the rotor reference frame into the stator variables:

Γ−1
𝑒𝑥𝑡 = Γ𝑇

𝑒𝑥𝑡

(︁
Γ𝑒𝑥𝑡Γ𝑇

𝑒𝑥𝑡

)︁−1
. (1.20)

The voltages and currents are then transformed as in⎡⎢⎢⎢⎢⎢⎣
𝑢𝑎

𝑢𝑏

𝑢𝑐

0

⎤⎥⎥⎥⎥⎥⎦ = Γ−1
𝑒𝑥𝑡

⎡⎢⎢⎣
𝑢𝑑

𝑢𝑞

0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

𝑖𝑓

⎤⎥⎥⎥⎥⎥⎦ = Γ−1
𝑒𝑥𝑡

⎡⎢⎢⎣
𝑖𝑑

𝑖𝑞

𝑖𝑓

⎤⎥⎥⎦ . (1.21)

Inter-turn short circuits may affect the state variables in the rotor reference frame
differently, depending on the form of Clarke’s transformation matrix. In (1.18), a
direct form of the transformation matrix was used. This form is characterized by
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the multiplication factor 2
3 . However, the extended Clarke’s transformation matrix

may be formed more generally, using the multiplication factor 𝐾 as in

Γ*
𝑐,𝑒𝑥𝑡 = 𝐾

⎡⎢⎢⎢⎢⎣
1 −1

2 −1
2 0

0
√

3
2 −

√
3

2 0

0 0 0 1
𝐾

⎤⎥⎥⎥⎥⎦ . (1.22)

Use of general extended Clarke’s transformation matrix Γ*
𝑐,𝑒𝑥𝑡 results in scaling the

voltage inputs and the current outputs. We have⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ = 2
3𝐾

⎡⎣𝑢𝑑,𝑖𝑛

𝑢𝑞,𝑖𝑛

⎤⎦ ⎡⎣𝑖𝑑,𝑜𝑢𝑡

𝑖𝑞,𝑜𝑢𝑡

⎤⎦ = 3𝐾
2

⎡⎣𝑖𝑑
𝑖𝑞

⎤⎦ . (1.23)

1.3 Model in the rotor reference frame
The differential equations characterizing the 𝑑− 𝑞 currents are determined if (1.21)
is substituted into (1.14). The resulting system of differential equations preserves
the expression of fault current defined in (1.14). However, derived equations related
to the 𝑑 − 𝑞 currents are highly complicated and miss the physical meaning. The
solution to this problem lies in the state transform, which divides 𝑑−𝑞 currents into
the healthy part and the contribution related to the fault current. We have⎡⎣𝑖𝑑

𝑖𝑞

⎤⎦ =
⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦+
2𝑥*

𝑓

3

⎡⎣ cos(𝜃𝑒)
− sin(𝜃𝑒)

⎤⎦ 𝑖𝑓 (1.24)

where 𝜃𝑒 stands for the electrical angle. The state transform (1.24) is obtainable if
the derived expression of faulty 𝑑 − 𝑞 currents is compared with the expression of
healthy 𝑑− 𝑞 currents 𝑖𝑑,ℎ and 𝑖𝑞,ℎ mentioned by Sul in [11]. Hence, 𝑖𝑑,ℎ and 𝑖𝑞,ℎ are
described by the following system of differential equations:

d
d𝑡

⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦ =

⎡⎢⎣ −𝑅𝑠

𝐿𝑑

𝐿𝑞

𝐿𝑑
𝜔𝑒

−𝐿𝑑

𝐿𝑞
𝜔𝑒 −𝑅𝑠

𝐿𝑞

⎤⎥⎦ ·

⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦+

⎡⎢⎣ 1
𝐿𝑑

0 0

0 1
𝐿𝑞

− 1
𝐿𝑞
𝜔𝑒

⎤⎥⎦ ·

⎡⎢⎢⎣
𝑢𝑑

𝑢𝑞

𝜆𝑝𝑚

⎤⎥⎥⎦ (1.25)

where 𝐿𝑑 and 𝐿𝑞 denote inductances in the machine’s direct and quadrature axis,
𝑅𝑠 and 𝜆𝑝𝑚 stand for the equivalent resistance of stator phases and the permanent
magnets flux linkage, and 𝜔𝑒 represents the recent electrical angular velocity of a
motor.

Similarly, the differential equation that describes the fault current 𝑖𝑓 is deter-
mined based on the faulty 𝑑 − 𝑞 currents and the state transform (1.24). We have

d
d𝑡 (3𝐿𝑓 𝑖𝑓 ) = −𝑅𝑓,𝑑𝑞𝑖𝑓 + 3𝑥*

𝑓

⎡⎣ cos(𝜃𝑒)
− sin(𝜃𝑒)

⎤⎦𝑇

·

⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ (1.26)
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where 𝑅𝑓,𝑑𝑞 = 𝑥*
𝑓

(︁
3 − 2𝑥*

𝑓

)︁
𝑅𝑠 + 3𝑅*

𝑓 and 𝐿𝑓 , 𝑥*
𝑓 and 𝑅*

𝑓 are defined as in (1.16).
The electromagnetic torque of IPMSM under the ITF is obtained by substituting

(1.21) and (1.24) into (1.17), yielding

𝑇𝑒 = 3
2𝑝𝑖𝑞,ℎ(𝜆𝑝𝑚 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑,ℎ) + 1

2𝑝
𝜕𝐿𝑓

𝜕𝜃𝑒

𝑖2𝑓 . (1.27)

The electromagnetic torque is also divided into the healthy part and the fluctuation
caused by 𝑖𝑓 , just as the 𝑑 − 𝑞 currents (1.24). If the number of shorted turns
approaches 0, then out of (1.26), the fault current is also approaching 0; thus,
𝑖𝑑, 𝑖𝑞, and 𝑇𝑒 are given only by the healthy part of the model. If 𝑥*

𝑓 ̸= 0, the
distortion with the dominant frequency 2𝜔𝑒 occurs in the d-q currents and the
electromagnetic torque. This fact is provable based on the definition of fault current
and trigonometric identities.

The presented model was derived for an ITF in phase ’a’. However, the same
procedure can be applied to determine machine models under ITFs in phases ’b’
and ’c’. The model of faulty IPMSM with segregated windings and ITF in phase
’a’ is then extendable to simulate short circuits in the different phases, using the
redefinition

𝐿𝑓 = 𝑥*
𝑓

2𝑛𝑝(𝑛𝑠 − 1)(𝐿𝑠 + 𝐿𝑚 cos(2𝜃𝑒 + 𝜑))

d
d𝑡 (3𝐿𝑓 𝑖𝑓 ) = −𝑅𝑓,𝑑𝑞𝑖𝑓 + 3𝑥*

𝑓

⎡⎣ cos(𝜃𝑒 + 𝜑
2 )

− sin(𝜃𝑒 + 𝜑
2 )

⎤⎦𝑇

·

⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦
⎡⎣𝑖𝑑
𝑖𝑞

⎤⎦ =
⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦+
2𝑥*

𝑓

3

⎡⎣ cos(𝜃𝑒 + 𝜑
2 )

− sin(𝜃𝑒 + 𝜑
2 )

⎤⎦ 𝑖𝑓 (1.28)

where if 𝜑 = 0 then the ITF is in phase ’a’, if 𝜑 = 2𝜋
3 then the ITF is in phase ’b’,

and if 𝜑 = −2𝜋
3 then the ITF is in phase ’c’.

Note that if the parallel branches of phase winding consist only of one coil seg-
ment, then 𝑛𝑠 = 1 and 𝐿𝑓 = 0, and it is possible to describe the fault current
algebraically. For this type of winding connection, the fault current is defined as in

𝑖𝑓 =
3𝑥*

𝑓

𝑅𝑓,𝑑𝑞

⎡⎣ cos(𝜃𝑒 + 𝜑
2 )

− sin(𝜃𝑒 + 𝜑
2 )

⎤⎦𝑇

·

⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ . (1.29)

The phase shift and the frequency of 𝑖𝑓 then correspond with the phase shift and
the frequency of 𝑖𝑎, 𝑖𝑏, or 𝑖𝑐, depending on 𝜑.
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1.4 Realization of the model in MATLAB Simulink
According to Section 1.3, the model of IPMSM under the ITF is divided into two
parts. One describes the healthy IPMSM model, and the other is related to the ITF.
Thus it is possible to model these parts independently on each other and combine
them in the model’s output. Figure 1.4 shows the core of the model.

we

ud

uq

Te,h

id,h

iq,h

model	of	the	healthy	IPMSM

we

ud

uq

phi

xf

tht_e

iq,f

id,f

Te,f

model	of	Inter-Turn	Fault
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1
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Fig. 1.4: Model of IPMSM under the ITF

As shown in Figure 1.4, a mechanical subsystem is also modeled in the core. A
motion equation that describes a mechanical angular velocity 𝜔𝑚 is formed as in

d𝜔𝑚

d𝑡 = 1
𝐽

(𝑇𝑒 − 𝑇𝑓𝑟𝑖𝑐 − 𝑇𝑙𝑜𝑎𝑑) (1.30)

where 𝐽 stands for the moment of inertia, 𝑇𝑙𝑜𝑎𝑑 is a torque load connected to a shaft
of machine, and 𝑇𝑓𝑟𝑖𝑐 is dynamic friction torque inside a motor. We have

𝑇𝑓𝑟𝑖𝑐 = sign(𝜔𝑚) (𝐵|𝜔𝑚| + 𝑇𝑑𝑟𝑦) . (1.31)

Parameters 𝐵 and 𝑇𝑑𝑟𝑦 express the viscous friction coefficient and the dry friction.
The static friction is neglected.

A mechanical angular velocity is the first derivative of mechanical angle 𝜃𝑚;
then d𝜃𝑚/d𝑡 = 𝜔𝑚. Since the machine is controlled to the angular velocity setpoint,
the mechanical angle tends to grow to infinity. Hence, the wrap state function is
implemented in the model presented in Figure 1.4. This function normalizes the
mechanical angle to interval ⟨−𝜋, 𝜋⟩, preventing the value of 𝜃𝑚 from overwhelm-
ing. The relation between the mechanical and electrical angle and mechanical and
electrical angular velocity is then defined as in

𝜃𝑒 = 𝑝𝜃𝑚 𝜔𝑒 = 𝑝𝜔𝑚 (1.32)
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where 𝑝 is the number of pole pairs.
The healthy part of the model of IPMSM under the ITF is then formed using a

flux-based model of IPMSM in 𝑑− 𝑞 coordinates (Fig. 1.5).
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lbd_q,h

Fig. 1.5: Healthy part of the model of IPMSM under the ITF

Due to the demand for changeable fault relevance during the simulation, a rel-
atively complicated expression of parameters 𝑥*

𝑓 , 𝑅𝑓,𝑑𝑞, 𝐿𝑓 , and d𝐿𝑓/d𝜃𝑒 occurs.
Therefore, the model of ITF is divided into two parts to preserve clarity. One part
of the model describes the varying parameters (Fig. 1.6), and the other defines the
fault current and torque (Fig. 1.7).
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Fig. 1.6: Varying parameters in the ITF model
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As shown in Figure 1.6, switching of 𝐿𝑓 is present. If 𝑥𝑓 = 0, then 𝐿𝑓 = 0, and
a division by 0 occurs in the fault current model. Therefore, to prevent this sit-
uation, the value of 𝐿𝑓 is switched to be 1 if 𝑥𝑓 = 0. A similar problem occurs
if 𝑛𝑠 = 1; however, this problem is solved by conditioned expression in the fault
current’s model (Fig. 1.7).
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Fig. 1.7: Model of the fault current and torque

If 𝑛𝑠 = 1, then the fault current 𝑖𝑓 is expressed algebraically and modeled as in
(1.29). On the other hand, if 𝑛𝑠 ̸= 1, then the fault current satisfies (1.28). Note
that if 𝑥𝑓 is switched to be 0, the voltage inputs are multiplied by 𝑥*

𝑓 = 0, and the
state of the fault current is forced to be 0 by the external reset of integrator. Hence,
the fault current and torque are 0 in this situation and the model acts as a model
of healthy IPMSM.
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1.5 Model validation
Typically, vector control is used to drive alternate current machines. Vector control
embodies a variable-frequency drive control method that employs two closed control
loops to regulate the electromagnetic torque and angular velocity. Using the IPMSM
in closed control loops is the most natural approach. Such control loops, however,
have a significant impact on the machine behavior during a fault. Hence, this thesis
provides open-loop validation to ensure that the machine behavior does not depend
on the control loop architecture and tuning.

The validation is performed on a configurable motor for the following winding
connections: 𝑛𝑝 = 1 and 𝑛𝑠 = 1, 𝑛𝑝 = 1 and 𝑛𝑠 = 3, 𝑛𝑝 = 2 and 𝑛𝑠 = 3. The
measured electrical parameters for the different winding connections are presented
in the table below:

Tab. 1.2: Electrical parameters of the validated machine

Connection 𝑛𝑝 = 1; 𝑛𝑠 = 1 𝑛𝑝 = 1; 𝑛𝑠 = 3 𝑛𝑝 = 2; 𝑛𝑠 = 3

𝑅𝑠 [𝑚Ω] 39.11 112.1 42.68

𝐿𝑑 [𝜇𝐻] 572.0 1751 745.2

𝐿𝑞 [𝜇𝐻] 560.6 1696 699.7

𝜆𝑝𝑚 [𝑚𝑊𝑏] 1.807 5.522 4.998

𝑅𝑓 [𝑚Ω] 42.41 45.20 45.38

The machine, driven by a dynamometer to the angular velocity setpoint, is dis-
connected from the inverter, and the inter-turn short circuits are emulated in the
phase ’a’ with the local fault relevance 𝑥𝑓 = 6/25, 𝑥𝑓 = 9/25, and 𝑥𝑓 = 14/25
using a relay. The back electromotive force and fault current are measured using an
oscilloscope. The fault current, together with the electrical angle, is also acquired
by the microcontroller, and both measurements are synchronized based on the fault
current waveform. A photo of the testbench utilized in validating the faulty model
is displayed in Figure 1.8.

The back electromotive force is transformed from the stator variables (𝑎𝑏𝑐) into
the rotor reference frame 𝑑−𝑞 using the information about the electrical angle. The
fault current and 𝑑−𝑞 voltages are then transformed into the frequency domain using
the fast Fourier transform. As can be seen in the model from Section 1.3, the ITF
causes the fault current with the dominant frequency 𝜔𝑒, which leads to distortion
in the 𝑑 − 𝑞 frame mainly on the frequency 2𝜔𝑒. Hence, the model validation uses
the first harmonic of 𝑖𝑓 and the second harmonics of the induced 𝑢𝑑 and 𝑢𝑞.
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Fig. 1.8: Photo of the testbench

As the machine is disconnected from the inverter, the currents satisfy the con-
ditions 𝑖𝑎 = 0, 𝑖𝑏 = 0, and 𝑖𝑐 = 0, yielding 𝑖𝑑 = 0 and 𝑖𝑞 = 0. This condition may
be employed to derive a model that considers 𝜔𝑒 as the input and 𝑢𝑑, 𝑢𝑞 and 𝑖𝑓 as
the outputs (Appendix A). The resulting model is then used to simulate the back
electromotive force and the fault current during the ITF. The simulated data are
processed similarly to the measured waveforms.

Comparing the simulation with the measurement exploits the relative error, cal-
culated as in (1.33) for each measured point of the fault current’s first harmonic and
the second harmonics of the induced 𝑢𝑑 and 𝑢𝑞. We have

𝑒𝑟𝑟𝑜𝑟 = 100 ·
⃒⃒⃒⃒
⃒𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

⃒⃒⃒⃒
⃒ . (1.33)

Relative errors for each examined winding connection are then statistically pro-
cessed, and the mean value and variance are calculated. These statistics express
how precisely the model approximates the measured amplitudes in each measured
point.

The comparison of the simulation and the measurement for three motor config-
urations is visualized in Figure 1.9.
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a) winding connection 𝑛𝑝 = 1; 𝑛𝑠 = 1
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b) winding connection 𝑛𝑝 = 1; 𝑛𝑠 = 3
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c) winding connection 𝑛𝑝 = 2; 𝑛𝑠 = 3
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Fig. 1.9: Comparison between the measurement and the simulation

The relative error statistics are presented in the following table:

Tab. 1.3: Calculated relative error statistics
Connection 𝑛𝑝 = 1; 𝑛𝑠 = 1 𝑛𝑝 = 1; 𝑛𝑠 = 3 𝑛𝑝 = 2; 𝑛𝑠 = 3

Mean value [%] 2.9 4.1 4.4
Variance [%] 10.8 13.9 13.7
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2 Control system architecture and tuning
This thesis aims for the closed-loop diagnostics of ITF relevance. In this configu-
ration, the state variables are affected by ITF and by control system architecture
and tuning. The alternate current machines are commonly controlled in the rotor
reference frame, where direct axis current 𝑖𝑑 defines the magnetic flux, and quadra-
ture axis current 𝑖𝑞 determines the electromagnetic torque 𝑇𝑒. Proportional-integral
(PI) controllers are then usually used to keep the current components 𝑖𝑑 and 𝑖𝑞 at
their requested values 𝑖*𝑑 and 𝑖*𝑞. Due to the nonlinear second harmonic distortion in
the rotor reference frame caused by an ITF, the system can become unstable if the
current controllers are tuned aggressively, especially at the higher electrical angular
velocities 𝜔𝑒. Hence, robustness is a crucial control system property that has to be
maximized.

As seen in the healthy part of IPMSM model (1.25), current components are
coupled by terms that depend on the electrical angular velocity 𝜔𝑒. Generally, if a
machine operates in the low-speed region, current controllers compensate couplings
between 𝑑− 𝑞 currents without much effort. However, with a growing 𝜔𝑒, couplings
between the current components become dominant and are usually compensated by
feedforward compensation techniques. Some of the compensation techniques were
presented by Xingye et al. in [16]. Such techniques were derived based on the
measurable disturbance compensation approach and ensure a high robustness of
the control loop. Figure 2.1 shows a control system architecture with the diagonal
compensation decoupling current controllers described in [16].

𝐾𝑝,𝑑

(︁
1 + 1

𝑇𝑖,𝑑

1
𝑠

)︁
× 𝐿𝑑

𝐿𝑑𝑠+𝑅𝑠

×

𝐾𝑝,𝑞

(︁
1 + 1

𝑇𝑖,𝑞

1
𝑠

)︁
𝐿𝑞

𝐿𝑞𝑠+𝑅𝑠

𝑖𝑑
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+
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−

𝑢𝑑
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𝜔𝑒

−

−

Current controllers with the dynamic decoupling

0

𝐾𝑝,𝜔

(︁
1 + 1

𝑇𝑖,𝜔

1
𝑠

)︁
𝜔*

𝑚

𝜔𝑚

−+

Velocity controller

Fig. 2.1: Control system architecture

In Figure 2.1, 𝑠 is the Laplace operator, 𝐾𝑝,𝑑, 𝐾𝑝,𝑞, and 𝐾𝑝,𝜔 stand for proportional
gains of PI controllers and 𝑇𝑖,𝑑, 𝑇𝑖,𝑞, and 𝑇𝑖,𝜔 are integral time constants of PI
controllers.
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Due to the position of magnets in IPMSMs, 𝑖𝑑 also contributes to the electro-
magnetic torque and the most efficient combination of currents that provides the
required torque can be determined based on the peak torque per amper curve [11].
However, the contribution of 𝑖𝑑 to 𝑇𝑒 is dependent on the difference between the
direct and quadrature axis inductance 𝐿𝑑 and 𝐿𝑞, which is neglectable in case of
the configurable motor used for experiments (Tab. 1.2). Then it is possible to
control the electromagnetic torque using only the quadrature axis current requests
𝑖*𝑞. Since the flux weakening technique is not implemented in this thesis, the direct
axis current setpoint is 𝑖*𝑑 = 0. This instantaneous torque control loop, also called
the current loop, is extended by a PI controller of mechanical angular velocity 𝜔𝑚

(Fig. 2.1). The control action of this PI controller then defines the requested value
of quadrature axis current 𝑖*𝑞 (thus the requested value of electromagnetic torque),
enabling us to drive a machine to the angular velocity setpoint 𝜔*

𝑚.

2.1 Control system parameters tuning
Zezula presented an analytic solution for the parameters tuning of the IPMSM
control system that ensures robustness to parameters changes in [17]. The designed
parameters read

𝐾𝑝,𝑑 = 𝐶𝑐𝑙
𝐿𝑑

𝑇𝑠

𝑇𝑖,𝑑 = 𝐿𝑑

𝑅𝑠

𝐾𝑝,𝑞 = 𝐶𝑐𝑙
𝐿𝑞

𝑇𝑠

𝑇𝑖,𝑞 = 𝐿𝑞

𝑅𝑠

𝐾𝑝,𝜔 = 𝐶𝑣𝑙
20𝐽

3𝑝𝜆𝑝𝑚𝑇𝑠

𝑇𝑖,𝜔 = 10 𝑇𝑠

𝐶𝑐𝑙

(2.1)

where 𝑇𝑠 is the sampling period, 𝐶𝑐𝑙 ∈ (0, 𝜋/9⟩ stands for the current loop scaling
factor tuned based on the possible electrical parameters changes, and 𝐶𝑣𝑙 represents
the velocity loop scaling factor that ensures the phase margin of the velocity loop of
at least 46∘ (traditionally around 55∘, depending on 𝐶𝑐𝑙). The velocity loop scaling
factor 𝐶𝑣𝑙 can be then analytically expressed out of 𝐶𝑐𝑙 as in

𝐶𝑣𝑙 = 𝜎2
√

𝐶2
𝑐𝑙

+𝜎2

𝐶𝑐𝑙

√
𝐶2

𝑐𝑙
+100𝜎2 𝜎 =

√︃
𝐶𝑐𝑙

(︁√
9801𝐶2

𝑐𝑙
+14520𝐶𝑐𝑙+3600−101𝐶𝑐𝑙−60

)︁
200 . (2.2)

However, (2.2) can be approximated on interval 𝐶𝑐𝑙 ∈ (0, 𝜋/9⟩ using a second-order
polynomial with a relative error lower than 1.8 %. We have

𝐶𝑣𝑙 ≈ 1
32𝐶𝑐𝑙 − 1

40𝐶
2
𝑐𝑙. (2.3)

The current loop scaling factor 𝐶𝑐𝑙 is then calculated by solving an algebraic sta-
bility criterion for different combinations of reachable values of electrical parameters.
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This solution provides an optimal design of parameters; however, the calculation of
𝐶𝑐𝑙 might be complicated if an ITF occurs. As mentioned by Sul in [11], since the
dynamics of the current and velocity loop differs, the integral time constant of the
PI controllers should be tuned as in

𝑇𝑖,𝜔 ≥ 5 max (𝑇𝑖,𝑑, 𝑇𝑖,𝑞). (2.4)

If the integral time constants follow 𝑇𝑖,𝜔 = 10 max (𝑇𝑖,𝑑, 𝑇𝑖,𝑞) and (2.1) is substituted
into (2.4), the current loop scaling factor 𝐶𝑐𝑙 reads

𝐶𝑐𝑙 = 𝑇𝑠𝑅𝑠

max (𝐿𝑑, 𝐿𝑞)
. (2.5)

Hence, assuming relations (2.3) and (2.5), controllers parameters can be expressed
as in

𝐾𝑝,𝑑 = 𝑅𝑠𝐿𝑑

max(𝐿𝑑, 𝐿𝑞)
𝑇𝑖,𝑑 = 𝐿𝑑

𝑅𝑠

𝐾𝑝,𝑞 = 𝑅𝑠𝐿𝑞

max(𝐿𝑑, 𝐿𝑞)
𝑇𝑖,𝑞 = 𝐿𝑞

𝑅𝑠

𝐾𝑝,𝜔 =
(︃

5
24 − 1

6
𝑇𝑠𝑅𝑠

max(𝐿𝑑, 𝐿𝑞)

)︃
𝑅𝑠𝐽

𝑝𝜆𝑝𝑚 max(𝐿𝑑, 𝐿𝑞)
𝑇𝑖,𝜔 = 10max(𝐿𝑑, 𝐿𝑞)

𝑅𝑠

. (2.6)

Note that the zeros of PI current controllers are placed to compensate poles in the
diagonal decoupling blocks (Fig. 2.1).

Electrical parameters of the examined motor are defined as in Table 1.2, 𝑝 = 21,
𝐽 = 0.01𝑘𝑔 ·𝑚2, and 𝑇𝑠 = 100𝜇𝑠. Calculated controllers parameters are summarized
in the following table:

Tab. 2.1: Control system parameters

Connection 𝑛𝑝 = 1; 𝑛𝑠 = 1 𝑛𝑝 = 1; 𝑛𝑠 = 3 𝑛𝑝 = 2; 𝑛𝑠 = 3

𝐾𝑝,𝑑 [−] 0.0391 0.112 0.0427

𝐾𝑝,𝑞 [−] 0.0383 0.109 0.0401

𝐾𝑝,𝜔 [−] 3.73 1.14 1.13

𝑇𝑖,𝑑 [𝑠] 0.0146 0.0156 0.0175

𝑇𝑖,𝑞 [𝑠] 0.0143 0.0151 0.0164

𝑇𝑖,𝜔 [𝑠] 0.146 0.156 0.175
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2.2 Discrete-time equivalent and anti-windup
The exact discretization is highly complicated due to the control system’s nonlinear
couplings between voltages and electrical angular velocity (Fig. 2.1). However, the
mechanical subsystem has significantly slower dynamics than the machine’s current
loop. Hence, the electrical angular velocity can be considered constant over one
sampling period.

In real applications of IPMSM, the mechanical angle 𝜃𝑚(𝑡) is sampled with the
same sampling period 𝑇𝑠 as (𝑎𝑏𝑐) currents, and 𝜃𝑒(𝑡) is calculated out of 𝜃𝑚(𝑡) as in
(1.32). This sampling rate is crucial because the information about 𝜃𝑒(𝑡) is required
in the rotor reference frame transformation. The electrical angular velocity 𝜔𝑒(𝑡) is
then estimated using an angle tracking observer (ATO). Hence, the sampling rate
designed to the current loop’s dynamics is highly overrated in a slower mechanical
subsystem, and only minor changes of 𝜔𝑒(𝑡) occur during one sampling period 𝑇𝑠.
The maximum possible change of 𝜔𝑒(𝑡) during one sampling period is reached if
the maximum electromagnetic torque is generated and minimum torque load and
friction torque are connected to a machine’s shaft. We have

𝑇𝑚𝑎𝑥 = 𝑇𝑒,𝑚𝑎𝑥 − 𝑇𝑓𝑟𝑖𝑐,𝑚𝑖𝑛 − 𝑇𝑙𝑜𝑎𝑑,𝑚𝑖𝑛. (2.7)

If the minimum values of torque load 𝑇𝑙𝑜𝑎𝑑,𝑚𝑖𝑛 and friction torque 𝑇𝑓𝑟𝑖𝑐,𝑚𝑖𝑛 are un-
known, they can be considered 0, resulting in 𝑇𝑚𝑎𝑥 = 𝑇𝑒,𝑚𝑎𝑥. The maximum elec-
tromagnetic torque is then given as in 𝑇𝑒,𝑚𝑎𝑥 = 3

2𝑝𝜆𝑝𝑚𝐼𝑚𝑎𝑥, where 𝐼𝑚𝑎𝑥 stands for
the current vector limitation. If the maximum torque is generated, the electrical
angular velocity 𝜔𝑒(𝑡) can be derived out of the motion equation (1.30) as in

d𝜔𝑒

d𝑡 = 𝑝

𝐽
𝑇𝑚𝑎𝑥 𝜔𝑒(𝑘 + 1) = 𝜔𝑒(𝑘) + 𝑝

𝐽
𝑇𝑚𝑎𝑥

∫︁ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠

d𝑡 (2.8)

where 𝑘 is the actual step of the discretized system. The maximum possible change
Δ𝜔𝑒,𝑚𝑎𝑥 of 𝜔𝑒(𝑡) during one sampling period reads

Δ𝜔𝑒,𝑚𝑎𝑥 = 𝑝

𝐽
𝑇𝑚𝑎𝑥𝑇𝑠 = 3𝑝2𝜆𝑝𝑚𝐼𝑚𝑎𝑥𝑇𝑠

2𝐽 . (2.9)

If the current limitation of the examined motor is 𝐼𝑚𝑎𝑥 = 8 𝐴, then the maximum
torque 𝑇𝑚𝑎𝑥 = 𝑇𝑒,𝑚𝑎𝑥 and Δ𝜔𝑒,𝑚𝑎𝑥 are calculated in the following table:

Tab. 2.2: The maximum possible changes of electrical angular velocity

Connection 𝑛𝑝 = 1; 𝑛𝑠 = 1 𝑛𝑝 = 1; 𝑛𝑠 = 3 𝑛𝑝 = 2; 𝑛𝑠 = 3
𝑇𝑚𝑎𝑥 [𝑁𝑚] 0.455 1.392 1.260

Δ𝜔𝑒,𝑚𝑎𝑥 [𝑟𝑎𝑑/𝑠] 0.0956 0.2922 0.2645
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Since the maximum possible changes of 𝜔𝑒(𝑡) during one sampling period are very
low (even if the minimum torque load and friction are neglected), the electrical
angular velocity 𝜔𝑒(𝑡) can be represented on the interval 𝑘𝑇𝑠 ≤ 𝑡 < (𝑘 + 1)𝑇𝑠 by
a constant value estimated by an angle tracking observer. Error caused by this
simplification is irrelevant compared to system noise and error of ATO. The control
system can be then discretized as a linear time-invariant system.

Based on the parameters tuning (2.6) and the constant electrical angular velocity
over one sampling period assumption, the control system (Fig. 2.1) can be written
in Laplace transform as in

⎡⎣𝑈𝑑(𝑠)
𝑈𝑞(𝑠)

⎤⎦ =

⎡⎢⎢⎢⎢⎣
−𝐾𝑝,𝑑

(︁
1 + 1

𝑇𝑖,𝑑

1
𝑠

)︁
−𝐾𝑝,𝑑𝜔𝑒

𝑠

𝐾𝑝,𝑞𝜔𝑒

𝑠
−𝐾𝑝,𝑞

(︁
1 + 1

𝑇𝑖,𝑞

1
𝑠

)︁
−𝐾𝑝,𝜔𝐾𝑝,𝑞𝜔𝑒

𝑠

(︁
1 + 1

𝑇𝑖,𝜔

1
𝑠

)︁
𝐾𝑝,𝜔𝐾𝑝,𝑞

(︁
1 + 1

𝑇𝑖,𝑞

1
𝑠

)︁ (︁
1 + 1

𝑇𝑖,𝜔

1
𝑠

)︁
⎤⎥⎥⎥⎥⎦

𝑇

·

⎡⎢⎢⎣
𝐼𝑑(𝑠)
𝐼𝑞(𝑠)
𝐸𝜔(𝑠)

⎤⎥⎥⎦
(2.10)

where 𝐸𝜔(𝑠) = Ω*
𝑚(𝑠)−Ω𝑚(𝑠). Hence, the continuous-time multiple-input multiple-

output system (2.10) can be discretized using the zero-order hold. We have

⎡⎣𝑈𝑑(𝑧)
𝑈𝑞(𝑧)

⎤⎦ =

⎡⎢⎣ −𝐾𝑝,𝑑

(︁
1 + 𝑇𝑠

𝑇𝑖,𝑑

𝑧−1

1−𝑧−1

)︁
𝜔𝑒𝑇𝑖,𝑞

(︁
𝐾𝑝,𝑞

𝑇𝑠

𝑇𝑖,𝑞

𝑧−1

1−𝑧−1

)︁
𝐹13(𝑧)

−𝜔𝑒𝑇𝑖,𝑑

(︁
𝐾𝑝,𝑑

𝑇𝑠

𝑇𝑖,𝑑

𝑧−1

1−𝑧−1

)︁
−𝐾𝑝,𝑞

(︁
1 + 𝑇𝑠

𝑇𝑖,𝑞

𝑧−1

1−𝑧−1

)︁
𝐹23(𝑧)

⎤⎥⎦ ·

⎡⎢⎢⎣
𝐼𝑑(𝑧)
𝐼𝑞(𝑧)
𝐸𝜔(𝑧)

⎤⎥⎥⎦
(2.11)

where 𝑧 is the 𝑍-transform operator and

𝐹13(𝑧) = −𝐾𝑝,𝜔

(︃
1 + 𝑇𝑠

2𝑇𝑖,𝜔

+ 𝑇𝑠

𝑇𝑖,𝜔

𝑧−1

1 − 𝑧−1

)︃
𝜔𝑒𝑇𝑖,𝑞

(︃
𝐾𝑝,𝑞

𝑇𝑠

𝑇𝑖,𝑞

𝑧−1

1 − 𝑧−1

)︃

𝐹23(𝑧) = 𝐾𝑝,𝜔𝐾𝑝,𝑞

(︃
1 +

(︃
𝑇𝑠

𝑇𝑖,𝜔

+ 𝑇𝑠

𝑇𝑖,𝑞

+ 𝑇 2
𝑠

2𝑇𝑖,𝜔𝑇𝑖,𝑞

)︃
𝑧−1

1 − 𝑧−1 + 𝑇 2
𝑠

𝑇𝑖,𝜔𝑇𝑖,𝑞

𝑧−2

(1 − 𝑧−1)2

)︃
.

(2.12)

However, since 1 ≫ 𝑇𝑠

2𝑇𝑖,𝜔
, 𝑇𝑠

𝑇𝑖,𝑞
≫ 𝑇 2

𝑠

2𝑇𝑖,𝜔𝑇𝑖,𝑞
, and 𝑇𝑠

𝑇𝑖,𝜔
≫ 𝑇 2

𝑠

2𝑇𝑖,𝜔𝑇𝑖,𝑞
, the transfer functions

(2.12) can be approximated as in

𝐹13(𝑧) ≈ −𝐾𝑝,𝜔

(︃
1 + 𝑇𝑠

𝑇𝑖,𝜔

𝑧−1

1 − 𝑧−1

)︃
𝜔𝑒𝑇𝑖,𝑞

(︃
𝐾𝑝,𝑞

𝑇𝑠

𝑇𝑖,𝑞

𝑧−1

1 − 𝑧−1

)︃

𝐹23(𝑧) ≈ 𝐾𝑝,𝜔

(︃
1 + 𝑇𝑠

𝑇𝑖,𝜔

𝑧−1

1 − 𝑧−1

)︃
𝐾𝑝,𝑞

(︃
1 + 𝑇𝑠

𝑇𝑖,𝑞

𝑧−1

1 − 𝑧−1

)︃
(2.13)

Hence, the velocity and current controllers can be separated.
A straightforward anti-windup technique can be used in the velocity controller

since the current limitation 𝐼𝑚𝑎𝑥 is usually constant for a particular machine. There-
fore, the well-known clamping anti-windup method is implemented. This technique
reads that if |𝑖*𝑞| > 𝐼𝑚𝑎𝑥, then |𝑖*𝑞| is limited to 𝐼𝑚𝑎𝑥, and 𝑇𝑠/𝑇𝑖,𝜔 = 0. Due to this
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conditioning, an integrator is turned off if the limit value is reached. If the limitation
is static, this method prevents accumulating energy in the integrator. Figure 2.2
shows the MATLAB Simulink realization of the velocity controller with the clamp-
ing anti-windup.

Clamping	anti-windup

Integral	part	of	PI	controller
Current	limitation

2
wm

1
iq*

1
wm*

up

u

lo

y

3
Imax

T

F

	>	

~=	0

Fig. 2.2: Velocity controller with the clamping anti-windup

In Figure 2.2 the current limitation 𝐼𝑚𝑎𝑥 is represented by an input signal even
though it is a constant value. This enables us to change the value of this parameter
inside the processor without repetitive code generating.

In the current controllers, the output voltages are limited based on an inverter’s
DC bus voltage 𝑈𝑑𝑐. However, 𝑈𝑑𝑐 represents a voltage limitation in the stator
variables (𝑎𝑏𝑐) and is transformed into 𝑑 − 𝑞 frame as in 𝑈𝑚𝑎𝑥 = 𝑈𝑑𝑐/

√
3. Then

𝑈𝑚𝑎𝑥 is a voltage limitation in the rotor reference frame. Direct and quadrature axis
voltage components are then limited as |𝑢𝑑| ≤ 𝑈𝑚𝑎𝑥 and |𝑢𝑞| ≤

√︁
𝑈2

𝑚𝑎𝑥 − 𝑢2
𝑑. Figure

2.3 shows the MATLAB Simulink realization of the current controllers (2.11) with
the voltage limitation.
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Fig. 2.3: Current controllers
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The clamping anti-windup method cannot be sufficiently implemented in current
controllers since the limitation of voltage components change dynamically (especially
the limitation of quadrature axis voltage). Due to this issue, the back-calculation
anti-windup method is derived and implemented.

If the voltages are saturated, differences Δ𝑢,𝑑 and Δ𝑢,𝑞 between required voltage
outputs 𝑢*

𝑑 and 𝑢*
𝑞 and real voltage outputs 𝑢𝑑 and 𝑢𝑞 occur. We have⎡⎣𝑢*

𝑑

𝑢*
𝑞

⎤⎦−

⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ =
⎡⎣Δ𝑢,𝑑

Δ𝑢,𝑞

⎤⎦ (2.14)

where ⎡⎣𝑢*
𝑑

𝑢*
𝑞

⎤⎦ =
⎡⎣𝑢𝑝,𝑑

𝑢𝑝,𝑞

⎤⎦+
⎡⎣ 1 −𝑇𝑖,𝑞𝜔𝑒

𝑇𝑖,𝑑𝜔𝑒 1

⎤⎦ ·

⎡⎣𝑢𝑖,𝑑

𝑢𝑖,𝑞

⎤⎦ . (2.15)

Voltage signals 𝑢𝑝,𝑑 and 𝑢𝑝,𝑞 stand for the proportional contributions of PI con-
trollers, and 𝑢𝑖,𝑑 and 𝑢𝑖,𝑞 represent outputs of integral parts (Fig. 2.3). Voltages of
integral parts should then be compensated to satisfy zero difference conditions as in

⎡⎣𝑢*
𝑑,𝑐

𝑢*
𝑞,𝑐

⎤⎦−

⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ =
⎡⎣0
0

⎤⎦ (2.16)

where ⎡⎣𝑢*
𝑑,𝑐

𝑢*
𝑞,𝑐

⎤⎦ =
⎡⎣𝑢𝑝,𝑑

𝑢𝑝,𝑞

⎤⎦+
⎡⎣ 1 −𝑇𝑖,𝑞𝜔𝑒

𝑇𝑖,𝑑𝜔𝑒 1

⎤⎦ ·

⎡⎣𝑢𝑖,𝑑 − 𝜓𝑑

𝑢𝑖,𝑞 − 𝜓𝑞

⎤⎦ . (2.17)

Comparing (2.14) and (2.16) and removing the algebraic loop by inserting the unit
delay block provides the solution of compensating voltages 𝜓𝑑 and 𝜓𝑞 as in⎡⎣𝜓𝑑(𝑘 + 1)

𝜓𝑞(𝑘 + 1)

⎤⎦ = 1
1 + 𝑇𝑖,𝑑𝑇𝑖,𝑞𝜔𝑒(𝑘)2

⎡⎣ 1 𝑇𝑖,𝑞𝜔𝑒(𝑘)
−𝑇𝑖,𝑑𝜔𝑒(𝑘) 1

⎤⎦ ·

⎡⎣Δ𝑢,𝑑(𝑘)
Δ𝑢,𝑞(𝑘)

⎤⎦ . (2.18)

The back-calculation anti-windup of current controllers is shown in Figure 2.4.
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Fig. 2.4: Back-calculation anti-windup of current controllers
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2.3 Angle tracking observer
Angle tracking observer embodies a phase-locked loop that minimizes the difference
between an estimated angle and an angle read from measured signals. ATO in
the base form comprises a phase detector that calculates an error 𝜃𝑒 between the
estimated and the actual position, a PI controller that compensates the error, and
an integrator that integrates the control action of the PI controller [18]. The control
action of the PI controller then represents an estimated angular velocity 𝜔̂𝑒, and the
estimated angle 𝜃𝑒 is obtained by integrating the estimated velocity. This connection
is widely used; however, when a motor speeds up at a constant acceleration, the
conventional ATO causes a steady-state error in its estimated position. This problem
was solved by Wang et al. in [19] by involving a first-order compensation module
that utilizes the estimated speed to generate a signal proportional to the motor’s
acceleration, thus compensating the position error if 𝜃𝑒 = 𝑐𝑡2. If there is a demand
for higher-order position changes 𝜃𝑒 = 𝑐𝑡3, the higher-order compensation module
has to be implemented to compensate for the error appropriately. In this thesis;
however, a conventional ATO is implemented since the steady-state angle error is
neglectable for the calculated frequency bandwidth of the examined machine.

The angle tracking observer in the base form is visualized in Figure 2.5.
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×
cos(𝜃𝑒)

+

−

Phase detector
𝜃𝑒 𝜔2
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𝑠

2𝜁𝜔𝑛

+

+

PI controller

1
𝑠

Integrator

𝜃𝑒

𝜔̂𝑒

cos

sin
sin(𝜃𝑒)

cos(𝜃𝑒)

Fig. 2.5: Angle tracking observer

In Figure 2.5, 𝜁 stands for a damping ratio, and 𝜔𝑛 is a natural frequency of ATO
tuned based on the frequency bandwidth 𝜔𝑛 = 𝜔𝑏/2. As mentioned by Sul in [11],
since the direct axis current 𝑖𝑑 is controlled to zero, the frequency bandwidth 𝜔𝑏 of
IPMSM is calculated based on the voltage and current limitation 𝑈𝑚𝑎𝑥 = 𝑈𝑑𝑐/

√
3

and 𝐼𝑚𝑎𝑥 as in
𝜔𝑏 = 𝑈𝑑𝑐√︂

3
(︁
𝜆2

𝑝𝑚 + 𝐿2
𝑞𝐼

2
𝑚𝑎𝑥

)︁ . (2.19)
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The frequency bandwidths of the examined machine are then presented in the fol-
lowing table for three winding connections:

Tab. 2.3: Frequency bandwidths of the examined machine

Connection 𝑛𝑝 = 1; 𝑛𝑠 = 1 𝑛𝑝 = 1; 𝑛𝑠 = 3 𝑛𝑝 = 2; 𝑛𝑠 = 3

𝑈𝑑𝑐 [𝑉 ] 55/3 55 55

𝜔𝑏 [𝑟𝑎𝑑/𝑠] 2189 2168 4232

The estimated angle 𝜃𝑒 tracks the actual one 𝜃𝑒, and the difference between
angles 𝜃𝑒 tends to zero. Hence, the system (Fig. 2.5) can be linearized using the
small-angle approximation. We have

𝜃𝑒 = sin(𝜃𝑒) cos(𝜃𝑒) − cos(𝜃𝑒) sin(𝜃𝑒) = sin(𝜃𝑒 − 𝜃𝑒) ≈ 𝜃𝑒 − 𝜃𝑒. (2.20)

The angle-tracking transfer function of the linearized system is then expressed as in

Θ̂𝑒(𝑠)
Θ𝑒(𝑠)

= 2𝜁𝜔𝑛𝑠+ 𝜔2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠+ 𝜔2
𝑛

. (2.21)

For the second-order system (2.21) to achieve the tradeoff between responsiveness
and overshoot, it is common practice to set 𝜁 as

√
2/2. The estimated velocity 𝜔̂𝑒

can be then expressed as the first derivative of the estimated angle 𝜃𝑒. We have

Ω̂𝑒(𝑠) = 𝑠Θ̂𝑒(𝑠)
Ω̂𝑒(𝑠)
Θ𝑒(𝑠)

= 2𝜁𝜔𝑛𝑠
2 + 𝜔2

𝑛𝑠

𝑠2 + 2𝜁𝜔𝑛𝑠+ 𝜔2
𝑛

. (2.22)

The designed ATO is implemented as a part of the control system in a discrete
form. Hence, the discrete-time equivalents of transfer functions (2.21) and (2.22)
must be calculated, and open-loop transfer functions Θ̂𝑒(𝑧)

Ω̂𝑒(𝑧) and Ω̂𝑒(𝑧)
Θ̃𝑒(𝑧) have to be

expressed to preserve the phase detector part of ATO. If a machine runs at the
constant angular velocity, the electrical angle satisfies 𝜃𝑒(𝑡) = 𝑐𝑡. On the other hand,
if a motor runs at a constant acceleration, the electrical angle meets 𝜃𝑒(𝑡) = 𝑐𝑡2.
Hence, these two (or most likely more) representations of 𝜃𝑒(𝑡) have to be taken into
account in the discretization procedure. Then the piecewise linear approximation of
𝜃𝑒(𝑡) is applied to preserve the simplicity of the discrete-time equivalents, yielding

𝜃𝑒(𝑡) = 𝜃𝑒(𝑘) + 𝑡− 𝑘𝑇𝑠

𝑇𝑠

(𝜃𝑒(𝑘 + 1) − 𝜃𝑒(𝑘)) 𝑘𝑇𝑠 ≤ 𝑡 < (𝑘 + 1)𝑇𝑠. (2.23)

Note that approximation (2.23) provides an exact solution if 𝜃𝑒(𝑡) = 𝑐𝑡. The discrete-
time equivalents are then calculated as in

Θ̂𝑒(𝑧)
Θ𝑒(𝑧)

= (𝑧 − 1)2

𝑇𝑠𝑧
𝑍𝑒𝑘𝑣

⎧⎨⎩ 1
𝑠2

Θ̂𝑒(𝑠)
Θ𝑒(𝑠)

⎫⎬⎭ Ω̂𝑒(𝑧)
Θ𝑒(𝑧)

= (𝑧 − 1)2

𝑇𝑠𝑧
𝑍𝑒𝑘𝑣

⎧⎨⎩1
𝑠

Θ̂𝑒(𝑠)
Θ𝑒(𝑠)

⎫⎬⎭ (2.24)
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where 𝑍𝑒𝑘𝑣{𝐹 (𝑠)} represents the Z-transform equivalent of a transmission defined in
the Laplace transform. The open-loop transfer functions are then derived using the
angle error definition Θ̃𝑒(𝑧) = Θ𝑒(𝑧)−𝑧−1Θ̂𝑒(𝑧) (this definition prevents an algebraic
loop occurrence) as follows:

Θ̂𝑒(𝑧)
Ω̂𝑒(𝑧)

= Θ̂𝑒(𝑧)
Θ𝑒(𝑧)

⎛⎝ Ω̂𝑒(𝑧)
Θ𝑒(𝑧)

⎞⎠−1
Ω̂𝑒(𝑧)
Θ̃𝑒(𝑧)

= Ω̂𝑒(𝑧)
Θ𝑒(𝑧)

⎛⎝1 − 𝑧−1 Θ̂𝑒(𝑧)
Θ𝑒(𝑧)

⎞⎠−1

. (2.25)

Listing 2.1 presents the discretization procedure realized in MATLAB.

Listing 2.1: Discretization of ATO in MATLAB
1 wn = 2189/2; zeta = sqrt (2)/2; Ts = 100e -6;
2 F_tht = tf ([2* zeta*wn ,wn ^2] ,[1 ,2* zeta*wn ,wn ^2]);
3 F_omg = tf ([2* zeta*wn ,wn ^2 ,0] ,[1 ,2* zeta*wn ,wn ^2]);
4 F_tht = zpk(c2d(F_tht ,Ts ,’foh ’));
5 F_omg = zpk(c2d(F_omg ,Ts ,’foh ’));
6 F0_omg = tf( minreal (F_omg/zpk(1- F_tht/tf(’z’)),1e -4))
7 F0_tht = minreal (F_tht/F_omg ,1e -4);
8 % Separating feedforward coupling
9 [num_tht , den_tht ] = tfdata(F0_tht ,’v’);

10 [~,~, K_tht] = residue (num_tht , den_tht )
11 F0_tht_c = tf(F0_tht - K_tht)

The resulting discrete-time equivalents are described as in

Θ̂𝑒(𝑧)
Ω̂𝑒(𝑧)

= 𝐾𝜃 + 𝑇𝑠
𝑧−1

1 − 𝑧−1
Ω̂𝑒(𝑧)
Θ̃𝑒(𝑧)

= 𝑏1 − 𝑏0𝑧
−1

1 − 𝑎1𝑧−1 − 𝑎0𝑧−2 (2.26)

where the parameters calculated for three winding connections are presented in the
following table:

Tab. 2.4: Discretized ATO’s parameters

Connection 𝑛𝑝 = 1; 𝑛𝑠 = 1 𝑛𝑝 = 1; 𝑛𝑠 = 3 𝑛𝑝 = 2; 𝑛𝑠 = 3
𝐾𝜃 5.067 · 10−5 5.066 · 10−5 5.134 · 10−5

𝑏1 1488 1474 2769
𝑏0 1377 1365 2384
𝑎1 0.9209 0.9217 0.8450
𝑎0 0.0680 0.0674 0.1164

Figure 2.6 shows the MATLAB Simulink implementation of the designed angle
tracking observer.
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Fig. 2.6: Implementation of the designed angle tracking observer

In Figure 2.6, the limit function is implemented into the discretized integrator to
prevent overwhelming the estimated angle. This function ensures that if the input
angle 𝜃𝑖𝑛 is higher than +𝜋, the output angle 𝜃𝑜𝑢𝑡 value is given by 𝜃𝑜𝑢𝑡 = 𝜃𝑖𝑛 − 2𝜋.
On the other hand, if 𝜃𝑖𝑛 < −𝜋, then 𝜃𝑜𝑢𝑡 = 𝜃𝑖𝑛 + 2𝜋.

2.4 Transformations and space vector modulation
Since the control system is tuned in the rotor reference frame, the currents measured
in the stator variables have to be appropriately transformed. For this purpose, Park’s
and Clarke’s transformation is employed. We have

⎡⎣𝑖𝑑(𝑘)
𝑖𝑞(𝑘)

⎤⎦ = 2
3

⎡⎣ cos(𝜃𝑒(𝑘)) sin(𝜃𝑒(𝑘))
− sin(𝜃𝑒(𝑘)) cos(𝜃𝑒(𝑘))

⎤⎦ ·

⎡⎣1 −1
2 −1

2

0
√

3
2 −

√
3

2

⎤⎦ ·

⎡⎢⎢⎣
𝑖𝑎(𝑘)
𝑖𝑏(𝑘)
𝑖𝑐(𝑘)

⎤⎥⎥⎦ . (2.27)

Similarly, the voltage requests calculated in the rotor reference frame have to be
transformed into the stator variables using inverse Park’s and Clarke’s transforma-
tion. However, due to the calculation time of the discretized control algorithm, a
unit delay occurs in the control loop. Hence, the control system does not compute
voltage requests for the actual step 𝑘 but calculates it for the following step 𝑘 + 1.
In this case, the electrical angle 𝜃𝑒 applied in the transformation matrix has to be
evaluated for step 𝑘+1. The value 𝜃𝑒(𝑘+1) can be calculated assuming the constant
electrical angular velocity over one sampling period as in

𝜃𝑒(𝑘 + 1) ≈ 𝜃𝑒(𝑘) + 𝑇𝑠𝜔𝑒(𝑘). (2.28)
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Voltage requests in the stator variables are then expressed using the angle sum
trigonometric identities and inverse transformation matrices. We have
⎡⎢⎢⎣
𝑢𝑎(𝑘 + 1)
𝑢𝑏(𝑘 + 1)
𝑢𝑐(𝑘 + 1)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0

−1
2

√
3

2

−1
2 −

√
3

2

⎤⎥⎥⎥⎥⎦ ·

⎡⎣cos(𝜃𝑒(𝑘)) − sin(𝜃𝑒(𝑘))
sin(𝜃𝑒(𝑘)) cos(𝜃𝑒(𝑘))

⎤⎦ ·

⎡⎣cos(𝑇𝑠𝜔𝑒(𝑘)) − sin(𝑇𝑠𝜔𝑒(𝑘))
sin(𝑇𝑠𝜔𝑒(𝑘)) cos(𝑇𝑠𝜔𝑒(𝑘))

⎤⎦ ·

⎡⎣𝑢𝑑(𝑘 + 1)
𝑢𝑞(𝑘 + 1)

⎤⎦ .
(2.29)

Alternating voltage waveforms required to drive PMSMs are then commonly
generated using the three-phase power inverter with the pulse width modulation. In
the basic form, the three-phase power inverter consists of six switches that enable
connecting the DC bus voltage between the particular machine phases at a certain
moment. These switches are then controlled by logical signals with changeable duty
cycles 𝛿𝑎(𝑘), 𝛿𝑏(𝑘), and 𝛿𝑐(𝑘) that are adjusted based on the generated control system
voltage requests 𝑢𝑎(𝑘), 𝑢𝑏(𝑘), and 𝑢𝑐(𝑘) and implemented modulation technique.
The main objective of the modulation technique is to maximize the utilization of
limited DC bus voltage. In this thesis, the Min-Max third harmonics injection
approach [20] is implemented as an equivalent of the space vector modulation (SVM)
technique. According to the Min-Max modulation strategy, the duty cycles of the
inverter’s switches are calculated as in

𝛿𝑎(𝑘) = 1
2 + 𝑢𝑎(𝑘)

𝑈𝑑𝑐

− max(𝑢𝑎(𝑘), 𝑢𝑏(𝑘), 𝑢𝑐(𝑘)) + min(𝑢𝑎(𝑘), 𝑢𝑏(𝑘), 𝑢𝑐(𝑘))
2𝑈𝑑𝑐

𝛿𝑏(𝑘) = 1
2 + 𝑢𝑏(𝑘)

𝑈𝑑𝑐

− max(𝑢𝑎(𝑘), 𝑢𝑏(𝑘), 𝑢𝑐(𝑘)) + min(𝑢𝑎(𝑘), 𝑢𝑏(𝑘), 𝑢𝑐(𝑘))
2𝑈𝑑𝑐

𝛿𝑐(𝑘) = 1
2 + 𝑢𝑐(𝑘)

𝑈𝑑𝑐

− max(𝑢𝑎(𝑘), 𝑢𝑏(𝑘), 𝑢𝑐(𝑘)) + min(𝑢𝑎(𝑘), 𝑢𝑏(𝑘), 𝑢𝑐(𝑘))
2𝑈𝑑𝑐

. (2.30)

The control system implementation is visualized in Figure 2.7.
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Fig. 2.7: Control system implementation in MATLAB Simulink
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In Figure 2.7, a current fuse is implemented. This fuse ensures that the voltage
outputs 𝑢𝑑 and 𝑢𝑞 are disconnected until the control system is restarted if the current
vector magnitude

√︁
𝑖2𝑑 + 𝑖2𝑞 reaches the defined critical value 𝐼𝑐𝑟𝑖𝑡.

2.5 Control system validation
For the purpose of control system validation, a measurement on the configurable
motor was performed. A 𝐶 code was generated using the Embedded Coder app
out of the MATLAB Simulink control system model, and the generated code was
implemented into preprogrammed AURIX Application Kit TC277. The kit was
connected to the inverter, the DC bus voltage was adjusted to 𝑈𝑑𝑐 = 45𝑉 , and the
quadrature axis current request limitation was set to be 𝐼𝑚𝑎𝑥 = 5𝐴. The critical
value of the current vector was defined by 𝐼𝑐𝑟𝑖𝑡 = 20𝐴. The angular velocity was
then controlled by a slow ramp to 𝑤𝑚 = 10 𝑟𝑎𝑑/𝑠 to ensure proper initialization.

After the initialization, the step requests of angular velocity were performed, and
the transients were measured. Subsequently, inter-turn short circuits were emulated
in phase ’a’ with fault relevance 𝑥𝑓 = 6/25 for connection 𝑛𝑝 = 1, 𝑛𝑠 = 1, and
𝑥𝑓 = 14/25 for connections 𝑛𝑝 = 1, 𝑛𝑠 = 3 and 𝑛𝑝 = 2, 𝑛𝑠 = 3. In configuration
𝑛𝑝 = 1 and 𝑛𝑠 = 1, the fault current quickly reaches higher values; therefore,
faults with lesser relevance are emulated to prevent overheating. Figure 2.8 visualize
measured characteristics for three winding connections.

a) winding connection 𝑛𝑝 = 1; 𝑛𝑠 = 1
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b) winding connection 𝑛𝑝 = 1; 𝑛𝑠 = 3
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c) winding connection 𝑛𝑝 = 2; 𝑛𝑠 = 3
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Fig. 2.8: Responses of controlled machine for three winding connections
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3 Discrete-time equivalent of ITF model
Since identification algorithms primarily support discrete-time models, therefore,
for the purpose of fault relevance diagnostics, the model described in Section 1.3
has to be discretized. Traditionally, many authors discretize machine models using
the Finite difference method, such as the forward Euler method (first-order) or the
second-order Runge–Kutta method [21] - [22]. These methods approximate a time
derivative by the finite set of differences, leading to an inexact solution lacking physi-
cal meaning and amplifying the higher frequencies of system noise. Furthermore, this
solution might be even unstable at higher electrical angular velocities. Due to these
issues, a novel machine discretization procedure based on the linear time-varying
systems approach [23] - [24] is presented. The key idea lies in the integral relation-
ship between the electrical angular velocity and angle 𝜃𝑒(𝑡) =

∫︀ 𝑡
𝑘𝑇𝑠

𝜔𝑒(𝜏)𝑑𝜏 + 𝜃𝑒(𝑘).
Hence, in the discretization procedure, the electrical angular velocity 𝜔𝑒(𝑡) can be
considered a time-varying parameter with the defined integral. Since the model of
the shorted machine consists of two parts tied in the output equation, it is possible
to discretize these parts separately and combine their discrete-time equivalents.

3.1 Healthy part discretization
The system of differential equations describes the healthy part of the ITF model as
in (1.25). This system can be written in a linear time-varying form. We have

d
d𝑡

⎡⎣𝑖𝑑,ℎ(𝑡)
𝑖𝑞,ℎ(𝑡)

⎤⎦ = Aℎ(𝑡)
⎡⎣𝑖𝑑,ℎ(𝑡)
𝑖𝑞,ℎ(𝑡)

⎤⎦+ Bℎ(𝑡)

⎡⎢⎢⎣
𝑢𝑑(𝑡)
𝑢𝑞(𝑡)
𝜆𝑝𝑚

⎤⎥⎥⎦ (3.1)

where

Aℎ(𝑡) =

⎡⎢⎣ −𝑅𝑠

𝐿𝑑

𝐿𝑞

𝐿𝑑
𝜔𝑒(𝑡)

−𝐿𝑑

𝐿𝑞
𝜔𝑒(𝑡) −𝑅𝑠

𝐿𝑞

⎤⎥⎦ Bℎ(𝑡) =

⎡⎢⎣ 1
𝐿𝑑

0 0

0 1
𝐿𝑞

− 1
𝐿𝑞
𝜔𝑒(𝑡)

⎤⎥⎦ . (3.2)

However, since the direct and quadrature axis inductances of the validated machine
(Table 1.2) are close to each other, they can be approximated by a common 𝑑 − 𝑞

inductance 𝐿𝑑𝑞 = 𝐿𝑑+𝐿𝑞

2 , yielding

Aℎ(𝑡) ≈

⎡⎢⎣ − 𝑅𝑠

𝐿𝑑𝑞
𝜔𝑒(𝑡)

−𝜔𝑒(𝑡) − 𝑅𝑠

𝐿𝑑𝑞

⎤⎥⎦ Bℎ(𝑡) ≈ 1
𝐿𝑑𝑞

⎡⎣1 0 0

0 1 −𝜔𝑒(𝑡)

⎤⎦ . (3.3)
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Discrete-time equivalent’s state matrix A𝑑,ℎ((𝑘+1)𝑇𝑠, 𝑘𝑇𝑠) = 𝑒
∫︀ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠
Aℎ(𝜏)𝑑𝜏 is then

calculated based on the state matrix Aℎ(𝑡) time integral. We have

∫︁ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠

Aℎ(𝜏)𝑑𝜏 =

⎡⎢⎣ − 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠 (𝜃𝑒(𝑘 + 1) − 𝜃𝑒(𝑘))

−(𝜃𝑒(𝑘 + 1) − 𝜃𝑒(𝑘)) − 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

⎤⎥⎦ . (3.4)

Based on the matrix exponential definition for some special cases of matrix Aℎ(𝑡)
described by Bernstein and So in [25], the discrete-time equivalent’s state matrix
A𝑑,ℎ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) gains the following form:

A𝑑,ℎ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) = 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

⎡⎣ cos(𝜃𝑒(𝑘 + 1) − 𝜃𝑒(𝑘)) sin(𝜃𝑒(𝑘 + 1) − 𝜃𝑒(𝑘))
− sin(𝜃𝑒(𝑘 + 1) − 𝜃𝑒(𝑘)) cos(𝜃𝑒(𝑘 + 1) − 𝜃𝑒(𝑘))

⎤⎦ .
(3.5)

Hence, the discrete-time equivalent of system (3.1) is defined as in

⎡⎣𝑖𝑑,ℎ(𝑘 + 1)
𝑖𝑞,ℎ(𝑘 + 1)

⎤⎦ = A𝑑,ℎ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠)
⎡⎣𝑖𝑑,ℎ(𝑘)
𝑖𝑞,ℎ(𝑘)

⎤⎦+
∫︀ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠
A𝑑,ℎ((𝑘 + 1)𝑇𝑠, 𝜏)Bℎ(𝜏)

⎡⎢⎢⎣
𝑢𝑑(𝜏)
𝑢𝑞(𝜏)
𝜆𝑝𝑚

⎤⎥⎥⎦ 𝑑𝜏.
(3.6)

However, system (3.6) can be expressed more illustratively in the stator reference
frame. We have
⎡⎣𝑖𝛼,ℎ(𝑘 + 1)
𝑖𝛽,ℎ(𝑘 + 1)

⎤⎦ = 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

⎡⎣𝑖𝛼,ℎ(𝑘)
𝑖𝛽,ℎ(𝑘)

⎤⎦+ 1
𝐿𝑑𝑞

∫︀ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠
𝑒

− 𝑅𝑠
𝐿𝑑𝑞

((𝑘+1)𝑇𝑠−𝜏)
⎡⎣1 0 𝜔𝑒(𝜏) sin(𝜃𝑒(𝜏))
0 1 −𝜔𝑒(𝜏) cos(𝜃𝑒(𝜏))

⎤⎦
⎡⎢⎢⎣
𝑢𝛼(𝜏)
𝑢𝛽(𝜏)
𝜆𝑝𝑚

⎤⎥⎥⎦ 𝑑𝜏.
(3.7)

For the purpose of discretization, the inverter switching can be neglected, and
the stator reference frame voltages can be considered constant over one sampling
period 𝑢𝛼(𝑡) = 𝑢𝛼(𝑘) = 𝑐𝑜𝑛𝑠𝑡. and 𝑢𝛽(𝑡) = 𝑢𝛽(𝑘) = 𝑐𝑜𝑛𝑠𝑡. if 𝑘𝑇𝑠 ≤ 𝑡 < (𝑘 + 1)𝑇𝑠.
Evaluating integrals then results in the following form of system (3.7):

⎡⎣𝑖𝛼,ℎ(𝑘 + 1)
𝑖𝛽,ℎ(𝑘 + 1)

⎤⎦ = 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

⎡⎣𝑖𝛼,ℎ(𝑘)
𝑖𝛽,ℎ(𝑘)

⎤⎦+ B𝛼𝛽
𝑑,ℎ

⎡⎢⎢⎣
𝑢𝛼(𝑘)
𝑢𝛽(𝑘)
𝜆𝑝𝑚

⎤⎥⎥⎦ (3.8)

where

B𝛼𝛽
𝑑,ℎ = 1

𝑅𝑠

⎡⎢⎣1 − 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠 0 𝑅𝑠

𝐿𝑑𝑞

∫︀ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠
𝑒

− 𝑅𝑠
𝐿𝑑𝑞

((𝑘+1)𝑇𝑠−𝜏)
𝜔𝑒(𝜏) sin(𝜃𝑒(𝜏))𝑑𝜏

0 1 − 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠 − 𝑅𝑠

𝐿𝑑𝑞

∫︀ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠
𝑒

− 𝑅𝑠
𝐿𝑑𝑞

((𝑘+1)𝑇𝑠−𝜏)
𝜔𝑒(𝜏) cos(𝜃𝑒(𝜏))𝑑𝜏

⎤⎥⎦ .
(3.9)

Integrals in expression (3.9) do not have an analytic solution since the time represen-
tation of the electrical angle is unknown. However, these integrals can be simplified
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using integration by parts to the velocity independent form. We have

𝐼1 = 𝑅𝑠

𝐿𝑑𝑞

∫︁ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝑒
− 𝑅𝑠

𝐿𝑑𝑞
((𝑘+1)𝑇𝑠−𝜏)

𝜔𝑒(𝜏) sin(𝜃𝑒(𝜏))𝑑𝜏

𝐼1 = − 𝑅𝑠

𝐿𝑑𝑞

(︂
cos(𝜃𝑒(𝑘 + 1)) − 𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠 cos(𝜃𝑒(𝑘))
)︂

+

+ 𝑅2
𝑠

𝐿2
𝑑𝑞

∫︁ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝑒
− 𝑅𝑠

𝐿𝑑𝑞
((𝑘+1)𝑇𝑠−𝜏) cos(𝜃𝑒(𝜏))𝑑𝜏

𝐼2 = − 𝑅𝑠

𝐿𝑑𝑞

∫︁ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝑒
− 𝑅𝑠

𝐿𝑑𝑞
((𝑘+1)𝑇𝑠−𝜏)

𝜔𝑒(𝜏) cos(𝜃𝑒(𝜏))𝑑𝜏

𝐼2 = − 𝑅𝑠

𝐿𝑑𝑞

(︂
sin(𝜃𝑒(𝑘 + 1)) − 𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠 sin(𝜃𝑒(𝑘))
)︂

+

+ 𝑅2
𝑠

𝐿2
𝑑𝑞

∫︁ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝑒
− 𝑅𝑠

𝐿𝑑𝑞
((𝑘+1)𝑇𝑠−𝜏) sin(𝜃𝑒(𝜏))𝑑𝜏. (3.10)

It is possible to calculate integrals in (3.10) numerically [26]; however, such solution
leads to non-zero back electromotive force if 𝜔𝑒 = 0. This issue results in a significant
distortion occurring in rotor reference frame currents. Therefore, integrals in (3.10)
are approximately solved based on the mathematical analysis of back electromotive
force. The solution of integrals in (3.10) can be approximated as in

𝑅2
𝑠

𝐿2
𝑑𝑞

∫︁ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝑒
− 𝑅𝑠

𝐿𝑑𝑞
((𝑘+1)𝑇𝑠−𝜏) cos(𝜃𝑒(𝜏))𝑑𝜏 ≈ 𝑅𝑠

𝐿𝑑𝑞

(𝐾1 cos(𝜃𝑒(𝑘 + 1)) −𝐾2 cos(𝜃𝑒(𝑘)))

𝑅2
𝑠

𝐿2
𝑑𝑞

∫︁ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝑒
− 𝑅𝑠

𝐿𝑑𝑞
((𝑘+1)𝑇𝑠−𝜏) sin(𝜃𝑒(𝜏))𝑑𝜏 ≈ 𝑅𝑠

𝐿𝑑𝑞

(𝐾1 sin(𝜃𝑒(𝑘 + 1)) −𝐾2 sin(𝜃𝑒(𝑘)))

(3.11)

where constants 𝐾1 and 𝐾2 have to be calculated based on the back electromotive
force properties. Substituting (3.11) into (3.10) results in

𝐼1 ≈ − 𝑅𝑠

𝐿𝑑𝑞

(︂
(1 −𝐾1) cos(𝜃𝑒(𝑘 + 1)) −

(︂
𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠 −𝐾2

)︂
cos(𝜃𝑒(𝑘))

)︂
𝐼2 ≈ − 𝑅𝑠

𝐿𝑑𝑞

(︂
(1 −𝐾1) sin(𝜃𝑒(𝑘 + 1)) −

(︂
𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠 −𝐾2

)︂
sin(𝜃𝑒(𝑘))

)︂
. (3.12)

If a motor’s angular velocity equals 0, then the electrical angle reads 𝜃𝑒(𝑘+1) = 𝜃𝑒(𝑘)
and the back electromotive force has to be 0. Therefore, 𝐼1 = 0 and 𝐼2 = 0 if
𝜃𝑒(𝑘 + 1) = 𝜃𝑒(𝑘), yielding

1 −𝐾1 = 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠 −𝐾2. (3.13)

As seen in (3.1), the contributions of permanent magnets to d𝑖𝑑/d𝑡 and d𝑖𝑞/d𝑡 are
equal to 0 and −𝜔𝑒(𝑡)𝜆𝑝𝑚/𝐿𝑑𝑞. Therefore, the contributions of permanent magnets
to the derivatives of stator reference frame currents d𝑖𝛼/d𝑡 and d𝑖𝛽/d𝑡 are equal to
sin(𝜃𝑒(𝑡))𝜔𝑒(𝑡)𝜆𝑝𝑚/𝐿𝑑𝑞 and − cos(𝜃𝑒(𝑡))𝜔𝑒(𝑡)𝜆𝑝𝑚/𝐿𝑑𝑞, resulting in 𝐾1 = 0.
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Hence, the healthy part of the shorted motor model can be written in the linear
time-varying discrete-time form as in
⎡⎣𝑖𝛼,ℎ(𝑘 + 1)
𝑖𝛽,ℎ(𝑘 + 1)

⎤⎦ = A𝛼𝛽
𝑑,ℎ((𝑘+1)𝑇𝑠, 𝑘𝑇𝑠)

⎡⎣𝑖𝛼,ℎ(𝑘)
𝑖𝛽,ℎ(𝑘)

⎤⎦+B𝛼𝛽
𝑑,ℎ((𝑘+1)𝑇𝑠, 𝑘𝑇𝑠)

⎡⎢⎢⎣
𝑢𝛼(𝑘)
𝑢𝛽(𝑘)
𝜆𝑝𝑚

⎤⎥⎥⎦ (3.14)

where

A𝛼𝛽
𝑑,ℎ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) =

⎡⎢⎣𝑒− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠 0
0 𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠

⎤⎥⎦
B𝛼𝛽

𝑑,ℎ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) = 1
𝑅𝑠

⎡⎢⎣1 − 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠 0 𝐼1((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠)

0 1 − 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

𝐼2((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠)

⎤⎥⎦
𝐼1((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) ≈ − 𝑅𝑠

𝐿𝑑𝑞

(cos(𝜃𝑒(𝑘 + 1)) − cos(𝜃𝑒(𝑘)))

𝐼2((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) ≈ − 𝑅𝑠

𝐿𝑑𝑞

(sin(𝜃𝑒(𝑘 + 1)) − sin(𝜃𝑒(𝑘))) . (3.15)

3.2 Fault current discretization
The differential equation and output relation describe the fault current contribution
as in (1.28). However, since the inductances of the validated machine are close to
each other (Table 1.2), the fault inductance can be approximated as in

𝐿𝑓 ≈ 2
3𝑥

*
𝑓

2𝑛𝑝(𝑛𝑠 − 1)𝐿𝑑𝑞. (3.16)

Then the differential equation describing the fault current can be written in the
following form:

d
d𝑡𝑖𝑓 = −𝑅𝑓,𝑑𝑞

3𝐿𝑓

𝑖𝑓 +
𝑥*

𝑓

𝐿𝑓

⎡⎣ cos(𝜃𝑒 + 𝜑
2 )

− sin(𝜃𝑒 + 𝜑
2 )

⎤⎦𝑇

·

⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ (3.17)

where
𝑅𝑓,𝑑𝑞 = 𝑥*

𝑓

(︁
3 − 2𝑥*

𝑓

)︁
𝑅𝑠 + 3𝑅*

𝑓 . (3.18)

Transforming the input vector into the stator reference frame provides the linear
time-invariant definition of fault current. We have

d
d𝑡𝑖𝑓 = −𝑅𝑓,𝑑𝑞

3𝐿𝑓

𝑖𝑓 +
𝑥*

𝑓

𝐿𝑓

⎡⎣ cos(𝜑
2 )

− sin(𝜑
2 )

⎤⎦𝑇

·

⎡⎣𝑢𝛼

𝑢𝛽

⎤⎦ . (3.19)

The discrete-time equivalent of the linear time-invariant system (3.19) is then well
defined as in

𝑖𝑓 (𝑘 + 1) = 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠
𝑖𝑓 (𝑘) +

3𝑥*
𝑓

𝑅𝑓,𝑑𝑞

(︃
1 − 𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃⎡⎣ cos(𝜑
2 )

− sin(𝜑
2 )

⎤⎦𝑇

·

⎡⎣𝑢𝛼(𝑘)
𝑢𝛽(𝑘)

⎤⎦ . (3.20)
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3.3 Stator reference frame discrete-time model
Discretized model of healthy part (3.14) and fault current (3.20) can be combined
into one discrete-time system as in
⎡⎢⎢⎣
𝑖𝛼,ℎ(𝑘 + 1)
𝑖𝛽,ℎ(𝑘 + 1)
𝑖𝑓 (𝑘 + 1)

⎤⎥⎥⎦ =

⎡⎢⎣A𝛼𝛽
𝑑,ℎ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) 0

0𝑇 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

⎤⎥⎦ ·

⎡⎢⎢⎣
𝑖𝛼,ℎ(𝑘)
𝑖𝛽,ℎ(𝑘)
𝑖𝑓 (𝑘)

⎤⎥⎥⎦+
⎡⎣B𝛼𝛽

𝑑,ℎ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠)
B𝛼𝛽

𝑑,𝑓 ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠)

⎤⎦ ·

⎡⎢⎢⎣
𝑢𝛼(𝑘)
𝑢𝛽(𝑘)
𝜆𝑝𝑚

⎤⎥⎥⎦
(3.21)

where A𝛼𝛽
𝑑,ℎ((𝑘+1)𝑇𝑠, 𝑘𝑇𝑠) and B𝛼𝛽

𝑑,ℎ((𝑘+1)𝑇𝑠, 𝑘𝑇𝑠) are defined as in (3.15), 0𝑇 stands
for

[︁
0 0

]︁
, and B𝛼𝛽

𝑑,𝑓 ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) reads

B𝛼𝛽
𝑑,𝑓 ((𝑘+ 1)𝑇𝑠, 𝑘𝑇𝑠) =

3𝑥*
𝑓

𝑅𝑓,𝑑𝑞

[︃(︃
1 − 𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃
cos(𝜑

2 ) −
(︃

1 − 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃
sin(𝜑

2 ) 0
]︃
.

(3.22)
Since 𝑍

{︁
A𝛼𝛽

𝑑 ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠)i(𝑘)
}︁

= A𝛼𝛽
𝑑 ((𝑘+ 1)𝑇𝑠, 𝑘𝑇𝑠)𝑍 {i(𝑘)} where i(𝑘) stands

for
[︁
𝑖𝛼,ℎ(𝑘) 𝑖𝛽,ℎ(𝑘) 𝑖𝑓 (𝑘)

]︁𝑇
and A𝛼𝛽

𝑑 ((𝑘+1)𝑇𝑠, 𝑘𝑇𝑠) is the state matrix as in (3.21),
it is possible to describe system (3.21) using Z-transform. We have⎡⎢⎢⎣

𝐼𝛼,ℎ(𝑧)
𝐼𝛽,ℎ(𝑧)
𝐼𝑓 (𝑧)

⎤⎥⎥⎦ =
(︁
𝑧I − A𝛼𝛽

𝑑 ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠)
)︁−1

𝑍

⎧⎪⎪⎨⎪⎪⎩B𝛼𝛽
𝑑 ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠)

⎡⎢⎢⎣
𝑢𝛼(𝑘)
𝑢𝛽(𝑘)
𝜆𝑝𝑚

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
(3.23)

where I is the 3 × 3 identity matrix and B𝛼𝛽
𝑑 ((𝑘 + 1)𝑇𝑠, 𝑘𝑇𝑠) is the input matrix as

in (3.21). Evaluating expression (3.23) leads to the following solution:

⎡⎢⎢⎣
𝐼𝛼,ℎ(𝑧)
𝐼𝛽,ℎ(𝑧)
𝐼𝑓 (𝑧)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑅𝑠

1−𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

𝑧−𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

0 3𝑥*
𝑓 cos(𝜑

2 )
𝑅𝑓,𝑑𝑞

1−𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

𝑧−𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

0 1
𝑅𝑠

1−𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

𝑧−𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

−3𝑥*
𝑓 sin(𝜑

2 )
𝑅𝑓,𝑑𝑞

1−𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

𝑧−𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

−𝜆𝑝𝑚

𝐿𝑑𝑞

𝑧−1

𝑧−𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

0 0

0 −𝜆𝑝𝑚

𝐿𝑑𝑞

𝑧−1

𝑧−𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇

·

⎡⎢⎢⎢⎢⎢⎣
𝑈𝛼(𝑧)
𝑈𝛽(𝑧)

𝑍{cos(𝜃𝑒(𝑘))}
𝑍{sin(𝜃𝑒(𝑘))}

⎤⎥⎥⎥⎥⎥⎦ .

(3.24)
The algebraic equation describes the output rotor reference frame currents as in

(1.28). However, this expression can be transformed into the stator reference frame,
yielding ⎡⎣𝑖𝛼(𝑘)

𝑖𝛽(𝑘)

⎤⎦ =
⎡⎣1 0 2

3𝑥
*
𝑓 cos

(︁
𝜑
2

)︁
0 1 −2

3𝑥
*
𝑓 sin

(︁
𝜑
2

)︁⎤⎦ ·

⎡⎢⎢⎣
𝑖𝛼,ℎ(𝑘)
𝑖𝛽,ℎ(𝑘)
𝑖𝑓 (𝑘)

⎤⎥⎥⎦ . (3.25)
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Since the transition matrix in (3.25) is time-invariant, description (3.25) also holds
for the signals defined in 𝑍-transform. Therefore, this description might be ap-
plied to determine the input-output behavior of the permanent magnet synchronous
machine under the inter-turn short circuit fault out of (3.24). We have

⎡⎣𝐼𝛼(𝑧)
𝐼𝛽(𝑧)

⎤⎦ =
⎡⎣𝐹ℎ(𝑧) + (1 + cos(𝜑))𝐹𝑓 (𝑧) − sin(𝜑)𝐹𝑓 (𝑧) 𝐹𝑝𝑚(𝑧) 0

− sin(𝜑)𝐹𝑓 (𝑧) 𝐹ℎ(𝑧) + (1 − cos(𝜑))𝐹𝑓 (𝑧) 0 𝐹𝑝𝑚(𝑧)

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎣
𝑈𝛼(𝑧)
𝑈𝛽(𝑧)

𝑍{cos(𝜃𝑒(𝑘))}
𝑍{sin(𝜃𝑒(𝑘))}

⎤⎥⎥⎥⎥⎥⎦
(3.26)

where

𝐹ℎ(𝑧) = 1
𝑅𝑠

1 − 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

𝑧 − 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

𝐹𝑓 (𝑧) =
𝑥*

𝑓
2

𝑅𝑓,𝑑𝑞

1 − 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

𝑧 − 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

𝐹𝑝𝑚(𝑧) = −𝜆𝑝𝑚

𝐿𝑑𝑞

𝑧 − 1

𝑧 − 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠
.

(3.27)

System (3.26) is then transformed into the time domain resulting in the following
description of 𝛼− 𝛽 currents:⎡⎣𝑖𝛼(𝑘)

𝑖𝛽(𝑘)

⎤⎦ =
(︃
𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠 + 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃⎡⎣𝑖𝛼(𝑘 − 1)
𝑖𝛽(𝑘 − 1)

⎤⎦− 𝑒
−
(︁

𝑅𝑠
𝐿𝑑𝑞

+
𝑅𝑓,𝑑𝑞
3𝐿𝑓

)︁
𝑇𝑠

⎡⎣𝑖𝛼(𝑘 − 2)
𝑖𝛽(𝑘 − 2)

⎤⎦+

+ (𝜎ℎI + 𝜎𝑓Φ) ·

⎡⎣𝑢𝛼(𝑘 − 1)
𝑢𝛽(𝑘 − 1)

⎤⎦−
(︃
𝜎ℎ𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠I + 𝜎𝑓𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠Φ

)︃
·

⎡⎣𝑢𝛼(𝑘 − 2)
𝑢𝛽(𝑘 − 2)

⎤⎦−

− 𝜆𝑝𝑚

𝐿𝑑𝑞

⎡⎣cos(𝜃𝑒(𝑘))
sin(𝜃𝑒(𝑘))

⎤⎦+ 𝜆𝑝𝑚

𝐿𝑑𝑞

(︃
1 + 𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃⎡⎣cos(𝜃𝑒(𝑘 − 1))
sin(𝜃𝑒(𝑘 − 1))

⎤⎦−

− 𝜆𝑝𝑚

𝐿𝑑𝑞

𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

⎡⎣cos(𝜃𝑒(𝑘 − 2))
sin(𝜃𝑒(𝑘 − 2))

⎤⎦ (3.28)

where

𝜎ℎ = 1
𝑅𝑠

(︂
1 − 𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠

)︂
𝜎𝑓 =

𝑥*
𝑓

2

𝑅𝑓,𝑑𝑞

(︃
1 − 𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃

I =
⎡⎣1 0
0 1

⎤⎦ Φ =
⎡⎣1 + cos(𝜑) − sin(𝜑)

− sin(𝜑) 1 − cos(𝜑)

⎤⎦ . (3.29)

Parameters that are related to the fault relevance ratio 𝑥*
𝑓

2

𝑅𝑓,𝑑𝑞
and 𝑅𝑓,𝑑𝑞

3𝐿𝑓
are calculated

based on the substitutions (1.16), (3.16), and (3.18), as in
𝑥*

𝑓
2

𝑅𝑓,𝑑𝑞

= 1
3𝑛2

𝑠𝑅𝑓𝑥
−2
𝑓 + 3𝑛𝑠𝑛𝑝𝑅𝑠𝑥

−1
𝑓 + (1 − 3𝑛𝑝)𝑅𝑠

𝑅𝑓,𝑑𝑞

3𝐿𝑓

=
3𝑛2

𝑠𝑅𝑓𝑥
−2
𝑓 + 3𝑛𝑠𝑛𝑝𝑅𝑠𝑥

−1
𝑓 + (1 − 3𝑛𝑝)𝑅𝑠

2𝑛𝑝(𝑛𝑠 − 1)𝐿𝑑𝑞

. (3.30)

Note that if 𝑥𝑓 = 0, then 𝑥*
𝑓

2

𝑅𝑓,𝑑𝑞
→ 0 and 𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠 → 0. Hence, the behavior of the
healthy currents (3.14) is achieved.
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3.4 Discrete-time model verification
The continuous-time model of PMSM under the inter-turn short circuit fault was
already validated via open-loop measurement of the back electromotive force and
fault current of the configurable motor (Section 1.5). Therefore, since the fitting of
the continuous-time model was already proven, it is possible to verify the discrete-
time model only within the simulation. For this purpose, closed-loop verification is
implemented.

The control system regulates the continuous-time model to the mechanical an-
gular velocity setpoint 𝜔*

𝑚, and the short circuits are simulated with the following
fault relevance: 𝑥𝑓 = 6/25 and 𝑥𝑓 = 14/25 in cases 𝑛𝑝 = 1, 𝑛𝑠 = 3 and 𝑛𝑝 = 2,
𝑛𝑠 = 3, and 𝑥𝑓 = 3/25 and 𝑥𝑓 = 6/25 if 𝑛𝑝 = 1, 𝑛𝑠 = 1. The control system
parameters and electrical parameters of machine models are defined for three wind-
ing connections in the initialization code of the subsystems. Then it is possible to
change these parameters by a switch in the subsystems masks. Torque load is set
to be 0 during this experiment, but the dry and viscous frictions are involved into
the simulation. The maximum current is limited to 𝐼𝑚𝑎𝑥 = 8𝐴, and the DC bus
voltage is 𝑈𝑑𝑐 = 55𝑉 . Figure 3.1 visualizes the MATLAB Simulink realization of
the verification experiment.
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id

iq
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IPMSM	under	the	ITF	-	continuous-time	model
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ud
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Park	Transform

id

iq

ud

uq

Fig. 3.1: Verification of the discrete-time model in a closed control loop

Since the continuous-time model is implemented in the rotor reference frame,
the transformation of input currents from (𝑎𝑏𝑐) to 𝑑 − 𝑞 is neglected in the control
system (Section 2.4), and the transformation of output voltages is reduced only to
the inverse Park’s transformation (from 𝑑 − 𝑞 to 𝛼 − 𝛽). Therefore, the condition
of constant 𝑢𝛼 and 𝑢𝛽 over one sampling period is fulfilled. These voltages are then
transformed back into the rotor reference frame using the rate transition blocks and
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continuous-time Park’s transformation (Figure 3.1). Due to this connection, the
simulated closed control loop fits the actual machine behavior more precisely. The
only difference in the interpretation of the inputs is caused by neglected inverter
switching. Stator reference frame voltages are then together with the discretized
sine and cosine of electrical angle connected as inputs of the discrete-time model.
MATLAB Simulink implementation of model (3.28) is visualized in Figure 3.2.
Contribuiton	of	the	voltages

Recursive	part	of	the	model

Permanent	magnets	contribution

1
ualpha(k+1)

1
id(k)

2
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iq

Park	Transform
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id_disc

iq_disc

ialpha,beta(k-1)ialpha,beta(k)

Fig. 3.2: Realization of the discrete-time model of IPMSM under ITF

As seen in Figure 3.2 the model is extended by discrete-time Park’s transfor-
mation, and the rotor reference frame currents are sent to the outputs. Hence, the
discrete and continuous-time models are excited with the same input signals, and
the transients of the rotor reference frame currents are compared. The comparison
of simulated continuous and discrete-time currents is visualized for three winding
connections in Figure 3.3. Differences are caused by direct 𝐿𝑑 and quadrature 𝐿𝑞

axis inductance approximation by a common inductance 𝐿𝑑𝑞 in the discrete-time
model.
a) winding connection 𝑛𝑝 = 1; 𝑛𝑠 = 1
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b) winding connection 𝑛𝑝 = 1; 𝑛𝑠 = 3
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c) winding connection 𝑛𝑝 = 2; 𝑛𝑠 = 3
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Fig. 3.3: Comparison between continuous and discrete-time model
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4 Fault relevance identification
As presented in Section 3.3, PMSM under the ITF is described by the linear discrete-
time model (3.28), where the fault-related specifications (fault relevance 𝑥𝑓 and
resistance of a short circuit 𝑅𝑓 ) are interpreted as time-varying parameters (3.30).
Hence, the ITF diagnostics presented in this thesis are based on the parametric
estimation of linear systems [27] - [28].

The input signals of discrete-time model (3.28) are combinations of sine and
cosine waves with different amplitudes (defined by the rotor reference frame voltages
𝑢𝑑 and 𝑢𝑞) and the same frequency 𝜔𝑒. Therefore, the persistence of input signals is
insufficient to identify all the parameters of the discrete-time model unless a machine
is accelerating or decelerating. Hence, the discrete-time model must be modified to
reduce the number of identified parameters.

4.1 Problem definition
Since the short circuits may occur only in three phases, there is a finite set of
parameter 𝜑 values (if the ITF is in phase ’a’ then 𝜑 = 0, if the ITF is in phase ’b’
then 𝜑 = 2𝜋

3 , and if the ITF is in phase ’c’ then 𝜑 = −2𝜋
3 ). An interesting situation

occurs if 𝜑 = 0. In such a case, the input-output behavior of PMSM under the ITF
can be determined out of (3.26) as in

⎡⎣𝐼𝛼(𝑧)
𝐼𝛽(𝑧)

⎤⎦ =
⎡⎣𝐹ℎ(𝑧) + 2𝐹𝑓 (𝑧) 0 𝐹𝑝𝑚(𝑧) 0

0 𝐹ℎ(𝑧) 0 𝐹𝑝𝑚(𝑧)

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎣
𝑈𝛼(𝑧)
𝑈𝛽(𝑧)

𝑍{cos(𝜃𝑒(𝑘))}
𝑍{sin(𝜃𝑒(𝑘))}

⎤⎥⎥⎥⎥⎥⎦ (4.1)

where the transmissions 𝐹ℎ(𝑧), 𝐹𝑓 (𝑧), and 𝐹𝑝𝑚(𝑧) are defined as in (3.27). In (4.1),
only one currents component (𝑖𝛼) is affected by ITF, and the other (𝑖𝛽) follows
healthy machine behavior. A similar situation can be achieved for short circuits in
different phases by transforming currents and voltages. We have⎡⎣𝑖𝛼

𝑖𝛽

⎤⎦ = R(𝜑)
⎡⎣𝑖*𝛼
𝑖*𝛽

⎤⎦ ⎡⎣𝑢𝛼

𝑢𝛽

⎤⎦ = R(𝜑)
⎡⎣𝑢*

𝛼

𝑢*
𝛽

⎤⎦ (4.2)

where

R(𝜑) =
⎡⎣ 1 sin(𝜑)

1+cos(𝜑)

− sin(𝜑)
1+cos(𝜑) 1

⎤⎦ R−1(𝜑) = 1
2

⎡⎣1 + cos(𝜑) − sin(𝜑)
sin(𝜑) 1 + cos(𝜑)

⎤⎦ . (4.3)

Note that the transformation matrices defined in (4.3) result in an identity matrix
if the short circuit is in phase ’a’. If (4.2) is substituted into (3.26), an analogous
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description to (4.1) is obtained. The only difference lies in the rotated contributions
of permanent magnets. Therefore, the discrete-time model can always be simplified
to the form that contains two independent currents components, where only one of
them is affected by ITF. The cross-correlation between 𝑖*𝛼(𝑘) and 𝑢*

𝛽(𝑘 − 1) for all
possible 𝜑-based transformation matrices (4.3) can then be evaluated to determine
which stator phase is shorted. For example, suppose a short circuit occurs in phase
’b’. In that case, the cross-correlation between the transformed variables 𝑖*𝛼(𝑘) and
𝑢*

𝛽(𝑘 − 1) that are obtained by applying transformation matrix R−1(2𝜋
3 ) to 𝑖𝛼(𝑘)

and 𝑢𝛽(𝑘 − 1) is significantly lower than the cross-correlation evaluated from vari-
ables obtained by applying R−1(0) and R−1(−2𝜋

3 ). Therefore, fault in phase ’b’ is
indicated. However, since the configurable motor used for algorithm verification is
primarily designed to support short circuits in phase ’a’, the phase detection won’t
be implemented.

The simplified system (4.1) is then transformed into the time-domain, yielding

𝑖𝛽(𝑘) = 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠
𝑖𝛽(𝑘 − 1) + 𝜎ℎ𝑢𝛽(𝑘 − 1) − 𝜆𝑝𝑚

𝐿𝑑𝑞

(sin(𝜃𝑒(𝑘)) − sin(𝜃𝑒(𝑘 − 1)))

𝑖𝛼(𝑘) =
(︃
𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠 + 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃
𝑖𝛼(𝑘 − 1) − 𝑒

−
(︁

𝑅𝑠
𝐿𝑑𝑞

+
𝑅𝑓,𝑑𝑞
3𝐿𝑓

)︁
𝑇𝑠
𝑖𝛼(𝑘 − 2)+

+ (𝜎ℎ + 2𝜎𝑓 )𝑢𝛼(𝑘 − 1) −
(︃
𝜎ℎ𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠 + 2𝜎𝑓𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

)︃
𝑢𝛼(𝑘 − 2)−

− 𝜆𝑝𝑚

𝐿𝑑𝑞

cos(𝜃𝑒(𝑘)) + 𝜆𝑝𝑚

𝐿𝑑𝑞

(︃
1 + 𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃
cos(𝜃𝑒(𝑘 − 1))−

− 𝜆𝑝𝑚

𝐿𝑑𝑞

𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠 cos(𝜃𝑒(𝑘 − 2)) (4.4)

where 𝜎ℎ and 𝜎𝑓 are defined as in (3.29). As seen in (4.4), the behavior of 𝑖𝛽
is theoretically unaffected by ITF. Hence, it is possible to estimate the healthy
parameters even if the ITF occurs. Rewriting the difference equation that describes
𝑖𝛽 into a form suitable for parametric identification results in⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖𝛽(𝑘)
𝑖𝛽(𝑘 − 1)
𝑖𝛽(𝑘 − 2)
𝑖𝛽(𝑘 − 3)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖𝛽(𝑘 − 1) 𝑢𝛽(𝑘 − 1) sin(𝜃𝑒(𝑘 − 1)) − sin(𝜃𝑒(𝑘))
𝑖𝛽(𝑘 − 2) 𝑢𝛽(𝑘 − 2) sin(𝜃𝑒(𝑘 − 2)) − sin(𝜃𝑒(𝑘 − 1))
𝑖𝛽(𝑘 − 3) 𝑢𝛽(𝑘 − 3) sin(𝜃𝑒(𝑘 − 3)) − sin(𝜃𝑒(𝑘 − 2))
𝑖𝛽(𝑘 − 4) 𝑢𝛽(𝑘 − 4) sin(𝜃𝑒(𝑘 − 4)) − sin(𝜃𝑒(𝑘 − 3))

... ... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎣
𝑝ℎ,1

𝑝ℎ,2

𝑝ℎ,3

⎤⎥⎥⎦

(4.5)
where

𝑝ℎ,1 = 𝑒
− 𝑅𝑠

𝐿𝑑𝑞
𝑇𝑠

𝑝ℎ,2 = 1
𝑅𝑠

(︂
1 − 𝑒

− 𝑅𝑠
𝐿𝑑𝑞

𝑇𝑠

)︂
𝑝ℎ,3 = 𝜆𝑝𝑚

𝐿𝑑𝑞

𝑅𝑠 = 1 − 𝑝ℎ,1

𝑝ℎ,2
𝐿𝑑𝑞 = −𝑇𝑠(1 − 𝑝ℎ,1)

ln(𝑝ℎ,1)𝑝ℎ,2
𝜆𝑝𝑚 = −𝑇𝑠(1 − 𝑝ℎ,1)

ln(𝑝ℎ,1)𝑝ℎ,2
𝑝3. (4.6)
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Note that the persistence of input signals is insufficient to identify three parameters
if the machine runs at constant angular velocity. Generally, it is possible to identify
two parameters by a harmonic signal that contains only one frequency [27]. This
problem has a relatively simple solution. The identification procedure of healthy
parameters has to start before a machine is driven to the velocity setpoint.

The estimated healthy parameters 𝑝ℎ,1, 𝑝ℎ,2, and 𝑝ℎ,3 are then used to reduce the
order of difference equation that describes 𝑖𝛼. We have the following output and
input transformation:

𝑦(𝑘) = 𝑖𝛼(𝑘) − 𝑝ℎ,1𝑖𝛼(𝑘 − 1) − 𝑝ℎ,2𝑢𝛼(𝑘 − 1) + 𝑝ℎ,3 cos(𝜃𝑒(𝑘)) − 𝑝ℎ,3 cos(𝜃𝑒(𝑘 − 1))
𝑣(𝑘) = 𝑢𝛼(𝑘) − 𝑝ℎ,1𝑢𝛼(𝑘 − 1) (4.7)

where 𝑦 is the new output and 𝑣 is the new input. Since these variables are formed
as a linear combination of harmonic waveforms, they are also harmonic with the
same frequency as the original signals. If (4.7) is substituted into 𝑖𝛼 description
(4.4), the transformed difference equation is derived as in

𝑦(𝑘) = 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠
𝑦(𝑘 − 1) + 2

𝑥*
𝑓

2

𝑅𝑓,𝑑𝑞

(︃
1 − 𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃
𝑣(𝑘 − 1). (4.8)

Equation (4.8) is then easily transformable into a form suitable for parametric iden-
tification. We have ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦(𝑘)
𝑦(𝑘 − 1)
𝑦(𝑘 − 2)
𝑦(𝑘 − 3)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦(𝑘 − 1) 𝑣(𝑘 − 1)
𝑦(𝑘 − 2) 𝑣(𝑘 − 2)
𝑦(𝑘 − 3) 𝑣(𝑘 − 3)
𝑦(𝑘 − 4) 𝑣(𝑘 − 4)

... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎣𝑝𝑓,1

𝑝𝑓,2

⎤⎦ (4.9)

where

𝑝𝑓,1 = 𝑒
−

𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠
𝑝𝑓,2 = 2

𝑥*
𝑓

2

𝑅𝑓,𝑑𝑞

(︃
1 − 𝑒

−
𝑅𝑓,𝑑𝑞
3𝐿𝑓

𝑇𝑠

)︃
𝑅𝑓,𝑑𝑞

𝑥*
𝑓

2 = 21 − 𝑝𝑓,1

𝑝𝑓,2
. (4.10)

In this case, the persistence of the input signal 𝑣 does not cause trouble since only
two parameters are identified. Therefore, fault-related parameters can be estimated
even if a machine runs at constant angular velocity.

As seen in (3.30), fault relevance 𝑥𝑓 can not be calculated out of 𝑅𝑓,𝑑𝑞/𝑥
*
𝑓

2 since
the information about 𝑅𝑓 is missing. There are a few ways how to deal with this
issue. For example, it is possible to express fault relevance as a function dependent
on short circuit resistance 𝑥𝑓 = 𝑓(𝑅𝑓 ). However, in this thesis, the fault relevance is
normalized and expresses what portion of winding is shorted by the zero short circuit
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resistance 𝑥𝑓,𝑛 = 𝑓(𝑅𝑓 = 0). Normalized fault relevance 𝑥𝑓,𝑛 is then calculated as
in

𝑥𝑓,𝑛 = 3𝑛𝑠𝑛𝑝𝑅𝑠

𝑅𝑓,𝑑𝑞

𝑥*
𝑓

2 + (3𝑛𝑝 − 1)𝑅𝑠

𝑥𝑓,𝑛 =
𝑥2

𝑓
𝑛𝑠𝑅𝑓

𝑛𝑝𝑅𝑠
+ 𝑥𝑓

. (4.11)

The online fault relevance diagnostic algorithm then contains the following steps:
1. Update the estimation of healthy parameters (4.5).
2. Calculate input and output transformation (4.7).
3. Update the estimation of ITF parameters (4.9).
4. Calculate series resistance 𝑅𝑠 (4.6).
5. Evaluate 𝑅𝑓,𝑑𝑞/𝑥

*
𝑓

2 (4.10).
6. Calculate normalized fault relevance 𝑥𝑓,𝑛 (4.11).

It is assumed that information about winding architecture (number of parallel
branches 𝑛𝑝 and number of coils in series 𝑛𝑠) is available.

4.2 System noise analysis and filter design
This thesis aims to achieve fault relevance diagnostics running online on the drive
system of the validated motor. Therefore, the possible sources of the system noise
have to be analyzed. This step is essential since PMSMs are rotating machines and
measured signals often contain periodic distortions. In terms of parametric estima-
tion, the periodic distortion cause trouble since the system’s inputs and outputs are
correlated with the noise. The following sections will discuss only the particular case
of winding connection 𝑛𝑝 = 1, 𝑛𝑠 = 3 since the configurable machine is designed to
be connected as a double three-phase motor with three series-connected coils in the
phase. It was measured that the periodic distortion is significantly higher in other
connections than 𝑛𝑝 = 1, 𝑛𝑠 = 3 (Figure 2.8).

Traditionally, machine nonlinearities, periodic distortions, and measurement er-
rors are reflected primarily in currents waveforms. One can admit that the angle
measurement poses a source of uncertainties as well; however, an encoder measures
the mechanical angle relatively precisely, and the contribution of angle uncertainties
to the system noise is minimal. Hence, the measured stator currents can be used
for the purpose of system noise analysis. We have

𝑖𝑎,𝑟 = 𝑖𝑎 + 𝜀𝑎,𝑝 + 𝜀𝑎,𝑛

𝑖𝑏,𝑟 = 𝑖𝑏 + 𝜀𝑏,𝑝 + 𝜀𝑏,𝑛

𝑖𝑐,𝑟 = 𝑖𝑐 + 𝜀𝑐,𝑝 + 𝜀𝑐,𝑛 (4.12)
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where 𝑖𝑎,𝑟, 𝑖𝑏,𝑟, and 𝑖𝑐,𝑟 stand for measured stator currents, 𝑖𝑎, 𝑖𝑏, and 𝑖𝑐 are ideal
stator currents, 𝜀𝑎,𝑝, 𝜀𝑏,𝑝, and 𝜀𝑐,𝑝 represent periodic distortions, and 𝜀𝑎,𝑛, 𝜀𝑏,𝑛, and
𝜀𝑐,𝑛 stand for random non-periodic noises.

Due to the star connection of the motor, the ideal currents must satisfy the
following equation (even if ITF is emulated):

𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 = 0. (4.13)

However, most of the periodic distortions satisfy condition (4.13) as well, yielding

𝜀𝑎,𝑝 + 𝜀𝑏,𝑝 + 𝜀𝑐,𝑝 = 0. (4.14)

Since all three stator currents are measured, conditions (4.13) and (4.14) can be
applied to determine the random noise level of measured currents as in

𝑖𝑎,𝑟 + 𝑖𝑏,𝑟 + 𝑖𝑏,𝑟 = 𝜀𝑎,𝑛 + 𝜀𝑏,𝑛 + 𝜀𝑐,𝑛 = 𝜀𝑛. (4.15)

Hence, the sum of random noise components 𝜀𝑛 is calculated out of the sum of the
measured currents, and the statistical properties can be evaluated. For this purpose,
the data from experiments in Section 2.5 are used. The measured stator currents
are summed up (including the data from transients areas where the machine is
speeding up to the angular velocity setpoint 𝜔*

𝑚 and areas where the short circuits
are emulated) and the mean values 𝜇 and variances 𝜎2 are calculated and presented
together with the histograms in Figure 4.1.
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Fig. 4.1: Histograms of measured random noise; connection: 𝑛𝑝 = 1, 𝑛𝑠 = 3

As shown in Figure 4.1, the random noises contain the non-zero mean value. This
offset is probably caused by converting the numbers obtained by the analog-digital
converters to currents inside the processor. According to the algebra of random
variables [29], the mean value of the sum of noises 𝜇 is obtained as in

𝜇 = 𝜇𝑎 + 𝜇𝑏 + 𝜇𝑐 (4.16)
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where 𝜇𝑎, 𝜇𝑏, and 𝜇𝑐 are the mean values of random variables 𝜀𝑎,𝑛, 𝜀𝑏,𝑛, and 𝜀𝑐,𝑛.
Since 𝜇 ̸= 0, there is a high probability that 𝜇𝑎 ̸= 0, 𝜇𝑏 ̸= 0, and 𝜇𝑐 ̸= 0. Therefore,
the DC offset is most likely propagated into the stator reference frame, yielding

⎡⎣𝜇𝛼

𝜇𝛽

⎤⎦ = 2
3

⎡⎣1 −1
2 −1

2

0
√

3
2 −

√
3

2

⎤⎦ ·

⎡⎢⎢⎣
𝜇𝑎

𝜇𝑏

𝜇𝑐

⎤⎥⎥⎦ . (4.17)

Similarly, the variances 𝜎2
𝑎, 𝜎2

𝑏 , and 𝜎2
𝑐 of random variables 𝜀𝑎,𝑛, 𝜀𝑏,𝑛, and 𝜀𝑐,𝑛 are

transformed into the stator reference frame as in

⎡⎣𝜎2
𝛼

𝜎2
𝛽

⎤⎦ = 4
9

⎡⎣1 1
4

1
4

0 3
4

3
4

⎤⎦ ·

⎡⎢⎢⎣
𝜎2

𝑎

𝜎2
𝑏

𝜎2
𝑐

⎤⎥⎥⎦ . (4.18)

If it is assumed that 𝜎2
𝑎 = 𝜎2

𝑏 = 𝜎2
𝑐 = 𝜎2/3, then the errors propagated to the stator

reference frame have the following variances: 𝜎2
𝛼 = 2

9𝜎
2 and 𝜎2

𝛽 = 2
9𝜎

2. Therefore,
according to histograms in Figure 4.1, the random noise component is modeled as
the normally distributed random number with the variance of 1 · 10−3. The mean
value of the modeled noise is biased according to equations (4.16) and (4.17).

Another factor that causes a significant problem in parametric estimation is the
presence of periodic distortions 𝜀𝑎,𝑝, 𝜀𝑏,𝑝, and 𝜀𝑐,𝑝. For example, the electrical param-
eters are not concentrated and might slightly differ in each winding slot. Same for
the contributions of permanent magnets. Therefore, there is significant distortion
in frequency 𝜔𝑚 = 𝜔𝑒/𝑝, where 𝑝 is the number of pole pairs. Such distortion can
be seen in the fault current waveform in Figure 2.8. Another source of periodic fluc-
tuations is an inverter’s nonlinearity. As mentioned by Buchta in [30] the distortion
caused by the inverter can be modeled as follows:⎡⎢⎢⎣

Δ𝑢,𝑎

Δ𝑢,𝑏

Δ𝑢,𝑐

⎤⎥⎥⎦ = 𝑢𝑑𝑒𝑎𝑑

⎡⎢⎢⎣
2
3 −1

3 −1
3

−1
3

2
3 −1

3
−1

3 −1
3

2
3

⎤⎥⎥⎦ ·

⎡⎢⎢⎣
sign(𝑖𝑎)
sign(𝑖𝑏)
sign(𝑖𝑐)

⎤⎥⎥⎦ (4.19)

where Δ𝑢,𝑎, Δ𝑢,𝑏, and Δ𝑢,𝑐 are contributions to the required stator voltages, and
𝑢𝑑𝑒𝑎𝑑 is the dead time voltage that reflects voltage drops on the switches of the
inverter. If (4.19) is expressed in the stator reference frame using the trigonometric
series, the periodic distortions are obtained as in

Δ𝑢,𝛼 = 𝑢𝑑𝑒𝑎𝑑
4
𝜋

(sin(𝜃𝑒) + 𝑆𝛼)

Δ𝑢,𝛽 = −𝑢𝑑𝑒𝑎𝑑
4
𝜋

(cos(𝜃𝑒) + 𝑆𝛽) (4.20)
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where

𝑆𝛼 =
∞∑︁

𝑛=1

(︃
sin((6𝑛− 1)𝜃𝑒)

6𝑛− 1 + sin((6𝑛+ 1)𝜃𝑒)
6𝑛+ 1

)︃

𝑆𝛽 =
∞∑︁

𝑛=1

(︃
cos((6𝑛− 1)𝜃𝑒)

6𝑛− 1 + cos((6𝑛+ 1)𝜃𝑒)
6𝑛+ 1

)︃
. (4.21)

Since a machine follows linear model (4.4), the same frequencies as in (4.20) and
(4.21) are propagated to the stator reference frame currents. It was estimated that
the dead time voltage 𝑢𝑑𝑒𝑎𝑑 is equal to 0.02𝑉 in the case of the motor used for
algorithm validation.

Since the frequency of the stator reference frame signals is estimated by the angle
tracking observer (Section 2.3) in the control system, band-pass filtering is the most
straightforward way to deal with the DC offset and periodic distortions. Generally,
the transfer function of the band-pass filter can be defined as in

𝐹𝑓𝑖𝑙𝑡(𝑠) = 𝑌 (𝑠)
𝑈(𝑠) = 2𝜁𝜔𝑟𝑠

𝑠2 + 2𝜁𝜔𝑟𝑠+ 𝜔2
𝑟

(4.22)

where 𝜔𝑟 is the reference frequency, 𝜁 stands for the damping ratio, and 𝑈(𝑠) and
𝑌 (𝑠) are the input and output of the filter expressed in Laplace transform. The
passing frequency must correspond to the electrical angular velocity, yielding the
value 𝜔𝑟 = 𝜔𝑒(𝑘) adapted in each step. The damping ratio is adjusted to achieve
suitable suppression of higher spectrum components. The calculated value 𝜁 = 0.3
ensures that the frequencies 𝜔𝑒/5 and 5𝜔𝑒 are suppressed by approximately 18 𝑑𝐵.
Transfer function (4.22) is then discretized resulting in the following expression:

𝑦(𝑘 + 1) = 𝑏(𝑘)(𝑢(𝑘) − 𝑢(𝑘 − 1)) + 𝑎1(𝑘)𝑦(𝑘) + 𝑎2(𝑘)𝑦(𝑘 − 1) (4.23)

where 𝑢(𝑘) and 𝑦(𝑘) are the filter input and output expressed in time-domain and
adapted coefficients 𝑏(𝑘), 𝑎1(𝑘), and 𝑎2(𝑘) are calculated as in

𝑏(𝑘) = 2 𝜁√
1 − 𝜁2 𝑒

−𝜁𝜔𝑒(𝑘)𝑇𝑠 sin(𝜔𝑒(𝑘)𝑇𝑠

√︁
1 − 𝜁2)

𝑎1(𝑘) = 2𝑒−𝜁𝜔𝑒(𝑘)𝑇𝑠 cos(𝜔𝑒(𝑘)𝑇𝑠

√︁
1 − 𝜁2)

𝑎2(𝑘) = −𝑒−2𝜁𝜔𝑒(𝑘)𝑇𝑠 . (4.24)

Note that this filter does not entirely suppress the inverter’s nonlinearity since the
distortion contains a component with frequency 𝜔𝑒. Therefore, the estimated pa-
rameters are always biased. However, due to the low level of dead time voltage
𝑢𝑑𝑒𝑎𝑑, the bias is not so significant. The advantage of signals filtering is suppressing
the DC component and distortion on frequency 𝜔𝑚. The fault relevance diagnostic
algorithm presented in Section 4.1 is then extended by adaptive filters as follows:
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1. Update filter coefficients (4.24).
2. Filter the signals 𝑢𝛽, 𝑖𝛽, and sin(𝜃𝑒) by the adaptive filters (4.23).
3. Update the estimation of healthy parameters (4.5).
4. Calculate input and output transformation (4.7).
5. Filter the transformed input 𝑣 and output 𝑦 by the adaptive filters (4.23).
6. Update the estimation of ITF parameters (4.9).
7. Calculate series resistance 𝑅𝑠 (4.6).
8. Evaluate 𝑅𝑓,𝑑𝑞/𝑥

*
𝑓

2 (4.10).
9. Calculate normalized fault relevance 𝑥𝑓,𝑛 (4.11).

4.3 Parametric estimation
For the purpose of online fault relevance diagnostics, the parameters in equations
(4.5) and (4.9) have to be recursively estimated. In the case of healthy parame-
ters (4.5), the persistence of input signals cause trouble with the forgetting factor
selection. On the one hand, since the persistence of input signals is insufficient if
a machine runs at a constant angular velocity, the forgetting factor has to be 1 to
preserve information obtained during transients. On the other hand, the healthy
parameters of a real motor are time-variant. For example, the inductances decrease
with the growing current due to the saturation effect, or the resistance increases
with the rising temperature. Therefore, the forgetting factor must be less than 1 to
track these changes correctly. The solution to this situation leads to the variable
forgetting factor. In the case of ITF parameters (4.9), if a machine is not shorted,
the identified ITF parameters have no meaning and must be quickly forgotten after
ITF occurs. Hence, there is a high demand for reliable online adjustment of the
forgetting factor. Moreover, the identification algorithm must be calculated under
100𝜇𝑠 on AURIX application kit TC277. The defined requirements are perfectly
satisfied by the regularized parametric estimation algorithm described by Dokoupil
in [31].

As mentioned in [31], the presented estimation strategy expands on the classical
recursive least squares method [27] by designing a data-driven forgetting strategy
that operates in synergy with the variable regularization. The regularization is con-
ceived to employ the previous parameter estimate to stabilize the updated one via
retention of the externally supplied information. The soft equality constraints on
the regression parameters Ξ (where Ξ is some real regular square matrix with a
dimension corresponding to the number of identified parameters) are then incor-
porated into the learning procedure to smooth the parameter estimate. Generally,
the algorithm contains the data-updating steps, forgetting factor adjustment, and
time-updating steps. During the data-updating steps, the variables that transmit
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information between the previous and actual time steps 𝑓(𝑘, 𝑘 − 1) are updated in
terms of transmitted data 𝑓(𝑘, 𝑘 − 1) → 𝑓(𝑘, 𝑘). An example of such variables is
the number of degrees of freedom 𝜈(𝑘, 𝑘 − 1) (scalar variable) or the least squares
reminder Σ(𝑘, 𝑘 − 1) (scalar variable), representing the estimated minimum of a
quadratic criterion. Note that Σ(𝑘, 𝑘 − 1) and 𝜈(𝑘, 𝑘 − 1) are the required statis-
tics of normal-Wishart probability distribution. The forgetting factor adjustment
𝜆(𝑘, 𝑘 − 1) → 𝜆(𝑘 + 1, 𝑘) is then based on the Kullback-Leibler divergence between
two normal-Wishart probability density functions, where one is described by the pre-
vious step statistics Σ(𝑘, 𝑘 − 1) and 𝜈(𝑘, 𝑘 − 1) and the other by the data-updated
statistics Σ(𝑘, 𝑘) and 𝜈(𝑘, 𝑘). Therefore, if a rapid parameter change occurs, it is
quickly reflected by the least squares reminder Σ(𝑘, 𝑘) and thus by the Kullback-
Leibler divergence. In the last algorithm part, the data-transmitting variables are
updated in terms of time 𝑓(𝑘, 𝑘) → 𝑓(𝑘 + 1, 𝑘). Hence, some of the information
passed to the next step is forgotten based on the currently calculated forgetting
factor 𝜆(𝑘 + 1, 𝑘).

During the data-updating steps, firstly, the update of the projection matrix
P(𝑘, 𝑘) is calculated. The projection matrix is not propagated to the next step
in the implemented algorithm version; instead, the information matrix V(𝑘, 𝑘 − 1),
which represents the inversion of the normalized projection matrix, is passed. The
projection matrix data update P(𝑘, 𝑘) is then calculated using the information ma-
trix V(𝑘, 𝑘 − 1). We have

P−1
𝑐 (𝑘, 𝑘 − 1) = V(𝑘, 𝑘 − 1) + (1 − 𝜆(𝑘, 𝑘 − 1))Ξ

V(𝑘, 𝑘) = P−1
𝑐 (𝑘, 𝑘 − 1) + h(𝑘) · h𝑇 (𝑘)

K(𝑘) = P𝑐(𝑘, 𝑘 − 1) · h(𝑘)/(1 + h𝑇 (𝑘) · P𝑐(𝑘, 𝑘 − 1) · h(𝑘))
P(𝑘, 𝑘) = (I − K(𝑘) · h𝑇 (𝑘)) · P𝑐(𝑘, 𝑘 − 1) · (I − K(𝑘) · h𝑇 (𝑘))𝑇 +

+ K(𝑘) · K𝑇 (𝑘) (4.25)

where I is the identity matrix of dimension corresponding to the number of iden-
tified parameters and h(𝑘) stands for the column regression vector. Note that the
constrained terms Ξ realize penalization in information matrix V(𝑘, 𝑘). If the rapid
change of forgetting factor occurs, it is reflected in the information matrix and thus
in the projection matrix P(𝑘, 𝑘). In subsequent algorithm part, the column vector
of parameters estimated in the previous step Θ(𝑘, 𝑘 − 1) is penalized based on the
constrained terms Ξ and the old estimation of parameters Θ(𝑘 − 1, 𝑘 − 2), yielding

𝜀(𝑘) = Θ(𝑘, 𝑘 − 1) − Θ(𝑘 − 1, 𝑘 − 2)
Θ𝑐(𝑘, 𝑘 − 1) = Θ(𝑘, 𝑘 − 1) + P𝑐(𝑘, 𝑘 − 1) · Ξ · 𝜀(𝑘). (4.26)

As seen in (4.26), the changes in estimated parameters between the two steps are
more penalized by the higher values in matrix Ξ. Then the penalized estimated
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parameters Θ𝑐(𝑘, 𝑘 − 1) are applied to determine the parameters in the recent step
Θ(𝑘, 𝑘) as in

𝑒𝑐(𝑘, 𝑘 − 1) = 𝑦(𝑘) − h𝑇 (𝑘) · Θ𝑐(𝑘, 𝑘 − 1)
Θ(𝑘, 𝑘) = Θ𝑐(𝑘, 𝑘 − 1) + K(𝑘) · 𝑒𝑐(𝑘, 𝑘 − 1) (4.27)

where 𝑦(𝑘) is the measured system output in the recent step and 𝑒𝑐(𝑘, 𝑘 − 1) is the
estimated model error. At the end of the data-updating steps, the normal-Wishart
distribution statistics (𝜈(𝑘, 𝑘) and Σ(𝑘, 𝑘)) are actualized based on the estimated
error 𝑒𝑐(𝑘, 𝑘 − 1). We have

𝜈(𝑘, 𝑘) = 𝜈(𝑘, 𝑘 − 1) + 1
Σ𝑐(𝑘, 𝑘 − 1) = Σ(𝑘, 𝑘 − 1) − 𝜀𝑇 (𝑘) · (Ξ + Ξ · P𝑐(𝑘, 𝑘 − 1) · Ξ) · 𝜀(𝑘)

Σ(𝑘, 𝑘) = Σ𝑐(𝑘, 𝑘 − 1) + 𝑒2
𝑐(𝑘, 𝑘 − 1)/(1 + h𝑇 (𝑘) · P𝑐(𝑘, 𝑘 − 1) · h(𝑘)). (4.28)

Note that the least squares reminder Σ(𝑘, 𝑘 − 1) is firstly actualized based on the
penalization of parameters changes Σ(𝑘, 𝑘 − 1) → Σ𝑐(𝑘, 𝑘 − 1), and then the data
update is calculated Σ𝑐(𝑘, 𝑘 − 1) → Σ(𝑘, 𝑘).

During the forgetting factor adjustment, the estimations of system noise variance
in the previous step 𝑑(𝑘, 𝑘 − 1) and the data-updated step 𝑑(𝑘, 𝑘) are calculated
together with the changes of data-updated parameters 𝜀(𝑘 + 1) as follows:

𝑑(𝑘, 𝑘 − 1) = 𝜈(𝑘, 𝑘 − 1)/Σ(𝑘, 𝑘 − 1)
𝑑(𝑘, 𝑘) = 𝜈(𝑘, 𝑘)/Σ(𝑘, 𝑘)

𝜀(𝑘 + 1) = Θ(𝑘, 𝑘) − Θ(𝑘, 𝑘 − 1). (4.29)

Then the Kullback-Leibler divergence is evaluated as in

𝑋𝜁 = trace(V(𝑘, 𝑘 − 1) · P(𝑘, 𝑘)) + 𝜈(𝑘, 𝑘 − 1) ln
⎛⎝𝑑(𝑘, 𝑘 − 1)

𝑑(𝑘, 𝑘)

⎞⎠+

+ 𝑑(𝑘, 𝑘)Σ(𝑘, 𝑘 − 1) + 𝜁𝑑(𝑘, 𝑘)𝜀𝑇 (𝑘 + 1) · V(𝑘, 𝑘 − 1) · 𝜀(𝑘 + 1)+

+ 𝜈(𝑘, 𝑘 − 1)
𝜈(𝑘, 𝑘) − 𝜈(𝑘, 𝑘 − 1) (4.30)

where trace(X) stands for the trace of square matrix X and 𝜁 is user-defined scalar
constant. This constant represents an artificial increase in the expected noise level
and reduces false detected changes of parameters caused by the system noise. The
higher the value of 𝜁 ∈ (0, 1⟩, the more prediction error is reflected in the new value
of the forgetting factor. The forgetting factor 𝜆(𝑘, 𝑘 − 1) is then updated based on
the calculated divergence 𝑋𝜁 and number of identified parameters 𝑛. The limitation
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of the forgetting factor 𝜆(𝑘 + 1, 𝑘) ∈ ⟨𝛼, 1⟩ is implemented using the 𝑖𝑓 − 𝑒𝑙𝑠𝑒

conditioning to achieve only the valid values of 𝜆(𝑘 + 1, 𝑘). We have

if 1 ≤ 𝑋𝜁𝛼/((𝑛+ 1)𝜆(𝑘, 𝑘 − 1)) then
𝜆(𝑘 + 1, 𝑘) = 𝛼

else if 1 ≥ 𝑋𝜁/((𝑛+ 1)𝜆(𝑘, 𝑘 − 1)) then
𝜆(𝑘 + 1, 𝑘) = 1

else
𝜆(𝑘 + 1, 𝑘) = (𝑛+ 1)𝜆(𝑘, 𝑘 − 1)/𝑋𝜁

end if (4.31)

where the lower bound of the forgetting factor 𝛼 lies on the interval 𝛼 ∈ (0, 1).
During the time-updating steps, the data-updated parameters are actualized in

terms of exponential forgetting, yielding

V(𝑘 + 1, 𝑘) = 𝜆(𝑘 + 1, 𝑘)V(𝑘, 𝑘) Σ(𝑘 + 1, 𝑘) = 𝜆(𝑘 + 1, 𝑘)Σ(𝑘, 𝑘)
Θ(𝑘 + 1, 𝑘) = Θ(𝑘, 𝑘) 𝜈(𝑘 + 1, 𝑘) = 𝜆(𝑘 + 1, 𝑘)𝜈(𝑘, 𝑘). (4.32)

Similarly, for the purpose of the covariance checking, the projection matrix might be
time-updated as well P(𝑘+1, 𝑘) = P(𝑘, 𝑘)/𝜆(𝑘+1, 𝑘). However, since the projection
matrix presented in the explained algorithm represents the normalized values, it
must be denormalized as in P𝑀(𝑘 + 1, 𝑘) = P(𝑘 + 1, 𝑘)/𝑑(𝑘, 𝑘) to achieve real
covariance values. The recursive parametric estimation algorithm then periodically
calculates the following steps:

1. Obtain inputs [V(𝑘, 𝑘 − 1); 𝑦(𝑘); h(𝑘); Θ(𝑘, 𝑘 − 1); Θ(𝑘 − 1, 𝑘 − 2);
Σ(𝑘, 𝑘 − 1); 𝜈(𝑘, 𝑘 − 1); 𝜆(𝑘, 𝑘 − 1)].

2. Load constants out of memory [Ξ; 𝜁; 𝑛; 𝛼].
3. Execute the data-updating steps in the following order: (4.25), (4.26), (4.27),

and (4.28).
4. Update the forgetting factor in the following order: (4.29), (4.30), and (4.31).
5. Calculate the time updates (4.32).
6. Write outputs [V(𝑘 + 1, 𝑘); Θ(𝑘 + 1, 𝑘); Σ(𝑘 + 1, 𝑘); 𝜈(𝑘 + 1, 𝑘); 𝜆(𝑘 + 1, 𝑘)].

The proper operation of the described algorithm is achieved only if the following
initial conditions are chosen: V(1, 0) = Ξ, Σ(1, 0) > 0, 𝜈(1, 0) > 0, and 𝜆(1, 0) = 1.
To reduce parameters oscillations at the beginning of the identification procedure,
it is also essential to fill the regression vector h(𝑘) first and initialize the estimated
parameters as in Θ(0,−1) = Θ(1, 0).
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4.4 Implementation of the diagnostic algorithm
The fault relevance diagnostic algorithm described in Section 4.1 and extended by
the adaptive band-pass filters in Section 4.2 is realized in MATLAB Simulink, as
shown in Figure 4.2.
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Fig. 4.2: Implementation of the diagnostic algorithm in MATLAB Simulink

Furthermore, as seen in Figure 4.2, the enabled subsystems are incorporated into the
described algorithm since there is no reason to calculate ITF parameters estimation
unless the healthy parameters are identified with sufficient precision. Enabling is
then realized based on the covariance of healthy parameters. Figure 4.3 visualizes
the implemented covariance checking.
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Another enabling is realized in healthy parameters estimation. Since the real be-
havior is not as idealized as the model describes, the fault also slightly affects the
healthy parameters. Therefore, identifying the healthy parameters is turned off af-
ter the inter-turn short circuit is detected. The fault is detected by reaching the
lower forgetting factor bound in the ITF parameters estimation algorithm. Adaptive
signals filtering is then realized according to equations (4.23) and (4.24).

The implementation of recursive healthy parameters identification can be seen
in Figure 4.4.
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Fig. 4.4: Healthy parameters estimation in MATLAB Simulink

Theoretically, the number of degrees of freedom 𝜈 and the least squares reminder
Σ can grow to infinity. Therefore, they are saturated between 0 and 105 (Figure
4.4). For the purpose of regression vector filling up, the step counter 𝑘 is also
present. Parametric estimation is then started after three steps to ensure that all
delays are reflected. Initial values of variables required in the parametric estimation
algorithm are presented under the unit delay blocks in Figure 4.4. If they are not
mentioned, the initial condition is a scalar value equal to 0. Estimated parameters
are initialized based on Table 1.2 and equation (4.6). The lower bound of the
forgetting factor is 𝛼 = 0.95 to track changes in electrical parameters with the
operating point. Constrained terms Ξ correspond to the identity matrix. This
value enables effective tracking of parameters changes and ensures relatively smooth
evolution of parameters in time. User-defined parameter 𝜁 is then set to be 0.05.
The low value of 𝜁 helps to smooth the forgetting factor, which is welcome since
the persistence of input signals is mostly insufficient. The parametric estimation
algorithm is then implemented using the MATLAB function block as follows:
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Listing 4.1: Parametric estimation algorithm realized as a MATLAB function
1 function [V,v,Sgm ,lbd ,k,tht ,PM] = fcn(y,h,V,v,Sgm ,k ,...
2 lbd ,tht_act , tht_old )
3 % Constant parameters :
4 n = 3; Xi = eye(n); alpha = 0.95; zeta = 0.05;
5 del = 3; I = eye(n);
6 if (k<del)
7 k = k + 1; tht = tht_act ; PM = eye(n);
8 else
9 % Data - updating steps:

10 V_old = V; Sgm_old = Sgm; v_old = v;
11 V = V_old + (1-lbd )*Xi + h*h’;
12 Pc = (V_old + (1-lbd )*Xi )^( -1);
13 K = Pc*h/(1 + h’*Pc*h);
14 P = (I-K*h ’)* Pc*(I-K*h’)’ + K*K’;
15 eps = tht_act - tht_old ;
16 thtc = tht_act + Pc*Xi*eps;
17 ec = y - h’* thtc;
18 Sgmc = Sgm - eps ’*( Xi + Xi*Pc*Xi)* eps;
19 Sgm = Sgmc + ec ^2/(1+h’*Pc*h);
20 v = v + 1;
21 tht = thtc + K*ec;
22 % Forgetting factor adjustement :
23 d_old = v_old/ Sgm_old ; d = v/Sgm;
24 eps_new = tht - tht_act ;
25 Xz = trace(V_old*P)+ v_old*log(d_old/d)+d* Sgm_old ...
26 +d*eps_new ’* zeta*V_old* eps_new +v_old/v-v_old;
27 if (1 <= Xz*alpha /( lbd *(n+1))) , lbd = alpha;
28 elseif (1 >= Xz/( lbd *(n+1))) , lbd = 1;
29 else , lbd = lbd *(n+1)/ Xz;
30 end
31 % Time - updating steps:
32 V = V*lbd; Sgm = Sgm*lbd; v = v*lbd;
33 % Denormalized projection matrix:
34 PM = (P/lbd )/d;
35 end
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Note that the denormalized projection matrix is sent to the output and provides the
information about covariance necessary for the ITF parameters estimation enabling.

Similarly, the recursive identification of ITF parameters is shown in Figure 4.5.

2
v(k)

1
y(k)

y

h

V	

v	

Sgm	

lbd	

k	

tht_act

tht_old

V

v

Sgm

lbd

k

tht

PM

fault_detect

Initialization	eye(2)

Initialization	1

		Initialization	1		

	Initialization	1	

	Initialization	[0;0]	 Initialization	[0;0]

[V]

[v]

[Sgm]

[lbd]

[tht]

[V]

[v]

[Sgm]

[lbd]

[tht]

Initialization	0

[k]

[k]

1
estimated	parameters

4
forgetting	factor

3
projection	matrix

2
fault	detected

Initialization	'false'

System	output

Regression	vector

Projection	matrix	inverse

Forgetting	factor

Number	of	degrees	of	freedom

Least	square	reminder

Estimated	parameters

Step	counter

Fig. 4.5: ITF parameters estimation in MATLAB Simulink

The differences between the recursive estimation of healthy (Figure 4.4) and ITF
(Figure 4.5) parameters lie in different lower bounds of forgetting factor 𝛼, numbers
of identified parameters 𝑛, user-defined factors 𝜁, and the initial delays before the
algorithm is started. Identifying two ITF parameters is started after four steps in
the wake of reaching the required covariance of healthy parameters. This value
reflects especially the delays caused by the input and output transformation (4.7).
The lower bound of the forgetting factor 𝛼 is then set to be 0.6. If 𝛼 is reached,
then to improve the learning of actual ITF parameters, the algorithm is reset, and
one additional logical output indicates that the fault was detected. This is realized
by the following code inserted after line 35 of Listing 4.1:

Listing 4.2: Reset of recursive identification of ITF parameters
1 fault_detect = false;
2 if (lbd == alpha)
3 Sgm = 1; v = 1; V = eye(n); lbd = 1; tht = tht_act ;
4 PM = eye(n); fault_detect = true;
5 end
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If the logical value ’true’ of 𝑓𝑎𝑢𝑙𝑡_𝑑𝑒𝑡𝑒𝑐𝑡 is reached, it is held using a simple flip-
flop (Figure 4.5), and the recursive updating of healthy parameters is switched off
(Figure 4.2). In the case of ITF parametric estimation, the user-defined factor 𝜁 is
equal to 0.5 to achieve faster forgetting factor changes at the expense of smoothness.
The constrained terms Ξ are similarly given by the identity matrix.

The calculation of series resistance and normalized fault relevance is then ex-
tended by conditions that prevent reaching undefined values (for example, caused
by dividing numbers by 0). These conditions are visualized in Figure 4.6.
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As shown in Figure 4.6, the series resistance and normalized fault relevance are
saturated between 0 and 1. The limitation of normalized fault relevance is straight-
forward since this parameter can achieve only values between 0 and 1. The series
resistance is then saturated based on the initial estimation (Table 1.2) to prevent
reaching highly overrated values. Since the band-pass filter filters the input signals
of the ITF parameters estimation algorithm, there is always some harmonic signal
(even if the short circuit is not emulated) that causes the estimation of low-level
fault relevance. Therefore, if the fault relevance reaches the defined value given by
saturation of 𝑅𝑓,𝑑𝑞/𝑥

*
𝑓

2, the output normalized fault relevance is set to be 0.
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4.5 Diagnostics verification within the simulation
The algorithm described in the previous sections is firstly evaluated within the sim-
ulation. For this purpose, the model visualized in Figure 4.7 is utilized.
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Fig. 4.7: Model for the diagnostics verification within the simulation

The classical control scheme described in the previous chapters is extended by the
inverter’s nonlinearity (4.20) with the dead time voltage 𝑢𝑑𝑒𝑎𝑑 equal to 0.02𝑉 . The
stator currents are then distorted by additional white noises with the variance of
1 · 10−3 and randomly selected mean values. The mean values of additional white
noises are not so crucial since the adaptive band-pass filter suppresses the DC com-
ponents of the signals. However, the dead time voltage level noticeably impacts
the parameters bias. As mentioned before, the bias is caused by the distortion on
frequency 𝜔𝑒 that can not be suppressed since ideal voltage inputs 𝑢𝛼 and 𝑢𝛽 are
harmonic signals of this frequency.

The simulated motor is controlled to the angular velocity setpoint 𝜔*
𝑚 = 75 𝑟𝑎𝑑/𝑠,

and after six seconds, inter-turn short circuits are simulated in phase ’a’ with dif-
ferent fault relevance: 𝑥𝑓 = 4/25, 𝑥𝑓 = 6/25, 𝑥𝑓 = 9/25, and 𝑥𝑓 = 14/25. These
experiments are realized only for the winding connection 𝑛𝑝 = 1 and 𝑛𝑠 = 3. The
torque load connected to the shaft of the simulated machine is equal to 0 to achieve
the minimum signal-to-noise ratio. If the higher value of torque load is present, the
amplitudes of currents are growing, and the signal-to-noise ratio is higher. Signals
for the fault relevance estimation are then obtained from the control system, and
the diagnostic algorithm starts in time 0 𝑠 with the velocity step request.
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Figure 4.8 visualizes the estimated healthy parameters and calculated series re-
sistance.
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Fig. 4.8: Estimated healthy parameters and series resistance, simulation

Since the identification algorithm is robustly tuned and the simulated electrical pa-
rameters are constant, the calculated forgetting factor equals 1 in each algorithm
step. The identified healthy parameters are stabilized after one second of the algo-
rithm run. However, this value is mainly given by the moment of inertia. If less
inertia is applied, a machine tracks the velocity setpoint faster, making the frequency
sweep more significant. Hence, the input signals have higher persistence resulting
in faster stabilization of estimated parameters.
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Figure 4.9 then visualizes the time evolution of the ITF parameters.
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Fig. 4.9: Estimated ITF parameters, simulation

The ITF parameters (Figure 4.9) have no meaning until the short circuit is simulated
in time 6 𝑠. After the fault occurs, it is quickly detected by the rapid changes in the
forgetting factor, as shown in Figure 4.10.

0,00

0,25

0,50

0,75

1,00

1,25

0 1 2 3 4 5 6 7 8

IT
F

 f
o

rg
et

ti
n

g 
fa

ct
o

r 
[-

]

Time [s]

lbdf(xf = 4/25) lbdf(xf = 6/25) lbdf(xf = 9/25) lbdf(xf = 14/25)

0,60

0,80

1,00

1,20

6 6,005 6,01 6,015 6,02 6,025 6,03 6,035 6,04

0,00

1,00

6 6,005 6,01 6,015 6,02 6,025 6,03 6,035 6,04

Fa
u

lt
 d

et
ec

te
d

 [
-]

Time [s]

fault_det(xf = 4/25) fault_det(xf = 6/25) fault_det(xf = 9/25) fault_det(xf = 14/25)

Fig. 4.10: ITF forgetting factor and fault detection, simulation

Generally, the higher values of fault relevance are detected faster than lower ones
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due to the higher signal-to-noise ratio of the output signal 𝑦 obtained by (4.7).
The electrical angular velocity of the simulated motor is 1575 𝑟𝑎𝑑/𝑠, approximately
corresponding to the 4𝑚𝑠 electrical period. Hence, the presented algorithm detects
higher fault values under one electrical revolution (Figure 4.10). The waveforms of
normalized fault relevance can be seen in Figure 4.11.
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Fig. 4.11: Identified normalized fault relevance, simulation

The estimated normalized fault relevance is then compared with the value calculated
by (4.11), assuming the electrical parameters as in Table 1.2. The relative errors
are calculated similarly as in (1.33) and presented in the following table:

Tab. 4.1: The error of estimated normalized fault relevance, simulation

𝑥𝑓 [−] 4/25 6/25 9/25 14/25

calculated 𝑥𝑓,𝑛 [-] 0.0187 0.0397 0.0826 0.1772

estimated 𝑥𝑓,𝑛 [-] 0.0166 0.0357 0.0748 0.1630

error [%] 11.2 10.1 9.4 8.0

The biased parameters are the primary sources of differences between the estimated
and calculated values. For example, the estimated resistance is approximately equal
to 0.101 Ω, but the resistance used in the simulation is 0.112 Ω.

4.6 Diagnostics verification on the real motor
Similarly, the diagnostic algorithm is verified on the control system of the experi-
mental motor for the winding connection 𝑛𝑝 = 1 and 𝑛𝑠 = 3. A 𝐶 code is generated
from the MATLAB Simulink model of the described algorithm and programmed into
AURIX Application kit TC277. Control system is then running in the processor’s
core 0, and fault diagnostics are running in core 2 (core 1 is used for online commu-
nication via ethernet). Short circuits are then emulated with 𝑥𝑓 = 3/25, 𝑥𝑓 = 6/25,
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𝑥𝑓 = 9/25, and 𝑥𝑓 = 14/25 fault relevance after six seconds from the velocity step
request 𝜔*

𝑚 = 75 𝑟𝑎𝑑/𝑠. During this experiment, the machine is disconnected from
the dynamometer. Hence, the moment of inertia is lower than the value utilized in
simulations, and the torque load equals 0. The time evolution of estimated healthy
parameters is visualized in Figure 4.12.
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Fig. 4.12: Estimated healthy parameters and series resistance, real motor

In the case of Figure 4.12, the healthy parameters are dependent on the operating
point, and the time-variance of parameters (especially of the inductance) is reflected
in the estimation. The identified resistance (Figure 4.12) significantly differs from
the value implemented in the simulation (Table 1.2) since the model’s parameters
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were only roughly fit based on the open-loop measurements. The time-varying
changes of identified parameters are also reflected in the forgetting factor that is no
longer equal to 1 for all the time, as shown in Figure 4.13.
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Fig. 4.13: Forgetting factor - healthy parameters estimation, real motor

Note that the forgetting factor is together with the identified healthy parameters
held on the last estimated value after the fault is detected.

The estimated ITF parameters are then visualized in Figure 4.14.
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Fig. 4.14: Estimated ITF parameters, real motor

Unlike in case of simulations, the fault is not precisely emulated six seconds after
the velocity step request occurs. Inter-turn short circuits are emulated using a relay,
and some transport delay is propagated. It was quantified that the fault emulation
is approximately delayed by 2𝑚𝑠; however, the precise value of transport delay is
unknown. Figure 4.15 then shows the fault detection moments signalized by the
processor and the time evolution of the forgetting factor of ITF parameters.
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Fig. 4.15: ITF forgetting factor and fault detection, real motor

The waveforms of normalized fault relevance are visualized in Figure 4.16.
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Fig. 4.16: Identified normalized fault relevance, real motor

The estimated series resistance 𝑅𝑠 = 0.425 Ω is then utilized to calculate 𝑥𝑓,𝑛 refer-
ence, and the fault relevance error is evaluated in the table bellow:

Tab. 4.2: The error of estimated normalized fault relevance, real motor

𝑥𝑓 [−] 3/25 6/25 9/25 14/25

calculated 𝑥𝑓,𝑛 [-] 0.0329 0.1033 0.1912 0.3573

estimated 𝑥𝑓,𝑛 [-] 0.0270 0.1014 0.1786 0.3603

error [%] 17.9 1.8 6.6 0.8
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Conclusion
In this thesis, the modeling of a synchronous motor with permanent magnets under
the stator winding’s inter-turn short circuit fault was described (Chapter 1). The
model that assumes the combination of serial and parallel winding connections was
defined in the stator variables and transformed into the rotor reference frame. It
was shown that the model utilizes the well-known healthy motor description (1.25)
and one additional differential equation related to the current flowing through the
short circuit (1.26). Both model’s parts are then linked by the coupling equation
(1.24). The presented models were validated via measurement of the fault current’s
first harmonic and the second harmonic of the back electromotive force transformed
into the rotor reference frame (Figure 1.9). The measurement was performed on a
configurable machine driven by a dynamometer, at different winding connections,
fault relevance, and electrical angular velocities. The measured values were com-
pared with the simulated ones, using the mean relative error and variance (Table
1.3). The mean relative error did not exceed 4.4 %.

In Chapter 2, the field-oriented control of permanent magnet synchronous mo-
tors was described. The control system utilizes the dynamical decoupling technique
inside the current controller (Figure 2.1), and the parameters of the velocity and cur-
rent controllers are analytically calculated out of the estimated motor’s parameters
as in (2.6). The clamping (Figure 2.2) and back-calculation (Figure 2.4) anti-windup
techniques are then incorporated into the discrete-time equivalent of the control sys-
tem. The discrete-time implementation of angle tracking observer and space vector
modulation is also described. The control system is programmed into the AURIX
application kit TC277 and applied to control the experimental motor with different
winding connections to the velocity setpoint (Figure 2.8).

The model derived in Chapter 1 is semi-analytically discretized in Chapter 3.
For this purpose, the linear time-varying systems approach is utilized. The electrical
angular velocity is considered the time-varying parameter with the defined integral
that is equal to the electrical angle. The discrete-time model is then transformed
into the stator reference frame to maximize the persistence of input signals resulting
in description (3.28). The validation of the discrete-time model is then based on the
comparison with the continuous-time model within the simulation (Figure 3.3).

The fault relevance identification is described in Chapter 4 together with the
system noise analysis and filter design. For the purpose of parametric estimation,
the regularized algorithm with the variable exponential forgetting is applied. Reach-
ing the lower bound of the forgetting factor is then interpreted as a fault presence
indicator. The designed fault relevance diagnostic procedure is firstly validated
within the simulation (Figures 4.8, 4.9, 4.10, and 4.11). The precision of identified
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fault relevance is significantly affected by biases in estimated parameters (especially
in estimated series resistance). Relative errors between estimated and calculated
normalized fault relevance are presented in Table 4.1. Similarly, the algorithm is
validated on the experimental motor (Figures 4.12, 4.13, 4.14, 4.15, and 4.16). Cal-
culated relative errors of normalized fault relevance estimations are presented in
Table 4.2.

Together with the electrical parameters of a machine, the identified normalized
fault relevance provides necessary information for fault current estimation. There-
fore, in future work, the designed fault detector will be extended by the fault com-
pensator that will utilize the identified parameters to calculate fault current and
modify control actions to compensate for the fault.
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SPMSM Surface-mounted Permanent Magnet Synchronous Machine

SVM Space Vector Modulation
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A Derivation of the open-loop ITF model
System definition (ITF is in phase ’a’):

d
d𝑡

⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦ =

⎡⎢⎣ −𝑅𝑠

𝐿𝑑

𝐿𝑞

𝐿𝑑
𝜔𝑒

−𝐿𝑑

𝐿𝑞
𝜔𝑒 −𝑅𝑠

𝐿𝑞

⎤⎥⎦ ·

⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦+

⎡⎢⎣ 1
𝐿𝑑

0

0 1
𝐿𝑞

⎤⎥⎦ ·

⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦+
⎡⎣ 0
−𝜔𝑒𝜆𝑝𝑚

𝐿𝑞

⎤⎦
𝑥*

𝑓 = 𝑥𝑓

𝑛𝑠

𝑅*
𝑓 = 𝑥*

𝑓 (1 − 𝑥*
𝑓 )(𝑛𝑝 − 1)𝑅𝑠 +𝑅𝑓

𝐿𝑓 = 𝑥*
𝑓

2𝑛𝑝(𝑛𝑠 − 1)𝐿𝑎𝑎⎡⎣𝑖𝑑
𝑖𝑞

⎤⎦ =
⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦+
2𝑥*

𝑓

3

⎡⎣ cos(𝜃𝑒)
− sin(𝜃𝑒)

⎤⎦ 𝑖𝑓
d
d𝑡 (3𝐿𝑓 𝑖𝑓 ) = −(𝑥*

𝑓

(︁
3 − 2𝑥*

𝑓

)︁
𝑅𝑠 + 3𝑅*

𝑓 )𝑖𝑓 + 3𝑥*
𝑓

[︁
cos(𝜃𝑒) − sin(𝜃𝑒)

]︁
·

⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦
Voltage form of the healthy part equations:⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ =
⎡⎣𝐿𝑑 0

0 𝐿𝑞

⎤⎦ · d
d𝑡

⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦+
⎡⎣ 𝑅𝑠 −𝐿𝑞𝜔𝑒

𝐿𝑑𝜔𝑒 𝑅𝑠

⎤⎦ ·

⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦+
⎡⎣ 0
𝜔𝑒𝜆𝑝𝑚

⎤⎦
Open-loop assumption:

𝑖𝑑 = 0
𝑖𝑞 = 0⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦ =
2𝑥*

𝑓

3

⎡⎣− cos(𝜃𝑒)
sin(𝜃𝑒)

⎤⎦ 𝑖𝑓
Expressing derivative of the coupling equation:

d
d𝑡

⎡⎣𝑖𝑑,ℎ

𝑖𝑞,ℎ

⎤⎦ =
2𝑥*

𝑓

3

⎡⎣sin(𝜃𝑒)
cos(𝜃𝑒)

⎤⎦ 𝑖𝑓 +
2𝑥*

𝑓

3

⎡⎣− cos(𝜃𝑒)
sin(𝜃𝑒)

⎤⎦ d𝑖𝑓
d𝑡

Substituting for the healthy currents derivative and healthy currents in the voltage
equation:⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ = 2𝑥*
𝑓

3

⎡⎣𝐿𝑑 0
0 𝐿𝑞

⎤⎦ ·

⎛⎝⎡⎣sin(𝜃𝑒)
cos(𝜃𝑒)

⎤⎦ 𝑖𝑓 +
⎡⎣− cos(𝜃𝑒)

sin(𝜃𝑒)

⎤⎦ d𝑖𝑓
d𝑡

⎞⎠+ 2𝑥*
𝑓

3

⎡⎣ 𝑅𝑠 −𝐿𝑞𝜔𝑒

𝐿𝑑𝜔𝑒 𝑅𝑠

⎤⎦ ·

⎡⎣− cos(𝜃𝑒)
sin(𝜃𝑒)

⎤⎦ 𝑖𝑓 +
⎡⎣ 0
𝜔𝑒𝜆𝑝𝑚

⎤⎦
Substituting for the voltages in the fault current equation and expressing the deriva-
tive:

𝑍𝑓 =

(︃
(𝑅*

𝑓 + 𝑥*
𝑓𝑅𝑠) +

(︃
d𝐿𝑓

d𝑡 + 𝑥*
𝑓

2 d𝐿𝑎𝑎

d𝑡

)︃)︃
(︁
𝐿𝑓 + 𝑥*

𝑓
2𝐿𝑎𝑎

)︁
d𝑖𝑓
d𝑡 = −𝑍𝑓 𝑖𝑓 −

𝑥*
𝑓𝜔𝑒𝜆𝑝𝑚 sin(𝜃𝑒)(︁
𝐿𝑓 + 𝑥*

𝑓
2𝐿𝑎𝑎

)︁
Substituting for the fault current derivative in the voltage equation and expressing
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the back electromotive force:
⎡⎣𝑢𝑑

𝑢𝑞

⎤⎦ = 2
3

⎡⎣𝐿𝑑𝑥
*
𝑓𝑍𝑓 −𝑅𝑠𝑥

*
𝑓 −𝑥*

𝑓𝜔𝑒(𝐿𝑑 − 𝐿𝑞)
−𝑥*

𝑓𝜔𝑒(𝐿𝑑 − 𝐿𝑞) 𝐿𝑞𝑥
*
𝑓𝑍𝑓 −𝑅𝑠𝑥

*
𝑓

⎤⎦ ·

⎡⎣ cos(𝜃𝑒)
− sin(𝜃𝑒)

⎤⎦ 𝑖𝑓 + 𝜆𝑝𝑚𝜔𝑒

⎡⎢⎢⎣
𝑥*

𝑓
2𝐿𝑑 sin(2𝜃𝑒)

3(𝐿𝑓 +𝑥*
𝑓

2𝐿𝑎𝑎)

1 − 𝑥*
𝑓

2𝐿𝑞(1−cos(2𝜃𝑒))
3(𝐿𝑓 +𝑥*

𝑓
2𝐿𝑎𝑎)

⎤⎥⎥⎦
Figure A.1 shows the realization of open-loop ITF model in MATLAB Simulink.

1
we

1
if

2
ud

3
uq

we

sin(theta_e)

cos(theta_e)

sin(2theta_e)

cos(2theta_e)

Lf	+	xf^2	Laa

Zf

Varying	parameters

we
Lf	+	xf^2	Laa
Zf
sin(theta_e)

if

fault	current

U Y

if

we

Zf

Lf	+	xf^2	Laa

sin(theta_e)

cos(theta_e)

sin(2theta_e)

cos(2theta_e)

ud

uq

back	EMF

U Y

Fig. A.1: Open-loop ITF model realization in MATLAB Simulink
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B Content of the electronic attachment
/......................................................root of the attached archive

Thesis.pdf..........................................text of the diploma thesis
Models_codegen...............MATLAB Simulink models for c-code generating

ctrl_core.slx.......................................control system model
fault_diag.slx...........................model of fault relevance detector

Models_sim ......................... MATLAB Simulink models for simulations
discr_mod_val.slx ........... model for discrete-time equivalent verification
fault_diagnostics.slx..................model for fault diagnostics testing
ITF_model.slx ................ model of control system and shorted machine
open_loop_model.slx ....... model for open-loop shorted machine validation

NOTE: The MATLAB Simulink models are realized in the MATLAB version R2020b.
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