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ABSTRACT

This thesis describes the mathematical modeling of a permanent magnet synchronous
motor under a stator winding's inter-turn short circuit fault, the discretization of obtained
model, and the model-based fault relevance diagnostics. A description of a shorted ma-
chine is formed in the stator variables assuming the series-parallel winding connection
and transformed into the rotor reference frame using extended Clarke's and Park’s trans-
formation matrix. A discrete-time equivalent of the designed model is formed based
on the linear time-varying systems approach, considering the electrical angular velocity
time-varying parameter with a defined integral. The discrete-time model is transformed
into the stator reference frame to maximize the persistence of input signals. The fault
relevance diagnostics are then realized based on the recursive parametric estimation of
the discrete-time model. In addition, one chapter is dedicated to the control system
description since the short circuits may affect state variables differently depending on
the control system architecture and tuning. The experimental validation of the presented
ideas follows at the end of each chapter.

KEYWORDS

Discrete-time systems, failure analysis, fault detection, mathematical analysis, inter-turn
short circuits, mathematical model, model checking, parameter estimation, permanent
magnet motors, time-varying systems, vector control.

ABSTRAKT

Tato prace popisuje matematické modelovani mezizavitovych zkrati fazového vinuti syn-
chronniho motoru s permanentnimi magnety, diskretizaci odvozeného modelu a diagnos-
tiku zavaznosti zkratu zaloZenou na referenénim modelu. Popis zkratovaného stroje je
vytvofen v proménnych statoru s uvazovanim sérioparalelniho zapojeni vinuti a nasledné
transformovan do referenéniho ramce rotoru pomoci rozsirené Clarkové a Parkovy trans-
formacni matice. Diskrétni ekvivalent navrzeného modelu je vytvoren pomoci definované
diskretizace linearnich asové variantnich systémi, pfricemz je uvazovano, ze elektricka
thlova rychlost je Casové variantni parametr s definovanym integralem. Diskrétni mo-
del je transformovan do referencniho ramce statoru, aby se maximalizovala perzistence
vstupnich signall. Diagnostika zavaznosti zkratu je poté realizovana pomoci rekurzivniho
parametrického odhadu diskrétniho modelu. Jedna z kapitol je vénovana i popisu fidiciho
systému, nebot zkraty mohou ovlivnit stavové proménné rliznym zplsobem v zavislosti
na architektufre a volbé parametri fidiciho systému. Za kazdou kapitolou nasleduje ex-
perimentalni ovéreni prezentovanych myslenek.

KLICOVA SLOVA

Systémy s diskrétnim Casem, analyza poruch, detekce poruch, matematickd analyza,
mezizavitové zkraty, matematicky model, ovéreni modelu, odhad parametri, motory s
permanentnimi magnety, ¢asové variantni systémy, vektorové Fizeni.

Typeset by the thesis package, version 4.03; http://latex.feec.vutbr.cz


http://latex.feec.vutbr.cz

ROZSIRENY ABSTRAKT

Cilem této prace je predevsim navrh diagnostického algoritmu pro detekci zavaznosti
mezizavitovych zkrati statoru synchronniho motoru s permanentnimi magnety. Po-
zadavkem je, aby tento algoritmus bézel v redlném case na dostupném procesoru
AURIX application kit TC277. Tento procesor tedy musi byt schopen navrzeny
algoritmus spocitat za méné nez 100 us danych periodou vzorkovani. V této praci
je zavaznost zkratu interpretovana jako Casové variantni parametr modelu motoru,
ktery je detekovan algoritmem parametrického odhadu s proménnym koeficientem
zapominani. Navrh algoritmu je poté rozdélen do nékolika logickych kroki: tvorba
matematického modelu, diskretizace navrzeného modelu a navrh algoritmu pro re-
kurzivni odhad parametri diskrétniho ekvivalentu. Jedna z kapitol je také vénovana
navrhu a ladéni fidicitho systému, nebof vyznamnym zptisobem ovliviiuje chovani
motoru pii dané poruse a nékteré promeénné pouzité pri vypoctu akcénich zasahi
jsou vstupnimi signaly algoritmu identifikace parametri.

Pri tvorbé matematického popisu mezizavitovych zkrati se vychazi z modelu
zdravého motoru definovaného v literatute. Jelikoz ma vinuti motoru rozprostrené
parametry, je pti modelovani zkratii uvazovana linearni distribuce odporu, indukéno-
sti a toku od permanentnich magneti. Aby navrzeny model lépe popisoval redlny
motor, je definovan pro sérioparalelni zapojeni fazového vinuti. Spolec¢né s diferen-
cialnimi rovnicemi popisujicimi proud jednotlivymi statorovymi fazemi je stanoven i
elektromechanicky kroutici moment zkratovaného motoru na zakladé analyzy en-
ergie ve vazebnim poli stroje. Vysledny model je poté transformovan do refe-
ren¢niho ramce rotoru pomoci rozsitené Clarkové a Parkovy transformacni matice.
Vznikly popis umoznuje zkratovany motor popsat pomoci jeho zdravého modelu a
diferencialni rovnice popisujici proud zkratem s definovanym odporem. Zavaznost
zkratu potom udava pomeér zkratovanych zaviti civky na statorové fazi ku celkovému
poctu zaviti této civky. Validace navrzeného modelu je poté realizovana srovnanim
méfreného zkratového proudu a zpétné indukovanych napéti se simulovanymi hod-
notami, pficemz je motor v generdtorickém rezimu hnany dynamometrem. Validace
je realizovana pro tfi riiznd zapojeni vinuti motoru.

Za 1ucelem Tizeni stroje v referenénim ramci rotoru je pouzito zapojeni pro dy-
namickou kompenzaci vazeb mezi jednotlivymi slozkami proudu. Vyzkum autora v
oblasti analytického ladéni parametri fidiciho systému synchronniho motoru s per-
manentnimi magnety je v této praci rozsiten tak, aby se maximalizovala robustnost
fidici smycky a nemohlo pfi vzniku zkratu dojit k nestabilité. Jelikoz se pri identi-
fikaci zavaznosti zkratu vyuziva informace o tthlové rychlosti, je v ramci fidiciho sys-
tému popsan i pozorovatel thlové rychlosti a jeho implementace s diskrétnim casem,

ktera zachova dynamiku sledovani thlu a rychlosti. Déle jsou popsany transformace



z proménnych statoru do referenc¢niho ramce rotoru a modulace napéti prostorovym
vektorem. Ridicf systém je poté nahran do procesoru a odzkouSen pro tii riznd
zapojeni vinuti na realném motoru.

Spojity model zkratovaného motoru je diskretizovan na zakladé definovaného an-
alytického feseni linedrnich ¢asové variantnich systémi. Je uvazovano, ze elektricka
thlova rychlost je ¢asové proménnym parametrem, jehoz integraci je elektricky tihel
natoceni. Na zakladé tohoto poznatku lze vyjadrit matici prechodi daného systému,
a dokonce lze uré¢it i semianalyticky diskrétni model. Tento model je poté trans-
formovan do referen¢niho ramce statoru, kde jsou vstupni napéfové signaly harmo-
nické pribéhy. Oproti referenénimu ramci rotoru je tedy zajisténa vétsi perzistence
napétovych vstupi, coz je vyhodné pro parametrickou identifikaci. Diskrétni model
je v simulaci srovnany se spojitym, ktery byl jiz validovan na zakladé méreni na
skutecném stroji.

Aby bylo mozné provést rekurzivni parametricky odhad, je nejprve diskrétni
model zjednodusen na identifikaci zavaznosti zkratu v konkrétni fazi a nasledné
transformovan do formy, ve které je jedna slozka proudu zatizend zkratem a druha
sleduje chovani zdravého motoru. Diky tomuto uspotradani je mozné odhadovat
parametry zdravé ¢asti motoru i v situaci, kdy je pritomen mezizavitovy zkrat.
Parametry zdravé ¢asti jsou odhadovany pomoci rekurzivniho algoritmu s promén-
nym koeficientem zapominani, aby bylo mozné reflektovat mirné zmény elektrickych
parametri s provoznimi podminkami. Déle je zavedena transformace proudové
slozky motoru zatizené zkratem tak, aby se potlacil vliv zdravych parametri a k
identifikaci zlstali pouze parametry souvisejici se zkratem. Tyto jsou poté identi-
fikovany obdobnym algoritmem jako zdravé parametry. Rozdil spoc¢iva v nastaveni
spodni meze koeficientu zapominani, kdy u parametrii souvisejicich se zkratem je
tato mez podstatné nizsi a jeji dosazeni indikuje pritomnost mezizavitového zkratu.
Za pomoci identifikovanych parametrii je poté spocitana normalizovand zavaznost
zkratu, ktera udava, jaka cast civky na vinuti je zkratovana nulovym odporem.
Takto definovany algoritmus je navic rozsiten o filtraci signald pro identifikaci adap-
tivnim filtrem, aby bylo dosazeno potlaceni rusivych harmonickych slozek. V této
praci je rovnéz prezentovana analyza rusivych vlivi. Algoritmus detekce zavaznosti
zkratu je odzkousen jak v rdmci simulace se simulovanym rusenim, tak na redlném

pohonu.
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Introduction

Permanent magnet synchronous motors (PMSMs) are classified as surface-mounted
(SPMSMs) and interior (IPMSMs), depending on the position of the permanent
magnets. The electrical model of the IPMSM is more complex than that of the
SPMSM, but its characteristics better fit the requirements of today’s hybrid and
electric vehicles.

An inter-turn short circuit or an inter-turn fault (ITF) in the stator winding is
the consequence of insulation failures between two or more turns in the same phase.
It is the most common fault in electrical machines after bearing failures. ITFs
usually occurs due to moisture ingress inside the motor’s case, a thermal breakdown
between the turns, or another failure. For example, a shattered bearing can get
stuck between the coil turns and cause a short circuit. Shorted turns configure an
extra circuit loop coupled to flux linkages by other motor windings and the rotor
magnets. Owing to the low impedance and high-coupled flux linkage voltage, a
high-fault current is thus induced in the shorted winding, which generates ohmic
loss and heat that further weaken the surrounding insulation material [1]. This self-
heating circle can lead to the machine break down and poses a potential fire hazard.
According to the previous statements, there is a high demand for quick and reliable
diagnostics of ITF and fault current compensation.

The diagnostics of ITFs exploit two main principles. One is based on processing
measured signals and finding patterns that correspond to the fault relevance [2] -
[5]; this principle can be highly accurate but is not suitable for online implemen-
tation because the embedded device must process large data packets. The other
then identifies the resistance, inductance, and other parameters of a shorted phase,
which depend on the fault relevance [6] - [9]. However, to achieve the proper func-
tioning of this principle, a relatively precise mathematical description of the fault
has to be provided together with a suitable discrete-time equivalent. Otherwise, the
fault relevance can not be extracted from the identified parameters with sufficient
precision. In some cases, both principles are combined to improve the diagnostic
capabilities [10]. This thesis will discuss a novel model-based detection of inter-turn
short circuit fault relevance.

Traditionally, many authors describe ITF models in the stator variables. This
description is easily formable and allows modeling the asymmetry of the stator
windings parameters. However, since the control system is usually defined in the
rotor reference frame, it is welcome to transform the model described in stator
variables into the rotor reference frame as well. Chapter 1 then aims to develop a
simple mathematical ITF model in the rotor reference frame for fast simulations and

fault detection using the model-based condition monitoring. The model is formed
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in the stator variables, assuming a series-parallel winding connection in Section 1.1.
Then the extended transformation matrix is presented in Section 1.2, and the model
is transformed into the rotor reference frame in Section 1.3. Model is then realized
in MATLAB Simulink environment as described in Section 1.4. In Section 1.5, the
validation of the model is provided. For this purpose, the real machine is driven
by a dynamometer to the angular velocity setpoint, and currents and electromotive
force are measured and compared with the simulated values.

In real applications, a motor is controlled to the velocity setpoint using two
cascade control loops. Therefore, the architecture of controllers and their tuning
significantly impacts the state variables during the fault. Hence, Chapter 2 discusses
the implemented control system. Firstly, an analytical control system parameters
tuning is presented in Section 2.1. Then in Section 2.2, the discrete-time equivalent
of the designed control system is calculated, and the integral windup phenomenon is
handled. Section 2.3 deals with the realization and discrete-time implementation of
an angle tracking observer for velocity estimation, and Section 2.4 describes input
and output signals transformations and the min-max space vector modulation of
the voltage requests. The proposed control system is then applied to control the
experimental motor in Section 2.5.

Since this thesis aims for online model-based fault relevance diagnostics and the
parametric estimation algorithms primarily support the discrete-time models, the
defined continuous-time model must be discretized. Chapter 3 then presents a novel
semianalytic discretization of the machine’s model. Firstly, the healthy part of the
model is discretized in Section 3.1, and then the fault current model’s discrete-time
equivalent is derived in Section 3.2. In Section 3.3, both model parts are combined
and transformed into the stator reference frame, where the persistence of input
signals is higher than in the rotor reference frame. Discrete-time model is then
compared with the continuous one in Section 3.4.

The algorithm for the fault relevance identification is designed in Chapter 4. In
Section 4.1, the discrete-time model is redefined to achieve a description suitable
for the parametric estimation. Then the system noise analysis and adaptive filter
design follow in Section 4.2. The filter is designed to suppress the periodic distortion
in measured currents. Section 4.3 describes the recursive parametric estimation
algorithm implemented in this thesis. In Section 4.4, the realization of the fault
relevance diagnostic algorithm in MATLAB Simulink is discussed. Section 4.5 then
presents the verification of the algorithm within the simulation, and Section 4.6

describes the algorithm validation on the experimental motor.
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1 Inter-turn short circuits modeling

For the purpose of inter-turn short circuit modeling, a model of a healthy IPMSM
has to be specified. This model provides necessary information about a magnetic
flux distribution inside a motor. As mentioned by Sul in [11], the voltages across

the stator windings u,, up, u. are defined as in

Ug R;, 0 O g d A
Up | = 0 Rs 0 . ib + E )\b ( 1. 1)
uC 0 0 RS ic )\C

where R, is the equivalent resistance of each stator winding (series resistance),
la,1p, 1. are the currents flowing in the stator windings, and A,, Ay, A. are the to-
tal fluxes linking each stator winding, consisting of the flux linkages of the phase
windings and the permanent magnets. For a sinusoidal flux distribution, the total

fluxes linking are

)\a Laa Lab Lac ia )\a,pm
>\b - Lba Lbb Lbc . ib + )\bwm . (12)
)\c Lca ch Lcc ic )\c,pm

In (1.2), the phase-self and mutual inductances of the stator windings are defined
as in (1.3) and the fluxes of the permanent magnets that link the stator windings
as in (1.5). We have

L. 9
Luw = Ly + Ly, cos (26,) Loy = Lo = =22 + Ly cos (298 - g)
9 L. 9
Luy = L.+ L, cos (296 n g) Lie = Loy = == + Ly cos (296 + g)
2 Ly
Le=L,+ L,,cos (296 — g) Ly = Lo = —5 + Ly, cos (26,) . (1.3)

In (1.3), Ls is the average phase-self inductance of each of the stator windings, and
L,, denotes the fluctuation in the phase-self inductance and mutual inductance with
changing rotor electrical angle #,. These inductances can be expressed using d-axis

and g-axis inductances:

o latl otk o
The permanent magnet fluxes that link the stator windings are

Aapm = Apm €08 (6e)

Abpm = Apm COS (98 — 2%)

Aepm = Apm COS (98 + 2%) ) (1.5)

14



In (1.5), Ay stands for the permanent magnets flux linkage.
As mentioned by Krause et al. in [12], the electromagnetic torque of the IPMSM

can be established based on the total energy in the coupling field as in

T
7 7 A
a 18L a 8 a,pm
T,=pli| |2 il — | Ao, 1.6
D Z.b 5 90, Z.b + 90, Abp (1.6)
le 2s )\C7pm

where p stands for the number of pole pairs and L is the inductance matrix as in
(1.2).

Traditionally, many authors describe ITF in the stator variables using the sim-
plified winding architecture models [13]-[14]. These models assume that the stator
winding is concentrated into one coil segment (Fig. 1.1), and the inductive couplings
in a whole winding are affected by the ITF.

Fig. 1.1: Simplified three-phase winding under the ITF

This assumption leads to a relatively simple expression of the fault current is; how-
ever, the modeled fault current value is highly overrated due to the demanding
inductive couplings. Typically, the phase winding of a motor consists of segments
that are geometrically separated from each other. The main advantage of this ar-
rangement is that the ITF cannot easily spread across the whole winding. Due to
the segregation, there are also mutual inductances in the same phase; however, such
inductances are significantly lower than those that occur due to the ITF and can
be neglected. The ITF then affects inductances related only to one coil segment,
not a whole winding. Gu presented the models that incorporate different winding
configurations (three coils in series or three coils in parallel) in [15]. However, a

model of the faulty IPMSM can be formed in a more general way, assuming that the
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phase winding comprises n, branches connected in parallel, and each of the branches
consists of ns coils in series. Figure 1.2 shows a universal phase winding connection

applicable in determining a more accurate model of a faulty IPMSM.

Fig. 1.2: Segregated phase 'a’ winding under the I'TF

1.1 Model in the stator variables

Due to the presence of an inter-turn short circuit in phase ’a’ (Fig. 1.2), an additional
fault current iy occurs. This current flows through the short circuit resistance Ry
and can be described by an additional differential equation. Assuming that the coil
segments a, , have an equivalent resistance Z—’;Rs and inductance Z—’;Laa, the previous

connection can be simplified into the form presented in Figure 1.3.

Ry
Qg ap f ary
—o <O Ug
p )
a
L 30050000 ————<———
p

Fig. 1.3: Simplified segregated phase 'a’ winding under the ITF

The ITF causes the division of phase segment a; ; into two parts. The part of the
coil that is marked as aj is not shorted, and thus the current i, — i, flows through
this coil segment. The current ¢, — 4, is then divided into the current that flows
through the short circuit iy and the current that flows through the shorted part
of the winding ay. This portion of the phase current is described by i, — i) — iy
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and contributes to the energy in the coupling field and thus to the electromagnetic
torque. The voltage across the winding part ay is expressed as u,, = Ryiy and the
voltage across the winding parts a, and ay satisfies ug,q, = Uy — Uq, = Uy — Ryiy.
The parameters of the equivalent winding model are related to the healthy ma-
chine parameters and the fault relevance ratio x ;. This parameter expresses the ratio
between the number of shorted turns Ny and the number of total turns N of the
shorted phase winding segment; then, x; = Ny/N. The resistances of the healthy

ay, the faulty ay, the series a,, and the parallel a, winding parts are expressed as in

s — 1
R,. = (ns = 1)y R, R, = " _p
N n, —1
(1—zf)ny Lfhp
Ry, = ———R; R, = R;. (1.7)
Ng Ux

The following table then describes the inductive couplings inside a machine under
the ITF:

Tab. 1.1: Inductive couplings inside a machine under the I'TF

Stator part Qs ap ap ay b c
a. EES L N N 0 0 (e Ly | L,
ap 0 o2t Laa 0 0 Lab Lac
a 0 o | Gedney el |Gy ) Oy
ay 0 0 wlﬂza %Laa Ly L
b %Lba Ly %Lba i—’;Lba L, Ly
c g, | oL, | U, "L, Lo L.

Similarly, the permanent magnet fluxes that link the phase ’a’ winding parts are

defined as in

(ns — 1)
Ns

_ A=z

)\CL mo T
hsP ns

Aag pm = Aa,pm )‘apvpm = Aapm

xf
a,pm )‘af(pm - n_s)\a’pm. (18)

Based on the parameters described in (1.7), (1.8), and table 1.1, the voltage and

flux equations of the phase ’a’ under the ITF are formed as in

/u/aSah ( - fL_‘Z) npRs 0 0 iCL - ip d )\asah
Ugy | = 0 n—’:npRs 0 g — ip - if + & )\af
Uq 0 0 4R, iy Ao,
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[ lg — 1p |

)‘CLsCLh ia - ip - Zf (1 - Z_i) )\a,pm

Ny | =Le | i || ZAm (1.9)

)\ap 1 )\a,pm
L ic -

where
ey, g, 0 (1-2) L, (1-2) L,
Lp=| slieduy o iy 0 5L e
0 0 “e Laa Lab LCLC

np—1
(1.10)
Substituting for voltages in (1.9) and transforming the current vector provides the

following form of the voltage and flux equations:

_ _ _rf
Ug, ( ns) npRS Rf ( ns) npRs %a d )‘CLsCLh
0 == Z_inPRS —Z—’:TLPRS — Rf _Z_J:nPRS . if + E )\af
Ua 0 0 " R iy Aay
np—1
i ]
Nasa, ir| (1= %) Aapm
Moy | = L5 lip| + | Zapm (1.11)
)\ap 1 )\a,pm
_Z‘C_
where

(1= 2V Lo 200 (oY (1= ) Ly (1 %) L.

Ng S

* T 172”;) T T T
Lf = n_ianaa _i—sLaa _n—ianaa n_iLab n_iLac
\‘ 0 0 n:il Laa Lab Lac J
(1.12)

Comparing voltages in (1.11) leads to the algebraic expression of the current flowing
through the parallel branch ¢,. We have

) ny — 1 ( Ty, )

1y = g — —1r | . 1.13

P n, N f ( )
If the number of shorted turns approaches 0; then zy = 0 and the current flowing
through the parallel branch satisfies i, = "’;L;lz'a. Hence, the current of the main

branch is given as i, —1, = nipz'a and the currents flowing through all parallel branches

are equal. If x; # 0, then the current flowing through the main branch is given as
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. . . -1
g — 1p = Lo + 2

- z fL—fz'f, yielding in increase of the current in the branch that
P P S

contains an ITF.
The algebraic expression (1.13) reduces the order of the differential equation
system (1.11). Therefore, the model of IPMSM with segregated windings under an

ITF can be formed in the stator variables as in

Ug T fRS 0 O R}i i, Nasay,
Up . 0 Rs 0 0 ) ib 1 g )\b
Ue 0 0 R, 0 Te dt | .
0 x}Rs 0 O —x}Rs — R}i if )\af
)\asah ia j})\a,pm
)\b Z‘b )\b pm
=Ls.- + ’ 1.14
Ae Fer i Aepm (1.14)
)\af if l’;Aum
where
:E}Laa E}Lab E}Lac —x}i}Laa + Ly
Ly, L Ly, —2% Ly,
Lio=| " oo e (1.15)
Lca ch Lcc _x;LCCL

l’}Laa ,I’;Lab x?Lac —,I;zLaa—Lf
The parameters %, 73, R} and L are calculated out of the segregated winding

parameters as in
Ly= x}znp(ns —1)Laa
E} =1-— } = x}i}(np —1)Rs + Ry. (1.16)

If an ITF occurs in phase 'a’, only the current ¢, and current ¢, — ¢y, flowing
through the a; segment, contribute to the electromagnetic torque. The fault current
ts then affects the energy in the coupling field and the electromagnetic torque nega-
tively. The electromagnetic torque formula is formed using the transformed current

vector and inductance matrix Ly, as

. T . —
1q lq x})\a,pm
ib 1 aLf c ib 0 )\b pm
T, = - = : ’ 1.17
Py 2700, [in| T 90, | epn (L.17)
ia — if if {L’;)\a’pm
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1.2 Extended transformation matrix

The model defined in the stator variables (1.14), and (1.17) can be transformed into
the rotor reference frame using Clarke’s transformation matrix, which transforms
the model from the stator variables (abc) into the stator reference frame o — f3,
and Park’s transformation matrix, which transforms the model from o — § into
the rotor reference frame d — q. Due to the ITF, another differential equation
related to the fault occurs and these transformation matrices have to be extended.
The extension of the transformation matrices aims to transform the stator voltages
and currents into the rotor reference frame d — ¢ and to preserve the fault current
ty. Hence, four state variables and three inputs are transformed into the three
state variables and two inputs, which leads to the wide rectangular transformation
matrix with three rows and four columns. The extended transformation matrix
is then formed using the extended Clarke’s I'; ;s and Park’s I .,; transformation

matrices as 'ezy = ['p ezt - D enr. We have

[—=

1

1
5 2 z U cos (6.) sin(6.) 0O
Lot =5 (0 % =% 0] Dper=|-sin(6) cos(@) 0.  (118)
0 0 0 % 0 0 1
The extended transformation matrix reads
cos (6.) coS (98 - %”) cos (98 + %” 0
2 _ . 9 _ . _ 2_71— _ . 9 2_71— 0
[y = 3 sin (6,) sm( e — 3 ) sm( e T3 (1.19)
0 0 0 %

The non-square matrix (1.19) does not have an inverse. However, this matrix has
rank 3, allowing us to find a right-hand pseudoinverse that enables transformation
from the rotor reference frame into the stator variables:

I =T%

ext ext

(Teal%,) (1.20)

ext

The voltages and currents are then transformed as in

Ug " la ;

d . d

Up _ 27 -1 .
=T |uq =12k i, (1.21)

Ue 0 [ ;

0 i d

Inter-turn short circuits may affect the state variables in the rotor reference frame
differently, depending on the form of Clarke’s transformation matrix. In (1.18), a

direct form of the transformation matrix was used. This form is characterized by
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the multiplication factor % However, the extended Clarke’s transformation matrix

may be formed more generally, using the multiplication factor K as in

1ot - o]
* K 10

c,emt: T2 (122)
o0 o0 2

*

w ezt Tesults in scaling the

Use of general extended Clarke’s transformation matrix I’

voltage inputs and the current outputs. We have
ug| 2 |Udin
Uq 3K | ug,in

1.3 Model in the rotor reference frame

id"’“t] _ 3k [’d] . (1.23)

Zq,out

The differential equations characterizing the d — ¢ currents are determined if (1.21)
is substituted into (1.14). The resulting system of differential equations preserves
the expression of fault current defined in (1.14). However, derived equations related
to the d — ¢ currents are highly complicated and miss the physical meaning. The
solution to this problem lies in the state transform, which divides d — ¢ currents into

the healthy part and the contribution related to the fault current. We have

ia| _ |ian| , 27% | cos(fe) )
Lq] N L%h] " 3 [— sin(ee)] f (1.24)

where 6. stands for the electrical angle. The state transform (1.24) is obtainable if
the derived expression of faulty d — ¢ currents is compared with the expression of
healthy d — g currents i, and i, mentioned by Sul in [11]. Hence, iq), and i, are

described by the following system of differential equations:

. _Rs Lg . 1 Uq
KL (22 O 7 il I 0 P L u (1.25)
dt | Lg Rs ; 1 1 q )
h —Flwe —7° Lq,h 0 + —7w
q L, e Lq q Lq L, e )\pm

where L; and L, denote inductances in the machine’s direct and quadrature axis,
R, and A, stand for the equivalent resistance of stator phases and the permanent
magnets flux linkage, and w, represents the recent electrical angular velocity of a
motor.

Similarly, the differential equation that describes the fault current ¢; is deter-

mined based on the faulty d — ¢ currents and the state transform (1.24). We have

cos(fe) ] . {“d] (1.26)

d
— (BLysig) = =Ry ggis + 3275
(3Lyiy) padts £ 357 | @l L

dt
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where Ry a4 = 27} (3 - 2:5}) Rs + 3R} and Ly, v and R} are defined as in (1.16).
The electromagnetic torque of IPMSM under the I'TF is obtained by substituting
(1.21) and (1.24) into (1.17), yielding

3 o1 0Ly,
T, = §p2q7h()\pm + (Ld — Lq)ldﬁ) + 5}9 90, Z?z.

(1.27)

The electromagnetic torque is also divided into the healthy part and the fluctuation
caused by iy, just as the d — ¢ currents (1.24). If the number of shorted turns
approaches 0, then out of (1.26), the fault current is also approaching 0; thus,
id, iq, and T; are given only by the healthy part of the model. If x} # 0, the
distortion with the dominant frequency 2w, occurs in the d-q currents and the
electromagnetic torque. This fact is provable based on the definition of fault current
and trigonometric identities.

The presented model was derived for an ITF in phase 'a’. However, the same
procedure can be applied to determine machine models under I'TFs in phases b’
and ’c’. The model of faulty IPMSM with segregated windings and ITF in phase
‘a’ is then extendable to simulate short circuits in the different phases, using the

redefinition

Ly = 23ny(ng — 1)(Ls + Lin cos(20 + ¢))
T

d ) ) . | cos(f. + ¢
- (3Lf2f) = —Rﬁdqlf + 3{L’f ( 2)

dt —sin(f, + £)
. . 2 * 98 + Q
S I ) e CO.S( 2) i (1.28)
iq Gq.n 3 | —sin(f, + %)

where if ¢ = 0 then the ITF is in phase ’a’; if ¢ = %” then the I'TF is in phase 'b’,
and if ¢ = —%” then the I'TF is in phase ¢

Note that if the parallel branches of phase winding consist only of one coil seg-
ment, then n, = 1 and Ly = 0, and it is possible to describe the fault current

algebraically. For this type of winding connection, the fault current is defined as in

: {Zd] . (1.29)

The phase shift and the frequency of 7y then correspond with the phase shift and

) 355}
Z =
T Ry

cos(f. + 2)
—sin(f, + £)

the frequency of i,, 7, or 7., depending on ¢.
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1.4 Realization of the model in MATLAB Simulink

According to Section 1.3, the model of IPMSM under the ITF is divided into two
parts. One describes the healthy IPMSM model, and the other is related to the ITF.
Thus it is possible to model these parts independently on each other and combine

them in the model’s output. Figure 1.4 shows the core of the model.

we
<7l
we Te,h
tht_m
2 ud id,h
ud
) ugq igh Friction
uq
model of the healthy IPMSM
we
iq,f
ud
uq
id f
phi phi
o "
Xf Tef
Saturation 0-1 tht_e
model of Inter-Turn Fault /I
€

tht_e

Fig. 1.4: Model of IPMSM under the ITF

As shown in Figure 1.4, a mechanical subsystem is also modeled in the core. A

motion equation that describes a mechanical angular velocity w,, is formed as in

dwp, 1
-, = = Te_Tric_Toa 130
7 =7 ! load) (1.30)
where J stands for the moment of inertia, T},,q is a torque load connected to a shaft

of machine, and T%,;. is dynamic friction torque inside a motor. We have
Trric = sign(wm) (Blwm| + Lary) - (1.31)

Parameters B and Ty, express the viscous friction coefficient and the dry friction.
The static friction is neglected.

A mechanical angular velocity is the first derivative of mechanical angle 6,,;
then d6,,/dt = wy,. Since the machine is controlled to the angular velocity setpoint,
the mechanical angle tends to grow to infinity. Hence, the wrap state function is
implemented in the model presented in Figure 1.4. This function normalizes the
mechanical angle to interval (—m, 7), preventing the value of 6,, from overwhelm-
ing. The relation between the mechanical and electrical angle and mechanical and

electrical angular velocity is then defined as in

0. = pb,, We = PWi, (1.32)
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where p is the number of pole pairs.
The healthy part of the model of IPMSM under the ITF is then formed using a
flux-based model of IPMSM in d — ¢ coordinates (Fig. 1.5).

Fig. 1.5: Healthy part of the model of IPMSM under the ITF

Due to the demand for changeable fault relevance during the simulation, a rel-
atively complicated expression of parameters z%, Rjag, Ly, and dLy/df. occurs.
Therefore, the model of ITF is divided into two parts to preserve clarity. One part
of the model describes the varying parameters (Fig. 1.6), and the other defines the
fault current and torque (Fig. 1.7).

Varying parameters

Y

Rf,dg

3Lf
>
[ >

—ao

» switch

3dLf/ dtht_e

xfs*cos(tht_e + phi/2)

X
i

sin

i

X -1
-xfs*sin(tht_e + phi/2)

Fig. 1.6: Varying parameters in the I'TF model
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As shown in Figure 1.6, switching of L is present. If xy = 0, then L; = 0, and
a division by 0 occurs in the fault current model. Therefore, to prevent this sit-
uation, the value of L; is switched to be 1 if zy = 0. A similar problem occurs
if n, = 1; however, this problem is solved by conditioned expression in the fault

current’s model (Fig. 1.7).

Fault current and torque 5 is not 1
if(ul ~=1)
ns ul
else
ud
Action
X 1 we
> > G
we
> | merse
X P{ params Tef
uq ﬁ
Action
\oltages if
merge »( 3
params Te,f Tef
[Lf3] params
[dLf3]
Case ns is not equal to 1 Case nsis equal to 1
Rfdq
— Voltages 5
3dLf/dtht_e — 2 —a : i
- o $
x params o
x
i we
[L D=
(% T
Voltages 1
w2 S&n)
= F
params *e
Integrator with
external reset
Juf?
x
deIdthLe p Tef

Fig. 1.7: Model of the fault current and torque

If ng = 1, then the fault current iy is expressed algebraically and modeled as in
(1.29). On the other hand, if ny # 1, then the fault current satisfies (1.28). Note
that if 2y is switched to be 0, the voltage inputs are multiplied by 7 = 0, and the
state of the fault current is forced to be 0 by the external reset of integrator. Hence,
the fault current and torque are 0 in this situation and the model acts as a model
of healthy IPMSM.

25



1.5 Model validation

Typically, vector control is used to drive alternate current machines. Vector control
embodies a variable-frequency drive control method that employs two closed control
loops to regulate the electromagnetic torque and angular velocity. Using the IPMSM
in closed control loops is the most natural approach. Such control loops, however,
have a significant impact on the machine behavior during a fault. Hence, this thesis
provides open-loop validation to ensure that the machine behavior does not depend
on the control loop architecture and tuning.

The validation is performed on a configurable motor for the following winding
connections: n, = 1 and ny, = 1, n, = 1 and ny = 3, n, = 2 and ny = 3. The
measured electrical parameters for the different winding connections are presented
in the table below:

Tab. 1.2: Electrical parameters of the validated machine

Connection | n, =1;n;=1|n,=1;ns=3 | n,=2;n,=3
R, [mQ] 39.11 112.1 42.68
Ly [nH| 572.0 1751 745.2
L, [nH] 560.6 1696 699.7
Apm, MWD 1.807 5.522 4.998
R; [mQ] 42.41 45.20 45.38

The machine, driven by a dynamometer to the angular velocity setpoint, is dis-
connected from the inverter, and the inter-turn short circuits are emulated in the
phase ’a’ with the local fault relevance xy = 6/25, y = 9/25, and x; = 14/25
using a relay. The back electromotive force and fault current are measured using an
oscilloscope. The fault current, together with the electrical angle, is also acquired
by the microcontroller, and both measurements are synchronized based on the fault
current waveform. A photo of the testbench utilized in validating the faulty model
is displayed in Figure 1.8.

The back electromotive force is transformed from the stator variables (abc) into
the rotor reference frame d — ¢ using the information about the electrical angle. The
fault current and d—q voltages are then transformed into the frequency domain using
the fast Fourier transform. As can be seen in the model from Section 1.3, the ITF
causes the fault current with the dominant frequency w,, which leads to distortion
in the d — q frame mainly on the frequency 2w.. Hence, the model validation uses

the first harmonic of iy and the second harmonics of the induced u4 and wu,,.
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Fig. 1.8: Photo of the testbench

As the machine is disconnected from the inverter, the currents satisfy the con-
ditions ¢, = 0, % = 0, and 7. = 0, yielding 74 = 0 and 7, = 0. This condition may
be employed to derive a model that considers w, as the input and ug4, v, and iy as
the outputs (Appendix A). The resulting model is then used to simulate the back
electromotive force and the fault current during the ITF. The simulated data are
processed similarly to the measured waveforms.

Comparing the simulation with the measurement exploits the relative error, cal-
culated as in (1.33) for each measured point of the fault current’s first harmonic and

the second harmonics of the induced u4 and u,. We have

error — 100 - measured — simulated ' (1.33)
measured

Relative errors for each examined winding connection are then statistically pro-
cessed, and the mean value and variance are calculated. These statistics express
how precisely the model approximates the measured amplitudes in each measured
point.

The comparison of the simulation and the measurement for three motor config-

urations is visualized in Figure 1.9.

27



a) winding connection n, = 1; ny =1

w
°

>

N
2

g
°

/
e
/,;%A‘{;

1000 1500 2000
Electrical angular velocity [rad/s]

=
=}

voltage distortion [V]
t

Amplitude of the second harmonic
=)
0

e
=]

0 500 2500 3000

—ud6/25sim ——ud 9/25sim ——ud 14/25 sim —uq 6/25 sim —uq 9/25 sim —uq 14/25 sim
X ud6/25mes % ud9/25mes X ud14/25mes X uq6/25mes X uq9/25mes X uq14/25mes

=

winding connection n, = 1; ny = 3

3,0

B>
g
e
e
i
1000 1500 2000
Electrical angular velocity [rad/s]

N
2

g
°

e
2

Amplitude of the second harmonic
voltage distortion [V]
& 8
&

0,0

0 500 2500 3000

—ud6/25sim ——ud 9/25sim ——ud 14/25 sim —uq 6/25 sim —uq 9/25 sim —uq 14/25 sim
X ud6/25mes % ud9/25mes X ud14/25mes X uq6/25mes X uq9/25mes X uq14/25mes

(@)
~

winding connection n, = 2; ny = 3

Iy
-

=
g

I
N

e P
////;V
0:0 - % /

e
o

voltage distortion [V]
1<) N
@ =
RN

o
-

Amplitude of the second harmonic
(=]
o

0 500 1000 1500 2000 2500 3000
Electrical angular velocity [rad/s]
—ud6/25sim  ——ud9/25sim  ——ud14/25sim  —uq6/25sim  —uq9/25sim  —uq14/25 sim

X ud6/25mes X ud9/25mes X ud14/25mes X uq6/25mes X uq9/25mes X uq14/25mes

Fig. 1.9: Comparison between the

. e

harmonic [A]
2]

Amplitude of the fault current's first

0 500 1000 1500 2000

Electrical angular velocity [rad/s]

2500 3000

X if6/25mes X if9/25mes X if14/25mes ——if6/25sim ——if9/25sim ——if14/25 sim

16

14

)

.
=)

-

harmonic [A]
2]

Amplitude of the fault current's first

¢ “
4
2
0
0 500 1000 1500 2000 2500 3000
Electrical angular velocity [rad/s]
X if6/25 mes X if9/25mes X if14/25mes ——if6/25sim ——if9/25sim ——if14/25sim
18
o
1
S 16
2 ]
214
i<
E ., 7
5=
o< /
£3210 = SR
ﬁ g /
8
2E
— ©
5= ¢ /
Q
k=]
2 4
=
] 2
<
0
0 500 1000 1500 2000 2500 3000
Electrical angular velocity [rad/s]
X if6/25mes X if9/25 mes X if14/25mes ——if6/25sim ——if9/25sim ——if14/25 sim

measurement and the simulation

The relative error statistics are presented in the following table:

Tab. 1.3: Calculated relative error statistics

Connection ny,=1,n, =1

np=1n,=3|n,=2;n=3

Mean value [%] 2.9

4.1 4.4

Variance [%] 10.8

13.9 13.7
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2 Control system architecture and tuning

This thesis aims for the closed-loop diagnostics of ITF relevance. In this configu-
ration, the state variables are affected by ITF and by control system architecture
and tuning. The alternate current machines are commonly controlled in the rotor
reference frame, where direct axis current ¢y defines the magnetic flux, and quadra-
ture axis current ¢, determines the electromagnetic torque 7. Proportional-integral
(PI) controllers are then usually used to keep the current components iy and i, at
their requested values i and 4;. Due to the nonlinear second harmonic distortion in
the rotor reference frame caused by an ITF, the system can become unstable if the
current controllers are tuned aggressively, especially at the higher electrical angular
velocities w.. Hence, robustness is a crucial control system property that has to be
maximized.

As seen in the healthy part of IPMSM model (1.25), current components are
coupled by terms that depend on the electrical angular velocity w,. Generally, if a
machine operates in the low-speed region, current controllers compensate couplings
between d — ¢ currents without much effort. However, with a growing w,, couplings
between the current components become dominant and are usually compensated by
feedforward compensation techniques. Some of the compensation techniques were
presented by Xingye et al. in [16]. Such techniques were derived based on the
measurable disturbance compensation approach and ensure a high robustness of
the control loop. Figure 2.1 shows a control system architecture with the diagonal

compensation decoupling current controllers described in [16].

ig
Ud,r + Ud
11 . M
0 Kp’d (1+ Tia §> L 7
X L tad
We Lgs+Rs
p
L Ud,d
% q
Lgs+Rs
i i* : u
11 oTg ( Ll) + + Yq
Ky (1 +7. s) = Kpg (1 + 155 Ugs N\

Velocity controller:: Current controllers with the dynamic decoupling:

q

Fig. 2.1: Control system architecture

In Figure 2.1, s is the Laplace operator, K, 4, K, ,,

and T;, are integral time constants of PI

and K, stand for proportional
gains of PI controllers and T; 4, T;,,

controllers.
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Due to the position of magnets in IPMSMs, i4 also contributes to the electro-
magnetic torque and the most efficient combination of currents that provides the
required torque can be determined based on the peak torque per amper curve [11].
However, the contribution of iy to T, is dependent on the difference between the
direct and quadrature axis inductance Ly and L,, which is neglectable in case of
the configurable motor used for experiments (Tab. 1.2). Then it is possible to
control the electromagnetic torque using only the quadrature axis current requests
iy. Since the flux weakening technique is not implemented in this thesis, the direct
axis current setpoint is ¢; = 0. This instantaneous torque control loop, also called
the current loop, is extended by a PI controller of mechanical angular velocity w,,
(Fig. 2.1). The control action of this PI controller then defines the requested value
of quadrature axis current 4; (thus the requested value of electromagnetic torque),

enabling us to drive a machine to the angular velocity setpoint w,.

2.1 Control system parameters tuning

Zezula presented an analytic solution for the parameters tuning of the IPMSM
control system that ensures robustness to parameters changes in [17]. The designed

parameters read

Ly Ly
K, = Cy-t Tig= -2

pa = Ca T, 47 R,

L L
Kpq = Ca TZ Tig = RZ
20.J T,

Ky = Cpy——r T. =10 2.1

" "3p A T, | Ca (21)

where T is the sampling period, Cy; € (0,7/9) stands for the current loop scaling
factor tuned based on the possible electrical parameters changes, and C; represents
the velocity loop scaling factor that ensures the phase margin of the velocity loop of
at least 46° (traditionally around 55°, depending on C). The velocity loop scaling

factor C,; can be then analytically expressed out of C; as in

2
02\ /CZ 102 Ccl(\/9801%+1452()Ccl+3600—101ccl—60)
Cy = = o= . (2.2)

Cery/C2+10002 200

However, (2.2) can be approximated on interval C,; € (0,7/9) using a second-order

polynomial with a relative error lower than 1.8 %. We have

1 1
Cyu~—Cy——C2. 2.3
DR TR (2:3)
The current loop scaling factor Cy; is then calculated by solving an algebraic sta-

bility criterion for different combinations of reachable values of electrical parameters.
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This solution provides an optimal design of parameters; however, the calculation of
Cy might be complicated if an ITF occurs. As mentioned by Sul in [11], since the
dynamics of the current and velocity loop differs, the integral time constant of the

PI controllers should be tuned as in
T; . > 5max (T;4,T; ). (2.4)

If the integral time constants follow T}, = 10 max (7; 4,7} ,) and (2.1) is substituted

into (2.4), the current loop scaling factor C,; reads

TsR,
O, =— % 2.5
"7 max (La, L) (2:5)

Hence, assuming relations (2.3) and (2.5), controllers parameters can be expressed

as in
RsLd Ld
K, = tod T, =24
pd max(Lg, L) 47 R,
R, L L
K, =—21_ T, ,= =L
P4 max(Lg, L) 4R,
1 TR, R,J Ly, L
Ky = E__ Tw:low. (2.6)
’ 24 6max(Lg, Ly) ) pApm max(Lq, L) ’ R,

Note that the zeros of PI current controllers are placed to compensate poles in the
diagonal decoupling blocks (Fig. 2.1).

Electrical parameters of the examined motor are defined as in Table 1.2, p = 21,
J =0.01kg-m?, and T, = 100us. Calculated controllers parameters are summarized

in the following table:

Tab. 2.1: Control system parameters

Connection | n, =1;n;=1|n,=1;ns=3 | n,=2;n,=3
K,aq -] 0.0391 0.112 0.0427
K,q -] 0.0383 0.109 0.0401
K, -] 3.73 1.14 1.13
T; 4 [9] 0.0146 0.0156 0.0175
Tiq 18] 0.0143 0.0151 0.0164
T [8] 0.146 0.156 0.175
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2.2 Discrete-time equivalent and anti-windup

The exact discretization is highly complicated due to the control system’s nonlinear
couplings between voltages and electrical angular velocity (Fig. 2.1). However, the
mechanical subsystem has significantly slower dynamics than the machine’s current
loop. Hence, the electrical angular velocity can be considered constant over one
sampling period.

In real applications of IPMSM, the mechanical angle 6,,(t) is sampled with the
same sampling period T as (abc) currents, and 6, (t) is calculated out of 6,,(t) as in
(1.32). This sampling rate is crucial because the information about 6. (t) is required
in the rotor reference frame transformation. The electrical angular velocity we(t) is
then estimated using an angle tracking observer (ATO). Hence, the sampling rate
designed to the current loop’s dynamics is highly overrated in a slower mechanical
subsystem, and only minor changes of w,(t) occur during one sampling period 7.
The maximum possible change of w.(t) during one sampling period is reached if
the maximum electromagnetic torque is generated and minimum torque load and

friction torque are connected to a machine’s shaft. We have

(2.7)

Tmam = Te,mam - Tfric,min - ﬂoad,min-

If the minimum values of torque load Tjoqq,min and friction torque 1'fpicmin are un-
known, they can be considered 0, resulting in T},,00 = T¢ maz- The maximum elec-
tromagnetic torque is then given as in T 00 = %p)\pmlmam, where 1,,,, stands for
the current vector limitation. If the maximum torque is generated, the electrical

angular velocity we(t) can be derived out of the motion equation (1.30) as in

dw, P p (k+1)Ts
=27 S+ 1) = wolk) + 2T / dt
dt J welk +1) = we(k) + J kT

(2.8)

where k is the actual step of the discretized system. The maximum possible change

Ay, maz of we(t) during one sampling period reads

p o 3p2 )\memast

Aw max — _Tmast = 2.9
“ J 2J (2:9)

If the current limitation of the examined motor is I, = 8 A, then the maximum

torque Tap = Tt ez and Ay, e, are calculated in the following table:

Tab. 2.2: The maximum possible changes of electrical angular velocity

Connection n,=1n,=1|n,=1n,=3|n,=2;n,=3
Tonaz [N M| 0.455 1.392 1.260
Ay, maz [rad/s] 0.0956 0.2922 0.2645
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Since the maximum possible changes of w,(t) during one sampling period are very
low (even if the minimum torque load and friction are neglected), the electrical
angular velocity w,(t) can be represented on the interval kT, < t < (k + 1)T by
a constant value estimated by an angle tracking observer. FError caused by this
simplification is irrelevant compared to system noise and error of ATO. The control
system can be then discretized as a linear time-invariant system.

Based on the parameters tuning (2.6) and the constant electrical angular velocity
over one sampling period assumption, the control system (Fig. 2.1) can be written

in Laplace transform as in

1 1 Kp,dwe
Oils) —Kypa (14 751) N La(s)
a\s)| _ Kp,qwe . 11 )
Uq(S - s Kp,q (1 + Tiq s) Iq(s)

St (1 ) Kowl, (1 253) (L 228 L)
(2.10)
where E,(s) = Q7 (s) —Q,(s). Hence, the continuous-time multiple-input multiple-

output system (2.10) can be discretized using the zero-order hold. We have

s 2~ 1 s 21 I z
Ua(2)| _ | ~Bpd (1 + TTd 1—2—1) weTig (Kp,q%qm) Fi3(2) . IdEz;
Uy(2) —weTi g (Kp,dgfd —1:1_1) —Kp, (1 + 7?;2 1f;1) Fas(2) Eq o
2.11)

where z is the Z-transform operator and

T, T, 27! T, 2zt
Fa(e) ==K <1 R z—1> welia <K”"’fq1—7z—1>

Fun(2) = KpuKopg (14 [ 20 4 22 1 th G SN
23\%2) = Bpuwlipg Tiw Ty 20.T,)1—21 T T, (1—271)2 .

(2.12)
However, since 1> L L > T: and L= > T the transfer functions
’ 2Ti,w ’ Ti,q 2Ti,wTi,q ’ Ti,w 2Ti,wTi,q ’

(2.12) can be approximated as in

T, o1 T, -1
Fis(2) ~ —K,., <1+ & )weTLq <K,, L)

Tiwl—271 AT 1 — 2t
T, 27! T, =zt
Fay(2) ~ K, <1 s Z_1> K,, <1 ot Z_1> (2.13)
7w .9

Hence, the velocity and current controllers can be separated.

A straightforward anti-windup technique can be used in the velocity controller
since the current limitation I,,,, is usually constant for a particular machine. There-
fore, the well-known clamping anti-windup method is implemented. This technique
reads that if |z(’;| > Iae, then |z(’;| is limited to 4., and T5/T;,, = 0. Due to this
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conditioning, an integrator is turned off if the limit value is reached. If the limitation
is static, this method prevents accumulating energy in the integrator. Figure 2.2
shows the MATLAB Simulink realization of the velocity controller with the clamp-

ing anti-windup.

Clamping anti-windup

Integral part of Pl controller T
Current limitation
1 '( )'

*’b’ o

Imax

Fig. 2.2: Velocity controller with the clamping anti-windup

In Figure 2.2 the current limitation I, is represented by an input signal even
though it is a constant value. This enables us to change the value of this parameter
inside the processor without repetitive code generating.

In the current controllers, the output voltages are limited based on an inverter’s
DC bus voltage Uy.. However, Uy, represents a voltage limitation in the stator
variables (abc) and is transformed into d — ¢ frame as in Uy, = Uge/v/3. Then
Uinae 1s a voltage limitation in the rotor reference frame. Direct and quadrature axis
voltage components are then limited as |ug| < Upar and |u,| < /U2, — u2. Figure
2.3 shows the MATLAB Simulink realization of the current controllers (2.11) with

the voltage limitation.

Udc

Voltage limitation
Direct axis current controller upd
up
! N ;
1 f e
id ) ud

Back electromotive force compensation

/B

BEY

e
wel |
g

we

Quadrature axis current controller
® OLE
z

o

iq upg

B/

up
u / y e » 2 )
<P{: >—Pilo uq

Fig. 2.3: Current controllers
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The clamping anti-windup method cannot be sufficiently implemented in current
controllers since the limitation of voltage components change dynamically (especially
the limitation of quadrature axis voltage). Due to this issue, the back-calculation
anti-windup method is derived and implemented.

If the voltages are saturated, differences A, 4 and A, , between required voltage

outputs uy and vy and real voltage outputs ug and u, occur. We have

* Au
Ya| _(Hd] | Pud (2.14)
uy Uq Ayg
where
il _ [t b g uia) (2.15)
u(’; Up.g T; awe 1 Ujq

Voltage signals u,4 and u,, stand for the proportional contributions of PI con-
trollers, and w; 4 and w; , represent outputs of integral parts (Fig. 2.3). Voltages of

integral parts should then be compensated to satisfy zero difference conditions as in

el LB

: [ud B %1 . (2.17)

Uig — Yg

where
1 —T; qwe

+
Ti7dwe 1

u:ﬁkl,c _ upvd
*
uq,c upvq

Comparing (2.14) and (2.16) and removing the algebraic loop by inserting the unit

delay block provides the solution of compensating voltages 14 and v, as in

Ya(k +1)
Yo(k+1)

The back-calculation anti-windup of current controllers is shown in Figure 2.4.

1
- 1 —+ EdTZ”qwe(k’)z

1 T; qwe (k)
—Tidwe(k) 1

Au d(k)

Au:q(k)] . (218)

Back-calculation anti-windup

U?l

X
X
X

[duq]

Fig. 2.4: Back-calculation anti-windup of current controllers
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2.3 Angle tracking observer

Angle tracking observer embodies a phase-locked loop that minimizes the difference
between an estimated angle and an angle read from measured signals. ATO in
the base form comprises a phase detector that calculates an error 6, between the
estimated and the actual position, a PI controller that compensates the error, and
an integrator that integrates the control action of the PI controller [18]. The control
action of the PI controller then represents an estimated angular velocity @., and the
estimated angle 0, is obtained by integrating the estimated velocity. This connection
is widely used; however, when a motor speeds up at a constant acceleration, the
conventional ATO causes a steady-state error in its estimated position. This problem
was solved by Wang et al. in [19] by involving a first-order compensation module
that utilizes the estimated speed to generate a signal proportional to the motor’s
acceleration, thus compensating the position error if 6, = ct?. If there is a demand
for higher-order position changes 0, = ct3, the higher-order compensation module
has to be implemented to compensate for the error appropriately. In this thesis;
however, a conventional ATO is implemented since the steady-state angle error is
neglectable for the calculated frequency bandwidth of the examined machine.

The angle tracking observer in the base form is visualized in Figure 2.5.

A,

................................................. We
gPhase detector
:_ sin(6) « L b 2 N 1] 0
s PTTE T :
ot Iy
? “PTcontroller

—— cos

cos(f.)

n sin

sin(6,)

Fig. 2.5: Angle tracking observer

In Figure 2.5, { stands for a damping ratio, and w, is a natural frequency of ATO
tuned based on the frequency bandwidth w, = w,/2. As mentioned by Sul in [11],
since the direct axis current ¢4 is controlled to zero, the frequency bandwidth wy of
IPMSM is calculated based on the voltage and current limitation Uyuu. = Uge/ V3

and I,,,, as in

Udc

\/3 (02, + L212,,)

wpy = (2.19)
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The frequency bandwidths of the examined machine are then presented in the fol-

lowing table for three winding connections:

Tab. 2.3: Frequency bandwidths of the examined machine

Connection | n, =1;n;=1|n,=1;ns=3 | n,=2;n,=3

Use [V] 55/3 55 55
wy [rad/s] 2189 2168 4232

The estimated angle 6, tracks the actual one 0., and the difference between
angles 0, tends to zero. Hence, the system (Fig. 2.5) can be linearized using the
small-angle approximation. We have

0. = sin(6,) cos(f.) — cos(6,) sin(8,) = sin(f. — 0.) ~ 6. — .. (2.20)

The angle-tracking transfer function of the linearized system is then expressed as in

ée(s) . 2<Wn$ + (.U?L
Oc(s) 524 2Cwns +w?’

(2.21)

For the second-order system (2.21) to achieve the tradeoff between responsiveness
and overshoot, it is common practice to set ¢ as v/2/2. The estimated velocity @,

can be then expressed as the first derivative of the estimated angle .. We have

A Qu(s)  20wns® +w?s
Oc(s) 524 2Cwns + w2’

(2.22)

The designed ATO is implemented as a part of the control system in a discrete

form. Hence, the discrete-time equivalents of transfer functions (2.21) and (2.22)

Oc(2) Qe(2)
0.c) 56
expressed to preserve the phase detector part of ATO. If a machine runs at the

have to be

must be calculated, and open-loop transfer functions

constant angular velocity, the electrical angle satisfies 0.(t) = ct. On the other hand,
if a motor runs at a constant acceleration, the electrical angle meets 0.(t) = ct?.
Hence, these two (or most likely more) representations of 0.(t) have to be taken into
account in the discretization procedure. Then the piecewise linear approximation of
0.(t) is applied to preserve the simplicity of the discrete-time equivalents, yielding
t — kT,
T

0.(t) = 0.(k) + Ok +1)—0.(k) kT, <t<(k+DT.  (2.23)

Note that approximation (2.23) provides an exact solution if 6. (t) = ct. The discrete-

time equivalents are then calculated as in

O.(2) (2 1) 1 O.(s) Ou(z)  (2— 1) 16,(s)
Oc(z) Tz Zek {?@e(s)} 0.(z) Zekv {; } (2.24)
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where Zep, { F'(s)} represents the Z-transform equivalent of a transmission defined in
the Laplace transform. The open-loop transfer functions are then derived using the
angle error definition ©,(z) = O,(z)—210,(z) (this definition prevents an algebraic

loop occurrence) as follows:

O.(2)  O.(z) (Qe(z)> - () — Qu(2) (1 — 2—1%) _1, (2.25)

Q.(z)  Oe(2) \ O.(2) O.(2)  Oe(2) 0.(2)

Listing 2.1 presents the discretization procedure realized in MATLAB.

Listing 2.1: Discretization of ATO in MATLAB

wn = 2189/2; zeta = sqrt(2)/2; Ts = 100e-6;
F _tht = tf ([2*zeta*wn,wn~2],[1,2*%zeta*wn,wn"2]);

F_omg = tf([2*zeta*wn,wn~2,0],[1,2%zeta*wn,wn"2]);
F_tht = zpk(c2d(F_tht,Ts, foh’));
F_omg = zpk(c2d(F_omg,Ts,’ foh’));

FO_omg = tf(minreal (F_omg/zpk(1-F_tht/tf(’z’)) ,1le-4))
FO_tht = minreal (F_tht/F_omg,le-4);

% Separating feedforward coupling

[num_tht ,den_tht] = tfdata(FO_tht,’v’);

[~,~,K tht] = residue(num_tht,den_tht)

FO_tht_c = tf(FO_tht - K_tht)

The resulting discrete-time equivalents are described as in

N ~1 A o —1
Oc(2) _ Ko+ T——— L(z) ___ b f’oz _ (2.26)
Qe(2) I O.(2) 1—aiz™! —agz™

where the parameters calculated for three winding connections are presented in the

following table:

Tab. 2.4: Discretized ATO’s parameters

Connection | n, =1;n;=1|n,=1;ns=3 | n,=2;n,=3
Koy 5.067 - 107° 5.066 - 107° 5.134-107°
by 1488 1474 2769
bo 1377 1365 2384
ap 0.9209 0.9217 0.8450
ao 0.0680 0.0674 0.1164

Figure 2.6 shows the MATLAB Simulink implementation of the designed angle

tracking observer.
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Fig. 2.6: Implementation of the designed angle tracking observer

In Figure 2.6, the limit function is implemented into the discretized integrator to
prevent overwhelming the estimated angle. This function ensures that if the input
angle 0;,, is higher than +m, the output angle 4,,; value is given by 0,,, = 0;, — 2.
On the other hand, if §;, < —mx, then 0,,; = 0;, + 2.

2.4 Transformations and space vector modulation

Since the control system is tuned in the rotor reference frame, the currents measured
in the stator variables have to be appropriately transformed. For this purpose, Park’s

and Clarke’s transformation is employed. We have

in(k) | - (2.27)

|:id(k)] _ 2 { cos(0.(k)) sin(@e(k))] . {1 —% —%
3 7

ig(k)| 3 |=sin(0.(k) cos(8.(k)| |o

Similarly, the voltage requests calculated in the rotor reference frame have to be
transformed into the stator variables using inverse Park’s and Clarke’s transforma-
tion. However, due to the calculation time of the discretized control algorithm, a
unit delay occurs in the control loop. Hence, the control system does not compute
voltage requests for the actual step k£ but calculates it for the following step k£ + 1.
In this case, the electrical angle 6, applied in the transformation matrix has to be
evaluated for step k+1. The value 0.(k+1) can be calculated assuming the constant

electrical angular velocity over one sampling period as in

Oo(k + 1) = 0.(k) + Towe (k). (2.28)
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Voltage requests in the stator variables are then expressed using the angle sum

trigonometric identities and inverse transformation matrices. We have

w 10

Ubgi IB . ﬁ] . {cos(@e(k)) —sm(oe(k))} cos(T,we(k)) —sm(Tswe(k))} wak +1)|

anll+ 1) {_i _2_3| sin(f.(k)) cos(8.(k)) sin(Tswe(k))  cos(Tswe(k)) ug(k +1)
S (2.29)

Alternating voltage waveforms required to drive PMSMs are then commonly
generated using the three-phase power inverter with the pulse width modulation. In
the basic form, the three-phase power inverter consists of six switches that enable
connecting the DC bus voltage between the particular machine phases at a certain
moment. These switches are then controlled by logical signals with changeable duty
cycles d,(k), 6p(k), and d.(k) that are adjusted based on the generated control system
voltage requests u,(k), up(k), and u.(k) and implemented modulation technique.
The main objective of the modulation technique is to maximize the utilization of
limited DC bus voltage. In this thesis, the Min-Max third harmonics injection
approach [20] is implemented as an equivalent of the space vector modulation (SVM)
technique. According to the Min-Max modulation strategy, the duty cycles of the

inverter’s switches are calculated as in

1 ug(k)  max(ue(k), up(k), uc(k)) + min(u, (k), up(k), uc(k))

da(k) =
( ) 2 * Udc 2Udc
5,(k) = L, (k) max(ua(k), up(k), ve(k)) + min(uq(k), up(k), uc(k))
’ 2" Uy 20y,
1 wue(k)  max(ug(k), up(k), uc(k)) + min(uq(k), up(k), uc(k))
0.(k) = = — ’ ’ ’ ’ . (2.30
( ) 2 * Udc 2Udc ( )
The control system implementation is visualized in Figure 2.7.
o) e dsna,s@
in(tht_e) b [-p{ub
asna,b
tht_e ws(ihi,ﬂ o [ P{Ude ds“a?c
sin(tht_e) Duty cycles
Angle tracking observer -
BED>——p>CO
- Stat

id
. voltage enable
iq

' Current fuse

Fig. 2.7: Control system implementation in MATLAB Simulink
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In Figure 2.7, a current fuse is implemented. This fuse ensures that the voltage
outputs ug and u, are disconnected until the control system is restarted if the current
vector magnitude /i3 + i2 reaches the defined critical value ..

2.5 Control system validation

For the purpose of control system validation, a measurement on the configurable
motor was performed. A C code was generated using the Embedded Coder app
out of the MATLAB Simulink control system model, and the generated code was
implemented into preprogrammed AURIX Application Kit TC277. The kit was
connected to the inverter, the DC bus voltage was adjusted to Uy, = 45V, and the
quadrature axis current request limitation was set to be I,,,, = 5 A. The critical
value of the current vector was defined by I..,; = 20 A. The angular velocity was
then controlled by a slow ramp to w,, = 107ad/s to ensure proper initialization.

After the initialization, the step requests of angular velocity were performed, and
the transients were measured. Subsequently, inter-turn short circuits were emulated
in phase 'a’ with fault relevance x; = 6/25 for connection n, = 1, ny, = 1, and
xy = 14/25 for connections n, = 1, ny, = 3 and n, = 2, n, = 3. In configuration
n, = 1 and n, = 1, the fault current quickly reaches higher values; therefore,
faults with lesser relevance are emulated to prevent overheating. Figure 2.8 visualize
measured characteristics for three winding connections.
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b) winding connection n, = 1; n,
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Fig. 2.8: Responses of controlled machine for three winding connections
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3 Discrete-time equivalent of ITF model

Since identification algorithms primarily support discrete-time models, therefore,
for the purpose of fault relevance diagnostics, the model described in Section 1.3
has to be discretized. Traditionally, many authors discretize machine models using
the Finite difference method, such as the forward Euler method (first-order) or the
second-order Runge-Kutta method [21] - [22]. These methods approximate a time
derivative by the finite set of differences, leading to an inexact solution lacking physi-
cal meaning and amplifying the higher frequencies of system noise. Furthermore, this
solution might be even unstable at higher electrical angular velocities. Due to these
issues, a novel machine discretization procedure based on the linear time-varying
systems approach [23] - [24] is presented. The key idea lies in the integral relation-
ship between the electrical angular velocity and angle 0.(t) = [ii7. we(T)dT + 6.(k).
Hence, in the discretization procedure, the electrical angular velocity w,(t) can be
considered a time-varying parameter with the defined integral. Since the model of
the shorted machine consists of two parts tied in the output equation, it is possible

to discretize these parts separately and combine their discrete-time equivalents.

3.1 Healthy part discretization

The system of differential equations describes the healthy part of the ITF model as

in (1.25). This system can be written in a linear time-varying form. We have

y . Ud(t)
d Zd,h(t) o Zd,h(t)
dt [z’%h(t)] = Anlt) quh(t) +Ba(t) @:,(t) (3.1)
where
—& ﬂcue L
= | R g T (3.2)
—neel) L 0 £ —gwel(t)

However, since the direct and quadrature axis inductances of the validated machine

(Table 1.2) are close to each other, they can be approximated by a common d — ¢

inductance Ly, = L‘“QLL‘Z, yielding
R
—7= we(t) 1 |10 0
Ah(t) ~ da R Bh(t) ~ — (33)
—w,(t) —Le Lag |0 1 —w.(t)

dq
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. . . . KOs A (r)dr
Discrete-time equivalent’s state matrix Ag,((k+1)Ty, kT;) = e+ is then
calculated based on the state matrix Ay (¢) time integral. We have
R
(k+1)Ts —1=Ts (0c(k + 1) — 0(k))
/ Ay(T)dr = Laa : (3.4)
~(O(k+ 1) = 0(k) =T

Based on the matrix exponential definition for some special cases of matrix Ay(t)

described by Bernstein and So in [25], the discrete-time equivalent’s state matrix
Ay ((k+ )T, kT) gains the following form:

B _LR_LTS cos(0.(k +1) — 0.(k))  sin(f.(k +1) —0.(k))
Agp((E+ 1T, kTs) =e {_ sin(f.(k + 1) — 0.(k)) cos(Be(k+ 1) — 0.(k))

(3.5)
Hence, the discrete-time equivalent of system (3.1) is defined as in
. ug(T)
ian(k+1) an(k) (k+1)T
’ = Agn((k+ V)T, KT, n W(k+ )T, 7)B dr.

Apm

(3.6)
However, system (3.6) can be expressed more illustratively in the stator reference
frame. We have

Rs

, , Uq(T)
_ e Gan(E)| | 1 0T —ﬁ((k-&-l)T -1 |1 0 we(r)sin(Be(7)) .
- L'gml e l ] [“M] "

ign(k+1)

[Z’mh(l{: +1)

0 1 —we(T)cos(be(7)) .
(3.7)
For the purpose of discretization, the inverter switching can be neglected, and
the stator reference frame voltages can be considered constant over one sampling

period ua(t) = uq(k) = const. and ug(t) = ug(k) = const. if kT, <t < (k + 1)T;
Evaluating integrals then results in the following form of system (3.7):

o (k)
anlk+1 ~Bs o Nigp(k
) I O IS 70 P (3.8)
Z,B,h(k' + 1) Z,B,h(k') )\
'pm
where
_Bs s .
Baﬁ L [1 —e quTs 0 Ld fk(éc—vjl)Ts dq ((k-'rl)Ts )we(T) Sln(ee(T))dT -I
dh = R. _ Rep ! _ Rs - .
) [ 0 1—¢ P Ld fk(;jl)Ts Zgg (VT )we(T) cos(0.(7))dr

(3.9)
Integrals in expression (3.9) do not have an analytic solution since the time represen-

tation of the electrical angle is unknown. However, these integrals can be simplified
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using integration by parts to the velocity independent form. We have

Rs (k+1)Ts _Rs s—T .
I — L_/kT . Tg; (kDT )we(T) sin(6,(7))dr
dq s
R, — T
L=-" (cos<ee(k+1>>—e " con(Bulh) +
dq
R? (41T _ Re s—T
[ )y
dq kTs
R, [(+DT _ Re LT
IQZ—L_/ . qu((k—f—l)T )we(T) cos(f.(7))dr
dq Y kT
Ry (. T g
I=-7- (sm(ee(k +1)) —e T sm(ee(k))) +
dq
R2 (k+1)Ts _ Rs s—T
7 / e Lag (FFDT: )sin(ee(T))dT. (3.10)
dq kTs

It is possible to calculate integrals in (3.10) numerically [26]; however, such solution
leads to non-zero back electromotive force if w. = 0. This issue results in a significant
distortion occurring in rotor reference frame currents. Therefore, integrals in (3.10)
are approximately solved based on the mathematical analysis of back electromotive

force. The solution of integrals in (3.10) can be approximated as in

R2 (+1)Ts _ R - R,
s / ¢ Lag (BT >Cos(ge(7))dmL_(chos(ee(kﬂ))—Kgcos(ee(k)))

L—?lq kT dq

R? (DT _ne \—r R,

L / Y o Loy (DT, )sin(Qe(T))dT (Kysin(f.(k + 1)) — Ky sin(0e(k)))
Ly, Tk Laq

(3.11)

where constants K; and K5 have to be calculated based on the back electromotive

force properties. Substituting (3.11) into (3.10) results in

[ ~— Zq ((1—K1)cos(98(k+1))—( o —Kg)cos(ee(k)))
L~ — Zq((l—Kl)sm(Qe(kJrl))—( isqs—Kg)sm(ee(k))). (3.12)

If a motor’s angular velocity equals 0, then the electrical angle reads 0.(k+1) = 0.(k)
and the back electromotive force has to be 0. Therefore, I; = 0 and I, = 0 if
O.(k+ 1) =0.(k), yielding
_Rsrp
1-K;=e qu — K. (313)
As seen in (3.1), the contributions of permanent magnets to dig/dt and di,/dt are
equal to 0 and —w,(t)\pm/Lag. Therefore, the contributions of permanent magnets

to the derivatives of stator reference frame currents di, /dt and dig/dt are equal to
sin(fe(t))we (t) Apm / Laq and — cos(0e () )we (t) Apm/ Lag, resulting in Kq = 0.
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Hence, the healthy part of the shorted motor model can be written in the linear

time-varying discrete-time form as in

) . ua(k)
an(k+1 . n(k .
! alb+ D) _ A (k+1)T,, KT,) ! (k) +B0 ((k+1)T,, kT,) |ug(k)| (3.14)
Z/&h(k' +1 Zﬂvh(k’ Y
pm
where
_LRS TS 0
Ai’i((k + 1)TS> kTS) = © _Bsp
0 e Taq™®
11 e 0 I((k + DT, kT
o - Ldg + S s
B, ((k+ )Ty, kTy) = — c e i ) )
s 0 1—e Za* L((k+1)Ty, kT,)
L((k+ 1)T, kT) =~ —fs (cos(Oe(k + 1)) — cos(0.(k)))
dq
L((k+ 1)T,, kT)) ~ —fs (sin(6,(k + 1)) — sin(0, (k). (3.15)
dq

3.2 Fault current discretization

The differential equation and output relation describe the fault current contribution
as in (1.28). However, since the inductances of the validated machine are close to

each other (Table 1.2), the fault inductance can be approximated as in
2
Ly~ gx}znp(ns — 1)Ly, (3.16)

Then the differential equation describing the fault current can be written in the

: {Zd] (3.17)

Rypay = o5 (3 = 20%) R, + 3R} (3.18)

following form:

cos(f. + %)
—sin(6, + %)

d. __Rf,dq. 55_}

a'’ T 8L, L,

where

Transforming the input vector into the stator reference frame provides the linear

time-invariant definition of fault current. We have

COS(%) ! Ug
_sin(g)] L/j] (3:19)

The discrete-time equivalent of the linear time-invariant system (3.19) is then well

d.  Rpag, %
dt 3L, ' T L,

defined as in

if(k+1) :e‘ifT’dqusz'f(k)Jr i <1—e‘ifi?qT8> [COS(Qi)] : {“a(kil. (3.20)

2
R f.dq — sin (
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3.3 Stator reference frame discrete-time model

Discretized model of healthy part (3.14) and fault current (3.20) can be combined
into one discrete-time system as in

ek a0 ) [ ®) gy [0

o o’ T[T B k)| |

Zf(k-i-l) Zf(k) ’ /\Pm
(3.21)

where Agﬁl((k—{—l)Ts, kT,) and Bgﬁl((k—}—l)Ts, kT,) are defined as in (3.15), 07 stands
for [O 0}, and Bgi((k + )T, kT,) reads

32’;‘7&' _MTS _MTS
B}((k+ L k1) = 1= 5 " ) eos($) —[1—e 7 ) sin(®) of.
’ Rydq
(3.22)
Since Z { A% ((k+ 1Ty, kTs)i(k)} = A% ((k + 1Ty, kT,) Z {i(k)} where i(k) stands

T
for [z’mh(k) ign(k) Zf(k'):| and A5 ((k+1)T,, kT;) is the state matrix as in (3.21),
it is possible to describe system (3.21) using Z-transform. We have

Ion(2) . o (k)
Ln(2)| = (21 = AG°((k+ )T, KTY)) 2B ((k+ 1)T%, kT4 [us(k)
If(z) )\pm

(3.23)

where I is the 3 x 3 identity matrix and B’ ((k + 1)T}, kT,) is the input matrix as
n (3.21). Evaluating expression (3.23) leads to the following solution:

I R T
1 17«37%TS 0 3z} cos(%) l—e ;th;q Ts
Rs Z,efL_dqus Ry aq Zief_g%gn
= Uu(z
Lan(z) 0 LlfefLR_qus 3aysin($) e 3fL‘;qT ’V Ua( ) }
Ign(2)| = Be  Ta Ry.dg T, 5(2) .
[XEN I I Z{cos(@(k))}J
_2pm _____c—_ )
qu ZfeiLR_dqu 0 0 Z{Sln(@e(k))}
0 _)\P_m z—1 0

(3.24)
The algebraic equation describes the output rotor reference frame currents as in

(1.28). However, this expression can be transformed into the stator reference frame,

yielding

. 2, .%x Zah(k

io(k)| |1 0 3x}cos (2 () 595

. = 2 v (b ﬂ,h( : (325)
ig(k) 0 1 —za}sin (—)
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Since the transition matrix in (3.25) is time-invariant, description (3.25) also holds
for the signals defined in Z-transform. Therefore, this description might be ap-
plied to determine the input-output behavior of the permanent magnet synchronous

machine under the inter-turn short circuit fault out of (3.24). We have

Ua(2)

{Ia(z) _ Fi(z) + (14 cos(¢)) Fy(z) — sin(¢) Fy(z) Fom(2) 0 . Us(z)
Is(2) —sin(¢)Fy(2) Fp(2) + (1 —cos(9))Fy(z) 0 Fpu(z)| |Z{cos(0c(k))}
Z{sin(6.(k))}
3.26)

where
_Bs 2 _RquTS

1 1—e "da 7 1—e 4 A z—1
FZ:—iRFZ_ / szz_pm Rs .
= I g O
(3.27)

System (3.26) is then transformed into the time domain resulting in the following

description of o — 3 currents:

ia(k) :<6—£2Ts+e_if;;qn> ia(k—1) iy (lesq+ 3fL;q) v ia(k—2)
ig(k = 1) (k—2)

Zﬂ(k) (k’ - 2/3 k 2
U (k —1) ~Spdar ~fe, ua(k—2)|
I D) - - 3Ly T 4 Lig"*® | -
ot e - 1>] (e )
A [cos(0c(K)) | | Apm - ~Spdar )\ | cos(fe(k —1))|
Lgq |sin(0.(k)) L, sin(f.(k — 1))
_ om —gers fcos(Oe(k — 2)) (3.28)
Laq sin(f.(k — 2))
where
1 —Bs x}z _Bidgp
= — (1—¢ T S N
TR ( ’ ) "' Rya < ’ )
_ |1 o 1+ cos(¢p) —sin(¢) (3.20)
0 1 —sin(¢) 1—cos(¢)| '

*2
Parameters that are related to the fault relevance ratio Rf and 2. ‘;‘1 are calculated

based on the substitutions (1.16), (3.16), and (3.18), as in

*2
e 1
Ry 44 3n§Rf:B]72 + 3nsnpRs:B]71 + (1 — 3ny)R;
Ry aq 3n§Rf:B]72 + 3nsnpRs:Bj71 + (1 — 3n,) R,

= . 3.30
3Ly 2np(ns — 1) Lag (3:30)

Rfd

Note that if xy = 0, then L — 0 and e R — 0. Hence, the behavior of the
healthy currents (3.14) is achleved
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3.4 Discrete-time model verification

The continuous-time model of PMSM under the inter-turn short circuit fault was
already validated via open-loop measurement of the back electromotive force and
fault current of the configurable motor (Section 1.5). Therefore, since the fitting of
the continuous-time model was already proven, it is possible to verify the discrete-
time model only within the simulation. For this purpose, closed-loop verification is
implemented.

The control system regulates the continuous-time model to the mechanical an-

*

. and the short circuits are simulated with the following

gular velocity setpoint w
fault relevance: x; = 6/25 and xy = 14/25 in cases n, = 1, ny = 3 and n, = 2,
ns = 3, and zy = 3/25 and xy = 6/25 if n, = 1, ny, = 1. The control system
parameters and electrical parameters of machine models are defined for three wind-
ing connections in the initialization code of the subsystems. Then it is possible to
change these parameters by a switch in the subsystems masks. Torque load is set
to be 0 during this experiment, but the dry and viscous frictions are involved into
the simulation. The maximum current is limited to I,,,, = 8 A, and the DC bus
voltage is Uy, = 55 V. Figure 3.1 visualizes the MATLAB Simulink realization of

the verification experiment.

14/25 xf i

ud ud
ud

L—»thtm

ualpha

ubeta uq wq uq

Park Transform

IPMSM under the ITF - continuous-time model

tht_m

wm*

ualpha(k+1)

N |
id(k) :I
ubeta(k+1) ¢ A D
sin(tht_e(k))
iq(k)

cos(tht_e(k))
IPMSM under the ITF - discrete-time model

Udc

o]

Control system

Fig. 3.1: Verification of the discrete-time model in a closed control loop

Since the continuous-time model is implemented in the rotor reference frame,
the transformation of input currents from (abc) to d — ¢ is neglected in the control
system (Section 2.4), and the transformation of output voltages is reduced only to
the inverse Park’s transformation (from d — ¢ to o — (). Therefore, the condition
of constant u, and ug over one sampling period is fulfilled. These voltages are then

transformed back into the rotor reference frame using the rate transition blocks and
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continuous-time Park’s transformation (Figure 3.1). Due to this connection, the
simulated closed control loop fits the actual machine behavior more precisely. The
only difference in the interpretation of the inputs is caused by neglected inverter
switching. Stator reference frame voltages are then together with the discretized
sine and cosine of electrical angle connected as inputs of the discrete-time model.
MATLAB Simulink implementation of model (3.28) is visualized in Figure 3.2.

Contribuiton of the voltages

Recursive part of the model

ualpha(k+1) 1 1 1
D z T
ubeta(k+1)

Permanent magnets contribution

ialpha,beta(k)

ialpha
cos(tht_e(k)) =T ——> } 7
3 id_disc =
ibeta id(k)
sin(tht_e(k))
_e)
D
| sin(theta_e) ak)

Park Transform

Fig. 3.2: Realization of the discrete-time model of IPMSM under ITF

As seen in Figure 3.2 the model is extended by discrete-time Park’s transfor-
mation, and the rotor reference frame currents are sent to the outputs. Hence, the
discrete and continuous-time models are excited with the same input signals, and
the transients of the rotor reference frame currents are compared. The comparison
of simulated continuous and discrete-time currents is visualized for three winding
connections in Figure 3.3. Differences are caused by direct Ly and quadrature L,
axis inductance approximation by a common inductance Lg, in the discrete-time
model.
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Fig. 3.3: Comparison between continuous and discrete-time model
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4 Fault relevance identification

As presented in Section 3.3, PMSM under the ITF is described by the linear discrete-
time model (3.28), where the fault-related specifications (fault relevance z; and
resistance of a short circuit Ry) are interpreted as time-varying parameters (3.30).
Hence, the ITF diagnostics presented in this thesis are based on the parametric
estimation of linear systems [27] - [28].

The input signals of discrete-time model (3.28) are combinations of sine and
cosine waves with different amplitudes (defined by the rotor reference frame voltages
ug and u,) and the same frequency w,. Therefore, the persistence of input signals is
insufficient to identify all the parameters of the discrete-time model unless a machine
is accelerating or decelerating. Hence, the discrete-time model must be modified to

reduce the number of identified parameters.

4.1 Problem definition

Since the short circuits may occur only in three phases, there is a finite set of
parameter ¢ values (if the ITF is in phase 'a’ then ¢ = 0, if the ITF is in phase 'b’
then ¢ = %”, and if the ITF is in phase ¢’ then ¢ = —%”) An interesting situation
occurs if ¢ = 0. In such a case, the input-output behavior of PMSM under the ITF

can be determined out of (3.26) as in

Ua(z)
{Ia(z) [ 2R 0 Fu(z) 0 Us(2) (1)
I5(z) 0 Fi(2) 0 Fom(2)| | Z{cos(0.(k))}
Z{sin(0.(k))}

where the transmissions Fj(z), F(z), and Fp,(z) are defined as in (3.27). In (4.1),
only one currents component (i,) is affected by ITF, and the other (ig) follows
healthy machine behavior. A similar situation can be achieved for short circuits in

different phases by transforming currents and voltages. We have

H — R(¢) H H — R(0) H (4.2)
25 2/3 Uﬁ Uﬂ

where
_ 1 1ii<r;lo(§)¢) -1 _ l 1 +cos(¢) —sin(e)
e [—lfétfi;) I I ] T R ]

Note that the transformation matrices defined in (4.3) result in an identity matrix

if the short circuit is in phase ’a’ If (4.2) is substituted into (3.26), an analogous
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description to (4.1) is obtained. The only difference lies in the rotated contributions
of permanent magnets. Therefore, the discrete-time model can always be simplified
to the form that contains two independent currents components, where only one of
them is affected by ITF. The cross-correlation between i}, (k) and uj(k — 1) for all
possible ¢-based transformation matrices (4.3) can then be evaluated to determine
which stator phase is shorted. For example, suppose a short circuit occurs in phase
‘b’ In that case, the cross-correlation between the transformed variables i (k) and
uj(k — 1) that are obtained by applying transformation matrix R~ ( ) to iq(k)
and ug(k — 1) is significantly lower than the cross-correlation evaluated from vari-
ables obtained by applying R™'(0) and R_l(—%“). Therefore, fault in phase 'b’ is
indicated. However, since the configurable motor used for algorithm verification is
primarily designed to support short circuits in phase 'a’; the phase detection won’t
be implemented.

The simplified system (4.1) is then transformed into the time-domain, yielding
R A
ig(k) =e quTsz'ﬂ(k —1) +opug(k —1) — LL(sin(ee(k)) —sin(f.(k — 1)))

dq

Rg T, Rf,dq Rs Rf.dg

u@>=<€LM +e‘“fn>MQw—w—e‘@w+“fV%Jk—m+

Rf.dg

_Brag _Rs
+ (op + 205)ug(k — 1) — | ope 3LfTS+2ae Tag '® Uy (kK — 2)—
f f

A Apm _Btda g,
— P cos(0e(k)) + 2 <1 +e P ) cos(Oe(k —1))—
Laq Laq
_Brdg
- Aﬂbe sy cos(0,(k — 2)) (4.4)
Ly,

where ¢, and o; are defined as in (3.29). As seen in (4.4), the behavior of iz
is theoretically unaffected by ITF. Hence, it is possible to estimate the healthy
parameters even if the ITF occurs. Rewriting the difference equation that describes

ig into a form suitable for parametric identification results in

[ is(k) | [is(k—1) wg(k—1)  sin(B(k — 1)) = sin(0c(k)) |

ig(k —1) ig(k —2) ug(k —2) sin(@e(k —2)) —sin(@(k —1))| [pns
ig(k —2)| = |ig(k —3) ug(k—3) sin(f.(k —3)) — sm(@e(k =2))| - |pne
ig(k —3) ig(k —4) ug(k—4) sin(fe(k —4)) —sin(0c(k —3))| |pps
] - (4.5)

where
Ph1 = e T Ph2 = L (1 - €_LR_‘ZZTS) Ph3 = %lm
1 —pna B _Ts(l — Ph1) _ _Ts(l — Dh1)
= Ph2 L = In(ph,1)ph.2 A n(pn)pnz (46)
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Note that the persistence of input signals is insufficient to identify three parameters
if the machine runs at constant angular velocity. Generally, it is possible to identify
two parameters by a harmonic signal that contains only one frequency [27]. This
problem has a relatively simple solution. The identification procedure of healthy
parameters has to start before a machine is driven to the velocity setpoint.

The estimated healthy parameters py, 1, pr2, and pj 3 are then used to reduce the
order of difference equation that describes i,. We have the following output and

input transformation:

<

—
x5

~
I

ia(k) — priia(k — 1) — prota(k — 1) + prscos(fc(k)) — pnscos(f.(k — 1))
v(k) = ua(k) — praua(k — 1) (4.7)

where y is the new output and v is the new input. Since these variables are formed
as a linear combination of harmonic waveforms, they are also harmonic with the
same frequency as the original signals. If (4.7) is substituted into i, description

(4.4), the transformed difference equation is derived as in

_Brdg *2 _Brdg
y(k) =e * Tsy(k —-1)+2 at;d <1 —e Ts) v(k —1). (4.8)
k) q

Equation (4.8) is then easily transformable into a form suitable for parametric iden-

tification. We have

y(k) y(k—1) v(k—-1)

y(k —1) y(k—2) v(k-2)
y(k—=2)| = |y(k—=3) v(k—-3)|- {pﬁ] (4.9)

yk =3)|  |yk—4) v(k—4)| P72
where
_Brdap r*2 _Erdep R 1—
3L s f 3L s fvdq pf71

— — 1—¢ f =2 . 4.10
b bi2 Ry aq < ) x5 Pf2 (4.10)

In this case, the persistence of the input signal v does not cause trouble since only
two parameters are identified. Therefore, fault-related parameters can be estimated
even if a machine runs at constant angular velocity.

As seen in (3.30), fault relevance x; can not be calculated out of Ry,40/27%* since
the information about Ry is missing. There are a few ways how to deal with this
issue. For example, it is possible to express fault relevance as a function dependent
on short circuit resistance xy = f(Ry). However, in this thesis, the fault relevance is

normalized and expresses what portion of winding is shorted by the zero short circuit
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resistance zs,, = f(R;y = 0). Normalized fault relevance z;,, is then calculated as

in
3nsn, Ry x>
T = Tin = R (4.11)
?f}’dq + (3n, — 1) R n:R’: +

The online fault relevance diagnostic algorithm then contains the following steps:
1. Update the estimation of healthy parameters (4.5).

Calculate input and output transformation (4.7).

Update the estimation of ITF parameters (4.9).

Calculate series resistance Ry (4.6).

Evaluate Rﬁdq/x}z (4.10).

6. Calculate normalized fault relevance xy,, (4.11).

AR

It is assumed that information about winding architecture (number of parallel

branches n, and number of coils in series n;) is available.

4.2 System noise analysis and filter design

This thesis aims to achieve fault relevance diagnostics running online on the drive
system of the validated motor. Therefore, the possible sources of the system noise
have to be analyzed. This step is essential since PMSMs are rotating machines and
measured signals often contain periodic distortions. In terms of parametric estima-
tion, the periodic distortion cause trouble since the system’s inputs and outputs are
correlated with the noise. The following sections will discuss only the particular case
of winding connection n, = 1, n, = 3 since the configurable machine is designed to
be connected as a double three-phase motor with three series-connected coils in the
phase. It was measured that the periodic distortion is significantly higher in other
connections than n, = 1, ny = 3 (Figure 2.8).

Traditionally, machine nonlinearities, periodic distortions, and measurement er-
rors are reflected primarily in currents waveforms. One can admit that the angle
measurement, poses a source of uncertainties as well; however, an encoder measures
the mechanical angle relatively precisely, and the contribution of angle uncertainties
to the system noise is minimal. Hence, the measured stator currents can be used
for the purpose of system noise analysis. We have

ia,r = ia + Ea,p + Ean
Uy = 1y + Epp + Ebn

Gey = G + Ecp T Ecm (4.12)
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where 4, %, and ., stand for measured stator currents, ¢,, i, and 7. are ideal
stator currents, &,p, €,p, and ., represent periodic distortions, and eq,, €, and
€cn stand for random non-periodic noises.

Due to the star connection of the motor, the ideal currents must satisfy the

following equation (even if ITF is emulated):
tg + 1 + 1. = 0. (4.13)
However, most of the periodic distortions satisfy condition (4.13) as well, yielding
€ap T Ebp T Ecp = 0. (4.14)

Since all three stator currents are measured, conditions (4.13) and (4.14) can be

applied to determine the random noise level of measured currents as in
ia,r + ib,r + ib,r = Ean + Ebn + Een = En- (415)

Hence, the sum of random noise components ¢, is calculated out of the sum of the
measured currents, and the statistical properties can be evaluated. For this purpose,
the data from experiments in Section 2.5 are used. The measured stator currents
are summed up (including the data from transients areas where the machine is
speeding up to the angular velocity setpoint w’, and areas where the short circuits
are emulated) and the mean values y and variances o are calculated and presented

together with the histograms in Figure 4.1.

wy* =25 rad/s, p=-0.0997 A, 6> = 0.00349 A* wy* = 50 rad/s, p=-0.0993 A, 6% =0.00361 A? wm* =75rad/s, p=-0.1026 A, o> = 0.00396 A*
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Fig. 4.1: Histograms of measured random noise; connection: n, = 1, ny = 3

As shown in Figure 4.1, the random noises contain the non-zero mean value. This
offset is probably caused by converting the numbers obtained by the analog-digital
converters to currents inside the processor. According to the algebra of random

variables [29], the mean value of the sum of noises p is obtained as in

1= fla + o+ e (4.16)
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where piq, 1, and p. are the mean values of random variables €, ,,, €55, and ey,
Since p # 0, there is a high probability that u, # 0, py # 0, and u. # 0. Therefore,
the DC offset is most likely propagated into the stator reference frame, yielding

PR T A I
2 e

Similarly, the variances o2, o7, and o2 of random variables &, ., €, and e.,, are

transformed into the stator reference frame as in

9 1 11 ol

o2 4 101 o
{ 2] = 5{ ; 3] of (4.18)
%6 0 7 70 |2

If it is assumed that o2 = 0 = 02 = ¢%/3, then the errors propagated to the stator
reference frame have the following variances: 02 = 20® and 03 = 202, Therefore,
according to histograms in Figure 4.1, the random noise component is modeled as
the normally distributed random number with the variance of 1 - 1073. The mean
value of the modeled noise is biased according to equations (4.16) and (4.17).
Another factor that causes a significant problem in parametric estimation is the
presence of periodic distortions e, 4, €5p, and e.,. For example, the electrical param-
eters are not concentrated and might slightly differ in each winding slot. Same for
the contributions of permanent magnets. Therefore, there is significant distortion
in frequency wy,, = we/p, where p is the number of pole pairs. Such distortion can
be seen in the fault current waveform in Figure 2.8. Another source of periodic fluc-
tuations is an inverter’s nonlinearity. As mentioned by Buchta in [30] the distortion

caused by the inverter can be modeled as follows:

Au,a % _% _% Sign(ia)
Ayp| = Udead —% % —% sign (7p) (4.19)
Aye —% —% % sign(i..)

where A, ., A,p, and A, . are contributions to the required stator voltages, and
Ugeaq 1S the dead time voltage that reflects voltage drops on the switches of the
inverter. If (4.19) is expressed in the stator reference frame using the trigonometric

series, the periodic distortions are obtained as in

Au,a = udead%(Sin(ee) + Sa)

4
Ayp = _udead;(cos(ee) + Sp) (4.20)
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where

S — i <sin((6n —1)6.) N sin((6n + 1)98)>

Z\"T -1 6n + 1
< [(cos((6n —1)0.) cos((6n+1)6.)
= . 4.21
S nz::l < -1  6nil (421)

Since a machine follows linear model (4.4), the same frequencies as in (4.20) and
(4.21) are propagated to the stator reference frame currents. It was estimated that
the dead time voltage uge.q is equal to 0.02V in the case of the motor used for
algorithm validation.

Since the frequency of the stator reference frame signals is estimated by the angle
tracking observer (Section 2.3) in the control system, band-pass filtering is the most
straightforward way to deal with the DC offset and periodic distortions. Generally,
the transfer function of the band-pass filter can be defined as in

Y(s) 2¢w,s
U(s) 82+ 2(w,s + w?

Frin(s) = (4.22)
where w, is the reference frequency, ¢ stands for the damping ratio, and U(s) and
Y (s) are the input and output of the filter expressed in Laplace transform. The
passing frequency must correspond to the electrical angular velocity, yielding the
value w, = w,.(k) adapted in each step. The damping ratio is adjusted to achieve
suitable suppression of higher spectrum components. The calculated value ¢ = 0.3
ensures that the frequencies w,/5 and bw, are suppressed by approximately 18 dB.

Transfer function (4.22) is then discretized resulting in the following expression:
y(k 4+ 1) = b(k)(u(k) — u(k — 1)) + ar(k)y (k) + az(k)y(k — 1) (4.23)

where u(k) and y(k) are the filter input and output expressed in time-domain and

adapted coefficients b(k), a;(k), and ay(k) are calculated as in

(k) = 2 g s (BT T O
al(k) — Q¢ Cwe(F)Ts COS(we(k')Ts 1-— (2)

ag(k) = —e~XweW)Ts (4.24)

Note that this filter does not entirely suppress the inverter’s nonlinearity since the
distortion contains a component with frequency w.. Therefore, the estimated pa-
rameters are always biased. However, due to the low level of dead time voltage
Ugead, the bias is not so significant. The advantage of signals filtering is suppressing
the DC component and distortion on frequency w,,. The fault relevance diagnostic

algorithm presented in Section 4.1 is then extended by adaptive filters as follows:
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Update filter coefficients (4.24).

Filter the signals ug, i, and sin(f.) by the adaptive filters (4.23).

Update the estimation of healthy parameters (4.5).

Calculate input and output transformation (4.7).

Filter the transformed input v and output y by the adaptive filters (4.23).
Update the estimation of ITF parameters (4.9).

Calculate series resistance R (4.6).

Evaluate Ryq,/a5° (4.10).

Calculate normalized fault relevance z,, (4.11).

© 0N o O W

4.3 Parametric estimation

For the purpose of online fault relevance diagnostics, the parameters in equations
(4.5) and (4.9) have to be recursively estimated. In the case of healthy parame-
ters (4.5), the persistence of input signals cause trouble with the forgetting factor
selection. On the one hand, since the persistence of input signals is insufficient if
a machine runs at a constant angular velocity, the forgetting factor has to be 1 to
preserve information obtained during transients. On the other hand, the healthy
parameters of a real motor are time-variant. For example, the inductances decrease
with the growing current due to the saturation effect, or the resistance increases
with the rising temperature. Therefore, the forgetting factor must be less than 1 to
track these changes correctly. The solution to this situation leads to the variable
forgetting factor. In the case of ITF parameters (4.9), if a machine is not shorted,
the identified ITF parameters have no meaning and must be quickly forgotten after
ITF occurs. Hence, there is a high demand for reliable online adjustment of the
forgetting factor. Moreover, the identification algorithm must be calculated under
100 us on AURIX application kit TC277. The defined requirements are perfectly
satisfied by the regularized parametric estimation algorithm described by Dokoupil
in [31].

As mentioned in [31], the presented estimation strategy expands on the classical
recursive least squares method [27] by designing a data-driven forgetting strategy
that operates in synergy with the variable regularization. The regularization is con-
ceived to employ the previous parameter estimate to stabilize the updated one via
retention of the externally supplied information. The soft equality constraints on
the regression parameters = (where = is some real regular square matrix with a
dimension corresponding to the number of identified parameters) are then incor-
porated into the learning procedure to smooth the parameter estimate. Generally,
the algorithm contains the data-updating steps, forgetting factor adjustment, and

time-updating steps. During the data-updating steps, the variables that transmit
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information between the previous and actual time steps f(k,k — 1) are updated in
terms of transmitted data f(k,k — 1) — f(k, k). An example of such variables is
the number of degrees of freedom v(k,k — 1) (scalar variable) or the least squares
reminder X(k,k — 1) (scalar variable), representing the estimated minimum of a
quadratic criterion. Note that X(k,k — 1) and v(k,k — 1) are the required statis-
tics of normal-Wishart probability distribution. The forgetting factor adjustment
Ak, kE—1) — Ak + 1,k) is then based on the Kullback-Leibler divergence between
two normal-Wishart probability density functions, where one is described by the pre-
vious step statistics X(k,k — 1) and v(k,k — 1) and the other by the data-updated
statistics X(k, k) and v(k, k). Therefore, if a rapid parameter change occurs, it is
quickly reflected by the least squares reminder ¥(k, k) and thus by the Kullback-
Leibler divergence. In the last algorithm part, the data-transmitting variables are
updated in terms of time f(k,k) — f(k+ 1,k). Hence, some of the information
passed to the next step is forgotten based on the currently calculated forgetting
factor A\(k + 1,k).

During the data-updating steps, firstly, the update of the projection matrix
P(k, k) is calculated. The projection matrix is not propagated to the next step
in the implemented algorithm version; instead, the information matrix V(k, &k — 1),
which represents the inversion of the normalized projection matrix, is passed. The
projection matrix data update P(k, k) is then calculated using the information ma-
trix V(k,k — 1). We have

Ptk k—1) :V(k E—1)+ (11— Xk, kE—1))=
V(k,K) = Pk k= 1) + (k) - 0T ()

K(k) = Pu(k,k — 1) -h(k)/(1 + h' (k) - Po(k,k — 1) - h(k))
P(k,k) = (I —K(k)-h"(k)) - Pe(k, k — 1) - (T - K(k) - b (k))"+

+K(k) - K" (k) (4.25)
where I is the identity matrix of dimension corresponding to the number of iden-
tified parameters and h(k) stands for the column regression vector. Note that the
constrained terms = realize penalization in information matrix V(k, k). If the rapid
change of forgetting factor occurs, it is reflected in the information matrix and thus
in the projection matrix P(k, k). In subsequent algorithm part, the column vector

of parameters estimated in the previous step ©(k,k — 1) is penalized based on the

constrained terms = and the old estimation of parameters ©(k — 1,k — 2), yielding
e(k)=0(k,k—1)—0(k—1,k—2)
Ok, k—1)=0(k,k—1)+ Pk, k—1)-=-c(k). (4.26)

As seen in (4.26), the changes in estimated parameters between the two steps are

more penalized by the higher values in matrix =. Then the penalized estimated
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parameters O.(k,k — 1) are applied to determine the parameters in the recent step
O(k, k) as in

ee(k, k —1) = y(k) —h" (k) - Oc(k, k — 1)
Ok, k) = O.(k, k — 1) + K(k) - é.(k, k — 1) (4.27)

where y(k) is the measured system output in the recent step and é.(k, k — 1) is the
estimated model error. At the end of the data-updating steps, the normal-Wishart
distribution statistics (v(k, k) and X(k, k)) are actualized based on the estimated
error é.(k,k — 1). We have

vk, k) = vk, k—1)+1
Selbk—1)=%(kk—=1) =" (k) - E+Z-Pok,k—1)-2) - (k)
S(k, k) = Bo(k,k — 1) + & (k,k —1)/(1 + hT(k) - Po(k, k — 1) - h(k)). (4.28)

Note that the least squares reminder X (k, k — 1) is firstly actualized based on the
penalization of parameters changes ¥ (k,k — 1) — X.(k,k — 1), and then the data
update is calculated X.(k, k — 1) — X(k, k).

During the forgetting factor adjustment, the estimations of system noise variance
in the previous step OZ(k, k — 1) and the data-updated step OZ(k, k) are calculated
together with the changes of data-updated parameters e(k + 1) as follows:

Ak, — 1) = vk, k — 1)/S(k, k — 1)
d(k, k) = v(k, k) /S(k, k)
e(k+1)=0O(k, k) — Ok, k — 1). (4.29)

Then the Kullback-Leibler divergence is evaluated as in

X, = trace(V(k,k — 1) - P(k, k)) + v(k, k — 1) In (M—)D) N

d(k, k
+d(k, k)S(k, ke —1) + Cd(k, k)l (k+1) - V(k, k—1) - e(k + 1)+
v(k,k—1)
—V(k, ) —v(k,k—1) (4.30)

where trace(X) stands for the trace of square matrix X and ¢ is user-defined scalar
constant. This constant represents an artificial increase in the expected noise level
and reduces false detected changes of parameters caused by the system noise. The
higher the value of { € (0,1), the more prediction error is reflected in the new value
of the forgetting factor. The forgetting factor A(k, k — 1) is then updated based on

the calculated divergence X, and number of identified parameters n. The limitation
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of the forgetting factor A(k + 1,k) € (a,1) is implemented using the if — else
conditioning to achieve only the valid values of A\(k + 1, k). We have

if 1 < Xca/((n+ 1Ak, k—1)) then
AMk+1,k) =«

else if 1> X:/((n+ 1Ak, k—1)) then
AMk+1,k)=1

else

M+ 1,k)=(n+ 1Ak E-1)/X,
end if (4.31)

where the lower bound of the forgetting factor « lies on the interval a € (0, 1).
During the time-updating steps, the data-updated parameters are actualized in

terms of exponential forgetting, yielding

V(k+1,k) =k +1,k)V(kk)  Sk+1,k =k +1,k)5(k k)
Ok +1,k) = O(k, k) v(k+1,k) = Ak + 1, k)v(k k). (4.32)

Similarly, for the purpose of the covariance checking, the projection matrix might be
time-updated as well P(k+1, k) = P(k, k)/A(k+1, k). However, since the projection
matrix presented in the explained algorithm represents the normalized values, it
must be denormalized as in Py(k + 1,k) = P(k 4+ 1,k)/d(k,k) to achieve real
covariance values. The recursive parametric estimation algorithm then periodically
calculates the following steps:
1. Obtain inputs [V (k,k —1); y(k); h(k); ©(k,k —1); ©(k — 1,k — 2);
Y(kk—1); vk, k—1); Mk, k—1)].

2. Load constants out of memory [Z; (; n; al.

3. Execute the data-updating steps in the following order: (4.25), (4.26), (4.27),
and (4.28).

4. Update the forgetting factor in the following order: (4.29), (4.30), and (4.31).

5. Calculate the time updates (4.32).

6. Write outputs [V(k+ 1,k); O(k+ 1,k); X(k+ 1,k); v(k + 1,k); Mk + 1,k)].
The proper operation of the described algorithm is achieved only if the following
initial conditions are chosen: V(1,0) = Z, ¥(1,0) > 0, v#(1,0) > 0, and A(1,0) = 1.
To reduce parameters oscillations at the beginning of the identification procedure,
it is also essential to fill the regression vector h(k) first and initialize the estimated
parameters as in ©(0, —1) = (1, 0).
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4.4

Implementation of the diagnostic algorithm

The fault relevance diagnostic algorithm described in Section 4.1 and extended by
the adaptive band-pass filters in Section 4.2 is realized in MATLAB Simulink, as

shown in Figure 4.2.
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Fig. 4.2: Implementation of the diagnostic algorithm in MATLAB Simulink

Furthermore, as seen in Figure 4.2, the enabled subsystems are incorporated into the

described algorithm since there is no reason to calculate ITF parameters estimation

unless the healthy parameters are identified with sufficient precision. Enabling is

then realized based on the covariance of healthy parameters. Figure 4.3 visualizes

the implemented covariance checking.
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> \0

Extract Diagonal

-

max —» <= 0.001

ITF calculation enable

Fig. 4.3: Checking the covariance of healthy parameters
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Another enabling is realized in healthy parameters estimation. Since the real be-
havior is not as idealized as the model describes, the fault also slightly affects the
healthy parameters. Therefore, identifying the healthy parameters is turned off af-
ter the inter-turn short circuit is detected. The fault is detected by reaching the
lower forgetting factor bound in the ITF parameters estimation algorithm. Adaptive
signals filtering is then realized according to equations (4.23) and (4.24).

The implementation of recursive healthy parameters identification can be seen
in Figure 4.4.
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Fig. 4.4: Healthy parameters estimation in MATLAB Simulink

Theoretically, the number of degrees of freedom v and the least squares reminder
¥ can grow to infinity. Therefore, they are saturated between 0 and 105 (Figure
4.4). For the purpose of regression vector filling up, the step counter k is also
present. Parametric estimation is then started after three steps to ensure that all
delays are reflected. Initial values of variables required in the parametric estimation
algorithm are presented under the unit delay blocks in Figure 4.4. If they are not
mentioned, the initial condition is a scalar value equal to 0. Estimated parameters
are initialized based on Table 1.2 and equation (4.6). The lower bound of the
forgetting factor is @ = 0.95 to track changes in electrical parameters with the
operating point. Constrained terms Z correspond to the identity matrix. This
value enables effective tracking of parameters changes and ensures relatively smooth
evolution of parameters in time. User-defined parameter ¢ is then set to be 0.05.
The low value of ¢ helps to smooth the forgetting factor, which is welcome since
the persistence of input signals is mostly insufficient. The parametric estimation

algorithm is then implemented using the MATLAB function block as follows:
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Listing 4.1: Parametric estimation algorithm realized as a MATLAB function

function [V,v,Sgm,1lbd,k,tht,PM] = fcn(y,h,V,v,Sgm,k,...
1bd,tht _act,tht _old)
%» Constant parameters:
n = 3; Xi = eye(n); alpha = 0.95; zeta = 0.05;
del = 3; I = eye(n);
if (k<del)
k = k + 1; tht = tht_act; PM = eye(n);
else
%» Data-updating steps:
V_old = V; Sgm_old = Sgm; v_old = v;
V = V_old + (1-1bd)*Xi + hx*h’;
Pc = (V_old + (1-1bd)*Xi)~(-1);
K = Pcxh/(1 + h’+*Pcxh);
P (I-K*xh’)*Pc*(I-K*h’)’ + Kx*K’;
eps = tht_act - tht_old;

thtc = tht_act + Pc*Xix*eps;

ec =y - h’xthtc;

Sgmc = Sgm - eps’*x(Xi + Xi*Pcx*Xi)x*eps;
Sgm = Sgmc + ec”2/(1+h’*Pc*h);

v =v + 1;
tht thtc + Kxec;

% Forgetting factor adjustement:

d_old = v_old/Sgm_old; d = v/Sgnm;

eps_new = tht - tht_act;

Xz = trace(V_old*P)+v_old*log(d_old/d)+d*Sgm_old...
+d*eps_new ’*xzeta*V_old*eps_new+v_old/v-v_old;

if (1 <= Xzx*alpha/(lbd*(n+1))), 1lbd = alpha;

elseif (1 >= Xz/(1lbd*(n+1))), 1lbd = 1;

else, 1lbd = 1lbd*x(n+1)/Xz;

end

%» Time-updating steps:

V = Vx1lbd; Sgm = Sgm*lbd; v = v*lbd;

%» Denormalized projection matrix:

PM = (P/1bd)/d;

end
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Note that the denormalized projection matrix is sent to the output and provides the
information about covariance necessary for the ITF parameters estimation enabling.

Similarly, the recursive identification of ITF parameters is shown in Figure 4.5.
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Fig. 4.5: ITF parameters estimation in MATLAB Simulink

The differences between the recursive estimation of healthy (Figure 4.4) and ITF
(Figure 4.5) parameters lie in different lower bounds of forgetting factor «, numbers
of identified parameters n, user-defined factors (, and the initial delays before the
algorithm is started. Identifying two ITF parameters is started after four steps in
the wake of reaching the required covariance of healthy parameters. This value
reflects especially the delays caused by the input and output transformation (4.7).
The lower bound of the forgetting factor « is then set to be 0.6. If « is reached,
then to improve the learning of actual ITF parameters, the algorithm is reset, and
one additional logical output indicates that the fault was detected. This is realized
by the following code inserted after line 35 of Listing 4.1:

Listing 4.2: Reset of recursive identification of I'TF parameters

fault _detect = false;

if (lbd==alpha)
Sgm = 1; v = 1; V = eye(n); 1bd = 1; tht = tht_act;
PM = eye(n); fault_detect = true;

end
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If the logical value ’true’ of fault detect is reached, it is held using a simple flip-
flop (Figure 4.5), and the recursive updating of healthy parameters is switched off
(Figure 4.2). In the case of ITF parametric estimation, the user-defined factor ¢ is
equal to 0.5 to achieve faster forgetting factor changes at the expense of smoothness.
The constrained terms = are similarly given by the identity matrix.

The calculation of series resistance and normalized fault relevance is then ex-
tended by conditions that prevent reaching undefined values (for example, caused

by dividing numbers by 0). These conditions are visualized in Figure 4.6.
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Normalized fault relevance calculation
>0

I Saturation 0 - 1

xf_norm

estimated parameters

Saturation 1e-5 to 10

Fig. 4.6: Calculation of series resistance and normalized fault relevance

As shown in Figure 4.6, the series resistance and normalized fault relevance are
saturated between 0 and 1. The limitation of normalized fault relevance is straight-
forward since this parameter can achieve only values between 0 and 1. The series
resistance is then saturated based on the initial estimation (Table 1.2) to prevent
reaching highly overrated values. Since the band-pass filter filters the input signals
of the ITF parameters estimation algorithm, there is always some harmonic signal
(even if the short circuit is not emulated) that causes the estimation of low-level
fault relevance. Therefore, if the fault relevance reaches the defined value given by

saturation of Ry 4,/ x}z, the output normalized fault relevance is set to be 0.
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4.5 Diagnostics verification within the simulation

The algorithm described in the previous sections is firstly evaluated within the sim-

ulation. For this purpose, the model visualized in Figure 4.7 is utilized.
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Fig. 4.7: Model for the diagnostics verification within the simulation

The classical control scheme described in the previous chapters is extended by the
inverter’s nonlinearity (4.20) with the dead time voltage tgeqq equal to 0.02 V. The
stator currents are then distorted by additional white noises with the variance of
11072 and randomly selected mean values. The mean values of additional white
noises are not so crucial since the adaptive band-pass filter suppresses the DC com-
ponents of the signals. However, the dead time voltage level noticeably impacts
the parameters bias. As mentioned before, the bias is caused by the distortion on
frequency w, that can not be suppressed since ideal voltage inputs u, and ug are
harmonic signals of this frequency.

The simulated motor is controlled to the angular velocity setpoint w}, = 75rad/s,
and after six seconds, inter-turn short circuits are simulated in phase 'a’ with dif-
ferent fault relevance: zy = 4/25, vy = 6/25, x; = 9/25, and xy = 14/25. These
experiments are realized only for the winding connection n, = 1 and ny, = 3. The
torque load connected to the shaft of the simulated machine is equal to 0 to achieve
the minimum signal-to-noise ratio. If the higher value of torque load is present, the
amplitudes of currents are growing, and the signal-to-noise ratio is higher. Signals
for the fault relevance estimation are then obtained from the control system, and

the diagnostic algorithm starts in time 0s with the velocity step request.
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Figure 4.8 visualizes the estimated healthy parameters and calculated series re-

sistance.
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Fig. 4.8: Estimated healthy parameters and series resistance, simulation

Since the identification algorithm is robustly tuned and the simulated electrical pa-
rameters are constant, the calculated forgetting factor equals 1 in each algorithm
step. The identified healthy parameters are stabilized after one second of the algo-
rithm run. However, this value is mainly given by the moment of inertia. If less
inertia is applied, a machine tracks the velocity setpoint faster, making the frequency
sweep more significant. Hence, the input signals have higher persistence resulting

in faster stabilization of estimated parameters.
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Figure 4.9 then visualizes the time evolution of the ITF parameters.
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Fig. 4.9: Estimated I'TF parameters, simulation

The ITF parameters (Figure 4.9) have no meaning until the short circuit is simulated
in time 6 s. After the fault occurs, it is quickly detected by the rapid changes in the
forgetting factor, as shown in Figure 4.10.
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Fig. 4.10: ITF forgetting factor and fault detection, simulation

Generally, the higher values of fault relevance are detected faster than lower ones
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due to the higher signal-to-noise ratio of the output signal y obtained by (4.7).
The electrical angular velocity of the simulated motor is 15757ad/s, approximately
corresponding to the 4 ms electrical period. Hence, the presented algorithm detects

higher fault values under one electrical revolution (Figure 4.10). The waveforms of
normalized fault relevance can be seen in Figure 4.11.
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Fig. 4.11: Identified normalized fault relevance, simulation

The estimated normalized fault relevance is then compared with the value calculated
by (4.11), assuming the electrical parameters as in Table 1.2. The relative errors

are calculated similarly as in (1.33) and presented in the following table:

Tab. 4.1: The error of estimated normalized fault relevance, simulation

zy [-] 4/25 | 6/25 | 9/25 | 14/25
calculated 7., [-] | 0.0187 | 0.0397 | 0.0826 | 0.1772

estimated x g, [-] | 0.0166 | 0.0357 | 0.0748 | 0.1630

error % 11.2 10.1 9.4 8.0

The biased parameters are the primary sources of differences between the estimated
and calculated values. For example, the estimated resistance is approximately equal
to 0.101 §2, but the resistance used in the simulation is 0.112 €.

4.6 Diagnostics verification on the real motor

Similarly, the diagnostic algorithm is verified on the control system of the experi-
mental motor for the winding connection n, = 1 and n, = 3. A C code is generated
from the MATLAB Simulink model of the described algorithm and programmed into
AURIX Application kit TC277. Control system is then running in the processor’s
core 0, and fault diagnostics are running in core 2 (core 1 is used for online commu-

nication via ethernet). Short circuits are then emulated with z; = 3/25, z; = 6/25,
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xy =9/25, and xy = 14/25 fault relevance after six seconds from the velocity step
request w, = 75rad/s. During this experiment, the machine is disconnected from
the dynamometer. Hence, the moment of inertia is lower than the value utilized in
simulations, and the torque load equals 0. The time evolution of estimated healthy

parameters is visualized in Figure 4.12.
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Fig. 4.12: Estimated healthy parameters and series resistance, real motor

In the case of Figure 4.12, the healthy parameters are dependent on the operating
point, and the time-variance of parameters (especially of the inductance) is reflected
in the estimation. The identified resistance (Figure 4.12) significantly differs from

the value implemented in the simulation (Table 1.2) since the model’s parameters
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were only roughly fit based on the open-loop measurements.

The time-varying

changes of identified parameters are also reflected in the forgetting factor that is no

longer equal to 1 for all the time, as shown in Figure 4.13.
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Fig. 4.13: Forgetting factor - healthy parameters estimation, real motor

Note that the forgetting factor is together with the identified healthy parameters

held on the last estimated value after the fault is detected.

The estimated ITF parameters are then visualized in Figure 4.14.
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Fig. 4.14: Estimated ITF parameters, real motor

Unlike in case of simulations, the fault is not precisely emulated six seconds after

the velocity step request occurs. Inter-turn short circuits are emulated using a relay,

and some transport delay is propagated. It was quantified that the fault emulation

is approximately delayed by 2ms; however, the precise value of transport delay is

unknown. Figure 4.15 then shows the fault detection moments signalized by the

processor and the time evolution of the forgetting factor of I'TF parameters.
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Fig. 4.15: ITF forgetting factor and fault detection, real motor

The waveforms of normalized fault relevance are visualized in Figure 4.16.
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The estimated series resistance R, = 0.425() is then utilized to calculate x¢,, refer-

ence, and the fault relevance error is evaluated in the table bellow:

Tab. 4.2: The error of estimated normalized fault relevance, real motor

zp [ 3/25 | 6/25 | 9/25 | 14/25

calculated zy,, [-] | 0.0329 | 0.1033 | 0.1912 | 0.3573

estimated z g, [-] | 0.0270 | 0.1014 | 0.1786 | 0.3603

error % 17.9 1.8 6.6 0.8
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Conclusion

In this thesis, the modeling of a synchronous motor with permanent magnets under
the stator winding’s inter-turn short circuit fault was described (Chapter 1). The
model that assumes the combination of serial and parallel winding connections was
defined in the stator variables and transformed into the rotor reference frame. It
was shown that the model utilizes the well-known healthy motor description (1.25)
and one additional differential equation related to the current flowing through the
short circuit (1.26). Both model’s parts are then linked by the coupling equation
(1.24). The presented models were validated via measurement of the fault current’s
first harmonic and the second harmonic of the back electromotive force transformed
into the rotor reference frame (Figure 1.9). The measurement was performed on a
configurable machine driven by a dynamometer, at different winding connections,
fault relevance, and electrical angular velocities. The measured values were com-
pared with the simulated ones, using the mean relative error and variance (Table
1.3). The mean relative error did not exceed 4.4 %.

In Chapter 2, the field-oriented control of permanent magnet synchronous mo-
tors was described. The control system utilizes the dynamical decoupling technique
inside the current controller (Figure 2.1), and the parameters of the velocity and cur-
rent controllers are analytically calculated out of the estimated motor’s parameters
as in (2.6). The clamping (Figure 2.2) and back-calculation (Figure 2.4) anti-windup
techniques are then incorporated into the discrete-time equivalent of the control sys-
tem. The discrete-time implementation of angle tracking observer and space vector
modulation is also described. The control system is programmed into the AURIX
application kit TC277 and applied to control the experimental motor with different
winding connections to the velocity setpoint (Figure 2.8).

The model derived in Chapter 1 is semi-analytically discretized in Chapter 3.
For this purpose, the linear time-varying systems approach is utilized. The electrical
angular velocity is considered the time-varying parameter with the defined integral
that is equal to the electrical angle. The discrete-time model is then transformed
into the stator reference frame to maximize the persistence of input signals resulting
in description (3.28). The validation of the discrete-time model is then based on the
comparison with the continuous-time model within the simulation (Figure 3.3).

The fault relevance identification is described in Chapter 4 together with the
system noise analysis and filter design. For the purpose of parametric estimation,
the regularized algorithm with the variable exponential forgetting is applied. Reach-
ing the lower bound of the forgetting factor is then interpreted as a fault presence
indicator. The designed fault relevance diagnostic procedure is firstly validated
within the simulation (Figures 4.8, 4.9, 4.10, and 4.11). The precision of identified
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fault relevance is significantly affected by biases in estimated parameters (especially
in estimated series resistance). Relative errors between estimated and calculated
normalized fault relevance are presented in Table 4.1. Similarly, the algorithm is
validated on the experimental motor (Figures 4.12, 4.13, 4.14, 4.15, and 4.16). Cal-
culated relative errors of normalized fault relevance estimations are presented in
Table 4.2.

Together with the electrical parameters of a machine, the identified normalized
fault relevance provides necessary information for fault current estimation. There-
fore, in future work, the designed fault detector will be extended by the fault com-
pensator that will utilize the identified parameters to calculate fault current and

modify control actions to compensate for the fault.
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A Derivation of the open-loop ITF model

System definition (ITF is in phase ’a’):

. __Rs Lq . 1
d Ld,h Lq LyYe 2d,h i Lg 0 Ug n 0
. | = . A
dt | _Laq _Rs 7 1 U Yelpm

qvh que Lq qvh 0 Lq q Lq

xr
Ty = =f

N

d (3Lyif) = — (% (3 — 2:5}) R, + 3R})iy + 3z} [Cos(ee) _ sin(@e)} _ |iUd]

dt Uq
Voltage form of the healthy part equations:
7 0
. { ‘d7h] + { ]
1q,h We)\pm

Ld 0 d id,h Rs —que
dt [ign

0 Lq dee Rs
Open-loop assumption:

Ud

Uq

1q=20

iy =0
ian _ % —cos(6,) ;
Gq.h 3 | sin(6,) d

Expressing derivative of the coupling equation:

d [z’dh] _ 2z} [sin(@e)] it 27} [— Cos(He)] diy

dt 3 |cos(be) 3 | sin(f.) | dt

Substituting for the healthy currents derivative and healthy currents in the voltage
equation:

Ug 23 [Lg 0 sin(f,) | . —cos(f.)| diy 2 0
[uq 3 [ ( [cos(@e) U sin(6,) | dt 3 WeApm

0 L,
Substituting for the voltages in the fault current equation and expressing the deriva-

* * de *QdLCLCL
<( f+fos)+<E+xf % ))

(Ls + 23 Laa)
diyp 7. T hWeApm sin(fe)
Frim U e (Lf +x?2Lm)

Substituting for the fault current derivative in the voltage equation and expressing

Z'q,h

R, —Lyw,
dee Rs

—cos(fe)| .
' [ sin(9,) |77

tive:

Ly =
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the back electromotive force:

|’ z}zLd sin(26.) '|

wa| _y | LavyZr = Rowj —wjwel(la—Lo)| | cos(B) |\ | 3(Erehe)
ug| | —atwe(La— L) LywiZ; — R | |—sin(d,)| © b_ HJ
f CEf aa

Figure A.1 shows the realization of open-loop ITF model in MATLAB Simulink.

we
Lf + xf*2 Laa

u YH z if (1)

sin(theta_e)

sin(theta_e)
if

cos(theta_e)
we > -
sin(2theta_e) ud

cos(2theta_e)
we Lf + xi*2 Laa
Lf + xf*2 Laa

fault current

sin(theta_e)

paj U

<

cos(theta_e)

Varying parameters
sin(2theta_e) uq ’ -

uq

cos(2theta_e)

back EMF

Fig. A.1: Open-loop ITF model realization in MATLAB Simulink
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B Content of the electronic attachment

PP root of the attached archive
Thesis.pdf .. oottt text of the diploma thesis
Models_codegen............... MATLAB Simulink models for c-code generating
oA v ol oo o= = I UGS PP control system model
| fault_diag.slxX.....coviiiimmmnnnnnnnnnn.. model of fault relevance detector
Models _Sim .....ovvnerinennnennnnn. MATLAB Simulink models for simulations
| discr_mod_val.slx........... model for discrete-time equivalent verification
| fault_diagnostics.slx.................. model for fault diagnostics testing
| ITF model.slX........ccovvnn.. model of control system and shorted machine
| _open_loop_model.slx ....... model for open-loop shorted machine validation

NOTE: The MATLAB Simulink models are realized in the MATLAB version R2020b.
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