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A B S T R A C T 
This thesis describes the mathemat ical model ing of a permanent magnet synchronous 
motor under a stator winding's inter- turn short circuit faul t , the discretization of obtained 
model, and the model-based faul t relevance diagnostics. A description of a shorted ma
chine is formed in the stator variables assuming the series-parallel winding connection 
and transformed into the rotor reference frame using extended Clarke's and Park's trans
format ion matr ix. A discrete-t ime equivalent of the designed model is formed based 
on the linear t ime-varying systems approach, considering the electrical angular velocity 
t ime-varying parameter w i th a defined integral. The discrete-t ime model is transformed 
into the stator reference frame to maximize the persistence o f input signals. The faul t 
relevance diagnostics are then realized based on the recursive parametric est imation of 
the discrete-t ime model. In addi t ion, one chapter is dedicated t o the control system 
description since the short circuits may affect state variables differently depending on 
the control system architecture and tun ing. The experimental val idat ion of the presented 
ideas follows at the end of each chapter. 

K E Y W O R D S 
Discrete-t ime systems, failure analysis, faul t detect ion, mathemat ical analysis, inter- turn 
short circuits, mathemat ical model, model checking, parameter est imat ion, permanent 
magnet motors, t ime-varying systems, vector control . 

A B S T R A K T 
Tato práce popisuje matematické modelování mezizávitových zkratů fázového v inut í syn
chronního motoru s permanentními magnety, diskretizaci odvozeného modelu a diagnos
t iku závažnosti zkratu založenou na referenčním modelu. Popis zkratovaného stroje je 
vytvořen v proměnných statoru s uvažováním sérioparalelního zapojení v inut í a následně 
transformován do referenčního rámce rotoru pomocí rozšířené Čiarkové a Parkový trans
formační matice. Diskrétní ekvivalent navrženého modelu je vytvořen pomocí definované 
diskretizace lineárních časově variantních systémů, přičemž je uvažováno, že elektrická 
úhlová rychlost je časově var iantní parametr s definovaným integrálem. Diskrétní mo
del je t ransformován do referenčního rámce statoru, aby se maximalizovala perzistence 
vstupních signálů. Diagnostika závažnosti zkratu je poté realizována pomocí rekurzivního 
parametrického odhadu diskrétního modelu. Jedna z kapitol je věnována i popisu řídicího 
systému, neboť zkraty mohou ovl ivni t stavové proměnné různým způsobem v závislosti 
na architektuře a volbě parametrů řídicího systému. Za každou kapitolou následuje ex
perimentální ověření prezentovaných myšlenek. 

K L Í Č O V Á S L O V A 
Systémy s diskrétním časem, analýza poruch, detekce poruch, matemat ická analýza, 
mezizávitové zkraty, matemat ický model, ověření modelu, odhad parametrů, motory s 
permanentními magnety, časově var iantní systémy, vektorové řízení. 
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ROZŠÍŘENÝ ABSTRAKT 

Cílem t é t o práce je předevš ím náv rh diagnost ického algoritmu pro detekci závažnosti 

mezizávitových zk ra tů statoru synchronního motoru s p e r m a n e n t n í m i magnety. Po

žadavkem je, aby tento algoritmus běžel v reá lném čase na d o s t u p n é m procesoru 

A U R I X application kit TC277. Tento procesor tedy musí být schopen navržený 

algoritmus spočí ta t za méně než 100 fis daných periodou vzorkování. V t é t o práci 

je závažnost zkratu in te rpre tována jako časově var ian tn í parametr modelu motoru, 

k te rý je detekován algoritmem paramet r ického odhadu s p r o m ě n n ý m koeficientem 

zapomínání . Návrh algoritmu je po té rozdělen do několika logických kroků: tvorba 

ma temat i ckého modelu, diskretizace navrženého modelu a náv rh algoritmu pro re

kurzivní odhad p a r a m e t r ů diskrétního ekvivalentu. Jedna z kapitol je také věnována 

návrhu a ladění řídicího systému, neboť v ý z n a m n ý m způsobem ovlivňuje chování 

motoru při dané poruše a některé p roměnné použi té při v ý p o č t u akčních zásahů 

jsou vs tupn ími signály algoritmu identifikace p a r a m e t r ů . 

P ř i tvorbě ma temat i ckého popisu mezizávitových zk ra tů se vychází z modelu 

zdravého motoru definovaného v l i te ra tuře . Jelikož m á vinut í motoru rozpros t řené 

parametry, je při modelování zk ra tů uvažována l ineární distribuce odporu, indukčno-

stí a toku od pe rmanen tn í ch magne tů . A b y navržený model lépe popisoval reálný 

motor, je definován pro sérioparalelní zapojení fázového vinutí . Společně s diferen

ciálními rovnicemi popisujícími proud jednot l ivými s ta torovými fázemi je stanoven i 

e lektromechanický krout íc í moment zkra tovaného motoru na základě analýzy en

ergie ve vazebním poli stroje. Výsledný model je po t é t ransformován do refe

renčního rámce rotoru pomocí rozšířené Čiarkové a Parkový t ransformační matice. 

Vzniklý popis umožňuje zkra tovaný motor popsat pomocí jeho zdravého modelu a 

diferenciální rovnice popisující proud zkratem s definovaným odporem. Závažnost 

zkratu potom udává poměr zkra tovaných závi tů cívky na s ta torové fázi ku celkovému 

p o č t u závi tů t é to cívky. Validace navrženého modelu je po t é realizována s rovnáním 

měřeného zkratového proudu a zpě tně indukovaných n a p ě t í se simulovanými hod

notami, př ičemž je motor v generátor ickém režimu h n a n ý dynamometrem. Validace 

je realizována pro tř i r ůzná zapojení v inut í motoru. 

Za účelem řízení stroje v referenčním rámci rotoru je použ i to zapojení pro dy

namickou kompenzaci vazeb mezi jednot l ivými složkami proudu. Výzkum autora v 

oblasti analyt ického ladění p a r a m e t r ů řídicího sys tému synchronního motoru s per

manen tn ími magnety je v t é t o práci rozšířen tak, aby se maximalizovala robustnost 

řídicí smyčky a nemohlo při vzniku zkratu dojít k nestabi l i tě . Jelikož se při identi

fikaci závažnosti zkratu využívá informace o úhlové rychlosti, je v rámci řídicího sys

t é m u popsán i pozorovatel úhlové rychlosti a jeho implementace s d i skré tn ím časem, 

k t e rá zachová dynamiku sledování úh lu a rychlosti. Dále jsou popsány transformace 



z p roměnných statoru do referenčního r ámce rotoru a modulace napě t í p ros torovým 

vektorem. Řídicí sys tém je po t é n a h r á n do procesoru a odzkoušen pro t ř i různá 

zapojení v inut í na reá lném motoru. 

Spoji tý model zkra tovaného motoru je diskret izován na základě definovaného an

alytického řešení l ineárních časově var iantních systémů. Je uvažováno, že elektrická 

úhlová rychlost je časově p r o m ě n n ý m parametrem, jehož integrací je elektrický úhel 

natočení . N a základě tohoto poznatku lze vyjádři t matici p řechodů daného systému, 

a dokonce lze urči t i semianalyt ický diskrétní model. Tento model je po t é trans

formován do referenčního rámce statoru, kde jsou vs tupn í napěťové signály harmo

nické průběhy. Oproti referenčnímu rámci rotoru je tedy zaj iš těna větší perzistence 

napěťových vs tupů , což je výhodné pro parametrickou identifikaci. Diskrétní model 

je v simulaci s rovnaný se spoj i tým, k te rý byl již validován na základě měření na 

sku tečném stroji. 

A b y bylo možné provést rekurzivní pa ramet r i cký odhad, je nejprve diskrétní 

model z jednodušen na identifikaci závažnosti zkratu v konkré tn í fázi a nás ledně 

t ransformován do formy, ve k teré je jedna složka proudu za t ížená zkratem a d ruhá 

sleduje chování zdravého motoru. Díky tomuto uspo řádán í je možné odhadovat 

parametry zdravé část i motoru i v situaci, kdy je p ř í tomen mezizávi tový zkrat. 

Parametry zdravé části jsou odhadovány pomocí rekurzivního algoritmu s p roměn

n ý m koeficientem zapomínán í , aby bylo možné reflektovat mírné změny elektrických 

p a r a m e t r ů s provozními p o d m í n k a m i . Dále je zavedena transformace proudové 

složky motoru zat ížené zkratem tak, aby se potlači l v l iv zdravých p a r a m e t r ů a k 

identifikaci zůstal i pouze parametry související se zkratem. Tyto jsou po t é identi

fikovány o b d o b n ý m algoritmem jako zdravé parametry. Rozdíl spočívá v nas tavení 

spodní meze koeficientu zapomínán í , kdy u p a r a m e t r ů souvisejících se zkratem je 

tato mez p o d s t a t n ě nižší a její dosažení indikuje p ř í tomnos t mezizávitového zkratu. 

Za pomoci identifikovaných p a r a m e t r ů je po t é spoč í t ána normal izovaná závažnost 

zkratu, k t e rá udává, j a k á část cívky na v inut í je zkra tována nulovým odporem. 

Takto definovaný algoritmus je navíc rozšířen o filtraci signálů pro identifikaci adap

t ivn ím filtrem, aby bylo dosaženo pot lačení rušivých harmonických složek. V té to 

práci je rovněž prezentována ana lýza rušivých vlivů. Algoritmus detekce závažnosti 

zkratu je odzkoušen jak v rámci simulace se s imulovaným rušením, tak na reá lném 

pohonu. 
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Introduction 
Permanent magnet synchronous motors ( P M S M s ) are classified as surface-mounted 

( S P M S M s ) and interior ( I P M S M s ) , depending on the position of the permanent 

magnets. The electrical model of the I P M S M is more complex than that of the 

S P M S M , but its characteristics better fit the requirements of today's hybrid and 

electric vehicles. 

A n inter-turn short circuit or an inter-turn fault ( ITF) in the stator winding is 

the consequence of insulation failures between two or more turns in the same phase. 

It is the most common fault in electrical machines after bearing failures. ITFs 

usually occurs due to moisture ingress inside the motor's thermal breakdown 

between the turns, or another failure. For example, a shattered bearing can get 

stuck between the coil turns and cause a short circuit. Shorted turns configure an 

extra circuit loop coupled to flux linkages by other motor windings and the rotor 

magnets. Owing to the low impedance and high-coupled flux linkage voltage, a 

high-fault current is thus induced in the shorted winding, which generates ohmic 

loss and heat that further weaken the surrounding insulation material [1]. This self-

heating circle can lead to the machine break down and poses a potential fire hazard. 

According to the previous statements, there is a high demand for quick and reliable 

diagnostics of I T F and fault current compensation. 

The diagnostics of ITFs exploit two main principles. One is based on processing 

measured signals and finding patterns that correspond to the fault relevance [2] -

[5]; this principle can be highly accurate but is not suitable for online implemen

tation because the embedded device must process large data packets. The other 

then identifies the resistance, inductance, and other parameters of a shorted phase, 

which depend on the fault relevance [6] - [9]. However, to achieve the proper func

tioning of this principle, a relatively precise mathematical description of the fault 

has to be provided together with a suitable discrete-time equivalent. Otherwise, the 

fault relevance can not be extracted from the identified parameters wi th sufficient 

precision. In some cases, both principles are combined to improve the diagnostic 

capabilities [10]. This thesis wi l l discuss a novel model-based detection of inter-turn 

short circuit fault relevance. 

Traditionally, many authors describe I T F models in the stator variables. This 

description is easily formable and allows modeling the asymmetry of the stator 

windings parameters. However, since the control system is usually defined in the 

rotor reference frame, it is welcome to transform the model described in stator 

variables into the rotor reference frame as well. Chapter 1 then aims to develop a 

simple mathematical I T F model in the rotor reference frame for fast simulations and 

fault detection using the model-based condition monitoring. The model is formed 

12 



in the stator variables, assuming a series-parallel winding connection in Section 1.1. 

Then the extended transformation matrix is presented in Section 1.2, and the model 

is transformed into the rotor reference frame in Section 1.3. Model is then realized 

in M A T L A B Simulink environment as described in Section 1.4. In Section 1.5, the 

validation of the model is provided. For this purpose, the real machine is driven 

by a dynamometer to the angular velocity setpoint, and currents and electromotive 

force are measured and compared wi th the simulated values. 

In real applications, a motor is controlled to the velocity setpoint using two 

cascade control loops. Therefore, the architecture of controllers and their tuning 

significantly impacts the state variables during the fault. Hence, Chapter 2 discusses 

the implemented control system. Firstly, an analytical control system parameters 

tuning is presented in Section 2.1. Then in Section 2.2, the discrete-time equivalent 

of the designed control system is calculated, and the integral windup phenomenon is 

handled. Section 2.3 deals wi th the realization and discrete-time implementation of 

an angle tracking observer for velocity estimation, and Section 2.4 describes input 

and output signals transformations and the min-max space vector modulation of 

the voltage requests. The proposed control system is then applied to control the 

experimental motor in Section 2.5. 

Since this thesis aims for online model-based fault relevance diagnostics and the 

parametric estimation algorithms primarily support the discrete-time models, the 

defined continuous-time model must be discretized. Chapter 3 then presents a novel 

semianalytic discretization of the machine's model. Firstly, the healthy part of the 

model is discretized in Section 3.1, and then the fault current model's discrete-time 

equivalent is derived in Section 3.2. In Section 3.3, both model parts are combined 

and transformed into the stator reference frame, where the persistence of input 

signals is higher than in the rotor reference frame. Discrete-time model is then 

compared wi th the continuous one in Section 3.4. 

The algorithm for the fault relevance identification is designed in Chapter 4. In 

Section 4.1, the discrete-time model is redefined to achieve a description suitable 

for the parametric estimation. Then the system noise analysis and adaptive filter 

design follow in Section 4.2. The filter is designed to suppress the periodic distortion 

in measured currents. Section 4.3 describes the recursive parametric estimation 

algorithm implemented in this thesis. In Section 4.4, the realization of the fault 

relevance diagnostic algorithm in M A T L A B Simulink is discussed. Section 4.5 then 

presents the verification of the algorithm within the simulation, and Section 4.6 

describes the algorithm validation on the experimental motor. 

13 



1 Inter-turn short circuits modeling 
For the purpose of inter-turn short circuit modeling, a model of a healthy I P M S M 

has to be specified. This model provides necessary information about a magnetic 

flux distribution inside a motor. A s mentioned by Sul in [11], the voltages across 

the stator windings ua,Ub, uc are defined as in 

XD 

where Rs is the equivalent resistance of each stator winding (series resistance), 

the currents flowing in the stator windings, and A a , A c are the to

tal fluxes l inking each stator winding, consisting of the flux linkages of the phase 

windings and the permanent magnets. For a sinusoidal flux distribution, the total 

fluxes l inking are 

Rs 0 0 " la 
d 

" a ; 

Ub = 0 Rs 0 h 
d 

Uc_ 0 0 Rs_ 

d 

A„ Laa Lab Lac ia Aa,pm 

= Lba Lbb Lbc k + Ab,pm 

LCa Lcb LCc_ _ Ac,pm_ 

;i .2) 

In (1.2), the phase-self and mutual inductances of the stator windings are defined 

as in (1.3) and the fluxes of the permanent magnets that link the stator windings 

as in (1.5). We have 

2 t t \ 

Lbb 

Lrr 

Ls + Lm cos (29e) 

2tt\ 

Ls + Lm cos ( 29e + — J 

2 t t \ Ls + Lm cos ( 29e — 

Lab = Lba = 
Ls 

2 

Lac — Lca = 
Ls 

2 

Lbc = Lcb = 

— — + Lm cos 29e — 
3 J 

-^r + Lm cos ( 20, + 

;i.s) 

In (1.3), Ls is the average phase-self inductance of each of the stator windings, and 

Lm denotes the fluctuation in the phase-self inductance and mutual inductance wi th 

changing rotor electrical angle 9e. These inductances can be expressed using <i-axis 

and g-axis inductances: 

Ld + L0 

3 m 3 

The permanent magnet fluxes that link the stator windings are 

;i .4) 

Aa,pm 

Ab,pm 

Ac,pm 

\ p m cos (9e[ 

\ p m cos ( 9, 

Xpm cos ( 9e + 

2n\ 

2n\ 
;i.s) 

14 



In (1.5), Xpm stands for the permanent magnets flux linkage. 

A s mentioned by Krause et al. in [12], the electromagnetic torque of the I P M S M 

can be established based on the total energy in the coupling field as in 

la 
T ( 

1 <9L 
la d ^a,pm \ 

V h 2d9e 

h + dee 

^b,pm 

\ 
+ dee 

_^c,pm_ J 

where p stands for the number of pole pairs and L is the inductance matrix as in 

(1.2). 

Traditionally, many authors describe I T F in the stator variables using the sim

plified winding architecture models [13]-[14]. These models assume that the stator 

winding is concentrated into one coil segment (Fig. 1.1), and the inductive couplings 

in a whole winding are affected by the I T F . 

F ig . 1.1: Simplified three-phase winding under the I T F 

This assumption leads to a relatively simple expression of the fault current if] how

ever, the modeled fault current value is highly overrated due to the demanding 

inductive couplings. Typically, the phase winding of a motor consists of segments 

that are geometrically separated from each other. The main advantage of this ar

rangement is that the I T F cannot easily spread across the whole winding. Due to 

the segregation, there are also mutual inductances in the same phase; however, such 

inductances are significantly lower than those that occur due to the I T F and can 

be neglected. The I T F then affects inductances related only to one coil segment, 

not a whole winding. G u presented the models that incorporate different winding 

configurations (three coils in series or three coils in parallel) in [15]. However, a 

model of the faulty I P M S M can be formed in a more general way, assuming that the 
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phase winding comprises np branches connected in parallel, and each of the branches 

consists of ns coils in series. Figure 1.2 shows a universal phase winding connection 

applicable in determining a more accurate model of a faulty I P M S M . 

O l , n s «1 , 2 
I—n$55W5WP 11 ^$555555^ 

« 2 , n s « 2 , 2 
ft ^55555555^-

r A / W i 

if I 

02 ,1 
-O Ua 

I—nraÄnp—??—nsmmt^ nsrnm^—1 

Fig . 1.2: Segregated phase 'a ' winding under the I T F 

1.1 Model in the stator variables 
Due to the presence of an inter-turn short circuit in phase 'a ' (Fig. 1.2), an additional 

fault current if occurs. This current flows through the short circuit resistance Rf 

and can be described by an additional differential equation. Assuming that the coil 

segments aXjV have an equivalent resistance ^f-Rs and inductance ^Laa, the previous 

connection can be simplified into the form presented in Figure 1.3. 

(ih 

Rf 

af 

a 
-o ua 

Fig . 1.3: Simplified segregated phase 'a ' winding under the I T F 

The I T F causes the division of phase segment a^ i into two parts. The part of the 

coil that is marked as ah is not shorted, and thus the current ia — ip flows through 

this coil segment. The current ia — ip is then divided into the current that flows 

through the short circuit if and the current that flows through the shorted part 

of the winding a/ . This portion of the phase current is described by ia — ip — if 
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and contributes to the energy in the coupling field and thus to the electromagnetic 

torque. The voltage across the winding part a/ is expressed as uaf = Rfif and the 

voltage across the winding parts as and satisfies u a s a h = ua — uaf = ua — Rfif. 

The parameters of the equivalent winding model are related to the healthy ma

chine parameters and the fault relevance ratio Xf. This parameter expresses the ratio 

between the number of shorted turns Nf and the number of total turns TV of the 

shorted phase winding segment; then, Xf — Nf/N. The resistances of the healthy 

ah, the faulty a/ , the series as, and the parallel ap winding parts are expressed as in 

_ (ns -l)np _ np 

ns np - l 

_ ( l - xf) np _^fnp 

Hah — ris tia, — tis. {*-•<) 
ns

 f ns 

The following table then describes the inductive couplings inside a machine under 

the I T F : 

Tab. l . l : Inductive couplings inside a machine under the I T F 

S t a t o r p a r t as dp ah af b c 

as 

(n3-l)np j 0 0 0 
(n,-l) r ( n . - l ) r as n3 ^aa 0 0 0 n3 n3 ^ac 

ap 0 
np j 

np-l-Uaa 0 0 Lab Lac 

ah 0 0 
(l-xf)2np 

n3 ^aa 

xf(l-xf)nP r 
n„ L'aa 

T 
n3 ^ac 

af 0 0 
xf(l~xf)nP T 

n3 ^aa 

X ýTLp j. xf r , xf J 
n 3

a c 

b (n.-l) r 
n3

 L b a Lba ( ! - ^ ) r 
n3

 L b a ns

Lba Lbb Lbc 

c ("»-!) T n3 ^ca Lca 

I1"*/) J 
n3 ^ca 

xf J Lcb LCc 

Similarly, the permanent magnet fluxes that link the phase 'a ' winding parts are 

defined as in 

A as ,pm 

A, ah,pm 

K - 1 ; 
ns 

( l - s / ) 
nR 

A, a.prn 

a,pní A a f ,pm nR 

A, a,pm-

Based on the parameters described in (1.7), (1.8), and table l . l , the voltage and 

flux equations of the phase 'a ' under the I T F are formed as in 

uasah 

= 
Ua 

( l - g) npRs 0 

0 

0 

R 

0 

0 

n „ - l 
v_ D 

l.f + 
d_ 
ďl 

A asah 

A a / 
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^asah 

A„„ lb 
In 

l.f 

+ 
X A a,pm 

A, a.pm 

; i .9) 

where 

z / f l - z / j r i p 

^ 0 ( l - ^ ) L « 6 

0 o 

o ab 

nv-l 
(1.10) 

Substituting for voltages in (1.9) and transforming the current vector provides the 

following form of the voltage and flux equations: 

Tlp-Rs 

Rf 

-TipRs — Rf •^n R 

nv-l 

+ 
d_ 
dt 

A asah 

Aa/ 

A„„ 

Aasafe 

Aa/ = L r 

Aap _ 
+ 

a; 
A a,pm 

n
 Aa,pm 
A, a.pm 

'1.11) 

where 

l£) nPLa xftl-xf)np 

f V T 

(l-X£)nPLaa (l-*£)Lab ( l -^ )L a 

' Lnn_ -^ab -^ac n„—l' 
(1.12) 

Comparing voltages in (1.11) leads to the algebraic expression of the current flowing 

through the parallel branch ip. We have 

Up-1 xf • 
la If 

ns 

; i . i 3 ) 

If the number of shorted turns approaches 0; then Xf — 0 and the current flowing 

through the parallel branch satisfies ip = ^^p-ia- Hence, the current of the main 

branch is given as ia—iP = ^-ia and the currents flowing through all parallel branches 

are equal. If Xf ^ 0, then the current flowing through the main branch is given as 
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ia — in — ~ia + ^—^-—if, yielding in increase of the current in the branch that 
" Tip Tip Tig J 

contains an I T F . 

The algebraic expression (1.13) reduces the order of the differential equation 

system (1.11). Therefore, the model of I P M S M with segregated windings under an 

I T F can be formed in the stator variables as in 

Ua 
x*fRs 0 0 R) 

Ub 0 Rs 0 0 

Uc 0 0 Rs 0 

_0_ _x)R8 0 0 -x}Rs 

^asah ia 

ib 

Ac ic 

. A « / - }f. 

^asah 

ib d \b ib 
+ — 

ic dt Ac 

}f. 

+ 
T* A 
•» f /xa,pm 

Ab,pm 
Ac,pm 

X f^a,pm 

;i . i4) 

where 

Jf,c 

X*fLaa X*fLab x*fLac f f a a 

Lba Lbb Lbc -x)Lx 

LCa Lcb LCc -x*fLt 

_x*fLaa X*fLab x*fLac 
•r*2r J.f 

;i . i5) 

The parameters xj, xj, RJ and Lf are calculated out of the segregated winding 

parameters as in 

x f ns 

1 -

Lf — xfnp(ns -l)Laa 

R* = x*fx*f(np - 1)RS + Rf. ;i . i6) 

If an I T F occurs in phase 'a' , only the current ia and current ia — if, flowing 

through the a/ segment, contribute to the electromagnetic torque. The fault current 

%f then affects the energy in the coupling field and the electromagnetic torque nega

tively. The electromagnetic torque formula is formed using the transformed current 

vector and inductance matrix LfjC as 

TP P 

la 

ib 

ic 

^ ~ if. 

t ia 't* A 
•» f/ya,pm 

\ 

h d 
+ dee 

Ab,pm 
2 dee ic 

d 
+ dee Ac,pm 

\ if. -*̂ / Aa,pm_ / 

;i . i7) 
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1.2 Extended transformation matrix 
The model defined in the stator variables (1.14), and (1.17) can be transformed into 

the rotor reference frame using Clarke's transformation matrix, which transforms 

the model from the stator variables (abc) into the stator reference frame a — ß , 

and Park's transformation matrix, which transforms the model from a — ß into 

the rotor reference frame d — q. Due to the I T F , another differential equation 

related to the fault occurs and these transformation matrices have to be extended. 

The extension of the transformation matrices aims to transform the stator voltages 

and currents into the rotor reference frame d — q and to preserve the fault current 

if. Hence, four state variables and three inputs are transformed into the three 

state variables and two inputs, which leads to the wide rectangular transformation 

matrix wi th three rows and four columns. The extended transformation matrix 

is then formed using the extended Clarke's Tc^ext and Park's Tp^ext transformation 

matrices as Yext = Tpext • TCj£Xt. We have 

c,ext 

1 _ I _ I 
2 2 

V3 
2 

V3 
2 p,ext 

COS [t 
— sin I 

0 

sin ( 
cos I : i . i 8 ) 

The extended transformation matrix reads 

ext 

COS [t 

- sin ( 

0 

cos 

sin 

cos 

) - s i n ( ö e - f ) 

0 

sin (Qe + 

0 

; i . i 9 ) 

The non-square matrix (1.19) does not have an inverse. However, this matrix has 

rank 3, allowing us to find a right-hand pseudoinverse that enables transformation 

from the rotor reference frame into the stator variables: 

r - i 
ext 

YT (V VT 

L ext \ L extL ext 
;i.2o) 

The voltages and currents are then transformed as in 

Ua ud 

Ub 

- r - 1 

ext 
- r - 1 

ext 
Ug 

Uc 

0 0 
0 

la 
id 

h - r _ 1 

ext 
ig 

ic 

h . 
if. 

h . 

'1.211 

Inter-turn short circuits may affect the state variables in the rotor reference frame 

differently, depending on the form of Clarke's transformation matrix. In (1.18), a 

direct form of the transformation matrix was used. This form is characterized by 
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the multiplication factor | . However, the extended Clarke's transformation matrix 

may be formed more generally, using the multiplication factor K as in 

c,ext K 

1 1 0 
2 2 

0 

y/3 ^ 3 0 2 2 0 

0 0 1 

K 

;i.22) 

Use of general extended Clarke's transformation matrix T* e x t results in scaling the 

voltage inputs and the current outputs. We have 

;i.23) 
2 Ud,in ^d,out 3K id 

Ug ~~ 3K Uqtin 1q,out ~ ~2~ 

1.3 Model in the rotor reference frame 
The differential equations characterizing the d — q currents are determined if (1.21) 

is substituted into (1.14). The resulting system of differential equations preserves 

the expression of fault current defined in (1.14). However, derived equations related 

to the d — q currents are highly complicated and miss the physical meaning. The 

solution to this problem lies in the state transform, which divides d — q currents into 

the healthy part and the contribution related to the fault current. We have 

id id,h 2x*f 

H 1 
cos(0 e) 

= 
id,h 2x*f 

H 1 

iq,h 3 - sin(6 l

e) 
l.f ;i.24) 

where 8e stands for the electrical angle. The state transform (1.24) is obtainable if 

the derived expression of faulty d — q currents is compared with the expression of 

healthy d — q currents i^h and mentioned by Sul in [11]. Hence, i^n and are 

described by the following system of differential equations: 

d id,h 

dt iq,h CO, 

Lcot 1 id,h + id,h + 
iq,h 

0 

J_ 
La CO, 

Uq ;i.25) 

where Ld and Lq denote inductances in the machine's direct and quadrature axis, 

Rs and \ p m stand for the equivalent resistance of stator phases and the permanent 

magnets flux linkage, and coe represents the recent electrical angular velocity of a 

motor. 

Similarly, the differential equation that describes the fault current if is deter

mined based on the faulty d — q currents and the state transform (1.24). We have 

dt ( 3 L / V ) = -Rf,dgif + 3 x } 
C0s(6>e) 

T 
ud 

- sin(6 l

e) Uq 
;i.26) 
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where Rfjdq = x*f (3 - 2x*f^j Rs + 3R*f and Lf, x*f and R*f are defined as in (1.16). 

The electromagnetic torque of I P M S M under the I T F is obtained by substituting 

(1.21) and (1.24) into (1.17), yielding 

-Piq,h{\m + [Ld ~ Lq)ld,h) + 2P~d()~lf- ;i.27) 

The electromagnetic torque is also divided into the healthy part and the fluctuation 

caused by if, just as the d — q currents (1.24). If the number of shorted turns 

approaches 0, then out of (1.26), the fault current is also approaching 0; thus, 

id, iq, and Te are given only by the healthy part of the model. If x*f ^ 0, the 

distortion with the dominant frequency 2ooe occurs in the d-q currents and the 

electromagnetic torque. This fact is provable based on the definition of fault current 

and trigonometric identities. 

The presented model was derived for an I T F in phase 'a'. However, the same 

procedure can be applied to determine machine models under ITFs in phases V 

and V . The model of faulty I P M S M with segregated windings and I T F in phase 

'a' is then extendable to simulate short circuits in the different phases, using the 

redefinition 

Lf = x*f

2np(ns - 1)(LS + Lm cos(2#e + 0)) 

dt ( 3 L / V ) = -Rf,dqif + 3 4 

id id,h 2x*f 

+ -zr 
. Y iq,h 3 

where if 

cos(#e + \ 

— sm(9e + 

cos(#e + f ) 

- s in (0 e + f ) 

2tt 

1 T -

Uq 

'1.28) 

0 then the I T F is in phase 'a ' , if <f> = -y then the I T F is in phase 'b', 

and if 0 = — y then the I T F is in phase V . 

Note that if the parallel branches of phase winding consist only of one coil seg

ment, then ns — 1 and Lf — 0, and it is possible to describe the fault current 

algebraically. For this type of winding connection, the fault current is defined as in 

3xf 

R f,dq 

COS^fc 

— sin( 
+ 
+ 

1 T -

uq 

[1.29) 

The phase shift and the frequency of if then correspond wi th the phase shift and 

the frequency of ia, %, or ic, depending on <ft. 
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1.4 Realization of the model in MATLAB Simulink 
According to Section 1.3, the model of I P M S M under the I T F is divided into two 

parts. One describes the healthy I P M S M model, and the other is related to the I T F . 

Thus it is possible to model these parts independently on each other and combine 

them in the model's output. Figure 1.4 shows the core of the model. 

tht m 

F ig . 1.4: Model of I P M S M under the I T F 

A s shown in Figure 1.4, a mechanical subsystem is also modeled in the core. A 

motion equation that describes a mechanical angular velocity oom is formed as in 

= -j (Te ~ Tfric - Tload) (1.30) 

where J stands for the moment of inertia, Tioad is a torque load connected to a shaft 

of machine, and 7 / r j C is dynamic friction torque inside a motor. We have 

= sign(u;m) (B\um \ + ). (1.31) 

Parameters B and Tdry express the viscous friction coefficient and the dry friction. 

The static friction is neglected. 

A mechanical angular velocity is the first derivative of mechanical angle 8m; 

then d9m/dt = u m . Since the machine is controlled to the angular velocity setpoint, 

the mechanical angle tends to grow to infinity. Hence, the wrap state function is 

implemented in the model presented in Figure 1.4. This function normalizes the 

mechanical angle to interval (—TV,TV), preventing the value of 8m from overwhelm

ing. The relation between the mechanical and electrical angle and mechanical and 

electrical angular velocity is then defined as in 
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where p is the number of pole pairs. 

The healthy part of the model of I P M S M under the I T F is then formed using a 

flux-based model of I P M S M in d — q coordinates (Fig. 1.5). 

F ig . 1.5: Healthy part of the model of I P M S M under the I T F 

Due to the demand for changeable fault relevance during the simulation, a rel

atively complicated expression of parameters x*p Rf,dq, Lf, and dLf/d9e occurs. 

Therefore, the model of I T F is divided into two parts to preserve clarity. One part 

of the model describes the varying parameters (Fig. 1.6), and the other defines the 

fault current and torque (Fig. 1.7). 

Varying parameters 

-»^[Rfaq]| 

Ld+Lq Ld+Lq 
I [xfs] y—• i 

xfs*sin(tht_e + phi/2) 
[xfssin] I 

Fig . 1.6: Varying parameters in the I T F model 
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A s shown in Figure 1.6, switching of Lf is present. If Xf = 0, then Lf = 0, and 

a division by 0 occurs in the fault current model. Therefore, to prevent this sit

uation, the value of Lf is switched to be 1 if Xf = 0. A similar problem occurs 

if ns = 1; however, this problem is solved by conditioned expression in the fault 

current's model (Fig. 1.7). 

Fault current and torque n s i s n o t -

ud 

ns 
if(u1 ~= 1) 

u1 
else 

ns 
if(u1 ~= 1) 

u1 
else 

w 
merge - C H 

[ x f s s i n ] ^ - ^ 

merge 

w Te.f 

Case ns is not equal to 1 Case ns is equal to 1 

- K X ) 
Te,f 

Fig . 1.7: Model of the fault current and torque 

If ns = 1, then the fault current is expressed algebraically and modeled as in 

(1.29). O n the other hand, if ns ^ 1, then the fault current satisfies (1.28). Note 

that if Xf is switched to be 0, the voltage inputs are multiplied by x*f = 0, and the 

state of the fault current is forced to be 0 by the external reset of integrator. Hence, 

the fault current and torque are 0 in this situation and the model acts as a model 

of healthy I P M S M . 
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1.5 Model validation 
Typically, vector control is used to drive alternate current machines. Vector control 

embodies a variable-frequency drive control method that employs two closed control 

loops to regulate the electromagnetic torque and angular velocity. Using the I P M S M 

in closed control loops is the most natural approach. Such control loops, however, 

have a significant impact on the machine behavior during a fault. Hence, this thesis 

provides open-loop validation to ensure that the machine behavior does not depend 

on the control loop architecture and tuning. 

The validation is performed on a configurable motor for the following winding 

connections: np — 1 and ns — 1, np — 1 and ns = 3, np = 2 and ns = 3. The 

measured electrical parameters for the different winding connections are presented 

in the table below: 

Tab. 1.2: Electrical parameters of the validated machine 

Connection np = 1; ns = 1 Tip — 1 ^ Tig — 3 Tip — 2 j Tig — 3 

Rs [mfl] 39.11 112.1 42.68 

Ld [fiH] 572.0 1751 745.2 

Lq W] 560.6 1696 699.7 

\ p m [mWb] 1.807 5.522 4.998 

Rf [run] 42.41 45.20 45.38 

The machine, driven by a dynamometer to the angular velocity setpoint, is dis

connected from the inverter, and the inter-turn short circuits are emulated in the 

phase 'a ' wi th the local fault relevance Xf = 6/25, Xf = 9/25, and Xf = 14/25 

using a relay. The back electromotive force and fault current are measured using an 

oscilloscope. The fault current, together wi th the electrical angle, is also acquired 

by the microcontroller, and both measurements are synchronized based on the fault 

current waveform. A photo of the testbench utilized in validating the faulty model 

is displayed in Figure 1.8. 

The back electromotive force is transformed from the stator variables (abc) into 

the rotor reference frame d — q using the information about the electrical angle. The 

fault current and d—q voltages are then transformed into the frequency domain using 

the fast Fourier transform. A s can be seen in the model from Section 1.3, the I T F 

causes the fault current wi th the dominant frequency ue, which leads to distortion 

in the d — q frame mainly on the frequency 2ue. Hence, the model validation uses 

the first harmonic of if and the second harmonics of the induced and uq. 
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Fig . 1.8: Photo of the testbench 

A s the machine is disconnected from the inverter, the currents satisfy the con

ditions %a = 0, % = 0, and ic = 0, yielding id — 0 and iq = 0. This condition may 

be employed to derive a model that considers ue as the input and Ud, uq and if as 

the outputs (Appendix A ) . The resulting model is then used to simulate the back 

electromotive force and the fault current during the I T F . The simulated data are 

processed similarly to the measured waveforms. 

Comparing the simulation wi th the measurement exploits the relative error, cal

culated as in (1.33) for each measured point of the fault current's first harmonic and 

the second harmonics of the induced Ud and uq. We have 

Relative errors for each examined winding connection are then statistically pro

cessed, and the mean value and variance are calculated. These statistics express 

how precisely the model approximates the measured amplitudes in each measured 

point. 

The comparison of the simulation and the measurement for three motor config

urations is visualized in Figure 1.9. 

error = 100 • 
measured — simulated 

measured 

27 



a) winding connection np — 1; ns — 1 

ud 6/2.) si 
ud6/2Sm 

1000 1500 2000 
Electrical angular veloci ty [ rad/s ' 

ud')/2;> si 
t ud9/25m 

-ud 14/25 si 
< ud 14/2 5 m 

-uq 6/25 si 
< uq6/25m 

-uq 9/25 si 
( uq9/25m 

-uq 14/25 si 
< uq 14/2 5 m 

b) winding connection np — 1; ns — 3 

1000 1500 2000 2500 
Electrical angular veloci ty [ rad/s ] 

500 1000 1500 2000 
Electrical angular veloci ty [ rad/s ] 

ud 6/2.) si 
ud6/2Sm 

ud')/2;) si 
t ud9/25m 

-ud 14/25 si 
< ud 14/2 5 m 

-uq 6/25 si 
< uq6/25m 

-uq 9/25 si 
C uq9/25m 

-uq 14/25 si 
< uq 14/2 5 m 

c) winding connection np = 2; 

1000 1500 2000 2500 
Electrical angular veloci ty [ rad/s] 

ics x ifl4/2Smes if6/2Ssim if9/2Ssim if 14/2S si 

ud6/2Ssi 
x ud6/2Sm 

500 1000 1500 2000 
Electrical angular veloci ty [ rad/s] 

-ud9/2Ssim iidU/2Ssim uq6/2Ssim uq 9/2S 
1000 1500 2000 2500 

Electrical angular veloci ty [ rad/s] 

ud9/25 ni < ud!4/2Sm x uq6/2Sm x Uq9/2Sti 

Fig . 1.9: Comparison between the measurement and the simulation 

The relative error statistics are presented in the following table: 

Tab. 1.3: Calculated relative error statistics 

Connection n„ 1; n. n. 1; n. 2; n. 

Mean value \% 2.9 4.1 4.4 

Variance 10.8 13.9 13.7 
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2 Control system architecture and tuning 
This thesis aims for the closed-loop diagnostics of I T F relevance. In this configu

ration, the state variables are affected by I T F and by control system architecture 

and tuning. The alternate current machines are commonly controlled in the rotor 

reference frame, where direct axis current id defines the magnetic flux, and quadra

ture axis current iq determines the electromagnetic torque Te. Proportional-integral 

(PI) controllers are then usually used to keep the current components id and iq at 

their requested values i*d and i*. Due to the nonlinear second harmonic distortion in 

the rotor reference frame caused by an I T F , the system can become unstable if the 

current controllers are tuned aggressively, especially at the higher electrical angular 

velocities uje. Hence, robustness is a crucial control system property that has to be 

maximized. 

A s seen in the healthy part of I P M S M model (1.25), current components are 

coupled by terms that depend on the electrical angular velocity ue. Generally, if a 

machine operates in the low-speed region, current controllers compensate couplings 

between d — q currents without much effort. However, wi th a growing uje, couplings 

between the current components become dominant and are usually compensated by 

feedforward compensation techniques. Some of the compensation techniques were 

presented by Xingye et al. in [16]. Such techniques were derived based on the 

measurable disturbance compensation approach and ensure a high robustness of 

the control loop. Figure 2.1 shows a control system architecture wi th the diagonal 

compensation decoupling current controllers described in [16]. 

UJ,, 

hi 

K, p.LC 1 + 

V e l o c i t y c o n t r o l l e r 

vd+, 
K p 4 (1 + TiA s 

Ud,i 

UJ, 

1 <j.r 

X 
Uq,d 

X Lds+R3 

X 
Ud,d 

X Lqs+Ra 

C u r r e n t con t ro l l e r s w i t h the d y n a m i c d e c o u p l i n g 

Fig . 2.1: Control system architecture 

In Figure 2.1, s is the Laplace operator, Kpd, K m , and KPtU stand for proportional 

gains of P I controllers and Tijd, Tijq, and Tij0J are integral time constants of PI 

controllers. 
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Due to the position of magnets in I P M S M s , id also contributes to the electro

magnetic torque and the most efficient combination of currents that provides the 

required torque can be determined based on the peak torque per amper curve [11]. 

However, the contribution of id to Te is dependent on the difference between the 

direct and quadrature axis inductance Ld and Lq, which is neglectable in case of 

the configurable motor used for experiments (Tab. 1.2). Then it is possible to 

control the electromagnetic torque using only the quadrature axis current requests 

i*. Since the flux weakening technique is not implemented in this thesis, the direct 

axis current setpoint is i*d = 0. This instantaneous torque control loop, also called 

the current loop, is extended by a P I controller of mechanical angular velocity oom 

(Fig. 2.1). The control action of this P I controller then defines the requested value 

of quadrature axis current i* (thus the requested value of electromagnetic torque), 

enabling us to drive a machine to the angular velocity setpoint u*m. 

2.1 Control system parameters tuning 
Zezula presented an analytic solution for the parameters tuning of the I P M S M 

control system that ensures robustness to parameters changes in [17]. The designed 

parameters read 

u — n ^d r _ Ld 

p̂.d — L'cZ rp 1i,d — D 

- - r hi T L ' 
Rs 

2 0 J T 
Kp,w = Cvl - 7 ^ = 1 0 - f (2.1) 

where Ts is the sampling period, Cci G (0,7r/9) stands for the current loop scaling 

factor tuned based on the possible electrical parameters changes, and Cvi represents 

the velocity loop scaling factor that ensures the phase margin of the velocity loop of 

at least 46° (traditionally around 55°, depending on Cci). The velocity loop scaling 

factor Cvi can be then analytically expressed out of Cci as in 

a2^/C2i+a2 /C c l ^ 9 8 0 1 0 2 + 1 4 5 2 0 ^ + 3 6 0 0 - 1 0 1 ^ - 6 0 ) 

C v l = C^y/CZ+lOO** ° = V 200 • ( 2 - 2 ) 

However, (2.2) can be approximated on interval Cci G (0,7r/9) using a second-order 

polynomial wi th a relative error lower than 1.8 %. We have 

Cvl w — Ccl - ^-Cl. (2.3) 
32 40 d 

The current loop scaling factor Cci is then calculated by solving an algebraic sta

bil i ty criterion for different combinations of reachable values of electrical parameters. 
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This solution provides an optimal design of parameters; however, the calculation of 

Cci might be complicated if an I T F occurs. A s mentioned by Sul in [11], since the 

dynamics of the current and velocity loop differs, the integral time constant of the 

P I controllers should be tuned as in 

> 5 max ( T M , Tiiq). (2.4) 

If the integral time constants follow TitUJ = 10 max (Tijd,Tijq) and (2.1) is substituted 

into (2.4), the current loop scaling factor Cci reads 

Cd = ^ T y (2.5) 
max (Ld, Lg) 

Hence, assuming relations (2.3) and (2.5), controllers parameters can be expressed 

as in 

RsLd m Ld 
K, p,d m a x ( L d , Lq) h Rs 

_ RsLq _ Lg 
p'q max(Ld,Lq) l'q Rs 

( 5 1 TSRS \ RSJ ^ max(L(V, L„) 
K W = \ ™ - R — r r - r \ ) - \ d ? \ T ^ = 1 0 — 2 - 6 

\24 6 m a x ( L d , Lq) J p \ p m m a x ( L d , Lq) Rs 

Note that the zeros of P I current controllers are placed to compensate poles in the 

diagonal decoupling blocks (Fig. 2.1). 

Electrical parameters of the examined motor are defined as in Table 1.2, p = 21, 

J = 0.01kg-m2, and Ts = 100(is. Calculated controllers parameters are summarized 

in the following table: 

Tab. 2.1: Control system parameters 

Connection np = 1; ns = 1 Tip — 1, Tig — 3 Tip — 2, Tig — 3 

KP4 [-] 0.0391 0.112 0.0427 

KP,q [-] 0.0383 0.109 0.0401 

KPp [-] 3.73 1.14 1.13 

Ti,d [s] 0.0146 0.0156 0.0175 

Ti,q [s] 0.0143 0.0151 0.0164 

Ti.Lo [s] 0.146 0.156 0.175 
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2.2 Discrete-time equivalent and anti-windup 
The exact discretization is highly complicated due to the control system's nonlinear 

couplings between voltages and electrical angular velocity (Fig. 2.1). However, the 

mechanical subsystem has significantly slower dynamics than the machine's current 

loop. Hence, the electrical angular velocity can be considered constant over one 

sampling period. 

In real applications of I P M S M , the mechanical angle 0m(t) is sampled wi th the 

same sampling period Ts as (abc) currents, and 9e(t) is calculated out of 9m(t) as in 

(1.32). This sampling rate is crucial because the information about 8e(t) is required 

in the rotor reference frame transformation. The electrical angular velocity ue(t) is 

then estimated using an angle tracking observer ( A T O ) . Hence, the sampling rate 

designed to the current loop's dynamics is highly overrated in a slower mechanical 

subsystem, and only minor changes of ooe(t) occur during one sampling period Ts. 

The maximum possible change of ooe(t) during one sampling period is reached if 

the maximum electromagnetic torque is generated and minimum torque load and 

friction torque are connected to a machine's shaft. We have 

T = T — T 
± max J-e,max ± fric,min — Ti load,min • (2.7) 

If the minimum values of torque load 7] load,min and friction torque Tfr are un
known, they can be considered 0, resulting in T„ The maximum elec

tromagnetic torque is then given as in Te^max = \p\pmImaxi where Imax stands for 

the current vector l imitation. If the maximum torque is generated, the electrical 

angular velocity ue(t) can be derived out of the motion equation (1.30) as in 

dt 
Pr 
J' 

v r(k+l)Ts 

ue(k + 1) = ue(k) + *jTmax / dt (2.8) 
J JkTs 

where k is the actual step of the discretized system. The maximum possible change 

of ue{t) during one sampling period reads 

A Prn nn 3p y^pm^max^s 
*we,max j - max s 

If the current l imitat ion of the examined motor is Imax = 8 A, then the maximum 

torque Tmax = Te^max and A W e m a x are calculated in the following table: 

(2.9) 

Tab. 2.2: The maximum possible changes of electrical angular velocity 

Connection np = 1; ns = 1 Tip — 1 ̂  Tig — 3 Tip — 2̂  Tig — 3 

Tmax [Nm] 0.455 1.392 1.260 

Au,e,max [rad/s] 0.0956 0.2922 0.2645 
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Since the maximum possible changes of ue(t) during one sampling period are very 

low (even if the minimum torque load and friction are neglected), the electrical 

angular velocity ue(t) can be represented on the interval kTs < t < (k + 1)TS by 

a constant value estimated by an angle tracking observer. Error caused by this 

simplification is irrelevant compared to system noise and error of A T O . The control 

system can be then discretized as a linear time-invariant system. 

Based on the parameters tuning (2.6) and the constant electrical angular velocity 

over one sampling period assumption, the control system (Fig. 2.1) can be written 

in Laplace transform as in 

T 

Ud(s) 

Uq(s) 
-Kp,q (l + T,q I 

EM 

(2.10) 

where Eu(s) = ^ ^ ( s ) ~^m(s). Hence, the continuous-time multiple-input multiple-

output system (2.10) can be discretized using the zero-order hold. We have 

~Ud{zj 

Uq(z)_ 

-Kp4(l + 

-u, 

) Fl3 :*) 
z)~ 

/ 

\ Ig( z) 
) F23 

y 

(z). 

where z is the Z-transform operator and 

Fis(z) -KPj0J I 1 + 

K K 

+ T 1 
K. z -1 

Ts Ts 

-i,q 2T- T 
^± ijUi-1- i,q l 

1-z-

T 1 
*!<? 

- z 

T2 

(2.11) 

rri rri rJ~''2 
However, since 1 3> 3> 9 T

 S

T , 

Ti^cjTi^g (1 Z J J 
(2.12) 

the transfer functions 

(2.12) can be approximated as in 

F13(z) « —K, 1 + z 
- l 

^ 2 3 (Z) K, p.UJ 1 + 
T, z 

1 - z 
i 

iy I ^eFi,q 

K, 

Ti.u, 1 - z - l p.q 1 + 

p,q T 1 
*!<? 

Ti,ql-z~\ 
(2.13) 

Hence, the velocity and current controllers can be separated. 

A straightforward anti-windup technique can be used in the velocity controller 

since the current l imitat ion Imax is usually constant for a particular machine. There

fore, the well-known clamping anti-windup method is implemented. This technique 

reads that if > Imax, then is l imited to Imax, and Ts/TitL0 = 0. Due to this 
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conditioning, an integrator is turned off if the limit value is reached. If the l imitat ion 

is static, this method prevents accumulating energy in the integrator. Figure 2.2 

shows the M A T L A B Simulink realization of the velocity controller wi th the clamp

ing anti-windup. 

Clamping anti-windup 

C D 

Integral part of PI controller 

Tsn^>->Q-> z 
Current limitation 

3 
I max 

Fig . 2.2: Velocity controller wi th the clamping anti-windup 

In Figure 2.2 the current l imitation Imax is represented by an input signal even 

though it is a constant value. This enables us to change the value of this parameter 

inside the processor without repetitive code generating. 

In the current controllers, the output voltages are limited based on an inverter's 

D C bus voltage Udc. However, Udc represents a voltage l imitation in the stator 

variables (abc) and is transformed into d — q frame as in Umax = Udc/v3- Then 

Umax is a voltage l imitat ion in the rotor reference frame. Direct and quadrature axis 

voltage components are then limited as \ud\ < Umax and \uq\ < \JUmax — u\. Figure 

2.3 shows the M A T L A B Simulink realization of the current controllers (2.11) wi th 

the voltage l imitation. 

F ig . 2.3: Current controllers 
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The clamping anti-windup method cannot be sufficiently implemented in current 

controllers since the l imitat ion of voltage components change dynamically (especially 

the l imitation of quadrature axis voltage). Due to this issue, the back-calculation 

anti-windup method is derived and implemented. 

If the voltages are saturated, differences AUjd and Au>q between required voltage 

outputs u*d and u* and real voltage outputs Ud and uq occur. We have 

< u d Au,d 
u* uq Uq Au,q 

where 

< up,d + 
u*q Up,q 

1 ~Ti:qUJe 

Ui,q 

(2.14) 

(2.15) 

Voltage signals uPtd and u P t q stand for the proportional contributions of P I con

trollers, and Uitd and u^q represent outputs of integral parts (Fig. 2.3). Voltages of 

integral parts should then be compensated to satisfy zero difference conditions as in 

«2,c u d 
0 

Uq 0 

where 

«2,c u P 4 + 
Up,q 

1 ~Ti:qUJe 

II, l,,q 

(2.16) 

(2.17) 

Comparing (2.14) and (2.16) and removing the algebraic loop by inserting the unit 

delay block provides the solution of compensating voltages ipd and ipq as in 

(2.18) 

The back-calculation anti-windup of current controllers is shown in Figure 2.4. 

1 1 Ti:qu)e(k) A M ( f c ) 

%(k + l)_ 1 + Ti:dTi:qu)e(k)2 -Ti:duJe(k) 1 

F ig . 2.4: Back-calculation anti-windup of current controllers 
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2.3 Angle tracking observer 
Angle tracking observer embodies a phase-locked loop that minimizes the difference 

between an estimated angle and an angle read from measured signals. A T O in 

the base form comprises a phase detector that calculates an error 9e between the 

estimated and the actual position, a P I controller that compensates the error, and 

an integrator that integrates the control action of the P I controller [18]. The control 

action of the P I controller then represents an estimated angular velocity Coe, and the 

estimated angle 9e is obtained by integrating the estimated velocity. This connection 

is widely used; however, when a motor speeds up at a constant acceleration, the 

conventional A T O causes a steady-state error in its estimated position. This problem 

was solved by Wang et al. in [19] by involving a first-order compensation module 

that utilizes the estimated speed to generate a signal proportional to the motor's 

acceleration, thus compensating the position error if 9e = ct2. If there is a demand 

for higher-order position changes 9e = ct3, the higher-order compensation module 

has to be implemented to compensate for the error appropriately. In this thesis; 

however, a conventional A T O is implemented since the steady-state angle error is 

neglectable for the calculated frequency bandwidth of the examined machine. 

The angle tracking observer in the base form is visualized in Figure 2.5. 

P h a s e de tec to r 

s i n f f L ) 

cos (# e ) 

s +. +. 

P I c o n t r o l l e r 

c o s 
cos (# e ) 

s in ( r ) e ) 

I n t e g r a t o r 

Fig . 2.5: Angle tracking observer 

In Figure 2.5, ( stands for a damping ratio, and oon is a natural frequency of A T O 

tuned based on the frequency bandwidth un = Ub/2. A s mentioned by Sul in [11], 

since the direct axis current id is controlled to zero, the frequency bandwidth cob of 

I P M S M is calculated based on the voltage and current l imitat ion Umax = Udc/V^ 

and Imax as in 

(2.19) 
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The frequency bandwidths of the examined machine are then presented in the fol

lowing table for three winding connections: 

Tab. 2.3: Frequency bandwidths of the examined machine 

Connection np = 1; ns = 1 Tip — 1, Tig — 3 Tip — 2, Tig — 3 

Uac [V] 55/3 55 55 

Ub [rad/s] 2189 2168 4232 

The estimated angle 9e tracks the actual one 9e, and the difference between 

angles 9e tends to zero. Hence, the system (Fig. 2.5) can be linearized using the 

small-angle approximation. We have 

sin COS We) — COS sin = sin(#e - 9e) ^ 9 e - 9e. (2.20) 

The angle-tracking transfer function of the linearized system is then expressed as in 

Qe(s) = 2(ujns + ujl 
e e(s) s* + 2Cuns + ul- 1 ' ' 

For the second-order system (2.21) to achieve the tradeoff between responsiveness 

and overshoot, it is common practice to set ( as V2/2. The estimated velocity oje 

can be then expressed as the first derivative of the estimated angle 9e. We have 

Cle(s) 2(u)ns2 + cols 
QJs) = sQJs) (2.22) 

e e(s) s2 + 2(uns + u2' 

The designed A T O is implemented as a part of the control system in a discrete 

form. Hence, the discrete-time equivalents of transfer functions (2.21) and (2.22) 

must be calculated, and open-loop transfer functions jf¥\ and t t ¥ \ have to be 

expressed to preserve the phase detector part of A T O . If a machine runs at the 

constant angular velocity, the electrical angle satisfies 9e(t) = ct. O n the other hand, 

if a motor runs at a constant acceleration, the electrical angle meets 9e(t) = ct2. 

Hence, these two (or most likely more) representations of 9e(t) have to be taken into 

account in the discretization procedure. Then the piecewise linear approximation of 

9e(t) is applied to preserve the simplicity of the discrete-time equivalents, yielding 

t - kT< 
,(t) = 9e{k) + ,(k + 1) - 9e{k)) kTs <t<(k + 1)TS. (2.23) 

Note that approximation (2.23) provides an exact solution if 9e(t) = ct. The discrete-

time equivalents are then calculated as in 

Tsz 
Jekv 

ne(z) 

®e(z) Tsz 
Jekv (2.24) 
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where Ze]!V{F(s)} represents the Z-transform equivalent of a transmission defined in 

the Laplace transform. The open-loop transfer functions are then derived using the 

angle error definition Qe(z) = Qe(z) — z~1Qe(z) (this definition prevents an algebraic 

loop occurrence) as follows: 

- l / \ - l 

ClJz) 
QJz) VtJz) 

Qeiz) Qe(z) 
1-z- (2.25) 

Lis t ing 2.1 presents the discretization procedure realized in M A T L A B . 

List ing 2.1: Discretization of A T O in M A T L A B 

1 

2 

3 

1 

5 

6 

7 

8 

9 

10 

11 

wn = 2 1 8 9 / 2 ; z e t a = s q r t ( 2 ) / 2 ; Ts = 1 0 0 e - 6 ; 

F _ t h t = t f ( [ 2 * z e t a * w n , w n ~ 2 ] , [ 1 , 2 * z e t a * w n , w n ~ 2 ] ) ; 

F_omg = t f ( [ 2 * z e t a * w n , w n ~ 2 , 0 ] , [ l , 2 * z e t a * w n , w n ~ 2 ] ) ; 

F _ t h t = z p k ( c 2 d ( F _ t h t , Ts , ' f o h ' ) ) ; 

F_omg = z p k ( c 2 d ( F _ o m g , T s , ' f o h ' ) ) ; 

F0_omg = t f ( m i n r e a l ( F _ o m g / z p k ( l - F _ t h t / t f ( ' z ' ) ) , l e - 4 ) ) 

F 0 _ t h t = m i n r e a l ( F _ t h t / F _ o m g , l e - 4 ) ; 

% S e p a r a t i n g f e e d f o r w a r d c o u p l i n g 

[ n u m _ t h t , d e n _ t h t ] = t f d a t a ( F 0 _ t h t , ' v ' ) ; 

[ ~ , ~ , K _ t h t ] = r e s i d u e ( n u m _ t h t , d e n _ t h t ) 

F0 t h t c = t f ( F 0 t h t - K t h t ) 

The resulting discrete-time equivalents are described as in 

Ke + Ts 

h - b0z 1 

(2.26) 
Qe{z) " " l - z - 1 Qe(z) 1 - axz~x - a0z~2 

where the parameters calculated for three winding connections are presented in the 

following table: 

Tab. 2.4: Discretized A T O ' s parameters 

Connection np = 1; ns = 1 Tip — 1 ^ Tig — 3 Tip — 2 j Tig — 3 

Ke 5.067 • 10" 5 5.066 • 10" 5 5.134 • 10" 5 

bi 1488 1474 2769 

bo 1377 1365 2384 

d\ 0.9209 0.9217 0.8450 

<70 
0.0680 0.0674 0.1164 

Figure 2.6 shows the M A T L A B Simulink implementation of the designed angle 

tracking observer. 
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Fig . 2.6: Implementation of the designed angle tracking observer 

In Figure 2.6, the limit function is implemented into the discretized integrator to 

prevent overwhelming the estimated angle. This function ensures that if the input 

angle 9in is higher than +n, the output angle 9out value is given by 9out = 9in — 2n. 

O n the other hand, if 0j„ < —n, then 9out = 9in + 2n. 

2.4 Transformations and space vector modulation 
Since the control system is tuned in the rotor reference frame, the currents measured 

in the stator variables have to be appropriately transformed. For this purpose, Park's 

and Clarke's transformation is employed. We have 

id{k) 2 

iq(k)_ ~~ 3 
cos(0e(fc)) sin(0c(fc)) 

-sin(0e(Jfe)) cos(0e(fc)) 

_ l 
2 

V3 
2 

_ 1 " iaik) 
2 

V3 ib(k) 
2 - ic(k) 

(2.27) 

Similarly, the voltage requests calculated in the rotor reference frame have to be 

transformed into the stator variables using inverse Park's and Clarke's transforma

tion. However, due to the calculation time of the discretized control algorithm, a 

unit delay occurs in the control loop. Hence, the control system does not compute 

voltage requests for the actual step k but calculates it for the following step k + 1. 
In this case, the electrical angle 0 e applied in the transformation matrix has to be 

evaluated for step fc + 1. The value 9e(k + l) can be calculated assuming the constant 

electrical angular velocity over one sampling period as in 

9e(k + l)^9e(k)+Tsüüe(k). (2.28) 
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Voltage requests in the stator variables are then expressed using the angle sum 

trigonometric identities and inverse transformation matrices. We have 

~ua{k + l) ' 1 0 

ub{k + 1) = 1 V3 
2 2 

_uc{k + 1)_ 1 V3 
2 2 _ 

COs(0 e(fc)) - S i n ( ö e ( f c ) ) 

s in(0 e (fc)) cos(f5 e(fc)) 

cos{Tsue(k)) - sia(Tsue{k)) 

s in (7 ;w e ( rc)) cos(Tsaje{k)) 

ud{k+l) 
uq{k + l) 

(2.29) 

Alternating voltage waveforms required to drive P M S M s are then commonly 

generated using the three-phase power inverter wi th the pulse width modulation. In 

the basic form, the three-phase power inverter consists of six switches that enable 

connecting the D C bus voltage between the particular machine phases at a certain 

moment. These switches are then controlled by logical signals with changeable duty 

cycles Sa(k), Sb(k), and 5c(k) that are adjusted based on the generated control system 

voltage requests ua(k), ub(k), and uc(k) and implemented modulation technique. 

The main objective of the modulation technique is to maximize the uti l ization of 

l imited D C bus voltage. In this thesis, the M i n - M a x third harmonics injection 

approach [20] is implemented as an equivalent of the space vector modulation ( S V M ) 

technique. According to the M i n - M a x modulation strategy, the duty cycles of the 

inverter's switches are calculated as in 

ua(k) ma,x(ua(k),ub(k),uc(k)) + mm(ua(k), ub(k), uc(k)) 
5a(k) 

5b(k) 

Sc(k) 

+ 

+ 

udc 2Udc 

ub{k) max(ua(k),ub(k) uc{k)) + min [ua(k),ub(k) uc{k)) 

2Udc 

uc(k) ma,x(ua(k),ub{k) uc{k)) + min [ua(k),ub(k) uc(k)) 

Udc 2Udc 

The control system implementation is visualized in Figure 2.7. 

(2.30) 

Angle tracking observer 

Fig . 2.7: Control system implementation in M A T L A B Simulink 
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In Figure 2.7, a current fuse is implemented. This fuse ensures that the voltage 

outputs Ud and uq are disconnected unti l the control system is restarted if the current 

vector magnitude Ji\ + i2 reaches the defined critical value Icrit. 

2.5 Control system validation 

For the purpose of control system validation, a measurement on the configurable 

motor was performed. A C code was generated using the Embedded Coder app 

out of the M A T L A B Simulink control system model, and the generated code was 

implemented into preprogrammed A U R I X Appl icat ion K i t TC277. The kit was 

connected to the inverter, the D C bus voltage was adjusted to Udc = 45 V, and the 

quadrature axis current request l imitat ion was set to be Imax = 5 A. The critical 

value of the current vector was defined by Icrit = 20 A. The angular velocity was 

then controlled by a slow ramp to wm = 10 rad/s to ensure proper initialization. 

After the initialization, the step requests of angular velocity were performed, and 

the transients were measured. Subsequently, inter-turn short circuits were emulated 

in phase 'a ' wi th fault relevance Xf = 6/25 for connection np — 1, ns — 1, and 

Xf = 14/25 for connections np — 1, ns — 3 and np = 2, ns = 3. In configuration 

np — 1 and ns — 1, the fault current quickly reaches higher values; therefore, 

faults wi th lesser relevance are emulated to prevent overheating. Figure 2.8 visualize 

measured characteristics for three winding connections. 

a) winding connection np — 1; ns — 1 
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b) winding connection np — 1; ns — 3 

Fig . 2.8: Responses of controlled machine for three winding connections 
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3 Discrete-time equivalent of ITF model 
Since identification algorithms primarily support discrete-time models, therefore, 

for the purpose of fault relevance diagnostics, the model described in Section 1.3 

has to be discretized. Traditionally, many authors discretize machine models using 

the Finite difference method, such as the forward Euler method (first-order) or the 

second-order Runge-Kut ta method [21] - [22]. These methods approximate a time 

derivative by the finite set of differences, leading to an inexact solution lacking physi

cal meaning and amplifying the higher frequencies of system noise. Furthermore, this 

solution might be even unstable at higher electrical angular velocities. Due to these 

issues, a novel machine discretization procedure based on the linear time-varying 

systems approach [23] - [24] is presented. The key idea lies in the integral relation

ship between the electrical angular velocity and angle 9e(t) = flTsU)e(T)dT + 9e(k). 

Hence, in the discretization procedure, the electrical angular velocity ue(t) can be 

considered a time-varying parameter with the defined integral. Since the model of 

the shorted machine consists of two parts tied in the output equation, it is possible 

to discretize these parts separately and combine their discrete-time equivalents. 

3.1 Healthy part discretization 
The system of differential equations describes the healthy part of the I T F model as 

in (1.25). This system can be written in a linear time-varying form. We have 

d_ 
d l 

id,h(t) 

iq,h{t) 
Ah(t) 

id,h(t) 

iq,h{t) 
+ Bh(t) 

udit) 

Ug(t) (3.1) 

where 

Ah(t) 
Rs lMt) 

Rs 
Bh(t) 

Ld 

0 

0 
(3.2) 

However, since the direct and quadrature axis inductances of the validated machine 

(Table 1.2) are close to each other, they can be approximated by a common d — q 

inductance Ldq = Ld~^Lq, yielding 

Ah(t) 
Ldq U)e(t) 

- W e ( t ) ~ R 

dq 

Bh(t) 
1 

Ldq 

1 0 

0 1 

0 

-U)e(t) 
(3.3) 
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Discrete-time equivalent's state matrix Ad J/ l((fc + l ) T s , kTs) = e-1^ T is then 

calculated based on the state matrix A^it) time integral. We have 

r(k+l)Ts 

/ Ah(r)dT 
Ldq 

(9e(k + l)-9e(k)) 

•(9e(k + l)-9e(k)) L d q

± s 

(3.4) 

Based on the matrix exponential definition for some special cases of matrix A^it) 

described by Bernstein and So in [25], the discrete-time equivalent's state matrix 

Ad,h{{k + 1)T S, kTs) gains the following form: 

Adth((k + l)Ts,kTs) = e 
cos(9e(k + 1) - 9e(k)) sin(9e(k + 1) - 9e(k)) 

- sin(9e(k + 1) - 9e{k)) cos(9e(k + 1) - 9e{k)) 

(3.5) 

Hence, the discrete-time equivalent of system (3.1) is defined as in 

id,h(k + 1) 

iq,h(k + 1) 
Ad,h((k + l)Ta, kTs[ 

id,h(k) 
+ J^AdA((k+l)Ts,r)Bh(r) 

Ud(r) 

A, 
dr. 

(3.6) 

However, system (3.6) can be expressed more illustratively in the stator reference 

frame. We have 

ia,h{k + 1) Hg rp 
= e Ldi 

ia,h{k) 
iß,h{k+ 1) iß,h{k) 

1 0 w e ( r ) s i n ( 0 e ( r ) ) 

0 1 - w e ( r ) c o s ( ö e ( r ) ) 

w Q ( r ) 

r i r . 

(3.7) 

For the purpose of discretization, the inverter switching can be neglected, and 

the stator reference frame voltages can be considered constant over one sampling 

period ua(t) = ua{k) = const, and up(t) = up{k) = const, if kTs < t < (k + 1)TS. 

Evaluating integrals then results in the following form of system (3.7): 

ia,h(k + 1) RS rp 
f -*- s 

= e di 

ia,h(k) 

iß:h(k + 1) iß,h(k) 
+ B d.h. 

ua(k) 

uß(k) 

X 

(3.8) 

where 

B aß J_ 1 - e L d ^ 

0 

0 

(3.9) 

Integrals in expression (3.9) do not have an analytic solution since the time represen

tation of the electrical angle is unknown. However, these integrals can be simplified 
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using integration by parts to the velocity independent form. We have 

Rs r(k+m _ - 2 M ( f c + 1 ) T 3 _ r ) 

h = — e Ld" ue(r) sm(9e(T))dT 
L d q JkTs 

Ix = - 3 l (cos(Be(k + 1)) - e~^Ts cos(ee(k))) + 
Ldq V / 

Rl f(k+m _ ̂  ( ( f c + i )T.-r) , „ 
+ "ry- / e Ldi COS(9e{T))dT 

Ldq JkTa 

J 2 = — — / e ^ w e ( r ) c o s ^ r ) ) ^ 

/ 2 = _A fsin(0 e(A; + 1)) - e _ 1 ^ T s sin(0 e(£;))') + 

i ?2 ,(k+l)T. _ R ^ { { k + 1 ) T s _ T ) _ 
+ jf l._ e L * « ^ ' s sm(9e(r))dr. (3.10) 

It is possible to calculate integrals in (3.10) numerically [26]; however, such solution 

leads to non-zero back electromotive force if ooe = 0. This issue results in a significant 

distortion occurring in rotor reference frame currents. Therefore, integrals in (3.10) 

are approximately solved based on the mathematical analysis of back electromotive 

force. The solution of integrals in (3.10) can be approximated as in 

-pf- / e W(k+1)la Uos(9e(T))dT^^{KlCos{9e{k + l))-K2cos{9e{k))) 
Ldq JkTs L d q  

R 2 f(k+l)Ts _ R ^ { { k + 1 ) T a _ T ) Rs 

Ld 9 

/ e V ( f e + l j i s rJsin(^(r))dr^^(Kisin(^(A; + l))-K2sin(^(fc))) 
(3.11) 

where constants K\ and _ftT2 have to be calculated based on the back electromotive 

force properties. Substituting (3.11) into (3.10) results in 

h ~ ~ Z 7 ( ( 1 ~ K l ) c o s ^ k + 1 ) } ~ ( e ~ ^ T s ~ K " ) c o s ^ k ) ) 

T L ( ' \ - Ki) sm(9e(k + 1)) - (e~^Ts - K2) sm(9e(k))) . (3.12) 
J^dq 

If a motor's angular velocity equals 0, then the electrical angle reads 9e(k+l) = 9e(k) 

and the back electromotive force has to be 0. Therefore, I\ — 0 and J 2 = 0 if 

9e(k + l)=9e(k), yielding 

Ra_T 

l - K x = e Ld" 3 - K 2 . (3.13) 

A s seen in (3.1), the contributions of permanent magnets to did/dt and diq/dt are 

equal to 0 and —ue(t)\pm/Ldq. Therefore, the contributions of permanent magnets 

to the derivatives of stator reference frame currents dia/dt and dip/dt are equal to 

sin(9e(t))ue(t)Xpm/Ldq and - cos(9e(t))ue(t)Xpm/Ldq, resulting in Kx = 0. 
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Hence, the healthy part of the shorted motor model can be written in the linear 

time-varying discrete-time form as in 

ua(k) 
ia,h(k + 1) 
ipih(k + 1) 

AaMk + l)Ts,kTs 

ia,h(k) + BaMk + l)Ts,kTs up{k) (3.14) 

where 

KH((k+m,kTs 

Ba/h((k + l)Ts,kTs 

h((k + l)Ts,kTs 

I2((k + l)Ts,kTs 

e Ldi~ 

0 e Ldi~ 

1 

R„ 
1 - e Ld" 

0 

0 h((k + l)Ts,kTs) 

R.« 
Ldq 
Rx 

1 - e L« s I2((k + l)Ts,kTs) 

cos(6e(k + 1)) -cos(ee(k))) 

sm(6e(k + 1)) -sm(9e(k))). (3.15) 

3.2 Fault current discretization 
The differential equation and output relation describe the fault current contribution 

as in (1.28). However, since the inductances of the validated machine are close to 

each other (Table 1.2), the fault inductance can be approximated as in 

2 
(3.16) 

Then the differential equation describing the fault current can be written in the 

following form: 

dt '.f 3 £ / f L, 

cos(0 e + | ) 

- s i n ( 0 e + | ; 

1 T -
ud 

Uq 

(3.17) 

where 

Rf,dg = x) (3 - 2x)) Rs + 3R*f. (3.18) 

Transforming the input vector into the stator reference frame provides the linear 

time-invariant definition of fault current. We have 

d 
dt 

Rf.dq • , X*f 
T -

cos( | ) Ua 

- s i n ( f ) _ Up 
(3.19) 

The discrete-time equivalent of the linear time-invariant system (3.19) is then well 

defined as in 

1/•<'</ -

if(k + l) = e 3Lf stf(k) + 
3.x 

/ 
1 / • ' ' ' / -

R 
1 - e 3Lf 

f,dq 

' cos(f) " 
T 

ua(k) 
_- s in ( | ) _ up{k) 

(3.20) 
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3 . 3 S t a t o r r e f e r e n c e f r a m e d i s c r e t e - t i m e m o d e l 

Discretized model of healthy part (3.14) and fault current (3.20) can be combined 

into one discrete-time system as in 

ia,h(k -

iß,h(k -M ) = 
1). 

A%{{k + l)Ts,kTs) 

0 T j'.fltj .< 

ia,h(k) 

iß,h(k) + 
.if(k)_ 

B%((k + l)Ts,kTs 

Bff((k + l)Ts,kTs 

ua(k) 
Uß(k) 

Xpm 

(3.21 

where A^h((k + 1)TS, kTs) and B ^ ( ( / c + l ) T s , kTs) are defined as in (3.15), 0 T stands j aß 

for 0 0 

BZ((k+l)Ts,kTs) 

, and Bg((Jfe + 1)TS, kTs) reads 

3x*f 

R f,dq L 

Xf,dq, 

cos sin(f) 0 

(3.22) 

Since Z {Af((k + 1)TS, kTs)i(k)} = Af({k + 1)TS, kTs)Z {i{k)} where i(Jfe) stands 

for h{k) ip,h(k) if(k) and A^((k + 1)TS, kTs) is the state matr ix as in (3.21) 

it is possible to describe system (3.21) using Z-transform. We have 

Ia,h(z) 

. iAz) 

(zI-Af((k + l)Ts,kTs)) XZ Bf((k + l)Ts,kTs 

ua(k) 

uß(k) > 

> 

(3.23) 

where I is the 3 x 3 identity matrix and B ^ ( ( / c + l)Ts, kTs) is the input matrix as 

in (3.21). Evaluating expression (3.23) leads to the following solution: 

Ia,h(z) 

hÁz) 
. If(z) . 

1 l - e dq 3x* c o s ( | ) 1 _ e 3Lf" 

Xf,dq 

z - 1 

'^dq - f ^ ' , 
z-e di 

_ Rs r 

1 l - e LdqJ 

z - e d,3 

0 

^pm Z 1 
Ldq 

z - e d,3 

3 a : / s i n ( f ) l - e 3 V ' 
if,dqr 

Ua(z) 

Uß(z) 

Z{cos(9e(k))} 

Z{sin(0c(fc))}. 

(3.24) 

The algebraic equation describes the output rotor reference frame currents as in 

(1.28). However, this expression can be transformed into the stator reference frame, 

yielding 

ia(k) " l 0 

iß(k) 0 1 

\x)cos 
( ? ) 

ia,h(k) 

iß,h(k) 

.if(k). 

(3.25) 
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Since the transition matrix in (3.25) is time-invariant, description (3.25) also holds 

for the signals defined in Z-transform. Therefore, this description might be ap

plied to determine the input-output behavior of the permanent magnet synchronous 

machine under the inter-turn short circuit fault out of (3.24). We have 

la Fh{z) + (1 + cos{cj>))Ff{z) - än{(/,)Ff{z) 

- sm{<t>)Ff{z) Fh(z) + (1 - c o s ( 0 ) ) r > ( z ) 
•^i>m(^) 

o 

Ua(z) 

Up(z) 

z{cos(ee(k))} 

Z{sm(ee(k))} 

(3.26) 

where 

Fh(z) 
1 1 

1X8 z - e Ld*~ 
FAz) 

xÝ 1 
V,dg r 

R f,dq IMqr Fpm\Z) L _ HS rp 
dq z _ g Ldq

 s 

(3.27) 

System (3.26) is then transformed into the time domain resulting in the following 

description of a — (3 currents: 

ia(k) 

+ (<ThI + G T / $ ) 

A 

f>dq , 

+ e 

ua(k 

up(k 

xpm 
Ldq 

A 

cos(6e(k)) 

sm(Be(k)) + 
A 

1) 

1) 

pm 

*f,dq, 

( Rs , Rf,dq 
\ L d g + 3Lf 

T + a/e Ldi 

i«(k-2) 

ip{k-2) 

ua(k — 2) 

up{k-2) 

+ 

*f,dq, 

1 + e 
Jdq siní 

Ák-1)) 

,(k-l)) 

p m e 3Lf 
Jdq 

cos(9e(k-2)) 

sm(6e(k - 2)) 
(3.28) 

where 

1 

R S 

1 0 

0 1 

x / 
f,dq rp 

O T S 

Rf,dq \ J 

1 + cos(0) — sin(0) 
— sin(0) 1 — cos(0) 

(3.29) 

Parameters that are related to the fault relevance ratio and are calculated 
Rf,dq 3Lf 

based on the substitutions (1.16), (3.16), and (3.18), as in 
„ * 2 

X 
f 1 

Rf4q 

Rf,dq . 

?>n2

sRfXf2 + 3nsnpRsx j1 + (1 — 3np)Rs 

3nj,RfXj2 + 3nsnpRsxj1 + (1 — 3np)Rs 

3L f 2np(ns DL dq 
(3.30) 

Note that if xt = 0, then > 0 and e 
3 ' Rf,dq 

healthy currents (3.14) is achieved. 

f,dq rp 
O T I S —> 0. Hence, the behavior of the 
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3.4 Discrete-time model verification 

The continuous-time model of P M S M under the inter-turn short circuit fault was 

already validated v ia open-loop measurement of the back electromotive force and 

fault current of the configurable motor (Section 1.5). Therefore, since the fitting of 

the continuous-time model was already proven, it is possible to verify the discrete-

time model only wi thin the simulation. For this purpose, closed-loop verification is 

implemented. 

The control system regulates the continuous-time model to the mechanical an

gular velocity setpoint u^, and the short circuits are simulated wi th the following 

fault relevance: Xf = 6/25 and Xf = 14/25 in cases np — 1, ns — 3 and np = 2, 

ns = 3, and Xf = 3/25 and Xf = 6/25 if np — 1, ns — 1. The control system 

parameters and electrical parameters of machine models are defined for three wind

ing connections in the initialization code of the subsystems. Then it is possible to 

change these parameters by a switch in the subsystems masks. Torque load is set 

to be 0 during this experiment, but the dry and viscous frictions are involved into 

the simulation. The maximum current is l imited to Imax = 8 A, and the D C bus 

voltage is Udc = 55 V. Figure 3.1 visualizes the M A T L A B Simulink realization of 

the verification experiment. 

JT 

IPMSM under the ITF - discrete-time model 

Fig . 3.1: Verification of the discrete-time model in a closed control loop 

Since the continuous-time model is implemented in the rotor reference frame, 

the transformation of input currents from (abc) to d — q is neglected in the control 

system (Section 2.4), and the transformation of output voltages is reduced only to 

the inverse Park's transformation (from d — q to a — 0). Therefore, the condition 

of constant ua and up over one sampling period is fulfilled. These voltages are then 

transformed back into the rotor reference frame using the rate transition blocks and 
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continuous-time Park's transformation (Figure 3.1). Due to this connection, the 

simulated closed control loop fits the actual machine behavior more precisely. The 

only difference in the interpretation of the inputs is caused by neglected inverter 

switching. Stator reference frame voltages are then together wi th the discretized 

sine and cosine of electrical angle connected as inputs of the discrete-time model. 

M A T L A B Simulink implementation of model (3.28) is visualized in Figure 3.2. 

Contribution of the voltages 

Park Transform 

Fig . 3.2: Realization of the discrete-time model of I P M S M under I T F 

A s seen in Figure 3.2 the model is extended by discrete-time Park's transfor

mation, and the rotor reference frame currents are sent to the outputs. Hence, the 

discrete and continuous-time models are excited with the same input signals, and 

the transients of the rotor reference frame currents are compared. The comparison 

of simulated continuous and discrete-time currents is visualized for three winding 

connections in Figure 3.3. Differences are caused by direct La and quadrature Lq 

axis inductance approximation by a common inductance Ldq in the discrete-time 

model. 

a) winding connection np — 1 ; ns — 1 
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b) winding connection np — 1; ns — 3 

Fig . 3.3: Comparison between continuous and discrete-time model 
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4 Fault relevance identif ication 
A s presented in Section 3.3, P M S M under the I T F is described by the linear discrete-

time model (3.28), where the fault-related specifications (fault relevance Xf and 

resistance of a short circuit Rf) are interpreted as time-varying parameters (3.30). 

Hence, the I T F diagnostics presented in this thesis are based on the parametric 

estimation of linear systems [27] - [28]. 

The input signals of discrete-time model (3.28) are combinations of sine and 

cosine waves with different amplitudes (defined by the rotor reference frame voltages 

Ud and uq) and the same frequency ue. Therefore, the persistence of input signals is 

insufficient to identify all the parameters of the discrete-time model unless a machine 

is accelerating or decelerating. Hence, the discrete-time model must be modified to 

reduce the number of identified parameters. 

4.1 Problem definit ion 

Since the short circuits may occur only in three phases, there is a finite set of 

parameter 0 values (if the I T F is in phase 'a ' then 0 = 0, if the I T F is in phase V 

then 0 = y , and if the I T F is in phase V then 0 = — y ) . A n interesting situation 

occurs if 0 = 0. In such a case, the input-output behavior of P M S M under the I T F 

can be determined out of (3.26) as in 

Fh(z) + 2Ff(z) 0 

0 Fh(z) 
Fpm (^) 

Ppm (^) 

Ua(z) 

Uß(z) 

Z{cos(9e(k))} 

Z{sin(0 e(fc))}. 

(4.1) 

where the transmissions Fh(z), Ff(z), and Fpm(z) are defined as in (3.27). In (4.1), 

only one currents component (ia) is affected by I T F , and the other (ip) follows 

healthy machine behavior. A similar situation can be achieved for short circuits in 

different phases by transforming currents and voltages. We have 

= R(0) 
ua 

= R(0) K 

Uß 
(4.2) 

where 

R(0) 
1 

sin(</>) 

sin(</>) 
l+cos(</>) 

1 

1 + cos(0) — sin(0) 
sin(0) 1 + cos(0) 

(4.3) , , R - x ( 0 ) 
1 + C O S ( 0 ) 

Note that the transformation matrices defined in (4.3) result in an identity matrix 

if the short circuit is in phase 'a'. If (4.2) is substituted into (3.26), an analogous 
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description to (4.1) is obtained. The only difference lies in the rotated contributions 

of permanent magnets. Therefore, the discrete-time model can always be simplified 

to the form that contains two independent currents components, where only one of 

them is affected by I T F . The cross-correlation between i*a{k) and u*p(k — 1) for all 

possible 0-based transformation matrices (4.3) can then be evaluated to determine 

which stator phase is shorted. For example, suppose a short circuit occurs in phase 

'b'. In that case, the cross-correlation between the transformed variables i*a{k) and 

u*p(k — 1) that are obtained by applying transformation matrix R - 1 ^ ) to ia(k) 

and up(k — 1) is significantly lower than the cross-correlation evaluated from vari

ables obtained by applying R _ 1 ( 0 ) and R _ 1 ( — ^ ) . Therefore, fault in phase 'b ' is 

indicated. However, since the configurable motor used for algorithm verification is 

primarily designed to support short circuits in phase 'a ' , the phase detection won't 

be implemented. 

The simplified system (4.1) is then transformed into the time-domain, yielding 

ia(k) 

^Tsip{k - 1) + <rhup(k - 1) - ^ ( s i n ( 0 e ( A O ) - sm(6e(k - 1))) 
->dq 

Ldq + e 
f,dq rp 

o r J S 
ia{k 

( Rs . Rf,dq 
\ L d q + 3Lf f) ia(k-2)+ 

+ (ah + 2af)ua(k - 1) - ahe 

X p m cos(6e(k)) + X p m 

Ldq 

A 

1 + e 

1f-dq, 

Xf,dq , 

•pra 
f,dg rp 

Jdq 
cos(9e(k-2)) (4.4) 

where and Of are defined as in (3.29). A s seen in (4.4), the behavior of i$ 

is theoretically unaffected by I T F . Hence, it is possible to estimate the healthy 

parameters even if the I T F occurs. Rewrit ing the difference equation that describes 

is into a form suitable for parametric identification results in 

ip(k - I ) up(k - I) sin(#e(/c - I ) ) - sin(0e(fc)) 

ip(k-l) ip(k - 2 ) up(k - 2) sin(#e(/c — 2 ) ) - sm(9e(k - l ) ) Ph,l 
ip(k-2) = ip(k - 3 ) up(k - 3) sin(#e(/c — 3 ) ) - sin{ee{k - 2)) Ph,2 
ip(k - 3) ip(k - 4 ) up(k - 4) sm.{6e{k — 4 ) ) - sm(0e(k - 3)) 

(4.5) 

where 

Ph,i = e L d " 

1 - Ph,i 

Ph,2 

Ph,2 

Ldq 

1 
Rs 

1-e d q 

Ts(l -Ph,i) 

ln(phjl)phj2 

Ph,3 

Xpm 

A •pm 

Ldq 
T s ( l -ph,i) 

hi(phil)ph,2 
P3- (4.6) 
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Note that the persistence of input signals is insufficient to identify three parameters 

if the machine runs at constant angular velocity. Generally, it is possible to identify 

two parameters by a harmonic signal that contains only one frequency [27]. This 

problem has a relatively simple solution. The identification procedure of healthy 

parameters has to start before a machine is driven to the velocity setpoint. 

The estimated healthy parameters ph,i, Ph,2, and ph,3 are then used to reduce the 

order of difference equation that describes ia. We have the following output and 

input transformation: 

y(k) = ia(k) - Ph,iia{k - 1) - Ph,2Ua(k - 1) + Ph,3 cos(9e(k)) - phj3 cos(#e(/c - 1)) 

v(k) = ua(k) -ph,iua(k - 1) (4.7) 

where y is the new output and v is the new input. Since these variables are formed 

as a linear combination of harmonic waveforms, they are also harmonic with the 

same frequency as the original signals. If (4.7) is substituted into ia description 

(4.4), the transformed difference equation is derived as in 

y(k) 
f,dq rp 

OT 3 y(k-l) + 2 
X 

* 2 f,dq rp 

R f,dq 
f 8 )v(k-l). 

Equation (4.8) is then easily transformable into a form suitable for parametric iden

tification. We have 

y(k) y(k - 1 ) v(k - 1 ) 
y(k-l) y(k - 2 ) v(k - 2 ) 

y(k-2) = y(k - 3 ) v(k - 3 ) 
y(k-3) y(k - 4 ) v(k - 4 ) 

p/,1 

P / , 2 
(4.9) 

where 

*f,dq, R 
Pf,2 

f,dq 
R f,dq X 

* 2 

Pf,2 
(4.10) 

In this case, the persistence of the input signal v does not cause trouble since only 

two parameters are identified. Therefore, fault-related parameters can be estimated 

even if a machine runs at constant angular velocity. 

A s seen in (3.30), fault relevance Xf can not be calculated out of Rftdq/x}2 since 

the information about Rf is missing. There are a few ways how to deal with this 

issue. For example, it is possible to express fault relevance as a function dependent 

on short circuit resistance Xf = f(Rf)- However, in this thesis, the fault relevance is 

normalized and expresses what portion of winding is shorted by the zero short circuit 
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resistance x^n = f(Rf = 0). Normalized fault relevance x^n is then calculated as 

in 

X f = 3 n s n ? R s

 X f =—*l (4 11) 
%f + (3np-l)Rs

 n^+xf 

The online fault relevance diagnostic algorithm then contains the following steps: 

1. Update the estimation of healthy parameters (4.5). 

2. Calculate input and output transformation (4.7). 

3. Update the estimation of I T F parameters (4.9). 

4. Calculate series resistance Rs (4.6). 

5. Evaluate Rf4q/x*f

2 (4.10). 

6. Calculate normalized fault relevance XfjTl (4.11). 

It is assumed that information about winding architecture (number of parallel 

branches np and number of coils in series ns) is available. 

4.2 System noise analysis and fi lter design 
This thesis aims to achieve fault relevance diagnostics running online on the drive 

system of the validated motor. Therefore, the possible sources of the system noise 

have to be analyzed. This step is essential since P M S M s are rotating machines and 

measured signals often contain periodic distortions. In terms of parametric estima

tion, the periodic distortion cause trouble since the system's inputs and outputs are 

correlated wi th the noise. The following sections wi l l discuss only the particular case 

of winding connection np — 1, ns — 3 since the configurable machine is designed to 

be connected as a double three-phase motor with three series-connected coils in the 

phase. It was measured that the periodic distortion is significantly higher in other 

connections than np — 1 , ns — 3 (Figure 2.8). 

Traditionally, machine nonlinearities, periodic distortions, and measurement er

rors are reflected primarily in currents waveforms. One can admit that the angle 

measurement poses a source of uncertainties as well; however, an encoder measures 

the mechanical angle relatively precisely, and the contribution of angle uncertainties 

to the system noise is minimal. Hence, the measured stator currents can be used 

for the purpose of system noise analysis. We have 

ic,r ic ^c,p £-c,n ( ^ ' l ^ ) 
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where ia,r, %,r, and iC:T stand for measured stator currents, ia, h, and ic are ideal 

stator currents, eajP, £&]P, and eCtP represent periodic distortions, and e a j T l, and 

e C j „ stand for random non-periodic noises. 

Due to the star connection of the motor, the ideal currents must satisfy the 

following equation (even if I T F is emulated): 

ia + k + ic 0. (4.13) 

However, most of the periodic distortions satisfy condition (4.13) as well, yielding 

C,p 0. (4.14) 

Since all three stator currents are measured, conditions (4.13) and (4.14) can be 

applied to determine the random noise level of measured currents as in 

(4.15) 

Hence, the sum of random noise components en is calculated out of the sum of the 

measured currents, and the statistical properties can be evaluated. For this purpose, 

the data from experiments in Section 2.5 are used. The measured stator currents 

are summed up (including the data from transients areas where the machine is 

speeding up to the angular velocity setpoint and areas where the short circuits 

are emulated) and the mean values /x and variances a2 are calculated and presented 

together wi th the histograms in Figure 4.1. 

A„* = 25 rad/s, j i= -0.0997 A, o" = 0.00349 A ; , * = 50 rad/s, j i= -0.0993 A, o" = 0.00361 A 2 = 75 rad/s, a = -0.1026 A, o 2 = 0.00396 A 

-0,4 -0,3 -0,2 -0,1 0 0,1 
Noise level o f measured currents [A] 

0,4 -0,3 -0,2 -0,1 0 0,1 
Noise level o f measured currents [A] 

-0,4 -0,3 -0,2 -0,1 0 0,1 
Noise level o f measured currents [A] 

Fig . 4.1: Histograms of measured random noise; connection: np — 1, ns — 3 

A s shown in Figure 4.1, the random noises contain the non-zero mean value. This 

offset is probably caused by converting the numbers obtained by the analog-digital 

converters to currents inside the processor. According to the algebra of random 

variables [29], the mean value of the sum of noises /x is obtained as in 

= A*a + l^b + He (4.16) 
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where /x a , //&, and \xc are the mean values of random variables ea,n, £&,n, and £ C ] „. 

Since /x 7^ 0, there is a high probability that \xa 7^ 0, /if, ̂  0, and /x c 7^ 0. Therefore, 

the D C offset is most likely propagated into the stator reference frame, yielding 

Ha 2 

~~ 3 

1 1 " 
2 2 

2 2 - Pc_ 

(4.17) 

Similarly, the variances of, of, and o 2 of random variables eajJl, and e C i „ are 

transformed into the stator reference frame as in 

4 "1 
1 
1 

I -

4 

~ 9 0 
3 
1 

3 
i - o : 

(4.18) 

If it is assumed that a2 = of = a2 = o 2 / 3 , then the errors propagated to the stator 

reference frame have the following variances: o 2 = | o 2 and cr| = | o 2 . Therefore, 

according to histograms in Figure 4.1, the random noise component is modeled as 

the normally distributed random number with the variance of 1 • 10~ 3 . The mean 

value of the modeled noise is biased according to equations (4.16) and (4.17). 

Another factor that causes a significant problem in parametric estimation is the 

presence of periodic distortions ea,pi £&,p, and eCjP. For example, the electrical param

eters are not concentrated and might slightly differ in each winding slot. Same for 

the contributions of permanent magnets. Therefore, there is significant distortion 

in frequency um = ue/p, where p is the number of pole pairs. Such distortion can 

be seen in the fault current waveform in Figure 2.8. Another source of periodic fluc

tuations is an inverter's nonlinearity. A s mentioned by Buchta in [30] the distortion 

caused by the inverter can be modeled as follows: 

Udead 
3 

_ 1 
3 

2 
3 . 

sign [ i a ) 

sign(i b) 

sign(z c) 

(4.19) 

where A , Aub, and At are contributions to the required stator voltages, and 
udead is the dead time voltage that reflects voltage drops on the switches of the 

inverter. If (4.19) is expressed in the stator reference frame using the trigonometric 

series, the periodic distortions are obtained as in 

V/3 

Udead-(Sm(0e 

7T 

-Udead-(C0S( 
71 

+ Sa) 

(4.20) 
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where 

_ ~ (sm((Gn - 1)9e) sin((6n + 1)9 

n 
d o 

\ \ 6n — 1 6n + 1 

x . , cos((6n - l)9e) cos((6n + l ) „ e y , 
5 / 3 " ^ [ 6 ^ 1 + ^nTi ) ' ( 4 2 1 ) 

Since a machine follows linear model (4.4), the same frequencies as in (4.20) and 

(4.21) are propagated to the stator reference frame currents. It was estimated that 

the dead time voltage udead is equal to 0.02 V in the case of the motor used for 

algorithm validation. 

Since the frequency of the stator reference frame signals is estimated by the angle 

tracking observer (Section 2.3) in the control system, band-pass filtering is the most 

straightforward way to deal wi th the D C offset and periodic distortions. Generally, 

the transfer function of the band-pass filter can be defined as in 

Ffut(s) = ^fi= 2 J ? r \ 2 (4-22) 
U(s) s2 + 2(urs + co2 

where oor is the reference frequency, ( stands for the damping ratio, and U(s) and 

Y(s) are the input and output of the filter expressed in Laplace transform. The 

passing frequency must correspond to the electrical angular velocity, yielding the 

value ur = oje{k) adapted in each step. The damping ratio is adjusted to achieve 

suitable suppression of higher spectrum components. The calculated value ( = 0.3 

ensures that the frequencies ue/5 and 5ue are suppressed by approximately 18 dB. 

Transfer function (4.22) is then discretized resulting in the following expression: 

y(k + 1) = b(k)(u(k) - u(k - 1)) + a i ( % ( £ ; ) + a2(k)y(k - 1) (4.23) 

where u{k) and y(k) are the filter input and output expressed in time-domain and 

adapted coefficients b(k), ai(k), and a2(k) are calculated as in 

b(k) = 2 - 7 = £ = e - ^ ( ^ s i n ^ A O T ^ l - C 2 ) 

ai(Jfe) = 2e~^{k)T° cos(uje(k)Ts^l - (2) 

a2(k) = _ e - 2 ^ ( f c m ( 4 2 4 ) 

Note that this filter does not entirely suppress the inverter's nonlinearity since the 

distortion contains a component with frequency ue. Therefore, the estimated pa

rameters are always biased. However, due to the low level of dead time voltage 
udead, the bias is not so significant. The advantage of signals filtering is suppressing 

the D C component and distortion on frequency oom. The fault relevance diagnostic 

algorithm presented in Section 4.1 is then extended by adaptive filters as follows: 
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1. Update filter coefficients (4.24). 

2. Fi l ter the signals up, ip, and sin(#e) by the adaptive filters (4.23). 

3. Update the estimation of healthy parameters (4.5). 

4. Calculate input and output transformation (4.7). 

5. Fi l ter the transformed input v and output y by the adaptive filters (4.23). 

6. Update the estimation of I T F parameters (4.9). 

7. Calculate series resistance Rs (4.6). 

8. Evaluate Rf,dq/xf (4.10). 

9. Calculate normalized fault relevance XfjU (4.11). 

4.3 Parametric estimation 

For the purpose of online fault relevance diagnostics, the parameters in equations 

(4.5) and (4.9) have to be recursively estimated. In the case of healthy parame

ters (4.5), the persistence of input signals cause trouble with the forgetting factor 

selection. O n the one hand, since the persistence of input signals is insufficient if 

a machine runs at a constant angular velocity, the forgetting factor has to be 1 to 

preserve information obtained during transients. O n the other hand, the healthy 

parameters of a real motor are time-variant. For example, the inductances decrease 

wi th the growing current due to the saturation effect, or the resistance increases 

wi th the rising temperature. Therefore, the forgetting factor must be less than 1 to 

track these changes correctly. The solution to this situation leads to the variable 

forgetting factor. In the case of I T F parameters (4.9), if a machine is not shorted, 

the identified I T F parameters have no meaning and must be quickly forgotten after 

I T F occurs. Hence, there is a high demand for reliable online adjustment of the 

forgetting factor. Moreover, the identification algorithm must be calculated under 

100 [is on A U R I X application kit TC277. The defined requirements are perfectly 

satisfied by the regularized parametric estimation algorithm described by Dokoupil 

in [31]. 

A s mentioned in [31], the presented estimation strategy expands on the classical 

recursive least squares method [27] by designing a data-driven forgetting strategy 

that operates in synergy wi th the variable regularization. The regularization is con

ceived to employ the previous parameter estimate to stabilize the updated one via 

retention of the externally supplied information. The soft equality constraints on 

the regression parameters S (where S is some real regular square matrix wi th a 

dimension corresponding to the number of identified parameters) are then incor

porated into the learning procedure to smooth the parameter estimate. Generally, 

the algorithm contains the data-updating steps, forgetting factor adjustment, and 

time-updating steps. During the data-updating steps, the variables that transmit 
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information between the previous and actual time steps f(k, k — 1) are updated in 

terms of transmitted data f(k,k — 1) —> f(k,k). A n example of such variables is 

the number of degrees of freedom u(k, k — 1) (scalar variable) or the least squares 

reminder H(k,k — 1) (scalar variable), representing the estimated minimum of a 

quadratic criterion. Note that Y,(k,k — 1) and u(k,k — 1) are the required statis

tics of normal-Wishart probability distribution. The forgetting factor adjustment 

X(k, k — 1) —> X(k + 1, k) is then based on the Kullback-Leibler divergence between 

two normal-Wishart probability density functions, where one is described by the pre

vious step statistics E(fc, k — 1) and u(k, k — 1) and the other by the data-updated 

statistics E(fc, k) and u(k,k). Therefore, if a rapid parameter change occurs, it is 

quickly reflected by the least squares reminder E(fc, k) and thus by the Kullback-

Leibler divergence. In the last algorithm part, the data-transmitting variables are 

updated in terms of time f(k,k) —> f(k + l,k). Hence, some of the information 

passed to the next step is forgotten based on the currently calculated forgetting 

factor X(k + l,k). 

During the data-updating steps, firstly, the update of the projection matrix 

P(k,k) is calculated. The projection matrix is not propagated to the next step 

in the implemented algorithm version; instead, the information matrix V(/c, k — 1), 

which represents the inversion of the normalized projection matrix, is passed. The 

projection matrix data update P(k, k) is then calculated using the information ma

tr ix V(fc, k — 1). We have 

P " 1 ^ , k - 1) = V(Jfe, k - 1) + (1 - X(k, k - 1))S 

V(Jfe, k) = P:\k, k - 1) + h(Jfe) • hT{k) 

K(Jfe) = Pc{k, k - 1) • h(Jfe)/(l + hT{k) • Pc(k, k - 1) • h(Jfe)) 

P(Jfe, k) = (I - K(Jfe) • hT{k)) • Pc{k, k - 1) • (I - K(Jfe) • hT{k))T+ 

+ K{k)-KT{k) (4.25) 

where I is the identity matrix of dimension corresponding to the number of iden

tified parameters and h(k) stands for the column regression vector. Note that the 

constrained terms H realize penalization in information matrix V(/c, k). If the rapid 

change of forgetting factor occurs, it is reflected in the information matrix and thus 

in the projection matrix P(k, k). In subsequent algorithm part, the column vector 

of parameters estimated in the previous step Q(k, k — 1) is penalized based on the 

constrained terms S and the old estimation of parameters Q(k — 1, k — 2), yielding 

e(Jfe) = e(Jfe, k - 1) - 9(Jfe - 1, k - 2) 

ec(Jfe, k - 1) = e(Jfe, k - 1) + Pc(Jfe, fc - 1) • E • e(k). (4.26) 

A s seen in (4.26), the changes in estimated parameters between the two steps are 

more penalized by the higher values in matrix S. Then the penalized estimated 
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parameters Qc(k,k — 1) are applied to determine the parameters in the recent step 

Q(k, k) as in 

ec(k, k - l ) = y(k) - hT(k) • ec(k, k-1) 

Q(k, k) = Qc(k, k - l ) + K(Jfe) • ec(k, k-1) (4.27) 

where y{k) is the measured system output in the recent step and ec(k, k — 1) is the 

estimated model error. A t the end of the data-updating steps, the normal-Wishart 

distribution statistics iyik^k) and E(/c, kj) are actualized based on the estimated 

error ec(k, k — 1). We have 

u(k,k) = u(k,k- 1) + 1 

£ c (fc, k - 1) = E(Jfe, k - 1 ) - eT(k) • ( » + » • Pc(Jfe, fc - 1) • E) • e(k) 

£(fc, k) = Ec(Jfe, fc - 1) + ^(fc, fc - 1)/(1 + hT{k) • Pc(k, k-1)- h(Jfe)). (4.28) 

Note that the least squares reminder E(fc, — 1) is firstly actualized based on the 

penalization of parameters changes E(fc, k — 1) —> T,c(k,k — 1), and then the data 

update is calculated E c(fc, fc — 1) —>• E(fc, fc). 

During the forgetting factor adjustment, the estimations of system noise variance 

in the previous step d(k,k — 1) and the data-updated step d(k,k) are calculated 

together wi th the changes of data-updated parameters e(k + 1) as follows: 

where t race(X) stands for the trace of square matrix X and ( is user-defined scalar 

constant. This constant represents an artificial increase in the expected noise level 

and reduces false detected changes of parameters caused by the system noise. The 

higher the value of £ 6 (0,1), the more prediction error is reflected in the new value 

of the forgetting factor. The forgetting factor X(k, — 1) is then updated based on 

the calculated divergence and number of identified parameters n. The l imitat ion 

d{k,k-l) 

d(k, k) 

e(k + l) 

u(k,k-l)/E(k,k-l) 

u(k,k)fE(k,k) 

e(k,k)-e(k,k-i). (4.29) 

Then the Kullback-Leibler divergence is evaluated as in 

(4.30) 
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of the forgetting factor X(k + l,k) G (a, 1) is implemented using the if — else 

conditioning to achieve only the valid values of X(k + 1, k). We have 

if l < X c a / ( ( n + l)A(Jfe,Jfe-l)) then 

X(k + l,k) = a 

else if 1 > Xc/((n + l)X(k, k - 1)) then 

A(Jfe + l,Jfe) = 1 

else 

X(k + 1, k) = (n + l)A(Jfe, k - 1)/XC 

end if (4.31) 

where the lower bound of the forgetting factor a lies on the interval a G (0,1). 

During the time-updating steps, the data-updated parameters are actualized in 

terms of exponential forgetting, yielding 

V(Jfe + 1, k) = X(k + 1, fc)V(Jfe, k) E(Jfe + 1, k) = X(k + 1, k)E(k, k) 

Q(k + l,k) = G(k,k) v(k + l,k) = X(k + l,k)u(k,k). (4.32) 

Similarly, for the purpose of the covariance checking, the projection matrix might be 

time-updated as well P(fc+1, k) = P(k, k)/X(k+l, k). However, since the projection 

matrix presented in the explained algorithm represents the normalized values, it 

must be denormalized as in P t f(fe + l,k) = P(k + l,k)/d(k,k) to achieve real 

covariance values. The recursive parametric estimation algorithm then periodically 

calculates the following steps: 

1. Obtain inputs [\{k, k - 1); y(k); h(Jfe); e(Jfe, k - 1); Q(k — l,k — 2); 

E(k, k - 1); u(k, k - 1); X(k, k - 1)]. 

2. Load constants out of memory [S; (; n; a]. 

3. Execute the data-updating steps in the following order: (4.25), (4.26), (4.27), 

and (4.28). 

4. Update the forgetting factor in the following order: (4.29), (4.30), and (4.31). 

5. Calculate the time updates (4.32). 

6. Write outputs [V(k + 1, k); Q(k + 1, k); E(Jfe + 1, k); v(k + 1, k); X(k + 1, k)]. 

The proper operation of the described algorithm is achieved only if the following 

init ial conditions are chosen: V ( 1 , 0 ) = S, S(1,0) > 0, f ( l , 0 ) > 0, and A(1,0) = 1. 

To reduce parameters oscillations at the beginning of the identification procedure, 

it is also essential to fill the regression vector h(k) first and initialize the estimated 

parameters as in O(0, — 1) = 0 (1 , 0). 

62 



4.4 Implementation of the diagnostic algorithm 

The fault relevance diagnostic algorithm described in Section 4.1 and extended by 

the adaptive band-pass filters in Section 4.2 is realized in M A T L A B Simulink, as 

shown in Figure 4.2. 
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Fig . 4.2: Implementation of the diagnostic algorithm in M A T L A B Simulink 

Furthermore, as seen in Figure 4.2, the enabled subsystems are incorporated into the 

described algorithm since there is no reason to calculate I T F parameters estimation 

unless the healthy parameters are identified with sufficient precision. Enabling is 

then realized based on the covariance of healthy parameters. Figure 4.3 visualizes 

the implemented covariance checking. 

G 3 
projection matrix ITF calculation enable 

Extract Diagonal 

Fig . 4.3: Checking the covariance of healthy parameters 
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Another enabling is realized in healthy parameters estimation. Since the real be

havior is not as idealized as the model describes, the fault also slightly affects the 

healthy parameters. Therefore, identifying the healthy parameters is turned off af

ter the inter-turn short circuit is detected. The fault is detected by reaching the 

lower forgetting factor bound in the I T F parameters estimation algorithm. Adaptive 

signals filtering is then realized according to equations (4.23) and (4.24). 

The implementation of recursive healthy parameters identification can be seen 

in Figure 4.4. 
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Fig . 4.4: Healthy parameters estimation in M A T L A B Simulink 

Theoretically, the number of degrees of freedom v and the least squares reminder 

£ can grow to infinity. Therefore, they are saturated between 0 and 10 5 (Figure 

4.4). For the purpose of regression vector filling up, the step counter k is also 

present. Parametric estimation is then started after three steps to ensure that all 

delays are reflected. Initial values of variables required in the parametric estimation 

algorithm are presented under the unit delay blocks in Figure 4.4. If they are not 

mentioned, the init ial condition is a scalar value equal to 0. Estimated parameters 

are initialized based on Table 1.2 and equation (4.6). The lower bound of the 

forgetting factor is a = 0.95 to track changes in electrical parameters wi th the 

operating point. Constrained terms S correspond to the identity matrix. This 

value enables effective tracking of parameters changes and ensures relatively smooth 

evolution of parameters in time. User-defined parameter ( is then set to be 0.05. 

The low value of ( helps to smooth the forgetting factor, which is welcome since 

the persistence of input signals is mostly insufficient. The parametric estimation 

algorithm is then implemented using the M A T L A B function block as follows: 
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Listing 4.1: Parametric estimation algorithm realized as a M A T L A B function 
f u n c t i o n [V,v,Sgm,lbd,k,tht,PM] = fcn(y,h,V,v,Sgm,k , . . . 

l b d , t h t _ a c t , t h t _ o l d ) 
% Constant p a r a m e t e r s : 
n = 3; X i = e y e ( n ) ; a l p h a = 0.95; z e t a = 0.05; 
d e l = 3; I = eye(n) ; 
i f (k<del) 

k = k + 1; t h t = t h t _ a c t ; PM = e y e ( n ) ; 
e l s e 

% D a t a - u p d a t i n g s t e p s : 
V _ o l d = V; Sgm_old = Sgm; v _ o l d = v; 
V = V _ o l d + ( l - l b d ) * X i + h*h'; 
Pc = ( V _ o l d + ( l - l b d ) * X i ) ~ ( - l ) ; 
K = Pc*h/(1 + h '*P c * h ) ; 
P = ( I - K * h , ) * P c * ( I - K * h ' ) ' + K*K'; 
eps = t h t _ a c t - t h t _ o l d ; 
t h t c = t h t _ a c t + P c * X i * e p s ; 
ec = y - h' * t h t c ; 
Sgmc = Sgm - e p s ' * ( X i + X i * P c * X i ) * e p s ; 
Sgm = Sgmc + ec~2/(1+h'*Pc*h); 
v = v + 1; 
t h t = t h t c + K*ec; 
% F o r g e t t i n g f a c t o r a d j u s t e m e n t : 
d _ o l d = v_ol d / S g m _ o l d ; d = v/Sgm; 
eps_new = t h t - t h t _ a c t ; 
Xz = t r a c e ( V _ o l d * P ) + v _ o l d * l o g ( d _ o l d / d ) + d * S g m _ o l d .. . 

+d*eps_new'*zeta*V_old*eps_new+v_old/v-v_old; 
i f (1 <= X z * a l p h a / ( l b d * ( n + l ) ) ) , l b d = a l p h a ; 
e l s e i f (1 >= X z / ( l b d * ( n + l ) ) ) , l b d = 1; 
e l s e , l b d = l b d * ( n + 1 ) / X z ; 
end 
% T i m e - u p d a t i n g s t e p s : 
V = V * l b d ; Sgm = Sgm*lbd; v = v * l b d ; 
% D e n o r m a l i z e d p r o j e c t i o n m a t r i x : 
PM = ( P / l b d ) / d ; 

end 
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Note that the denormalized projection matrix is sent to the output and provides the 

information about covariance necessary for the I T F parameters estimation enabling. 

Similarly, the recursive identification of I T F parameters is shown in Figure 4.5. 
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Fig . 4.5: I T F parameters estimation in M A T L A B Simulink 

The differences between the recursive estimation of healthy (Figure 4.4) and I T F 

(Figure 4.5) parameters lie in different lower bounds of forgetting factor a, numbers 

of identified parameters n, user-defined factors (, and the init ial delays before the 

algorithm is started. Identifying two I T F parameters is started after four steps in 

the wake of reaching the required covariance of healthy parameters. This value 

reflects especially the delays caused by the input and output transformation (4.7). 
The lower bound of the forgetting factor a is then set to be 0.6. If a is reached, 

then to improve the learning of actual I T F parameters, the algorithm is reset, and 

one additional logical output indicates that the fault was detected. This is realized 

by the following code inserted after line 35 of Lis t ing 4.1: 

List ing 4.2: Reset of recursive identification of I T F parameters 

f a u l t _ d e t e c t = f a l s e ; 
i f (lbd==alpha) 

Sgm = 1; v = 1; V = = e y e ( n ) ; l b d = 1; t h t = = t h t _ a c t ; 
PM = eye(n) ; f a u l t _ d e t e c t = t r u e ; 

end 
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If the logical value 'true' of fault_detect is reached, it is held using a simple flip-

flop (Figure 4.5), and the recursive updating of healthy parameters is switched off 

(Figure 4.2). In the case of I T F parametric estimation, the user-defined factor ( is 

equal to 0.5 to achieve faster forgetting factor changes at the expense of smoothness. 

The constrained terms S are similarly given by the identity matrix. 

The calculation of series resistance and normalized fault relevance is then ex

tended by conditions that prevent reaching undefined values (for example, caused 

by dividing numbers by 0). These conditions are visualized in Figure 4.6. 
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Fig . 4.6: Calculation of series resistance and normalized fault relevance 

A s shown in Figure 4.6, the series resistance and normalized fault relevance are 

saturated between 0 and 1. The l imitat ion of normalized fault relevance is straight

forward since this parameter can achieve only values between 0 and 1. The series 

resistance is then saturated based on the ini t ial estimation (Table 1.2) to prevent 

reaching highly overrated values. Since the band-pass filter filters the input signals 

of the I T F parameters estimation algorithm, there is always some harmonic signal 

(even if the short circuit is not emulated) that causes the estimation of low-level 

fault relevance. Therefore, if the fault relevance reaches the defined value given by 

saturation of Rf^q/x}2, the output normalized fault relevance is set to be 0. 
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4.5 Diagnostics verification within the simulation 

The algorithm described in the previous sections is firstly evaluated wi thin the sim

ulation. For this purpose, the model visualized in Figure 4.7 is utilized. 

Fault relevance diagnostics 

Fig . 4.7: Model for the diagnostics verification wi thin the simulation 

The classical control scheme described in the previous chapters is extended by the 

inverter's nonlinearity (4.20) wi th the dead time voltage udead equal to 0.02 V. The 

stator currents are then distorted by additional white noises wi th the variance of 

1 • 10~ 3 and randomly selected mean values. The mean values of additional white 

noises are not so crucial since the adaptive band-pass filter suppresses the D C com

ponents of the signals. However, the dead time voltage level noticeably impacts 

the parameters bias. A s mentioned before, the bias is caused by the distortion on 

frequency ue that can not be suppressed since ideal voltage inputs ua and up are 

harmonic signals of this frequency. 

The simulated motor is controlled to the angular velocity setpoint = 75 rad/s, 

and after six seconds, inter-turn short circuits are simulated in phase 'a' wi th dif

ferent fault relevance: Xf = 4/25, Xf = 6/25, Xf = 9/25, and Xf = 14/25. These 

experiments are realized only for the winding connection np — 1 and ns = 3. The 

torque load connected to the shaft of the simulated machine is equal to 0 to achieve 

the minimum signal-to-noise ratio. If the higher value of torque load is present, the 

amplitudes of currents are growing, and the signal-to-noise ratio is higher. Signals 

for the fault relevance estimation are then obtained from the control system, and 

the diagnostic algorithm starts in time 0 s wi th the velocity step request. 
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Figure 4.8 visualizes the estimated healthy parameters and calculated series re

sistance. 
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Fig . 4.8: Estimated healthy parameters and series resistance, simulation 

Since the identification algorithm is robustly tuned and the simulated electrical pa

rameters are constant, the calculated forgetting factor equals 1 in each algorithm 

step. The identified healthy parameters are stabilized after one second of the algo

r i thm run. However, this value is mainly given by the moment of inertia. If less 

inertia is applied, a machine tracks the velocity setpoint faster, making the frequency 

sweep more significant. Hence, the input signals have higher persistence resulting 

in faster stabilization of estimated parameters. 
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Figure 4.9 then visualizes the time evolution of the I T F parameters. 

Time [s] 

-p f l ( x f = 4/25) pfl(xf = 6/25) pfl(xf = 9/25) pfl(xf = 14/25) 

— 0,040 -
.on, 

_ 0,010 

0,000 

-0,010 

Time [s] 

-pf2(xf = 4/25) pf2(xf = 6/25) pf2(xf = 9/25) pf2(xf = 14/25) 

Fig . 4.9: Estimated I T F parameters, simulation 

The I T F parameters (Figure 4.9) have no meaning unti l the short circuit is simulated 

in time 6 s. After the fault occurs, it is quickly detected by the rapid changes in the 

forgetting factor, as shown in Figure 4.10. 
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Fig . 4.10: I T F forgetting factor and fault detection, simulation 

Generally, the higher values of fault relevance are detected faster than lower ones 
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due to the higher signal-to-noise ratio of the output signal y obtained by (4.7). 

The electrical angular velocity of the simulated motor is 1575 rad/s, approximately 

corresponding to the 4 ms electrical period. Hence, the presented algorithm detects 

higher fault values under one electrical revolution (Figure 4.10). The waveforms of 

normalized fault relevance can be seen in Figure 4.11. 
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Fig . 4.11: Identified normalized fault relevance, simulation 

The estimated normalized fault relevance is then compared with the value calculated 

by (4.11), assuming the electrical parameters as in Table 1.2. The relative errors 

are calculated similarly as in (1.33) and presented in the following table: 

Tab. 4.1: The error of estimated normalized fault relevance, simulation 

*/ [-] 4/25 6/25 9/25 14/25 

calculated XfjU [-] 0.0187 0.0397 0.0826 0.1772 

estimated x^n [-] 0.0166 0.0357 0.0748 0.1630 

error [%] 11.2 10.1 9.4 8.0 

The biased parameters are the primary sources of differences between the estimated 

and calculated values. For example, the estimated resistance is approximately equal 

to 0.101 Q, but the resistance used in the simulation is 0.112 O. 

4.6 Diagnostics verification on the real motor 

Similarly, the diagnostic algorithm is verified on the control system of the experi

mental motor for the winding connection np — 1 and ns = 3. A C code is generated 

from the M A T L A B Simulink model of the described algorithm and programmed into 

A U R I X Appl icat ion kit TC277. Control system is then running in the processor's 

core 0, and fault diagnostics are running in core 2 (core 1 is used for online commu

nication via ethernet). Short circuits are then emulated wi th Xf = 3/25, Xf = 6/25, 
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Xf = 9/25, and Xf = 14/25 fault relevance after six seconds from the velocity step 

request uj*m = Ibrad/s. During this experiment, the machine is disconnected from 

the dynamometer. Hence, the moment of inertia is lower than the value utilized in 

simulations, and the torque load equals 0. The time evolution of estimated healthy 

parameters is visualized in Figure 4.12. 
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Fig . 4.12: Estimated healthy parameters and series resistance, real motor 

In the case of Figure 4.12, the healthy parameters are dependent on the operating 

point, and the time-variance of parameters (especially of the inductance) is reflected 

in the estimation. The identified resistance (Figure 4.12) significantly differs from 

the value implemented in the simulation (Table 1.2) since the model's parameters 
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were only roughly fit based on the open-loop measurements. The time-varying 

changes of identified parameters are also reflected in the forgetting factor that is no 

longer equal to 1 for all the time, as shown in Figure 4.13. 

II i I i i 1 i pi i| 11 n I I ^ II 

Time [s] 

-lbdh(xf = 3/25) lbdh(xf = 6/25) lbdh(xf = 9/25) lbdh(xf= 14/25) 

Fig . 4.13: Forgetting factor - healthy parameters estimation, real motor 

Note that the forgetting factor is together with the identified healthy parameters 

held on the last estimated value after the fault is detected. 

The estimated I T F parameters are then visualized in Figure 4.14. 
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Fig . 4.14: Estimated I T F parameters, real motor 

Unlike in case of simulations, the fault is not precisely emulated six seconds after 

the velocity step request occurs. Inter-turn short circuits are emulated using a relay, 

and some transport delay is propagated. It was quantified that the fault emulation 

is approximately delayed by 2 ms; however, the precise value of transport delay is 

unknown. Figure 4.15 then shows the fault detection moments signalized by the 

processor and the time evolution of the forgetting factor of I T F parameters. 
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Fig . 4.15: I T F forgetting factor and fault detection, real motor 

The waveforms of normalized fault relevance are visualized in Figure 4.16. 
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Fig . 4.16: Identified normalized fault relevance, real motor 

The estimated series resistance Rs = 0.425 il is then utilized to calculate XfjU refer

ence, and the fault relevance error is evaluated in the table bellow: 

Tab. 4.2: The error of estimated normalized fault relevance, real motor 

*/ [-] 3/25 6/25 9/25 14/25 

calculated x^n [-] 0.0329 0.1033 0.1912 0.3573 

estimated x^n [-] 0.0270 0.1014 0.1786 0.3603 

error [%] 17.9 1.8 6.6 0.8 
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Conclusion 
In this thesis, the modeling of a synchronous motor wi th permanent magnets under 

the stator winding's inter-turn short circuit fault was described (Chapter 1). The 

model that assumes the combination of serial and parallel winding connections was 

defined in the stator variables and transformed into the rotor reference frame. It 

was shown that the model utilizes the well-known healthy motor description (1.25) 

and one additional differential equation related to the current flowing through the 

short circuit (1.26). Bo th model's parts are then linked by the coupling equation 

(1.24). The presented models were validated via measurement of the fault current's 

first harmonic and the second harmonic of the back electromotive force transformed 

into the rotor reference frame (Figure 1.9). The measurement was performed on a 

configurable machine driven by a dynamometer, at different winding connections, 

fault relevance, and electrical angular velocities. The measured values were com

pared wi th the simulated ones, using the mean relative error and variance (Table 

1.3). The mean relative error did not exceed 4.4%. 

In Chapter 2, the field-oriented control of permanent magnet synchronous mo

tors was described. The control system utilizes the dynamical decoupling technique 

inside the current controller (Figure 2.1), and the parameters of the velocity and cur

rent controllers are analytically calculated out of the estimated motor's parameters 

as in (2.6). The clamping (Figure 2.2) and back-calculation (Figure 2.4) anti-windup 

techniques are then incorporated into the discrete-time equivalent of the control sys

tem. The discrete-time implementation of angle tracking observer and space vector 

modulation is also described. The control system is programmed into the A U R I X 

application kit TC277 and applied to control the experimental motor with different 

winding connections to the velocity setpoint (Figure 2.8). 

The model derived in Chapter 1 is semi-analytically discretized in Chapter 3. 

For this purpose, the linear time-varying systems approach is utilized. The electrical 

angular velocity is considered the time-varying parameter wi th the defined integral 

that is equal to the electrical angle. The discrete-time model is then transformed 

into the stator reference frame to maximize the persistence of input signals resulting 

in description (3.28). The validation of the discrete-time model is then based on the 

comparison with the continuous-time model within the simulation (Figure 3.3). 

The fault relevance identification is described in Chapter 4 together wi th the 

system noise analysis and filter design. For the purpose of parametric estimation, 

the regularized algorithm wi th the variable exponential forgetting is applied. Reach

ing the lower bound of the forgetting factor is then interpreted as a fault presence 

indicator. The designed fault relevance diagnostic procedure is firstly validated 

within the simulation (Figures 4.8, 4.9, 4.10, and 4.11). The precision of identified 
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fault relevance is significantly affected by biases in estimated parameters (especially 

in estimated series resistance). Relative errors between estimated and calculated 

normalized fault relevance are presented in Table 4.1. Similarly, the algorithm is 

validated on the experimental motor (Figures 4.12, 4.13, 4.14, 4.15, and 4.16). Ca l 

culated relative errors of normalized fault relevance estimations are presented in 

Table 4.2. 

Together with the electrical parameters of a machine, the identified normalized 

fault relevance provides necessary information for fault current estimation. There

fore, in future work, the designed fault detector wi l l be extended by the fault com

pensator that wi l l utilize the identified parameters to calculate fault current and 

modify control actions to compensate for the fault. 
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Symbols and abbreviations 
A T O Angle Tracking Observer 

D C Direct Current 

I P M S M Interior Permanent Magnet Synchronous Machine 

I T F Inter-Turn Fault 

PI Proportional-Integral 

P M S M Permanent Magnet Synchronous Machine 

S P M S M Surface-mounted Permanent Magnet Synchronous Machine 

S V M Space Vector Modula t ion 
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A Derivation of the open-loop ITF model 
System definition ( ITF is in phase 'a'): 
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Voltage form of the healthy part equations: 
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Expressing derivative of the coupling equation: 
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Substituting for the healthy currents derivative and healthy currents in the voltage 

equation: 
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Substituting for the voltages in the fault current equation and expressing the deriva

tive: 

Zf-
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[Lf + xfL0 

XfUeXpm sin(6 
d* ' ' (Lf + xfL0 

Substituting for the fault current derivative in the voltage equation and expressing 
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the back electromotive force: 
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Figure A . l shows the realization of open-loop I T F model in M A T L A B Simulink. 
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Fig . A . l : Open-loop I T F model realization in M A T L A B Simulink 
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B Content of the electronic at tachment 
/ root of the attached archive 

Thes is . pdf text of the diploma thesis 
_ Models_codegen M A T L A B Simulink models for c-code generating 

c t r l _ c o r e . s i x control system model 
f au l t_d iag . s i x model of fault relevance detector 

_Models_sim M A T L A B Simulink models for simulations 
discr_mod_val. s i x model for discrete-time equivalent verification 
f au l t_d iagnos t i c s . s i x model for fault diagnostics testing 
ITF_model. s i x model of control system and shorted machine 
open_loop_model. s i x model for open-loop shorted machine validation 

N O T E : The M A T L A B Simulink models are realized in the M A T L A B version R2020b. 
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