

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING

ENERGETICKÝ ÚSTAV

ENERGY INSTITUTE

PŘESTUP TEPLA PŘI KONDENZACI PAROVZDUŠNÉ SMĚSI PROUDÍCÍ VE VERTIKÁLNÍ TRUBCE

HEAT TRANSFER DURING CONDENSATION OF STEAM-AIR MIXTURE FLOWING IN VERTICAL TUBE

DISERTAČNÍ PRÁCE

DOCTORAL THESIS

AUTOR PRÁCE

Ing. Filip Toman

ŠKOLITEL

SUPERVISOR

doc. Ing. Jiří Pospíšil, Ph.D.

BRNO 2023

ABSTRAKT

Tato práce pojednává o problematice kondenzace vodní páry v přítomnosti vzduchu jako nekondenzujícího plynu se zaměřením na přestup tepla a hmoty uvnitř vertikální trubky. Úvodní část práce je věnována rešeršní analýze dané problematiky. Pozornost je zaměřena na fyzikálně korektní popis dějů na rozhraní plynné fáze a filmu kondenzátu, dále na zahrnutí vlivu přítomnosti nekondenzujících plynů. Na tomto rozboru byly vypracovány vědecké hypotézy. Následně jsou formulovány cíle disertační práce a jsou představeny metody, kterými jsou cíle disertační práce řešeny. V rámci hodnocení dat byl vytvořen analytický model umožňující kvantifikaci přestupu tepla a hmoty pro měřené stavy. Tento model byl užit pro testování variací výpočtových vztahů publikovaných různými autory v odborné literatuře. Matematické řešení je doplněno o realizovaná experimentální měření kondenzačního součinitele přestupu tepla a celkového součinitele přestupu tepla uvnitř trubky při kondenzaci parovzdušné směsi ve vertikálních trubkách tří průměrů, konkrétně 16, 20 a 26 mm. K závěru práce je vybrána nejvhodnější kombinace již publikovaných analytických vztahů a je provedena v rámci zpřesnění její modifikace pomocí regresní analýzy. Na závěr práce je představen zjednodušující matematický popis kondenzačního děje, na jehož základě je provedena bezrozměrná regresní analýza pro popis Nusseltova čísla pro přestup tepla uvnitř trubky jako funkce jiných podobnostních čísel.

KLÍČOVÁ SLOVA

kondenzace, přestup tepla, proudění, smykové napětí, vertikální trubka

ABSTRACT

This thesis deals with the problem of condensation in the presence of non-condensable gases with a focus on heat and mass transfer inside a vertical pipe. The introductory part of the thesis is dedicated to the research analysis of the given issue. The attention is focused on the physically correct description of the events at the interface of the gas phase and the condensate film, as well as on the inclusion of the influence of the presence of non-condensable gases. Scientific hypotheses were developed based on this analysis. Subsequently, the objectives of the dissertation are formulated and the methods by which the objectives of the dissertation are solved, are presented. As part of the data evaluation, an analytical model was created enabling the quantification of heat and mass transfer for the measured conditions. This model was used to test variations of computational relationships published by various authors in the literature. The mathematical solution is supplemented by realized experimental measurements of the condensation coefficient of heat transfer and the total coefficient of heat transfer inside the pipe during the condensation of the steam-gas mixture in vertical pipes of three diameters, namely 16, 20 and 26 mm. At the end of the thesis, the most suitable combination of already published analytical relations is selected and is carried out as part of its refinement, using regression analysis.

KEYWORDS

Condensation, heat transfer, flow, shear stress, vertical tube

CITACE

TOMAN, Filip. Přestup tepla při kondenzaci parovzdušné směsi proudící ve vertikální trubce. Brno, 2023. Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/146689. Dizertační práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Energetický ústav. Vedoucí práce Jiří Pospíšil.

PROHLÁŠENÍ

Prohlašuji, že jsem tyto teze k disertační práci vypracoval samostatně pod vedením pana doc. Ing. Jířího Pospíšila, Ph.D. Uvedl jsem všechny literární prameny, publikace a další zdroje, ze kterých jsem čerpal.

Filip Toman 25. Března 2023

PODĚKOVÁNÍ

Na tomto místě bych chtěl poděkovat především svému vedoucímu práce, doc. Ing. Jiřímu Pospíšilovi Ph.D. za dlouhé hodiny strávené při konzultacích a poskytnuté rady pro vypracování mé disertační práce. Dále patří velké Díky mému kolegovi Ing. Petru Kracíkovi Ph.D. za bezmeznou podporu při návrhu, sestavování a nastavování měřící aparatury a dále za nesčetné konzultace ohledně matematického zpracování dat a grafické podpory. Na závěr bych chtěl poděkovat mé rodině, a hlavně mé ženě Michaele Tomanové, za velkou trpělivost při časově náročném sepisování této práce.

OBSAH

Úvod9										
1. Současný stav poznání 10										
	1.1.	Mechanismus kondenzace čisté vodní páry v přítomnosti nekondenzujících plynů	10							
	1.2.	Jevy ovlivňující kondenzační proces	12							
	1.2.	.1. Vliv nekondenzujících plynů	12							
	1.2.	.2. Vliv hmotnostního toku směsi	13							
	1.2.	.3. Vliv tloušťky kapalného filmu	14							
	1.2.	.4. Vliv zvlnění filmu	16							
	1.3.	Metody výpočtu filmové kondenzace	18							
	1.3.	.1. Metoda degradačního faktoru	19							
	1.3.	.2. Metoda vodivosti přenosu hmoty	20							
	1.3.	.3. Metoda analogie přenosu tepla a hmoty	21							
	1.3	4. Metoda difuzní vrstvy								
2.	Ana	alýza, interpretace a zhodnocení poznatků								
	2.1	Metody výpočtu	27							
	2.2	Vliv vstupních parametrů	27							
	23	Shrnutí chybějícího poznání	28							
3	Pod	dstata a cíle disertační nráce	29							
J	31	Podstata disertační práce	29							
	3.1.	Cíle disertační práce	2)							
	3.2.	Vědecké otázky a pracovní hypotázy	30							
	3.3.	1 Vliv rychlosti proudění směsi v trubce?	30							
	3.3.	2 Vliv změny geometrie trubky?								
5.5.2 2.2.2		 V inv zmůstojící koncentrace nekondenzujících plynů 	50							
	3.3. 3.1	1 Vliv konfigurace chlazení kondenzační trubice	50							
1	5.1. Evr	norimontální zořízoní	50							
-	1 1	Evnorimontální zařízoní s výměníkom typu truhko v truhos"	·· JI							
	4.1	Měřící zořízoní								
5	4.2 Not	Merici Zalizelli								
3	1 Nas	Euziltální vlastnosti perovzdučná směsi	35							
	5.1.	1 Složení směsi zlomky								
	5.1.	2 Deltenův zákon	33							
	J.1.	$\frac{2}{2} = D_{acultive} \pi \frac{1}{2} 1$	50							
	J.1.	4 Hannaha zálaza	50							
	5.1.	.4 Henryno zakon	30							
	J.I.		30							
	J.1.	.0 FICKUV Zakon	37							
	5.1.	Stredni zdaniiva Molarni nmotnost	37							
	5.1.	.8 Merna plynova konstanta	3/							
	5.1.	.9 Hustota	38							
	5.1.	10 V1skoztta	38							
	5.1.	11 Soucinitel tepelne vodivosti	39							
	5.1.	.12 Difuzni koeficient jedne latky ve smesi	40							
	5.1.	.13 Merna tepelna kapacita	40							
	5.2	Stanovení hledaných soucinítelů přestupu tepla z měřených veličin	40							
	5.2.	.1. Stanovení toků směsi a kondenzátu	41							
	5.2.	.2. Přestup tepla ve filmu kondenzátu	45							
	5.2.	.3. Přestup tepla v parovzdušné směsi	46							
	5.3.	Nastaveni experimentálniho zařízení a měřených stavů	46							

5.3.1	. Postup při uvedení experimentálního zařízení do provozu	. 46
5.3.2	2. Nastavení experimentů	. 47
6. Výsl	ledky experimentů	. 49
6.1	Obecné průběhy jednotlivých součinitelů přestupu tepla uvnitř trubky	.49
6.2	Výsledky pro trubku o vnitřním průměru 26 mm	50
6.2.1	I. Kondenzační součinitel přestupu tepla	. 50
6.2.2	2. Celkový součinitel přestupu tepla uvnitř trubky	. 54
6.3	Výsledky pro trubku o vnitřním průměru 20 mm	57
6.3.1	I. Kondenzační součinitel přestupu tepla	. 58
6.3.2	2. Celkový součinitel přestupu tepla uvnitř trubky	. 62
6.4	Výsledky pro trubku o vnitřním průměru 16 mm	65
6.4.1	I. Kondenzační součinitel přestupu tepla	. 66
6.4.2	2. Celkový součinitel přestupu tepla uvnitř trubky	. 69
6.5.	Celkové srovnání	72
6.1.1	Bezrozměrné porovnání	. 74
7. Mod	lifikace analitických vztahů	. 76
7.1.	Porovnání publikovaných vztahů	76
7.2.	Regresní analýza analytických vztahů	78
7.2.1	1. Varianta 1	. 78
7.2.2	2. Varianta 2	. 79
7.3	Regresní analýza s využitím teorie podobnosti	80
7.3.1	Zjednodušený matematický popis kondenzace vodní páry v přítomnosti vzduchu	81
7.3.2	2 Výběr podobnostních čísel	. 84
7.3.3	Bezrozměrná regresní analýza	. 85
Závěr		, 90
Použitá li	iteratura	. 92
Seznam a	utorských děl	. 97
1)	Vlastní publikace vztahující se k tématu disertační práce	97
2)	Ostatní vlastní publikace	97
3)	Tvůrčí aktivity	97
Seznam z	kratek a symbolů	, 98
Seznam o	brázků	101
Seznam t	abulek1	103

ÚVOD

Kondenzace vodní páry, ať už se jedná o kondenzaci chtěnou, či nechtěnou, je nedílnou součástí energetických procesů. Vzhledem k fyzikální podstatě se jedná o velmi komplexní problém, který bylo možno začít detailněji popisovat až s nástupem výkonné výpočetní techniky. Mechanismus kondenzace vodní páry probíhá v technologických zařízeních zvaných kondenzátory. Intenzifikací kondenzačního procesu v kondenzátoru lze citelně zmenšit jeho velikost, a tím zastavěnou plochu.

V případě kombinace vodní páry s inertním plynem, kdy se nám míchá kondenzující složka se složkou nekondenzující, se problematika fázové přeměny velmi komplikuje a dostáváme se s fyzikální podstatou do oblasti difuze vícesložkových směsí. Z tohoto důvodu není dosud tato oblast zcela pochopena v závislosti na přestupy tepla. Přestup tepla a hmoty při kondenzaci páry v přítomnosti inertních plynů je ovlivněn především složením směsi, jejím hmotnostním tokem a v neposlední řadě také geometrií kondenzační trubky. Výzkumy ukazují také na závislost přestupu tepla na tlaku. V posledních letech rychlého rozvoje výpočetní techniky se objevují i numerické simulace dějů při kondenzaci, které nám dávají mnohem lepší prostorovou představu o změnách stavových veličin parovzdušné směsi, ovšem tyto numerické modely jsou stále ve fázi vývoje.

V současnosti lze sledovat vzestupný trend ve využívání latentního tepla vodní páry ve spalinách. Z důvodu neustále se zvyšujících požadavků na efektivnost technologických celků a vývoje lepších a levnějších materiálů jsou dnes kondenzátory spalin instalovány i za zdroje energie, u kterých to dříve nebylo možné.

Kondenzace nemusí šetřit pouze energii, ale také, jako v případě kondenzátorů vlhkého vzduchu, pomáhá šetřit vodu, která je v určitých oblastech světa nedostatkovou komoditou. Kondenzátory tohoto typu se začínají uplatňovat především v papírenském a prádelenském průmyslu.

Nové využití kondenzátorů v energetických procesech sebou přináší i nutnost detailního pochopení vlivů různých provozních stavů na výslednou intenzitu kondenzace. Disertační práce se zabývá popisem vlivů provozních stavů a geometrie kondenzační trubky na výsledný přestup tepla a hmoty při kondenzaci vodní páry v přítomnosti vzduchu jako nekondenzujícího plynu. V práci jsou také porovnány dostupné analytické postupy výpočtu a v závěru práce je s ohledem na naměřené výsledky provedena jejich modifikace pomocí regresní analýzy.

1. SOUČASNÝ STAV POZNÁNÍ

Kondenzaci lze definovat jako odebírání tepelné energie ze systému za vzniku fázové změny z páry na kapalinu, přičemž odebraná tepelná energie se nazývá latentní teplo [1]. Kondenzaci vodní páry lze rozdělit na kondenzaci kapkovou a kondenzaci filmovou. Kapková kondenzace je z hlediska tepelných pochodů efektivnější než kondenzace filmová, ale je v průmyslu těžko dosažitelná a udržitelná. Proto se následující kapitola věnuje shrnutí současného poznání pouze pro filmovou kondenzaci se zaměřením na kondenzaci ve vertikální trubce [2]. První, kdo si všiml, že i malé množství nekondenzujících plynů ve vodní páře má velký vliv na součinitel přestupu tepla (HTC) při kondenzaci, byl americký profesor chemie Donald Othmer. V roce 1929 publikoval ve své práci [3] výsledky experimentu, při kterém do páry proudící horizontální trubkou připouštěl 0,5 % vzduchu. Experiment ukázal, že součinitel přestupu tepla na straně páry klesl až o 50 %. Tento jev byl o mnoho let později vysvětlen vznikem difuzní vrstvy, která tvoří odpor vůči kondenzaci.

Uvedené jevy budou v následujících kapitolách detailně představeny. Je nutno podotknout, že kondenzace vodní páry v přítomnosti nekondenzujícího plynu patří z hlediska principu do oblasti fyzikální chemie, která se zabývá za existence gradientu koncentrací aspoň dvou látek především přenosem hmoty mezi těmito látkami. Tato práce se zabývá touto problematikou hlavně z termomechanického hlediska, respektive se zabývá přenosem tepla, který přenosu hmoty při kondenzaci sekunduje. Z tohoto důvodu jsou některé chemické procesy a jejich popis zjednodušeny, tak aby se výsledky této práce dali použít pro praktické účely.

Pro lepší orientaci při popisovaní směrů uvnitř trubky jsou použity výrazy "axiální směr" a "radiální směr". Axiální směr koresponduje s vertikálním směrem a radiální směr směřuje horizontálně z osy do stěny trubky. Protože je práce zaměřená na analytický přístup k problematice kondenzace, nebude v práci zahrnuta problematika numerického modelování tohoto procesu. Kvůli častému opakování je pro přehlednější a stručnější popis spojení "nekondenzující plyny" nahrazeno zkratkou "NCG", pocházející z anglického překladu non-condensable gases a spojení "kondenzační součinitel přestupu tepla" neboli "součinitel přestupu latentního tepla" nahrazeno zkratkou "CHTC" z anglického překladu condensation heat transfer coefficient.

1.1. Mechanismus kondenzace čisté vodní páry v přítomnosti nekondenzujících plynů

Obrázek 1.1 zobrazuje proces kondenzace s průběhem teplot, koncentrací vodní páry a nekondenzujícího plynu a s grafickým znázorněním rozhraní plyn-kapalina, ve kterém dochází k fázově změně z páry na kapalinu při uvolnění latentního tepla. Šířka tohoto rozhraní se pohybuje kolem 1 až 2 průměru molekul. V tomto rozhraní dochází ke skokové změně hustoty a teplotní spád dosahuje hodnot 108 K.m⁻¹ [4]. Přestože v kondenzačním procesu existuje tepelný spád, díky velmi malé šířce rozhraní, ve kterém kondenzace probíhá, se kondenzační proces obecně považuje za děj izotermický. Vodní pára při změně fáze z plynné na kapalnou mnohonásobně zmenší svůj objem, a tak dochází na rozhraní plyn-kapalina k podtlaku. Pokud jsou ve vodní páře přítomny nekondenzující plyny, hromadí se vlivem nízkého tlaku právě u tohoto rozhraní [4].

V roce 1956 O. Knacke navrhl matematický popis kondenzačního děje na rozhraní plyn-kapalina, který je znám jako kinetická teorie, která je dodnes široce uznávaná. Podle této teorie je kondenzace složena ze dvou opačných jevů, a to z čisté kondenzace a čistého výparu. Teorie říká, že molekuly přechází z páry do kapaliny přes rozhraní plyn-kapalina, kde dojde k přenosu tepla a hmoty. Touto fázovou změnou ovšem rapidně klesá na tomto rozhraní tlak, což má za následek opětovné vypaření části z kapalněných molekul.

Obr. 1.1 Grafické znázornění rozhraní plyn-kapalina [5]

Pokud kondenzační hmotnostní tok označíme jako j_+ a výparný hmotnostní tok jako j_- , pak se celkový tok zobrazený na obrázku 1.2 rovná $j = j_+ - j_-$. Celkový tok j pak lze spočítat podle (1) [5]

$$j = \left(\frac{M}{2 \cdot \pi \cdot R}\right)^{\frac{1}{2}} \cdot \left[\frac{p_{v}}{T_{v}^{1/2}} - \frac{p_{f}}{T_{f}^{1/2}}\right].$$
 (1)

Kde M je molekulární hmotnost vody, p_v a p_f je parciální tlak vodní páry a tlak vody v kondenzátním filmu a T_v a T_f je teplota páry a teplota filmu.

Obr. 1.2 Grafické znázornění kinetické teorie [5].

Rovnice 1 předpokládá, že v případě kondenzace čisté látky je pára nasycená a že nedochází k přehřátí. Proto tok kondenzace a vypařování nemůže být jednoduše měřen pomocí rozdílů tlaku a teplot. Rovnice 2 zobrazuje dnešní všeobecně přijímanou úpravu, kdy jsou do rovnice přidány dva korekční součinitele. Této úpravě se říká Hertz-Knudsen-Langmuir formule, která je často používaná v inženýrských aplikacích. Součinitel ϑ_c je nazýván kondenzačním činitelem a vyjadřuje poměr reálného molárního hmotnostního toku kondenzace k teoreticky předpověděném molárnímu hmotnostnímu toku kondenzace. Součinitel ϑ_e je nazýván výparným součinitelem a vyjadřuje poměr reálného molárního hmotnostního toku výparu k teoreticky předpověděném molárnímu hmotnostnímu toku výparu [6],

$$j = \left(\frac{M}{2\pi R}\right)^{\frac{1}{2}} \left[\vartheta_c \cdot \frac{p_v}{T_v^{1/2}} - \vartheta_e \cdot \frac{p_f}{T_f^{1/2}}\right].$$
(2)

Tsuruta a Nagayama dospěli ve své práci k závěru, že když se zanedbá rotace a vibrace molekul, lze výparný a kondenzační činitel vypočítat podle rovnice 3, kde V_g a V^* je objem plynu a objem vodní páry a E_0 je aktivační energie [7],

$$\vartheta_c = \vartheta_e = \left(\frac{V^*}{V_g}\right)^{-\frac{E_0}{cT}}.$$
(3)

Rovnici lze použít pouze za následujících zjednodušených podmínek:

- (a) Distribuce molekulární kolize na rozhraní splňuje v rovnovážném stavu požadavky Maxwellova rozložení rychlosti,
- (b) pára je považována za ideální plyn,
- (c) nedochází k odrazu molekul od rozhraní plyn-kapalina, molekuly jen kondenzují nebo se odpařují,
- (d) kondenzace a vypařování jsou dva nezávislé a vzájemně se neovlivňující procesy.

1.2. Jevy ovlivňující kondenzační proces

Kondenzace vodní páry je v čase velmi dynamický děj, který v každém okamžiku ovlivňuje množství faktorů. Některé jsou v podstatě zanedbatelné, ale některé hrají velkou roli. Zajímavostí je, že stejně jako se proces kondenzace skládá ze dvou opačných procesů, tak i určité faktory mají na kondenzaci opačné účinky. Jde vždy jen o to, který účinek v daném okamžiku převládá. V následujících podkapitolách jsou uvedeny nejvýznamnější faktory ovlivňující kondenzaci vodní páry.

1.2.1. Vliv nekondenzujících plynů

Nekondenzující plyny už i v malém množství významně ovlivňují intenzitu kondenzace. Vlivem podtlaku na rozhraní plyn-kapalina jsou molekuly nekondenzujícího plyn stejně jako molekuly vodní páry přitahovány k tomuto rozhraní. Protože ale molekuly nekondenzujícího plynu neprochází fázovou změnou, dochází na tomto rozhraní k jejich akumulaci. Tato akumulace znamená zvýšení koncentrace nekondenzujících plynů a snížení koncentrace vodní páry. Výsledkem je potom snížení intenzity kondenzace.

Obr.1.3 Průběh parciálních tlaku a teploty v difuzní vrstvě [8]

Zpomalení intenzity kondenzačního procesu ale začne zvyšovat koncentraci molekul vodní páry a dochází k opětovnému nárustu parciálního tlaku vodní páry a k poklesu parciálního tlaku nekondenzujících plynů. To vede k opětovnému zintenzivnění kondenzace. Tento proces se tedy neustále cyklicky opakuje. Oblast, ve které k tomuto procesu dochází, se nazývá difuzní vrstva [2]. Difuzní vrstvu lze ohraničit z jedné strany filmem kondenzátu a z druhé strany je to pomyslná hranice, na které začne být vodní pára ve směsi v sytém stavu. Z toho vyplývá, že pára dosahuje sytosti na hranici difuzní vrstvy, přes kterou projde v sytém stavu a ke změně fáze dochází až na hranici difuzní vrstva-kondenzátní film.

Z obrázku 1.3 je patrné, že v difuzní vrstvě klesá v radiálním směru tlak vodní páry, čímž dochází k poklesu teploty rosného bodu. Tento jev způsobuje v difuzní vrstvě ochlazování parovzdušné směsi. Parciální tlak nekondenzujících plynu směrem k rozhraní naopak stoupá [2]. Vlivem kondenzace a ubytku vodní páry v parovzdušné směsi klesá parciální tlak páry také v axiálním směru trubky. To opět vede k poklesu rosného bodu a tím k poklesu teploty parovzdušné směsi, jak je patrné z obrázku 1.4 [9].

Obr.1.4 Snižování teploty parovzdušné směsi v axiálním směru vlivem kondenzace [9]

1.2.2. Vliv hmotnostního toku směsi

Hmotnostní tok parovzdušné směsi hraje při kondenzaci nezanedbatelnou roli. Při daném průměru trubky se velikost toku projevuje na rychlosti směsi. Vlivem nenulové rychlosti parovzdušné směsi dochází mezi směsí a kapalným filmem ke tření a vzniká mezifázové smykové napětí. Toto napětí má na kapalný film dva dopady. Za prvé, způsobuje narušování stability filmu a tím se povrch filmu začne vlnit a za druhé, vlivem tření dochází k ovlivnění toku filmu a podle konfigurace proudění filmu a směsi (souproudé nebo protiproudé) dochází k zrychlování nebo zpomalování toku filmu. Smykové napětí na rozhraní plyn/kapalina lze obecně zapsat následovně [10],

$$\tau(y) = \eta_f \cdot \frac{du}{dy} \,. \tag{4}$$

Kde $\frac{du}{dy}$ je gradient rychlosti ve směru kolmém na vertikální rychlost a η_f je dynamická viskozita kondenzátu. Pro využití ve výpočtech tento vzorec upravil F. Blangetti podle (5) [10] [11],

$$\tau_m = \frac{f}{2} \cdot \rho_m \cdot \left(u_m^2 - u_f^2 \right). \tag{5}$$

Kde index "m" označuje směs, Tento vztah zahrnuje relativní rychlost parovzdušné směsi vůči kondenzátnímu filmu a třecí faktor, jehož hodnotu lze graficky odečíst z literatury [12], případně odvodit analyticky [13]. Někteří autoři [14] [15], [16], [17] zanedbávají rychlost kondenzátního filmu a uvažují pouze axiální rychlost směsi. Lee a Kim provedli ve své práci [18] numerickou simulaci a navrhli analytický vztah pro součinitel tření na rozhraní dvoufázového proudění [18],

$$f = 0,316 \cdot Re_m^{-\frac{1}{4}}.$$
 (6)

Na obrázku 1.5 je zobrazen procentuální nárůst přenášeného tepelného výkonu v závislosti na rychlosti proudění parovzdušné směsi pro různé diference teplot mezi teplotou stěny a teploty saturace.

Obr.1.5 Prostup tepla v závislosti na rychlosti parovzdušné směsi [16]

Zvyšování rychlosti parovzdušné směsi zintenzivňuje prostup tepla vlivem narušování a urychlování vrstvy kapalného filmu a vlivem větších turbulencí ve směsi, a tím i větším přestupem tepla. Rychlost směsi ovlivňuje také kondenzační součinitel přestupu tepla. Podle obrázku 1.6 dochází k největšímu nárůstu hodnoty kondenzačního součinitele přestupu tepla při nízkých rychlostech do 10 m.s⁻¹.

Obr.1.6 Kondenzační součinitel přestupu tepla v závislosti na rychlosti parovzdušné směsi [16]

1.2.3. Vliv tloušťky kapalného filmu

Kapalný film vznikající z kondenzující parní složky parovzdušné směsi tvoří tepelný odpor vůči prostupu tepla. Pro správné určení prostupu tepla přes kondenzátní film je nezbytné znát jeho tloušťku. První, kdo odvodil při laminárním proudění filmu spojení mezi obvodovým průtokem

filmu a jeho tloušťkou, byl W. Nusselt [19], který v roce 1916 představil vztah daný (7). Tato závislost je významná, protože je z ní možné odvodit vztah mezi rychlostí filmu a jeho tloušťkou.

$$\Gamma = \frac{g \cdot \rho_f \cdot (\rho_f - \rho_m) \cdot \delta^3}{3 \cdot \eta_f}.$$
(7)

Kde δ je tloušťka filmu a Γ je obvodový průtok. Tento vztah byl odvozen pro samovolné stékání kapalného filmu po stěně. Pro aplikaci na vertikální trubce při nuceném proudění bylo nutné přidat vliv smykového napětí. Tuto modifikaci provedl Bergelin [12] a má následující tvar,

$$\Gamma = \frac{g \cdot \rho_f \cdot (\rho_f - \rho_m) \cdot \delta^3}{3 \cdot \eta_f} + \frac{\tau_m \cdot \delta^2}{2 \cdot \nu_f}.$$
(8)

Tato modifikace je dodnes široce rozšířená a mnoho autorů [14], [20], [21], [22], [23] ji ve svých výzkumech použilo. Z (8) je patrné, že tloušťka a rychlost filmu kondenzátu jsou na sobě naprosto závislé a jsou velmi úzce propojeny s hmotnostním tokem, resp. rychlostí proudění plynného média uvnitř trubky. Lee a Son ve své práci [24] provedli numerickou simulaci kondenzace se souproudým a protiprouděním parovzdušné směsi a filmu kondenzátu a odvodili průměrnou rychlosti kondenzátu pro oba případy proudění následovně,

$$\bar{u}_{f} = \frac{\frac{g \cdot (\rho_{f} - \rho_{m}) \cdot \delta^{2}}{3 \cdot \eta_{f}} + \frac{3 \cdot \eta_{f} \cdot \bar{u}_{m}^{*} \cdot \delta}{3 \cdot \eta_{f} \cdot d}}{1 + \frac{3 \cdot \eta_{m} \cdot \rho_{f} \cdot \delta^{2}}{2 \cdot \eta_{f} \cdot m \cdot d^{2}}},$$
(9)

kde

$$\bar{u}_m^* = \bar{u}_m$$
 pro souproudé proudění, (10)

$$\bar{u}_m^* = \bar{u}_m \cdot \frac{d - \delta}{d} + \frac{\rho_f \cdot \bar{u}_f \cdot \delta}{3 \cdot \rho_m \cdot d} \qquad \text{pro protiproudé proudění.} \tag{11}$$

Z výše uvedených rovnic je patrné, že protiproudé proudění plynu a filmu má na kapalný film odlišné účinky než v případě souproudého proudění. Aktershev a Alekseenko vytvořili matematický popis filmu [25], [26] ve kterém výsledky těchto vlivů popisují. Výstupem jejich matematické konstrukce je graf na obrázku 1.7, kde na ose x jsou bezrozměrné souřadnice a na ose y je vynesená tloušťka filmu vyplývá, že v případě souproudého proudění filmu kondenzátu a parovzdušné směsi dochází k nárůstu tloušťky filmu podél kondenzační dráhy, přičemž při zvyšujícím se Reynoldsově čísle filmu tato tloušťka narůstá pomaleji. Pro film kondenzátu je potom Reynoldsovo číslo definováno následovně,

$$Re_f = \frac{\dot{m}_f}{\pi \cdot d_{inner} \cdot \mu_f}.$$
(12)

V případě protiproudého proudění kondenzátního filmu a parovzdušné směsi dochází do určité tloušťky kondenzátu ke změně toku filmu, protože gravitační síla je slabší než síla od smykového napětí. S další kondenzací tloušťka filmu dále narůstá, až na kritickou tloušťku, kdy dojde opět ke změně směru toku filmu a gravitační síla začne převažovat nad sílou od smykového napětí. Hodnota této kritické tloušťky filmu opět narůstá s rostoucím Reynoldsovým číslem filmu.

Obr.1.7 Tlouštka filmu pro a) souproudé proudění b) protiproudé proudění

1.2.4. Vliv zvlnění filmu

Předchozí vztahy zabývající se šířkou filmu předpokládají, že je tato tloušťka na krátkém úseku neměnná a roste pouze vlivem další kondenzace páry. Ve skutečnosti se ale film nechová dokonale protože v jeho jádru dochází turbulencím a jeho povrch se vlní. Toto vlnění filmu je vyvoláno třemi důvody. První je hroucení filmu vlivem gravitačního zrychlení. Toto se děje i v kondenzátním filmu při kondenzaci nehybné páry. Druhým důvodem je pohyb parovzdušné směsi, kdy dochází k narušování stability vlivem smykového napětí a třetím důvodem je samotná kondenzace, kdy dochází k nerovnoměrnému tlakovému namáhaní kondenzátního filmu [18], [25]. Výsledkem je potom nerovnoměrný tepelný tok přes kondenzátní vrstvu, jak je zobrazeno na obrázku 1.8.

Obr.1.8 Nerovnoměrný tepelný tok vlivem vlnění filmu [27]

Náchylnost kapalného filmu k nerovnoměrnému toku se obecně popisuje jako stabilita kondenzátního filmu. Kritéria stability závisí především na termodynamických vlastnostech kapaliny a páry, tepelném gradientu, smykovém napětí, intenzitě kondenzace a v neposlední řadě také na geometrii trubky [28]. Smykové napětí vyvolané pohybem parovzdušné směsi má na stabilitu filmu opačné účinky, podle toho, v jaké směru toto napětí působí. Smykové napětí působící na film v axiálním směru má na film stabilizující účinky, protože má tendenci vyhlazovat špičky vln. Naopak smykové napětí působící na film v radiálním směru stabilitu filmu snižuje.

K destabilizaci filmu dochází vlivem rozdílných účinků tlakového působení vyvolané smykovým napětím na spodní a horní část vlny. Tento jev je intenzifikován zmenšujícím se průměrem trubky [29].

Ztrátou stability kondenzátního filmu vlivem samotné hybnosti filmu se kromě Marschala a Lee [30] [31] více výzkumníků nezabývalo. Tento jev byl ale dobře popsán v teorii volně tekoucího filmu. Volně tekoucí film a kondenzátní film mají jisté podobnosti například v tom, že tečou po stěně a z jedné strany jsou ohraničené volným prostorem. Také jsou relativně tenké a stékají v gravitačním poli. Hlavní rozdíl mezi nimi spočívá ve změně tloušťky filmu. V kondenzátním filmu se mění tloušťka filmu vlivem kondenzace. Analýzu tekoucího filmu jde rozdělit na dva hlavní směry. Prvním je přístup podle Kapicy [32] a druhý podle Yih [33]. Kapicova metoda spočívá v najití integrálu hybnosti. Aproximací hraniční vrstvy lze model zjednodušit na rovnice hybnosti pouze ve směru x (směr toku), které se potom používají k nalezení tloušťky filmu. Střední rychlostní profil filmu se vždy předpokládá jako parabolický. Při aplikaci na kondenzátní film Kapica dokázal, že působením sil povrchového napětí se při proudění kondenzátu vytvoří zvlněná blána, která má menší tloušťku. Tento jev má pak za následek až 20 % zvýšení přestupu tepla [34]. Určitý problém muže být v tom, že většina studií se zabývala filmem s malými vlnovými čísly a není jisté, jestli lze Kapicovu metodu aplikovat na film s libovolným vlnovým číslem. Vlnové číslo nám udává počet vlnových délek připadajících na jednotku délky. Je to tedy převrácená hodnota vlnové délky

Zdá se, že slibnější přistup k této problematice nastínil Yih v roce 1954, který aplikoval lineární teorie stabilit. Matematicky rigorózní formulace problému vede k Orr-Sommerfeldově rovnici. Spolu s vhodnými okrajovými podmínkami muže být tato rovnice použita pro libovolně velká vlnová čísla. Pro volně stékající film potom lze odvodit oblasti stability, nestability a hranici neutrality, jak vzorově ukazuje obrázek 1.9. Kde Cr a Ci jsou složky komplexní rychlosti vlny. A α zde plní roly bezrozměrného vlnového čísla, které je definováno jako podíl tloušťky nezvlněného filmu a vlnovou délkou. Z obrázku je patrné, že stabilita filmu záleží také na jeho Reynoldsově čísle, kdy s rostoucím Reynoldsovým číslem zvětšuje oblast nestability.

Obr.1.9 Příklad stanovení oblastí pro stabilní a nestabilní vlnění stékajícího filmu.

Obecně tedy není jednoduchou disciplínou určit, jestli se film samovolně rozvlní vlivem své hybnosti, protože zde zaleží na mnoha faktorech a v momentě, kdy se nám k tomu přidá ještě vliv smykového napětí na rozhraní a kondenzační proces, stává se možnost této predikce víceméně nemožnou.

Proces kondenzace stabilitu filmu zvyšuje i snižuje. (Oba efekty nejsou přítomny současně v jednom místě). Stabilizační efekt kondenzace vytváří z důvodu nerovnoměrné tloušťky filmu, kdy dochází ve spodních půlvlnách vln k většímu přenosu tepla, tak jak je zobrazeno na obr 1.9, čímž se zvyšuje intenzita kondenzace. Tento proces vede k zaplnění daného místa kondenzátem a tím dojde ke snížení amplitudy vlnění [30]. Na druhou stranu, kondenzace způsobuje diferenci tlaků v hraniční vrstvě plyn-kapalina a vlivem těchto diferencí není normálová složka rychlosti

parovzdušné směsi vzhledem ke stěně nulová. To vede k narušení hladiny filmu a dochází k jeho zvlnění, a tím i k narušení této hraniční vrstvy. Tento jev se nazývá sací efekt a obecně zvětšuje přestup tepla [14]. Sací efekt je závislý především na rychlosti proudění a intenzitě kondenzace. Jeho účinek je vyjádřen tzv. blowing parametrem, který je dán rovnicí [35],

$$\beta_m = \frac{m''}{\rho_m \cdot u_m \cdot St_m}.$$
⁽¹³⁾

Kde St_m je Stantonovo číslo parovzdušné směsi, u_m je rychlost parovzdušné směsi a m" je hmotnostní tok kondenzace, který zavisí na poměru koncentrací vodní páry v proudu parovzdušné směsi a na rozhraní plyn-kapalina podle (14), kde Sh je Sherwoodovo číslo, Sc je Schmidtovo číslo a ω je poměr koncentrace nekondenzujících plynů v jádru parovzdušné směsi a na rozhraní směs-kapalina,

$$m'' = \frac{G^0 \cdot Sh_m}{Re_m \cdot Sc} \Big[ln \Big\{ 1 + \frac{Re_m \cdot Sc \cdot D \cdot \rho_m (1-\omega)}{G^0 \cdot d} \Big\} \Big].$$
(14)

Graf na obrázku 1.10 zobrazuje vliv sacího efektu na hodnotu Nusseltova čísla a tím na přestup tepla. Při nižších hodnotách blowing parametru se poměr mezi teoretickým Nuseltovým číslem a získaným experimentálně rovná přibližně jedné, ale pro vyšší hodnoty blowing parametru poměr exponenciálně vzrůstá.

Obr. 1.10 Vliv blowing parametru na přestup tepla z parovzdušné směsi do filmu. [35]

1.3. Metody výpočtu filmové kondenzace

První popis filmové kondenzace představil Wilhelm Nusselt [19] v roce 1916, kdy vysvětlil princip laminární filmové kondenzace. Avšak jeho popis gravitačního principu laminárního proudění filmu byl odvozen pouze pro kondenzaci na svislé stěně. Nusseltova teorie musí být zmíněna, protože je na ní postavena většina současných fyzikálních teorii a matematických modelů filmové kondenzace uvnitř vertikálních trubek. Během času vzniklo vícero teorií, jak ke kondenzaci vodní páry v přítomnosti nekondenzujícího plynu přistupovat. Nutno podotknout, že v mnoha přístupech různých autorů se dají zpravidla vždy nalézt podobné až zcela shodné prvky. Dále je třeba uvést, že práce prezentuje termomechanické výpočetní metody kondenzace založené na přestupu tepla a přestup hmoty je navazující důsledek přestupu tepla. Není zde tedy reprezentován přístup

fyzikální chemie, která na tuto problematiku pohlíží spíše z pohledu difuze dvou látek mezi sebou a z toho vyplívajícího přestupu hmoty, čehož je navazující důsledek přestup tepla. V dalších kapitolách budou tedy představeny vztahy pro výpočet součinitelů přestupu tepla, a ne pro součinitele přestupu hmoty. Pokud tedy vynecháme oblast numerického modelování, lze analytické metody výpočtu kondenzace v přítomnosti nekondenzujících plynů rozdělily do čtyř následujících základních teorií:

- a) metoda degradačního faktoru,
- b) metoda hmotnostní vodivosti,
- c) metoda analogie tepla a hmoty,
- d) model difuzní vrstvy.

Pořadí, v jakém jsou základní metody výpočtu představeny částečně odpovídá i jejich relevance.

1.3.1. Metoda degradačního faktoru

Metoda degradačního faktoru patří s metodou analogie tepla a hmoty mezi polo-teoretické metody. To znamená, že je nutné nejprve vypočítat teoretickou hodnotu a poté opravit korekčním součinitelem, aby odpovídala reálným hodnotám. Metoda degradačního faktoru na problém kondenzace nahlíží z vnějšího hlediska a nepopisuje fyzikální jevy uvnitř difuzní vrstvy.

Degradační faktor byl představen v roce 1990 a představuje poměr mezi experimentálně určeným kondenzačním koeficientem přestupu tepla a kondenzačním koeficientem přestupu tepla vypočítaným podle teoretických vztahů pro čistou páru. K.M Vierow [36] navrhl experiment pro určení lokálních účinků nekondenzujících plynu na kondenzaci vodní páry ve vertikální trubce. Z experimentů zvolil degradační faktor podle rovnice (15) jako funkci Reynoldsova čísla parovzdušné směsi a koncentrace nekondenzujících plynů ve vodní páře. Vztah podle Vierowa je jednoduchý a dobře použitelný v inženýrské praxi. Koeficienty *a* až *d* vychází z tabulky 1,

$$F = (1 + a \cdot Re_m^b)(1 - c \cdot Y^d).$$
⁽¹⁵⁾

Kde Re_m je Reynoldsovo číslo parovzdušné směsi vyjadřující souvislost mezi setrvačnými silami a viskozitou a Y je molární koncentrace nekondenzujících plynů (vzduchu) ve vodní páře.

	Y	a	b	С	d				
	Y < 0,063	2,88 · 10 ⁻⁵	1,18	10	1				
Vierow	0,063 < Y <0,6	2,88 · 10 ⁻⁵	1,18	0,94	0,13				
	Y > 0,6	2,88 · 10 ⁻⁵	1,18	1	0,22				
	Y > 0,1	$7,32 \cdot 10^{5}$	2.6	0,708					
Kuhn	Y < 0,1	$7,32 \cdot 10^{5}$	1	0,202					
	Y < 0,01	$7,32 \cdot 10^{5}$	-35,8	1,074					

Tab.1 Koeficienty pro rovnice degradačního faktoru

S.Z Kuhn [36] navázal ve své práci na myšlenku degradačního faktoru podle Vierowa a po experimentech s filmovou kondenzací v přítomnosti vzduchu nebo helia navrhl úpravu podle rovnice (16), která zahrnuje vliv šířky filmu,

$$F = \frac{\delta_{exp}}{\delta_{Nu}} \cdot (1 + a \cdot Re_m) \cdot (1 - b \cdot Y^c).$$
⁽¹⁶⁾

V roce 2008 Lee a Kim provedli řadu experimentů s U trubicí malého průměru a porovnali experimentálně naměřená data s předchozími verzemi degradačního faktoru pro různé hmotnostní toky parovzdušné směsi a různé koncentrace NCG [18]. Výsledky těchto experimentů

jsou zaznamenány na grafech na obrázcích 1.11 a 1.12. Z grafů je patrné, že pro vyšší rychlosti proudění parovzdušné směsi a větší koncentraci nekondenzujících plynů ve vodní páře se experimentálním datům přibližuje verze degradačního faktoru navržená Vierowem. Naopak pro nižší rychlosti proudění a nižší koncentrace nekondenzujících plynů se experimentálním datům přibližuje verze degradačního faktorů od Khuna.

Obr. 1.11 Grafické porovnání degradačního faktoru při vyšším (nahoře) a při nižším (dole) obsahu NCG obsahu NCG [18].

1.3.2. Metoda vodivosti přenosu hmoty

Jedná se o alternativní přístup k metodě difuzní vrstvy, ve které se intenzita kondenzace vyhodnocuje ve vztahu k přenosu hmoty. Tato metoda řeší kondenzaci přes chemické procesy při kondenzaci se zahrnutím určitých fyzikálních jevů, jako je například sací efekt. Základní myšlenka vychází z obrázku 1.14, kdy přenos tepla je opět rozdělen na dvě základní části, a to na přenos citelného tepla a na přenos tepla latentního. Celkový součinitel přestupu tepla z parovzdušné směsi do filmu kondenzátu je pak dán (17). Je-li směs dobře promíchaná, výraz v závorce je roven jedné, a pak se jedná o prostý součet [35],

$$\alpha_m = \alpha_{cond} + \alpha_g \left(\frac{T_g - T_i^s}{T_g^s - T_i^s} \right). \tag{17}$$

Kde

$$\alpha_{cond} = \frac{g_m^o \cdot \left(\frac{g_m}{g_m^o}\right) \cdot B_d \cdot h_{fg}}{T_g^s - T_i^s},\tag{18}$$

$$\alpha_g = \left(\frac{g_m}{g_m^o}\right) \cdot 0.021 \cdot Re_m^{0.8} \cdot Pr_m^{0.5} \cdot \left(\frac{\lambda}{d}\right).$$
(19)

Kde g_m je součinitel vodivosti přenosu hmoty, B_d je hnací síla přenosu hmoty a h_{fg} je latentní teplo uvolněné kondenzací. Touto metodou se zabýval především Kuhn a spol. ve své práci [35]. Výsledek jejich experimentů shrnuje graf na obrázku 1.13.

Obr. 1.12 Porovnání skutečného a teoretického součinitele přestupu tepla [35].

Z grafu na obrázku 1.12 je patrné, že hodnota teoretického součinitele přestupu tepla z parovzdušné směsi do filmu kondenzátu je v dobré shodě s hodnotou skutečného součinitele přestupu tepla a pro parovzdušnou směs byla (STD) relativní směrodatná odchylka 6,38 %.

1.3.3. Metoda analogie přenosu tepla a hmoty

Metoda analogie přenosu tepla a hmoty je založena na podobnostech a spojeních mezi přenosem hmoty a přenosem tepla, přičemž se vychází ze znalosti tepelného toku z parovzdušné směsi do chladícího média. Tato metoda vznikla nejprve pro výpočet kondenzačního součinitele přenosu tepla v čisté páře a teprve poté byla upravena, aby zahrnovala i vliv nekondenzujících plynů.

Princip metody spočívá podle obrázku 1.13 v tom, že součinitel přestupu tepla z parovzdušné směsi do filmu kondenzátu je součtem koeficientů přestupu citelného tepla (α_{g}) a koeficientu přestupu latentního tepla (α_{cond}). Tepelný tok z parovzdušné směsi do stěny se poté vypočte podle (20), kde α_{f} je součinitel přestupu tepla ve filmu kondenzátu a T_{m} , T_{wall} a T_{w} jsou teploty jádra parovzdušné směsi, stěny trubky a teplota chladící vody. Pro možné využití této metody je nutné zavést následující zjednodušující podmínky [37],

- a) proudění je v ustáleném stavu a je axiálně symetrické,
- b) vodní pára a NCG jsou dokonale smíšené a v termodynamické rovnováze,
- c) na rozhraní plyn-kapalina je vodní pára v sytém stavu,
- d) v plynné fázi nevzniká žádná vodní mlha,

Obr. 1.13 Přestup tepla z proudu parovzdušné směsi do stěny trubky [38]

Metoda analogie mezi přenosem tepla a hmoty je velmi podobná metodě difuzní vrstvy, jelikož s existencí difuzní vrstvy také počítá. Hlavní rozdíl spočívá ve výpočtu součinitelů přestupu kondenzačního a citelného tepla. Výpočet součinitele kondenzačního součinitele přestupu tepla podle této metody vychází ze stejných vztahů jako výpočet součinitele citelného tepla, akorát místo Prandtlova čísla je použito číslo Schmidtovo. Měrný tepelný tok z jádra parovzdušné směsi do stěny trubky je definován následovně [37],

$$\dot{q} = \frac{(T_m - T_{wall,inner})}{\frac{1}{\alpha_f} + \frac{1}{\alpha_g + \alpha_{cond}}}.$$
(20)

Kde

$$\alpha_g = \frac{c_{p,m} \cdot \rho_m \cdot u_m \cdot f_i \cdot Pr_m^{-\frac{2}{3}}}{2},\tag{21}$$

$$\alpha_{cond} = \frac{c_{p,m} \cdot \rho_m \cdot u_m \cdot f_i \cdot Sc_m^{-2/3}}{2}.$$
(22)

Kde Pr_m je Prandtlovo číslo směsi Sc_m je Schmidtovo číslo směsi a f_i je součinitel tření pro hladkou trubku podle Wallise [39] definovaný jako,

$$f_i = f_g \cdot \left(1 + \frac{360 \cdot \delta_f}{d_{inner}}\right),\tag{23}$$

$$f_g = 0,079 \cdot Re_m^{-0,25}; Re_m > 2300, f_g = 16 \cdot Re_m^{-1}; Re_m \le 2300.$$
(24)

Při výpočtech přestupu tepla přes kapalný film lze z důvodu velmi malé tloušťky filmu udělat zjednodušení a kapalný film brát jako pevnou stěnu. V tom případě lze potom součinitel přestupu tepla v kondenzátním filmu vypočítat podle následujícího vztahu,

$$\alpha_f = \frac{\lambda_f}{\delta_f}.$$
(25)

Protože při tepelných výpočtech je zcela zásadní znát teplotu na rozhraní plyn-kapalina, a neexistuje přímý způsob, jak tuto teplotu vypočítat, je nutné celý výpočet kondenzace provádět iterativně [37]. S rozvojem výpočetní techniky, přestává být metoda analogie tepla a hmoty pouze analytickou teorii, ale stává se základem pro numerické výpočty. No a Park [40] navrhli neiterativní kondenzační model pro vodní kondenzaci v přítomnosti NCG ve vertikální trubce založený na teorii analogie tepla a hmoty. Model ovšem využívá zjednodušující podmínku a to, že směs a film kondenzátu jsou v sytém stavu a přenos tepla sáláním je zanedbatelný.

1.3.4. Metoda difuzní vrstvy

Metoda difuzní vrstvy je asi nejrozpracovanější teoretická metoda pro výpočet filmové kondenzace. Byla navržena v roce 1930 Colburnem a Hougenem v jejich práci [41], ve které poprvé navrhli myšlenku, že proces přenosu hmoty páry v přítomnosti NCG probíhá vlivem difuze. A jak probíhá kondenzace vodní páry, dochází k hromadění NCG u rozhraní plyn-kapalina a tím se zvětšuje šířka difuzní vrstvy a odpor vůči kondenzaci narůstá [41]. Pro představu tohoto procesu lze použít obrázek 1.1, který zobrazuje typické schéma difuzní vrstvy.

Difuzní vrstva je tedy vrstva, ve které se hromadí molekuly nekondenzujícího plynu a tím se tvoří další odpor vůči přenosu hmoty a tepla. Vodní pára prochází touto vrstvou v sytém stavu, ale protože se směrem ke stěně trubky snižuje její koncentrace a tím i její parciální tlak, dochází také k poklesu její teploty. Hnací silou difuze atomů je jejich koncentrace, v případě kondenzace vodní páry je to rozdíl mezi koncentrací vodní páry v proudu parovzdušné směsi a koncentrací na rozhraní plyn-kapalina. Pro velkou složitost nebyla tato metoda mnoha vědci všeobecně přijímána až do roku 1971, kdy došlo k rozšíření výpočetní techniky a ke zjednodušení výpočtů [42].

Pro použití této metody k výpočtu je potřeba zavést následující podmínky [43],

- a) Jedná se o dvourozměrné proudění v ustáleném stavu,
- b) Průřez trubice je kruhový,
- c) Film kondenzátu je netečný k NCG,
- d) Vodní pára a NCG jsou dokonale smíšeny a v termodynamické rovnováze.

Pro určení přestupu tepla z parovzdušné směsi se u této metody vychází opět z obrázku 1.13, kdy celkový součinitel přestupu tepla z parovzdušné směsi do filmu kondenzátu je rozdělen na součinitel přestupu tepla citelného a latentního. Dílčí součinitele přestupu tepla se pak stanoví podle (26) a (27). Oba součinitele vycházejí ze stejného formálního vztahu, jen pro citelné teplo je použito jako kritérium Nusseltovo číslo a tepelná vodivost parovzdušné směsi. Pro součinitel přestupu kondenzačního tepla je pak určující Sherwoodovo číslo [44],

$$\alpha_g = \frac{Nu \cdot \lambda_m}{d_{inner}},\tag{26}$$

$$\alpha_{cond} = \frac{Sh \cdot k_{cond}}{d_{inner}}.$$
(27)

Pro potřeby výpočtu byla zavedena nová fyzikální veličina, a to součinitel tepelné vodivosti kondenzace (k_{cond}). První formulace tepelné vodivosti kondenzace pochází od Petersona [45], který ji odvodil z energetické bilance. Předpokladem je, že se tepelný tok přes vrstvu kondenzátu a stěnu se musí rovnat součtu toku kondenzačního tepla a citelného tepla z párovzdušné směsi do kondenzátního filmu,

$$\dot{q}_{total} = \dot{q}_{cond} + \dot{q}_g = -\Delta h_c \cdot \rho_{mol,m} \cdot M_v \cdot \tilde{v}_i + \lambda_m \cdot \left(\frac{\partial T}{\partial y}\right).$$
(28)

Kde \dot{q}_{total} je celkový tepelný tok z jádra parovzdušné směsi zahrnující tepelný tok citelného tepla (\dot{q}_g) a tepelný tok kondenzačního tepla (\dot{q}_{cond}), Δh_c je latentní teplo, $\rho_{mol,m}$ je hustota parovzdušné směsi a \tilde{v}_i je střední rychlost difuze, která muže být stanovena podle Fickova zákona a záleží především na koncentracích NCG a vodní páry [43].

Rozhraní směs/film je pro nekondenzující plyny nepropustné, takže absolutní rychlost plynu na rozhraní je rovna nule a rychlost kondenzace lze vyjádřit pomocí střední rychlosti difuze následovně,

$$\tilde{v}_{i} = \left(D \cdot \frac{1}{y_{g}} \cdot \frac{\partial y_{g}}{\partial y}\right) = \left[D \cdot \frac{\partial}{\partial y} \cdot \ln(y_{g})\right] = \frac{D}{\delta_{g}} \cdot \left[\ln\left(y_{g,b}\right) - \ln\left(y_{g,i}\right)\right].$$
(29)

Kde D je difuzní koeficient, $y_{g,b}$ a je koncentrace nekondenzujícího plynu v proudu parovzdušné směsi, $y_{g,i}$ a je koncentrace nekondenzujícího plynu na rozhraní plyn-film a δ_g je efektivní tloušťka difuzní vrstvy zobrazená na obrázku 1.14. Využití zákona ideálního plynu k vyjádření molárních zlomků pomocí parciálního tlaku a použitím upravené Clausius-Clapeyronovi rovnice, dostaneme vztah mezi parciálními tlaky a saturačními teplotami v jádru směsi a na rozhraní plyn-film,

$$Sh = \frac{d_{inner}}{\delta_g} = \left(\frac{\dot{q}_{cond}}{(T_b^s - T_i^s)}\right) \cdot d_{inner} \cdot \theta \cdot \left(\frac{R^2 \cdot \overline{T}^3}{\Delta h_c^2 \cdot P_m \cdot M_v^2 \cdot D}\right).$$
(30)

Kde

$$\bar{T} = \frac{(T_b^s + T_i^s)}{2}.$$
(31)

 \overline{T} je tedy střední teplota v difuzní vrstvě vyplívající z teploty jádra směsi a teploty na rozhraní směs-kondenzát. První člen v (30) představuje kondenzační součinitel přestupu tepla, definovaný následovně,

$$\alpha_{cond} = \frac{\dot{q}_{cond}}{(T_b^s + T_i^s)}.$$
(32)

Třetí člen vztahu je logaritmický poměr střední koncentrace vzduch/pára, daný vztahem,

$$\theta = \frac{ln\left(\frac{y_{g,b}}{y_{g,f}}\right)}{-ln\left(\frac{1-y_{g,b}}{1-y_{g,f}}\right)}.$$
(33)

Kde $y_{g,b}$ a je koncentrace nekondenzujícího plynu v proudu parovzdušné směsi a $y_{g,f}$ je koncentrace nekondenzujícího plynu na rozhraní plyn-kapalina, Poslední člen (30) má inverzní

jednotku tepelné vodivosti. Součinitel tepelné vodivosti kondenzace lze tedy napsat jako převrácenou hodnotu tohoto vztahu následovně,

$$k_{cond,P} = \frac{\theta \cdot \Delta h_c^2 \cdot P_m \cdot M_v^2 \cdot D}{R^2 \cdot T_m^3}.$$
(33)

Další úpravu tohoto vztahu provedl Liao a Vierow, kteří navrhli následující zjednodušený vztah [46],

$$k_{cond,L} = \frac{\Delta h_c \,\rho_m \,D}{t_{m,b} - t_{m,f}} \cdot l \,n \left(\frac{1 - y_{\nu,f,in}}{1 - y_{\nu,b,in}}\right). \tag{34}$$

Kde $y_{v,b,in}$ a je vstupní koncentrace vodní páry v proudu parovzdušné směsi a $y_{v,f,in}$ je vstupní koncentrace vodní páry na rozhraní plyn-kapalina. Sherwoodovo číslo, ze kterého vychází analytický vztah pro výpočet kondenzačního součinitele přestupu tepla je po odvození předchozích vztahu definováno následovně,

$$Sh = \frac{\alpha_{cond} \cdot d_{inner}}{k_{cond}}.$$
(35)

Pro správné určení difuzních vlastností parovzdušné směsi je nutné znát difuzní koeficient (někdy také nazývaný binární difuzní koeficient), který kvantifikuje "ochotu" atomů dvou plynů difundovat mezi sebou. Základní tvar difuzního koeficientu je definován [47],

$$D_{0} = \frac{0,00143 \cdot T_{m}^{1,75} \left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{1/2}}{P_{m} \cdot \sqrt{2} \cdot \left(v_{1}^{\frac{1}{3}} + v_{2}^{\frac{1}{3}}\right)^{2}}.$$
(36)

Kde v je difuzní molární objem dané látky, který bývá zpravidla tabelovaný [48] a M je molární hmotnost dané látky. Maheshwari provedl úpravu tohoto vztahu pro použití v tepelných výpočtech zahrnující kondenzaci jedné z látek navrhl vztah (37), podle kterého je difuzní koeficient dvou plynů funkcí především jejich teploty a tlaku [14],

$$D_M = \frac{8,96038 \cdot 10^{-4} \cdot T_m^{1,5}}{P_m}.$$
(37)

Jak už bylo zmíněno, pro určení kondenzačního součinitele přestupu tepla je nutné určit Sherwoodovo číslo. V dostupné literatuře je možné najít tři definice Sherwoodova čísla. Sherwoodovo číslo podle Frosllinga [49],

$$Sh_F = 2 + 0.552 \cdot Re_m^{0.5} \cdot Sc^{\frac{1}{3}}.$$
 (38)

Sherwoodovo číslo podle Vdi Atlas [50],

$$Sh_{VDI} = 0,023 \cdot Re_m^{0,83} \cdot Sc^{\frac{1}{3}}.$$
 (39)

Sherwoodovo číslo podle Kageyama [51],

$$Sh_K = 0.021 \cdot Re_m^{0.8} \cdot Sc^{0.5}.$$
(40)

2. ANALÝZA, INTERPRETACE A ZHODNOCENÍ POZNATKŮ

Rešerše se věnovala popisu problematiky kondenzace vodní páry v přítomnosti nekondenzujících plynu od prvních teorií z počátku 20. let až po rozpracované fyzikální metody ze začátku 21. století. Z rešerše vyplývá, že samotný mechanismus kondenzace se skládá ve skutečnosti ze dvou protichůdných jevů, a to z kondenzace a výparu a výsledná intenzita kondenzace je výsledkem ustáleného poměru parciálních tlaků plynu a vodní páry. Už při prvních experimentech v roce 1929 bylo zjištěno, že nekondenzující plyny i v malém množství rapidně snižují přestup tepla a vlivem další kondenzace se tento přestup tepla nadále zmenšuje. S rozvojem výpočetní techniky vznikly během let čtyři hlavní metody pro výpočet kondenzace. Metoda degradačního faktoru a metoda analogie mezi přenosem hmoty a tepla teoretické hodnoty korigují opravným součinitelem, a jsou proto silně závislé na velkém množství experimentů. Patří proto do kategorie polo-teoretických. Metoda difuzní vrstvy a metoda hmotnostní vodivosti vysvětluje kondenzaci z fyzikální podstaty, a tím se řadí mezi metody teoretické.

2.1 Metody výpočtu

Metoda degradačního faktoru je velmi zjednodušenou metodou výpočtu kondenzace vodní páry, a tím se jeví jako velmi slibná metoda pro praktické využití v inženýrské praxi. Při srovnání dvou hlavních verzí degradačního faktoru z literatury [36] a [35] je ale patrné, že se výsledky pro různé rychlosti proudění směsi a koncentrace nekondenzujících plynů rozcházejí s experimentálně naměřenými údaji. Je proto nutné, dobře volit úpravu degradačního faktoru pro získání relevantních výsledků. Tím se tato metoda stává méně univerzální.

Metoda analogie hmoty a tepla rozlišuje dva mechanismy přenosu tepla z parovzdušné směsi do filmu kondenzátu na přenos tepla citelného a latentního. Pro výpočet touto metodou je nejprve nutné zjistit podmínky na rozhraní plyn-kapalina, a to vede na iterační výpočet. No a Park [40] přišli s neiterativním výpočtem, který lze jednoduše použít ve většině inženýrských aplikací, ale za předpokladu velmi zjednodušujících podmínek, které poté úplně neodpovídají realitě. Protože model neobsahuje výpočet pro přestup tepla skrze trubku do chladící kapaliny, který je iterační, zdá se název "neiterační výpočet" lehce nadnesený.

Nejlepší metodou pro výpočet se jeví metoda difuzní vrstvy, která pojímá problém z hlubšího fyzikálního hlediska, a protože zahrnuje mnoho různých parametrů systému při kondenzaci, dá se považovat za nejuniverzálnější metodu. Problém může nastat u výpočtu difuzního koeficientu, který má triviální řešení pouze pro směs dvou plynů. Z tohoto důvodu se občas nazývá binární difuzní koeficient. Pro více složkové směsi je možné použít Wilkeho směšovací pravidlo.

2.2 Vliv vstupních parametrů

Intenzita kondenzačního procesu je závislá mimo jiné na rychlosti parovzdušné směsi, vstupní koncentraci nekondenzujících plynů a průměru trubice, ve které ke kondenzaci dochází. Z rešerše vyplývá, že přestup tepla je ovlivněn hmotnostním tokem, a to především z důvodu větších turbulencí parovzdušné směsi, při kterých dochází k lepšímu promíchávání plynu a k narušování difuzní vrstvy, čímž dochází se zvyšováním hmotnostního toku směsi ke zvyšování součinitele přestupu citelného i latentního tepla.

Vliv vstupní koncentrace nekondenzujících plynů je dobře patrný z experimentálně naměřených dat v literatuře [9] z kterých vyplývá, že při zvyšování koncentrace NCG dochází v první třetině trubice k výraznému snížení kondenzačního součinitele přestupu tepla z parovzdušné směsi do chladiva. Na konci trubice je již nárůst nekondenzujících plynů je natolik veliký, že dochází v difuzní vrstvě k takové koncentraci nekondenzujících plynu, že molekuly vodní páry již

nemohou difundovat a kondenzační proces se téměř zastavuje. V tento moment je intenzita kondenzace závislá především na tepelném spádu mezi parovzdušnou směsi a chladícím médiem. To znamená, že kondenzační proces se může opět nastartovat pouze snížením teploty stěny kondenzační trubky.

Dalším významným vlivem na přestup tepla je tlak parovzdušné směsi, který ovlivňuje saturační teplotu vodní páry. Při zvyšování tlaku dochází ke snižování kondenzačního součinitele přestupu tepla, ale zároveň dochází k nárůstu tepelného toku z důvodu většího tepelného spádu.

2.3 Shrnutí chybějícího poznání

Dosavadní experimenty s kondenzací v přítomnosti nekondenzujících plynů byly provedeny v širokém rozsahů vstupních parametrů. Hlavním nedostatkem všech současných teorií kondenzace v přítomnosti nekondenzujících plynů je fakt, že se většina autorů zaměřovala pouze na jeden hlavní parametr. Buď byly měřeny malé rozsahy koncentrace nekondenzujícího plynu, anebo byly provedeny experimenty jen pro malé množství stavů se shodným Reynoldsovým číslem. Zcela chybí studie zabývající se změnou Prandtlova čísla na kondenzační proces a také není znám dopad vnitřního průměru na celkový přestup tepla a hmoty při kondenzaci vodní páry v přítomnosti vzduchu jako nekondenzujícího plynu. Z tohoto důvodu není možné dohledat relevantní srovnání vlivů většího množství parametrů na přestup tepla z parovzdušné směsi do stěny trubky. Ve výpočetní metodě difuzní vrstvy vstupují do výpočtu fyzikální vlastnosti parovzdušné směsi, které mají podle různých autorů vícero definic a není zcela jasné, která kombinace dosahuje nejlepších shod s praktickým měřením v širším intervalu měněných parametrů.

Další nedostatkem provedených experimentů je to, že jsou zaměřeny pouze na případ, kdy chladící medium proudí v plášti kondenzační trubky stejným směrem jako parovzdušná směs. V případě vertikální trubky je v prezentovaných článcích použit vždy souproudý způsob chlazení, kdy parovzdušná směs, kondenzátní film i chladící voda proudí shodným směrem, a to ze shora dolů. Konfigurace chlazení určitě nemůže být přehlížena, protože při nesouproudém chlazení na vertikální trubce neboli pokud chladivo proudí zespodu nahoru, je v místě největšího tepelného spádu taky největší tepelný odpor, kvůli přítomnosti kondenzátního filmu. V souproudém režimu chlazení tento handicap není. V dnešní době tak stále chybí představa o chování filmu a přenosu tepla při nesouproudých stavech v praxi. K tomuto tématu se vyjadřují Yang Pan ve své práci [23] a Lee a Son [24], jejich výzkum je ale zaměřený pouze na kondenzaci čisté vodní páry, a proto není jasné, jak tento proces ovlivňují nekondenzující plyny. Dále se k tomuto tématu vyjadřují Aktershev a Alekseenko [25], ale jejich popis chování filmu je čistě matematický bez experimentálního ověření.

3 PODSTATA A CÍLE DISERTAČNÍ PRÁCE

3.1. Podstata disertační práce

Podstatou disertační práce je pochopení fyzikálních procesů ovlivňujících přestup tepla a hmoty při kondenzaci vodní páry v přítomnosti nekondenzujících plynů. Dosavadní experimenty byly většinou prováděny za účelem aplikace poznatků v ochranných systémech jaderných zařízení, anebo v chladicích zařízeních, a proto jsou v nich testované proměnné parametry pro jiné využití, jako např. v kondenzátorech spalin a vlhkého vzduchu nedostatečné. Přínos této práce tedy spočívá v utřídění vlivů provozních nebo návrhových parametrů na výsledný termodynamický propočet výměníku tepla se změnou skupenství. Výsledné závislosti a korekční analytické řešení pro současné matematické modely najdou uplatnění v energetickém průmyslu při návrzích tepelných okruhů a pomůžou snižovat náklady na výrobu. V nepřímém důsledku práce podpoří i snižování emisního znečištění ovzduší. V dnešní době klimatických změn se otevírají i nové možnosti využití efektivních kondenzátoru, a to pro lepší hospodaření s technologickou vodou.

Jádrem disertační práce je základní výzkum založený na sérii experimentů. V rámci práce jsou zpracovány závislosti změny toků, geometrie a koncentrací vodní páry a nekondenzujících plynů a změny směru proudění chladícího media na prostup tepla a přenos hmoty. Výstupem práce jsou potom korigované analytické vztahy pro výpočet kondenzačního součinitele přestupu tepla a Nusseltova čísla pro celkový přestup tepla uvnitř trubky. Předpokládané využití získaných analytických vztahů bude v oblasti efektivnějších návrhů kondenzátoru vlhkého vzduchu.

3.2. Cíle disertační práce

V souladu s pojednáním k disertační práci a závěry státní doktorské zkoušky jsou hlavní cíle předkládané disertační práce definovány následovně,

- 1. Provést experimentální identifikace přestupu tepla při kondenzaci parovzdušné směsi ve vertikální trubce při různých parametrech proudění.
- 2. Porovnání publikovaných vztahů pro přestup tepla při kondenzaci parovzdušné směsi a formulování modifikovaných vztahů na základě získaných dat.

Hlavní cíle práce byly po konzultaci s vedoucím práce rozděleny do následujících podcílů:

- 1. Provést experimentální identifikace přestupu tepla při kondenzaci parovzdušné směsi ve vertikální trubce při různých parametrech proudění.
 - (a) S využitím experimentálních dat vyhodnotit vliv rychlosti parovzdušné směsi na přestup tepla a hmoty.
 - (b) S využitím experimentálních dat vyhodnotit vliv vzrůstající koncentrace nekondenzujících plynů na přenos tepla a hmoty.
 - (c) Porovnat předchozí závislosti pro souproudé a protiproudé proudění parovzdušné směsi a chladící vody.

- 2. Porovnání publikovaných vztahů pro přestup tepla při kondenzaci parovzdušné směsi a formulování modifikovaných vztahů na základě získaných dat.
 - (a) Porovnat publikované vztahy pro přestup tepla při kondenzaci parovzdušné směsi k metodě difuzní vrstvy a dle potřeby formulovat modifikované vztahy na základě získaných dat.

3.3. Vědecké otázky a pracovní hypotézy

3.3.1 Vliv rychlosti proudění směsi v trubce

Hypotéza: Při zachování geometrie trubice a nárůstu hmotnostního toku směsi dojde ke zvýšení její rychlosti, a tím dojde ke zvýšení přestupu tepla vlivem větších turbulencí a lepšímu promíchávání parovzdušné směsi. Hypotéza vychází především z analytických vztahů pro kondenzační součinitel přestupu tepla, který je mimo jiné funkcí Reynoldsova čísla, které je funkcí rychlosti proudění a průměru trubky.

Experiment bude zaměřen na potvrzení nebo vyvrácení hypotézy změnou hmotnostního toku směsi při zachování geometrie trubky a teploty a složení parovzdušné směsi.

3.3.2 Vliv změny geometrie trubky

Hypotéza: Podle současných znalostí by měl být přestup tepla zvětšován se zmenšujícím se poloměrem trubice. Hypotéza vychází z analytických vztahů pro kondenzační součinitel přestupu tepla, který je funkcí Reynoldsova čísla, které je funkcí rychlosti proudění a průměru trubky.

Experiment bude zaměřen na potvrzení či vyvrácení hypotézy změnou průměru kondenzačních trubic (12, 16, 22 mm) při zachování stavových veličin parovzdušné směsi.

3.3.3 Vliv vzrůstající koncentrace nekondenzujících plynů

Hypotéza: Při zvyšování koncentrace nekondenzujících plynů v parovzdušné směsi bude docházet ke snižování tepelného toku vlivem hromadícího inertního plynu u stěny trubky. Hypotéza vychází z interpretace metody difuzní vrstvy.

Experiment bude zaměřen na potvrzení nebo vyvrácení hypotézy postupným měněním poměru vodní páry ku nekondenzujícímu plynu při zachování hmotnostního toku parovzdušné směsi.

3.1.1 Vliv konfigurace chlazení kondenzační trubice

Hypotéza: Přestup tepla z parovzdušné směsi do stěny trubky se bude při souproudém proudění, oproti protiproudému proudění parovzdušné směsi vzhledem k toku chladicí vody snižovat. Tato hypotéza vychází ze známých vztahů pro výpočet výkonu výměníků pomocí středního logaritmického teplotního spádu.

Experiment bude zaměřen na potvrzení nebo vyvrácení hypotézy změnou směru proudění chladicí vody v plášti kondenzační trubky, přičemž geometrie kondenzační trubky a stavové veličiny směsi zůstanou nezměněny.
4 EXPERIMENTÁLNÍ ZAŘÍZENÍ

Pro zkoumání přestupu tepla během kondenzace vodní páry uvnitř vertikální trubky bylo postaveno experimentální zkušební zařízení obsahující tepelný výměník "trubka v trubce" pro analýzu tepelných pochodů a přestupu tepla během kondenzačního procesu.

4.1 Experimentální zařízení s výměníkem typu "trubka v trubce"

Experimentální zařízení vniklo za účelem testování vlivů přestupu tepla při kondenzaci vodní páry v přítomnosti nekondenzujících plynů. Primárně se skládá z trubkového výměníku a dochlazovací komory, sloužící zároveň jako sběrná nádrž na vznikající kondenzát. Detailní schéma zařízení je na obrázku 4.1.

Vysvětlivky:

č - čerpadlo, DV - deskový výměník, exp - expanzní nádoba, F - filtr, KK - kulový kohout, KKP - kulový kohout pájený,
 MP - indukční průtokoměr, p - manometr, S - stavoznak, Ŝ - šoupě, T - teploměr, T (s dalším(-i) symbolem(-ly) - termočlánek,
 V+E - vývěva + ejektor, ZV - zpětný ventil

Obr.4.1 Schéma experimentálního zařízení s výměníkem "trubka v trubce"

Zařízení disponuje třemi chladicími smyčkami, z nichž dvě chladí dochlazovací nádrž, a třetí chladí zkoumaný trubkový výměník. Na chladicí komoru jsou napojeny dvě uzavřené smyčky (chladicí a skrápěcí), ve kterých cirkuluje chladicí voda z chladicích rozvodů laboratoře, která není nijak upravena a ani obohacena. Skrápěcí smyčka umožnuje kondenzát ze dna sběrné nádrže rozstřikovat do prostoru dochlazovací nádoby, a tím zlepšuje dokondenzovávání páry. Při nedostatečném chlazení je možné do této smyčky vpustit studenou vodu z vodovodního řadu. Pro experimenty byly vyrobeny tři tepelné výměníky typu "trubka v trubce", které jsou vyrobeny z měděných trubek. Každý z nich je složený z vnitřní a z vnější trubky, jejichž průměry jsou uvedeny v tabulce 2.

	1 do. 2 1 rumery pouzityen mederiye	<i>ii ii iioon.</i>
	VNITŘNÍ TRUBKA [mm]	VNĚJŠÍ TRUBKA [mm]
1. Výměník	28 x 1	35 x 1,5
2. Výměník	22 x 1	28 x 1
3. Výměník	18 x 1	22 x 1

Tab.	2l	Prům	ěry	použitých	mědě	íných	trub	ek
			~			~		

Pro napájení výměníku párou je využit parní vyvíječ o jmenovitých parametrech 1,5 bar (a) s možností přehřátí páry do teplot až 550 °C a maximálním hmotnostním toku páry 35 kg/hod. Parní vyvíječ umožňuje napojení procesních plynů (vzduch, O2, N). Procesní plyny jsou do trasy napojeny před přehřívací sekcí, a tak je možné tyto plyny s párou přehřát v přehříváku vyvíječe. Tok procesních plynů je regulován automatickým regulátorem toku BRONKHORST F-202AI a měřen plynovým průtokoměrem VA520.

Obr.4.1 Experimentální zařízení s výměníkem "trubka v trubce"

Chladicí smyčka, ve které cirkuluje chladicí kapalina zkoumaného výměníku, je z větší části tvořena měděnými trubkami a kulovými kohouty, které jsou k sobě pájeny. Některé ventily na chladící smyčce jsou opatřený pohonem Belimo, aby bylo možné chlazení experimentálního výměníku

regulovat přes software LabView. Dále je smyčka osazena čerpadlem, jehož výkon je regulován pomocí frekvenčního měniče, indukčním průtokoměrem (MP2) a deskovými výměníky umožňujícími větší rozsah regulace, Teplotní stavy chladicí kapaliny jsou měřeny termočlánky na vstupu do výměníku a výstupu z výměníku. V případě úplné kondenzace, se na výstupu z výměníku měří teplota podchlazeného kondenzátu.

4.2 Měřící zařízení

Provozní teploty experimentálního standu jsou měřeny zapouzdřenými termočlánky typu T s neuzemněným koncem se zvýšenou přesností. Teploty důležité pro tepelný výpočet jsou měřeny snímači PT100. V tabulce 3 jsou shrnuty použité měřící zařízení včetně jejich přesností.

	Tab. 3 Použité měřící zařízení							
ΖΑΡΊΖΕΝΙ	ΡΟΖΩΛΗ ΜĚŘΕΝΙ	PŘESNOST (%)	NEJISTOTA					
ZARIZEINI	KOZSATI WERENI	1 KESNOS1 (70)	TYPU (B)					
Termočlánek typ t	-270 ÷ 400 °C		± 0,65 °C					
Snímač PT100	-70 ÷ 500 °C	DIN třída B	± 0,50 °C					
Snímač tlaku PXM	0 ÷ 700 kPa	0,25 % z rozsahu	$\pm 0,175$ kPa					
Snímač tlaku TED6	0 ÷ 160 kPa	0,5 % z rozsahu	\pm 0,5 kPa					
Průtokoměr flomag3000	$0,0078 \div 0,9424 \ 1 \cdot s^{-1}$	0,5 % z rozsahu	$\pm 0,0047 \ 1.s^{-1}$					
Průtokoměr va520	$0 \div 90 \text{ m}^3 \cdot \text{hod}^{-1}$	0,3 % z rozsahu	\pm 0,27 m ³ ·hod ⁻¹					

Tlak před kondenzačním úsekem je měřen snímačem tlaku PXM a za kondenzačním úsekem je využit vakuometr Baumer TED6. Chladící smyčky jsou osazeny indukčními průtokoměry (MP1, MP2, MP3) typu FLOMAG 3000. Všechny zkoumané veličiny jsou napřímo (termočlánky) anebo skrze převodníky snímány měřící stanicí NI compact rio 9149 (viz obr.4.3).

Obr.4.3 Měřící stanice NI compact rio 9149

Veškerá data jsou zaznamenávána měřící stanicí Rio 9149 a dále jsou poslána přes sběrnici cat5e do měřícího počítače, kde jsou data zobrazena a ukládána v prostředí LabView zobrazeném na obrázku 4.4. Měřící prostředí v LabView umožňuje sledování důležitých i vedlejších parametrů experimentálního standu a zároveň umožnuje i regulaci vybraných komponent pomocí frekvenčních měničů nebo pohonu Belimo. Veškerá zaznamenaná data jsou ukládána s frekvencí

1 Hz, to znamená že zápis všech měřených veličin probíhá každou jednu sekundu měření ve formátu xls.

Obr.4.4 Měřící prostředí v LabView

5 NASTAVENÍ A VYHODNOCENÍ EXPERIMENTŮ

5.1. Fyzikální vlastnosti parovzdušné směsi

Pro správné kvantifikování přenosů tepla uvnitř trubky během kondenzace vodní páry v přítomnosti nekondenzujících plynů je nezbytně nutné znát fyzikální vlastnosti zúčastněných médií. V našem případě se jedná o směs vodní páry se vzduchem. Následující podkapitola se věnuje problematice určení fyzikálních vlastností směsi plynů

5.1.1 Složení směsi – zlomky

Zlomky nám vyjadřují množství určité látky ve směsi. Znalost jejich hodnoty je naprosto stěžejní pro jakýkoliv výpočet se směsí. Zlomkům udávajícím množství látky ve směsi se také říká koncentrace. Pro základní vyjádření složení určité směsi se ve fyzikální chemii používají molární zlomky. Jde o poměr látkového množství dané látky a celkového množství látek ve směsi [52].

$$x_i = \frac{n_i}{n}.\tag{41}$$

Kde n_i je látkové množství i-té složky, n je celkové látkové množství směsi. Dalším způsobem, jak vyjádřit složení směsi je objemový zlomek, který už podle svého názvu dává do poměru objemové zastoupení dané látky ve směsi [48],

$$y_i = \frac{V_i}{V}.$$
(42)

Kde V_i je objem složky a V objem čisté směsi ve stejném skupenském stavu jako látka. Pro směs ideálních plynů je objemový zlomek roven zlomku molárnímu [48],

$$y_i = x_i. (43)$$

Objemový zlomek se také rovná poměru parciálního tlaku dané látky ku celkovému tlaku látky. Toto pravidlo je velmi důležité pro stanovení teplot rosných bodů nebo koncentrace dané látky nad fázový rozhraním [48],

$$y_i = \frac{p_i}{p}.\tag{44}$$

Posledním používaným zlomkem sloužícím pro vyjádření složení směsi je hmotnostní zlomek [48],

$$w_i = \frac{m_i}{m}.$$
(45)

Kde m_i je hmotnost i-té složky a m je hmotnost směsi. Pro přepočet mezi molárním zlomkem a zlomkem hmotnostním platí [48],

$$x_i = \frac{\frac{W_i}{M_i}}{\sum_{i=1}^n \left(\frac{W_i}{M}\right)},\tag{46}$$

$$w_i = \frac{x_i \cdot M_i}{\sum_{j=1}^n (x_j \cdot M_j)}.$$
(47)

5.1.2 Daltonův zákon

Pro každou směs látek platí zákony, které popisují interakce jednotlivých složek směsi mezi sebou. Pro výpočet přestupu tepla a hmoty při kondenzaci je mimo jiné nutné znát koncentrace a teploty plynů v proudu parovzdušné směsi. Pro určení těchto parametrů je nutné znát jejich parciální tlaky, které je možné odvodit z Daltonova zákona, který říká, že součet všech parciálních tlaků plynů je roven celkovému tlaku směsi [53].

$$P = p_1 + p_2 + \dots + p_n = \sum_{i=1}^n p_i,$$
(48)

Tento zákon najde také uplatnění pro přepočet složení směsi během vylučování vodní páry při kondenzaci.

5.1.3 Raoultův zákon

Dalším důležitým parametrem je parciální tlak vodní páry a nekondenzujících plynů na fázovém rozhraním neboli u kondenzátního filmu. Tyto parciální tlaky lze odvodit podle Raoultova zákona, který říká, že parciální tlak syté páry i-té složky nad roztokem je vzhledem k tlaku syté páry nad kapalinou tvořenou pouze touto složkou nižší v poměru rovném molárnímu zlomku i-té složky v roztoku. Jinak řečeno, pokud se nebude kondenzátní film skládat pouze z čisté vody, ale budou v něm rozpuštěny i jiné plyny, jedná se o roztok. A v tomto případě bude parciální tlak syté vodní páry u tohoto filmu nižší, než kdyby se jednalo o čistou látku podle následujícího poměru [54].

$$\frac{p_i^s}{p_{0,i}^s} = x_i = \frac{n_i}{n}.$$
(49)

Kde p_i^s je parciální tlak syté páry i-té složky, $p_{0,i}^s$ je tlak syté páry nad čistou i-tou složkou, x_i je molární zlomek i-té složky v roztoku neboli podíl látkového množství i-té složky (n_i) v roztoku k celkovému látkovému množství roztoku (n).

5.1.4 Henryho zákon

Henryho zákon říká, že při konstantní teplotě je množství daného plynu, které se rozpustí v daném typu a objemu kapaliny, přímo úměrné parciálnímu tlaku tohoto plynu. Tento zákon tedy udává souvislost mezi parciálním tlakem páry dané látky nad roztokem a jejím podílem v tomto roztoku. Matematický lze tento zákona zapsat následovně,

$$C = K \cdot p_i. \tag{50}$$

Kde C je rozpustnost plynu při pevné teplotě v konkrétním rozpouštědle, K je Henryho konstanta a p_i je parciální tlak plynu.

5.1.5 Rozdíl mezi Henryho a Raoultovým zákonem.

Raoultovy a Henryho zákony jsou omezující zákony, obecně použitelné, pokud koncentrace rozpuštěné látky klesne na nulu. V této limitě závisí tlak par i-té složky v roztoku lineárně na jejím molárním zlomku, což znamená nepřítomnost interakcí rozpuštěná látka-rozpuštěná látka. Raoultův zákon popisuje závislost tlaku par rozpouštědla v závislosti na jeho molárním zlomku následovně,

$$\lim_{x \to 1} \left(\frac{p}{x}\right) = p^*. \tag{51}$$

Kde p^* je tlak par čistého rozpouštědla. Henryho zákon popisuje závislost tlaku par rozpuštěné látky v závislosti na její koncentraci následovně,

$$\lim_{x \to 0} \left(\frac{p}{x}\right) = K.$$
(52)

Pro binární směs čistých látek lze ukázat, že zákony jsou komplementární neboli platí-li jeden zákon pro jednu složku, pak platí zákon druhý pro složku druhou [55].

Obr.5.1 Neideální chování tlaku par roztoku řídícího se při nízkých koncentracích Henryho zákonem a při vysokých koncentracích Raoultovým zákonem.

5.1.6 Fickův zákon

Fickovy zákony popisující difuzi látek odvodil v roce 1855 Adolf Fick. Difuze, řídící se těmito zákony, se nazývají normální nebo Fickovská difuze. Obecné vyjádření prvního Fickova zákona, ze kterého lze následně odvodit rychlost difuze, je definováno následovně,

$$J = -D\frac{\partial y_i}{\partial x}.$$
(53)

Kde J je difuzní tok, y_i je objemová koncentrace látky a x je poloha. Z této definice lze za zjednodušujících předpokladů, jako že tepelná difuze je zanedbatelná a tlak je konstantní, odvodit pro binární směsi plynů definici rychlosti difuze, která je následně použita pro formulování vztahu pro součinitel tepelné vodivosti kondenzace.

5.1.7 Střední zdánlivá molární hmotnost

Molární hmotnost je důležitou charakteristikou chemických prvků i sloučenin a nachází se i v chemických tabulkách. Vyjadřuje hmotnost 1 molu látky. Střední zdánlivá molární hmotnost z pohledu mikrosvěta není ve skutečnosti přesnou molární hmotností směsi, ale směs se chová, jako by tuto molární hmotnost doopravdy měla. Zdánlivou molární hmotnost lze z objemových zlomků a molárních hmotností jednotlivých složek vypočítat následovně [56],

$$M_m = \sum_i M_i \cdot x_i.$$
⁽⁵⁴⁾

5.1.8 Měrná plynová konstanta

Měrnou plynovou konstantu pro směs ideálních plynů zadanou objemovými zlomky lze vypočítat pomocí univerzální plynové konstanty, molární hmotnosti směsi, anebo měrných plynových konstant jednotlivých složek následovně [56],

$$r = \frac{R_m}{M} = \frac{1}{\sum_i \frac{x_i}{r_i}}.$$
(55)

5.1.9 Hustota

Hustota je stavová veličina definovaná jako podíl hmotnosti látky a jejího objemu [56],

$$\rho = \frac{m}{V}.$$
(56)

Kde ρ je hustota, *m* hmotnost a *V* objem látky. Pro hustotu reálných plynů lze použít ideální stavovou rovnicí do tlaku kolem 5 barů. Pokud stav látky nevyhovuje předpokladům ideální stavové rovnice, je nutné užít některou z metod odvozených z van der Waalsovy rovnice. Například Peng-Robinsovu [57] nebo Soave-Redlich-Kwongovu [58] stavovou rovnici, které vedou k hledání kořenů kubické rovnice obsahující jako členy měrné objemy. Protože měřené experimenty probíhaly při tlaku kolem 1 baru absolutního, byl využit (57) definující výpočet hustoty směsi ideálních plynů,

$$\rho_m = \sum_{i=1}^n x_i \cdot \rho_i. \tag{57}$$

Kde x_i jsou objemové zlomky jednotlivých složek a ρ_i jsou hustoty těchto složek. Pro výpočet hustoty směsi reálných plynů je zapotřebí aplikovat jedno ze směšovacích pravidel, které lze nalézt například v [59].

5.1.10 Viskozita

Viskozita je vlastností všech reálných tekutin a plynů. Je to míra změny hybnosti kolmo na směr proudění. Viskozitu lze rozdělit na viskozitu dynamickou a kinematickou. Pokud je tuhé těleso namáháno smykem, deformuje se o úhel smyku $\Delta\gamma$. Pokud je namáhání vystavena tekutina, úhel smyku by s trvajícím namáháním neomezeně rostl. Tečné napětí τ v kapalinách není jako u pevných těles vztaženo k velikosti úhlu smyku, ale k míře změny tohoto úhlu v čase [60].

Obr.5.1 Deformace a) tuhého tělesa b) tekutiny

Dynamická viskozita kapalin a plynů je podle (58) definovaná přes smykové napětí, protože se v této rovnici vyskytuje koeficient proporcionality odpovídající dynamické viskozitě,

$$\tau = \eta \frac{dy}{dt} . \tag{58}$$

Pokud nahradíme jednu částici kapaliny pomyslným obdélníkem o výšce Δy a na horní hranu působíme tečnou silou τ , přičemž spodní hrana je nehybná (obr. 1b), v čase Δt se horní hrana posune

o vzdálenost $\Delta u \Delta t$. Δu je relativní rychlostí horní hrany ke hraně dolní. Pokud je úhel $\Delta \gamma$ malý, lze tvrdit, že *sin* $\Delta \gamma \approx \Delta \gamma$. Poté lze psát,

$$\Delta y \sin \Delta \gamma \approx \Delta y \Delta \gamma \approx \Delta u \Delta t ; \frac{\Delta \gamma}{\Delta t} \approx \frac{\Delta u}{\Delta y}.$$
 (59)

A pokud je uvažován rozměr částice jako limitně malý, lze poté tento tvar zapsat následovně,

$$\frac{d\gamma}{dt} \approx \frac{du}{dy}.$$
(60)

Poté platí,

$$\tau = \eta \frac{du}{dy} \longrightarrow \eta = \frac{\tau}{\frac{du}{dy}}.$$
(61)

Tato rovnice byla již popsána v podkapitole o vlivu smykového napětí na kapalný film. Dle kinetické teorie plynů viskozita ideálního plynu nezávisí na změně hustoty [61], přičemž dynamická viskozita u reálných plynů s rostoucí hustotou mírně roste. Pro výpočet dynamické viskozity směsi reálných plynů lze využít Wilkeho směšovací pravidlo,

$$\eta_m = \sum_{i=1}^n \frac{x_i \eta_i}{\sum_j F_{ij}}.$$
(62)

Kde

$$F_{ij} = \frac{\left[1 + \left(\frac{\eta_i}{\eta_j}\right)^{0.5} \left(\frac{M_j}{M_i}\right)^{0.25}\right]^2}{\sqrt{8\left(1 + \frac{M_i}{M_j}\right)}}.$$
(63)

Kde x_i jsou objemové podíly složek směsi, η_i dynamické viskozity jednotlivých složek směsi a M_i jejich odpovídající molární hmotnosti. Kinematická viskozita je poté s dynamickou viskozitou spojena přes hustotu dané látky následovně,

$$\nu = \frac{\eta}{\rho}.$$
(64)

5.1.11 Součinitel tepelné vodivosti

Vyjadřuje rychlost šíření tepla z teplejších oblastí látky do oblastí studenějších. Součinitel tepelné vodivosti je definován jako množství tepla, které musí za jednotku času projít tělesem, aby na jednotkovou délku byl jednotkový teplotní spád. Pro zjednodušení se předpokládá šíření tepla pouze v jednom směru [62]. U směsi reálných plynů lze stejně jako dynamickou viskozitu spočítat z Wilkeho směšovacího pravidla, kdy parametr F_{ij} zůstává stejný [63],

$$\lambda_m = \sum_{i=1}^n \frac{x_i \lambda_i}{\sum_j F_{ij}}.$$
(65)

5.1.12 Difuzní koeficient jedné látky ve směsi

Většina analytických vztahů pro difuzní koeficient pracuje se dvěma látkami. Proto je v tomto případě příhodnější pojmenování binární difuzní koeficient. Díky rozsáhlým výzkumům je dnes už možné určit difuzní koeficient i pro směs plynů. Pokud je ale nutné znát hodnotu tohoto koeficientu pro jednu látku z celé směsi, lze využit vztah podle Wilkeho [64],

$$D_{m,i} = \frac{1 - x_i}{\sum_{j=1,\neq i} \left(\frac{x_j}{D_{ij}}\right)}.$$
(66)

Kde *x* je molární zlomek látky. U některých autorů se můžeme také setkat se vztahem používající objemové zlomky [65],

$$D_{m,i} = \frac{1 - Y_i}{\sum_{j=1,\neq i} \left(\frac{Y_j}{D_{ij}}\right)}.$$
(67)

5.1.13 Měrná tepelná kapacita

Je to je teplo, které je nutno dodat látce, aby se její teplota zvýšila o 1 °C nebo 1 K. Pro určení měrné tepelné kapacity směsi lze při známém objemového složení směsi a známosti měrných tepelných kapacit jednotlivých složek směsi využít rovnici zachování energie, která má po úpravě tvar,

$$cp_m = \sum_{i=1}^n x_i \cdot cp_i.$$
(68)

5.2 Stanovení hledaných součinitelů přestupu tepla z měřených veličin.

V následující kapitole je představen vyhodnocovací matematický model, uvažující kondenzaci vodní páry v přítomnosti vzduchu jako nekondenzujícího plynu. V rámci zjednodušení modelu byly přijaty následující zjednodušující předpoklady [66].

- 1) Parovzdušná směs je idealizovaná dvojsložkovou směsí.
- 2) Je předpokládána dokonalá rozpustnost obou složek v plynné fázi.
- 3) Vzduch neinteraguje s kondenzátním filmem (nerozpouští se v něm)
- 4) Teplotní skok na rozhraní plyn-kapalina je nekonečně malý
- 5) Tvorba mlhy v mezní vrstvě je zanedbána.
- 6) Vodní pára a kondenzátní film proudí vždy shodně seshora dolů.

Pro vyhodnocení přestupu tepla během kondenzace parovzdušné směsi je nutné identifikovat celkový vnitřní součinitel přestupu tepla, který kvantifikuje přestup tepla z proudu směsi do stěny kondenzační trubky a z něj kondenzační součinitel přestupu tepla. Protože tyto součinitele nelze měřit přímo, je nutné je vypočítat. K tomu lze využít standardní výpočetní vztahy podle literatury [50]. Aby bylo možné vypočítat koeficient přestupu tepla uvnitř trubky, je nutné nejprve znát tepelný tok nebo výkon který se na měřeném úseku přenese. Protože je tepelný výměník po dobu experimentu izolovaný, nejsou uvažovány teplené ztráty do okolí. Potom podle zákona zachování energie se výkon přenesený z páry do filmu kondenzátu rovná výkonu přenesenému do chladicí vody. Pro výpočet kondenzačního výkonu lze tedy využít následující rovnici,

$$\dot{Q} = \dot{m}_{w} \left[h_{w,out}(t_{w,out}; p_{w}) - h_{w,in}(t_{w,in}; p_{w}) \right].$$
(69)

Kde $h_{w,out}$ a $h_{w,in}$ jsou entalpie chladicí vody. Z rovnice tedy vyplývá, že je pro správné určení tepleného toku uvnitř kondenzační trubky nutné měřit průtok a vstupní a výstupní teplotu chladící vody. Tato rovnice platí pro sytý i přehřáty stav páry na vstupu do výměníku. Ze známého kondenzačního výkonu lze z následující rovnice vypočítat celkový součinitel přestupu tepla,

$$k = \frac{\dot{m}_{w} [h_{w,out}(t_{w,out}; p_{w}) - h_{w,in}(t_{w,in}; p_{w})]}{L\Delta t_{ln}}.$$
(70)

Kde Δt_{ln} je logaritmický teplotní spád na kondenzační trubce a *L* je délka kondenzační trubky. Výpočet zkoumaného součinitele přestupu tepla vychází z Newtonova zákona přestupu tepla a Fourierova zákona vedení tepla, které jsou využity pro formulaci následujícího vztahu [67],

$$\alpha_m = \frac{1}{\pi d_{inner} \left[\frac{1}{k} - \frac{1}{2\pi \lambda_{wall}} ln \left(\frac{d_{outer}}{d_{inner}} \right) - \frac{1}{\pi \alpha_{out} d_{outer}} \right]}.$$
(71)

Kde α_m je celkový vnitřní součinitel přestupu tepla z páry do stěny kondenzační trubky a α_{out} je součinitel přestupu tepla ze stěny do chladící vody, který se vypočítá podle standardizovaných vztahů pro nucenou konvekci v mezikruží [68]. Abychom se dostali ke kondenzačnímu součiniteli přestupu tepla, je nutné vzít v úvahu rovnici 16, která říká, že celkový výkon kondenzace vodní páry v parovzdušné směsi lze rozdělit na tři dílčí části. Nejvýznamnější složkou výkonu je uvolnění latentního tepla při změně fáze, kterou kvantifikuje námi hledaný kondenzační součinitel přestupu tepla.

Dalšími ději jsou přestup citelného tepla směsi a chlazení kondenzátního filmu. Přestupy latentního tepla a citelného tepla jsou brány jako paralelní tepelné toky. Analogicky lze vyjádřit celkový vnitřní součinitel přestupu tepla při přenosu tepla z jádra parovzdušné směsi do stěny trubky s využitím tří samostatných součinitelů přestupu tepla následovně [45],

$$\alpha_m = \frac{1}{\frac{1}{\alpha_f} + \frac{1}{(\alpha_{cond} + \alpha_g)}}.$$
(72)

Kde α_m je celkový vnitřní součinitel přestupu tepla α_f je součinitel přestupu tepla přes kondenzátní film, α_{cond} je kondenzační součinitel přestupu tepla a α_g je součinitel přestupu citelného tepla. Protože cílem experimentů uvedených v této práci bylo zkoumání kondenzačního součinitele přestupu tepla (α_{cond}) a z něho vycházejícího celkového vnitřního součinitele přestupu tepla (α_m), byli zbylé součinitele, respektive součinitel přestupu citelného tepla a součinitel přestupu tepla přes kondenzátní film dopočítány podle dostupných analytických vztahů. Dále je uvedený matematický model, využívající empirických vztahů pro popis chování kapalného filmu a přenosu tepleného toku. Řešení probíhá v několika vzájemně navazujících krocích iteračním postupem.

V následujících podkapitolách jsou uvedeny dílčí klíčové rovnice, které byly využity pro vytvoření analytického výpočtového modelu, jehož výsledky jsou prezentovány v dalších kapitolách. U některých parametrů je uvedeno více variant vztahů publikovaných různými autory, které byli zmíněny i v první kapitole. V takovém případě byly všechny uvedené varianty vztahů testovány v rámci parametrické studie, jejíž výsledky jsou prezentovány v této práci. Uvedený sled vztahů umožňuje realizovat detailní výpočet přestupů tepla uvnitř vertikální trubky.

5.2.1. Stanovení toků směsi a kondenzátu

Pro hodnocení charakteru proudění kondenzátního filmu i parovzdušné směsi je nutné znát tok směsi na vstupu i výstupu experimentálního úseku. Ve vstupní části jde o prostý součet

hmotnostního toku vodní páry a nekondenzujícího plynu, jehož průtok je během kondenzace konstantní

$$\dot{M}_{m,in} = \dot{M}_{v,in} + \dot{M}_g.$$
 (73)

Pro určení výstupního toku je nutné znát buď množství odloučeného kondenzátu ve výměníku, nebo koncentraci páry na výstupu z výměníku. Protože spolu obě veličiny souvisí, jde o iterační proces, ve kterém je proměnou množství vzniklého kondenzátu. Výstupní množství parovzdušné směsi lze při znalosti koncentrací na výstupu spočítat jako

$$\dot{M}_{m,out} = \frac{\dot{M}_{m,in}}{\frac{1}{y_{\nu,b,out}} - 1}.$$
(74)

Kde $y_{v,b,out}$ je objemová koncentrace vodní páry v jádru směsi na výstupu z výměníku. Výstupní množství páry je dáno z výstupního množství směsi následovně:

$$M_{v,out} = M_{v,in} - M_{f,out}.$$
 (75)

Základem pro správné určení výstupního množství kondenzátu a parovzdušné směsi je energetická bilance mezi teplem odevzdaným parovzdušnou směsi a teplem přijatým chladící vodou. Výkon chladící vody je funkcí toku, tlaku a vstupní a výstupní teploty chladící vody podle (45) a tepelný tok uvnitř trubky je rozdělený na tři dílčí části podle (52) [50],

$$\dot{Q} = \dot{M}_{f,out} \cdot \Delta h_c + \dot{M}_{m,in} \cdot c_{p,m} \cdot (t_{m,in} - t_{m,out}) + \dot{M}_{f,out} \cdot c_{p,f} \cdot (t_{m,out} - t_{f,out}).$$
(76)

Jak už bylo uvedeno, výpočet jednotlivých výkonů je iteračním procesem, jehož proměnou je množství vzniklého kondenzátu a z toho vyplývajících koncentrací vzduchu a výkonů, které vedou k určení kondenzačního součinitele přestupu tepla. Výpočetní procedura se pak skládá z následujících kroků.

- Krok 1 Vložení stupních hodnot
- Krok 2 Odhad vznikajícího kondenzátu
- Krok 3 Stanovení fyzikálních vlastností chladící kapaliny a parovzdušné směsi. Fyzikální vlastnosti jsou stanoveny pro střední teplotu
- Krok 4 Stanovení vstupní objemové koncentrace vodní páry podle (77) a stanovení objemového množství vzduchu ve směsi na vstupu do výměníku

$$y_{\nu,b,in} = \frac{\frac{\dot{M}_{\nu,in}}{\rho_{\nu}(t_{\nu,in})}}{\frac{\dot{M}_{\nu,in}}{\rho_{\nu}(t_{\nu,in})} + \frac{\dot{M}_{g,in}}{\rho_{g}(t_{g,in})}}.$$
(77)

- Krok 5 Výkonová bilance a přepočet množství vzniklého kondenzátu
- Krok 6 Určení koncentrace vodní páry a toku směsi na výstupu podle (74) a (77)
- Krok 7 Určení součinitele přestupu tepla na straně chlazení a ze vztahů pro nucenou konvekci určit součinitel přestupu citelného tepla uvnitř trubky.
- Krok 8 Výpočet teploty kondenzátního filmu na hranici plyn-kapalina na vstupu a výstupu experimentálního úseku jako [50],

$$\rho_{v} \cdot \Delta h_{c} + \left(\frac{\rho_{v} \cdot c_{p,v} \cdot t_{g}}{1 - e^{-\left(\frac{\rho_{v} \cdot c_{p,v}}{\alpha_{g}}\right)}}\right) + \left(\frac{\pi \cdot t_{w}}{\frac{1}{\alpha_{w} \cdot d_{outer}} + \frac{\ln \frac{d_{outer}}{d_{inner}}}{2 \cdot \lambda_{cu}}}\right)$$

$$t_{f} = \frac{\left(\frac{\pi}{\frac{1}{\alpha_{w} \cdot d_{outer}} - \frac{\ln \frac{d_{outer}}{d_{inner}}}{2 \cdot \lambda_{cu}}\right) + \left(\frac{\rho_{v} \cdot c_{p,v}}{1 - e^{-\left(\frac{\rho_{v} \cdot c_{p,v}}{\alpha_{g}}\right)}}\right)}.$$
(78)

Krok 9 Výpočet středního teplotního logaritmického spádu,

$$\Delta t_{ln,tot} = \frac{\left(t_{m,in} - t_{w,out}\right) - \left(t_{m,out} - t_{w,in}\right)}{ln \frac{\left(t_{m,in} - t_{w,out}\right)}{\left(t_{m,out} - t_{w,in}\right)}}.$$
(79)

Krok 10 Výpočet celkového součinitele přestupu tepla a z něj součinitel kondenzačního přestupu tepla uvnitř trubky.

Výpočetní postup je shrnutý ve vývojovém diagramu na obrázku 5.2 který ukazuje obecný výpočet umožňující trubku rozdělit na více částí. V našem případě byl použit jeden úsek o délce celé trubky (1 m). Všechny následně prezentované hodnoty jsou tedy středními měrnými hodnotami vztaženými na jeden metr trubky.

Obr.5.2 Vývojový diagram použitého matematického modelu pro vyhodnocení přestupu tepla během kondenzace vodní páry v přítomnosti nekondenzujících plynů.

5.2.2. Přestup tepla ve filmu kondenzátu

Film kondenzátu tvoří nezanedbatelný odpor vůči přestupu tepla. Pro správné určení přestupu tepla mezi kapalinou a stěnou je nutné znát charakter proudění filmu a určit jeho rychlost. Vzhledem k tomu, že na vstupu do vertikální trubky je množství kondenzátu nulové, jsou jednotlivé vztahy k určení vlastností filmu vztaženy k výstupu z trubky. Pro určení charakteru proudění filmu a smykového napětí na rozhraní plyn-kapalina je nutné znát rychlost parovzdušné směsi, kterou lze získat z rovnice kontinuity následovně [11],

$$u_{g,out} = \frac{4 \cdot M_{m,out}}{\rho_g \cdot \pi \cdot (d_{in} - 2 \cdot \delta)^2}.$$
(80)

Původní Nusseltovo odvození tloušťky kapalného filmu je funkcí gravitačního zrychlení, ale nezahrnovalo vliv smykového napětí mezi plynem a kapalinou. Protože je ovlivnění kapalného filmu proudem plynu nezanedbatelné, bylo nutné Nusseltův vztah rozšířit o vliv smykového napětí. Pro řešený případ je použit vztah odvozený pomocí numerických simulací Lee a Son [24],

$$\tau_g = \frac{3 \cdot \nu_g \cdot u_{g,out}}{d_{in} - 2 \cdot \delta}.$$
(81)

Pro výpočet Nusseltova čísla pro turbulentní proudění je nutné stavit bezrozměrné smykové napětí jako [46],

$$\tau_g^* = \frac{\tau_g}{g \cdot \rho_f \cdot \left(1 - \frac{\rho_g}{\rho_f}\right) \cdot \Gamma}.$$
(82)

Pro všechny měřené případy byla rychlost paroplynné směsi větší, než byla rychlost stékání kondenzátního filmu. Z toho vyplývá, že ve všech měřených stavech byla parovzdušná směs bržděná o kondenzátní film a ne naopak. Matematicky lze tuto podmínku popsat následovně,

$$\tau_g > 0. \tag{83}$$

Tato podmínka je důležitá především pro výpočet tloušťky filmu. Tloušťku filmu lze získat z rovnice zohledňující obvodový tok, tloušťku filmu a vliv smykového napětí na film podle Rohsenowa [69],

$$\Gamma = \frac{g \cdot \rho_f \cdot \left(\rho_f - \rho_m\right) \cdot \delta^3}{3 \cdot \eta_f} + \frac{\rho_f \cdot \tau_g \cdot \delta^2}{2 \cdot \eta_f}.$$
(84)

Blangettiho model uvažuje proudění filmu jako kombinaci turbulentního a laminárního proudění. Oba typy jsou poté zahrnuty pod jedním Nusseltovým číslem pro přestup tepla uvnitř filmu podle poměru daný rovnicí [11]

$$Nu_f = \left(Nu_{f,lam}^4 + Nu_{f,tr}^4\right)^{0.25}.$$
(85)

Kde Nusseltovo číslo pro laminární proudění vychází ze vztahu (7) a Nusseltovo číslo pro turbulentní proudění určuje vztah [14],

$$Nu_{f,lam} = \frac{L_f}{\delta_f},\tag{86}$$

$$Nu_{f,tr} = 0,008663 \cdot Re_f^{0,382} \cdot Pr_f^{0,5689} \cdot \left(1 + e^{\tau_g^{*0,541}}\right).$$
(87)

Reynoldsovo číslo pro film kondenzátu dávající do souvislosti setrvačné síly uvnitř filmu a jeho viskozitu je určeno jako [10],

$$Re_f = \frac{4 \cdot M_{f,out}}{\pi \cdot d_{in} \cdot \mu_f}.$$
(88)

Součinitel přestupu tepla je definován vztahem,

$$\alpha_f = \frac{Nu_f \cdot \lambda_f}{L_f}.$$
(89)

5.2.3. Přestup tepla v parovzdušné směsi

Pro přestup citelného tepla z parovzdušné směsi do filmu kondenzátu byly uvažovány vztahy pro nucenou konvekci uvnitř trubky pro plynné médium. Hlavním kriteriem je zde Reynoldsovo číslo dané následovně,

$$Re_m = \frac{u_{m,in} \cdot d_{in}}{v_m}.$$
(90)

U malých průměrů trubek je nutné zohlednit tloušťku filmu, o kterou je nutné zmenšit volný vnitřní průřez trubky. U větších průměrech trubek je vliv tloušťky filmu na volný průřez zanedbatelný. V rámci provedených vyhodnocení, matematický model počítal tloušťky filmu pro každý měřený stav z (80) a (84) a tato tloušťka byla odečtena od vnitřních průřezů testovaných trubek. Protože se v rámci experimentů hodnoty Reynoldsova čísla pohybovaly v turbulentním režimu proudění, byla použita kriteriální rovnice pro Nusseltovo číslo pro nucenou konvekci uvnitř kruhové trubky v turbulentním režimu proudění podle Dittus-Boelterové rovnice následovně [70]:

$$Nu_m = 0,027 \cdot \text{Re}_m^{0,8} \cdot \text{Pr}_m^{0,4}.$$
 (91)

5.3. Nastavení experimentálního zařízení a měřených stavů

Před vlastním měřením bylo nutné provést přípravu experimentálního zařízení, která se skládá ze dvou základních částí. A to přípravy zdroje tepla (vyvíječ páry) a příprava vlastního experimentálního zařízení s dochlazovací nádrží.

5.3.1. Postup při uvedení experimentálního zařízení do provozu

Pro získání experimentálních výsledků bylo nutné dodržet následující postup:

- Byla spuštěna chladící smyčka, která je napojená na centrální rozvod chladící vody a kulové ventily ve smyčce byly nastaveny tak, aby deskovými výměníky odvádějící teplo z vnitřní chladící smyčky protékal největší možný tok. Dále byly spuštěny čerpadla pohánějící vodu v chladící smyčce dochlazovací nádrže a samotného experimentálního výměníku.
- 2) K parnímu vyvíječi byl připojen procesní vzduch z rozvodu laboratoře, přes automatický regulátor a průtokoměr plynu a tok vzduchu byl nastaven na 0 kg·s⁻¹
- 3) Byl spuštěn parní vyvíječ, který bylo nutné nejdříve nahřát. Po nahřátí na 100 °C bylo v přehřívací sekci, přes kterou pára proudí do experimentální části, nastavena

teplota alespoň 250 °C z důvodu odpaření zkondenzované páry na studených částech přehřívače. Proces sušení byl ukončen v momentě, kdy výstupní teplota páry začala růst nad teplotu sytosti.

- 4) Po nahřátí celého systému byl z trubkové trasy vedoucí do experimentálního výměníku vypuštěn přes kulový ventil vzniklý kondenzát a na parním vyvíječi byl nastaven požadovaný hmotnostní tok generované páry.
- 5) Protože byly testované vstupní rychlosti parovzdušné směsi odvozené z hmotnostních toků vzduchu a vodní páry, jsou body 3 a 4 velice důležité a vlastní měření mohlo začít až po důkladném prohřátí celého systému, aby byla vyloučena kondenzace vodní páry po cestě, čímž by došlo ke snižování vstupní rychlosti směsi a ovlivnění naměřených výsledných hodnot.
- 6) V programu Labview poté byla nastavena požadovaná vstupní teplota chladící vody na vstupu do experimentální sekce regulováním toku chladící vody z centrálního rozvodu.
- 7) Po dosažení a ustálení požadovaných teplot páry a chladící vody bylo spuštěno zaznamenávání v měřícím programu vytvořeném v LabView.

5.3.2. Nastavení experimentů

S ohledem na cíle disertační práce byly v rámci experimentů měněny jak parametry parovzdušné směsi, tak průměr kondenzační trubky. Vnitřní průměry experimentální trubky, ve které dochází ke sledované kondenzaci byly zvoleny v rámci typových řad klasických měděných trubek, jak je zmíněno v tabulce 2, a to konkrétně 16 mm, 20 mm a 26 mm. Pro dané průměry byly při experimentech nastaveny takové toky syté vodní páry a vzduchu před smísením, aby byly dosáhnuty objemové koncentrace vzduchu ve směsi kolem 2, 4, 6, 8, 10, 15, 20, 30, 40, 50 a 60 %_{obj}. Teplota parovzdušné směsi na vstupu do kondenzačního úseku byla držena na teplotě sytosti vodní páry, která je funkcí parciálního tlaku vodní páry ve směsi. Tímto bylo zamezeno nežádoucímu zkreslení přenesených výkonů vlivem přehřátí směsi. Z časových důvodů nebyly zkoumány další vlivy, které mají na kondenzační proces vliv.

Tabulka 4 zobrazuje měřené kombinace vnitřních průměrů kondenzačních trubek, průměrné vstupní rychlosti parovzdušné směsi a průměrné vstupní objemové koncentrace nekondenzujících plynů v parovzdušné směsi. Měřené rychlosti parovzdušné směsi na vstupu do tepelného výměníku vycházely z prvního měření na trubce o průměru 26 mm, kdy byly nastaveny toky páry na 10, 15, 20, 25, 30 a 35 kg·s⁻¹. Z těchto hmotnostních toků byly potom stanoveny rychlosti směsi na vstupu a ty byly dále použity pro další průměry experimentálních trubek. Menší průměry trubek umožňovaly změření i vyšších rychlostí než u trubky o průměru 26 mm, u kterého parní vyvíječ narážel na svůj vrchní limit v generovaném množství páry. Z tohoto důvodu byly změřeny ještě stavy při vstupní rychlosti parovzdušné směsi 40 a 50 m·s⁻¹. Díky spodnímu limitu tvorby páry nejsou u menších průměru změřeny nejnižší rychlosti.

Pro jednotlivé kombinace koncentrací vzduchu a rychlosti parovzdušné směsi na vstupu do trubky byly měřeny dvě konfigurace způsobu odvodu tepla. První konfigurace byla souproudé chlazení, kdy chladící voda má s tokem páry a kondenzátu stejný směr. Druhá konfigurace je protiproudé chlazení, kde chladící voda má opačný směr než tok páry a kondenzátu. Hmotnostní tok chladící vody byl upravován tak, aby byla intenzita chlazení u všech testovaných variant shodná neboli byl zachován shodný součinitel přestupu tepla v plášti výměníku. Tento tok byl udržován z přesnosti \pm 0,05 l·min⁻¹. Pro všechny experimenty byla udržována vstupní teplota chladící vody 30 \pm 0,5 °C. Pokud jeden z regulovaných parametrů vybočil mimo stanovené intervaly, byl experiment zopakován od začátku. Všechny měřené stavy byly po ustálení měřeny po dobu alespoň 10 minut, aby byl omezen vliv akumulace a dalších dynamických jevů.

		7	VSTUPNÍ RYCHLOST PAROPLYNOVÉ SMĚSI $[m \cdot s^{-1}]$]
		8,9	13,4	17,7	22,3	26,6	31,3	40	50
		Î		N	Inožství N	CG v ‰ _{ob}	j.		
					л /	0,0	0,0	0,0	0,0
					duchi	1,8	1,7	1,7	1,8
			Vzd	uch • H ₂ O	ce vz	3,6	3,6	3,6	3,7
				vi. ev	ntrac	5,5	5,4	5,6	7,7
	n			trub	once	7,3	7,3	7,7	5,7
	6 mr	÷	Rych	tali tali	ové k	9,5	9,4	9,7	9,8
	1			imen	jemo	15,0	15,0	15,2	15,4
		Průn	něr	xper	né ot	21,1	20,9	21,5	21,6
			~ 1	άШ	Meřel	34,4		34,5	35,4
					-			49,3	50,4
								64,2	65,4
			0,0	0,0	0,0	0,0	0,0	0,0	
lbky			1,8	1,8	1,8	1,7	1,7	1,8	1,8
			3,6	4,5	3,6	3,5	3,6	3,7	3,7
lé tru			5,4	5,4	5,4	5,4	5,6	5,7	5,9
ıěřer	в		7,4	7,4	7,4	7,5	7,5	7,7	8,0
ıěr n	20 m		9,4	9,5	9,6	9,5	9,6	9,8	10,2
průn	(1		15,1	15,1	15,1	15,1	15,1	15,6	16,0
itřní			20,9	21,0	21,0	21,1	21,3	21,7	22,4
Vn			34,1	34,6	34,4	34,6	34,8	35,5	37,1
			48,8	48,9	49,2	49,1	49,9	51,0	52,9
				63,3	63,6	64,1	64,5		
		0,0	0,0	0,0	0,0	0,0	0,0		
		1,7	1,7	1,7	1,7	1,8	1,8		
		3,6	3,5	3,6	3,6	3,8	3,9		
		5,4	5,4	5,6	5,6	5,7	5,8		
26mm	в	7,4	7,4	7,5	7,6	7,8	7,9		
	26m	9,5	9,6	9,5	9,7	9,7	10,1		
		15,0	15,0	15,1	15,2	15,5	15,9		
		21,0	21,1	21,2	21,6	21,9	22,3		
		34,5	34,6	34,8	35,5	36,2	36,9		
		49,0	49,1	49,7	50,7	51,4	52,1		
			63,4	64,6	65,5	59,0			

Tab.4 Souhrn nastavení kritických parametrů jednotlivých experimentů.

6. VÝSLEDKY EXPERIMENTŮ

Jak již bylo zmíněno, experimenty byly prováděny na třech experimentálních výměnících, typu "trubka v trubce", které se lišily především v rozdílných vnitřních průměrech vnitřní trubky, ve které probíhá kondenzace. V rámci kapitoly se nejdříve zaměříme na výsledky naměřených na jednotlivých trubkách, a poté budou jednotlivé trubky srovnány mezi sebou. Kvůli častému opakování je pro přehlednější a stručnější popis spojení "nekondenzující plyny" nahrazeno zkratkou "NCG" pocházející z anglického překladu non-condensable gases a spojení "kondenzační součinitel přestupu tepla" neboli "Součinitel přestupu latentního tepla" nahrazeno zkratkou "CHTC" z anglického překladu condensation heat transfer coefficient.

V rámci matematického zpracování výsledků byly vyhodnoceny všechny příslušné veličiny a parametry tepelného přenosu, uvedené v dřívějších kapitolách, pro každou zaznamenanou sekundu. Prezentované výsledné hodnoty měřených stavů jsou uvedeny ve formátu: střední hodnota vyhodnoceného parametru pro jeden měřený stav \pm směrodatná odchylka.

6.1 Obecné průběhy jednotlivých součinitelů přestupu tepla uvnitř trubky

V rámci rešerše a matematického modelu byly představeny jednotlivé součinitele přestupu tepla, které se podílejí na celkovém přestupu tepla během kondenzace parovzdušné směsi z jádra směsi do stěny trubky. Graf na obrázku 6.1 zobrazuje trendy těchto součinitelů pro trubku o vnitřním průměru 20 mm se vstupní rychlostí parovzdušné směsi 17,7 m·s⁻¹, která byla chlazena protiproudým chlazením. Tento stav byl vybrán náhodně pro prezentaci trendů. U jiných měřených stavů jsou trendy podobné a mění se především absolutní hodnoty. Průběhy jednotlivých součinitelů jsou identifikovány pro všechny měřené stavy a jejich hodnoty shrnují tabulky v příloze 2.

Obr.6.1 Průběhy součinitelů přestupu tepla uvnitř trubky během kondenzace pro trubku o vnitřním průměru 20 mm se vstupní rychlostí směsi 17,7 m·s⁻¹; protiproudé chlazení.

Při porovnání jednotlivých trendů je patrné, že všechny součinitele přestupu tepla mají s rostoucí koncentrací NCG v parovzdušné směsi sestupnou tendenci. Největší vliv má koncentrace NCG na kondenzační součinitel přestupu tepla, u kterého dochází k poklesu řádově o desítky procent, přičemž největší pokles jeho hodnoty se odehrává v intervalu koncentrace NCG do 10 %_{obj.} Součinitel přestupu tepla v kondenzátním filmu s rostoucí koncentrací klesá také, a to především

z důvodu menší intenzity kondenzace, čímž se zmenšuje tok kondenzátního filmu a tím jeho Reynoldsovo číslo.

Výkon vzniklý ochlazením kondenzátního filmu je zanedbatelný v porovnáním s výkonem změny fáze, ale existence kondenzátního filmu uvnitř trubky není zanedbatelná, protože vytváří významný odpor vůči vedení tepla. Tento efekt je dobře patrný z hodnot celkového součinitele uvnitř trubky, který dosahuje výrazně nižších hodnot než kondenzační součinitel přestupu tepla právě díky vrstvě kondenzátního filmu. Protože je celkový součinitel přestupu tepla uvnitř trubky funkcí obou předchozích součinitelů svým trendem kopíruje jejich průběhy. K jeho největšímu poklesu dochází opět v intervalu koncentrace NCG do 10 %_{obj}. a to především díky výraznému poklesu kondenzačního součinitele přestupu tepla v tomto intervalu.

Posledním součinitelem uvnitř trubky, který ovšem není na grafu zobrazen, je součinitel přestupu citelného tepla. Protože tento součinitel dosahuje hodnot řádově desítek $W \cdot m^{-2} \cdot K^{-1}$ a výkony vznikající chlazením parovzdušné směsi dosahují řádově desítek wattů, je citelné teplo směsi z pohledu celkového přestupu tepla a tepelné bilance citelné téměř zanedbatelné.

6.2 Výsledky pro trubku o vnitřním průměru 26 mm

Pro popis jednotlivých měřených stavů v grafech byl pro větší přehlednost stanoven jednotný postup. Jako první je vždy průměr trubky, přičemž za ním následuje vstupní rychlost parovzdušné směsi. Na konci popisku je uvedeno "sou" v případě souproudé konfigurace chlazení a "proti" v případě protiproudé konfigurace chlazení. Na experimentální trubce o vnitřním průměru 26 mm byly testováno šest vstupních rychlostí parovzdušné směsi. V závislosti na možnostech parního vyvíječe to byly testované rychlosti v intervalu od 8,9 m·s⁻¹ do 31,1 m·s⁻¹. V následující kapitolách jsou výsledné hodnoty uváděny v intervalech, kdy první hodnota platí pro nejnižší měřenou vstupní rychlost a druhá hodnota platí pro nejvyšší vstupní rychlost. Z důvodu velkého poklesu CHTC pro koncentrace NCG ve směsi do 10 $\%_{obj}$ je součástí každého grafu také detail této oblasti, kde je pro lepší přehlednost koncentrace NCG ve směsi vynesena v logaritmickém měřítku.

6.2.1. Kondenzační součinitel přestupu tepla

V rámci experimentů byly využito dvou režimů chlazení, a to souproudé a protiproudé chlazení. Prezentované výsledky jsou rozděleny podle příslušné konfigurace chlazení.

a) Souproudá konfigurace chlazení

Na obrázku 6.2 jsou zobrazeny hodnoty kondenzačního součinitele přestupu tepla neboli součinitele přestupu latentního tepla pro jednotlivé vstupní rychlosti parovzdušné směsi v závislosti na vstupním objemovém množství nekondenzujících plynů pro souproudý tok chladící vody a parovzdušné směsi. Hodnoty výsledných součinitelů přestupu tepla jsou zaokrouhleny na jednotky wattů.

Z průběhu je jasně patrné, že jak rychlost proudění, tak obsah nekondenzujících plynů mají nezanedbatelný dopad na přestup kondenzačního tepla. Nejvyšších hodnot tento součinitel dosahuje při nulové koncentraci NCG. Naopak s růstající koncentrací NCG jeho hodnota strmě klesá. Při nulové koncentraci NCG dosahuje CHTC v závislosti na vstupní rychlosti směsi hodnot od $8972 \pm 243 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$ do $27857 \pm 491 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení CHTC na interval hodnot od 6127 ± 299 W $\cdot \text{m}^{-2} \cdot \text{K}^{-1}$ do 15925 ± 415 W $\cdot \text{m}^{-2} \cdot \text{K}^{-1}$. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 31,71 % respektive 42,83 %. Z těchto hodnot vyplývá, že i malé množství NCG ve vodní páře razantně snižuje přestup latentního tepla.

Obr.6.2 Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství nekondenzujících plynů pro trubku 26 mm; chlazení souproudé

Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 50 $\%_{obj.}$ dochází ke snížení CHTC do intervalu hodnot od 965 ± 20 W·m⁻²·K⁻¹ do 2068 ± 51 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 89,2 % respektive 92,4 %. Největší vliv NCG na hodnotu kondenzačního součinitele přestupu tepla je v intervalu koncentrace NCG v parovzdušné směsi od 0 $\%_{obj.}$ do 10 $\%_{obj.}$ ve kterém dojde ke snížení CHTC o 60,6 % až 67,8 %. Tabulka 5 shrnuje výsledné hodnoty CHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy CHTC v závislosti na koncentraci NCG.

	рокие		ivisiosii nu	, noncentraet I		
OBJEM	VSTUPNI	CHTC	POKLES	VSTUPNI	CHTC	POKLES
VZDUCHU	RYCHLOST		CHTC	RYCHLOST		CHTC
% _{ОВЈ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		27857	0,0		25034	0,0
1,7 - 1,8		15925	42,8		12452	50,3
3,6-3,9		13139	52,8		11093	55,7
5,4-5,8		11152	60,0		9993	60,1
$7,\!4-7,\!9$		10617	61,9		9173	63,4
9,5 - 10,1	31,1	8978	67,8	26,6	7032	71,9
15,0 - 15,9		6969	75,0		5962	76,2
21,0-22,3		5443	80,5		5090	79,7
34,5 - 36,9		3419	87,7		3312	86,8
49,0-52,1		2068	92,6		2229	91,1
59 - 65,5					1903	92,4
% _{ОВЈ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		21563	0,0		17749	0,0
1,7 - 1,8		11653	46,0		9153	48,4
3,6-3,9		9446	56,2		6560	63,0
5,4-5,8	22,3	8690	59,7	17,7	6127	65,5
$7,\!4-7,\!9$		7621	64,7		5956	66,4
9,5 - 10,1		7018	67,5		4810	72,9
15,0 - 15,9		5103	76,3		3893	78,1

Tab.5 Výsledné hodnoty CHTC pro měřené stavy na trubce 26 mm (souproud) a procentuální pokles CHTC v závislosti na koncentraci NCG.

% _{OBJ.}		$W \cdot m^{-2} \cdot K^{-1}$	%		$W \cdot m^{-2} \cdot K^{-1}$	%
21,0-22,3		4159	80,7		3595	79,7
34,5 - 36,9		3003	86,1		2722	84,7
49,0-52,1		2163	90,0		1876	89,4
59 - 65,5		1326	93,8		1454	91,8
% _{OBJ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		12025	0,0		8972	0,0
1,7 - 1,8		8097	32,7		6128	31,7
3,6-3,9		5860	51,3		5942	33,8
5,4-5,8		4824	59,9		4038	55,0
$7,\!4-7,\!9$		4396	63,4		3593	60,0
9,5 - 10,1	13,3	4540	62,2	8,9	3536	60,6
15,0 - 15,9		3323	72,4		2627	70,7
21,0-22,3		2858	76,2		1915	78,7
34,5 - 36,9		1870	84,4		1300	85,5
49,0 - 52,1		1457	87,9		965	89,2
59-65,5		1140	90,5			

Vstupní rychlost parovzdušné směsi má opačný efekt než koncentrace NCG. Se vzrůstající vstupní rychlostí roste i kondenzační součinitel přestupu tepla. Při nárůstu vstupní rychlosti směsi z $8,9 \text{ m} \cdot \text{s}^{-1}$ na $31,1 \text{ m} \cdot \text{s}^{-1}$, neboli při nárůstu rychlosti o 349,4 % dochází při nulové koncentraci NCG ve směsi ke zvýšení hodnoty CHTC o 310,5 % a při koncentraci NCG ve směsi kolem 50 ‰_{obj.} dochází ke zvýšení hodnoty CHTC o 214,3 %. Lze tedy konstatovat, že v případě malého objemového množství NCG ve směsi má růst vstupní rychlosti směsi téměř lineární vliv na střední hodnotu CHTC, přičemž vliv zvyšování rychlosti s rostoucí koncentraci NCG postupně klesá.

b) Protiproudá konfigurace chlazení

Na obrázku 6.3 jsou zobrazeny hodnoty kondenzačního součinitele přestupu tepla pro jednotlivé vstupní rychlosti parovzdušné směsi v závislosti na vstupním objemovém množství nekondenzujících plynů pro protiproudý tok chladící vody a parovzdušné směsi.

Z průběhu je patrné, že jak rychlost proudění, tak obsah nekondenzujících plynů mají nezanedbatelný dopad na přestup kondenzačního tepla, stejně jako v případě souproudého chlazení. Stejně jako u souproudého chlazení dosahuje nejvyšších hodnot tento součinitel při nulovém množství NCG, přičemž největší propad je opět v intervalu koncentrace NCG od 0 %_{obj.} do 10 %_{obj.} Narozdíl od souproudého chlazení není ale tento propad tak velký.

Například při nulové koncentraci NCG dosahuje CHTC v závislosti na vstupní rychlosti směsi hodnot od 9465 \pm 328 W·m⁻²·K⁻¹ do 22418 \pm 873 W·m⁻²·K⁻¹. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení CHTC na interval hodnot od 7842 \pm 890 W·m⁻²·K⁻¹ do 21272 \pm 862 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 17,1 % respektive 5,1 %. Z těchto hodnot vyplívá, že hodnota CHTC klesá v důsledku přítomnosti NCG, ale trend v poklesu je méně strmý, než u souproudého chlazení.

Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 50 $\%_{obj.}$ dochází ke snížení CHTC do intervalu hodnot od 1091 ± 31 W·m⁻²·K⁻¹ do 2580 ± 25 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG v obou případech o 88,5 % Největší vliv NCG na hodnotu kondenzačního součinitele přestupu tepla je v intervalu koncentrace NCG v parovzdušné směsi od 0 $\%_{obj.}$ do 10 $\%_{obj.}$ ve kterém dojde při protiproudém chlazení ke snížení CHTC o 54,9 % respektive 56,2 %. Tabulka 6 shrnuje výsledné hodnoty CHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy CHTC v závislosti na koncentraci NCG.

Obr. 6.3 Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství nekondenzujících plynů pro trubku 26 mm; chlazení protiproudé

Vstupní rychlost parovzdušné směsi má i zde opačný efekt, než koncentrace NCG. Se vzrůstající vstupní rychlostí roste i kondenzační součinitel přestupu tepla. Při nárůstu vstupní rychlosti směsi z 8,9 m·s⁻¹ na 31,1 m·s⁻¹, neboli při nárůstu rychlosti o už zmíněných 349,4 %, dochází při nulové koncentraci NCG ve směsi ke zvýšení hodnoty CHTC o 236,8 % a při koncentraci NCG ve směsi kolem 50 ‰_{obj.} dochází ke zvýšení hodnoty CHTC o 236,4 %.

OBJEM	VSTUPNI	CHIC	POKLES	VSTUPNI	CHIC	POKLES
VZDUCHU	RYCHLOST		CHIC	RYCHLOST		CHTC
% _{ОВЈ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	$m \cdot s^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%
0		22418	0,0		22040	0,0
1,7 - 1,8		21273	5,1		18388	16,6
3,6 - 3,9		18143	19,1		14835	32,7
5,4-5,8		16248	27,5		12866	41,6
$7,\!4-7,\!9$		12937	42,3		11357	48,5
9,5 - 10,1	31,1	9815	56,2	26,6	9947	54,9
15,0-15,9		7745	65,5		7919	64,1
21,0-22,3		6520	70,9		6358	71,2
34,5 - 36,9		4066	81,9		4296	80,5
49,0-52,1		2581	88,5		2909	86,8
59 - 65,5						
% _{ОВЈ.}	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		18318	0,0		14429	0,0
1,7 - 1,8		17650	3,6		12857	10,9
3,6 - 3,9		14237	22,3		9046	37,3
5,4-5,8		12410	32,3		8630	40,2
$7,\!4-7,\!9$		10738	41,4		8264	42,7
9,5 - 10,1	22,3	9279	49,3	17,7	6082	57,8
15,0-15,9		6753	63,1		4972	65,5
21,0-22,3		5154	71,9		4224	70,7
34,5 - 36,9		3491	80,9		3172	78,0
49,0-52,1		2429	86,7		2185	84,9
59 - 65,5		1557	91,5		1527	89,4

Tab.6 Výsledné hodnoty CHTC pro měřené stavy na trubce 26 mm (protiproud) a procentuální pokles CHTC v závislosti na koncentraci NCG.

% _{ОВЈ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	$m \cdot s^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%
0		13997	0,0		9465	0,0
1,7 - 1,8		11190	20,1		7843	17,1
3,6 - 3,9		7302	47,8		7319	22,7
5,4 - 5,8		5954	57,5		4740	49,9
7,4 - 7,9		5942	57,5	8,9	4427	53,2
9,5 - 10,1	13,3	5943	57,5		4268	54,9
15,0-15,9		4067	70,9		2881	69,6
21,0-22,3		3428	75,5		2283	75,9
34,5 - 36,9		2127	84,8		1355	85,7
49,0-52,1		1632	88,3		1092	88,5
59 - 65,5		1223	91,3			

V porovnání se souproudým chlazením je při protiproudém chlazení vliv zvyšování rychlosti pro nízké až žádné koncentrace NCG menší, přičemž zvyšování vstupní rychlosti směsi má velmi podobný vliv na zvýšení hodnoty CHTC v celém měřeném intervalu koncentrací NCG

6.2.2. Celkový součinitel přestupu tepla uvnitř trubky

Jak již bylo zmíněno, celkový součinitel uvnitř trubky se skládá ze tří samostatných součinitelů přestupu tepla podle rovnice 16. V následujících textech bude pro tento součinitel používána zkratka "OHTC" z anglického překladu overall heat transfer coefficient.

a) Souproudá konfigurace chlazení

Graf na obrázku 6.4 zobrazuje průběhy OHTC pro měřené vstupní rychlosti v závislosti na vstupní koncentraci NCG. Z průběhu trendů je patrné, že součinitel přestupu tepla uvnitř trubky kopíruje svým trendem kondenzační součinitel přestupu tepla. Z dat vyplývá, že nejvyšších hodnot dosahuje tento součinitel opět pro nulovou nebo minimální koncentraci NCG. Vliv koncentrace NCG je dobře patrný a její nárůst v parovzdušné směsi má opět velký dopad na konečnou hodnotu OHTC, kdy při dochází k jejímu výraznému poklesu. Při nulové koncentraci NCG dosahuje OHTC v závislosti na vstupní rychlosti směsi hodnot od $3182 \pm 41 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$ do $4353 \pm 64 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$.

Obr. 6.4 Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství nekondenzujících plynů pro trubku 26 mm; chlazení souproudé

Při zvýšení obsahu NCG ve vodní páře z 0 $\%_{obj.}$ na 1,7 $\%_{obj.}$ dojde ke snížení OHTC na interval hodnot od 2835± 70 W·m⁻²·K⁻¹ do 3789 ± 30 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 10,9 % respektive 12,9 %. I přesto, že jde o pokles mnohem menší než v případě CHTC, jedná se o stále o pokles velmi významný.

Tabulka 7 shrnuje výsledné hodnoty OHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy OHTC v závislosti na koncentraci NCG. Při porovnání poklesu OHTC v intervalu koncentrace NCG v parovzdušné směsi od 0 $\%_{obj.}$ do 10 $\%_{obj.}$ dojde ke snížení hodnoty v závislosti na rychlosti na interval hodnot od 1719 ± 22 W·m⁻²·K⁻¹ do 3051 ± 32 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 46 % respektive 29,9 %. Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 50 $\%_{obj.}$ dochází ke snížení OHTC do intervalu hodnot od 674 ± 10 W·m⁻²·K⁻¹ do 1222 ± 22 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 78,8 % respektive 71,9 %. Je tedy patrné, že vzrůstající koncentrace NCG v parovzdušné směsi výrazně snižuje OHTC ovšem v porovnání s CHTC dochází k menším procentuálním poklesům.

Tab.7 Výsledné hodnoty OHTC pro měřené stavy na trubce 26 mm (souproud) a procentuální pokles OHTC v závislosti na koncentraci NCG.

OBJEM	VSTUPNÍ	OHTC	POKLES	VSTUPNÍ	OHTC	POKLES
VZDUCHU	RYCHLOST		OHTC	RYCHLOST		OHTC
% _{OBJ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		4353	0,0		4264	0,0
1,7 - 1,8		3790	12,9		3425	19,7
3,6-3,9		3565	18,1		3297	22,7
5,4-5,8		3340	23,3		3197	25,0
$7,\!4-7,\!9$		3222	26,0		3053	28,4
9,5 - 10,1	31,1	3052	29,9	26,6	2670	37,4
15,0 - 15,9		2695	38,1		2452	42,5
21,0-22,3		2350	46,0		2250	47,2
34,5 - 36,9		1752	59,8		1710	59,9
49,0-52,1		1222	71,9		1289	69,8
59 - 65,5						
% _{OBJ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		4044	0,0		3851	0,0
1,7 - 1,8		3314	18,0		2985	22,5
3,6 - 3,9		3034	25,0		2539	34,1
5,4-5,8		2933	27,5		2446	36,5
7,4 - 7,9		2758	31,8		2414	37,3
9,5 - 10,1	22,3	2649	34,5	17,7	2123	44,9
15,0 - 15,9		2228	44,9		1870	51,4
21,0-22,3		1977	51,1		1778	53,8
34,5 - 36,9		1597	60,5		1485	61,4
49,0-52,1		1259	68,9		1135	70,5
59 - 65,5		869	78,5		803	79,1
% _{OBJ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		3251	0,0		3182	0,0
1,7 - 1,8		2686	17,4		2835	10,9
3,6-3,9		2353	27,6		2118	33,4
5,4-5,8		2120	34,8		1794	43,6
7,4 - 7,9	13,3	2009	38,2	8,9	1720	45,9
9,5 - 10,1		2052	36,9		1719	46,0
15,0 - 15,9		1688	48,1		1413	55,6
21,0-22,3		1526	53,1		1135	64,3
34,5 - 36,9		1133	65,1		853	73,2

% _{ОВЈ.}	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
49,0-52,1	936	71,2	675	78,8
59 - 65,5	772	76,3		

Z prezentovaných procentuálních poklesů dále vyplývá, že vliv vstupní rychlosti je zde také nezanedbatelný. Při nárůstu rychlosti dochází k nárůstu OHTC, a naopak stejně jako v případě CHTC. Ovšem vyšší rychlost směsi snižuje vliv koncentrace NCG na výsledný pokles OHTC. Při nízkých rychlostech směsi je OHTC velmi citlivý na koncentraci NCG a to především v intervalu od 0 %_{obj.} do 10 %_{obj.}, kde dochází k výraznému poklesu hodnot. Při nejvyšší měřené rychlosti nebyl takto prudký propad OHTC zaznamenán a rozdíl ve snížení OHTC mezi nejnižší a nejvyšší měřenou rychlostí byl 16 %.

b) Protiproudá konfigurace chlazení

Graf na obrázku 6.5 zobrazuje průběhy OHTC pro měřené vstupní rychlosti v závislosti na vstupní koncentraci NCG pro protiproudou konfiguraci chlazení. Při nulové koncentraci NCG dosahuje OHTC v závislosti na vstupní rychlosti směsi hodnot od 2953 \pm 32 W·m⁻²·K⁻¹ do 4299 \pm 48 W·m⁻²·K⁻¹. V porovnání se souproudým chlazení tak dosahuje protiproudé chlazení menších hodnot přibližně o 8,0 % respektive o 1,3 %. Zde je vidět vliv kombinace rychlosti a konfigurace chlazení na výslednou hodnotu OHTC. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj}. na 1,7 %_{obj}. dojde ke snížení OHTC na interval hodnot od 2225 \pm 46 W·m⁻²·K⁻¹ do 3751 \pm 26 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 14,5 % respektive 12,7 %.

Tabulka 8 shrnuje výsledné hodnoty OHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy OHTC v závislosti na koncentraci NCG. Při porovnání poklesu OHTC v intervalu koncentrace NCG v parovzdušné směsi od 0 $\%_{obj.}$ do 10 $\%_{obj.}$ dojde ke snížení hodnoty v závislosti na rychlosti na interval hodnot od 1801 ± 23 W·m⁻²·K⁻¹ do 3152 ± 15 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 39 % až 26,7 %.

Obr. 6.5 Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství nekondenzujících plynů pro trubku 26 mm; chlazení souproudé

Při zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 50 $\%_{obj.}$ dochází ke snížení OHTC do intervalu hodnot od 731 ± 16 W·m⁻²·K⁻¹ do 1317 ± 23 W·m⁻²·K⁻¹.

V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 75,2 % respektive 69,3 %.

	Verunní	OUTC	DOVLES		$\frac{nucn NCO}{OUTC}$	DOVLES
UBJEM	V STUPNI DVCIU OST	OHIC	POKLES	V ST UPNI	OHIC	POKLES
VZDUCHU		W -2 K-1		RICHLOSI	W -? K-1	
% OBJ.	m·s ·	<u>w·m··K·</u>	%	m·s ·	<u>w·m··K·</u>	%
0		4299	0,0		4163	0,0
1,/-1,8		3/51,656	12,7		3442,33	17,3
3,6 – 3,9		3554,12	17,3		3348,826	19,6
5,4-5,8		3406,601	20,8		32/3,786	21,4
7,4 – 7,9		3301,259	23,2		3059,292	26,5
9,5 – 10,1	31,1	3152,962	26,7	26,6	2767,723	33,5
15,0 - 15,9		2764,626	35,7		2529,699	39,2
21,0-22,3		2457,26	42,8		2345,804	43,7
34,5 - 36,9		1860,208	56,7		1819,575	56,3
49,0-52,1		1317,781	69,3		1367,27	67,2
59 - 65,5						
% _{OBJ.}	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	$m \cdot s^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%
0		3976	0,0		3770	0,0
1.7 - 1.8		3345,574	15.9		2990,022	20,7
3.6 - 3.9		3088.16	22.3		2632.32	30.2
5.4 - 5.8		2972.285	25.2		2587.796	31.4
7.4 - 7.9		2833.487	28.7		2548,469	32.4
9.5 - 10.1	22.3	2689.09	32.4	17.7	2204.911	41.5
15.0 - 15.9	,	2351.358	40.9	,	1986.395	47.3
21.0 - 22.3		2064.881	48.1		1827.93	51.5
34.5 - 36.9		1657.997	58.3		1549,497	58.9
49.0 - 52.1		1307.467	67.1		1216.116	67.7
59 - 65.5		951.422	76.1		937.539	75.1
%овј.	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		3565	0,0		2953	0,0
1,7 - 1,8		2744,906	23,0		2525	14,5
3,6-3,9		2374,462	33,4		2179,919	26,2
5,4-5,8		2158,091	39,5		1847,782	37,4
7,4 - 7,9		2169,303	39,1		1828,006	38,1
9,5 - 10,1	13,3	2179,786	38,9	8,9	1801,408	39,0
15,0 - 15.9	Í	1783,717	50.0		1430,992	51.5
21.0 - 22.3		1616,235	54,7		1238,642	58,1
34,5 - 36.9		1189,133	66,6		861,593	70,8
49.0 - 52.1		989.883	72.2		731.086	75.2
59 - 65,5		793,224	77,7		- ,	,

Tab.8 Výsledné hodnoty OHTC pro měřené stavy na trubce 26 mm (souproud) a procentuální pokles OHTC v závislosti na koncentraci NCG.

V porovnání se souproudou konfigurací chlazení tedy dosahuje protiproudé chlazení menších hodnot OHTV při nulové koncentraci NCG, ale při zvyšování koncentrace NCG se rozdíly smazávají a od koncentrace 10 %_{obj.} NCG dosahuje protiproudé chlazení vyšších hodnot OHTC. Vliv rychlosti směsi na výslednou hodnotu OHTC je zde velmi podobný jako v případě souproudého chlazení.

6.3 Výsledky pro trubku o vnitřním průměru 20 mm

Na experimentální trubce o vnitřním průměru 20 mm bylo testováno sedm vstupních rychlostí parovzdušné směsi v intervalu od 13,4 m \cdot s⁻¹ do 50 m \cdot s⁻¹.

6.3.1. Kondenzační součinitel přestupu tepla

a) Souproudá konfigurace chlazení

Na obrázku 6.6 jsou zobrazeny hodnoty kondenzačního součinitele přestupu tepla pro jednotlivé vstupní rychlosti parovzdušné směsi v závislosti na vstupním objemovém množství nekondenzujících plynů pro vnitřní průměr trubky 20 mm. Nejvyšších hodnot tento součinitel dosahuje při nulovém množství NCG respektive, při nulové koncentraci NCG dosahuje CHTC v závislosti na vstupní rychlosti hodnot od 11834 \pm 743 W·m⁻²·K⁻¹ do 40531 \pm 427 W·m⁻²·K⁻¹. Při zvýšení obsahu NCG ve vodní páře z 0 ‰_{obj.} na 1,7 ‰_{obj.} dojde ke snížení CHTC na interval hodnot od 9544 \pm 642 W·m⁻²·K⁻¹ do 21215 \pm 783 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 19,3 % respektive 47,7 %. Z těchto hodnot vyplývá, že i v trubce o průměru 20 mm dochází při malých rychlostech k menšímu procentuálnímu poklesu CHTC, a naopak při velkých rychlostech k většímu procentuálnímu poklesu CHTC v porovnáním s trubkou o průměru 26 mm.

Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 50 $\%_{obj.}$ dochází ke snížení CHTC do intervalu hodnot od 1418 ± 40 W·m⁻²·K⁻¹ do 4009 ± 59 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 88,0 % respektive 90,1 %. Největší vliv NCG na hodnotu kondenzačního součinitele přestupu tepla je v intervalu koncentrace NCG v parovzdušné směsi od 0 %_{obj.} do 10 %_{obj.} ve kterém dojde ke snížení CHTC o 70,0 % respektive 72,0 %. Tabulka 9 shrnuje výsledné hodnoty CHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy CHTC v závislosti na koncentraci NCG.

Obr. 6.6 Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství nekondenzujících plynů pro trubku 20 mm; chlazení souproudé

Vliv vstupní rychlost parovzdušné směsi má u tohoto průměru trubky stejný efekt jako u průměru trubky 26 mm. Tzn. že se vzrůstající vstupní rychlostí roste i kondenzační součinitel přestupu tepla. Při nárůstu vstupní rychlosti směsi z 13,4 m·s⁻¹ na 50,0 m·s⁻¹, neboli při nárůstu rychlosti o 373,1 % dochází při nulové koncentraci NCG ve směsi ke zvýšení hodnoty CHTC o 263,9 % a při koncentraci NCG ve směsi kolem 50 $\%_{obj.}$ dochází ke zvýšení hodnoty CHTC o 214,2 %.

	<u>рокіе.</u>			KONCENITUCI IN	<u>.</u>	
OBJEM	VSTUPNI	CHTC	POKLES	VSTUPNI	CHTC	POKLES
VZDUCHU	RYCHLOST		CHTC	RYCHLOST		CHTC
% _{ОВЈ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		40531	0,0		35818	92,8
1,7 - 1,8		21215	47,7		12813	0,0
3,6-3,9		15617	61,5		10873	64,2
5,4-5,8		13942	65,6		10112	69,6
7,4-7,9		12926	68,1		9565	71,8
9.5 - 10.1	50	11343	72,0	40	8533	73.3
15.0 - 15.9		9121	77.5		7462	76.2
21.0 - 22.3		7463	81.6		5600	79,2
34.5 - 36.9		5201	87.2		4103	84.4
49.0 - 52.1		4009	90.1		3159	88.5
59 - 65.5		,	, ,,-			,.
%OBI	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		28659	0.0		24534	0.0
17 - 18		11348	60.4		10694	56.4
36 - 39		9623	66.4		9366	61.8
$5,0^{-}5,9^{-}$		8342	70.9		8225	66.5
74 - 79		7399	74.2	26,6	7564	69.2
95 - 101	31.1	6682	76.7		6706	72 7
15.0 - 15.9	51,1	5/33	81.0		5/10	77.9
13,0 = 13,3 21.0 - 22.3		5006	82.5		/038	83.5
21,0-22,3 34.5-36.0		3759	86.9		3023	87.7
49.0 - 52.1		2918	89.8		2260	90.8
59 65 5		2071	0,0		18/1	92.5
<u> </u>		2071 W.m ⁻² .V ⁻¹	0,0		W.m ⁻² .V ⁻¹	92,5
% OBJ.	III'S -	<u>w·m·K·</u>	<u>%</u>	III'S -	W'III - K -	%
17 19		22947	0,0		15555	0,0
1, 7 - 1, 8		9344	59,5		8394	45,3
3,6 - 3,9		8828	61,5		6652	56,7
5,4-5,8		6/50	70,6		5888	61,7
/,4 – /,9		6034	/3,/	17.7	5024	67,3
9,5 – 10,1	22,3	6050	73,6	17,7	4556	70,3
15,0 - 15,9		5218	77,3		3876	74,8
21,0 - 22,3		4359	81,0		3337	78,3
34,5 - 36,9		2383	89,6		2257	85,3
49,0 - 52,1		2042	91,1		1871	87,8
59 - 65,5	1	1646	92,8	1		
%овј.	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		11834	0,0			
1,7 - 1,8		9545	19,3			
3,6 – 3,9		7338	38,0			
5,4-5,8		5431	54,1			
$7,\!4-7,\!9$		3921	66,9			
9,5 - 10,1	13,3	3551	70,0		Neměřeno	
15,0 - 15,9		3419	71,1			
21.0 - 22.3		2450	79.2			
,,0		2439	12.4			
34.5 - 36.9		1753	85.2			
34,5 - 36,9 49.0 - 52.1		1753 1419	85,2 88.0			

Tab.9 Výsledné hodnoty CHTC pro měřené stavy na trubce 20 mm (souproud) a procentuální pokles CHTC v závislosti na koncentraci NCG.

V porovnání s trubkou o průměru 26 mm tedy dochází s nárůstem rychlosti k menšímu procentuálnímu nárůstu CHTC. Lze tedy konstatovat, že v případě malého objemového množství NCG ve směsi má růst vstupní rychlosti směsi téměř lineární vliv na střední hodnotu CHTC, přičemž vliv zvyšování rychlosti s rostoucí koncentraci NCG postupně klesá.

b) Protiproudá konfigurace chlazení

Na obrázku 6.7 jsou zobrazeny hodnoty kondenzačního součinitele přestupu tepla pro jednotlivé vstupní rychlosti parovzdušné směsi v závislosti na vstupním objemovém množství nekondenzujících plynů pro protiproudý tok chladící vody a parovzdušné směsi. Z průběhu je patrné, že stejně jako u souproudého chlazení dosahuje CHTC nejvyšších hodnot při nulovém množství NCG, přičemž největší propad je opět v intervalu koncentrace NCG od 0 %_{obj}. do 10 %_{obj}. Při nulové koncentraci NCG dosahuje CHTC v závislosti na vstupní rychlosti směsi hodnot od 16528 ± 1848 W·m⁻²·K⁻¹ do 72441 ± 9888 W·m⁻²·K⁻¹. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj} na 1,7 %_{obj} dojde ke snížení CHTC na interval hodnot od 12432 ± 295 W·m⁻²·K⁻¹ do 52341 ± 843 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 24,8 % respektive 27,7 %. Z těchto hodnot vyplívá, že hodnota CHTC klesá v důsledku přítomnosti NCG, ale trend v poklesu je méně strmý než u souproudého chlazení.

V intervalu koncentrace NCG v parovzdušné směsi od 0 $\%_{obj.}$ do 10 $\%_{obj.}$ dojde při protiproudém chlazení ke snížení CHTC o 71,6 % respektive 72 %. Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 50 $\%_{obj.}$ dochází ke snížení CHTC do intervalu hodnot od 1347 ± 45 W·m⁻²·K⁻¹ do 4362 ± 107 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 91,9 % respektive 94 %. Tabulka 10 shrnuje výsledné hodnoty CHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy CHTC v závislosti na koncentraci NCG.

Obr. 6.7 Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství nekondenzujících plynů pro trubku 20 mm; chlazení protiproudé

Vstupní rychlost parovzdušné směsi má i zde opačný efekt než koncentrace NCG. Se vzrůstající vstupní rychlostí roste i kondenzační součinitel přestupu tepla. Při nárůstu vstupní rychlosti směsi z 13,4 m·s⁻¹ na 50,0 m·s⁻¹, neboli při nárůstu rychlosti o už zmíněných 373,1 %, dochází při nulové koncentraci NCG ve směsi ke zvýšení hodnoty CHTC o 236,8 % a při koncentraci NCG ve směsi kolem 50 ‰_{obj.} dochází ke zvýšení hodnoty CHTC o 236,4 %. V porovnání se souproudým chlazení je při protiproudém chlazení vliv zvyšování rychlosti pro nízké až žádné koncentrace NCG menší, přičemž zvyšování vstupní rychlosti směsi má velmi podobný vliv na zvýšení hodnoty CHTC v celém měřeném intervalu koncentrací NCG.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9,5-10,122,3698971,317,7547368,315,0-15,9603275,3465773,121,0-22,3516978,8416875,9
15,0-15,9603275,3465773,121,0-22,3516978,8416875,9
21,0-22,3 5169 78,8 4168 75,9
34,5 - 36,9 2713 88,9 2692 84,4
49,0-52,1 2256 90,7 2087 87,9
59 - 65,5 1900 92,2
$M_{OBJ.}$ m·s ⁻¹ W·m ⁻² ·K ⁻¹ % m·s ⁻¹ W·m ⁻² ·K ⁻¹ %
0 16529 0,0
1,7 – 1,8 12432 24,8
3.6 - 3.9 9083 45.0
5,4 - 5,8 8183 50.5
7.4 - 7.9 5711 65.4
9.5 – 10.1 13.3 4690 71.6 Neměřeno
150 - 159 4237 74.4
210 - 223 2605 84.2
2005 07,2 345 - 369 1746 894
A90 - 521 1347 910
59 - 65 5

Tab.10 Výsledné hodnoty CHTC pro měřené stavy na trubce 20 mm (protiproud) a procentuální pokles CHTC v závislosti na koncentraci NCG.

6.3.2. Celkový součinitel přestupu tepla uvnitř trubky

a) Souproudá konfigurace chlazení

Graf na obrázku 6.8 zobrazuje průběhy OHTC pro měřené vstupní rychlosti v závislosti na vstupní koncentraci NCG. Z grafu vyplývá, že nejvyšších hodnot dosahuje tento součinitel opět pro nulovou koncentraci NCG. Vliv koncentrace NCG je dobře patrný a její nárůst v parovzdušné směsi má opět velký dopad na konečnou hodnotu OHTC, kdy při dochází k jejímu výraznému poklesu. Při nulové koncentraci NCG dosahuje OHTC v závislosti na vstupní rychlosti směsi hodnot od 1806 ± 90 W·m⁻²·K⁻¹ do 4827 ± 12 W·m⁻²·K⁻¹. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj}. na 1,7 %_{obj}. dojde ke snížení OHTC na interval hodnot od 1775 ± 48 W·m⁻²·K⁻¹ do 4438 ± 46 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 1,7 % respektive 8,7 %. V porovnání s průměrem trubky 26 mm se jedná o menší procentuální pokles.

Tabulka 11 shrnuje výsledné hodnoty OHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy OHTC v závislosti na koncentraci NCG. Při porovnání poklesu OHTC v intervalu koncentrace NCG v parovzdušné směsi od 0 %_{obj.} do 10 %_{obj.} dojde ke snížení hodnoty v závislosti na rychlosti na interval hodnot od 1164 ± 34 W·m⁻²·K⁻¹ do 3581 ± 24 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 35,5 % respektive 25,8 %. Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 50 %_{obj.} dochází ke snížení OHTC do intervalu hodnot od 781 ± 28 W·m⁻²·K⁻¹ do 1961 ± 15 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 56,7 % respektive 59,4 %.

Obr. 6.8 *Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství nekondenzujících plynů pro trubku 20 mm; chlazení souproudé*

V porovnání s průměrem trubky 26 mm dosahuje průměr trubky 20 mm menších procentuálních poklesů, a to jak při nízkých koncentracích NCG, tak zejména ve vysokých koncentracích NCG ve směsi. Z prezentovaných procentuálních poklesů dále vyplývá, že vliv vstupní rychlosti je zde také nezanedbatelný. Při nárůstu rychlosti dochází k nárůstu OHTC, a naopak stejně jako v případě CHTC. Při změně vstupní rychlosti směsi z 13,4 m·s⁻¹ na 50,0 m·s⁻¹, neboli při nárůstu rychlosti

o 373,1 %, dochází při nulové koncentraci NCG ve směsi ke zvýšení hodnoty OHTC o 267,2 % a při koncentraci NCG ve směsi kolem 50 $\%_{obj}$ dojde ke zvýšení hodnoty OHTC o 250,1 %.

ODIEM			DOVI ES	VSTUDNÍ		DOVIES
	PVCHI OST	UNIC	OUTC	PVCHI OST	UNIC	OUTC
VZDUCHU 04	must	W.m ⁻² .V ⁻¹		must	W.m ⁻² .V ⁻¹	0/11
[%] OBJ.	111-8	4827	^{%0}	111-8	4120	<u>%</u>
17 18		4027	0,0		4130	0,0
1,7 - 1,8		4436	0,1		2461	16,4
5,0-5,9		4020	10,7		2266	10,2
3,4-3,8		2770	19,8		2277	18,5
7,4 - 7,9	50	2592	21,9	40	2100	20,0
9,3 - 10,1	50	2225	23,8	40	2000	24,7
15,0 - 15,9		3233	20.8		2909	29,0
21,0-22,3		2900	59,8		2434	40,0
34,3 - 30,9		2348	50.4		1998	50.0
49,0-52,1		1962	59,4		1057	59,9
39-03,5		W. m -2. V-1	0/	m . c ⁻¹	\mathbf{W}_{1} and \mathbf{Z}_{2} \mathbf{V}_{1}	0/
% OBJ.	m·s ·	<u>w·m··K·</u>	%	m·s ·	<u>w·m ²·K ¹</u>	%
17 10		3/30	0,0		3304	0,0
1, 7 - 1, 8		3459	1,5		3340	0,1
3,6-3,9		3232	13,3		3109	12,8
5,4 - 5,8		3025	18,9		2923	18,0
/,4 - /,9	21.1	2843	23,8	26.6	2817	21,0
9,5 - 10,1	31,1	2706	27,5	26,6	2686	24,6
15,0 - 15,9		2408	35,5		2399	32,7
21,0-22,3		2295	38,5		1993	44,1
34,5 - 36,9		1894	49,2		1035	54,1
49,0-52,1		15/1	57,9		1313	63,2
<u> </u>		1215	67,4		$\frac{1112}{\mathbf{W} - 2\mathbf{W} \cdot \mathbf{I}}$	68,8
% _{OBJ.}	m·s ·	<u>W·m²·K¹</u>	%	m·s ·	<u>w·m··K</u>	%
0		3411	0,0		2923	0,0
1, 7 - 1, 8		3137	8,0		2877	1,6
3,6 - 3,9		3046	10,7		2598	11,1
5,4 - 5,8		2625	23,0	17,7	2399	17,9
/,4 – /,9	22.2	2462	27,8		2180	25,4
9,5 - 10,1	22,3	2346	31,2		2060	29,5
15,0 - 15,9		2203	35,4		1879	35,7
21,0-22,3		1966	42,3		1/22	41,1
34,3 - 30,9		13/4	59,1		1510	55,2 60 8
49,0 - 52,1		1221	04,2		1140	00,8
<u> </u>		1020	69,9		W_{1} m $^{-2}$ V^{-1}	0/
% OBJ.	III'S -	1904	<u>%</u>	III'S -	W.III-K	%0
17 19		1800	0,0			
1, 7 - 1, 8		1//0	1,/			
3,6 - 3,9		1616	10,5			
5,4 - 5,8		1556	13,8			
7,4 – 7,9	10.5	1271	29,6			
9,5 – 10,1	13,3	1164	35,5		Neměřeno	
15,0 - 15,9		1162	35,7			
21,0-22,3		994	45,0			
34,5 - 36,9		825	54,3			
49,0-52,1		782	56,7			
59 - 65,5						

Tab.11 Výsledné hodnoty OHTC pro měřené stavy na trubce 20 mm (souproud) a procentuální pokles OHTC v závislosti na koncentraci NCG.

To znamená, že při nulové koncentraci NCG dochází při nárůstu vstupní rychlosti směsi k podobnému procentuálnímu nárůstu OHTC a CHTC. U koncentrace NCG kolem 50 %_{obj.} dojde se zvýšením rychlosti u OHTC k většímu procentuálnímu nárůstu hodnoty než u CHTC. Tento rozdíl činní asi 40 %.

b) Protiproudá konfigurace chlazení

Graf na obrázku 6.9 zobrazuje průběhy OHTC pro měřené vstupní rychlosti v závislosti na vstupní koncentraci NCG pro protiproudou konfiguraci chlazení. Při nulové koncentraci NCG dosahuje OHTC v závislosti na vstupní rychlosti směsi hodnot od 2340 \pm 57 W·m⁻²·K⁻¹ do 4812 \pm 13 W·m⁻²·K⁻¹. V porovnání se souproudým chlazením dosahuje pro rychlost 13,3 m·s⁻¹ protiproudé chlazení vyšších hodnot OHTC přibližně o 29 %. Pro rychlost 50 m·s⁻¹ jsou potom hodnoty OHTC pro souproudé a protiproudé chlazení velmi podobné. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení OHTC na interval od 1647 \pm 34 W·m⁻²·K⁻¹ do 4485 \pm 61 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnáním s kondenzací čisté vodní páry bez NCG o 29,6 % respektive 6,8 %.

Obr.6.9 Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství nekondenzujících plynů pro trubku 20 mm; chlazení souproudé

Tabulka 12 shrnuje výsledné hodnoty OHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy OHTC v závislosti na koncentraci NCG. Při porovnání poklesu OHTC v intervalu koncentrace NCG v parovzdušné směsi od 0 %_{obj}. do 10 %_{obj}. dojde ke snížení hodnoty v závislosti na rychlosti na interval hodnot od 1259 \pm 39 W·m⁻²·K⁻¹ do 3767 \pm 16 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 46,2 %, respektive 21,7 %.

Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 50 $\%_{obj}$. dochází ke snížení OHTC do intervalu od 715 ± 14 W·m⁻²·K⁻¹ do 1979 ± 21 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 69,4 % respektive 58,9 %. V porovnání se souproudou konfigurací chlazení tedy dosahuje protiproudé chlazení od rychlosti 22,3 m·s⁻¹ vyšších hodnot OHTC. Vliv rychlosti směsi na výslednou hodnotu OHTC je zde velmi podobný jako v případě souproudého chlazení.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{0}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3859 0,0 3700 0,0
1,7 – 1,8 3655 5,3 3587 3,0
3,6 – 3,9 3377 12,5 3184 13,9
5,4 – 5,8 3156 18,2 2999 18,9
7,4 – 7,9 2945 23,7 2931 20,8
9,5 - 10,1 31,1 2844 26,3 26,6 2788 24,6
15,0 – 15,9 2577 33,2 2467 33,3
21,0-22,3 2417 37,3 2156 41,7
34,5 - 36,9 2009 47,9 1682 54,5
49,0 - 52,1 1722 55,4 1376 62,8
<u>59 - 65,5</u> <u>1205</u> <u>68,8</u> <u>1176</u> <u>68,2</u>
$\frac{\%_{OBJ.}}{m \cdot s^{-1}} \frac{m \cdot s^{-1}}{W \cdot m^{-2} \cdot K^{-1}} \frac{\%}{m \cdot s^{-1}} \frac{m \cdot s^{-1}}{W \cdot m^{-2} \cdot K^{-1}} \frac{\%}{w}$
0 3499 0,0 3331 0,0
1,7 – 1,8 3309 5,4 3091 7,2
3,6-3,9 3195 8,7 2738 17,8
5,4 - 5,8 2591 25,9 2504 24,8
7,4 – 7,9 2552 27,1 2285 31,4
9,5 - 10,1 22,3 2423 30,8 17,7 2114 36,5
15,0-15,9 2265 35,3 1947 41,5
21,0 - 22,3 2108 39,8 1831 45,0
34,5 - 36,9 1425 59,3 1398 58,0
49,0 – 52,1 1246 64,4 1178 64,6
59 - 65,5 1090 68,9
$\frac{\%_{OBJ.}}{m \cdot s^{-1}} \frac{m \cdot s^{-1}}{W \cdot m^{-2} \cdot K^{-1}} \frac{\%}{m \cdot s^{-1}} \frac{m \cdot s^{-1}}{W \cdot m^{-2} \cdot K^{-1}} \frac{\%}{w}$
0 2341 0,0
1,7 – 1,8 1647 29,6
3,6 – 3,9 1634 30,2
5,4 - 5,8 1589 32,1
7,4 – 7,9 1344 42,6
9,5 - 10,1 13,3 1259 46,2 Neměřeno
15.0 - 15.9 1239 47.0
21.0 - 22.3 916 60.8
34.5 - 36.9 829 64.6
490 - 521 715 694
59 - 65 5

Tab.12 Výsledné hodnoty OHTC pro měřené stavy na trubce 20 mm (souproud) a procentuální pokles OHTC v závislosti na koncentraci NCG.

6.4 Výsledky pro trubku o vnitřním průměru 16 mm

Na experimentální trubce o vnitřním průměru 16 mm byly testovány čtyři vstupní rychlosti parovzdušné směsi v intervalu od 26,6 m \cdot s⁻¹ do 50 m \cdot s⁻¹. Při rychlostech 26,6

a 31,3 m·s⁻¹ byl parní vyvíječ na své spodní hranici, při které je ještě schopen regulace. Z tohoto důvodu nejsou změřeny vyšší koncentrace jako u předchozích průměrů a komentované hodnoty hledaných součinitelů budou pouze pro interval koncentrace NCG v parovzdušné směsi od 0 %_{obj.} do 34 %_{obj.}

6.4.1. Kondenzační součinitel přestupu tepla

a) Souproudá konfigurace chlazení

Na obrázku 6.10 jsou zobrazeny hodnoty kondenzačního součinitele přestupu tepla pro jednotlivé vstupní rychlosti parovzdušné směsi v závislosti na vstupním objemovém množství nekondenzujících plynů pro vnitřní průměr trubky 16 mm. Nejvyšších hodnot CHTC dosahuje při nulové koncentraci NCG v závislosti na vstupní rychlosti směsi hodnot od 18015 \pm 320 W·m⁻²·K⁻¹ do 41170 \pm 1213 W·m⁻²·K⁻¹. Při zvýšení obsahu NCG ve vodní páře z 0 ‰_{obj.} na 1,7 ‰_{obj.} dojde ke snížení CHTC na interval hodnot od 13902 \pm 539 W·m⁻²·K⁻¹ do 22912 \pm 494 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 22,8 % respektive 44,3 %. Z těchto hodnot vyplývá, že i v trubce o průměru 16 mm dochází při nízkých koncentrací NCG a při malých rychlostech k menšímu procentuálnímu poklesu CHTC než v případě velkých vstupních rychlostí.

Obr. 6.10 *Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství nekondenzujících plynů pro trubku 16 mm; chlazení souproudé*

Největší vliv NCG na hodnotu kondenzačního součinitele přestupu tepla je zde v intervalu koncentrace NCG v parovzdušné směsi od 0 $\%_{obj}$. do 5 $\%_{obj}$, ve kterém dojde ke snížení CHTC o více než polovinu. Konkrétně tedy o 53,3 % respektive 61,3 %. Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 34 $\%_{obj}$. dochází ke snížení CHTC do intervalu hodnot od 3502 ± 127 W·m⁻²·K⁻¹ do 5989 ± 180 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 80,6 % respektive 85,5 %. Tabulka 13 shrnuje výsledné hodnoty CHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy CHTC v závislosti na koncentraci NCG.
Vliv vstupní rychlost parovzdušné směsi má u tohoto průměru trubky stejný efekt jako u průměru trubky 26 a 20 mm. Tzn. že se vzrůstající vstupní rychlostí roste i kondenzační součinitel přestupu tepla. Vliv rychlosti na střední hodnotu CHTC je u průměru trubky 16 mm výraznější při malých koncentrací NCG. U větších koncentrací NCG je vliv zvýšení vstupní rychlosti na zvýšení hodnoty CHTC téměř lineární. Při nárůstu vstupní rychlosti směsi z 26,6 m·s⁻¹ na 50,0 m·s⁻¹, neboli při nárůstu rychlosti o 188 % dochází při nulové koncentraci NCG ve směsi ke zvýšení hodnoty CHTC o 228,5 %, což je výrazně více než u předchozích větších průměrů. Při koncentraci NCG ve směsi kolem 34 %_{obj} dochází ke zvýšení hodnoty CHTC o 171,0 %.

OBJEM	VSTUPNÍ	CHTC	POKLES	VSTUPNÍ	CHTC	POKLES
VZDUCHU	RYCHLOST		CHTC	RYCHLOST		CHTC
% _{ОВЈ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		41170	0,0		30693	0,0
1,7 - 1,8		22913	44,3		14292	53,4
3,6-3,7		17076	58,5		12334	59,8
5,4-5,7		15942	61,3		11135	63,7
7,3 - 7,7		14398	65,0		10573	65,6
9,5 - 9,8	50	13270	67,8	40	10309	66,4
15,0 - 15,4		9802	76,2		8419	72,6
20,9 - 21,6		8550	79,2		6575	78,6
34,4 - 35,4		5989	85,5		4015	86,9
49,3 – 50,4		5336	87,0		3703	87,9
64,2-65,4		3780	90,8		3700	87,9
% _{ОВЈ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		24404	0,0		18015	0,0
1,7 - 1,8		12452	49,0		13902	22,8
3,6 - 3,7		10846	55,6		9251	48,6
5,4 - 5,7		9503	61,1		8399	53,4
7,3 - 7,7	31,1	8652	64,5	26,6	6917	61,6
9,5 - 9,8		8100	66,8		6604	63,3
15,0 - 15,4		7085	71,0		6192	65,6
20,9 - 21,6		5477	77,6		5001	72,2
34,4 - 35,4					3503	80,6

Tab.13 Výsledné hodnoty CHTC pro měřené stavy na trubce 16 mm (souproud) a procentuální pokles CHTC v závislosti na koncentraci NCG.

b) Protiproudá konfigurace chlazení

Na obrázku 6.11 jsou zobrazeny hodnoty kondenzačního součinitele přestupu tepla pro jednotlivé vstupní rychlosti parovzdušné směsi v závislosti na vstupním objemovém množství nekondenzujících plynů pro protiproudý tok chladící vody a parovzdušné směsi. Z průběhu je patrné, že stejně jako u souproudého chlazení dosahuje CHTC nejvyšších hodnot při nulovém množství NCG. Největší propad je u protiproudého chlazení opět v intervalu koncentrace NCG od $0 \%_{obj.}$ do $5 \%_{obj.}$

Při nulové koncentraci NCG dosahuje CHTC v závislosti na vstupní rychlosti směsi hodnot od 18724 \pm 324 W·m⁻²·K⁻¹ do 46825 \pm 143 W·m⁻²·K⁻¹. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení CHTC na interval hodnot od 17082 \pm 423 W·m⁻²·K⁻¹ do 34864 \pm 592 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty CHTC v porovnání s kondenzací čisté vodní páry bez NCG o 8,8 % respektive 25,5 %. Z těchto hodnot vyplývá, že hodnota CHTC klesá v důsledku přítomnosti NCG, ale hodnoty CHTC pro nulovou koncentraci jsou pro protiproudé chlazení vyšší než u souproudého chlazení a trend v poklesu CHTC je také méně strmý než u souproudého chlazení. V intervalu koncentrace NCG v parovzdušné směsi od 0 %_{obj.} do 5 %_{obj}, dojde při protiproudém chlazení ke snížení CHTC o 44,2 % respektive 45,5 %.

Obr. 6.11 Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství nekondenzujících plynů pro trubku 16 mm; chlazení protiproudé

Tab.14 Výsledné hodnoty CHTC pro měřené stavy na trubce 16 mm (protiproud) a procentuální pokles CHTC v závislosti na koncentraci NCG.

OBJEM	VSTUPNÍ	CHTC	POKLES	VSTUPNÍ	CHTC	POKLES
VZDUCHU	RYCHLOST		CHTC	RYCHLOST		CHTC
% _{OBJ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		46825	0,0		35066	0,0
1,7 - 1,8		34864	25,5		20721	40,9
3,6 - 3,7		28496	39,1		17180	51,0
5,4 - 5,7		25513	45,5		15487	55,8
7,3 - 7,7		23466	49,9		14367	59,0
9,5 - 9,8	50	21061	55,0	40	14260	59,3
15,0 - 15,4		15379	67,2		11445	67,4
20,9 - 21,6		12363	73,6		9275	73,6
34,4 - 35,4		8455	81,9		5274	85,0
49,3 - 50,4		6473	86,2		4294	87,8
64,2-65,4		4139	91,2		4100	88,3
% _{OBJ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		29094	0,0		18724	0,0
1,7 - 1,8		19325	33,6		17082	8,8
3,6 - 3,7		15141	48,0		12412	33,7
5,4 - 5,7		13438	53,8		10448	44,2
7,3 - 7,7	31,1	11501	60,5	26,6	9211	50,8
9,5 - 9,8		11042	62,0		8923	52,3
15,0 - 15,4		8885	69,5		8315	55,6
20,9 - 21,6		6928	76,2		6784	63,8
34,4 - 35,4					4228	77,4

Tabulka 14 shrnuje výsledné hodnoty CHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy CHTC v závislosti na koncentraci NCG. Při porovnání mezi jednotlivými průměry měřených trubek dochází u trubky průměru 16 mm k nejmenšímu poklesu CHTC při zvyšování koncentrace NCG v parovzdušné směsi. Vstupní rychlost parovzdušné směsi hraje i zde nezanedbatelnou roli. Při nárůstu vstupní rychlosti směsi z 26,6 m·s⁻¹ na 50,0 m·s⁻¹, neboli při nárůstu rychlosti o 188 %, dochází při nulové

koncentraci NCG ve směsi ke zvýšení hodnoty CHTC o 250,0 % a při koncentraci NCG ve směsi kolem 34 %_{obj.} dochází ke zvýšení hodnoty CHTC o 200,0 %. V porovnání se souproudým chlazení dochází při protiproudém chlazení pro nízké až žádné koncentrace NCG při zvyšování rychlosti směsi k většímu procentuálnímu nárůstu hodnoty CHTC. Naopak pro koncentrace NCG kolem 34 %_{obj.} dosahuje protiproudé chlazení vyšších absolutních hodnot CHTC, ale menších procentuálních nárůstů.

6.4.2. Celkový součinitel přestupu tepla uvnitř trubky

a) Souproudá konfigurace chlazení

Graf na obrázku 6.12 zobrazuje průběhy OHTC pro měřené vstupní rychlosti v závislosti na vstupní koncentraci NCG.

Obr. 6.12 Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství nekondenzujících plynů pro trubku 16 mm; chlazení souproudé

Z průběhu je patrné že nejvyšších hodnot dosahuje tento součinitel opět pro čistou páru. Při vzrůstající koncentraci NCG hodnota OHCT opět klesá, stejně jako u předešlých průměrů. Při nulové koncentraci NCG dosahuje OHTC v závislosti na vstupní rychlosti směsi hodnot od $3537 \pm 42 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$ do $5658 \pm 90 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení OHTC na interval hodnot od 3368 ± 42 W \cdot \text{m}^{-2} \cdot \text{K}^{-1} do $4786 \pm 27 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 4,8 % respektive 15,4 %.

Tabulka 15 shrnuje výsledné hodnoty OHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy OHTC v závislosti na koncentraci NCG. Při porovnání poklesu OHTC v intervalu koncentrace NCG v parovzdušné směsi od 0 $\%_{obj.}$ do 5 $\%_{obj.}$ dojde ke snížení hodnoty v závislosti na rychlosti na interval hodnot od 2876 ± 49 W·m⁻²·K⁻¹ do 4195 ± 13 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 18,7 % respektive 25,8 %.

Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 34 %_{obj.} dochází ke snížení OHTC do intervalu hodnot od 1751 ± 40 $W \cdot m^{-2} \cdot K^{-1}$ do 2480 ± 48 $W \cdot m^{-2} \cdot K^{-1}$.

	рюсениции	pomes on	C V 2 u v i s i			
OBJEM	VSTUPNI	OHTC	POKLES	VSTUPNI	OHTC	POKLES
VZDUCHU	RYCHLOST		OHTC	RYCHLOST		OHTC
% _{OBJ.}	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		5658	0,0		4855	0,0
1,7 - 1,8		4786	15,4		4054	16,5
3,6 - 3,7		4431	21,7		3742	22,9
5,4 - 5,7		4196	25,8		3528	27,3
7,3 - 7,7		4028	28,8		3444	29,1
9,5 - 9,8	50	3891	31,2	40	3394	30,1
15,0 - 15,4		3378	40,3		3064	36,9
20,9 - 21,6		3121	44,8		2674	44,9
34,4 - 35,4		2481	56,2		1936	60,1
49,3 - 50,4		2257	60,1		1809	62,7
64,2-65,4		1827	67,7		1827	62,4
% _{OBJ.}	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		3929	0,0		3537	0,0
1,7 - 1,8		3750	4,6		3369	4,8
3,6 - 3,7		3502	10,9		3021	14,6
5,4 - 5,7		3252	17,2		2877	18,7
7,3 - 7,7	31,1	3084	21,5	26,6	2673	24,4
9,5 - 9,8		2980	24,1		2529	28,5
15,0 - 15,4		2765	29,6		2411	31,8
20,9 - 21,6		2355	40,1		2206	37,6
34,4 - 35,4					1751	50,5

Tab.15 Výsledné hodnoty OHTC pro měřené stavy na trubce 16 mm (souproud) a procentuální pokles OHTC v závislosti na koncentraci NCG.

V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 50,5 % respektive 56,2 %. V porovnání s průměrem trubky 26 mm dosahuje průměr trubky 16 mm menších procentuálních poklesů OHTC. V porovnání s průměrem trubky 20 mm dosahuje trubka o průměru 16 mm podobné procentuální poklesy OHTC, ale o trochu vyšší absolutní hodnoty.

Z prezentovaných procentuálních poklesů dále vyplývá, že při nárůstu rychlosti dochází k nárůstu OHTC, a naopak stejně jako v případě CHTC. Při změně vstupní rychlosti směsi z 26,6 m·s⁻¹ na 50,0 m·s⁻¹, neboli při nárůstu rychlosti o 188 %, dochází při nulové koncentraci NCG ve směsi ke zvýšení hodnoty OHTC o 160,0 % a při koncentraci NCG ve směsi kolem 34 %_{obj} dojde ke zvýšení hodnoty OHTC o 141,7 %. Při porovnání procentuálních nárůstů OHTC a CHTC, dochází při zvyšování vstupní rychlosti u OHTC k menšímu procentuálnímu nárůstu než v případě CHTC. Tento rozdíl činní přibližně 28 %.

b) Protiproudá konfigurace chlazení

Graf na obrázku 6.13 zobrazuje průběhy OHTC pro měřené vstupní rychlosti v závislosti na vstupní koncentraci NCG pro protiproudou konfiguraci chlazení. Při nulové koncentraci NCG dosahuje OHTC v závislosti na vstupní rychlosti směsi hodnot od 4140 \pm 125 W·m⁻²·K⁻¹ do 5324 \pm 60 W·m⁻²·K⁻¹. V porovnání se souproudým chlazení tak dosahuje protiproudé chlazení pro rychlost 26,6 m·s⁻¹ protiproudé chlazení vyšších hodnot OHTC přibližně o 17,0 %. Pro rychlost 50 m·s⁻¹ naopak dosahuje vyšších hodnot CHTC souproudé chlazení, a to přibližně o 6 %. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení OHTC na interval hodnot od 3876 \pm 35 W·m⁻²·K⁻¹ do 5006 \pm 17 W·m⁻²·K⁻¹. Pro rychlost 50 m·s⁻¹ naopak dosahuje vyšších hodnot CHTC souproudé chlazení, a to přibližně o 6 %. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení OHTC na interval hodnot cHTC souproudé chlazení, a to přibližně o 6 %. Při zvýšení obsahu NCG ve vodní páře z 0 %_{obj.} na 1,7 %_{obj.} dojde ke snížení OHTC na interval hodnot od 3876 \pm 35 W·m⁻²·K⁻¹.

Obr. 6.13 Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství nekondenzujících plynů pro trubku 16 mm; chlazení souproudé

V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 6,4 % respektive 6 %.

	рокие		visiosii nu	KONCENTRACT N	0.	
OBJEM	VSTUPNÍ	OHTC	POKLES	VSTUPNÍ	OHTC	POKLES
VZDUCHU	RYCHLOST		OHTC	RYCHLOST		OHTC
% _{OBJ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		5324	0,0		4758	0,0
1,7 - 1,8		5007	6,0		4329	9,0
3,6 - 3,7		4675	12,2		3964	16,7
5,4 - 5,7		4479	15,9		3748	21,2
7,3 - 7,7		4331	18,7		3607	24,2
9,5 - 9,8	50	4151	22,0	40	3601	24,3
15,0 - 15,4		3658	31,3		3230	32,1
20,9 - 21,6		3331	37,4		2892	39,2
34,4 - 35,4		2703	49,2		2078	56,3
49,3 - 50,4		2299	56,8		1820	61,7
64,2-65,4		1815	65,9		1805	62,1
% _{OBJ.}	m·s ⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%	m·s⁻¹	$W \cdot m^{-2} \cdot K^{-1}$	%
0		4602	0,0		4140	0,0
1,7 - 1,8		4078	11,4		3877	6,4
3,6 - 3,7		3713	19,3		3435	17,0
5,4-5,7		3434	25,4		3277	20,8
7,3 - 7,7	31,1	3247	29,4	26,6	2814	32,0
9,5 - 9,8		3214	30,2		2721	34,3
15,0 - 15,4		2841	38,3		2604	37,1
20,9 - 21,6		2456	46,6		2401	42,0
34,4 - 35,4					1823	56,0

Tab.16 Výsledné hodnoty OHTC pro měřené stavy na trubce 16 mm (souproud) a procentuální pokles OHTC v závislosti na koncentraci NCG.

Tabulka 16 shrnuje výsledné hodnoty OHTC s ohledem na vstupní rychlost směsi a objemovou koncentraci NCG ve směsi a zobrazuje procentuální poklesy OHTC v závislosti na koncentraci NCG. Při porovnání poklesu OHTC v intervalu koncentrace NCG v parovzdušné směsi od 0 %_{obj.}

do 10 $\%_{obj.}$ dojde ke snížení hodnoty v závislosti na rychlosti na interval hodnot od 2721 ± 29 W·m⁻²·K⁻¹ do 4151 ± 20 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 34,1 % respektive 22,0 %.

Při dalším zvyšování objemového množství NCG v parovzdušné směsi až do hodnoty kolem 34 $\%_{obj}$ dochází ke snížení OHTC do intervalu hodnot od 1822 ± 45 W·m⁻²·K⁻¹ do 2703 ± 27 W·m⁻²·K⁻¹. V procentuálním vyjádření jde tedy o snížení hodnoty OHTC v porovnání s kondenzací čisté vodní páry bez NCG o 56,0 % respektive 49,2 %. V porovnání se souproudou konfigurací chlazení tedy dosahuje protiproudé chlazení kontinuálně vyšších hodnot OHTC s výjimkou kondenzace čisté páry při nejvyšší měřené rychlosti.

6.5. Celkové srovnání

Výše byly uvedeny podrobné výsledky pro jednotlivé průměry trubek. Pro lepší celkovou představu byly hodnoty kondenzačního součinitele přestupu tepla a celkového součinitele přestupu tepla uvnitř trubky vyneseny pro všechny měřené stavy na všech průměrech do prostorových grafů.

Obr. 6.14 Kondenzační součinitel přestupu tepla pro měřené stavy; souproudé chlazení

Na obrázku 6.14 a 6.15 jsou vyneseny hodnoty kondenzačního součinitele přestupu tepla pro souproudé a protiproudé chlazení a pro všechny měřené stavy a průměry testovaných trubek. Pro zobrazení hodnoty CHTC je použita barevná škála. Díky velkému vlivu koncentrace nekondenzujících plynů na kondenzační součinitel přestupu tepla v intervalu od 0 ‰_{obj.} do 10 ‰_{obj.} je zobrazena koncentrace NCG v logaritmickém měřítku. Z grafu jsou patrné všechny vlivy popsané už v předchozích podkapitolách. Tzn. že, kondenzační součinitel přestupu tepla klesá s rostoucí koncentrací NCG a roste se zvyšující se vstupní rychlostí parovzdušné směsi. K tomu jevu dochází především díky charakteru proudění směsi uvnitř trubky, protože při vyšších rychlostech dochází k větším turbulencím. Díky tomu je narušována difuzní vrstva a možnost setkání se molekuly vodní páry s blánou kondenzátního filmu značně narůstá.

Současně je také při větších rychlostech parovzdušné směsi na vstupu ve směsi více páry než při nižších rychlostech, takže pravděpodobnost srážky molekuly s filmem opět narůstá. Tento

nárůst lze nejvíce sledovat u průměru trubky 20 mm, kde byly rychlosti parovzdušné směsi na vstupu do sledovaného úseku až kolem $50 \text{ m} \cdot \text{s}^{-1}$.

Obr.6.15 Kondenzační součinitel přestupu tepla pro měřené stavy; protiproudé chlazení

Vnitřní průměr trubky, ve kterém probíhá kondenzace, také tento proces pro stejné počáteční podmínky ovlivňuje. Z obrázků vyplývá, že při obou režimech odvodu tepla dochází při stejných vstupních rychlostech směsi při zvětšování vnitřního průměru trubky k nárůstu kondenzačního součinitele přestupu tepla. Tento fakt opět vychází z charakteru proudění, kde při shodné rychlosti směsi na vstupu do testovaného úseku se zvětšování vnitřního průměru trubky současně zvyšuje Reynoldsovo číslo proudu.

Obr. 6.16 Celkový součinitel přestupu tepla uvnitř trubky pro měřené stavy; vlevo: souproudé chlazení; vpravo: protiproudé chlazení

Z porovnání souproudého a protiproudého režimu chlazení jednoznačně vyplývá, že kondenzační součinitel přestupu tepla dosahuje u protiproudého režimu vyšších hodnot. Tento jev se stává výraznější při snižování koncentrace nekondenzujícího plynu ve směsi. Největší rozdíl mezi souproudým a protiproudým chlazením můžeme najít v případě trubky o vnitřním průměru 20 mm při rychlosti směsi na vstupu do testovaného úseku 50 m·s⁻¹ a koncentraci vzduchu 0 $\%_{obj.}$ kde bylo dosaženo při souproudém režimu hodnoty kondenzačního součinitele 42 513 W·m⁻²·K⁻¹, což je 71 % nárůst intenzity přestupu kondenzačního tepla. Vliv průměru trubky kondenzační trubky hraje důležitou roli především v nižších koncentracích NCG. Procentuální nárůst celkového součinitele přestupu tepla uvnitř trubky pro tento případ je ale pouze 5 %, protože celkový přestup tepla výrazně ovlivňuje také odpor kondenzátu.

Na obrázku 6.16 jsou srovnání hodnoty celkového součinitele přestupu tepla uvnitř trubky pro souproudé a protiproudé chlazení. OHTC kopíruje vývojem CHTC, ale jeho nejvyšší absolutní hodnoty nepřesahují 6000 W·m⁻²·K⁻¹. I zde se potvrzuje, že pro nízké koncentrace NCG hodnota OHTC roste při stejných vstupních parametrech parovzdušné směsi s rostoucím vnitřním průměrem trubky. Při vyšších koncentracích NCG (přibližně nad 30 ‰_{obj}.) se pak vliv průměru trubky stává téměř zanedbatelným.

6.1.1 Bezrozměrné porovnání

Pro praktické výpočty je důležité znát především celkový součinitel přestupu tepla uvnitř trubky. Výše uvedené výsledky ukazovaly jeho hodnotu jako funkci rychlosti směsi, průměru trubky a vstupní koncentrace NCG ve směsi. Pro lepší představu o trendech v přestupu tepla uvnitř trubky je ale dobré najít způsob vyjádření, kde splyne rozdíl mezi jednotlivými průměry a rychlostmi. Pro tento případ lze využít teorie podobnosti, kdy je nutné vybrat vhodné podobnostní číslo, popisující uvedený děj.

Kriticky byla vybrána pro porovnání dvě bezrozměrná čísla. První, které zahrnuje změnu vstupní rychlosti směsi a průměru se nazývá Reynoldsovo číslo. Druhé číslo je číslo Nusseltovo, které je obecně používáno jako kritérium pro určení součinitele přestupu tepla. Nusseltovo číslo obecně zahrnuje součinitel přestupu tepla, součinitel tepelné vodivosti a charakteristický rozměr. Aby bylo možné prezentovat výsledky adekvátním způsobem, je nejdříve nutné si tyto fyzikální vlastnosti směsi, které budou do Nusseltova čísla dosazeny, definovat. Po diskusi bylo rozhodnuto definovat Nusseltovo číslo pro celkový přestup tepla uvnitř trubky jako

$$Nu_{OHCT} = \frac{\alpha_m \cdot L}{\lambda_f}.$$
(92)

Kde α_m je celkový součinitel přestupu tepla uvnitř trubky, L je kondenzační délka (pro měřené případy se jedná o 1 m) a λ_f je součinitel tepelné vodivosti kondenzátního filmu pro střední teplotu filmu. Na obrázku 6.17 jsou zobrazeny hodnoty Nusseltova čísla pro přestup tepla uvnitř trubky v závislosti na Reynoldsově čísle směsi na vstupu pro souproudou, respektive protiproudou konfiguraci chlazení. Nusseltova čísla v sobě zahrnují veškeré měřené stavy, to znamená, všechny vstupní rychlosti parovzdušné směsi a všechny měřené průměry trubek. Rozdělení jednotlivých stavů proběhlo pouze na základě intervalů vstupních objemových koncentrací NCG na vstupu (jednotlivé barvy). Body jsou proloženy jednoduchou lineární regresní úsečkou, pro lepší představení trendů. Pro obě konfigurace chlazení jsou patrné shodné trendy. Nusseltovo číslo zvětšuje při snižování vstupní koncentrace NCG na vstupu. Z konzistentnosti těchto průběhu vypývá, že teorii podobnosti lze aplikovat i na případ kondenzace vodní páry ve směsi se vzduchem a matematický model použitý při vyhodnocení dat pravděpodobně neobsahuje zásadní chybu.

Obr. 6.17 Nusseltovo číslo pro přestup tepla uvnitř trubky v závislosti na vstupním Reynoldsově čísle směsi; Lineární regrese; Souproudá a protiproudá konfigurace chlazení.

MODIFIKACE ANALYTICKÝCH VZTAHŮ 7

Cílem této kapitoly je modifikování analytických vztahů pro zpřesnění tepelného výpočtu kondenzace vodní páry v přítomnosti NCG ve vertikální trubce. Hned v úvodu této kapitoly je třeba zmínit, že platnost níže prezentovaných vztahů vycházejících z regresních analýz je omezená pouze na intervaly měřených hodnot. Tabulka 17 shrnuje obecné podmínky platnosti korigovaných vztahů vyplývající z nastavení měření.

Tab.17 Poaminky plainosii korigovanych vzi	lanu.
PODMÍNKA	JEDNOTKA
0,016 $m < d_{inner} < 0,026 m$	m
$8,9 < u_{m,in} < 50$	$m \cdot s^{-1}$
$1,7 < y_{g,in} < 53$	% _{obj.}
$50 < t_{m,in} < 105$	°C
$0.8 < Pr_{m,in} < 1.15$	-

Tab 17 Podmínky platnosti korigovaných vztahů

7.1. Porovnání publikovaných vztahů

Cílem této podkapitoly je porovnání publikovaných vztahů, které byly představeny v teoretickém úvodu práce a případný tepelný výpočet modifikovat pro zlepšení přesnosti výpočtu. Podle publikovaných analytických vztahů závisí kondenzační součinitel přestupu tepla a tím i celková intenzita kondenzace především na součiniteli tepelné vodivosti kondenzace, Sherwoodově čísle a difuzním koeficientu, který je součástí výpočtu součinitele tepelné vodivosti kondenzace podle uvedeného vztahu.

$$\alpha_{cond} = \frac{Sh \cdot k_{cond}}{d_{inner}}.$$
(93)

		k _{cc}	ond		Sh		I)
VARIANTA	OZNAČENÍ	Eq.24	Eq.26	Eq.29	Eq.30	Eq.31	Eq.27	Eq.28
1	$\alpha_{cond,m1}$	Х		Х			Х	
2	$\alpha_{cond,m2}$		Х	х			х	
3	$\alpha_{cond,m3}$	Х			Х		х	
4	$\alpha_{cond,m4}$		Х		Х		х	
5	$\alpha_{cond,m5}$	х		х				х
6	$\alpha_{cond,m6}$		Х	х				Х
7	$\alpha_{cond,m7}$	х			Х			х
8	$\alpha_{cond,m8}$		Х		Х			Х
9	$\alpha_{cond,m9}$	х				х	х	
10	$\alpha_{cond,m10}$		Х			х	х	
11	$\alpha_{cond,m11}$	х				Х		Х
12	$\alpha_{cond,m12}$		Х			Х		Х

Tab.18 Kombinace vztahů pro výpočet kondenzačního součinitele přestupu tepla.

V rámci popsané teorie bylo prezentováno více forem těchto fyzikálních parametrů směsi podle přístupu jednotlivých autorů. V této podkapitole jsou stanoveny kondenzační součinitele přestupu tepla určené kombinací dostupných rovnic dílčích proměnných s hodnotami stanovenými na základě experimentů, přičemž vstupní stavové veličiny do analytických vztahů odpovídají porovnávaným podmínkám experimentů.

V tabulce 18 jsou konkrétní kombinace rovnic pro výpočet difuzního koeficientu, Schmidtova čísla a teplotní vodivosti kondenzace. V souladu s podmínkami jednotlivých autorů je nakombinováno dvanáct verzí kondenzačního součinitele přestupu tepla označených jako $\alpha_{cond, m1}$ až $\alpha_{cond, m12}$. Pro všechny naměřené stavy bylo vždy vypočítáno všech dvanáct analytických kondenzačních součinitelů přestupu a ty byly porovnány s naměřeným CHTC. Na obrázku 7.1 jsou vyneseny průběhy variant kondenzačních součinitelů přestupu tepla jako reprezentativní případ pro trubku o vnitřním průměru 20 mm a rychlosti směsi 17,7 m·s⁻¹ při protiproudém chlazení. Všechny varianty kondenzačních součinitelů relativně kopírují naměřený trend. Z obrázku je patrný pro všechny varianty prudký nárůst hodnot v oblasti koncentrace pod 10 ‰_{obj.} NCG ve směsi. V oblasti koncentrace nad 10 ‰_{obj.} NCG ve směsi dochází pro všechny případy k pomalé konvergenci k naměřenému součiniteli.

Obr.7.1 Porovnání experimentálně stanoveného kondenzačního součinitele přestupu tepla s 12 variantami jeho analytického výpočtu; vnitřním průměr 20 mm; vstupní rychlosti směsi 17,7 m·s⁻¹; protiproudé chlazení.

V tabulce 19 jsou porovnány jednotlivé varianty podle způsobu uspořádání odvodu tepla. Pro každou variantu CHTC se jedná vždy o celkový soubor měřených stavů (tzn. společně všechny průměry potrubí, vstupní rychlosti směsi i objemové koncentrace nekondenzujících plynů), kde *R*² je koeficient determinace, *min* a *max* je nejmenší a největší procentuální odchylka a *ave* je průměrná procentuální odchylka střední hodnoty analytického CHTC od hodnoty naměřeného CHTC. V příloze 3 a 4 jsou zaznamenány hodnoty a procentuální odchylky všech dvanácti variant CHTC a OHTC od naměřených hodnot CHTC a OHTC pro každý změřený stav.

Modifikace analytických vztahů proběhne ve dvou krocích. Prvním krokem je vybrání nejlepší kombinace dílčích analytických vztahů podle tabulky 17 a 18. Druhým krokem je potom korekce dané kombinace pomocí regresní analýzy. Pro výběr nejlepší kombinace je nutné sledovat jak koeficient determinace, který určuje kvalitu regresního modelu a platí, že čím více se tento koeficient blíží k hodnotě 1, tím je model přesnější, ale také průměrnou odchylku od naměřeného CHTC. V neposlední řadě musí tato kombinace splňovat určitou přesnost jak pro souproudé chlazení, tak i pro chlazení protiproudé.

	SC	DUPROUI	DE USPORADA	NI	PRC	DTIPROUI	<i>DE USPORADA</i>	NI
VADIANTA	\mathbb{R}^2	min	ave \pm std	max	\mathbb{R}^2	min	ave \pm std	max
VARIANTA	[-]	[%]	$[\%\pm\%_p]$	[%]	[-]	[%]	$[\%\pm\%_p]$	[%]
1	0,950	-38,6	$0,1 \pm 15,3$	32,5	0,858	-47,0	$-0,6 \pm 18,5$	65,3
2	0,915	-101,2	$-17,7 \pm 27,3$	35,9	0,776	-81,2	$8,9\pm29,3$	79,6
3	0,965	-41,8	$-7,2 \pm 13,8$	36,5	0,895	-59,4	$-8,1 \pm 16,5$	52,2
4	0,947	-99,2	$-25,3 \pm 21,8$	17,9	0,848	-65,4	$3,4 \pm 25$	71,9
5	0,951	-99,8	$-45,5 \pm 21,8$	1,2	0,857	-111,8	$-46,3 \pm 28$	67,0
6	0,917	-189,9	$-71,5 \pm 39$	6,2	0,781	-161,1	$-31,9 \pm 42,4$	69,9
7	0,965	-106,0	$\textbf{-55,5} \pm 20,5$	9,2	0,893	-133,8	$\textbf{-56,6} \pm \textbf{26,6}$	70,4
8	0,947	-189,4	$-81,7 \pm 31,7$	-16,9	0,847	-139,8	$\textbf{-39,}4\pm\textbf{36,}9$	61,9
9	0,966	8,9	$30{,}5\pm8{,}7$	58,2	0,895	-2,8	$29{,}9\pm10{,}6$	69,3
10	0,948	-28,0	$18,7\pm14,1$	47,0	0,846	-7,7	$37,4 \pm 16,3$	82,0
11	0,966	-20,6	$8,2 \pm 11,7$	45,3	0,893	-37,1	$7,5 \pm 15,2$	74,1
12	0,948	-69,4	$-7,4 \pm 18,6$	29,6	0,847	-42,4	$17,6 \pm 21,7$	75,9

 Tab.19 Porovnání variant analytického výpočtu pro souproudé a protiproudé chlazení.

 SOUPROUDÉ USPOŘÁDÁNÍ

Po uvážení statistických vlastností jednotlivých variant byly vybrány pro následnou korekci kombinační varianty 3 a 11, protože při souproudém uspořádání dosahuje odchýlení průměrnou výši -7,2 respektive 8,2 % a tyto průměrné hodnoty se pohybují ve svém pásmu směrodatné odchylky \pm 13,8 %_p respektive \pm 11,7 %_p. Při protiproudém uspořádání jsou průměrné odchylky -8,1 % respektive 7,5 %, které se pohybují v pásmu 16,5 %_p respektive \pm 15,2 %_p. Obě varianty navíc dosahují vysoké hodnoty koeficientu determinace.

7.2. Regresní analýza analytických vztahů

V rámci regresní analýzy jsou korigovány pouze hodnoty stanovené analytickým postupem varianty 3 a 11. S ohledem na rozdílnost trendů byly nové regresní funkce rozděleny pro souproudé a protiproudé chlazení zvlášť.

7.2.1. Varianta 1

První testovanou variantou byla jednoduchá mocninná funkční závislost kondenzačního součinitele přestupu tepla na kombinaci 3 a 11 daná rovnicí,

$$\alpha_{cond,reg} = a \cdot \alpha^b_{cond} \ . \tag{94}$$

Hodnoty koeficientů *a* a *b* byly hledány pomocí metody nejmenších čtverců v programu Microsoft Excel. Tabulka 20 shrnuje statistické ukazatele shodné s tabulkou 19 pro jednotlivé kombinace koeficientů pro souproudé a protiproudé proudění.

100.20 F 0r0Vnd	ni variani anaiy	искено	vyросни	pro soup	rouae a	protiprotude	chiazeni.
	KOMBINACE	а	b	\mathbb{R}^2	MIN	AVE	MAX
		[-]	[-]	[-]	[%]	$[\%\pm\%_p]$	[%]
SOUPROUD	3	0,654	1,05	0,950	-28,2	$3,4 \pm 15,1$	37,5
	11	1,996	0,932	0,966	-32,5	$2,8 \pm 12,7$	40,0
DDOTIDDOUD	3	0,173	1,198	0,909	-38,2	$1,8 \pm 18,8$	76,7
PROTIPROUD	11	1,450	0,959	0,939	-37,5	$9,1 \pm 15,1$	51,1

Tab.20 Porovnání variant analytického výpočtu pro souproudé a protiproudé chlazení.

Z tabulky je patrné, že protiproudé proudění dosahuje nižších hodnot koeficientu determinace, a tím i horší kvality regrese. To je dané především větším rozpětím hodnot CHTC pro protiproudé

chlazení, což je vidět především na minimální a maximální odchylce. V souhrnu vychází jako vhodnější, při tomto tvaru regresní funkce, použití varianty 11.

7.2.2. Varianta 2

V rámci druhé testované varianty byla snaha o zakomponování do předešlé regresní funkce určitých závislostí, které lépe popisují vstupní podmínky procesu kondenzace. Pro tento účel byla do rovnice přidána ještě vstupní koncentrace NCG v parovzdušné směsi, vstupní rychlost směsi a vnitřní průměr kondenzační trubky. Výsledný tvar rovnice byl po diskusi zvolen následovně,

$$\alpha_{cond,reg} = a \cdot \alpha^b_{cond} \cdot \left(1 - y_{g,b,in}\right)^c.$$
(95)

Hodnoty koeficientů a, b a c byly opět hledány pomocí metody nejmenších čtverců. Tabulka 21 shrnuje statistické ukazatele shodné s tabulkou 18 pro jednotlivé kombinace koeficientů pro souproudé a protiproudé chlazení.

100012110	011101111111			<u></u>	<i>n p: 0 501</i>	prome	n p: onp: onne	0.1110120.111
	KOMB.	а	b	с	\mathbb{R}^2	MIN	AVE	MAX
		[-]	[-]	[-]	[-]	[%]	$[\% \pm \%_p]$	[%]
SOUD	3	0,725	0,979	-0,090	0,954	-31,4	$-3,2 \pm 13$	26,0
500P.	11	3,240	0,882	0,310	0,969	-28	$9,5\pm9,5$	29
DDOTID	3	0,109	0,689	-0,060	0,877	-84,3	$-8,2 \pm 42$	122,7
PROTIP.	11	0,659	1,056	0,175	0,941	-73,8	$13,1 \pm 12,7$	60,7

Tab.21 Porovnání variant analytického výpočtu pro souproudé a protiproudé chlazení.

V porovnání s první variantou regresní funkce dosahuje druhá varianta vyšších hodnot koeficientu determinace, s výjimkou protiproudého chlazení u varianty 3, kde tato regresní funkce dosahuje horších výsledků. Při porovnání kombinací mezi sebou dosahuje kombinace 11 vyšších hodnot koeficientu determinace a také menších minimálních a maximálních výchylek, kombinace 3 dosahuje menší průměrné odchylky od naměřené hodnoty CHTC. Po zvážení všech statistických ukazatelů byla vybrána pro konečnou modifikaci kombinace 11 podle druhé varianty regresní funkce. Kondenzační součinitel přestupu tepla se tedy potom dá určit pro souproudé a protiproudé chlazení následovně,

$$\alpha_{cond,m11,reg,s} = 3,24 \cdot \alpha_{cond,m11}^{0,882} \cdot \left(1 - y_{g,in}\right)^{0,310},\tag{96}$$

$$\alpha_{cond,m11,reg,p} = 0,659 \cdot \alpha_{cond,m11}^{1,056} \cdot \left(1 - y_{g,b,in}\right)^{0,175}.$$
(97)

Kde

$$\alpha_{cond,m11} = \frac{1,88 \cdot 10^{-5} \cdot Re_m^{0,8} \cdot Sc^{0,5} \cdot \Delta h_c^2 \cdot M_v \cdot M_g}{R^2 \cdot T_{m,in}^{1,5} \cdot d_{in}} \cdot \frac{-ln\left(\frac{y_{g,b,in}}{y_{g,f,in}}\right)}{ln\left(\frac{1-y_{g,b,in}}{1-y_{g,f,in}}\right)}.$$
(98)

V grafech na obrázku 7.2 jsou zobrazeny rozptyly hodnot závislosti CHTC získaného pomocí druhé varianty regresní analýzy kombinace 11 na CHTC určeného experimentálně. Z grafů je patrné, že pro souproudou konfiguraci chlazení se hodnoty $CHTC_{reg.}$ nachází ve velké většině ve vyznačeném výseku ± 25 %. Při protiproudém chlazení je rozptyl hodnot větší, a to především z důvodu vyšších hodnot CHTC, kdy z navržené funkce vychází nižší hodnoty CHTC, než bylo zjištěno experimentálním měřením.

Obr.7.2 Závislost CHTC z regresní analýzy na experimentálním CHTC podle kombinace 11 pro a) souproudé chlazení; b) protiproudé chlazení.

Na obrázku 7.3 jsou zobrazeny rozptyly hodnot závislosti OHTC získaného využitím korigovaného CHTC a OHCT určeného experimentálně. Odchylky hodnot OHTC získaných z korigovaných analytických vztahů od experimentálně naměřených hodnot jsou v porovnání s odchylkami CHTC výrazně nižší, a to pro obě konfigurace chlazení.

Obr.7.3 Závislost OHTC z regresní analýzy na experimentálním OHTC podle kombinace 11 pro a) souproudé chlazení; b) protiproudé chlazení.

Při využití korigovaného CHTC při výpočtu OHTC je výsledná odchylka od experimentálně stanoveného součinitele přestupu tepla v případě souproudého uspořádání v průměrné výši $-2,2 \pm 12,8$ % a v případě protiproudého uspořádání v průměrné výši $0,6 \pm 11,0$ %.

7.3 Regresní analýza s využitím teorie podobnosti

V rámci prezentovaných výsledků bylo dokázáno, že lze pro kondenzaci vodní páry v přítomnosti vzduchu jako nekondenzujícího plynu využít teorii podobnosti. Koneckonců k vyjádření součinitele přestupu tepla uvnitř trubky nebo k vyjádření Sherwoodova čísla pomocí jiných bezrozměrových

čísel přistoupila řada jiných autorů [71], [72], [73]. Cílem této podkapitoly je využít teorii podobnosti k sestavení regresní závislosti a aspoň rámcově určit, na kolika a na kterých podobnostních číslech je tento kondenzační děj závislý. Výsledkem této kapitoly je funkce Nusseltova čísla pro přestup tepla uvnitř trubky jako funkce souboru podobnostních čísel.

Aby bylo možné začít identifikovat podobnostní čísla, které můžou v tomto procesu hrát nějakou roli, je nutné nejdříve zjistit, kolik proměnných v tomto procesů figuruje. Pro tento případ byl vytvořen zjednodušující matematický popis principů odehrávajících se uvnitř vertikální trubky během procesu kondenzace se stejnými zjednodušujícími podmínkami, které byly představeny v kapitole 5.2. Cílem tohoto modelu tedy není přesně popsat kondenzační jev uvnitř vertikální trubky, ale pouze ilustrativně ukázat komplexnost celé problematiky a prezentovat na kterých fyzikálních vlastnostech tento proces stojí.

7.3.1 Zjednodušený matematický popis kondenzace vodní páry v přítomnosti vzduchu

Pro popis chování kondenzátního filmu lze použít Navier-Stokesovu rovnici a rovnici kontinuity [74]. Pro účel snazšího vhledu do komplexní problematiky a přehlednost zápisu je model sestaven pro kondenzaci na svislé nekonečně rozlehlé stěně (2D případ v kartézských souřadnicích), kde rychlost u má vertikální směr (osa x, která přibližně vyjadřuje směr osy trubky) a rychlost v má směr kolmý ke stěně (osa y, která přibližně vyjadřuje vzdálenost od stěny trubky radiálně k jejímu středu) [74].

$$\frac{\partial u_f}{\partial t} + u_f \frac{\partial u_f}{\partial x} + v_f \frac{\partial u_f}{\partial y} = v_f \left(\frac{\partial^2 u_f}{\partial x^2} + \frac{\partial^2 u_f}{\partial y^2} \right) - \frac{1}{\rho_f} \frac{\partial p_f}{\partial x} + g, \tag{99}$$

$$\frac{\partial v_f}{\partial t} + u_f \frac{\partial v_f}{\partial x} + v_f \frac{\partial v_f}{\partial y} = v_f \left(\frac{\partial^2 v_f}{\partial x^2} + \frac{\partial^2 v_f}{\partial y^2}\right) - \frac{1}{\rho_f} \frac{\partial p_f}{\partial x}.$$
(100)

$$\frac{\partial u_f}{\partial x} + \frac{\partial v_f}{\partial y} = 0. \tag{101}$$

Dále můžeme využít energetickou rovnici a stavovou rovnici, která bude mít pro film triviální tvar [75],

$$\frac{\partial T_f}{\partial t} + u_f \frac{\partial T_f}{\partial x} + v_f \frac{\partial T_f}{\partial y} = \frac{\lambda_f}{\rho_f c_{p,f}} \left(\frac{\partial^2 T_f}{\partial x^2} + \frac{\partial^2 T_f}{\partial y^2} \right), \tag{102}$$

$$\rho_f = konst. \tag{103}$$

Pro další fyzikální veličiny byly přijaty zjednodušující podmínky ve tvaru,

$$\eta_f = konst,\tag{104}$$

$$v_f = \frac{\mu_f}{\rho_f},\tag{105}$$

$$\lambda_f = konst,\tag{106}$$

$$c_{p,f} = konst. \tag{107}$$

V popisu filmu se nám objevuje 10 proměnných. Konkrétně jde o u_f , v_f , p_f , ρ_f , v_f , T_f , λ_f , cp_f , η_f a g. Ve filmu se předpokládá laminární proudění (v souladu s empirickým poznatkem o kritickém Re_x pro filmovou kondenzaci čisté látky). Transportní veličiny filmu jsou určeny výhradně moleklovou strukturou látky filmu. Popis parovzdušné směsi už je podstatně komplikovanější, Proudění je předpokládáno turbulentní (v souladu s empirickým poznatkem o kritickém Re pro proudění v trubce). Stavové veličiny p_m, T_m, ρ_m, y_v a kinematické veličiny u_m a v_m směsi proto mají význam "časově a hmotově středovaných" veličin turbulentního proudu. Transportní veličiny filmu jsou určeny součtem veličin určených molekulovou strukturou látky filmu a "turbulentní" složkou v duchu Bousinesq teorému. Navíc je nutno zahrnout vliv závislosti transportních veličin na teplotě a složení směsi, u difuzivity dokonce i na tlaku. Formálně, ale vyjadřují stejné principy, jako rovnice v případě kondenzátního filmu.

$$\frac{\partial \bar{u}_m}{\partial t} + \bar{\rho}_m \left(\bar{u}_m \frac{\partial \bar{u}_m}{\partial x} + \bar{v}_m \frac{\partial \bar{u}_m}{\partial y} \right) = \\
= \frac{\partial}{\partial x} \left[\left(\eta_m + \eta_{t,m} \right) \frac{\partial \bar{u}_m}{\partial x} \right] + \frac{\partial}{\partial y} \left[\left(\eta_m + \eta_{t,m} \right) \frac{\partial \bar{u}_m}{\partial y} \right] - \frac{\partial \bar{p}_m}{\partial x} + g,$$
(108)

$$\frac{\partial \bar{v}_m}{\partial t} + \bar{\rho}_m \left(\bar{u}_m \frac{\partial \bar{v}_m}{\partial x} + \bar{v}_m \frac{\partial \bar{v}_m}{\partial y} \right) = \\
= \frac{\partial}{\partial x} \left[\left(\eta_m + \eta_{t,m} \right) \frac{\partial v_m}{\partial x} \right] + \frac{\partial}{\partial y} \left[\left(\eta_m + \eta_{t,m} \right) \frac{\partial \bar{v}_m}{\partial y} \right] - \frac{\partial \bar{p}_m}{\partial y},$$
(109)

$$\frac{\partial(\bar{u}_m\bar{\rho}_m)}{\partial x} + \frac{\partial(\bar{v}_m\bar{\rho}_m)}{\partial y} = 0, \qquad (110)$$

Kde $\eta_m = f(\bar{y}_v, \bar{p}_m, \bar{T}_m)$ a $\bar{\rho}_m = f(\bar{y}_v, \bar{p}_m, \bar{T}_m)$.

Stavová rovnice,

$$\frac{\bar{p}_m}{\bar{\rho}_m} = r_m \bar{T}_m,\tag{111}$$

$$r_m = \frac{1}{\frac{\bar{y}_v}{r_v} + \frac{(1 - \bar{y}_v)}{r_g}}.$$
(112)

Rovnice energie,

$$\frac{\partial \bar{T}_m}{\partial t} + \left(\bar{u}_m \frac{\partial \bar{T}_m}{\partial x} + \bar{v}_m \frac{\partial \bar{T}_m}{\partial y} \right) = \\
= \frac{\partial}{\partial x} \left[\left(\frac{(\lambda_m + \lambda_{t,m})}{\bar{\rho}_m c_{p,m}} \right) \frac{\partial \bar{T}_m}{\partial x} \right] + \frac{\partial}{\partial y} \left[\left(\frac{(\lambda_m + \lambda_{t,m})}{\bar{\rho}_m c_{p,m}} \right) \frac{\partial \bar{T}_m}{\partial y} \right].$$
(113)

Rovnice koncentrace [75],

$$\frac{\partial \bar{y}_{v}}{\partial t} + \bar{\rho}_{m} \left(\bar{u}_{m} \frac{\partial \bar{y}_{v}}{\partial x} + \bar{v}_{m} \frac{\partial \bar{y}_{v}}{\partial y} \right) = \frac{\partial}{\partial x} \left[\left(D_{m} + D_{t,m} \right) \frac{\partial \bar{y}_{v}}{\partial x} \right] + \frac{\partial}{\partial y} \left[\left(D_{m} + D_{t,m} \right) \frac{\partial \bar{y}_{v}}{\partial y} \right].$$
(114)

Molekulární a turbulentní složky transportních vlastností směsi,

$$\eta_{t,m} = \frac{\bar{p}_m}{r_m \bar{T}_m} l_{Pr}^2 \frac{\partial \bar{u}_m}{\partial y},\tag{115}$$

Kde l_{Pr} je Prandtlova směšovací délka. Dále je uvažováno,

$$\eta_m = f(\eta_v, \eta_g, M_v, M_g, \bar{y}_v), \qquad (116)$$

 $\eta_v = konst,$

(117)
$$D_m = f(D_v, D_g, M_v, M_g, v_v, v_g), \qquad (12)$$

$$\eta_g = konst,$$
 (118) D_v

$$M_{\nu} = konst, \tag{119}$$

$$M_g = konst,$$
 (120)

$$w_{v} = \frac{M_{v}\bar{y}_{v}}{M_{v}\bar{y}_{v} + M_{g}(1 - \bar{y}_{v})},$$
(121)

$$\lambda_m = f(\lambda_v, \lambda_g, M_v, M_g, \bar{y}_v), \qquad (122)$$

$$\lambda_{\nu} = konst, \qquad (123)$$

$$A_g = konst,$$
 (124)

$$\lambda_{t,m} = \frac{cp_m}{Pr_t} \frac{\bar{p}_m}{r_m \bar{T}_m} l_{pr}^2 \frac{\partial \bar{u}_m}{\partial y}, \qquad (125)$$

$$Pr_t = konst,$$
 (126)

$$D_m = f(D_v, D_g, M_v, M_g, v_v, v_g),$$
(127)

$$D_v = konst, \tag{128}$$

$$D_g = konst, \tag{129}$$

$$D_{t,m} = \frac{l_{Pr}^2}{Sc_{t,m}} \frac{\partial \bar{u}_m}{\partial y},$$

$$Sc_{t,m} = konst.$$
(130)

$$cp_m = \bar{y}_v cp_v + \bar{y}_g cp_g \tag{132}$$

$$cp_v = konst,$$
 (133)

$$cp_g = konst.$$
 (134)

V parovzdušné směsi se nám objevuje 31 proměnných. Konkrétně jde o $\bar{u}_m, \bar{v}_m, \bar{\rho}_m, \eta_m$, $\eta_{t,m}, \quad \bar{p}_m, \bar{T}_m, r_m, r_v, r_g, \lambda_m, \lambda_{t,m}, \lambda_v, \lambda_g, D_m, D_{t,m}, D_v, D_g, w_v, w_g, M_v, M_g, \bar{y}_v, Pr_{t,m}, Sc_{t,m}, cp_m, cp_v, \bar{y}_v, \bar{y}_v$ cp_g , l_{Pr}^2 , η_v , η_a . V závěru matematického popisu je ještě nutné zjednodušeně popsat děje na rozhraní plynná směs-kapalina. Předpoklady na rozhraní vychází z Lewisova teorému. Symbol $|_i$ vyjadřuje, že vztah platí jen na rozhraní.

$$\eta_t|_i = 0, \tag{135}$$

$$\lambda_t|_i = 0, \tag{136}$$

$$D_t|_i = 0,$$
 (137)

$$\left(\eta_f \frac{\partial u_f}{\partial y}\right)\Big|_i = \left(\eta_m \frac{\partial \bar{u}_m}{\partial y}\right)\Big|_i,$$
(138)

$$p_f\big|_i = p_m\big|_i \tag{139}$$

$$\left[\sqrt{u_{f}^{2} + v_{f}^{2}}\rho_{f}\cos(\varphi)\right]\Big|_{i} = \left[\sqrt{u_{m}^{2} + v_{m}^{2}}\rho_{m}\right]\Big|_{i}$$
(140)

$$\left[\sqrt{u_f^2 + v_f^2}\rho_f \cos(\varphi)cp_f T_f\right]\Big|_i = \left[\sqrt{u_m^2 + v_m^2}\rho_m(cp_m T_m + l_{3.2})\right]\Big|_i$$
(141)

$$T_f\big|_i = T_{sat_H20}\left(\left.p_{m,H20}\right|_i\right) \tag{142}$$

V případě stacionárního stavu je φ úhel odklonu tečny proudnice směsi vůči tečně proudnice filmu na fázovém rozhraní. Rovnice (142) vyjadřuje, že teplota rozhraní (povrchu filmu) je rovna teplotě sytosti vodní složky na rozhraní při jejím parciálním tlaku. Podle výše představeného modelu v procesu figuruje minimálně 41 proměnných, které lze popsat přibližně 26 vztahy.

7.3.2 Výběr podobnostních čísel

Při známém počtu a tvaru proměnných vystupujících v procesu kondenzace vodní páry v NCG ve vertikální trubce zbývá identifikovat podobnostní čísla, která jsou pro tento jev charakteristická a zároveň na sobě nezávislá. Podle Buckinghamova π theoremu, lze proces kondenzace teoreticky popsat až 15 bezrozměrnými čísly. K tomuto počtu se dojde tak, že se počet vztahu popisující tento děj odečte od počtu proměnných vystupujících v tomto procesu. Cílem této práce ale je najít jednoduchou a zároveň dostatečně přesnou funkci Nusseltova čísla, přičemž popis tohoto děje 15 podobnostními čísly do této koncepce úplně nezapadá. Z tohoto důvodu se pro určení konkrétních podobnostních čísel vychází z energetické praxe, která určitou sadu podobnostních čísel již standardně využívá. Konkrétně budou představena podobnostní čísla extrahovaná z literatury [71], [75], [76], [77] a dalších výše prezentovaných.

Základním číslem používaným pro nucenou konvekci je Reyndoldsovo číslo, které dává do souvislosti setrvačné síly a viskozitu. Jeho hodnota pomáhá určit, zda je proudění tekutiny laminární, nebo turbulentní. Čím je Reynoldsovo číslo vyšší, tím nižší je vliv třecích sil částic tekutiny na celkový odpor. Reynoldsovo číslo je obecně definováno následovně,

$$Re = \frac{u \cdot L}{v}.$$
 (143)

Kde *L* je charakteristický rozměr. Pro případ proudění kapalného filmu na stěně platí pro Reynoldsovo číslo následující vztah,

$$Re_f = \frac{\dot{M}_f}{\pi \cdot d_{inner} \cdot \eta_f}.$$
(144)

Kde \dot{M}_f je hmotnostní průtok kapalného filmu. Prandtlovo číslo vyjadřuje podobnosti mezi rychlostním a teplotním polem, a determinuje, jestli ve fluidu převládá konvektivní nebo konduktivní přenos tepla. Změna Prandtlova čísla také může detekovat změnu složení fluida,

$$Pr = \frac{cp \cdot \eta}{\lambda}.$$
(145)

Dalším podobnostním číslem běžně používaným při tepelných výpočtech je číslo Grashofovo, které udává poměr vztlaku a viskózní síly působící na kapalinu a obsahuje rozdíl teplot mezi teplotou povrchu a teplotou v jádře směsi. V našem případě ale máme povrch složený z vodního filmu, a proto bude vhodnější rozdíl teplot zaměnit za rozdíl hustot. Touto úpravou vznikne číslo Archimedovo, které je používané v hydromechanice pro určování pohybu tekutin v důsledku rozdílů v hustotě,

$$Ar = \frac{\rho_m \cdot g \cdot (\rho_f - \rho_m) \cdot L^3}{\eta^2}.$$
(146)

Jacobovo číslo vyjadřuje poměr citelného a latentního tepla absorbovaného nebo uvolněného během změny fáze kapalné páry. Jacobovo číslo také určuje intenzitu chlazení neboli intenzitu kondenzačního procesu,

$$Ja = \frac{cp \cdot (T_{sat} - T_{wall})}{\Delta h_c}.$$
(147)

Schmidtovo číslo je bezrozměrné číslo definované jako poměr hybnosti difuzivity (kinematická viskozita) a difuzivity hmoty a používá se k charakterizaci proudění tekutin, ve kterých dochází současně k procesům konvekce hybnosti a difuze hmoty. Fyzikálně udává relativní tloušťku hydrodynamické vrstvy a mezní vrstvy pro přenos hmoty,

$$Sc = \frac{v}{D}.$$
 (148)

Protože je zde sledována kondenzace ve vertikální trubce, bude mít gravitační síla na tento proces také svůj vliv. Z tohoto důvodu je zde zařazeno i Froudeho číslo, které se používá při zkoumání pohybu prostředí s vyšší hustotou, když probíhající jevy ovlivňuje gravitace,

$$Fr = \frac{v^2}{g \cdot l}.$$
(149)

Z důvodu existence rozhraní mezi dvěma fluidy je jako poslední z podobnostních čísel uvažováno Weberovo číslo, které se používá při analýze proudění tekutin, kde existuje rozhraní mezi dvěma různými tekutinami, zejména pro vícefázové proudění se silně zakřivenými povrchy. Toto číslo si lze představit jako měřítko relativní důležitosti setrvačnosti tekutiny ve srovnání s jejím povrchovým napětím. Toto číslo je tedy užitečné při analýze toků tenkého filmu a tvorby kapiček a bublin,

$$We = \frac{\rho \cdot v^2 \cdot L}{\sigma}.$$
(150)

Kde σ je povrchové napětí kapalného filmu. A protože je zde prezentováno Sc a Pr číslo, lze tyto dvě čísla zahrnout pod Lewisovo podobnostní číslo následovně,

$$Le = \frac{Sc}{Pr}.$$
(151)

7.3.3 Bezrozměrná regresní analýza

Aby bylo možné provést regresní analýzu pomocí výše uvedených podobnostních čísel, je nutné si jednotlivá čísla řádně definovat pro aplikaci na případ kondenzace vodní páry v přítomnosti NCG ve vertikální trubce. Do každého čísla je možné vložit více variant fyzikálních veličin, kdy hlavní rozdíl je především v tom, pro jaké podmínky jsou tyto fyzikální veličiny počítané. Je totiž možné si vybrat ze vstupních, výstupních anebo středních hodnot. Dále je otázka, pro které fluidum tyto čísla počítat. Na výběr jsou podobnostní čísla pro parovzdušnou směs a podobnostní čísla pro film kondenzátu. Po těchto úvahách nevyhnutelně dojdeme k faktu, že z osmi univerzálních čísel bychom byli schopni pro proces kondenzace definovat až 48 jejich variant, což je pochopitelně nepřijatelné. Po pečlivé diskusi a sadě zkušebních testů byli použité podobnostní čísla definována následovně. Reynoldsovo číslo pro směs na vstupu,

$$Re_{m,in} = \frac{u_{m,in} \cdot d_{inner}}{v_{m,inner}}.$$
(152)

Protože na vstupu kondenzátní film defacto neexistuje, je definováno Reynoldsovo číslo pro kondenzátní film na výstupu,

$$Re_{f,out} = \frac{M_{f,out}}{\pi \cdot d_{inner} \cdot \eta_{f,out}}.$$
(153)

Prandtlovo číslo paroplynné směsi na vstupu a Prandtlovo číslo kondenzátního filmu na výstupu:

$$Pr_{m,in} = \frac{cp_{m,in} \cdot \eta_{m,in}}{\lambda_{m,in}},$$
(154)

$$Pr_{f,out} = \frac{cp_{f,out} \cdot \eta_{f,out}}{\lambda_{f,out}}.$$
(155)

Archimedovo číslo směsi na vstupu, kde L je délka kondenzačního úseku,

$$Ar_{in} = \frac{\rho_{m,in} \cdot g \cdot (\rho_{f,in} - \rho_{m,in}) \cdot L^3}{\eta_f^2}.$$
 (156)

Jacobovo číslo pro střední teploty parovzdušné směsi a filmu kondenzátu mezi vstupem a výstupem,

$$\overline{Ja}_{in} = \frac{cp_{m,in} \cdot (\overline{T}_m - \overline{T}_f)}{\Delta h_{c,in}}.$$
(157)

Schmidtovo číslo pro směs na vstupu,

$$Sc_{m,in} = \frac{\nu_{m,in}}{D_{m,in}}.$$
(158)

Froudeho číslo pro směs na vstupu,

$$Fr_{m,in} = \frac{v_{m,in}^2}{g \cdot d_{inner}}.$$
(159)

Weberovo číslo pro směs na vstupu,

$$We_{m,in} = \frac{\rho_{m,in} \cdot v_{m,in}^2 \cdot d_{inner}}{\sigma_{H20}}.$$
(160)

Lewisovo číslo směsi na vstupu je potom bráno jako poměr Schmidtova a Prandtlova čísla pro směs. V rámci bezrozměrné regresní analýzy byla hledána funkce pro Nusseltovo číslo pro přestup tepla uvnitř trubky ve tvaru,

$$Nu_{reg} = f(Re_{m,in}, Re_{f,out}, Pr_{f,out}, Ar_{in}, \overline{fa}_{in}, Fr_{m,in}, We_{m,in}, Le_{m,in}, y_{v,in}).$$
(161)

Kde Nusseltovo číslo získané pomocí regresní analýzy je porovnáváno s hodnotami Nusseltova čísla z měřených stavů získaného z (92). Tvar regresní funkce získal po mnoha zkušebních výpočtech následující tvar,

$$Nu_{reg} = Re^{a}_{m,in} \cdot Re^{b}_{f,out} \cdot Ar^{c}_{in} \cdot \overline{Ja}^{d}_{in} \cdot Fr^{f}_{m,in} \cdot We^{g}_{m,in} \cdot Le^{h}_{m,in} \cdot y^{i}_{v,in} \cdot e^{j}).$$
(162)

Pro nalezení vhodných exponentů byla opět využita metoda nejmenších čtverců. Vzhledem k opětovným rozdílům mezi souproudým a protiproudým chlazením, byly vytvořeny funkce pro každou konfiguraci zvlášť. Zároveň bylo využito znalosti naměřených hodnot jak kondenzačního součinitele přestupu tepla, tak celkového součinitele přestupu tepla uvnitř trubky a byly vytvořeny funkce pro oba součinitele přestupu tepla. Pro CHTC při souproudé chlazení má potom regresní funkce výsledný tvar,

$$Nu_{CHTC,sou} = \frac{\alpha_{CHTC,sou} \cdot L}{\lambda_f} = \frac{1,214 \cdot 10^{14} \cdot Re_{m,in}^{0,593} \cdot Re_{f,out}^{1,209} \cdot Le_{m,in}^{0,139}}{y_{v,in}^{0,16} \cdot Ar_{in}^{1,607} \cdot Ja_{in}^{1,193} \cdot We_{m,in}^{0,115}}.$$
(163)

Kde *L* je délka kondenzačního úseku. CHTC pro protiproudé chlazení, Při porovnání těchto funkcí lze vidět, že Froudeho číslo hraje při protiproudém chlazení roli, zatímco pro souproudé chlazení nikoliv. Také je zde rozdíl v Lewisově čísle, kdy pro souproudý případ je toto číslo v čitateli a pro protiproudý případ se nachází ve jmenovateli,

$$Nu_{CHTC,proti} = \frac{\alpha_{CHTC,proti} \cdot L}{\lambda_f} = \frac{68\ 186 \cdot Re_{m,in}^{1,079} \cdot Fr_{m,in}^{0,275} \cdot Re_{f,out}^{0,864}}{y_{v,in}^{0,309} \cdot Ar_{in}^{0,731} \cdot Ja_{in}^{0,253} \cdot We_{m,in}^{0,490} \cdot Le_{m,in}^{0,202}}.$$
(164)

Pro celkový přestup tepla uvnitř trubky neboli pro OHTC při souproudém chlazení platí tvar,

$$Nu_{OHTC,sou} = \frac{\alpha_{OHTC,sou} \cdot L}{\lambda_f} = \frac{1,632 \cdot Re_{m,in}^{2,579} \cdot Fr_{m,in}^{0,49} \cdot Re_{f,out}^{1,174}}{y_{v,in}^{0,026} \cdot Ar_{in}^{0,808} \cdot Ja_{in}^{0,394} \cdot We_{m,in}^{1,774}}.$$
(165)

A výsledná podoba regresní funkce pro OHTC při protiproudém chlazení,

$$Nu_{OHTC,proti} = \frac{\alpha_{CHTC,proti} \cdot L}{\lambda_f} = \frac{13\,413 \cdot Re_{m,in}^{1,87} \cdot Fr_{m,in}^{0,351} \cdot Re_{f,out}^{1,055}}{Ar_{in}^{0,934} \cdot Ja_{in}^{0,325} \cdot We_{m,in}^{1,196}}.$$
(166)

Největší rozdíl mezi funkcemi pro OHTC je, že Nusseltovo číslo pro OHTC při protiproudém chlazení není závislé na vstupní koncentraci NCG. Dále nám z těchto funkcí vypadla závislost na Lewisově čísle. Tabulka 22 shrnuje statistické údaje pro představené tvary regresní funkce pro kondenzační i celkový součinitel přestupu tepla při souproudém a protiproudém chlazení.

Tab.22 Statistické údaje k regresní funkcím pro souproudou a protiproudou konfiguraci chlazení.

	\mathbb{R}^2	MIN	AVE	MAX
	[-]	[%]	$[\%\pm\%_p]$	[%]
Nu _{CHCT,sou}	0,982	-29,258	$6{,}39\pm 6{,}41$	15,968
$Nu_{CHCT,proti}$	0,946	-59,421	9,31±9,31	30,077
Nu _{OHCT,sou}	0,990	-24,626	$3,\!89 \pm 3,\!89$	25,359
Nu _{OHCT,proti}	0,991	-16,919	$4,39 \pm 4,38$	22,190

Jak už bylo zmíněno, kvalitu regrese ukazuje koeficient determinace. Podle tabulky 22 dosahuje tento koeficient pro Nusseltovo číslo pro celkový přestup tepla uvnitř trubky hodnoty kolem 0,99 a to jak pro souproudé, tak pro protiproudé chlazení. Souproudá varianta Nusseltova čísla v porovnání s protiproudou variantou vykazuje menší střední odchylku, ale větší procentuální odchylky, a to jak pro kladnou, tak i zápornou odchylku od naměřené hodnoty.

Na obrázku 7.4 jsou zobrazeny rozptyly hodnot závislosti Nu _{CHTC} získaného z regresní analýzy a Nu _{CHTC} určeného experimentálně. Rozptylové křivky ukazují 20% hranici odchylek. Souproudé chlazení dosahuje v porovnání s protiproudým chlazením menších rozptylů hodnot, což značí i vyšší koeficient determinace. Protiproudé chlazení ale dosahuje obecně vyšších hodnot Nusseltova čísla. Na obrázku 7.5 jsou zobrazeny rozptyly hodnot závislosti Nu _{OHTC} získaného z regresní analýzy a Nu _{OHTC} určeného experimentálně. Na grafech je vidět velice dobrá shoda, čemuž odpovídá i koeficient determinace, který nabývá hodnot pro obě konfigurace chlazení kolem 0,99.

Obr.7.4 Závislost Nu _{CHTC} z regresní analýzy na experimentálním Nu _{CHTC} pro a) souproudé chlazení; b) protiproudé chlazení.

Obr.7.5 Závislost Nu _{OHTC} z regresní analýzy na experimentálním Nu _{OHTC} pro a) souproudé chlazení; b) protiproudé chlazení.

Na obrázku 7.6 jsou zobrazeny odchylky Nusseltova čísla pro celkový přestup uvnitř trubky získaného z regresní funkce od Nusseltova čísla zjištěného experimentálně. Odchylky jsou zobrazeny v závislosti na Reynoldsově čísle směsi na vstupu a na vstupní koncentraci NCG ve směsi. Jsou zde zobrazeny odchylky jak pro souproudé, tak pro protiproudé chlazení. Z grafů je patrné, že největší odchylek od změřených hodnot dosahuje regresní funkce především pro nízké hodnoty Reynoldsova čísla a vstupní koncentrace. Především potom pro vysoké hodnoty Reynoldsova čísla vykazuje regresní funkce relativně dobrou shodu s naměřenými hodnotami.

Obr.7.6 Odchylky hodnot Nu _{OHTC reg.} od Nu _{OHTC exp} pro souproudé chlazení v závislosti na a) vstupním Reynoldsově čísle směsi a b) vstupní koncentraci NCG ve směsi a pro protiproudé chlazení v závislosti na c) vstupním Reynoldsově čísle směsi a d) vstupní koncentraci NCG ve směsi.

Na závěr je nutné dodat, že výše uvedené korigované vztahy pro výpočet Nusseltova čísla mají obecnou platnost pouze pro měřené rozsahy podobnostních čísel v těchto vztazích použitých. Tabulka 23 shrnuje rozsahy těchto čísel ve kterých měření probíhala. Mimo tyto rozsahy není správnost korigovaných vztahů ověřena.

PODM	ÍNKA
$5 810 < \text{Re}_{m,\text{inner}} < 28 900$	$0,015 < Ja_{in} < 0,04$
$15 < \text{Re}_{f,out} < 160$	$0,7 < Sc_{m,in} < 0,86$
$2,7 < \Pr_{f,out} < 4,3$	$170 < Fr_{m,in} < 14500$
$0.8 < \Pr_{m,in} < 1.2$	$12 < We_{m,in} < 370$
$13,4 \cdot 10^8 < Ar_{in} < 31 \cdot 10^8$	

Tab.23 Podmínky platnosti korigovaných vztahů Nusseltova čísla.

ZÁVĚR

Problematika kondenzace vodní páry je lidstvu známa už po několik staletí a stala se nedílnou součástí energetických procesů. Při výpočtech přestupu tepla v kondenzátorech se dříve uvažovalo pouze o kondenzaci čisté vodní páry, ale v roce 1929 Donald Othmer zjistil, že i malé množství nekondenzujících plynů výrazně ovlivňuje kondenzační součinitel přestupu tepla. V dnešní době udržitelného rozvoje a přísných emisních limitů nachází kondenzace páry v nekondenzujících plynech nové uplatnění v kondenzátorech spalin nebo vlhkého vzduchu. V průběhu času, kdy byla kondenzace páry v přítomnosti nekondenzujících plynů zkoumána, vzniklo několik teorií, jak k této problematice přistupovat. Některé metody jsou velmi závislé na korelačních koeficientech z předešlých experimentů, čímž jsou méně univerzální. Nejdetailnějším analytickým rozborem problematiky kondenzace vodní páry v přítomnosti nekondenzujících plynů je pravděpodobně metoda difuzní vrstvy, která popisuje mechanismus kondenzace přes vnitřní fyzikální a chemické pochody, jejíž hlavní mechanismus přestupu tepla a hmoty vychází z rozdílu koncentrací zúčastněných látek. Tím je tato metoda velmi variabilní, ale výpočetně velmi náročná. Samotný proces kondenzace je ovlivňován mnoha faktory, čímž některé jsou naprosto zásadní pro výsledný přestup tepla a látky. Kondenzace je ovlivněna především složením směsi, jejím hmotnostním tokem a v neposlední řadě také geometrií kondenzačních trubek. Výzkumy v posledních patnácti letech ukazují také na závislost přestupu tepla na tlaku.

Tato disertační práce se věnovala stanovení kondenzačního součinitele přestupu tepla a celkového součinitele přestupu tepla uvnitř vertikální trubky při kondenzaci vodní páry ve směsi se vzduchem, jakožto nekondenzujícím plynem. Pro vyhodnocení naměřených dat byl použit matematický model, ve kterém byly kvůli komplexní složitosti zavedeny následující zjednodušení:

- a) Parovzdušná směs je idealizovaná dvojsložkovou směsí.
- b) Je předpokládána dokonalá rozpustnost obou složek v plynné fázi.
- c) Vzduch neinteraguje s kondenzátním filmem (nerozpouští se v něm)
- d) Teplotní skok na rozhraní plyn-kapalina je nekonečně malý.
- e) Tvorba mlhy v mezní vrstvě je zanedbána.
- f) Vodní pára a kondenzátní film proudí vždy shodně seshora dolů.

Bylo prokázáno, že na přestup tepla má velký vliv jak koncentrace nekondenzujícího plynu, tak i rychlost parovzdušné směsi. Se zvětšující se rychlostí směsi na vstupu do měřeného úseku roste kondenzační součinitel přestupu tepla, kdy například při zvýšení rychlosti z 8,9 m·s⁻¹ na 31,1 m·s⁻¹ u kondenzační trubky o vnitřním průměru 26 mm dojde ke zvýšení kondenzačního součinitele přestupu tepla o 159,9 %. Naopak s rostoucí koncentrací nekondenzujícího plynu se hodnota kondenzačního součinitele rapidně snižuje. Největší vliv koncentrace je v intervalu mezi 0 ‰_{obj}. až 10 ‰_{obj}. nekondenzujícího plynu, kdy hodnota kondenzačního součinitele klesá až o 70 %. Celkový součinitel přestupu tepla uvnitř trubky kopíruje svým průběhem kondenzační součinitel přestupu tepla. Jeho kopírování průběhu probíhá ale s daleko menší citlivostí, díky filmu kondenzátu proudícího na stěně trubky, který vliv nekondenzujících plynů a rychlosti směsi na celkový součinitel přestupu tepla značně utlumuje. Vliv průměru trubky na kondenzační součinitel přestupu tepla není zásadně významný. Kondenzační trubka o vnitřním průměru 26 mm dosahoval při stejné vstupní rychlosti parovzdušné směsi lehce vyšších hodnot přestupu tepla než trubka s vnitřním průměrem 16 mm. Tento jev se zvýrazňoval se zmenšující se koncentraci nekondenzujících plynů ve vodní páře.

Obecně lze poznatky z experimentů shrnout do následujících bodů:

- a) Se zvětšující se rychlostí směsi na vstupu do měřeného úseku roste kondenzační součinitel přestupu tepla.
- b) S rostoucí koncentrací nekondenzujících plynů kondenzační součinitel přestupu tepla významně klesá. Největší vliv mají malé koncentrace.

- c) Celkový součinitel přestupu tepla uvnitř trubky roste se vstupní rychlostí parovzdušné směsi a klesá s koncentrací nekondenzujících plynů a kopíruje tak průběh kondenzačního součinitele přestupu tepla.
- d) Z porovnání souproudého a protiproudého režimu chlazení jednoznačně vyplývá, že kondenzační součinitel přestupu tepla dosahuje u protiproudého režimu vyšších hodnot.
- e) Pro nízké koncentrace NCG hodnota celkového součinitele přestupu tepla uvnitř trubky roste při stejných vstupních parametrech parovzdušné směsi s rostoucím vnitřním průměrem trubky. Při vyšších koncentracích NCG se pak vliv průměru trubky stává téměř zanedbatelným.

Závěr práce je obecně věnován regresní analýze a je rozdělen do dvou hlavních částí. První část se zabývala vytvořením kombinací dostupných analytických vztahů, podle kterých bylo vytvořeno dvanáct modelových kondenzačních součinitelů přestupu tepla. Tyto součinitele byli následně porovnány s naměřenými hodnotami. Na základě přímého porovnání byla vybrána nejlépe odpovídající kombinace, která byla dále korigována na základě lineární regrese. Při použití korigovaných vztahů pro souproudý režim poté dochází ke zpřesnění vypočítané hodnoty kondenzačního součinitele vzhledem k naměřené hodnotě z původního průměrného rozdílu $8,2 \pm 11,7$ % na $-2,2 \pm 12,8$)% a při protiproudém režimu dojde ke korekci z hodnoty $7,5 \pm 15,2$ % na $0,6 \pm 11,0$ %. Největším odchylkám teoretických hodnot od naměřených dochází u malých koncentrací vzduchu v parovzdušné směsi.

Druhá část závěru je věnována regresní analýze s využitím teorie podobnosti. V této části byl představen zjednodušený matematický popis kondenzačního děje, na jehož základě byly identifikovány fyzikální proměnné, na kterých je tento kondenzační děj závislý. Na základě znalosti těchto proměnných a v souladu s výpočtovou praxí byly zvoleny podobnostní čísla, ze kterých byla sestavena regresní funkce korigující Nusseltovo číslo. Vzhledem k odlišnostem mezi souproudým a protiproudým chlazením byl vytvořený pro každou konfiguraci chlazení vlastní tvar funkce. Koeficient determinace regresní funkce pro korekci Nusseltova čísla pro celkový přestup tepla uvnitř trubky dosahuje pro obě konfigurace chlazení hodnot kolem 0,99.

Výstupem práce jsou tedy korigované analytické vztahy pro výpočet kondenzačního součinitele přestupu tepla a Nusseltova čísla pro celkový přestup tepla uvnitř trubky. Předpokládané využití získaných analytických vztahů bude v oblasti efektivnějších návrhů kondenzátoru vlhkého vzduchu. Úplným závěrem je vhodné dodat, že problematika kondenzace vodní páry v přítomnosti nekondenzujících plynů je opravdu velmi rozsáhlá. V budoucích experimentech je proto vhodné se zaměřit na další vlivy, jako je zkoumání vlivu Prandtlova (jiné složení směsi) nebo Jakobova čísla (intenzita chlazení), dále změnu vstupního tlaku směsi nebo změnu kondenzační délky. Každý další vliv přidá do vyhodnocovacího modelu další rozměr, a proto bude nutné přijít i s jinou metodikou vyhodnocování.

POUŽITÁ LITERATURA

- WANG, Shuai. Experimental investigation of condensation heat transfer characteristics and corrosion resistance on coated tube surfaces. Thermal Science. 2021, 25(2), 941-953 ISSN 0354-9836. Dostupné z: doi:10.2298/TSCI200525255W
- [2] COLLIER, John. Convective Boiling and Condensation. 3 ed. Oxford: Clarendon Press, 1996. ISBN 9780198562962.
- [3] OTHMER, D. F. The Condensation of Steam. Industrial & Engineering Chemistry. 1929, 21(6), 576-583 [cit. 2019-01-03]. ISSN 0019-7866. Dostupné z: doi:10.1021/ie50234a018
- [4] MILLER, Clarence a P. NEOGI. Interfacial phenomena: equilibrium and dynamic effects. 2nd ed. Boca Raton: CRC Press/Taylor & Francis, 2008. ISBN 9781420044423.
- [5] KNACKE, O. a I.N. STRANSKI. The mechanism of evaporation. Progress in Metal Physics. 1956, 6(1), 181-235. ISSN 0502-8205. Dostupné z: doi:10.1016/0502-8205(56)90007-7
- [6] CAMMENGA, H. Evaporation mechanisms of liquids, Current Topics in Materials Science. 1980, (4), 335–446.
- TSURUTA, Takaharu a Gyoko NAGAYAMA. A MOLECULAR DYNAMICS APPROACH TO INTERPHASE MASS TRANSFER BETWEEN LIQUID AND VAPOR. Microscale Thermophysical Engineering. 2003, 6(4), 267-285. ISSN 1089-3954. Dostupné z: doi:10.1080/10893950290098322
- [8] TOMAN, Filip. Výpočet tepelné bilance využití latentního tepla spalin pomocí kondenzátoru. Brno, 2018. Diplomová práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství. Vedoucí práce Doc. Ing. Jiří Pospíšil, Ph.D.
- [9] LEE, Kwon-Yeong a Moo KIM. Experimental and empirical study of steam condensation heat transfer with a noncondensable gas in a small-diameter vertical tube. Nuclear Engineering and Design. 2008, 238(1), 207-216. ISSN 00295493. Dostupné z: doi:10.1016/j.nucengdes.2007.07.001
- [10] BLANGETTI, F. a M.K. NAUSHAHI. Influence of mass transfer on the momentum transfer in condensation and evaporation phenomena. International Journal of Heat and Mass Transfer . 1980, 23(12), 1694-1695 [cit. 2019-02-11]. ISSN 0017-9310. Dostupné z: doi:10.1016/0017-9310(80)90231-8
- [11] BLANGETTI, F. a R. SCHLUNDER. Condensation in vertical tubes—experimental results and moleling. Chem. Eng. Fundam. 1982, 1(2), 20-63. ISSN 0723-0966.
- [12] BERGELIN, O.P, P.K CARPENTER a C. GAZLEY. Co-Current Gas-Liquid Flow. Flow in vertical tubes. Meeting at Berkeley. ASME Heat transfer and Fluid mechanics. California (USA), 1949, 2(1), 19-28.
- [13] MUñOZ-COBO, J.L., L. HERRANZ, J. SANCHO, I. TKACHENKO a G. VERDÚ. Turbulent vapor condensation with noncondensable gases in vertical tubes. International Journal of Heat and Mass Transfer. 1996, 39(15), 3249-3260. ISSN 0017-9310. Dostupné z: doi:10.1016/0017-9310(96)00012-9
- [14] MAHESHWARI, N.K, D SAHA, R.K SINHA a M ARITOMI. Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number. Nuclear Engineering and Design. 2004, 227(2), 219-238. ISSN 0029-5493. Dostupné z: doi:10.1016/j.nucengdes.2003.10.003
- [15] WANG, Chad-Yang a Chuan-Jing TU. Effects of non-condensable gas on laminar film condensation in a vertical tube. International Journal of Heat and Mass Transfer. 1988, 31(11), 2339-2345. ISSN 0017-9310. Dostupné z: doi:10.1016/0017-9310(88)90165-2
- [16] HAVLÍK, Jan, Tomáš DLOUHÝ a P. DANČOVÁ. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser. EPJ Web of Conferences. 2018, 180(1), 1-7. ISSN 2100-014X. Dostupné z: doi:10.1051/epjconf/201818002033

- [17] KREMPASKÝ, Jakub, Jan HAVLÍK a Tomáš DLOUHÝ. Theoretical and experimental study of water vapour condensation with high content of non-condensable gas in a vertical tube. Acta Polytechnica. 2022, 62(3), 352-360. ISSN 1805-2363. Dostupné z: doi:10.14311/AP.2022.62.0352
- [18] LEE, Kwon-Yeong a Moo KIM. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube. International Journal of Heat and Mass Transfer. 2008, 51(21-22), 5333-5343. ISSN 0017-9310. Dostupné z: doi:10.1016/j.ijheatmasstransfer.2008.03.017
- [19] NUSSELT, Wilhem. Die Oberflächenkondensation des Wasserdampfes. Z. Ver. Dtsch. Ing. 1916, 60(27), 541-546.
- [20] PETERSON, P., V. SCHROCK a T. KAGEYAMA. Diffusion Layer Theory for Turbulent Vapor Condensation With Noncondensable Gases. Journal of Heat Transfer. 1993, 115(4), 998-1003. ISSN 0022-1481. Dostupné z: doi:10.1115/1.2911397
- [21] PARK, Hyun Sik a Hee Cheon NO. A Condensation Experiment in the Presence of Noncondensables in a Vertical Tube of a Passive Containment Cooling System and Its Assessment with RELAP5/MOD3.2. Nuclear Technology. 2017, 127(2), 160-169. ISSN 0029-5450. Dostupné z: doi:10.13182/NT99-A2992
- [22] KAGEYAMA, T., P.F. PETERSON a V.E. SCHROCK. Diffusion layer modeling for condensation in vertical tubes with noncondensable gases. Nuclear Engineering and Design. 1993, 141(1-2), 289-3029-01-11]. ISSN 00295493. Dostupné z: doi:10.1016/0029-5493(93)90107-K
- [23] PAN, Yang. Condensation characteristics inside a vertical tube considering the presence of mass transfer, vapor velocity and interfacial shear. International Journal of Heat and Mass Transfer. 2001, 44(23), 4475-4482. ISSN 0017-9310. Dostupné z: doi:10.1016/S0017-9310(01)00087-4
- [24] LEE, Hyunseung a Gihun SON. Numerical and analytical study of laminar film condensation in upward and downward vapor flows. Numerical Heat Transfer, Part A: Applications. 2018, 74(4), 1139-1153. ISSN 1040-7782. Dostupné z: doi:10.1080/10407782.2018.1515334
- [25] AKTERSHEV, S.P. a S.V. ALEKSEENKO. Influence of condensation on the stability of a liquid film moving under the effect of gravity and turbulent vapor flow. International Journal of Heat and Mass Transfer. 2005, 48(6), 1039-1052. ISSN 0017-9310. Dostupné z: doi:10.1016/j.ijheatmasstransfer.2004.09.045
- [26] AKTERSHEV, S. P. a S. V. ALEKSEENKO. The Stability of a Condensate Film Moving under the Effect of Gravity and Turbulent Flow of Vapor. High Temperature. 2003, 41(1), 79-87. ISSN 0018-151X. Dostupné z: doi:10.1023/A:1022332822577
- [27] MARSCHALL, E. a C.Y. LEE. Stability of condensate flow down a vertical wall. International Journal of Heat and Mass Transfer. 1973, 16(1), 41-48. ISSN 0017-9310. Dostupné z: doi:10.1016/0017-9310(73)90249-4
- [28] HUNG, Chen-I, Cha'O-Kuang CHEN a Jung-Shun TSAI. Weakly nonlinear stability analysis of condensate film flow down a vertical cylinder. International Journal of Heat and Mass Transfer. 1996, 39(13), 2821-2829. ISSN 0017-9310. Dostupné z: doi:10.1016/0017-9310(95)00355-X
- [29] LIN, JENN-SEN a CHENG-I WENG. LINEAR STABILITY ANALYSIS OF CONDENSATE FILM FLOWS DOWN A VERTICAL CYLINDER. Chemical Engineering Communications. 2007, 57(1-6), 263-276. ISSN 0098-6445. Dostupné z: doi:10.1080/00986448708960489
- [30] MARSCHALL, E. a C.Y. LEE. Stability of condensate flow down a vertical wall. International Journal of Heat and Mass Transfer. 1973, 16(1), 41-48. ISSN 0017-9310. Dostupné z: doi:10.1016/0017-9310(73)90249-4

- [31] LEE, C. Y. a E. MARSCHALL. Laminar stability analysis of condensate film flow. Wärmeund Stoffübertragung. 1974, 7(1), 14-21. ISSN 0042-9929. Dostupné z: doi:10.1007/BF01438316
- [32] KAPITSA, P.L. Zh. Eksparim. Teor. Fiz. 1948, 18(3).
- [33] YIH, Chia-Shun. Stability of Liquid Flow down an Inclined Plane. Physics of Fluids. 1963, 6(3). ISSN 00319171. Dostupné z: doi:10.1063/1.1706737
- [34] ŠORIN, S. N, S.N ŠORIN, Radko HEJZLAR a Rudolf MATHON. Sdílení tepla. Vyd. 1.
 Praha: Bratislava: SNTL Nakladatelství technické literatury; Nakladatelství ALFA, 1968, 398 s. : il., tabulky, grafy.
- [35] KUHN, S.Z., V.E. SCHROCK a P.F. PETERSON. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube. Nuclear Engineering and Design. 1997, 177(1-3), 53-69. ISSN 0029-5493. Dostupné z: doi:10.1016/S0029-5493(97)00185-4
- [36] VIEROW, K.M. Behavior of SteameAir Systems Condensing in Cocurrent Vertical Downflow. Berkeley, 1990. Dizertační práce. University of California.
- [37] KAYS, W., M. CRAWFORD a Bernhard WEIGAND. Convective heat and mass transfer. 4th ed. Boston: McGraw-Hill Higher Education, 2005. ISBN 0072468769.
- [38] TOMAN, Filip, Petr KRACÍK a Jiří POSPÍŠIL. Influence of Tube Diameter and Steam Flow Rate on Heat Transfer in a Vertical Pipe of Condenser: Experimental Investigation of Copper Pipes. Chemical Engineering Transactions. 2021, (88), 601-606. Dostupné z: doi: doi.org/10.3303/CET2188100
- [39] ISBIN, Herbert S. One-dimensional two-phase flow, Graham B. Wallis, McGraw-Huill, New York (1969). AIChE Journal. New York: American Institute of Chemical Engineers, 1970, 16(6), 896-1105. ISSN 0001-1541. Dostupné z: doi:10.1002/aic.690160603
- [40] NO, Hee a Hyun PARK. Non-iterative condensation modeling for steam condensation with non-condensable gas in a vertical tube. International Journal of Heat and Mass Transfer. 2002, 45(4), 845-854. ISSN 0017-9310. Dostupné z: doi:10.1016/S0017-9310(01)00176-4
- [41] COLBUM, A.P a O.A HOUGEN. Studies in heat transmission I measurment of fluid and surface temperatures. Engineering Chemistry. 1930, 22(5), 522-524.
- [42] KIM, M.H a M.L CORRADINI. Modeling of condensation heat transfer in a reactor containment. Nuclear Engineering and Design. 1990, 118(2), 193-212. ISSN 00295493. Dostupné z: doi:10.1016/0029-5493(90)90057-5
- [43] KAGEYAMA, T., P.F. PETERSON a V.E. SCHROCK. Diffusion layer modeling for condensation in vertical tubes with noncondensable gases. Nuclear Engineering and Design. 1993, 141(1-2), 289-302. ISSN 00295493. Dostupné z: doi:10.1016/0029-5493(93)90107-K
- [44] ROHSENOW, W.M, J.P HARTNETT a Y.I CHO. HANDBOOK OF HEAT TRANSFER. 3. New york: MCGRAW-HILL, 1973. ISBN 0-07-053555-8.
- [45] PETERSON, P. F. Diffusion Layer Modeling for Condensation With Multicomponent Noncondensable Gases. Journal of Heat Transfer. 2000, 122(4), 716-720. ISSN 0022-1481. Dostupné z: doi:10.1115/1.1318215
- [46] LIAO, Y. a K. VIEROW. A Generalized Diffusion Layer Model for Condensation of Vapor With Noncondensable Gases. Journal of Heat Transfer. 2007, 129(8), 988-994. ISSN 0022-1481. Dostupné z: doi:10.1115/1.2728907
- [47] FULLER, Edward N., Paul D. SCHETTLER a J. Calvin. GIDDINGS. NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS. Industrial & Engineering Chemistry. 1966, 58(5), 18-27. ISSN 0019-7866. Dostupné z: doi:10.1021/ie50677a007
- [48] DREVENÝ, Lukáš. Účinnost inverzních scrubberů. Vysoké učení technické v Brně. Fakulta chemická, 2017.
- [49] FRÖSSLING, N. Über die Verdunstung fallender Tropfen. Gerlands Beiträge zur Geophysik. 1938, (52), 170-215.

- [50] VDI heat atlas. 2nd ed. New York: Springer, 2010. ISBN 978-3540778769.
- [51] KAGEYAMA, T., P.F. PETERSON a V.E. SCHROCK. Diffusion layer modeling for condensation in vertical tubes with noncondensable gases. Nuclear Engineering and Design. 1993, 141(1-2), 289-302. ISSN 0029-5493. Dostupné z: doi:10.1016/0029-5493(93)90107-K
- [52] WALTER J., MOORE. Fyzikální chemie: Překlad Čestmír Černý, Alexandr Schütz. 2. české. vyd. Praha: SNTL, 1981.
- [53] WAYNE, P., S. COOPER, D. SIMONS et al. Dalton's and Amagat's laws fail in gas mixtures with shock propagation. Science Advances. 2019, 5(12). ISSN 2375-2548. Dostupné z: doi:10.1126/sciadv.aax4749
- [54] SVOBODA, Emanuel a Roman BAKULE. Molekulová fyzika. 1. vyd. Praha: Academia, 1992. ISBN 80-200-0025-9.
- [55] ADAMSON, ARTHUR W. A Textbook of Physical Chemistry. Second edition. Elsevier, 1979. ISBN 9780120442621. Dostupné z: doi:10.1016/B978-0-12-044262-1.X5001-4
- [56] PAVELEK, Milan. Termomechanika. Vyd. 3. přeprac., V Akademickém nakladatelství CERM 1. vyd. Brno: Akademické nakladatelství CERM, 2003. ISBN 80-214-2409-5.
- [57] PENG, Ding-Yu a Donald B. ROBINSON. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals. 1976, 15(1), 59-64. ISSN 0196-4313. Dostupné z: doi:10.1021/i160057a011
- [58] SOAVE, Giorgio. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science. 1972, 27(6), 1197-1203. ISSN 00092509. Dostupné z: doi:10.1016/0009-2509(72)80096-4
- [59] VDI Heat Atlas . Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. ISBN 978-3-540-77876-9. Dostupné z: doi:10.1007/978-3-540-77877-6
- [60] SMITS, Alexander J. A physical introduction to fluid mechanics. New York: John Wiley, 2000. ISBN 0471253499.
- [61] MOORE, Walter J. Physikalische Chemie. Auflage be-arbeitet und erweitert von Dieter O. Hummel. Berlin: Verlag Walter de Gruyter, 1973, (4). Dostupné z: doi:10.1002/bbpc.19730770713
- [62] LABOUTKA, Karel. Výpočtové tabulky pro vytápění. Praha: Společnost pro techniku prostředí, 2001. ISBN 80-02-01466-9.
- [63] POLING, Bruce E., John M. PRAUSNITZ a John P. OCONNELL. Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Education, 2001. ISBN 9780070116825.
- [64] WILKE, C. R. a C. Y. LEE. Estimation of Diffusion Coefficients for Gases and Vapors. Industrial & Engineering Chemistry . 1955, 47(6), 1253-1257. ISSN 0019-7866. Dostupné z: doi:10.1021/ie50546a056
- [65] MARTÍN-VALDEPEñAS, J. M., M. A. JIMÉNEZ, F. MARTÍN-FUERTES a J. A. Fernández. BENÍTEZ. Comparison of film condensation models in presence of noncondensable gases implemented in a CFD Code. Heat and Mass Transfer . 2005, 41(11), 961-976. ISSN 0947-7411. Dostupné z: doi:10.1007/s00231-004-0606-5
- [66] VIJAYA KUMAR, G., Liam M.F. CAMMIADE, Stephan KELM, K. ARUL PRAKASH, Eva M. GROß, Hans-Josef ALLELEIN, Reinhold KNEER a Wilko ROHLFS. Implementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures. Applied Thermal Engineering . 2021, 187. ISSN 13594311. Dostupné z: doi:10.1016/j.applthermaleng.2021.116546
- [67] KRACÍK, Petr. Hodnocení přestupu tepla na skrápěném trubkovém svazku. Brno, 2016, 124 s. Dizertační práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství. Vedoucí práce Doc. Ing. Jiří Pospíšil, Ph.D.
- [68] SHAH, R. K. a Dušan P. SEKULIĆ. Fundamentals of heat exchanger design. Hoboken, NJ: John Wiley & Sons, 2003. ISBN 9780471321712.
- [69] ROHSENOW, W.M, J.H WEBBER a A.T LING. Effect of vapour velocity on laminar and turbulent film condensation. Trans. ASME. 1956, 78(1), 1637–1643.

- [70] INCROPERA, Frank P. Fundamentals of heat and mass transfer. 6th ed. New York: John Wiley & Sons, 2007. ISBN 9780471457282.
- [71] DEHBI, A. A GENERALIZED CORRELATION FOR STEAM CONDENSATION RATES IN THE PRESENCE OF AIR-HELIUM MIXTURES. In: Conference: 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Chicago, 2015.
- [72] DEHBI, A. A generalized correlation for steam condensation rates in the presence of air under turbulent free convection. International Journal of Heat and Mass Transfer . 2015, 86, 1-15. ISSN 00179310. Dostupné z: doi:10.1016/j.ijheatmasstransfer.2015.02.034
- [73] TAN, Bing a Jiejin CAI. An improved model based on real gas state equation and fog formation for condensation heat and mass transfer. Nuclear Engineering and Design . 2021, 372. ISSN 00295493. Dostupné z: doi:10.1016/j.nucengdes.2020.110968
- [74] CHANSON, Hubert. Applied hydrodynamics: an introduction. Boca Raton: CRC Press, Taylor & Francis Group, 2014. ISBN 9781138000933.
- [75] BIRD, R. Byron, Warren E. STEWART a Edwin N. LIGHTFOOT. Transport phenomena. 2nd, rev. ed. New York: John Wiley and Sons, 2007. ISBN 978-0470115398.
- [76] PERRY, Robert H. a Don W. GREEN. Perry's chemical engineers' handbook. 8th ed. New York: McGraw-Hill, 2008. ISBN 9780071422949.
- [77] BENTEBOULA, S. a F. DABBENE. Modeling of wall condensation in the presence of noncondensable light gas. International Journal of Heat and Mass Transfer . 2020, 151. ISSN 00179310. Dostupné z: doi:10.1016/j.ijheatmasstransfer.2020.119313

SEZNAM AUTORSKÝCH DĚL

1) Vlastní publikace vztahující se k tématu disertační práce

- [A1] TOMAN, F.; KRACÍK, P.; POSPÍŠIL, J. Heat transfer during condensation of water vapour in the presence of non-condensable gas in vertical tube of small diameter. Case Studies in Thermal Engineering, 2022, roč. 40, č. 12, s. 1-15. ISSN: 2214-157X. (IF = 6,268)
- [A2] TOMAN, F.; KRACÍK, P.; POSPÍŠIL, J. Influence of tube diameter and steam flow rate on heat transfer in a vertical pipe of condenser: experimental investigation of copper pipes. Chemical Engineering Transactions, 2021, roč. 88, č. 2021, s. 601-606. ISSN: 2283-9216. (IF = 0,681, citace 1)
- [A3] TOMAN, F.; KRACÍK, P.; POSPÍŠIL, J.; ŠPILÁČEK, M. Comparison of water vapour condensation in vertically oriented pipes of condensers with internal and external heat rejection. Energy, 2020, roč. 208, č. 118388, s. 1-11. ISSN: 0360-5442. (IF = 8,857; citace 5)
- [A4] KRACÍK, P.; TOMAN, F.; POSPÍŠIL, J. Effect of the Flow Velocity of Gas on Liquid Film Flow in a Vertical Tube. Chemical Engineering Transactions, 2020, roč. 81, č. 2020, s. 811-816. ISSN: 2283-9216. (IF = 0, 681; citace 1)
- [A5] TOMAN, F.; KRACÍK, P.; POSPÍŠIL, J.; ŠPILÁČEK, M. Comparison of Different Concepts of Condensation Heat Exchangers With Vertically Oriented Pipes for Effective Heat and Water Regeneration. Chemical Engineering Transactions, 2019, roč. 2019, č. 76, s. 379-384. ISSN: 2283-9216. (IF = 0,681; citace 3)

2) Ostatní vlastní publikace

[B1] KRACÍK, P.; TOMAN, F.; POSPÍŠIL, J.; KRAML, S. A Heat Exchanger with Water Vapor Condensation on the External Surface of a Vertical Pipe. ENERGIES, 2022, roč. 15, č. 15, s. 1-16. ISSN: 1996-1073. (IF = 3,343)

3) Tvůrčí aktivity

- [C1] KRACÍK, P.; TOMAN, F.; POSPÍŠIL, J.: Stand pro testování kapalného filmu ve vertikální trubce; Experimentální zařízení pro hodnocení vlivů na proudění tenkého kapalného filmu na vnitřní stěně vertikální trubky. Fakulta strojního inženýrství, VUT v Brně, Technická 2896/2, 616 69 Brno, Budova C3/314, místnost 2.2. URL: http://www.oei.fme.vutbr.cz/vysledky-vyzkumu.aspx. (funkční vzorek)
- [C2] TOMAN, F.; KRACÍK, P.; POSPÍŠIL, J.: Tlakové stand pro hodnocení vlivů na proudění kapalného filmu; Tlakové zařízení pro hodnocení vlivů na proudění kapalného filmu na vnitřní stěně trubky. Fakulta strojního inženýrství, VUT v Brně, Technická 2896/2, 616 69 Brno, Budova C3/314, místnost 2.2. URL: http://www.oei.fme.vutbr.cz/vysledky-vyzkumu.aspx. (funkční vzorek)

SEZNAM ZKRATEK A SYMBOLŮ

Symbol	Jednotka	Popis
a,b,c	-	Koeficienty, konstanty
c _p	J·kg ⁻¹ ·K ⁻¹	Měrná tepelná kapacita
d	М	Průměr
D	$m^2 \cdot s^{-1}$	Difuzní koeficient
$\Delta t_{ m ln}$	°C	Střední teplotní logaritmický spád
E ₀	J	Aktivační energie
f	-	Součinitel tření
F	-	Degradační faktor
\mathbf{f}_{i}	-	Korekční součinitel
g	m·s ⁻²	Gravitační zrychlení
g _m	kg• m ⁻² •s ⁻¹	Součinitel vodivosti přenosu hmoty
h	J·kg ⁻¹ ·K ⁻¹	Entalpie
$h_{fg}; \Delta h_c$	J·kg ⁻¹	Latentní teplo, Energie fázové změny
j-	kg· m ⁻² ·s ⁻¹	Výparný tok
j+	kg· m ⁻² ·s ⁻¹	Kondenzační tok
k	$W \cdot m^{-2} \cdot K^{-1}$	Celkový součinitel přestupu tepla
\mathbf{k}_{cond}	$W \cdot m^{-1} \cdot K^{-1}$	Součinitel tepelné vodivosti kondenzace
L	m	Délka měřícího úseku
Μ	kg·mol⁻¹	Molární hmotnost
М; ṁ; m	kg·s⁻¹	Hmotnostní tok
Nu	-	Nuseltovo číslo
P; p	Pa	Tlak
Pr	-	Prandtlovo číslo
Q	W	Výkon; Tepelný tok
ģ	$W \cdot m^{-2}$	Měrný výkon; Měrný tepelný tok
r	m	Poloměr
R	-	Plynová konstanta
\mathbb{R}^2	-	Koeficient determinace
Re	-	Reynoldsovo číslo
Sc	-	Schmidtovo číslo
Sh	-	Sherwoodovo číslo
St	-	Stantonovo číslo
T; t	°C	Teplota
u	m·s ⁻¹	Rychlost
V	m ³	Objem
\mathbf{V}^{*}	m ³	Objem syté vodní páry
Xi	-	Objemový zlomek i-teho prvku

у

Řecká písmena

α	$W \cdot m^{-2} \cdot K^{-1}$	Součinitel přestupu tepla				
β	-	Blowing parametr				
Γ	kg⋅ s ⁻¹ ⋅ m ⁻¹	Obvodový průtok				
δ	m	Tloušťka kondenzátního filmu				
η	Pa·s	Dynamická viskozita				
$artheta_{ m c}$	-	Kondenzační součinitel				
$artheta_{ m e}$	-	Výparný součinitel				
λ	$W \cdot m^{-2} \cdot K^{-1}$	Součinitel tepelné vodivosti				
ν	$m^2 \cdot s^{-1}$	Kinematická viskozita				
π	-	Ludolfovo číslo				
ρ	kg∙m ⁻³	Hustota				
τ	Ра	Smykové napětí				
ω	-	Poměr NCG v jádru směsi a NCG na rozhraní				
	•					

Index

b	Jádro směsi
cond	Kondenzační
exp	Experimentální hodnota
f	Film, kondenzát
g	Plyn
i	Interface, rozhraní
in	Vstupní
inner	Vnitřní
lam	Laminární
m	Parovzdušná směs
Nu	Pocházející z Nuseltovi teorie
out	Výstupní
outer	Vnější
reg	Z regresní analýzy
S	Sytý stav
tr	Turbulentní
v	Vodní pára
w	Chladící voda
wall	Stěna

Zkratka	
AVE	Průměrná hodnota ze souboru
CHTC	Kondenzační součinitel přestupu tepla
MAX	Největší vrchní odchylka od průměrné hodnoty
MIN	Největší spodní odchylka od průměrné hodnoty
NCG	Nekondenzující plyny
OHTC	Celkový součinitel přestupu tepla uvnitř trubky
STD	Směrodatná odchylka

_

SEZNAM OBRÁZKŮ

Číslo	Popis	Stránka
1.1	Grafické znázornění rozhraní plyn-kapalina	11
1.2	Grafické znázornění kinetické teorie	11
1.3	Průběh parciálních tlaku a teploty v difúzní vrstvě	12
1.4	Snižování teploty parovzdušné směsi v axiálním směru vlivem kondenzace	13
1.5	Prostup tepla v závislosti na rychlosti parovzdušné směsi	14
1.6	Kondenzační HTC v závislosti na rychlosti parovzdušné směsi	14
1.7	Tloušťka filmu pro a) souproudé proudění b) protiproudé proudění	16
1.8	Nerovnoměrný tepelný tok vlivem vlnění filmu	16
1.9	Příklad stanovení oblastí pro stabilní a nestabilní vlnění stékajícího filmu	17
1.10	Vliv blowing parametru na přestup tepla z parovzdušné směsi do filmu	18
1.11	Grafické porovnání degradačního faktoru při vyšším (nahoře) a při nižším (dole) obsahu NCG obsahu NCG	20
1.12	Porovnání skutečného a teoretického součinitele přestupu tepla	21
1.13	Schéma procesu kondenzace s průběhy teplot, rychlostí a koncentrací	22
4.1	Schéma experimentálního zařízení s výměníkem "trubka v trubce"	31
4.2	Experimentální zařízení s výměníkem "trubka v trubce"	32
4.3	Měřící stanice NI compact rio 9149	33
4.4	Měřící prostředí v LabView	34
5.1	Neideální chování tlaku par roztoku řídícího se při nízkých koncentracích Henryho zákonem a při vysokých koncentracích Raoultovým zákonem.	37
5.2	Deformace a) tuhého tělesa b) tekutiny	38
5.3	Vývojový diagram použitého matematického modelu pro vyhodnocení přestupu tepla	44
	během kondenzace vodní párv v přítomnosti nekondenzujících plvnů.	
6.1	Průběhy součinitelů přestupu tepla uvnitř trubky během kondenzace pro trubku o vnitřním průměru 20 mm se vstupní rychlostí směsi 17.7 m·s ⁻¹ : protiproudé chlazení.	49
6.2	Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství	51
	nekondenzujících plynů pro trubku 26 mm; chlazení souproudé	
6.3	Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství	53
	nekondenzujících plynů pro trubku 26 mm; chlazení protiproudé	
6.4	Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství	54
	nekondenzujících plynů pro trubku 26 mm; chlazení souproudé	
6.5	Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství	56
	nekondenzujících plynů pro trubku 26 mm; chlazení souproudé	
6.6	Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství	58
	nekondenzujících plynů pro trubku 20 mm; chlazení souproudé	
6.7	Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství	60
	nekondenzujících plynů pro trubku 20 mm; chlazení protiproudé	
6.8	Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství	62
	nekondenzujících plynů pro trubku 20 mm; chlazení souproudé	
6.9	Průběhy celkového součinitele přestupu tepla uvnitř trubky v závislosti na množství	64
	nekondenzujících plynů pro trubku 20 mm; chlazení souproudé	
6.10	Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství	66
	nekondenzujících plynů pro trubku 16 mm; chlazení souproudé	
6.11	Průběhy kondenzačního součinitele přestupu tepla v závislosti na množství	68
c 10	nekondenzujicich plynu pro trubku 16 mm; chlazeni protiproude	60
6.12	Prubehy celkoveho soucinitele prestupu tepla uvnitr trubky v zavislosti na mnozstvi	69
(12	nekondenzujicich piynu pro trubku 16 mm; chlazeni souproude	71
0.15	riudeny ceikoveno soucinitele prestupu tepia uvnitr trubky v zavislosti na mnozstvi	/1
614	nekondenzujicich piynu pro truoku 16 mm; chiazeni souproude	70
0.14	Kondenzachi souchiltel presiupu tepia pro merene siavy; souproude chiazeni	12
0.15	Kondenzachi souchniter prestupu tepia pro merene stavy; protiproude chlazeni	15

6.16	Celkový součinitel přestupu tepla uvnitř trubky pro měřené stavy: a) protiproudé	73
	chlazení b) souproudé chlazení	
6.17	Nusseltovo číslo pro přestup tepla uvnitř trubky v závislosti na vstupním	75
	Reynoldsově čísle směsi; Lineární regrese; Souproudá a protiproudá konfigurace	
7 1		
/.1	celkovy soucinitel prestupu tepla uvnitr trubky pro merene stavy: a) protiproude chlazení b) souproudé chlazení	//
7.2	Závislost CHTC z regresní analýzy na experimentálním CHTC podle kombinace 11	80
	pro a) souproudé chlazení; b) protiproudé chlazení.	
7.3	Závislost OHTC z regresní analýzy na experimentálním OHTC podle kombinace 11	80
	pro a) souproudé chlazení; b) protiproudé chlazení.	
7.4	Závislost Nu CHTC z regresní analýzy na experimentálním Nu CHTC pro a)	87
	souproudé chlazení; b) protiproudé chlazení.	
7.5	Závislost Nu OHTC z regresní analýzy na experimentálním Nu OHTC pro a)	87
76	Odahylly hadnat Ny OUTC rag, ad Ny OUTC ave pro souproudé ablazaní y	00
7.0	odchylky hodnot Nu OHTC leg. od Nu OHTC exp plo souploude chiazeni v	00
	zavisiosu na a) vsiupnim Reynoldsove cisle smesi a b) vsiupni koncentraci NCG ve	
	smesi. A pro protiproude chlazeni v zavislosti na c) vstupnim Reynoldsove cisle	
	směsi a d) vstupní koncentraci NCG ve směsi.	
SEZNAM TABULEK

Číslo	Popis	Stránka
1	Koeficienty pro rovnice degradačního faktoru	19
2	Průměry použitých měděných trubek.	32
3	Použité měřící zařízení	33
4	Souhrn nastavení kritických parametrů jednotlivých experimentů.	48
5	Výsledné hodnoty CHTC pro měřené stavy na trubce 26 mm (souproud) a	51
	procentuální pokles CHTC v závislosti na koncentraci NCG.	
6	Výsledné hodnoty CHTC pro měřené stavy na trubce 26 mm (protiproud) a	53
	procentuální pokles CHTC v závislosti na koncentraci NCG.	
7	Výsledné hodnoty OHTC pro měřené stavy na trubce 26 mm (souproud) a	55
	procentuální pokles OHTC v závislosti na koncentraci NCG.	
8	Výsledné hodnoty OHTC pro měřené stavy na trubce 26 mm (souproud) a	57
	procentuální pokles OHTC v závislosti na koncentraci NCG.	
9	Výsledné hodnoty CHTC pro měřené stavy na trubce 20 mm (souproud) a	59
	procentuální pokles CHTC v závislosti na koncentraci NCG.	
10	Výsledné hodnoty CHTC pro měřené stavy na trubce 20 mm (protiproud) a	61
	procentuální pokles CHTC v závislosti na koncentraci NCG.	
11	Výsledné hodnoty OHTC pro měřené stavy na trubce 20 mm (souproud) a	63
	procentuální pokles OHTC v závislosti na koncentraci NCG.	
12	Výsledné hodnoty OHTC pro měřené stavy na trubce 20 mm (souproud) a	64
	procentuální pokles OHTC v závislosti na koncentraci NCG.	
13	Výsledné hodnoty CHTC pro měřené stavy na trubce 16 mm (souproud) a	67
	procentuální pokles CHTC v závislosti na koncentraci NCG.	
14	Výsledné hodnoty CHTC pro měřené stavy na trubce 16 mm (protiproud) a	68
	procentuální pokles CHTC v závislosti na koncentraci NCG.	
15	Výsledné hodnoty OHTC pro měřené stavy na trubce 16 mm (souproud) a	70
	procentuální pokles OHTC v závislosti na koncentraci NCG.	
16	Výsledné hodnoty OHTC pro měřené stavy na trubce 16 mm (souproud) a	71
	procentuální pokles OHTC v závislosti na koncentraci NCG.	
17	Podmínky platnosti korigovaných vztahů	76
18	Kombinace vztahů pro výpočet kondenzačního součinitele přestupu tepla.	76
19	Porovnání variant analytického výpočtu pro souproudé a protiproudé	78
	chlazení.	
20	Porovnání variant analytického výpočtu pro souproudé a protiproudé	78
	chlazení.	
21	Porovnání variant analytického výpočtu pro souproudé a protiproudé	79
	chlazení.	
22	Statistické údaje k regresní funkcím pro souproudou a protiproudou	87
	konfiguraci chlazení	
23	Podmínky platnosti korigovaných vztahů Nusseltova čísla.	89

PŘÍLOHA 1 – KOMBINACE CHTC PODLE TABULKY 18.

PŘÍLOHA 2 – SOUČINITELE PŘESTUPU TEPLA

VSTUPNI	VZDUCH	$\alpha_{ m m}$	$\alpha_{m,std}$	α_{cond}	$\alpha_{cond,std}$	$\alpha_{ m f}$	$\alpha_{\rm f,std}$	$\alpha_{ m g}$	$\alpha_{g,std}$
RICHLOSI mug ⁻²	0/				W	2. V -1			
111-8	^{%0} obj.	5659	00	41170	1212	·K 6120	20	0.0	0.0
	0,0	1796	90	22012	1215	6040	20	22.0	0,0
	1,0	4/00	27	17076	494 201	5070	20	23,9	0,0
	5.7	4451	19	17070	146	5500	9	20 0	0,8
	3,7	4190	15	13942	140	5600	0	25.0	0,7
50	7,7	4028	10	14390	143	5400	0	33,9 40.7	0,0
50	9,0	2279	19	13270	104	5149	11	40,7	0,0
	13,4	2121	18	9802	118	3142 4000	15	48,0	0,0
	21,0	2491	17	8330 5080	105	4900	10	50,9	0,4
	50,4	2481	49	5989	101	4208	22	33,5	1,0
	50,4	2257	21	2220	80	3880	22	47,7	0,9
	65,4	1827	28	3780	104	5492	23	50,0	1,9
	0,0	4855	12	30693	402	5725	20	0,0	0,0
	1,/	4054	35	14292	295	5657	22	22,2	0,5
	3,6	3742	15	12334	122	5365	10	36,2	0,6
	5,6	3528	20	11135	156	5155	12	45,8	0,7
40	7,7	3444	23	10573	169	5048	20	48,9	0,7
	9,7	3394	28	10309	181	5098	14	46,6	0,6
	15,2	3064	26	8419	131	4802	23	50,8	0,9
	21,5	2674	26	6575	120	4480	21	55,7	0,5
	34,5	1936	24	4015	78	3695	25	51,5	0,4
	49,3	1809	31	3703	94	3493	35	49,6	0,2
	64,2	1827	30	3700	86	3568	37	45,5	0,3
	0,0	3929	93	24404	452	5481	23	0,0	0,0
	1,7	3750	30	12452	222	5358	20	28,3	0,6
	3,6	3502	24	10846	151	5164	19	33,7	0,8
31.3	5,4	3252	39	9503	265	4933	21	42,0	2,4
51,5	7,3	3084	31	8652	185	4778	20	47,9	0,6
	9,4	2980	46	8100	242	4700	34	48,7	0,8
	15,0	2765	32	7085	157	4514	25	50,3	0,3
	20,9	2355	33	5477	132	4102	29	56,1	0,6
	0,0	3537	42	18015	320	4746	48	0,0	0,0
	1,8	3369	42	13902	540	4616	54	76,2	3,7
	3,6	3021	33	9251	182	4470	35	64,4	1,6
	5,5	2877	49	8399	227	4596	54	49,1	2,1
26,6	7,3	2673	41	6917	190	4077	26	65,3	1,8
	9,5	2529	47	6604	281	4336	38	51,3	1,6
	15,0	2411	39	6192	193	4201	27	50,6	0,6
	21,1	2206	51	5001	191	3917	47	51,7	1,0
	34,4	1751	41	3503	128	3456	39	49,0	0,4

<u>P2 - Tab 1: Součinitele přestupu tepla pro trubku o průměru 16 mm; Souproudé chlazení</u> VSTUPNÍ VZDUCH am am sta acord acord ale af af af sta a a a sta

VSTUPNI PVCHLOST	VZDUCH	$\alpha_{\rm m}$	$\alpha_{m,std}$	α_{cond}	$\alpha_{cond,std}$	α_{f}	$\alpha_{\rm f,std}$	α_{g}	$\alpha_{g,std}$
m·s ⁻²	0/2				W·m ⁻²	2•K-1			
111 5	0.0	5324	60	46825	1/13	60187	20	0.0	0.0
	1.8	5007	18	34864	592	5846	8	27.5	0,0
	3.6	4675	22	28496	573	5591	10	41.3	0,0
	5,6	4479	15	25513	347	5431	7	49.7	0,5
	7.6	4331	17	23466	368	5308	8	55.1	0.8
50	9.8	4151	20	21061	331	5167	13	59.1	0.8
	15.4	3658	35	15379	407	4794	22	68.3	1.0
	21,6	3331	19	12363	175	4550	13	61,1	0,6
	35,4	2703	27	8455	172	3961	22	57,2	0,5
	50,4	2299	27	6473	156	3551	26	52,5	1,2
	65,2	1815	39	4139	174	3206	46	47,8	1,9
	0,0	4758	53	35066	216	5565	17	0,0	0,0
	1,7	4329	20	20721	271	5470	14	32,9	1,0
	3,6	3964	19	17180	239	5149	12	48,5	0,6
	5,6	3748	19	15487	196	4938	13	57,6	0,6
40	7,6	3607	19	14367	185	4811	15	60,7	0,9
	9,7	3601	22	14260	219	4810	13	58,2	0,6
	15,3	3230	34	11445	295	4490	20	62,8	0,8
	21,4	2892	27	9275	207	4188	17	68,6	0,8
	34,6	2078	31	5274	130	3405	31	59,8	0,4
	49,2	1820	13	4294	260	3088	114	51,0	1,2
	64,2	1805	83	4100	68	3246	8	43,6	0,6
	0,0	4602	90	29094	285	5348	35	0,0	0,0
	1,7	4078	22	19325	386	5166	13	47,8	1,8
	3,6	3713	27	15141	342	4919	18	55,4	2,2
31.3	5,4	3434	71	13438	882	4609	29	64,0	5,1
51,5	7,4	3247	41	11501	452	4516	16	66,4	1,1
	9,5	3214	30	11042	311	4524	9	64,4	0,7
	15,0	2841	33	8885	275	4168	14	67,3	1,1
	20,9	2456	40	6928	271	3784	20	71,1	0,6
	0,0	4140	125	18724	325	5543	40	0,0	0,0
	1,8	3877	35	17082	424	5396	42	130,0	2,1
	3,5	3435	27	12412	203	4648	28	94,2	1,6
	5,5	3277	34	10448	208	4655	40	72,4	2,2
26,6	7,3	2814	48	9211	258	3899	24	87,0	0,9
	9,5	2721	30	8923	205	4037	52	73,7	2,3
	15,0	2604	32	8315	200	3992	25	65,7	0,6
	21,1	2401	47	6784	229	3697	47	64,0	0,8
	34,5	1823	45	4228	180	3173	39	57,3	0,5

<u>P2 - Tab 2: Součinitele přestupu tepla pro trubku o průměru 16 mm; Protiproudé chlaze</u>ní VSTUPNÍ VZDUCH and and and a source and a sou

RYCHLOST	VZDUCH	α_{m}	$\alpha_{m,std}$	α_{cond}	$\alpha_{cond,std}$	α_{f}	$\alpha_{f,std}$	α_{g}	$\alpha_{g,std}$
m·s ⁻²	% _{obj.}				$W \cdot m^{-2} \cdot K^{-1}$				
	0,0	1806	90	11834	744	3876	35	0,0	0,0
	1,8	1776	48	9545	642	3738	39	68,6	1,8
	3,6	1616	35	7338	234	3782	31	50,6	1,1
	5,4	1556	40	5431	185	3640	39	46,2	1,0
10.4	7,4	1271	35	3921	191	3222	41	54,3	0,7
13,4	9,4	1164	34	3551	161	3224	36	49,2	0,5
	15.1	1162	37	3419	128	3306	33	39.1	0.5
	20.9	994	55	2459	140	2964	62	36.9	1.4
	34.1	825	23	1753	51	2674	27	30.6	0.2
	48.8	782	29	1419	40	2480	31	25.3	0.2
	0.0	2923	112	15355	425	4517	22	0.0	0.0
	1.8	2877	30	8394	170	4368	29	35.5	1.3
	4.5	2598	30	6652	144	4250	25	33.6	0.5
	5,4	2399	34	5888	159	4030	24	38.6	0,5
	7,4	2180	33	5024	141	3827	21	42,0	0,5
17,7	9,5	2060	29	4556	113	3730	23	43,7	0,6
	15,1	1879	33	3876	117	3614	25	38,7	0,3
	21,0	1722	25	3337	76	3522	20	33,9	0,2
	34,6	1310	21	2257	52	3062	23	31,2	0,2
	48,9	1146	16	1871	34	2894	20	24,8	0,1
	63,3	848	15	1285	27	2415	27	22,7	0,1
	0,0	3411	14	22947	132	4850	19	0,0	0,0
	1,8	3137	19	9344	123	4717	14	19,1	0,6
	3,6	3046	32	8828	206	4644	18	26,4	0,6
	5,4	2625	84	6750	430	4285	56	41,1	5,4
	7,4	2462	40	6034	185	4139	26	43,8	0,5
22,3	9,6	2346	32	6050	174	3816	23	45,2	0,5
	15,1	2203	33	5218	400	3646	42	33,2	0,8
	21,0	1966	18	4359	70	3561	19	32,8	0,5
	34,4	1374	24	2383	59	3187	27	34,1	0,2
	49,2	1221	22	2042	48	2978	31	29,1	0,3
	63,6	1026	19	1646	42	2656	24	26,8	0,2
	0,0	3564	25	24534	442	5054	63	0,0	0,0
	1,7	3346	23	10694	175	4865	12	21,8	0,9
	3,5	3109	34	9366	246	4648	15	31,0	0,6
	5,4	2923	27	8225	168	4524	15	35,7	0,9
	7,5	2817	15	7564	94	4475	13	35,7	1,6
26,6	9,5	2686	16	6706	86	4469	9	26,0	1,1
	15,1	2399	20	5410	83	4292	15	29,5	1,6
	21,1	1993	16	4038	57	3905	13	31,9	0,2
	34,6	1635	14	3023	39	3516	16	33,3	0,6
	49,1	1313	26	2260	65	3072	29	33,0	0,4
	64,1	1112	13	1841	29	2736	22	31,8	0,5
	0,0	3730	17	28659	231	5171	45	0,0	0,0
	1,7	3459	15	11348	129	4974	8	14,8	0,7
31,3	3,6	3232	24	9623	155	4864	16	15,2	0,4
	5,6	3025	26	8342	156	4739	13	20,2	0,5
	7,5	2843	28	7399	140	4609	22	23,7	1,3
	9,6	2706	24	6682	115	4537	14	23,2	0,5

<u>P2 - Tab 3:</u> Součinitele přestupu tepla pro trubku o průměru 20 mm; Souproudé chlazení

	15,1	2408	13	5433	55	4306	8	28,3	1,2
31,3	21,3	2295	25	5006	98	4220	16	27,1	0,8
	34,8	1894	17	3759	57	3787	15	31,2	1,1
	49,9	1571	19	2918	61	3359	13	32,1	1,8
	64,5	1215	25	2071	64	2873	25	35,6	1,6
	0,0	4130	18	35818	462	5371	24	0,0	0,0
	1,8	3699	29	12813	261	5199	13	8,3	0,1
	3,7	3461	12	10873	96	5074	6	14,3	0,8
	5,7	3366	44	10112	295	5042	22	17,6	0,4
40	7,7	3277	23	9565	135	4981	16	15,6	0,2
	9,8	3109	34	8533	201	4885	16	19,6	0,4
	15,6	2909	8	7462	43	4758	5	23,0	0,3
	21,7	2454	17	5600	67	4349	14	30,3	0,3
	35,5	1998	19	4103	80	3860	11	41,2	3,1
	51,0	1657	34	3159	97	3436	33	44,2	0,7
	0,0	4827	12	40531	427	5833	31	0,0	0,0
	1,8	4438	47	21215	783	5613	17	10,0	1,2
	3,7	4020	47	15617	488	5414	26	11,3	0,2
	5,9	3873	28	13942	273	5361	12	13,7	0,1
50	8,0	3770	7	12926	71	5320	3	15,2	0,1
50	10,2	3582	25	11343	195	5229	11	26,1	0,5
	16,0	3235	25	9121	131	5005	21	27,6	1,6
	22,4	2906	37	7463	185	4747	22	32,4	0,5
	37,1	2348	7	5201	26	4246	9	50,8	0,5
	52,9	1962	16	4009	60	3798	13	47,8	2,1

VSTUPNÍ RYCHLOST	VZDUCH	α_{m}	$\alpha_{m,std}$	α_{cond}	$\alpha_{cond,std}$	α_{f}	$\alpha_{f,std}$	α_{g}	$\alpha_{g,std}$
m·s ⁻²	% _{obj.}				W·m⁻²	·K ⁻¹			
	0,0	2341	58	16529	1848	3357	29	0,0	0,0
	1,8	1648	35	12432	95	3261	25	95,9	2,0
	3,6	1634	35	9083	153	3270	25	74,2	1,3
	5,4	1589	35	8183	341	3320	25	58,5	1,0
12.4	7,4	1344	39	5711	248	3046	32	62,6	2,0
13,4	9,5	1259	40	4690	260	3034	41	55,7	1,2
	14,9	1239	46	4237	173	3098	28	42,6	1,0
	21,0	916	25	2605	93	2676	28	43,3	0,6
	34,2	829	19	1746	57	2438	19	45,3	0,6
	50,0	715	14	1347	46	2412	13	52,4	0,1
	0,0	3331	102	17289	275	4057	42	0,0	0,0
	1,8	3091	40	14908	1007	3983	28	52,5	3,0
	4,4	2738	29	9689	294	3811	18	33,7	0,9
	5,4	2504	46	8088	306	3618	40	43,0	2,5
	7,4	2285	51	6469	269	3520	45	44,1	2,0
17,7	9,5	2114	29	5473	155	3426	21	45,7	0,8
	15,1	1947	28	4657	125	3325	20	42,4	0,4
	21,0	1831	25	4168	103	3243	17	37,4	0,3
	34,6	1398	22	2692	67	2871	17	33,7	0,2
	48,9	1178	19	2087	50	2664	16	26,1	0,1
	63,3	946	21	1564	49	2346	22	23,0	0,1
	0,0	3499	35	24383	562	4276	16	0,0	0,0
	1,8	3309	37	16086	/06	4167	10	18,3	0,5
	5,0	3195	27	14297	383	4113	13	25,2	0,9
	5,4	2591	32 29	7934 9221	288	3752	20	44,0	0,6
22.3	0.6	2332	20 28	6080	235	3733	21	43,1	0,0
22,3	9,0	2425	23	6032	125	3612	10	43,9	0,7
	21.0	2203	23	5160	00	35/3	15	35.0	0,9
	34.3	1425	31	2713	93	2957	28	36.6	0,3
	49.2	1246	21	2256	58	2739	17	30,0	0,2
	63.6	1090	18	1900	46	2510	13	26.9	0.2
	0.0	3700	18	32154	418	4418	21	0.0	0.0
	1.7	3587	47	21937	1387	4290	15	21.0	0.8
	3.5	3184	20	14115	319	4110	7	30.4	0.7
	5,4	2999	17	11579	247	4044	8	34,9	1,4
	7,5	2931	18	10632	203	4042	9	30,1	1.8
26.6	9.5	2788	16	9206	155	3994	8	30.5	1.3
,	15.0	2467	14	6858	81	3843	13	33.7	0,5
	21,2	2156	23	5280	96	3629	22	35.0	0,6
	34,5	1682	15	3479	52	3225	16	34,9	0,4
	49,1	1376	14	2585	40	2900	13	34,7	0,5
	64,2	1176	16	2111	43	2606	14	32,3	0,6
	0,0	3859	21	40355	427	4524	21	0,0	0,0
	1,7	3655	10	23309	246	4334	6	17,5	1,9
31,3	3,6	3377	21	15842	347	4292	9	16,0	1,7
	5,4	3156	13	12619	184	4207	8	20,4	0,7
	7,4	2945	24	10647	284	4069	6	27,9	0,8
	9,6	2844	11	9453	127	4064	9	25,9	0,5

<u>P2 - Tab 4:</u> Součinitele přestupu tepla pro trubku o průměru 20 mm; Protiproudé chlazení

	15,1	2577	21	7539	147	3908	12	28,3	0,8
31,3	21,3	2417	15	6544	78	3823	12	29,5	0,3
	34,9	2009	18	4702	79	3491	11	31,0	0,3
	49,9	1722	24	3708	88	3190	19	33,9	0,7
	64,4	1205	18	2161	48	2667	19	36,9	1,6
	0,0	4362	15	54544	544	4682	9	0,0	0,0
	1,8	3941	12	30197	433	4532	6	9,5	0,7
	3,7	3607	37	19584	808	4422	10	15,7	0,5
	5,7	3545	18	17715	391	4432	5	18,7	0,7
40	7,7	3478	21	16525	437	4404	6	17,6	0,5
40	9,8	3255	21	13083	318	4332	8	20,8	0,4
	15,5	3043	24	10715	234	4247	9	24,1	0,2
	21,7	2574	34	7185	187	4002	26	33,7	1,9
	35,4	2040	21	4792	96	3531	12	39,9	2,2
	50,8	1765	21	3853	80	3222	15	48,5	1,5
	0,0	4812	13	72441	9888	4943	28	0,0	0,0
	1,8	4486	62	52341	843	4787	24	18,0	2,4
	3,8	4244	22	41942	1598	4722	6	11,7	0,1
	5,9	4062	9	30409	371	4688	3	14,3	0,1
50	7,9	3938	26	25271	803	4665	9	16,2	0,3
30	10,2	3768	16	20315	369	4625	8	23,4	2,0
	15,9	3390	20	13952	238	4476	13	31,5	0,8
	22,3	3027	11	10335	101	4276	5	34,0	0,4
	37,1	2469	34	6581	192	3933	16	51,1	0,4
	53,1	1980	21	4363	108	3586	39	60,9	4,3

VSTUPNÍ RYCHLOST	VZDUCH	α_{m}	$\alpha_{m,std}$	α_{cond}	$\alpha_{cond,std}$	α_{f}	$\alpha_{f,std}$	α_{g}	$\alpha_{g,std}$	
m·s ⁻²	% _{obj.}				$W \cdot m^{-2} \cdot K^{-1}$					
-	0,0	4353	13	27857	491	5234	32	0,0	0,0	
	1,8	3790	30	15925	415	4973	12	8,7	0,2	
	3,9	3565	14	13139	167	4892	5	10,7	0,2	
	5,8	3340	21	11152	183	4765	10	14,3	0,4	
21.2	7,9	3222	31	10617	353	4648	60	16,2	3,3	
31,3	10,1	3052	32	8978	221	4619	13	17,4	0,2	
	15.9	2695	16	6969	74	4386	12	22,8	0,4	
	22,3	2350	25	5443	97	4119	23	27,7	0,4	
	36,9	1752	15	3419	49	3553	14	37,2	1,5	
	52,1	1222	22	2068	51	2906	31	42,0	1,3	
	0,0	4264	24	25034	415	4895	12	0,0	0,0	
	1,8	3425	13	12452	138	4723	8	14,5	0,6	
	3,8	3297	25	11093	218	4690	12	14,2	0,3	
	5,7	3197	15	9993	109	4697	10	15,5	0,4	
	7,8	3053	20	9173	133	4571	13	17,4	0,5	
26,6	9,7	2670	10	7032	53	4296	8	25,3	0,5	
	15,5	2452	14	5962	61	4151	12	27,4	0,4	
	21,9	2250	34	5090	136	4019	22	25,6	0,3	
	36,2	1710	22	3312	70	3501	18	31,1	2,0	
	51,4	1289	12	2229	28	2998	14	33,4	0,6	
	59,0	1137	13	1903	36	2761	15	31,3	2,1	
	0,0	4044	15	21563	325	4770	9	0,0	0,0	
	1,7	3314	13	11653	135	4630	5	15,7	0,5	
	3,6	3034	29	9446	222	4466	13	20,3	0,4	
	5,6	2933	16	8690	112	4422	7	21,0	0,3	
	7,6	2758	32	7621	195	4315	16	23,0	0,5	
22,3	9,7	2649	15	7018	84	4247	9	24,5	0,4	
	15,2	2228	24	5103	107	3939	13	29,9	0,4	
	21,6	1977	26	4159	90	3743	23	29,1	0,5	
	35,5	1597	10	3003	28	3378	10	26,0	0,1	
	50,7	1259	10	2163	29	2960	11	26,7	1,/	
	65,5	869	8	1320	18	2412	13	31,4	1,1	
	0,0	3851	13	0152	234	4548	42	0,0	0,0	
	1,7	2985	18	9155	127	4425	9	17,8	0,5	
	3,6	2539	22	6560	112	4134	15	23,5	0,4	
	5,6	2446	26	6127 5056	132	4060	16	25,5	0,4	
17.7	7,5	2414	46	3936	219	4050	26	25,4	0,4	
17,7	9,5	2123	14	4810	59	3/80	8	36,1	0,8	
	15,1	18/0	16	3893	56	3568	13	38,1	0,6	
	21,2	1//8	24	3595	/9	3487	20	33,4	1,1	
	34,8	1485	19	2722	54	3229	18	27,8	0,7	
	49,7	1135	11	18/6	26	2817	15	25,0	0,2	
	64,6	803	13	1454	24	2500	17	23,3	0,2	
	0,0	3251	11	12025	124	4243	37	0,0	0,0	
12.2	1,7	2686	42	8097	214	4010	54	40,7	2,9	
13,3	5,5	2353	30	5860	141	3918	25	29,6	1,5	
	5,4	2120	24	4824	94	3/03	21 10	30,8 21.2	0,7	
	1,4	2009	22	4390	82 100	2729	19	31,3	0,5	
	9,0	2052	54	4540	122	3728	32	20,4	1,4	

P2 - Tab 5: Součinitele přestupu tepla pro trubku o průměru 26 mm; Souproudé chlazení

	15.0	1688	18	3323	59	3397	15	31.6	0.2
	21.1	1526	10	2858	57	3327	15	30.1	0,2
133	21,1	1520	19	2838	20	3237	10	30,1	0,5
10,0	34,6	1133	12	18/0	28	2808	11	29,6	0,2
	49,1	936	13	1457	26	2548	16	23,4	0,2
	63,4	772	14	1140	26	2310	19	19,4	0,2
	0,0	3182	24	8972	121	3427	32	0,0	0,0
	1,7	2453	30	6128	2599	3318	39	67,7	1,2
	3,6	2118	51	5942	295	3279	38	48,9	0,8
	5,4	1794	36	4038	144	3203	28	40,2	0,5
8.0	7,4	1720	29	3593	96	3274	28	31,8	0,5
0,9	9,5	1719	23	3536	77	3323	18	27,4	0,3
	15,0	1413	22	2627	65	3020	20	28,4	0,3
	21,0	1135	19	1915	46	2729	21	28,0	0,2
	34,5	853	15	1300	31	2399	19	24,0	0,3
	49,0	675	11	965	20	2146	15	19,5	0,1

VSTUPNÍ RYCHLOST	VZDUCH	α_{m}	$\alpha_{m,std}$	α_{cond}	$\alpha_{cond,std}$	α_{f}	$\alpha_{f,std}$	α_{g}	$\alpha_{g,std}$
m·s ⁻²	% _{obj.}				W·m⁻²	·K ⁻¹			
	0,0	4353	13	27857	491	5234	32	0,0	0,0
	1,8	3790	30	15925	415	4973	12	8,7	0,2
	3,9	3565	14	13139	167	4892	5	10,7	0,2
	5,8	3340	21	11152	183	4765	10	14,3	0,4
21.2	7,9	3222	31	10617	353	4648	60	16,2	3,3
31,3	10,1	3052	32	8978	221	4619	13	17,4	0,2
	15,9	2695	16	6969	74	4386	12	22,8	0,4
	22,3	2350	25	5443	97	4119	23	27,7	0,4
	36,9	1752	15	3419	49	3553	14	37,2	1,5
	52,1	1222	22	2068	51	2906	31	42,0	1,3
	0,0	4264	24	25034	415	4895	12	0,0	0,0
	1,8	3425	13	12452	138	4723	8	14,5	0,6
	3,8	3297	25	11093	218	4690	12	14,2	0,3
	5,7	3197	15	9993	109	4697	10	15,5	0,4
	7,8	3053	20	9173	133	4571	13	17,4	0,5
26,6	9,7	2670	10	7032	53	4296	8	25,3	0,5
	15,5	2452	14	5962	61	4151	12	27,4	0,4
	21,9	2250	34	5090	136	4019	22	25,6	0,3
	36,2	1710	22	3312	70	3501	18	31,1	2,0
	51,4	1289	12	2229	28	2998	14	33,4	0,6
	59,0	1137	13	1903	36	2761	15	31,3	2,1
	0,0	4044	15	21563	325	4770	9	0,0	0,0
	1,7	3314	13	11653	135	4630	5	15,7	0,5
	3,6	3034	29	9446	222	4466	13	20,3	0,4
	5,6	2933	16	8690	112	4422	7	21,0	0,3
	7,6	2758	32	7621	195	4315	16	23,0	0,5
22,3	9,7	2649	15	7018	84	4247	9	24,5	0,4
	15,2	2228	24	5103	107	3939	13	29,9	0,4
	21,6	1977	26	4159	90	3743	23	29,1	0,5
	35,5	1597	10	3003	28	3378	10	26,0	0,1
	50,7	1259	10	2163	29	2960	11	26,7	1,7
	65,5	869	8	1326	18	2412	13	31,4	1,1
	0,0	3851	13	17/49	234	4548	42	0,0	0,0
	1,7	2985	18	9153	127	4425	9	17,8	0,3
	3,6	2539	22	6560	112	4134	15	23,5	0,4
	5,6	2446	26	6127	132	4060	16	25,5	0,4
	7,5	2414	46	5956	219	4050	26	25,4	0,4
17,7	9,5	2123	14	4810	59	3780	8	36,1	0,8
	15,1	1870	16	3893	56	3568	13	38,1	0,6
	21,2	1778	24	3595	79	3487	20	33,4	1,1
	34,8	1485	19	2722	54	3229	18	27,8	0,7
	49,7	1135	11	1876	26	2817	15	25,0	0,2
	64,6	803	13	1454	24	2500	17	23,3	0,2
	0,0	3251	11	12025	124	4243	37	0,0	0,0
	1,7	2686	42	8097	214	4010	54	40,7	2,9
13,3	3,5	2353	30	5860	141	3918	25	29,6	1,5
	5,4	2120	24	4824	94	3763	21	30,8	0,7
	7,4	2009	22	4396	82	3677	19	31,3	0,5
	9,6	2052	34	4540	122	3728	32	26,4	1,4

<u>P2 - Tab 6:</u> Součinitele přestupu tepla pro trubku o průměru 26 mm; Protiproudé chlazení

13 3	15,0	1688	18	3323	59	3397	15	31,6	0,2
13,3	21,1	1526	19	2858	57	3237	16	30,1	0,3
	34,6	1133	12	1870	28	2808	11	29,6	0,2
	49,1	936	13	1457	26	2548	16	23,4	0,2
	63,4	772	14	1140	26	2310	19	19,4	0,2
	0,0	3182	24	8972	121	3427	32	0,0	0,0
	1,7	2453	30	6128	2599	3318	39	67,7	1,2
	3,6	2118	51	5942	295	3279	38	48,9	0,8
	5,4	1794	36	4038	144	3203	28	40,2	0,5
8.0	7,4	1720	29	3593	96	3274	28	31,8	0,5
8,9	9,5	1719	23	3536	77	3323	18	27,4	0,3
	15,0	1413	22	2627	65	3020	20	28,4	0,3
	21,0	1135	19	1915	46	2729	21	28,0	0,2
	34,5	853	15	1300	31	2399	19	24,0	0,3
	49,0	675	11	965	20	2146	15	19,5	0,1

PŘÍLOHA 3 – CHTC 1) Trubka 16 mm – Souproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	41170	-	-	-	-	-	-
	1,8	22913	17376	24	18903	17	22205	3
	3,7	17076	17474	-2	19426	-14	22264	-30
	5,7	15942	11457	28	13047	18	14496	9
	7,7	14398	12772	11	14269	1	16205	-13
50	9,8	13270	10432	21	12065	9	13091	1
	15,4	9802	8708	11	10316	-5	10824	-10
	21,6	8550	7419	13	9138	-7	9129	-7
	35,4	5989	5585	7	7492	-25	6776	-13
	50,4	5336	3974	26	5742	-8	4795	10
	65,4	3780	3422	9	4755	-26	4155	-10
	0,0	30693	-	-	_	-	-	-
	1,7	14292	15627	-9	16743	-17	18520	-30
	3,6	12334	13030	-6	14370	-17	15401	-25
	5,6	11135	11427	-3	12895	-16	13453	-21
	7,7	10573	10232	3	11811	-12	11996	-13
40	9,7	10309	9346	9	10955	-6	10869	-5
	15,2	8419	7784	8	9400	-12	8975	-7
	21,5	6575	6424	2	8186	-25	7324	-11
	34,5	4015	5062	-26	7111	-77	5693	-42
	49,3	3703	3508	5	5377	-45	3923	-6
	64,2	3700	3000	19	4275	-16	3373	9
	0,0	24404	-	-	-	-	-	-
	1,7	12452	13997	-12	15286	-23	15288	-23
	3,6	10846	11601	-7	12945	-19	12626	-16
31.3	5,4	9503	10062	-6	11702	-23	10885	-15
51,5	7,3	8652	9050	-5	10836	-25	9759	-13
	9,4	8100	8190	-1	10008	-24	8757	-8
	15,0	7085	6791	4	8532	-20	7206	-2
	20,9	5477	5731	-5	7634	-39	6010	-10
	0,0	18015	-	-	-	-	-	-
	1,8	13902	12865	7	15622	-12	13308	4
	3,6	9251	10813	-17	12706	-37	11168	-21
	5,5	8399	9418	-12	11007	-31	9644	-15
26,6	7,3	6917	8520	-23	10753	-55	8643	-25
	9,5	6604	7645	-16	9486	-44	7749	-17
	15,0	6192	6370	-3	7994	-29	6386	-3
	21,1	5001	5210	-4	7047	-41	5170	-3
	34,4	3503	3756	-7	5547	-58	3671	-5

P3 - Tab 1: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 16mm; Souproudé chlazení; Kombinace 1-3.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	α _{cond,m4}	Δ	α _{cond,m5}	Δ	α _{cond,m6}	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	41170	-	-	-	-	-	-
	1,8	22913	24156	-5	25678	-12	27934	-22
	3,7	17076	24751	-45	25784	-51	28664	-68
	5,7	15942	16508	-4	16921	-6	19269	-21
	7,7	14398	18104	-26	18858	-31	21068	-46
50	9,8	13270	15141	-14	15411	-16	17824	-34
	15,4	9802	12823	-31	12965	-32	15234	-55
	21,6	8550	11245	-32	10956	-28	13495	-58
	35,4	5989	9088	-52	8217	-37	11021	-84
	50,4	5336	6927	-30	5837	-9	8433	-58
	65,4	3780	5773	-53	5109	-35	7100	-88
	0,0	30693	-	-	_	-	-	-
	1,7	14292	19843	-39	22985	-61	24627	-72
	3,6	12334	16984	-38	19126	-55	21092	-71
	5,6	11135	15181	-36	16752	-50	18905	-70
	7,7	10573	13848	-31	15001	-42	17316	-64
40	9,7	10309	12739	-24	13730	-33	16092	-56
	15,2	8419	10837	-29	11430	-36	13802	-64
	21,5	6575	9334	-42	9423	-43	12008	-83
	34,5	4015	7998	-99	7394	-84	10387	-159
	49,3	3703	6013	-62	5124	-38	7854	-112
	64,2	3700	4807	-30	4471	-21	6371	-72
	0,0	24404	-	-	-	-	-	-
	1,7	12452	16697	-34	20517	-65	22407	-80
	3,6	10846	14088	-30	16990	-57	18958	-75
31.3	5,4	9503	12660	-33	14704	-55	17101	-80
51,5	7,3	8652	11685	-35	13228	-53	15838	-83
	9,4	8100	10701	-32	11967	-48	14623	-81
	15,0	7085	9054	-28	9932	-40	12479	-76
	20,9	5477	8006	-46	8361	-53	11138	-103
	0,0	18015	-	-	-	-	-	-
	1,8	13902	16159	-16	18681	-34	22684	-63
	3,6	9251	13123	-42	15696	-70	18444	-99
	5,5	8399	11271	-34	13710	-63	16022	-91
26,6	7,3	6917	10909	-58	12338	-78	15572	-125
	9,5	6604	9615	-46	11128	-69	13807	-109
	15,0	6192	8014	-29	9275	-50	11640	-88
	21,1	5001	6994	-40	7574	-51	10245	-105
	34,4	3503	5421	-55	5451	-56	8050	-130

P3 - Tab 2: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 16mm; Souproudé chlazení; Kombinace 4-6.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	α _{cond,m7}	Δ	$\alpha_{cond,m8}$	Δ	$\alpha_{\rm cond,m9}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	41170	_	-	-	-	-	-
	1,8	22913	32669	-43	35540	-55	14256	38
	3,7	17076	32707	-92	36360	-113	14283	16
	5,7	15942	21313	-34	24271	-52	9286	42
	7,7	14398	23820	-65	26611	-85	10402	28
50	9,8	13270	19252	-45	22266	-68	8397	37
	15,4	9802	15912	-62	18850	-92	6949	29
	21,6	8550	13419	-57	16529	-93	5863	31
	35,4	5989	9921	-66	13307	-122	4351	27
	50,4	5336	7009	-31	10126	-90	3084	42
	65,4	3780	6173	-63	8578	-127	2667	29
	0,0	30693	-	-	-	-	-	-
	1,7	14292	27109	-90	29045	-103	11949	16
	3,6	12334	22495	-82	24808	-101	9929	19
	5,6	11135	19627	-76	22149	-99	8680	22
	7,7	10573	17501	-66	20203	-91	7725	27
40	9,7	10309	15886	-54	18620	-81	7007	32
	15,2	8419	13111	-56	15832	-88	5790	31
	21,5	6575	10689	-63	13621	-107	4730	28
	34,5	4015	8272	-106	11621	-189	3658	9
	49,3	3703	5701	-54	8738	-136	2518	32
	64,2	3700	4999	-35	7124	-93	2163	42
	0,0	24404	-	-	-	-	-	-
	1,7	12452	22289	-79	24342	-95	9906	20
	3,6	10846	18390	-70	20520	-89	8173	25
31.3	5,4	9503	15821	-66	18401	-94	7047	26
,	7,3	8652	14186	-64	16986	-96	6304	27
	9,4	8100	12724	-57	15548	-92	5664	30
	15,0	7085	10480	-48	13168	-86	4663	34
	20,9	5477	8/18	-59	11613	-112	3889	29
	0,0	12002	-	-	-	-	-	-
	1,8	13902	19214	-38	23332	-08	8001	38
	5,0	9231 8300	10119	-/4	16941	-105	6276	21
26.6	73	6017	13930	-00	10310	-94	5620	23 10
20,0	9.5	6604	12444	-80	13/00	-127	5040	24
	15.0	6102	02/2	-70	11600	-111	J040 4157	24
	21.1	5001	7472	-+7 _/0	10106	-07	3365	33
	34,4	3503	5294	-51	7819	-123	2384	32

P3 - Tab 3: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 16mm; Souproudé chlazení; Kombinace 7-9.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m10}$	Δ	$\alpha_{cond,m11}$	Δ	$\alpha_{cond,m12}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	41170	-	-	-	-	-	-
	1,8	22913	15509	32	19044	17	20718	10
	3,7	17076	15879	7	19059	-12	21188	-24
	5,7	15942	10575	34	12398	22	14119	11
	7,7	14398	11621	19	13886	4	15514	-8
50	9,8	13270	9712	27	11214	15	12970	2
	15,4	9802	8232	16	9277	5	10990	-12
	21,6	8550	7222	16	7828	8	9642	-13
	35,4	5989	5836	3	5792	3	7768	-30
	50,4	5336	4456	16	4100	23	5924	-11
	65,4	3780	3706	2	3589	5	4987	-32
	0,0	30693	-	-	-	-	-	-
	1,7	14292	12803	10	15902	-11	17037	-19
	3,6	12334	10950	11	13193	-7	14549	-18
	5,6	11135	9796	12	11523	-3	13003	-17
	7,7	10573	8918	16	10255	3	11838	-12
40	9,7	10309	8213	20	9315	10	10918	-6
	15,2	8419	6991	17	7694	9	9290	-10
	21,5	6575	6027	8	6280	4	8003	-22
	34,5	4015	5139	-28	4841	-21	6801	-69
	49,3	3703	3859	-4	3332	10	5108	-38
	64,2	3700	3082	17	2905	21	4140	-12
	0,0	24404	-	-	-	-	-	-
	1,7	12452	10819	13	13143	-6	14354	-15
	3,6	10846	9119	16	10836	0	12090	-11
31.3	5,4	9503	8195	14	9328	2	10849	-14
01,0	7,3	8652	7548	13	8346	4	9993	-15
	9,4	8100	6921	15	7496	7	9159	-13
	15,0	7085	5859	17	6176	13	7760	-10
	20,9	5477	5181	5	5141	6	6848	-25
	0,0	18015	-	-	-	-	-	-
	1,8	13902	10517	24	11408	18	13853	0
	3,0	9251	8543	8	9573	-5	11249	-22
26.6	5,5	6017	/335	13	8281	1	9678	-15
20,6	1,5	6604	7092	-5	/ 380	- /	9322	-33
	9,5 15.0	6102	0233 5217) 16	5495	-1 11	8230	-25
	21.1	5001	JZ17 4551	0	J485 1125	11	5000	-11
	34.4	3503	3521	-1	3138	10	4635	-20
	34,4	3503	3521	-1	3138	10	4635	-32

P3 - Tab 4: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 16mm; Souproudé chlazení; Kombinace 10-12.

2) Trubka 16 mm – Protiproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	46825	-	-	-	-	-	-
	1,8	34864	33472	4	18517	47	42808	-23
	3,7	28496	26298	8	15849	44	33512	-18
	5,7	25513	22427	12	14285	44	28465	-12
	7,7	23466	19619	16	13165	44	24830	-6
50	9,8	21061	17348	18	12249	42	21782	-3
	15,4	15379	13457	12	10596	31	16734	-9
	21,6	12363	10962	11	9269	25	13499	-9
	35,4	8455	7359	13	7483	11	8929	-6
	50,4	6473	4997	23	5713	12	6030	7
	65,4	4139	4087	1	5058	-22	4961	-20
	0,0	35066	-	-	-	-	-	-
	1,7	20721	27860	-34	16668	20	33030	-59
	3,6	17180	21715	-26	14393	16	25680	-49
	5,6	15487	18353	-19	13022	16	21616	-40
	7,7	14367	16133	-12	12037	16	18917	-32
40	9,7	14260	14621	-3	11081	22	17009	-19
	15,2	11445	11510	-1	9595	16	13277	-16
	21,5	9275	9132	2	8495	8	10417	-12
	34,5	5274	6238	-18	7321	-39	7019	-33
	49,3	4294	4396	-2	5748	-34	4917	-15
	64,2	4100	3587	13	4273	-4	4035	2
	0,0	29094	-	-	-	-	-	-
	1,7	19325	23895	-24	15731	19	26256	-36
	3,6	15141	18745	-24	13097	13	20476	-35
31.3	5,4	13438	15828	-18	12426	8	17144	-28
51,5	7,3	11501	13428	-17	11129	3	14500	-26
	9,4	11042	12052	-9	10215	7	12909	-17
	15,0	8885	9622	-8	8841	0	10217	-15
	20,9	6928	7654	-10	8087	-17	8032	-16
	0,0	18724	-	-	-	-	-	-
	1,8	17082	19624	-15	18068	-6	20353	-19
	3,6	12412	15941	-28	13835	-11	16444	-32
	5,5	10448	13991	-34	11637	-11	14343	-37
26,6	7,3	9211	11744	-28	11383	-24	12012	-30
	9,5	8923	10819	-21	10139	-14	10982	-23
	15,0	8315	8648	-4	8321	0	8677	-4
	21,1	6784	7004	-3	7404	-9	6957	-3
	34,4	4228	4635	-10	5825	-38	4532	-7

P3 - Tab 5: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 16mm; Protiproudé chlazení; Kombinace 1-3.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m4}$	Δ	α _{cond,m5}	Δ	$\alpha_{cond,m6}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	46825	-	-	-	-	-	-
	1,8	34864	23682	32	49622	-42	27451	21
	3,7	28496	20197	29	38992	-37	23500	18
	5,7	25513	18131	29	33277	-30	21196	17
	7,7	23466	16661	29	29133	-24	19549	17
50	9,8	21061	15379	27	25769	-22	18195	14
	15,4	15379	13177	14	19990	-30	15741	-2
	21,6	12363	11414	8	16313	-32	13794	-12
	35,4	8455	9080	-7	10921	-29	11105	-31
	50,4	6473	6894	-7	7390	-14	8449	-31
	65,4	4139	6140	-48	6124	-48	7580	-83
	0,0	35066	-	-	-	-	-	-
	1,7	20721	19762	5	41069	-98	24571	-19
	3,6	17180	17022	1	31962	-86	21186	-23
	5,6	15487	15338	1	27017	-74	19171	-24
	7,7	14367	14113	2	23775	-65	17738	-23
40	9,7	14260	12892	10	21579	-51	16355	-15
	15,2	11445	11069	3	16999	-49	14171	-24
	21,5	9275	9690	-4	13471	-45	12531	-35
	34,5	5274	8239	-56	9163	-74	10755	-104
	49,3	4294	6429	-50	6450	-50	8433	-96
	64,2	4100	4807	-17	5362	-31	6413	-56
	0,0	29094	-	-	-	-	-	-
	1,7	19325	17285	11	35410	-83	23127	-20
	3,6	15141	14306	6	28049	-85	19243	-27
31.3	5,4	13438	13459	0	22550	-68	18151	-35
- 7-	7,3	11501	12017	-4	20029	-74	16350	-42
	9,4	11042	10942	1	17767	-61	14986	-36
	15,0	8885	9388	-6	14217	-60	12979	-46
	20,9	6928	8486	-22	11426	-65	11860	-/1
	0,0	18/24	-	-	-	-	-	-
	1,8	17082	18/39	-10	28437	-00	20182	-55
	5,0	12412	14271	-15	23150	-8/	20091	-02
26.6	73	0211	11930	-14	20390	-95	16502	-02
20,0	9.5	9211	1045	-20	1/02/	-03 77	10303	-19
	15.0	8315	83/0	-15	12620	-77	14/02	-05
	21.1	6784	7354	_8	10213	-52	10796	-40
	34,4	4228	5695	-35	6748	-60	8479	-101

P3 - Tab 6: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 16mm; Protiproudé chlazení; Kombinace 4-6.

RYCHLOST	
$m \cdot s^{-2} \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$	%
0,0 46825	-
1,8 34864 63181 -81 34952 0 27476	21
3,7 28496 49466 -74 29812 -5 21491	25
5,7 25513 42045 -65 26782 -5 18268	28
7,7 23466 36702 -56 24628 -5 15900	32
50 9,8 21061 32207 -53 22741 -8 13968	34
15,4 15379 24743 -61 19483 -27 10741	30
21,6 12363 19992 -62 16905 -37 8669	30
35,4 8455 13188 -56 13410 -59 5734	32
50,4 6473 8875 -37 10147 -57 3878	40
65,4 4139 7398 -79 9155 -121 3182	23
0,0 35066	-
1,7 20721 48453 -134 28989 -40 21309	-3
3,6 17180 37614 -119 24932 -45 16551	4
5,6 15487 31665 -104 22469 -45 13945	10
7,7 14367 27738 -93 20695 -44 12178	15
40 9,7 14260 24978 -75 18931 -33 10965	23
15,2 11445 19509 -70 16264 -42 8566	25
21,5 9275 15287 -65 14220 -53 6723	28
34,5 5274 10257 -94 12039 -128 4510	14
49,3 4294 7175 -67 9381 -118 3154	27
64,2 4100 6000 -46 7176 -75 2586	37
0,0 29094	-
1,7 19325 38691 -100 25269 -31 17002	12
3,6 15141 30462 -101 20899 -38 13269	12
31.3 5,4 13438 24308 -81 19566 -46 11093	17
7,3 11501 21511 -87 17560 -53 9364	19
9,4 11042 18914 -71 15954 -44 8347	24
15,0 8885 15010 -69 13702 -54 6610	26
20,9 6928 11925 -72 12378 -79 5197	25
	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22
5,0 12412 25/44 -91 20000 -66 10690	14
3,3 10448 20781 -99 17285 -65 9333	11
20,0 $1,5$ 9211 $1/515$ -88 $10/82$ -82 $/800$	15
7,3 $0,5$	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32
34.4 4228 6556 -55 8238 -95 2944	30

P3 - Tab 7: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 16mm; Protiproudé chlazení; Kombinace 7-9.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	α _{cond,m10}	Δ	$\alpha_{cond,m11}$	Δ	$\alpha_{cond,m12}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	46825	-	-	-	-	-	-
	1,8	34864	15200	56	36791	-6	20353	42
	3,7	28496	12952	55	28779	-1	17345	39
	5,7	25513	11636	54	24476	4	15590	39
	7,7	23466	10670	55	21316	9	14303	39
50	9,8	21061	9862	53	18729	11	13224	37
	15,4	15379	8458	45	14403	6	11341	26
	21,6	12363	7330	41	11638	6	9841	20
	35,4	8455	5830	31	7682	9	7811	8
	50,4	6473	4433	32	5182	20	5924	8
	65,4	4139	3938	5	4294	-4	5314	-28
	0,0	35066	-	-	_	-	-	-
	1,7	20721	12749	38	28403	-37	16993	18
	3,6	17180	10971	36	22037	-28	14607	15
	5,6	15487	9895	36	18568	-20	13175	15
	7,7	14367	9085	37	16227	-13	12106	16
40	9,7	14260	8310	42	14627	-3	11086	22
	15,2	11445	7141	38	11432	0	9530	17
	21,5	9275	6254	33	8964	3	8339	10
	34,5	5274	5294	0	5994	-14	7036	-33
	49,3	4294	4124	4	4188	2	5475	-28
	64,2	4100	3081	25	3479	15	4161	-1
	0,0	29094	-	-	-	-	-	-
	1,7	19325	11193	42	22780	-18	14878	23
	3,6	15141	9271	39	17955	-19	12319	19
31.3	5,4	13438	8709	35	14327	-7	11532	14
51,5	7,3	11501	7761	33	12636	-10	10315	10
	9,4	11042	7075	36	11129	-1	9388	15
	15,0	8885	6074	32	8835	1	8066	9
	20,9	6928	5491	21	7024	-1	7290	-5
	0,0	18724	-	-	-	-	-	-
	1,8	17082	12192	29	17416	-2	16035	6
	3,6	12412	9277	25	14081	-13	12220	2
	5,5	10448	7763	26	12326	-18	10252	2
26,6	7,3	9211	7560	18	10261	-11	9945	-8
	9,5	8923	6692	25	9422	-6	8831	1
	15,0	8315	5434	35	7468	10	7186	14
	21,1	6784	4786	29	5980	12	6322	7
	34,4	4228	3700	12	3884	8	4880	-15

P3 - Tab 8: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 16mm; Protiproudé chlazení; Kombinace 10-12.

3) Trubka 20 mm – Souproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obi.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	11834	-	-	-	-	-	-
	1,8	9545	8087	15	10642	-11	7336	23
	3.6	7338	7229	1	8588	-17	6577	10
	5.4	5431	5991	-10	7089	-31	5223	4
	7.4	3921	5215	-33	6842	-74	4542	-16
13,4	9.4	3551	4745	-34	6226	-75	4101	-15
	15.1	3419	3907	-14	5032	-47	3336	2
	20.9	2459	3296	-34	4535	-84	2784	-13
	34.1	1753	2431	-39	3528	-101	2025	-15
	48.8	1419	1742	-23	2662	-88	1438	-1
	0.0	15355	-	-		-	-	-
	1.8	8394	9551	-14	10399	-24	9404	-12
	4.5	6652	7256	-9	7973	-20	7043	-6
	5.4	5888	6837	-16	7659	-30	6568	-12
	7,4	5024	6100	-21	7085	-41	5831	-16
17,7	9,5	4556	5487	-20	6548	-44	5209	-14
,	15,1	3876	4530	-17	5501	-42	4258	-10
	21,0	3337	3862	-16	4769	-43	3593	-8
	34,6	2257	2833	-26	3772	-67	2596	-15
	48,9	1871	2111	-13	2863	-53	1922	-3
	63,3	1285	1514	-18	2220	-73	1386	-8
	0,0	22947	-	-	-	-	-	-
	1,8	9344	10672	-14	10969	-17	11185	-20
	3,6	8828	8731	1	9251	-5	9129	-3
	5,4	6750	7310	-8	8339	-24	7593	-12
	7,4	6034	6751	-12	7787	-29	7001	-16
22,3	9,6	6050	6087	-1	6775	-12	6258	-3
	15,1	5218	5113	2	5555	-6	5209	0
	21,0	4359	4339	0	4828	-11	4371	0
	34,4	2383	3239	-36	4313	-81	3220	-35
	49,2	2042	2327	-14	3243	-59	2292	-12
	63,6	1646	1716	-4	2419	-47	1703	-3
	0,0	24534	-	-	-	-	-	-
	1,7	10694	11484	-7	12019	-12	12790	-20
	3,5	9366	9644	-3	10300	-10	10698	-14
	5,4	8225	8364	-2	9176	-12	9238	-12
	7,5	7564	7413	2	8297	-10	8160	-8
26,6	9,5	6706	6766	-1	7566	-13	7389	-10
	15,1	5410	5591	-3	6384	-18	6048	-12
	21,1	4038	4815	-19	5747	-42	5146	-27
	34,6	3023	3549	-17	4557	-51	3745	-24
	49,1	2260	2588	-15	3632	-61	2711	-20
	64,1	1841	1922	-4	2616	-42	2024	-10
31,3	0,0	28659	-	-	-	-	-	-
	1,7	11348	12674	-12	12850	-13	14917	-31

P3 - Tab 9: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 20mm; Souproudé chlazení; Kombinace 1-3.

	3,6	9623	10519	-9	10785	-12	12327	-28
	5,6	8342	9022	-8	9640	-16	10502	-26
	7,5	7399	8099	-9	8837	-19	9418	-27
	9,6	6682	7346	-10	8120	-22	8473	-27
	15,1	5433	6153	-13	7000	-29	7038	-30
	21,3	5006	5268	-5	6110	-22	5957	-19
	34,8	3759	3884	-3	4850	-29	4332	-15
	49,9	2918	2836	3	3753	-29	3144	-8
	64,5	2071	2083	-1	2740	-32	2325	-12
	0,0	35818	-	-	-	-	-	-
	1,8	12813	13957	-9	13921	-9	17861	-39
40	3,7	10873	11456	-5	11704	-8	14604	-34
	5,7	10112	9923	2	10366	-3	12579	-24
	7,7	9565	9178	4	9585	0	11596	-21
40	9,8	8533	8337	2	8897	-4	10460	-23
	15,6	7462	6897	8	7542	-1	8570	-15
	21,7	5600	6043	-8	6925	-24	7425	-33
	35,5	4103	4269	-4	5443	-33	5179	-26
	51,0	3159	3208	-2	4098	-30	3868	-22
	0,0	40531	-	-	-	-	-	-
	1,8	21215	15256	28	15087	29	21017	1
	3,7	15617	12973	17	12819	18	17819	-14
	5,9	13942	11389	18	11250	19	15573	-12
50	8,0	12926	10336	20	10365	20	14090	-9
30	10,2	11343	8994	21	9585	15	12171	-7
	16,0	9121	7601	17	8225	10	10191	-12
	22,4	7463	6567	12	7332	2	8714	-17
	37,1	5201	4698	10	5420	-4	6150	-18
	52,9	4009	3487	13	3996	0	4539	-13

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m4}$	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	11834	_	-	_	-	-	-
	1,8	9545	9655	-1	11629	-22	15304	-60
	3,6	7338	7814	-6	10420	-42	12379	-69
	5,4	5431	6179	-14	8636	-59	10217	-88
12.4	7,4	3921	5958	-52	7491	-91	9827	-151
13,4	9,4	3551	5381	-52	6828	-92	8959	-152
	15,1	3419	4297	-26	5636	-65	7260	-112
	20,9	2459	3830	-56	4746	-93	6531	-166
	34,1	1753	2939	-68	3502	-100	5083	-190
	48,8	1419	2198	-55	2510	-77	3836	-170
	0,0	15355	_	-	_	-	-	-
	1,8	8394	10239	-22	13861	-65	15091	-80
	4,5	6652	7739	-16	10541	-58	11584	-74
	5,4	5888	7358	-25	9907	-68	11098	-88
	7,4	5024	6772	-35	8829	-76	10254	-104
17,7	9,5	4556	6217	-36	7942	-74	9478	-108
	15,1	3876	5170	-33	6566	-69	7973	-106
	21,0	3337	4437	-33	5606	-68	6923	-107
	34,6	2257	3457	-53	4105	-82	5466	-142
	48,9	1871	2607	-39	3061	-64	4153	-122
	63,3	1285	2033	-58	2187	-70	3208	-150
	0,0	22947	-	-	-	-	-	-
	1,8	9344	11496	-23	15562	-67	15995	-71
	3,6	8828	9672	-10	12736	-44	13494	-53
	5,4	6750	8663	-28	10628	-57	12125	-80
	7,4	6034	8075	-34	9808	-63	11313	-87
22,3	9,6	6050	6965	-15	8771	-45	9761	-61
	15,1	5218	5660	-8	7376	-41	8015	-54
	21,0	4359	4864	-12	6254	-43	6959	-60
	34,4	2383	4287	-80	4/11	-98	6271	-163
	49,2	2042	3195	-57	3384	-66	4/1/	-131
	0.0	1646	2400	-46	2490	-31	3510	-113
	0,0	24534	-	-	16766	-	17546	-
	1,/	10694	13385	-25	16/66	-57	1/546	-64
	5,5	9300	10124	-22	14070	-50	13020	-00
	5,4	8225	10134	-23	12204	-48	13388	-03
26.6	7,5	/564	9133	-21	10821	-43	12111	-60
20,0	9,5	5410	8262	-23	9889	-4/	0254	-05
	15,1	5410	6906	-28	8192	-51	9354	-/3
	21,1	4038	6143	-52	7040	- /4	8403	-108
	54,6	3023	4808	-39	5190	-72	6664	-120
	49,1	2260	3805	-68	3773	-67	5296	-134
	64,1	1841	2755	-50	2798	-52	3809	-107
	0,0	28659	-	-	-	-	-	-
31,3	1,7	11348	15125	-33	18524	-63	18782	-66
*	5,6	9623	12039	-51	15388	-00	15//8	-04
	5,6	8342	11221	-35	13203	-58	14108	-09
	1,5	/ 399	10277	-39	11849	-60	12930	-75

P3 - Tab 10: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 20mm; Souproudé chlazení; Kombinace 4-6.

	9,6	6682	9365	-40	10758	-61	11891	-78
	15,1	5433	8007	-47	9022	-66	10264	-89
	21,3	5006	6910	-38	7740	-55	8977	-79
	34,8	3759	5410	-44	5702	-52	7121	-89
	49,9	2918	4160	-43	4150	-42	5491	-88
	64,5	2071	3058	-48	3040	-47	4000	-93
	0,0	35818	-	-	-	-	-	-
	1,8	12813	17815	-39	20462	-60	20410	-59
	3,7	10873	14921	-37	16793	-54	17157	-58
40	5,7	10112	13141	-30	14578	-44	15229	-51
	7,7	9565	12111	-27	13502	-41	14101	-47
	9,8	8533	11164	-31	12278	-44	13104	-54
	15,6	7462	9372	-26	10178	-36	11131	-49
	21,7	5600	8510	-52	8910	-59	10211	-82
	35,5	4103	6603	-61	6285	-53	8014	-95
	51,0	3159	4943	-56	4717	-49	6027	-91
	0,0	40531	-	-	-	-	-	-
	1,8	21215	20784	2	22474	-6	22225	-5
	3,7	15617	17607	-13	19127	-22	18899	-21
	5,9	13942	15382	-10	16820	-21	16613	-19
50	8,0	12926	14129	-9	15293	-18	15336	-19
30	10,2	11343	12972	-14	13321	-17	14198	-25
	16,0	9121	11027	-21	11279	-24	12205	-34
	22,4	7463	9729	-30	9755	-31	10891	-46
	37,1	5201	7096	-36	6971	-34	8044	-55
	52,9	4009	5202	-30	5165	-29	5920	-48

VSTUPNÍ PVCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{\rm cond,m4}$	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
m·s ⁻²	0% _h:	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	0/2	$W \cdot m^{-2} \cdot K^{-1}$	0/2	$W \cdot m^{-2} \cdot K^{-1}$	0⁄2
111 5	70 _{00j} .	1183 <i>/</i>		/0	w III K	/0		/0
	1.8	0545	10491	10	13702	45	4820	40
	1,0	7228	0417	-10	13792	-43	4029	49
	5,0	7558	9417	-28	11100	-32	4322	41
	5,4	5431	/4/5	-38	8844	-03	3446	37
13,4	7,4	3921	64/8	-65	8498	-11/	2984	24
	9,4	3551	5859	-65	/688	-116	2698	24
	15,1	3419	4778	-40	6155	-80	2197	36
	20,9	2459	3979	-62	5475	-123	1833	25
	34,1	1753	2895	-65	4203	-140	1331	24
	48,8	1419	2057	-45	3143	-121	943	34
	0,0	15355	-	-	-	-	-	-
	1,8	8394	13565	-62	14769	-76	6144	27
	4,5	6652	10168	-53	11173	-68	4601	31
	5,4	5888	9458	-61	10595	-80	4296	27
	7,4	5024	8386	-67	9740	-94	3807	24
17,7	9,5	4556	7492	-64	8941	-96	3405	25
	15,1	3876	6132	-58	7445	-92	2786	28
	21,0	3337	5182	-55	6398	-92	2352	30
	34,6	2257	3736	-66	4975	-120	1696	25
	48,9	1871	2769	-48	3756	-101	1252	33
	63,3	1285	1989	-55	2917	-127	898	30
	0,0	22947	-	-	-	-	-	-
	1,8	9344	16218	-74	16669	-78	7269	22
	3,6	8828	13241	-50	14029	-59	5929	33
	5,4	6750	10978	-63	12525	-86	4934	27
	7,4	6034	10113	-68	11665	-93	4539	25
22,3	9,6	6050	8966	-48	9979	-65	4063	33
	15,1	5218	7473	-43	8120	-56	3386	35
	21,0	4359	6263	-44	6969	-60	2842	35
	34,4	2383	4654	-95	6196	-160	2089	12
	49,2	2042	3313	-62	4619	-126	1484	27
	63,6	1646	2456	-49	3462	-110	1097	33
	0,0	24534	-	-	-	-	-	-
	1,7	10694	18575	-74	19439	-82	8265	23
	3,5	9366	15526	-66	16581	-77	6908	26
	5,4	8225	13408	-63	14709	-79	5972	27
	7,5	7564	11847	-57	13260	-75	5264	30
26,6	9,5	6706	10741	-60	12011	-79	4775	29
	15,1	5410	8814	-63	10064	-86	3912	28
	21,1	4038	7483	-85	8932	-121	3328	18
	34,6	3023	5444	-80	6991	-131	2418	20
	49,1	2260	3929	-74	5515	-144	1747	23
	64,1	1841	2930	-59	3988	-117	1301	29
	0,0	28659	-	-	-	-	-	-
	1,7	11348	21697	-91	21999	-94	9606	15
31,3	3,6	9623	17945	-86	18399	-91	7935	18
	5,6	8342	15293	-83	16341	-96	6765	19
	7,5	7399	13711	-85	14962	-102	6055	18

P3 - Tab 11: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 20mm; Souproudé chlazení; Kombinace 7-9.

	9,6	6682	12346	-85	13646	-104	5456	18
	15,1	5433	10268	-89	11681	-115	4535	17
	21,3	5006	8708	-74	10099	-102	3843	23
	34,8	3759	6326	-68	7900	-110	2792	26
	49,9	2918	4576	-57	6055	-107	2028	31
	64,5	2071	3376	-63	4441	-114	1494	28
	0,0	35818	-	-	-	-	-	-
	1,8	12813	26074	-104	26007	-103	11468	10
	3,7	10873	21316	-96	21778	-100	9372	14
	5,7	10112	18399	-82	19221	-90	8082	20
10	7,7	9565	16984	-78	17738	-85	7439	22
40	9,8	8533	15337	-80	16369	-92	6720	21
	15,6	7462	12588	-69	13767	-85	5511	26
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4770	15					
		3330	19					
	51,0	3159	5662	-79	7234	-129	2493	21
	0,0	40531	-	-	-	-	-	-
	1,8	21215	30841	-45	30500	-44	13508	36
	3,7	15617	26169	-68	25857	-66	11428	27
	5,9	13942	22907	-64	22626	-62	10008	28
50	8,0	12926	20764	-61	20821	-61	9038	30
50	10,2	11343	17955	-58	19136	-69	7808	31
	16,0	9121	15059	-65	16295	-79	6548	28
	22,4	7463	12891	-73	14391	-93	5603	25
	37,1	5201	9087	-75	10485	-102	3972	24
	52,9	4009	6695	-67	7673	-91	2947	27

VSTUPNÍ	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m4}$	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
RYCHLOST								
m·s ⁻²	% _{оbj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	11834	-	-	-	-	-	-
	1,8	9545	6354	33	6309	34	8303	13
	3,6	7338	5135	30	5657	23	6721	8
	5,4	5431	4077	25	4509	17	5335	2
12.4	7,4	3921	3915	0	3895	1	5110	-30
13,4	9,4	3551	3540	0	3526	1	4627	-30
	15,1	3419	2830	17	2877	16	3705	-8
	20,9	2459	2523	-3	2397	3	3298	-34
	34,1	1753	1932	-10	1740	1	2526	-44
	48,8	1419	1440	-2	1232	13	1883	-33
	0,0	15355	_	-	-	-	_	-
	1,8	8394	6689	20	8087	4	8804	-5
	4,5	6652	5056	24	6060	9	6660	0
	5,4	5888	4813	18	5648	4	6326	-7
	7,4	5024	4422	12	5000	0	5808	-16
17,7	9,5	4556	4064	11	4472	2	5337	-17
	15,1	3876	3383	13	3662	6	4447	-15
	21,0	3337	2904	13	3095	7	3821	-15
	34,6	2257	2258	0	2228	1	2967	-31
	48,9	1871	1698	9	1646	12	2233	-19
	63,3	1285	1317	-2	1177	8	1727	-34
	0,0	22947	-	-	-	-	-	-
	1,8	9344	7471	20	9604	-3	9872	-6
	3,6	8828	6282	29	7836	11	8302	6
	5,4	6750	5629	17	6505	4	7422	-10
	7,4	6034	5236	13	5981	1	6899	-14
22,3	9,6	6050	4521	25	5320	12	5921	2
	15,1	5218	3679	29	4438	15	4822	8
	21,0	4359	3162	27	3722	15	4141	5
	34,4	2383	2781	-17	2754	-16	3666	-54
	49,2	2042	2069	-1	1957	4	2728	-34
	63,6	1646	1547	6	1444	12	2036	-24
	0,0	24534	-	-	-	-	-	-
	1,7	10694	8650	19	10934	-2	11443	-7
	3,5	9366	7377	21	9134	2	9755	-4
	5,4	8225	6551	20	7896	4	8663	-5
	7,5	7564	5892	22	6963	8	7794	-3
26,6	9,5	6706	5339	20	6321	6	7069	-5
	15,1	5410	4467	17	5189	4	5925	-10
	21,1	4038	3972	2	4406	-9	5259	-30
	34,6	3023	3104	-3	3201	-6	4110	-36
	49,1	2260	2452	-8	2308	-2	3239	-43
	64,1	1841	1771	4	1717	7	2337	-27
	0,0	28659	-	-	-	-	-	-
21.2	1,7	11348	9740	14	12723	-12	12900	-14
31,3	3,6	9623	8136	15	10516	-9	10783	-12
	5,6	8342	7229	13	8968	-8	9582	-15
	7,5	7399	6608	11	8026	-8	8758	-18

P3 - Tab 12: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 20mm; Souproudé chlazení; Kombinace 10-12.

	9,6	6682	6031	10	7236	-8	7999	-20
	15,1	5433	5159	5	6020	-11	6848	-26
	21,3	5006	4457	11	5108	-2	5925	-18
	34,8	3759	3487	7	3709	1	4632	-23
	49,9	2918	2684	8	2687	8	3556	-22
	64,5	2071	1966	5	1977	5	2601	-26
	0,0	35818	-	-	-	-	-	-
	1,8	12813	11439	11	15231	-19	15192	-19
	3,7	10873	9575	12	12445	-14	12715	-17
	5,7	10112	8443	17	10750	-6	11230	-11
10	7,7	9565	7769	19	9904	-4	10344	-8
40	9,8	8533	7172	16	8954	-5	9557	-12
	15,6	7462	6027	19	7353	1	8041	-8
	21,7	5600	5466	2	6360	-14	7289	-30
	35,5	4103	4246	-3	4435	-8	5655	-38
	51,0	3159	3185	-1	3317	-5	7999 6848 5925 4632 3556 2601 - 15192 12715 11230 10344 9557 8041 7289 5655 4238 - 17811 15064 13203 12122 11140 9497 8390 6142 4520	-34
	0,0	40531	-	-	-	-	-	-
	1,8	21215	13359	37	18011	15	17811	16
	3,7	15617	11292	28	15245	2	15064	4
	5,9	13942	9885	29	13367	4	13203	5
50	8,0	12926	9063	30	12088	6	12122	6
30	10,2	11343	8322	27	10452	8	11140	2
	16,0	9121	7086	22	8777	4	9497	-4
	22,4	7463	6255	16	7515	-1	8390	-12
	37,1	5201	4583	12	5323	-2	6142	-18
	52,9	4009	3377	16	3944	2	4520	-13

4) Trubka 20 mm – Protiproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obi.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	16529	-	-	-	-	-	-
	1,8	12432	11117	11	12298	1	10033	19
	3.6	9083	9356	-3	9469	-4	8468	7
	5,4	8183	7986	2	7789	5	7184	12
	7.4	5711	6432	-13	7171	-26	5604	2
13,4	9.4	4690	5755	-23	6365	-36	4978	-6
	15.1	4237	4956	-17	5311	-25	4362	-3
	20.9	2605	3829	-47	4721	-81	3237	-24
	34.1	1746	1979	-13	2676	-53	1664	5
	48.8	1347		0		0		0
	0.0	17289	-	_	-	_	-	_
	1.8	14908	13945	6	10992	26	13787	8
	4,5	9689	10423	-8	8019	17	10203	-5
	5,4	8088	9235	-14	7805	3	8875	-10
	7,4	6469	7864	-22	7027	-9	7518	-16
17,7	9,5	5473	6942	-27	6515	-19	6591	-20
	15,1	4657	5610	-20	5496	-18	5275	-13
	21,0	4168	4802	-15	4827	-16	4470	-7
	34,6	2692	3341	-24	3809	-41	3063	-14
	48,9	2087	2478	-19	2949	-41	2282	-9
	63,3	1564	1735	-11	2200	-41	1601	-2
	0,0	24383	-	-	-	-	-	-
	1,8	16086	16062	0	10804	33	16834	-5
	3,6	14297	13030	9	9141	36	13624	5
	5,4	7934	10239	-29	8442	-6	10641	-34
	7,4	8331	9272	-11	7744	7	9614	-15
22,3	9,6	6989	8145	-17	7082	-1	8373	-20
	15,1	6032	6638	-10	6031	0	6768	-12
	21,0	5169	5677	-10	5282	-2	5719	-11
	34,4	2713	3750	-38	4296	-58	3728	-37
	49,2	2256	2685	-19	3296	-46	2645	-17
	63,6	1900	1929	-2	2401	-26	1914	-1
	0,0	32154	-	-	-	-	-	-
	1,7	21937	17988	18	11991	45	20035	9
	3,5	14115	14230	-1	10166	28	15785	-12
	5,4	11579	12087	-4	9042	22	13349	-15
	7,5	10632	10678	0	8188	23	11743	-10
26,6	9,5	9206	9493	-3	7508	18	10369	-13
	15,1	6858	7481	-9	6337	8	8093	-18
	21,1	5280	6140	-16	5679	-8	6564	-24
	34,6	3479	4277	-23	4575	-31	4512	-30
	49,1	2585	2984	-15	3570	-38	3125	-21
	64,1	2111	2174	-3	2547	-21	2291	-8
31,3	0,0	40355		0		0		0
	1,7	23309	19691	16	12759	45	23176	1

P3 - Tab 13: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 20mm; Protiproudé chlazení; Kombinace 1-3.

	3,6	15842	15331	3	10603	33	17966	-13
	5,6	12619	13346	-6	9544	24	15535	-23
	7,5	10647	11655	-9	8866	17	13555	-27
	9,6	9453	10362	-10	8072	15	11950	-26
	15,1	7539	8440	-12	6940	8	9653	-28
	21,3	6544	6980	-7	6097	7	7896	-21
	34,8	4702	4925	-5	4867	-4	5496	-17
	49,9	3708	3401	8	3676	1	3772	-2
	64,5	2161	2396	-11	2741	-27	2674	-24
	0,0	54544	-	-	-	-	-	-
	1,8	30197	22233	26	13804	54	28451	6
	3,7	19584	17595	10	11618	41	22432	-15
	5,7	17715	15244	14	10308	42	19324	-9
40	7,7	16525	13727	17	9489	43	17343	-5
40	9,8	13083	12266	6	8853	32	15392	-18
	15,6	10715	9883	8	7506	30	12280	-15
	21,7	7185	7962	-11	6772	6	9782	-36
	35,5	4792	5469	-14	5552	-16	6635	-38
	51,0	3853	3731	3	4001	-4	4495	-17
	0,0	72441	-	-	-	-	-	-
	1,8	52341	25112	52	14770	72	34594	34
	3,7	41942	21165	50	12586	70	29072	31
	5,9	30409	18182	40	11144	63	24857	18
50	8,0	25271	16183	36	10242	59	22058	13
50	10,2	20315	14056	31	9427	54	19022	6
	16,0	13952	11155	20	8137	42	14954	-7
	22,4	10335	9155	11	7267	30	12149	-18
	37,1	6581	6164	6	5330	19	8072	-23
	52,9	4363	4131	5	3628	17	5384	-23

VSTUPNÍ VZDUCH Δ Δ $\alpha_{cond,exp}$ $\alpha_{cond,m4}$ Δ $\alpha_{\text{cond},m5}$ $\alpha_{cond,m6}$ RYCHLOST $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $m \cdot s^{-2}$ $W \cdot m^{-2} \cdot K^{-1}$ % obj. % % % -0,0 16529 _ -_ -_ 1,8 12432 11100 11 15982 -29 17680 -42 3,6 9083 8571 6 13469 -48 13632 -50 14 5,4 8183 7007 11516 -41 11232 -37 -9 -81 7,4 5711 6248 9249 -62 10312 13,4 -17 -95 9,4 4690 5505 8285 -77 9164 15,1 4237 4674 -10 -62 7359 -74 6867 20,9 2605 3991 -53 5517 -112 6802 -161 34,1 1746 2250 -29 2789 -60 3772 -116 0 0 48,8 1347 0 0,0 17289 -_ _ -_ _ -7 14908 10867 27 20239 -36 15953 1,8 4,5 9689 7850 19 15179 -57 11678 -21 7 -40 5,4 8088 7501 13401 -66 11326 6469 6718 -4 -76 10195 -58 7,4 11409 17,7 9,5 5473 6185 -13 10076 -84 9455 -73 7986 -71 15,1 4657 5168 -11 8151 -75 21,0 4168 4493 -8 6983 -68 7019 -68 34,6 2692 3491 -30 4855 -80 5534 -106 48,9 2716 -30 4286 2087 3601 -73 -105 63.3 1564 2031 -30 2515 3190 -104 -61 0,0 24383 -----16086 11323 30 23481 -46 15794 2 1,8 7 33 19049 -33 3,6 14297 9557 13363 7934 -11 14909 -55 5,4 8772 -88 12291 4 7,4 8331 8029 13523 -62 11294 -36 22,3 -48 9,6 6989 7281 -4 11883 -70 10333 15,1 6032 6149 -2 9703 -61 8816 -46 -3 -50 21,0 5169 5321 8316 -61 7737 34,4 2713 4271 -57 5464 -101 6259 -131 49,2 2256 3248 -44 3915 -74 4807 -113 -25 -48 3494 -84 63,6 1900 2383 2807 0,0 --_ -32154 --1,7 21937 13356 39 26333 -20 17555 20 14115 11277 20 20817 -47 14872 -5 3,5 5,4 11579 9986 14 17705 -53 13245 -14 9006 15 -13 7,5 10632 15670 -47 12016 -20 26,6 9,5 9206 8200 11 13936 -51 11022 9311 -36 15,1 6858 6855 0 10992 -60 21,1 5280 6072 -15 9026 -71 8349 -58 3479 -93 34,6 4826 -39 6271 -80 6707 -45 -102 49,1 2585 3739 4366 -69 5223 -27 -50 64,1 2111 2683 3173 3717 -76 0,0 40355 ------23309 15017 36 28845 -24 18691 20 1,7 31,3 22 2 3,6 15842 12425 22522 -42 15577 12 12619 11110 19608 -55 14022 -11 5,6 7,5 10647 10312 3 17119 -61 13023 -22

P3 - Tab 14: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 20mm; Protiproudé chlazení; Kombinace 4-6.

	9,6	9453	9309	2	15241	-61	11873	-26
	15,1	7539	7938	-5	12429	-65	10220	-36
	21,3	6544	6897	-5	10305	-57	9002	-38
	34,8	4702	5432	-16	7265	-55	7180	-53
	49,9	3708	4076	-10	5007	-35	5411	-46
	64,5	2161	3058	-42	3505	-62	4008	-85
	0,0	54544	-	-	-	-	-	-
	1,8	30197	17664	42	32724	-8	20317	33
	3,7	19584	14812	24	25895	-32	17099	13
	5,7	17715	13067	26	22508	-27	15220	14
40	7,7	16525	11989	27	20306	-23	14037	15
40	9,8	13083	11109	15	18151	-39	13100	0
	15,6	10715	9326	13	14670	-37	20317 17099 15220 14037 13100 11142 10053 8209 5907 - 21818 18634	-4
	21,7	7185	8321	-16	11818	-64	10053	-40
	35,5	4792	6736	-41	8085	-69	8209	-71
	51,0	3853	4821	-25	5507	-43	5907	-53
	0,0	72441	-	-	-	-	-	-
	1,8	52341	20348	61	37094	29	21818	58
	3,7	41942	17288	59	31336	25	18634	56
	5,9	30409	15236	50	26985	11	16540	46
50	8,0	25271	13960	45	24066	5	15231	40
50	10,2	20315	12757	37	20929	-3	14036	31
	16,0	13952	10908	22	16662	-19	12153	13
	22,4	10335	9643	7	13673	-32	10852	-5
	37,1	6581	6978	-6	9211	-40	7963	-21
	52,9	4363	4728	-8	6163	-41	5412	-24

VSTUPNÍ	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m4}$	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
RYCHLOSI mus ⁻²	0/	W? V-1	W2 K-1	0/	W? V-1	0/	W2 V-1	0/
III's	% оbj.	W·m ² ·K ¹	W.W.Y.K.	%	w·m··K·	%	W.W.Y.K.	%
	0,0	16529	-	-	-	-	-	-
	1,8	12432	14329	-15	15851	-28	6607	47
	3,6	9083	12110	-33	12256	-35	5567	39
	5,4	8183	10289	-26	10035	-23	4726	42
13.4	7,4	5711	8002	-40	8922	-56	3683	36
VSTUPNÍ <u>RYCHLOST</u> m·s ⁻² 13,4 17,7 22,3 22,3 26,6	9,4	4690	7115	-52	7870	-68	3275	30
	15,1	4237	5818	-37	6234	-47	2865	32
	20,9	2605	4629	-78	5707	-119	2132	18
	34,1	1746	2284	-31	3090	-77	1089	38
	48,8	1347		0		0		0
	0,0	17289	-	-	-	-	-	-
	1,8	14908	19887	-33	15676	-5	9004	40
	4,5	9689	14766	-52	11361	-17	6661	31
	5,4	8088	12798	-58	10817	-34	5805	28
	7,4	6469	10838	-68	9685	-50	4909	24
17,7	9,5	5473	9505	-74	8919	-63	4309	21
	15,1	4657	7615	-63	7460	-60	3451	26
	21,0	4168	6457	-55	6491	-56	2925	30
	34,6	2692	4419	-64	5038	-87	2000	26
	48,9	2087	3293	-58	3919	-88	1485	29
	63,3	1564	2306	-47	2924	-87	1037	34
	0,0	24383	-	-	-	-	-	-
	1,8	16086	24470	-52	16459	-2	10940	32
	3,6	14297	19803	-39	13892	3	8848	38
	5,4	7934	15405	-94	12700	-60	6912	13
	7,4	8331	13941	-67	11643	-40	6233	25
22,3	9,6	6989	12144	-74	10560	-51	5435	22
	15,1	6032	9834	-63	8935	-48	4398	27
	21,0	5169	8326	-61	7747	-50	3718	28
	34,4	2713	5398	-99	6184	-128	2418	11
	49,2	2256	3833	-70	4707	-109	1713	24
	63,6	1900	2768	-46	3446	-81	1234	35
	0,0	32154	-	-	-	-	-	-
	1,7	21937	29176	-33	19450	11	12944	41
	3,5	14115	22970	-63	16410	-16	10192	28
	5,4	11579	19449	-68	14549	-26	8628	25
	7,5	10632	17141	-61	13144	-24	7578	29
26,6	9,5	9206	15138	-64	11972	-30	6700	27
	15,1	6858	11826	-72	10018	-46	5234	24
	21.1	5280	9596	-82	8876	-68	4245	20
	34.6	3479	6577	-89	7035	-102	2912	16
	49.1	2585	4546	-76	5439	-110	2014	22
	64.1	2111	3324	-57	3894	-84	1472	30
	0.0	40355	-	-	-	-	-	-
	1 7	23309	33786	-45	21892	6	14922	36
31,3	3.6	15842	26262	-66	18163	-15	11564	27
	5.6	12619	22711	-80	16241	-29	10006	21
	7,5	10647	19811	-86	15071	-42	8712	18

P3 - Tab 15: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 20mm; Protiproudé chlazení; Kombinace 7-9.

	9,6	9453	17487	-85	13623	-44	7695	19
	15,1	7539	14143	-88	11630	-54	6221	17
	21,3	6544	11595	-77	10129	-55	5092	22
	34,8	4702	8065	-72	7970	-70	3542	25
	49,9	3708	5523	-49	5969	-61	2433	34
	64,5	2161	3890	-80	4449	-106	1718	20
	0,0	54544	-	-	-	-	-	-
	1,8	30197	41695	-38	25887	14	18266	40
	3,7	19584	32869	-68	21704	-11	14389	27
	5,7	17715	28405	-60	19208	-8	12412	30
40	7,7	16525	25539	-55	17655	-7	11126	33
40	40 9,8 13083 22672 -73 16363 -25 15.6 10715 10144 60 12700 20	-25	9880	24				
	15,6	10715	18144	-69	13780	-29	112412 3 112412 3 11126 3 9880 2 7893 2 6285 1 4265 1 2895 2	26
	21,7	7185	14452	-101	12293	-71	6285	13
	35,5	4792	9762	-104	9911	-107	4265	11
	51,0	3853	6604	-71	7083	-84	2895	25
	0,0	72441	-	-	-	-	-	-
	1,8	52341	50902	3	29939	43	22220	58
	3,7	41942	42872	-2	25494	39	18649	56
	5,9	30409	36744	-21	22521	26	15967	47
50	8,0	25271	32669	-29	20676	18	14142	44
50	10,2	20315	28206	-39	18917	7	12205	40
	16,0	13952	22243	-59	16224	-16	9605	31
	22,4	10335	18066	-75	14339	-39	7806	24
	37,1	6581	12008	-82	10381	-58	5213	21
	52,9	4363	7998	-83	7023	-61	3496	20

VSTUPNÍ	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m4}$	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
RYCHLOST								
m·s ⁻²	%₀₀bj.	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	16529	-	-	-	-	-	-
	1,8	12432	7309	41	8631	31	9548	23
	3,6	9083	5634	38	7280	20	7368	19
	5,4	8183	4610	44	6188	24	6036	26
12.4	7,4	5711	4106	28	4811	16	5363	6
15,4	9,4	4690	3622	23	4281	9	4735	-1
	15,1	4237	3070	28	3501	17	3752	11
	20,9	2605	2628	-1	2788	-7	3437	-32
	34,1	1746	1472	16	1368	22	1850	-6
	48,8	1347		0		0		0
	0,0	17289	-	-	-	-	-	-
	1,8	14908	7097	52	11851	21	9342	37
	4,5	9689	5125	47	8790	9	6762	30
	5,4	8088	4906	39	7639	6	6456	20
	7,4	6469	4387	32	6458	0	5771	11
17,7	9,5	5473	4043	26	5670	-4	5321	3
	15,1	4657	3381	27	4545	2	4453	4
	21,0	4168	2940	29	3855	8	3874	7
	34,6	2692	2280	15	2634	2	3002	-12
	48,9	2087	1767	15	1955	6	2327	-11
	63,3	1564	1314	16	1363	13	1728	-11
	0,0	24383	-	-	-	-	-	-
	1,8	16086	7359	54	14483	10	9742	39
	3,6	14297	6207	57	11713	18	8216	43
	5,4	7934	5699	28	9123	-15	7521	5
	7,4	8331	5206	38	8237	1	6879	17
22,3	9,6	6989	4726	32	7184	-3	6247	11
	15,1	6032	3996	34	5820	4	5288	12
	21,0	5169	3459	33	4928	5	4585	11
	34,4	2713	2770	-2	3192	-18	3656	-35
	49,2	2256	2103	7	2262	0	2778	-23
	63,6	1900	1536	19	1627	14	2025	-7
	0,0	32154	-	-	-	-	-	-
	1,7	21937	8629	61	17160	22	11439	48
	3,5	14115	7281	48	13503	4	9646	32
	5,4	11579	6454	44	11441	1	8559	26
	7,5	10632	5811	45	10063	5	7717	27
26,6	9,5	9206	5298	42	8898	3	7037	24
	15,1	6858	4433	35	6956	-1	5892	14
	21,1	5280	3926	26	5643	-7	5220	1
	34,6	3479	3115	10	3864	-11	4132	-19
	49,1	2585	2409	7	2668	-3	3191	-23
	64.1	2111	1724	18	1946	8	2279	-8
	0,0	40355	-	-	-	-	-	-
	1,7	23309	9669	59	19796	15	12827	45
31,3	3,6	15842	7998	50	15373	3	10632	33
	5,6	12619	7156	43	13303	-5	9514	25
	7,5	10647	6628	38	11581	-9	8810	17

P3 - Tab 16: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 20mm; Protiproudé chlazení; Kombinace 10-12.
	9,6	9453	5995	37	10238	-8	7976	16
	15,1	7539	5116	32	8284	-10	6812	10
	21,3	6544	4448	32	6792	-4	5933	9
	34,8	4702	3500	26	4722	0	4666	1
	49,9	3708	2630	29	3239	13	3500	6
	64,5	2161	1965	9	2276	-5	2603	-20
	0,0	54544	-	-	-	-	-	-
	1,8	30197	11341	62	24329	19	15105	50
	3,7	19584	9501	51	19164	2	12654	35
	5,7	17715	8393	53	16570	6	11205	37
40	7,7	16525	7691	53	14873	10	10281	38
40	9,8	13083	7131	45	13210	-1	9534	27
	15,6	10715	5994	44	10577	1	8033	25
	21,7	7185	5346	26	8421	-17	7163	0
	35,5	4792	4330	10	5697	-19	5784	-21
	51,0	3853	3106	19	3864	0	4144	-8
	0,0	72441	-	-	-	-	-	-
	1,8	52341	13069	75	29685	43	17460	67
	3,7	41942	11089	74	24956	40	14840	65
	5,9	30409	9787	68	21406	30	13120	57
50	8,0	25271	8950	65	18986	25	12016	52
30	10,2	20315	8186	60	16401	19	11000	46
	16,0	13952	7006	50	12937	7	9436	32
	22,4	10335	6196	40	10512	-2	8343	19
	37,1	6581	4507	32	7021	-7	6071	8
	52,9	4363	3070	30	4704	-8	4131	5

5) Trubka 26 mm – Souproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	28068	-	-	-	-	-	-
	2	15925	10952	31	10294	35	14090	12
	4	13139	8870	32	8422	36	11371	13
	6	11152	7901	29	7614	32	10071	10
	8	10617	7261	32	7143	33	9218	13
31,3	10	8978	6517	27	6436	28	8224	8
	16	6969	5379	23	5443	22	6724	4
	22	5443	4467	18	4758	13	5524	-1
	37	3419	32.03	6	3626	-6	3908	-14
	52	2068	2368	-14	2829	-37	2863	-38
	0	25034	-	-	-	-	-	-
	2	12452	10150	18	9872	21	12367	1
	4	11093	8324	25	8085	27	10098	9
	6	9993	7481	25	7342	27	9021	10
	8	9173	6587	28	6549	29	7920	14
26.6	10	7032	6078	14	6287	11	7258	-3
,-	15	5962	4953	17	5251	12	5856	2
	22	5090	4175	18	4470	12	4885	4
	36	3312	2978	10	3464	-5	3441	-4
	51	2229	2215	1	2660	-19	2541	-14
	59	1903	1941	-2	2312	-21	2219	-17
	0	21563	-	-	-	-	-	-
	2	11653	9421	19	9289	20	10801	7
	4	9446	7763	18	7750	18	8860	6
	6	8690	6781	22	6818	22	7703	11
	8	7621	6137	19	6273	18	6950	9
22,3	10	7018	5534	21	5796	17	6222	11
	15	5103	4548	11	4957	3	5066	1
	22	4159	3914	6	4277	-3	4309	-4
	36	3003	2787	7	3283	-9	3027	-1
	51	2163	2052	5	2515	-16	2219	-3
	66	1326	1483	-12	1804	-36	1605	-21
	0	17749	-	-	-	-	-	-
	2	9153	8164	11	8649	6	8511	7
	4	6560	6974	-6	7032	-7	7368	-12
	6	6127	6087	1	6211	-1	6391	-4
	8	5956	5472	8	5666	5	5730	4
17,7	10	4810	4845	-1	5387	-12	5037	-5
	15	3893	4008	-3	4573	-17	4128	-6
	21	3595	3424	5	3967	-10	3488	3
	35	2722	2504	8	3029	-11	2511	8
	50	1876	1813	3	2328	-24	1806	4
	65	1454	1337	8	1676	-15	1336	8
12.2	0	12025	-	-	-	-	-	-
13,5	2	8097	7347	9	7850	3	7081	13

P3 - Tab 17: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 26mm; Souproudé chlazení; Kombinace 1-3.

	4	5860	6005	-2	6347	-8	5766	2
	5	4824	5237	-9	5603	-16	4994	-4
	7	4396	4688	-7	5120	-16	4464	-2
	10	4540	4265	6	4660	-3	4024	11
	15	3323	3486	-5	3989	-20	3255	2
	21	2858	2969	-4	3469	-21	2744	4
	35	1870	2131	-14	2739	-46	1945	-4
	49	1457	1590	-9	2111	-45	1438	1
	63	1140	1155	-1	1533	-34	1049	8
	0	8972	-	-	-	-	-	-
	2	6128	5795	5	8157	-33	4796	22
	4	5942	4862	18	5853	1	4050	32
	5	4038	4244	-5	4962	-23	3520	13
8.0	7	3593	3822	-6	4365	-22	3153	12
8,9	10	3536	3485	1	3943	-12	2859	19
	15	2627	2858	-9	3351	-28	2316	12
	21	1915	2360	-23	2941	-54	1891	1
	34	1300	1695	-30	2288	-76	1338	-3
	49	965	1228	-27	1758	-82	962	0

VSTUPNÍ RVCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	%obi	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	28068	-	-	-	-	-	-
	2	15925	13244	17	16021	-1	15058	5
	4	13139	10796	18	12987	1	12330	6
	-	11152	0705	13	11574	1	11153	0
	0	10617	9703	15	10641	-4	10468	1
31,3	0	8078	9008	10	0561	6	0442	5
	10	6976	6121	10	9301 7801	-0	9442 7096	-J
	10	5442	5800	2	/891	-13	/980	-15
	22	3443	5885	-8	0551	-20	6978 5206	-28
	57	3419	4425	-29	4687	-37	5306	-55
	52	2068	3421	-65	3449	-6/	4120	-99
	0	25034	-	-	-	-	-	-
	2	12452	12027	3	14/99	-19	14393	-16
	4	11093	9807	12	12156	-10	11806	-0
	0	9993	8853	11	10977	-10	10773	-8
26.6	8	9173	7874	14	9030	-5	9574	-4
20,0	10	7032	7309	- /	8872	-20	9178	-31
	15	5000	5209	-4	6105	-21	6525	-29
	36	3090	4002	-5	4345	-20	5054	-20
	51	2220	3052	-21	4343	-51	3034	-33
	59	1903	2643	-37	2821	-43	3361	-74
	0	21563	-	-57	-	-+0	-	- / /
	2	11653	10650	9	13725	-18	13533	-16
	2 4	9446	8845	6	11297	-20	11278	-10
	- -	8690	7745	11	9879	-20	9933	-17
	8	7621	7104	7	8942	-17	9139	-20
22.3	10	7018	6516	7	8069	-15	8450	-20
22,5	15	5103	5522	-8	6622	-30	7218	-41
	22	4159	4708	-13	5703	-37	6231	-50
	36	3003	3565	-19	4056	-35	4776	-59
	51	2163	2720	-26	2981	-38	3654	-69
	66	1326	1953	-47	2145	-62	2609	-97
	0	17749	-	-	-	-	-	-
	2	9153	9016	1	11863	-30	12568	-37
	4	6560	7430	-13	10110	-54	10195	-55
	6	6127	6522	-6	8827	-44	9008	-47
	8	5956	5933	0	7943	-33	8225	-38
177	10	4810	5600	-16	7014	-46	7798	-62
1,,,	15	3893	4710	-21	5804	-49	6622	-70
	21	3595	4041	-12	4962	-38	5749	-60
	35	2722	3038	-12	3631	-33	4394	-61
	50	1876	2319	-24	2623	-40	3368	-80
	65	1454	1675	-15	1931	-33	2421	-67
	0.0	12025	-	-15	-	-55	-	-07
	2	8097	7566	7	10614	_31	11342	-40
13 3	2 4	5860	6095	-4	8685	-48	9179	-57
13,3	5	4824	5342	-11	7572	-57	8101	-68
	7	4396	4876	-11	6776	-54	7400	-68

P3 - Tab 18: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 26mm; Souproudé chlazení; Kombinace 4-6.

	10	4540	4397	3	6171	-36	6742	-49
	15	3323	3724	-12	5036	-52	5762	-73
	21	2858	3206	-12	4287	-50	5008	-75
	35	1870	2499	-34	3073	-64	3949	-111
	49	1457	1909	-31	2290	-57	3042	-109
	63	1140	1391	-22	1663	-46	2206	-93
	0	8972	-	-	-	-	-	-
	2	6128	6752	-10	8307	-36	11694	-91
	4	5942	4876	18	6977	-17	8399	-41
	5	4038	4115	-2	6087	-51	7117	-76
8.0	7	3593	3601	0	5502	-53	6283	-75
8,9	10	3536	3234	9	5018	-42	5677	-61
	15	2627	2716	-3	4106	-56	4815	-83
	21	1915	2357	-23	3383	-77	4217	-120
	34	1300	1806	-39	2431	-87	3281	-152
	49	965	1377	-43	1759	-82	2517	-161

VSTUPNÍ RYCHLOST	VZDUCH	α _{cond,exp}	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	28068	-	-	-	-	-	-
	2	15925	20526	-29	19292	-21	9097	43
	4	13139	16577	-26	15739	-20	7340	44
	6	11152	14688	-32	14154	-27	6496	42
	8	10617	13451	-27	13232	-25	5928	44
31,3	10	8978	12013	-34	11863	-32	5303	41
	16	6969	9822	-41	9940	-43	4341	38
	22	5443	8064	-48	8589	-58	3570	34
	37	3419	5693	-67	6445	-89	2539	26
VSTUPNI <u>RYCHLOST</u> <u>m·s⁻²</u> 31,3 26,6 22,3 17,7	52	2068	4151	- 101	4959	-140	1866	10
	0	25034	-	-	-	-	-	-
	2	12452	17949	-44	17456	-40	7969	36
	4	11093	14678	-32	14256	-29	6518	41
	6	9993	13174	-32	12928	-29	5830	42
	8	9173	11524	-26	11458	-25	5108	44
26,6	10	7032	10546	-50	10909	-55	4674	34
	15	5962	8516	-43	9030	-51	3779	37
	22	5090	7107	-40	7609	-49	3162	38
	36	3312	4996	-51	5811	-75	2233	33
	51	2229	3681	-65	4421	-98	1653	26
	59	1903	3209	-69	3824	-101	1450	24
	0	21563	-	-	-	-	-	-
	2	11653	15658	-34	15439	-32	6980	40
	4	9446	12829	-36	12807	-36	5726	39
	6	8690	11166	-28	11227	-29	4984	43
	8	7621	10076	-32	10298	-35	4488	41
22,3	10	7018	9025	-29	9453	-35	4022	43
	15	5103	7339	-44	7999	-57	3276	36
	22	4159	6245	-50	6824	-64	2792	33
	36	3003	4381	-46	5159	-72	1965	35
	51	2163	3206	-48	3929	-82	1443	33
	66	1326	2310	-74	2810	-112	1046	21
	0	17/49	-	-	-	-	-	-
	2	9153	12297	-34	13027	-42	5522	40
	4	6560	10623	-62	10/13	-63	4786	27
	6	6127	9218	-50	9407	-54	4157	32
	8	5956	8271	-39	8565	-44	3720	38
17,7	10	4810	7251	-51	8062	-68	3269	32
	15	3893	5943	-53	6782	-74	2681	31
	21	3595	5024	-40	5821	-62	2267	37
	35	2722	3620	-33	4380	-61	1631	40
	50	1876	2598	-38	3335	-78	1173	37
	65	1454	1918	-32	2405	-65	868	40
	0	12025	-	-	-	-	-	-
13 3	2	8097	10167	-26	10864	-34	4634	43
13,3	4	5860	8288	-41	8759	-49	3770	36
	5	4824	7175	-49	7675	-59	3269	32

P3 - Tab 19: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 26mm; Souproudé chlazení; Kombinace 7-9.

	7	4396	6412	-46	7003	-59	2916	34
	10	4540	5786	-27	6321	-39	2633	42
	15	3323	4671	-41	5345	-61	2132	36
	21	2858	3936	-38	4599	-61	1798	37
	35	1870	2785	-49	3579	-91	1272	32
	49	1457	2057	-41	2732	-88	938	36
	63	1140	1499	-31	1989	-74	683	40
	0	8972	-	-	-	-	-	-
	2	6128	6824	-11	9607	-57	3171	48
	4	5942	5769	3	6946	-17	2682	55
	5	4038	5011	-24	5859	-45	2332	42
8.0	7	3593	4504	-25	5144	-43	2085	42
8,9	10	3536	4085	-16	4621	-31	1893	46
	15	2627	3302	-26	3872	-47	1535	42
	21	1915	2691	-41	3353	-75	1253	35
	34	1300	1903	-46	2568	-98	884	32
	49	965	1366	-42	1956	-103	634	34

VSTUPNÍ VZDUCH Δ Δ $\alpha_{cond,exp}$ $\alpha_{cond,m1}$ Δ $\alpha_{cond,m2}$ $\alpha_{cond,m3}$ RYCHLOST $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $m \cdot s^{-2}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ %_{obj} % % % -_ -_ -31,3 -11 -19 -42 -8 _ _ _ _ --26,6 -4 -18 -1 -20 ----22,3 -2 -8 -4 -26 -_ _ ---17,7 -3 -5 ------13,3

P3 - Tab 20: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 26mm; Souproudé chlazení; Kombinace 9-12.

	10	4540	2877	37	3457	24	3778	17
	15	3323	2439	27	2795	16	3198	4
	21	2858	2101	27	2357	18	2753	4
	35	1870	1634	13	1665	11	2139	-14
	49	1457	1246	14	1227	16	1630	-12
	63	1140	907	20	893	22	1185	-4
	0	8972	-	-	-	-	-	-
	2	6128	4464	27	4132	33	5816	5
	4	5942	3228	46	3496	41	4209	29
	5	4038	2726	32	3039	25	3553	12
8.0	7	3593	2381	34	2725	24	3112	13
8,9	10	3536	2141	39	2473	30	2798	21
	15	2627	1800	31	2002	24	2348	11
	21	1915	1562	18	1633	15	2035	-6
	34	1300	1194	8	1152	11	1555	-20
	49	965	908	6	825	15	1181	-22

6) Trubka 26 mm – Protiproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obi.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	22418	-	-	-	-	-	-
	2	21273	16810	21	10188	52	21628	-2
	4	18143	13542	25	8474	53	17352	4
	6	16248	11587	29	7424	54	14769	9
	8	12937	10330	20	6734	48	13131	-1
31,3	10	9815	9268	6	6263	36	11697	-19
	16	7745	7291	6	5372	31	9115	-18
	22	6520	5995	8	4674	28	7413	-14
	37	4066	3985	2	3631	11	4861	-20
	51	2581	2691	-4	2750	-7	3229	-25
	0	22040	-	-	-	-	-	_
	2	18388	15090	18	9679	47	18388	0
	4	14835	12229	18	7926	47	14835	0
	6	12866	10670	17	7000	46	12866	0
26.6	8	11357	9445	17	6511	43	11357	0
26,6	10	9947	8328	16	6181	38	9947	0
	15	7919	6697	15	5177	35	7919	0
	22	6358	5434	15	4425	30	6358	0
	36	4296	3718	13	3429	20	4296	0
	51	2909	2535	13	2589	11	2909	0
	0	18318	-	-	-	-	-	-
	2	17650	13894	21	9085	49	15924	10
	4	14237	11157	22	7653	46	12734	11
	5	12410	9555	23	6693	46	10857	13
	8	10738	8509	21	6170	43	9638	10
22,3	9	9279	7563	18	5744	38	8502	8
	15	6753	5942	12	4907	27	6621	2
	21	5154	4977	3	4255	17	5480	-6
	36	3491	3393	3	3255	7	3685	-6
	50	2429	2342	4	2463	-1	2531	-4
	64	1557	1649	-6	1763	-13	1787	-15
	0	14429	-	-	-	-	-	-
	2	12857	12008	7	8169	36	12722	1
	4	9046	9636	-7	6898	24	10210	-13
	5	8630	8467	2	6084	30	8948	-4
	8	8264	7542	9	5432	34	7970	4
17,7	9	6082	6263	-3	5394	11	6513	-7
	15	4972	5131	-3	4569	8	5286	-6
	21	4224	4199	1	3968	6	4278	-1
	36	3172	2941	7	2901	9	2950	7
	50	2185	2091	4	2280	-4	2083	5
	64	1527	1791	-17	1356	11	1984	-30
	0	13997	-	-	-	-	-	-
13,3	2	11190	10169	9	7724	31	9797	12
7-	4	7302	7931	-9	6339	13	7620	-4

P3 - Tab 21: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 26mm; Protiproudé chlazení; Kombinace 1-3.

	5	5954	6774	-14	5664	5	6463	-9
	7	5942	6088	-2	5100	14	5799	2
	9	5943	5635	5	4460	25	5403	9
	15	4067	4518	-11	3796	7	4330	-6
	21	3428	3786	-10	3231	6	3638	-6
	35	2127	2752	-29	2473	-16	2672	-26
	49	1632	2046	-25	1760	-8	2013	-23
	63	1223	1278	-5	1531	-25	1160	5
	0	9465	-	-	-	-	-	-
	2	7843	8153	-4	10490	-34	7207	8
	4	7319	6106	17	5998	18	5090	30
	5	4740	5247	-11	5077	-7	4354	8
8.0	7	4427	4708	-6	4383	1	3886	12
0,9	9	4268	4307	-1	4008	6	3534	17
	15	2881	3390	-18	3425	-19	2749	5
	21	2283	2759	-21	2961	-30	2212	3
	34	1355	1872	-38	2306	-70	1477	-9
	49	1092	1344	-23	1738	-59	1053	4

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obi}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	22418	-	-	-	-	-	-
	2	21273	13108	38	24625	-16	14924	30
	4	18143	10857	40	19867	-10	12431	31
	6	16248	9462	42	17005	-5	10895	33
	8	12937	8560	34	15202	-18	9910	23
31,3	10	9815	7905	19	13636	-39	9215	6
	16	7745	6716	13	10739	-39	7912	-2
	22	6520	5780	11	8830	-35	6885	-6
	37	4066	4430	_9	5852	-44	5332	-31
	51	2581	3299	-28	3936	-52	4021	-56
	0	22040	-	-	-	-		-
	2	18388	11795	36	22019	-20	14123	23
	4	14835	9616	35	17886	-21	11593	22
	6	12866	8441	34	15633	-22	10256	20
	8	11357	7829	31	13837	-22	9539	16
26,6	10	9947	7382	26	12182	-22	9041	9
	15	7919	6121	23	9819	-24	7590	4
	22	6358	5177	19	7976	-25	6495	-2
	36	4296	3962	8	5450	-27	5027	-17
	51	2909	2970	-2	3703	-27	3780	-30
	0	18318	_	-	_	-	-	-
	2	17650	10413	41	20268	-15	13253	25
	4	14237	8735	39	16267	-14	11158	22
	5	12410	7605	39	13937	-12	9762	21
	8	10738	6989	35	12418	-16	9005	16
22,3	9	9279	6458	30	11047	-19	8391	10
	15	6753	5467	19	8678	-29	7167	-6
	21	5154	4686	9	7273	-41	6219	-21
	36	3491	3535	-1	4953	-42	4752	-36
	50	2429	2662	-10	3410	-40	3587	-48
	64	1557	1912	-23	2392	-54	2558	-64
	0	14429	-	-	-	-	-	-
	2	12857	8654	33	17460	-36	11878	8
	4	9046	7308	19	13987	-55	10013	-11
	5	8630	6429	26	12311	-43	8847	-3
	8	8264	5741	31	10970	-33	7902	4
17,7	9	6082	5609	8	9088	-49	7828	-29
	15	4972	4707	5	7447	-50	6631	-33
	21	4224	4043	4	6096	-44	5761	-36
	36	3172	2910	8	4276	-35	4218	-33
	50	2185	2271	-4	3035	-39	3309	-51
	64	1527	1502	2	2594	-70	1964	-29
	0	13997	-	-	-	-	-	-
	2	11190	7442	33	14726	-32	11186	0
13,3	4	7302	6090	17	11479	-57	9175	-26
	5	5954	5404	9	9786	-64	8184	-37
	7	5942	4858	18	8812	-48	7382	-24

P3 - Tab 22: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 26mm; Protiproudé chlazení; Kombinace 4-6.

	9	5943	4276	28	8164	-37	6461	-9
	15	4067	3638	11	6536	-61	5491	-35
	21	3428	3104	9	5476	-60	4673	-36
	35	2127	2400	-13	3975	-87	3571	-68
	49	1632	1731	-6	2955	-81	2541	-56
	63	1223	1389	-14	1843	-51	2207	-81
	0	9465	-	-	-	-	-	-
	2	7843	9273	-18	2589	67	3326	58
	4	7319	5000	32	8759	-20	8604	-18
	5	4740	4213	11	7533	-59	7289	-54
8.0	7	4427	3617	18	6779	-53	6310	-43
8,9	9	4268	3288	23	6206	-45	5775	-35
	15	2881	2777	4	4872	-69	4921	-71
	21	2283	2374	-4	3965	-74	4256	-86
	34	1355	1820	-34	2685	-98	3308	-144
	49	1092	1362	-25	1928	-77	2494	-128

VSTUPNÍ VZDUCH Δ Δ $\alpha_{cond,exp}$ $\alpha_{cond,m1}$ Δ $\alpha_{cond,m2}$ $\alpha_{cond,m3}$ RYCHLOST $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $m \cdot s^{-2}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ %_{obj} % % % --_ -_ --48 -40 -33 -49 31,3 -75 -18 -73 -27 -67 -30 -75 -59 -82 -86 -_ _ _ -45 -46 -46 -1 -46 26,6 -46 -8 -46 -13 -46 -19 -46 -35 -45 -48 -------31 -30 -27 -30 22,3 -33 -1 -42 -18 -55 -32 -53 -47 -51 -59 -66 -77 -------43 -63 -17 -50 -8 -40 -1 17,7 -54 -33 -53 -37 -46 -38 -34 -33 -38 -50 -87 -42 --_ _ ---26 -50 13,3 -20 -56 -30 -40 -18

P3 - Tab 23: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 26mm; Protiproudé chlazení; Kombinace 7-9.

	9	5943	7779	-31	6157	-4	3542	40
	15	4067	6225	-53	5230	-29	2839	30
	21	3428	5230	-53	4462	-30	2386	30
	35	2127	3836	-80	3446	-62	1752	18
	49	1632	2889	-77	2485	-52	1320	19
	63	1223	1661	-36	1990	-63	756	38
	0	9465	-	-	-	-	-	-
	2	7843	2323	70	2986	62	4753	39
	4	7319	7248	1	7120	3	3369	54
	5	4740	6204	-31	6003	-27	2884	39
8.0	7	4427	5552	-25	5168	-17	2570	42
8,9	9	4268	5053	-18	4702	-10	2339	45
	15	2881	3920	-36	3960	-37	1821	37
	21	2283	3154	-38	3385	-48	1466	36
	34	1355	2102	-55	2590	-91	977	28
	49	1092	1499	-37	1938	-78	694	36

VSTUPNÍ VZDUCH Δ Δ $\alpha_{cond,exp}$ $\alpha_{cond,m1}$ Δ $\alpha_{cond,m2}$ $\alpha_{cond,m3}$ RYCHLOST $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $m \cdot s^{-2}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ %_{obj} % % % -_ _ -_ -31,3 -2 -1 -3 -8 -10 -_ _ _ _ _ 26,6 ---_ _ -22,3 -5 -----17,7 -12 ---_ --13,3

P3 - Tab 24: Hodnoty a odchylky analytického CHTC od experimentálního CHTC pro trubku o průměru 26mm; Protiproudé chlazení; Kombinace 9-12.

	9	5943	2803	53	4655	22	3684	38
	15	4067	2386	41	3728	8	3132	23
	21	3428	2036	41	3132	9	2673	22
	35	2127	1574	26	2297	-8	2064	3
	49	1632	1135	30	1731	-6	1488	9
	63	1223	905	26	989	19	1185	3
	0	9465	-	-	-	-	-	-
	2	7843	6116	22	2032	74	2612	67
	4	7319	3310	55	4392	40	4314	41
	5	4740	2791	41	3762	21	3640	23
8.0	7	4427	2392	46	3358	24	3126	29
8,9	9	4268	2177	49	3059	28	2846	33
	15	2881	1840	36	2377	17	2401	17
	21	2283	1573	31	1912	16	2053	10
	34	1355	1203	11	1273	6	1568	-16
	49	1092	898	18	905	17	1170	-7

PŘÍLOHA 4 - OHTC 7) Trubka 16 mm – Souproud

VSTUPNI RYCHLOST	VZDUCH	$\alpha_{m,exp}$	$\alpha_{m,m1}$	Δ	$\alpha_{m,m2}$	Δ	$\alpha_{m,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	5658	-	-	-	-	-	-
	1,8	4786	4488	6	4583	4	4754	1
	3,7	4431	4456	-1	4573	-3	4714	-6
	5,7	4196	3760	10	3915	7	4036	4
	7,7	4028	3939	2	4070	-1	4213	-5
50	9,8	3891	3606	7	3782	3	3876	0
	15,4	3378	3241	4	3438	-2	3492	-3
	21,6	3121	2963	5	3199	-2	3197	-2
	35,4	2481	2419	2	2708	-9	2611	-5
	50,4	2257	1997	12	2339	-4	2173	4
	65,4	1827	1827	0	2083	-14	1978	-8
	0,0	4855	-	-	-	-	-	-
	1,7	4054	4154	-2	4229	-4	4334	-7
	3,6	3742	3802	-2	3908	-4	3980	-6
40	5,6	3528	3555	-1	3685	-4	3729	-6
	7,7	3444	3383	2	3539	-3	3555	-3
	9,7	3394	3303	3	3482	-3	3474	-2
	15,2	3064	2977	3	3184	-4	3134	-2
	21,5	2674	2650	1	2903	-9	2789	-4
	34,5	1936	2151	-11	2442	-26	2254	-16
	49,3	1809	1778	2	2135	-18	1872	-3
	64,2	1827	1725	6	2012	-10	1820	0
	0,0	3929	-	-	-	-	-	-
	1,7	3750	3875	-3	3968	-6	3968	-6
	3,6	3502	3575	-2	3693	-5	3666	-5
31.3	5,4	3252	3312	-2	3472	-7	3396	-4
51,5	7,3	3084	3130	-1	3318	-8	3210	-4
	9,4	2980	2990	0	3201	-7	3062	-3
	15,0	2765	2718	2	2957	-7	2781	-1
	20,9	2355	2400	-2	2674	-14	2446	-4
	0,0	3537	-	-	-	-	-	-
	1,8	3369	3398	-1	3563	-6	3428	-2
	3,6	3021	3164	-5	3308	-10	3193	-6
	5,5	2877	3091	-7	3244	-13	3115	-8
26,6	7,3	2673	2760	-3	2958	-11	2772	-4
	9,5	2529	2770	-10	2978	-18	2784	-10
	15,0	2411	2537	-5	2758	-14	2540	-5
	21,1	2206	2244	-2	2524	-14	2237	-1
	34,4	1751	1814	-4	2138	-22	1795	-2

P4 - Tab 1: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 16mm; Souproudé chlazení; Kombinace 1-3.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{m,exp}$	$\alpha_{m,m4}$	Δ	$\alpha_{m,m5}$	Δ	$\alpha_{m,m6}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	5658	-	-	-	-	-	-
	1,8	4786	4838	-1	4896	-2	4973	-4
	3,7	4431	4817	-9	4854	-10	4948	-12
	5,7	4196	4177	0	4203	0	4333	-3
	7,7	4028	4331	-8	4372	-9	4481	-11
50	9,8	3891	4037	-4	4056	-4	4205	-8
	15,4	3378	3675	-9	3686	-9	3848	-14
	21,6	3121	3419	-10	3393	-9	3600	-15
	35,4	2481	2887	-16	2795	-13	3053	-23
	50,4	2257	2506	-11	2354	-4	2673	-18
	65,4	1827	2232	-22	2139	-17	2384	-31
	0,0	4855	-	-	-	-	-	-
	1,7	4054	4402	-9	4540	-12	4600	-13
40	3,6	3742	4078	-9	4190	-12	4278	-14
	5,6	3528	3850	-9	3943	-12	4051	-15
	7,7	3444	3701	-7	3779	-10	3910	-14
	9,7	3394	3644	-7	3720	-10	3873	-14
	15,2	3064	3332	-9	3386	-10	3566	-16
	21,5	2674	3034	-13	3043	-14	3268	-22
	34,5	1936	2536	-31	2473	-28	2731	-41
	49,3	1809	2224	-23	2095	-16	2428	-34
	64,2	1827	2107	-15	2049	-12	2330	-27
	0,0	3929	-	-	-	-	-	-
	1,7	3750	4057	-8	4249	-13	4324	-15
	3,6	3502	3780	-8	3961	-13	4059	-16
31.3	5,4	3252	3551	-9	3695	-14	3829	-18
51,5	7,3	3084	3394	-10	3512	-14	3672	-19
	9,4	2980	3268	-10	3377	-13	3558	-19
	15,0	2765	3017	-9	3107	-12	3318	-20
	20,9	2355	2718	-15	2757	-17	3001	-27
	0,0	3537	-	-	-	-	-	-
	1,8	3369	3591	-7	3702	-10	3836	-14
	3,6	3021	3335	-10	3480	-15	3599	-19
	5,5	2877	3266	-14	3443	-20	3573	-24
26,6	7,3	2673	2969	-11	3066	-15	3232	-21
	9,5	2529	2991	-18	3122	-23	3301	-31
	15,0	2411	2760	-15	2895	-20	3089	-28
	21,1	2206	2517	-14	2587	-17	2837	-29
	34,4	1751	2120	-21	2124	-21	2423	-38

P4 - Tab 2: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 16mm; Souproudé chlazení; Kombinace 4-6.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{m,exp}$	α _{m,m7}	Δ	$\alpha_{m,m8}$	Δ	$\alpha_{m,m9}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	5658	-	-	-	-	-	-
	1,8	4786	5104	-7	5169	-8	4248	11
	3,7	4431	5056	-14	5135	-16	4217	5
	5,7	4196	4429	-6	4543	-8	3494	17
	7,7	4028	4594	-14	4688	-16	3681	9
50	9,8	3891	4280	-10	4412	-13	3330	14
	15,4	3378	3890	-15	4043	-20	2966	12
	21,6	3121	3594	-15	3783	-21	2685	14
	35,4	2481	2964	-19	3203	-29	2164	13
	50,4	2257	2517	-12	2818	-25	1760	22
	65,4	1827	2282	-25	2515	-38	1635	10
	0,0	4855	-	-	-	-	-	-
	1,7	4054	4680	-15	4735	-17	3840	5
	3,6	3742	4332	-16	4412	-18	3485	7
40	5,6	3528	4083	-16	4182	-19	3237	8
	7,7	3444	3919	-14	4040	-17	3058	11
	9,7	3394	3861	-14	4004	-18	2957	13
	15,2	3064	3518	-15	3687	-20	2635	14
	21,5	2674	3162	-18	3375	-26	2315	13
	34,5	1936	2562	-32	2808	-45	1860	4
	49,3	1809	2182	-21	2504	-38	1500	17
	64,2	1827	2139	-17	2414	-32	1471	19
	0,0	3929	-	-	-	-	-	-
	1,7	3750	4320	-15	4392	-17	3478	7
	3,6	3502	4033	-15	4127	-18	3167	10
31,3	5,4	3252	3761	-16	3891	-20	2905	11
,	7,3	3084	3576	-16	3730	-21	2723	12
	9,4	2980	3434	-15	3610	-21	2574	14
	15,0	2765	3159	-14	3364	-22	2303	17
	20,9	2355	2795	-19	3035	-29	2010	15
	0,0	3537	-	-	-	-	-	-
	1,0	2021	3722	-10	2617	-14	3012	0
	5,0	2877	3450	-10	3597	-20	2110	0
26.6	73	2673	3439	-20	3387	-23	2050	0
20,0	95	2075	3129	-15	3207	-21	2336	8
	15.0	2329	2892	-24	3087	-28	2098	13
	21.1	2206	2575	-17	2827	-28	1823	17
	34,4	1751	2101	-20	2402	-37	1433	18

P4 - Tab 3: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 16mm; Souproudé chlazení; Kombinace 7-9.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{m,exp}$	α _{m,m10}	Δ	$\alpha_{m,m10}$	Δ	$\alpha_{m,m12}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	5658	-	-	-	-	-	-
	1,8	4786	4353	9	4591	4	4683	2
	3,7	4431	4345	2	4553	-3	4664	-5
	5,7	4196	3660	13	3855	8	4006	5
	7,7	4028	3823	5	4038	0	4165	-3
50	9,8	3891	3517	10	3694	5	3866	1
	15,4	3378	3174	6	3316	2	3509	-4
	21,6	3121	2931	6	3024	3	3257	-4
	35,4	2481	2463	1	2456	1	2742	-11
	50,4	2257	2104	7	2026	10	2367	-5
	65,4	1827	1889	-3	1864	-2	2120	-16
	0,0	4855	-	-	-	-	-	-
	1,7	4054	3924	3	4173	-3	4247	-5
40	3,6	3742	3603	4	3815	-2	3921	-5
	5,6	3528	3380	4	3564	-1	3693	-5
	7,7	3444	3227	6	3386	2	3541	-3
	9,7	3394	3151	7	3299	3	3479	-3
	15,2	3064	2855	7	2964	3	3171	-3
	21,5	2674	2581	3	2626	2	2880	-8
	34,5	1936	2165	-12	2112	-9	2405	-24
	49,3	1809	1858	-3	1734	4	2093	-16
	64,2	1827	1747	4	1699	7	1986	-9
	0,0	3929	-	-	-	-	-	-
	1,7	3750	3584	4	3807	-2	3902	-4
	3,6	3502	3299	6	3499	0	3620	-3
31.3	5,4	3252	3082	5	3229	1	3393	-4
51,5	7,3	3084	2930	5	3042	1	3235	-5
	9,4	2980	2804	6	2893	3	3109	-4
	15,0	2765	2557	7	2615	5	2859	-3
	20,9	2355	2299	2	2291	3	2572	-9
	0,0	3537	-	-	-	-	-	-
	1,8	3369	3209	5	3287	2	3463	-3
	3,6	3021	2936	3	3049	-1	3200	-6
	5,5	2877	2828	2	2958	-3	3118	-8
26,6	7,3	2673	2592	3	2630	2	2838	-6
	9,5	2529	2565	-1	2629	-4	2845	-12
	15,0	2411	2334	3	2386	1	2614	-8
	21,1	2206	2115	4	2090	5	2377	-8
	34,4	1751	1759	0	1662	5	1991	-14

P4 - Tab 4: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 16mm; Souproudé chlazení; Kombinace 10-12.

8) Trubka 16 mm – Protiproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	5324	-	-	-	-	-	-
	1,8	5007	4977	1	4444	11	5144	-3
	3,7	4675	4611	1	4134	12	4792	-3
	5,7	4479	4373	2	3937	12	4561	-2
	7,7	4331	4179	3	3786	13	4374	-1
50	9,8	4151	3984	4	3638	12	4178	-1
	15,4	3658	3539	3	3306	10	3729	-2
	21,6	3331	3222	3	3060	8	3408	-2
	35,4	2703	2588	4	2602	4	2754	-2
	50,4	2299	2098	9	2209	4	2253	2
	65,4	1815	1872	-3	2022	-11	2008	-11
	0,0	4758	-	-	-	-	-	-
	1,7	4329	4573	-6	4119	5	4693	-8
	3,6	3964	4163	-5	3794	4	4289	-8
40	5,6	3748	3892	-4	3582	4	4021	-7
	7,7	3607	3707	-3	3440	5	3837	-6
	9,7	3601	3622	-1	3358	7	3752	-4
	15,2	3230	3234	0	3064	5	3359	-4
	21,5	2892	2877	0	2812	3	2992	-3
	34,5	2078	2214	-7	2333	-12	2302	-11
	49,3	1820	1833	-1	2022	-11	1913	-5
	64,2	1805	1778	2	1906	-6	1864	-3
	0,0	4602	-	-	-	-	-	-
	1,7	4078	4248	-4	3890	5	4317	-6
	3,6	3713	3897	-5	3577	4	3967	-7
31.3	5,4	3434	3570	-4	3363	2	3633	-6
51,5	7,3	3247	3381	-4	3214	1	3445	-6
	9,4	3214	3291	-2	3138	2	3352	-4
	15,0	2841	2912	-2	2837	0	2963	-4
	20,9	2456	2538	-3	2583	-5	2578	-5
	0,0	4140	-	-	-	-	-	-
	1,8	3877	4232	-9	4155	-7	4265	-10
	3,6	3435	3599	-5	3480	-1	3624	-5
	5,5	3277	3494	-7	3326	-1	3516	-7
26,6	7,3	2814	2929	-4	2906	-3	2945	-5
	9,5	2721	2942	-8	2890	-6	2954	-9
	15,0	2604	2735	-5	2702	-4	2738	-5
	21,1	2401	2425	-1	2471	-3	2420	-1
	34,4	1823	1894	-4	2062	-13	1877	-3

P4 - Tab 5: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 16mm; Protiproudé chlazení; Kombinace 1-3.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	α _{cond,m4}	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	5324	_	-	-	-	-	-
	1,8	5007	4689	6	5230	-4	4820	4
	3,7	4675	4380	6	4890	-5	4517	3
	5,7	4479	4181	7	4669	-4	4324	3
	7,7	4331	4028	7	4491	-4	4176	4
50	9,8	4151	3870	7	4305	-4	4026	3
	15,4	3658	3519	4	3869	-6	3678	-1
	21,6	3331	3259	2	3562	-7	3426	-3
	35,4	2703	2768	-2	2914	-8	2927	-8
	50,4	2299	2359	-3	2412	-5	2512	-9
	65,4	1815	2153	-19	2151	-19	2288	-26
	0,0	4758	-	-	-	-	-	-
	1,7	4329	4285	1	4827	-12	4474	-3
40	3,6	3964	3954	0	4435	-12	4143	-5
	5,6	3748	3737	0	4176	-11	3928	-5
	7,7	3607	3590	0	4002	-11	3786	-5
	9,7	3601	3506	3	3935	-9	3719	-3
	15,2	3230	3199	1	3554	-10	3413	-6
	21,5	2892	2930	-1	3198	-11	3143	-9
	34,5	2078	2417	-16	2489	-20	2591	-25
	49,3	1820	2098	-15	2100	-15	2268	-25
	64,2	1805	1991	-10	2069	-15	2193	-21
	0,0	4602	-	-	-	-	-	-
	1,7	4078	3978	2	4509	-11	4223	-4
	3,6	3713	3661	1	4185	-13	3918	-6
31.3	5,4	3434	3434	0	3827	-11	3676	-7
01,0	7,3	3247	3284	-1	3686	-14	3540	-9
	9,4	3214	3203	0	3607	-12	3476	-8
	15,0	2841	2890	-2	3225	-14	3157	-11
	20,9	2456	2622	-7	2846	-16	2872	-17
	0,0	4140	-	-	-	-	-	-
	1,8	3877	4190	-8	4535	-17	4474	-15
	3,0	3435	3507	-2	38/1	-13	3775	-10
26.6	3,5 7 2	3277 2014	3350	-2	3/90	-10	3033 2155	-11
20,6	1,5	2814	2922	-4	31/3 2215	-15	3133	-12
	9,5	2721	2902	- /	3213 2025	-18	31/1	-1/
	21.1	2004	2704	-4	2035	-1/	5007 2757	-15
	34.4	1823	2405	-3	2/10	-13	2131	-15
	J+,+	1023	2040	-12	2104	-17	2314	-21

P4 - Tab 6: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 16mm; Protiproudé chlazení; Kombinace 4-6.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	α _{cond,m7}	Δ	$\alpha_{cond,m8}$	Δ	acond,m9	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	5324	-	-	-	-	-	-
	1,8	5007	5351	-7	5008	0	4821	4
	3,7	4675	5023	-7	4708	-1	4437	5
	5,7	4479	4810	-7	4516	-1	4188	7
	7,7	4331	4638	-7	4368	-1	3982	8
50	9,8	4151	4454	-7	4212	-1	3775	9
	15,4	3658	4017	-10	3850	-5	3320	9
	21,6	3331	3709	-11	3589	-8	2993	10
	35,4	2703	3052	-13	3063	-13	2360	13
	50,4	2299	2547	-11	2639	-15	1883	18
	65,4	1815	2273	-25	2402	-32	1695	7
	0,0	4758	-	-	-	-	-	-
	1,7	4329	4915	-14	4602	-6	4353	-1
	3,6	3964	4529	-14	4268	-8	3928	1
40	5,6	3748	4272	-14	4049	-8	3648	3
	7,7	3607	4100	-14	3904	-8	3451	4
	9,7	3601	4034	-12	3837	-7	3347	7
	15,2	3230	3652	-13	3521	-9	2952	9
	21,5	2892	3290	-14	3238	-12	2590	10
	34,5	2078	2562	-23	2658	-28	1956	6
	49,3	1820	2169	-19	2330	-28	1587	13
	64,2	1805	2147	-19	2267	-26	1540	15
	0,0	4602	-	-	-	-	-	-
	1,7	4078	4558	-12	4290	-5	3963	3
	3,6	3713	4235	-14	3982	-7	3590	3
31,3	5,4	3434	3875	-13	3731	-9	3258	5
,	7,3	3247	3733	-15	3593	-11	3049	6
	9,4	3214	3652	-14	3526	-10	2937	9
	15,0	2841	3264	-15	3198	-13	2562	10
	20,9	2456	2876	-1/	2901	-18	2199	10
	1.8	4140	-	-	-	-	-	-
	1,0	2425	4337	-10	4497	-10	2241	6
	5,0	3433	3804	-15	3668	-10	3108	5
26.6	73	2814	3183	-10	3165	-12	2602	8
20,0	9.5	2014	3220	-13	3177	-17	2582	5
	15.0	2,604	3033	-16	3005	-15	2345	10
	21.1	2401	2708	-13	2748	-14	2044	15
	34,4	1823	2145	-18	2295	-26	1544	15

P4 - Tab 7: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 16mm; Protiproudé chlazení; Kombinace 7-9.

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m10}$	Δ	$\alpha_{cond,m11}$	Δ	$\alpha_{cond,m12}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	5324	_	-	-	-	-	-
	1,8	5007	4223	16	5045	-1	4542	9
	3,7	4675	3907	16	4682	0	4229	10
	5,7	4479	3706	17	4446	1	4030	10
	7,7	4331	3549	18	4251	2	3874	11
50	9,8	4151	3396	18	4052	2	3719	10
	15,4	3658	3067	16	3600	2	3375	8
	21,6	3331	2818	15	3277	2	3119	6
	35,4	2703	2376	12	2626	3	2640	2
	50,4	2299	1997	13	2129	7	2238	3
	65,4	1815	1846	-2	1907	-5	2056	-13
	0,0	4758	-	-	-	-	-	-
	1,7	4329	3829	12	4587	-6	4139	4
40	3,6	3964	3506	12	4174	-5	3808	4
	5,6	3748	3297	12	3902	-4	3594	4
	7,7	3607	3149	13	3712	-3	3445	4
	9,7	3601	3052	15	3622	-1	3358	7
	15,2	3230	2764	14	3228	0	3057	5
	21,5	2892	2518	13	2861	1	2795	3
	34,5	2078	2086	0	2183	-5	2304	-11
	49,3	1820	1786	2	1797	1	1989	-9
	64,2	1805	1666	8	1755	3	1886	-5
	0,0	4602	-	-	-	-	-	-
	1,7	4078	3536	13	4212	-3	3835	6
	3,6	3713	3216	13	3862	-4	3516	5
31.3	5,4	3434	3016	12	3488	-2	3294	4
51,5	7,3	3247	2858	12	3329	-3	3143	3
	9,4	3214	2764	14	3219	0	3056	5
	15,0	2841	2478	13	2836	0	2752	3
	20,9	2456	2249	8	2466	0	2497	-2
	0,0	4140	-	-	-	-	-	-
	1,8	3877	3741	3	4120	-6	4038	-4
	3,6	3435	3098	10	3495	-2	3368	2
	5,5	3277	2912	11	3380	-3	3203	2
26,6	7,3	2814	2575	8	2827	0	2803	0
	9,5	2721	2522	7	2829	-4	2773	-2
	15,0	2604	2308	11	2606	0	2571	1
	21,1	2401	2095	13	2291	5	2339	3
	34,4	1823	1721	6	1759	4	1932	-6

P4 - Tab 8: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 16mm; Protiproudé chlazení; Kombinace 10-12.

9) Trubka 20 mm – Souproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	1806	-	-	-	-	-	_
	1,8	1776	2557	-44	2767	-56	2477	-39
	3,6	1616	2484	-54	2626	-63	2402	-49
	5,4	1556	2266	-46	2406	-55	2147	-38
10.4	7,4	1271	1993	-57	2192	-72	1887	-48
13,4	9,4	1164	1922	-65	2126	-83	1808	-55
	15,1	1162	1795	-54	1998	-72	1665	-43
	20,9	994	1566	-58	1796	-81	1442	-45
	34,1	825	1283	-56	1528	-85	1164	-41
	48,8	782	1038	-33	1294	-66	928	-19
	0,0	2923	-	-	-	-	-	-
	1,8	2877	2998	-4	3076	-7	2983	-4
	4,5	2598	2681	-3	2773	-7	2652	-2
	5,4	2399	2537	-6	2642	-10	2499	-4
	7,4	2180	2354	-8	2486	-14	2313	-6
17,7	9,5	2060	2224	-8	2379	-15	2177	-6
	15,1	1879	2015	-7	2185	-16	1960	-4
	21,0	1722	1849	-7	2032	-18	1786	-4
	34,6	1310	1483	-13	1699	-30	1418	-8
	48,9	1146	1239	-8	1453	-27	1175	-3
	63,3	848	955	-13	1175	-38	907	-7
	0,0	3411	-	-	-	-	-	-
	1,8	3137	3271	-4	3299	-5	3318	-6
	3,6	3046	3033	0	3093	-2	3079	-1
	5,4	2625	2703	-3	2832	-8	2741	-4
22.2	7,4	2462	2568	-4	2704	-10	2603	-6
22,3	9,6	2346	2349	0	2444	-4	2374	-1
	15,1	2203	2133	3	2206	0	2150	2
	21,0	1900	1904	19	2030	-3	1970	17
	40.2	1374	1019	-10	1642	-34	1013	-17
	63.6	1026	1072	-9 _/	1288	-26	1067	-0 -4
	0.0	3564	-	-	-	-	-	-
	17	3346	3418	-2	3464	-4	3525	-5
	3.5	3109	3138	-1	3204	-3	3241	-4
	5.4	2923	2938	-1	3032	-4	3039	-4
	7 5	2923	2794	1	2910	-3	2893	-3
26.6	9.5	2686	2695	0	2813	-5	2788	-4
_0,0	15.1	2399	2434	-1	2572	-7	2516	-5
	21.1	1993	2165	-9	2333	-17	2229	-12
	34.6	1635	1781	_9	1996	-2.2	1827	-12
	49.1	1313	1427	-9	1680	-28	1461	-11
	64.1	1112	1160	-4	1361	-22	1193	-7
31.3	0.0	3730	-	-	-	-	-	-
51,5	1,7	3459	3573	-3	3586	-4	3730	-8

P4 - Tab 9: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 20mm; Souproudé chlazení; Kombinace 1-3.

	3,6	3232	3327	-3	3354	-4	3489	-8
	5,6	3025	3109	-3	3179	-5	3267	-8
	7,5	2843	2941	-3	3032	-7	3097	-9
	9,6	2706	2809	-4	2914	-8	2958	-9
	15,1	2408	2540	-5	2671	-11	2677	-11
	21,3	2295	2353	-3	2504	-9	2479	-8
	34,8	1894	1934	-2	2139	-13	2035	-7
	49,9	1571	1563	0	1792	-14	1647	-5
	64,5	1215	1242	-2	1429	-18	1316	-8
	0,0	4130	-	-	-	-	-	-
	1,8	3699	3789	-2	3786	-2	4028	-9
40	3,7	3461	3518	-2	3541	-2	3767	-9
	5,7	3366	3346	1	3395	-1	3601	-7
	7,7	3277	3232	1	3281	0	3487	-6
	9,8	3109	3085	1	3158	-2	3334	-7
	15,6	2909	2823	3	2925	-1	3065	-5
	21,7	2454	2540	-4	2681	-9	2751	-12
	35,5	1998	2046	-2	2273	-14	2227	-11
	51,0	1657	1687	-2	1891	-14	1843	-11
	0,0	4827	-	-	-	-	-	-
	1,8	4438	4104	8	4092	8	4430	0
	3,7	4020	3821	5	3808	5	4153	-3
	5,9	3873	3648	6	3634	6	3990	-3
50	8,0	3770	3516	7	3519	7	3864	-2
30	10,2	3582	3312	8	3388	5	3661	-2
	16,0	3235	3027	6	3120	4	3362	-4
	22,4	2906	2768	5	2893	0	3082	-6
	37,1	2348	2252	4	2400	-2	2528	-8
	52,9	1962	1851	6	1976	-1	2093	-7

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m4}$	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	1806	-	-	-	-	-	-
	1,8	1776	2695	-52	2829	-59	3004	-69
	3,6	1616	2549	-58	2775	-72	2897	-79
	5,4	1556	2292	-47	2561	-65	2684	-72
10.4	7,4	1271	2093	-65	2254	-77	2427	-91
13,4	9,4	1164	2018	-73	2192	-88	2372	-104
	15,1	1162	1872	-61	2086	-80	2273	-96
	20,9	994	1676	-69	1828	-84	2041	-105
	34,1	825	1408	-71	1523	-85	1756	-113
	48,8	782	1177	-51	1258	-61	1513	-94
	0,0	2923	-	-	-	-	-	-
	1,8	2877	3062	-6	3321	-15	3388	-18
	4,5	2598	2745	-6	3030	-17	3110	-20
	5,4	2399	2605	-9	2866	-19	2957	-23
	7,4	2180	2447	-12	2671	-23	2788	-28
17,7	9,5	2060	2334	-13	2540	-23	2678	-30
	15,1	1879	2131	-13	2334	-24	2489	-32
	21,0	1722	1970	-14	2168	-26	2338	-36
	34,6	1310	1633	-25	1762	-35	1968	-50
	48,9	1146	1387	-21	1500	-31	1715	-50
	63,3	848	1123	-32	1166	-37	1390	-64
	0,0	3411	-	-	-	-	-	-
	1,8	3137	3345	-7	3620	-15	3643	-16
	3,6	3046	3139	-3	3404	-12	3456	-13
	5,4	2625	2868	-9	3055	-16	3167	-21
	7,4	2462	2738	-11	2912	-18	3031	-23
22,3	9,6	2346	2468	-5	2661	-13	2745	-17
	15,1	2203	2222	-1	2443	-11	2509	-14
	21,0	1966	2063	-5	2274	-16	2360	-20
	34,4	1374	1838	-34	1909	-39	2119	-54
	49,2	1221	1557	-27	1598	-31	1835	-50
	63,6	1026	1283	-25	1306	-27	1527	-49
	0,0	3564	-	-	-	-	-	-
	1,7	3346	3569	-7	3771	-13	3809	-14
	3,5	3109	3305	-6	3494	-12	3550	-14
	5,4	2923	3129	-7	3302	-13	3383	-16
	7,5	2817	3006	-7	3168	-12	3269	-16
26,6	9,5	2686	2903	-8	3080	-15	3185	-19
	15,1	2399	2652	-11	2820	-18	2945	-23
	21,1	1993	2394	-20	2518	-26	2671	-34
	34,6	1635	2042	-25	2106	-29	2309	-41
	49,1	1313	1715	-31	1709	-30	1955	-49
	64,1	1112	1395	-26	1405	-26	1608	-45
	0,0	3730	-	-	-	-	-	-
31.3	1,7	3459	3743	-8	3921	-13	3933	-14
51,5	3,6	3232	3513	-9	3697	-14	3719	-15
	5,6	3025	3334	-10	3489	-15	3549	-17
	7,5	2843	3184	-12	3320	-17	3400	-20

P4 - Tab 10: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 20mm; Souproudé chlazení; Kombinace 4-6.

	9,6	2706	3059	-13	3194	-18	3286	-21
	15,1	2408	2805	-16	2919	-21	3037	-26
	21,3	2295	2627	-14	2737	-19	2876	-25
	34,8	1894	2239	-18	2286	-21	2480	-31
	49,9	1571	1876	-19	1874	-19	2097	-33
	64,5	1215	1505	-24	1501	-24	1690	-39
	0,0	4130	-	-	-	-	-	-
	1,8	3699	4025	-9	4146	-12	4144	-12
	3,7	3461	3788	-9	3898	-13	3917	-13
	5,7	3366	3646	-8	3748	-11	3789	-13
40	7,7	3277	3532	-8	3641	-11	3683	-12
40	9,8	3109	3401	-9	3498	-13	3561	-15
	15,6	2909	3161	-9	3247	-12	3337	-15
	21,7	2454	2885	-18	2929	-19	3056	-25
	35,5	1998	2447	-22	2403	-20	2614	-31
	51,0	1657	2044	-23	2006	-21	2202	-33
	0,0	4827	-	-	-	-	-	-
	1,8	4438	4420	0	4492	-1	4482	-1
	3,7	4020	4142	-3	4220	-5	4209	-5
	5,9	3873	3977	-3	4067	-5	4055	-5
50	8,0	3770	3867	-3	3949	-5	3952	-5
30	10,2	3582	3730	-4	3758	-5	3825	-7
	16,0	3235	3448	-7	3472	-7	3554	-10
	22,4	2906	3198	-10	3201	-10	3313	-14
	37,1	2348	2670	-14	2653	-13	2791	-19
	52,9	1962	2217	-13	2211	-13	2332	-19

VSTUPNÍ PVCULOST	VZDUCH	$\alpha_{cond,exp}$	α _{cond,m4}	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
m·s ⁻²	0/2 1 -	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	0/2	$W \cdot m^{-2} \cdot K^{-1}$	0/2	$W \cdot m^{-2} \cdot K^{-1}$	0/2
111 5		1806		/0	w III K	/0	w III K	/0
	1.8	1776	2756	55	2041	- 66	2108	10
	1,0	1770	2730	-55	2941	-00	2108	-19
	5,0	1010	2099	-07	2627	-15	2018	-23
	5,4	1556	2449	-57	2579	-00	1773	-14
13,4	7,4	12/1	2153	-09	2337	-84	1552	-22
	9,4	1164	2082	-79	2273	-95	1473	-27
	15,1	1162	1957	-68	2153	-85	1327	-14
	20,9	994	1703	-/1	1926	-94	1143	-15
	34,1	825	1398	-70	1640	-99	904	-10
	48,8	782	1137	-45	1395	-78	706	10
	0,0	2923	-	-	-	-	-	-
	1,8	2877	3304	-15	3371	-17	2554	11
	4,5	2598	2998	-15	3079	-19	2212	15
	5,4	2399	2827	-18	2921	-22	2082	13
17.7	7,4	2180	2629	-21	2748	-26	1912	12
1/,/	9,5	2060	2492	-21	2634	-28	1/85	13
	15,1	1879	2277	-21	2436	-30	1581	10
	21,0	1/22	2102	-22	2276	-32	1422	1/
	34,0	1310	1692	-29	1902	-45	000	15
	40,9	010	1429	-23	1043	-44	900	21
	03,5	040	1111	-51	1555	-37	089	19
	0,0	2127	-	-	-	-	-	-
	1,0	3046	3034	-17	3400	-17	2606	9
	5.0	2625	3433	-13	3490	-15	2000	14
	5,4 7.4	2023	2038	-17	3056	-22	2290	13
22.3	9.6	2402	2938	-19	2762	-24	1073	12
22,5	15.1	2203	2079	-14	2702	-10	1763	20
	21.0	1966	2433	-16	2361	-20	1592	19
	34.4	1374	1900	-38	2111	-54	1281	7
	49.2	1221	1583	-30	1821	-49	1020	17
	63.6	1026	1297	-26	1518	-48	816	21
	0.0	3564	-	-	-	-	-	-
	17	3346	3856	-15	3892	-16	3064	8
	3.5	3109	3578	-15	3631	-17	2780	11
	5.4	2923	3384	-16	3461	-18	2577	12
	7.5	2923	3250	-15	3347	_19	2423	12
26.6	9.5	2686	3158	-18	3259	-21	2314	14
20,0	15.1	2399	2890	-20	3012	-26	2056	14
	21.1	1003	2571	20	2721	37	1810	0
	21,1	1995	2371	-29	2721	-37	1453	9 11
	/0 1	1313	1730	_37	1083		1433	13
	4 9,1 64.1	1110	1/37	-52	1629	-51	022	17
	04,1	3720	1430	$n^{-2} \cdot K^{-1}$ % $W \cdot m^{-2} \cdot K^{-1}$ 756-552941699-672827449-572579153-692337082-792273957-682153703-711926398-701640137-451395304-153371998-153079827-182921629-212748492-212634277-212436102-222276692-291902429-251645111-311335654-173677439-133490083-173194938-193056679-142762453-112519275-162361900-382111583-301821297-261518856-153892578-153631384-163461250-153347158-183259890-203012571-292721146-312346739-321983436-291638 <td>1038</td> <td>-4/</td> <td>723</td> <td>1/</td>	1038	-4/	723	1/
	17	3750	-	-	4057	-	2770	-
31,3	1,/	3727	4040	-1/	4037	-1/	3018	5
	5.6	3025	3610	-10	3675	-19	2700	/ 8
	7.5	2843	3451	-20	3525	-21	2622	8
	,,5	2045	5151	<u>~ 1</u>	5525	<u>~</u> -	2022	0

P4 - Tab 11: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 20mm; Souproudé chlazení; Kombinace 7-9.

	9,6	2706	3320	-23	3407	-26	2483	8
	15,1	2408	3037	-26	3149	-31	2218	8
	21,3	2295	2848	-24	2981	-30	2025	12
	34,8	1894	2378	-26	2567	-36	1629	14
	49,9	1571	1952	-24	2171	-38	1298	17
	64,5	1215	1574	-30	1760	-45	1027	15
	0,0	4130	-	-	-	-	-	-
	1,8	3699	4335	-17	4333	-17	3578	3
	3,7	3461	4099	-18	4116	-19	3294	5
	5,7	3366	3959	-18	3995	-19	3108	8
40	7,7	3277	3853	-18	3890	-19	2988	9
40	9,8	3109	3707	-19	3764	-21	2835	9
	15,6	2909	3456	-19	3539	-22	2563	12
	21,7	2454	3114	-27	3230	-32	2289	7
	35,5	1998	2568	-29	2766	-38	1812	9
	51,0	1657	2153	-30	2340	-41	1479	11
	0,0	4827	-	-	-	-	-	-
	1,8	4438	4749	-7	4741	-7	3966	11
	3,7	4020	4486	-12	4477	-11	3675	9
	5,9	3873	4345	-12	4335	-12	3494	10
50	8,0	3770	4236	-12	4239	-12	3353	11
50	10,2	3582	4052	-13	4109	-15	3138	12
	16,0	3235	3760	-16	3832	-18	2847	12
	22,4	2906	3475	-20	3574	-23	2585	11
	37,1	2348	2904	-24	3030	-29	2078	11
	52,9	1962	2439	-24	2554	-30	1698	13

VSTUPNÍ	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m4}$	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
RYCHLOST								
m·s ⁻²	%₀bj.	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	1806	-	-	-	-	-	-
	1,8	1776	2354	-33	2348	-32	2578	-45
	3,6	1616	2179	-35	2268	-40	2421	-50
	5,4	1556	1925	-24	2016	-30	2165	-39
12.4	7,4	1271	1770	-39	1766	-39	1978	-56
13,4	9,4	1164	1691	-45	1688	-45	1903	-63
	15,1	1162	1530	-32	1544	-33	1751	-51
	20,9	994	1370	-38	1333	-34	1567	-58
	34,1	825	1133	-37	1067	-29	1308	-59
	48,8	782	929	-19	843	-8	1085	-39
	0,0	2923	-	-	-	-	-	-
	1,8	2877	2643	8	2837	1	2920	-1
	4,5	2598	2311	11	2500	4	2596	0
	5,4	2399	2196	8	2354	2	2464	-3
	7,4	2180	2055	6	2170	0	2309	-6
17,7	9,5	2060	1949	5	2038	1	2199	-7
	15,1	1879	1754	7	1825	3	1999	-6
	21,0	1722	1601	7	1656	4	1840	-7
	34,6	1310	1314	0	1304	0	1518	-16
	48,9	1146	1092	5	1071	6	1278	-12
	63,3	848	880	-4	821	3	1029	-21
	0,0	3411	-	-	-	-	-	-
	1,8	3137	2892	8	3164	-1	3192	-2
	3,6	3046	2672	12	2917	4	2980	2
	5,4	2625	2436	7	2586	1	2718	-4
	7,4	2462	2315	6	2449	1	2589	-5
22,3	9,6	2346	2074	12	2226	5	2324	1
	15,1	2203	1838	17	2008	9	2082	6
	21,0	1966	1686	14	1829	7	1923	2
	34,4	1374	1500	-9	1492	-9	1716	-25
	49,2	1221	1244	-2	1205	1	1442	-18
	63,6	1026	1009	2	969	6	1178	-15
	0,0	3564	-	-	-	-	-	-
	1,7	3346	3115	7	3368	-1	3414	-2
	3,5	3109	2853	8	3082	1	3149	-1
	5,4	2923	2679	8	2878	2	2974	-2
	7,5	2817	2547	10	2728	3	2846	-1
26,6	9,5	2686	2438	9	2622	2	2742	-2
	15,1	2399	2197	8	2356	2	2495	-4
	21,1	1993	1980	1	2080	-4	2249	-13
	34,6	1635	1666	-2	1692	-3	1908	-17
	49,1	1313	1387	-6	1342	-2	1595	-21
	64,1	1112	1108	0	1089	2	1286	-16
	0,0	3730	-	-	-	-	-	-
	1,7	3459	3293	5	3576	-3	3590	-4
31,3	3,6	3232	3046	6	3327	-3	3353	-4
	5,6	3025	2865	5	3103	-3	3173	-5
	7,5	2843	2719	4	2931	-3	3023	-6

P4 - Tab 12: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 20mm; Souproudé chlazení; Kombinace 10-12.

	9,6	2706	2594	4	2793	-3	2898	-7
	15,1	2408	2355	2	2517	-5	2649	-10
	21,3	2295	2180	5	2321	-1	2473	-8
	34,8	1894	1834	3	1891	0	2097	-11
	49,9	1571	1518	3	1519	3	1748	-11
	64,5	1215	1203	1	1207	1	1393	-15
	0,0	4130	-	-	-	-	-	-
	1,8	3699	3575	3	3877	-5	3874	-5
	3,7 3461 3319	4	3606	-4	3628	-5		
	5,7	3366	3160	6	3435	-2	3482	-3
40	7,7	3277	3039	7	3317	-1	3365	-3
40	9,8	3109	2912	6	3165	-2	3237	-4
	15,6	2909	2668	8	2896	0	2996	-3
	21,7	2454	2434	1	2593	-6	2733	-11
	35,5	1998	2041	-2	2082	-4	2308	-15
	51,0	1657	1681	-1	1715	-3	1918	-16
	0,0	4827	-	-	-	-	-	-
	1,8	4438	3953	11	4280	4	4269	4
	3,7	4020	3661	9	3996	1	3984	1
	5,9	3873	3479	10	3829	1	3815	1
50	8,0	3770	3357	11	3697	2	3700	2
30	10,2	3582	3217	10	3490	3	3563	1
	16,0	3235	2943	9	3195	1	3284	-2
	22,4	2906	2712	7	2920	0	3041	-5
	37,1	2348	2226	5	2381	-1	2527	-8
	52,9	1962	1822	7	1964	0	2089	-7

10) Trubka 20 mm – Protiproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	2341	-	-	-	-	-	_
	1,8	1648	2521	-53	2578	-56	2461	-49
	3,6	1634	2423	-48	2431	-49	2359	-44
	5,4	1589	2346	-48	2329	-47	2271	-43
12.4	7,4	1344	2068	-54	2139	-59	1975	-47
13,4	9,4	1259	1988	-58	2056	-63	1887	-50
	15,1	1239	1909	-54	1959	-58	1815	-46
	20,9	916	1579	-72	1711	-87	1470	-60
	34,1	829	1106	-33	1286	-55	1004	-21
	48,8	715		0		0		0
	0,0	3331	-	-	-	-	-	-
	1,8	3091	3099	0	2924	5	3091	0
	4,5	2738	2792	-2	2585	6	2776	-1
	5,4	2504	2601	-4	2473	1	2571	-3
	7,4	2285	2433	-6	2347	-3	2399	-5
17,7	9,5	2114	2296	-9	2248	-6	2257	-7
	15,1	1947	2091	-7	2075	-7	2043	-5
	21,0	1831	1941	-6	1945	-6	1885	-3
	34,6	1398	1553	-11	1645	-18	1492	-7
	48,9	1178	1299	-10	1412	-20	1245	-6
	63,3	946	1019	-8	1153	-22	975	-3
	0,0	3499	-	-	-	-	-	-
	1,8	3309	3309	0	3008	9	3340	-1
	3,6	3195	3127	2	2837	11	3160	1
	5,4	2591	2747	-6	2599	0	2775	-7
	7,4	2552	2673	-5	2530	1	2701	-6
22,3	9,6	2423	2545	-5	2431	0	2567	-6
	15,1	2265	2343	-3	2263	0	2359	-4
	21,0	2108	2187	-4	2127	-1	2193	-4
	34,4	1425	1663	-1/	1760	-24	1659	-16
	49,2	1246	13/3	-10	1510	-21	1303	-9
	05,0	2700	1110	-2	1248	-14	1111	-2
	0,0	3700	2161	2	2160	12	2524	-
	1,7	3184	3180	0	2028	12 Q	3261	1
	5,5	2000	2021	1	2926	0	2105	-2
	3,4	2999	2024	-1	2790	/	2008	-4
26.6	7,5	2931	2934	1	2708	0	3008	-5
20,0	9,5	2788	2813	-1	2010	0	2885	-3
	15,1	2467	2545	-3	2397	5	2609	-6
	21,1	2156	2287	-0	2221	-5	2342	-9
	34,6	1682	1850	-10	1902	-13	1891	-12
	49,1	1376	1489	-8	1615	-17	1522	-11
	64,1	1176	1212	-3	1311	-11	1245	-6
31,3	0,0	3859	-	-	-	-	-	-
	1,7	3655	3552	3	3235	11	3651	0

P4 - Tab 13: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 20mm; Protiproudé chlazení; Kombinace 1-3.

	3,6	3377	3354	1	3056	10	3465	-3
	5,6	3156	3200	-1	2921	7	3311	-5
	7,5	2945	3017	-2	2791	5	3131	-6
	9,6	2844	2921	-3	2706	5	3034	-7
	15,1	2577	2675	-4	2505	3	2785	-8
	21,3	2417	2476	-2	2357	2	2581	-7
	34,8	2009	2055	-2	2045	-2	2145	-7
	49,9	1722	1666	3	1726	0	1746	-1
	64,5	1205	1291	-7	1377	-14	1361	-13
	0,0	4362	-	-	-	-	-	-
	1,8	3941	3765	4	3412	13	3909	1
	3,7	3607	3534	2	3204	11	3694	-2
	5,7	3545	3435	3	3101	13	3606	-2
40	7,7	3478	3336	4	3011	13	3513	-1
40	9,8	3255	3203	2	2912	11	3382	-4
	15,6	3043	2975	2	2719	11	3159	-4
	21,7	2574	2670	-4	2524	2	2845	-11
	35,5	2040	2158	-6	2171	-6	2314	-13
	51,0	1765	1751	1	1805	-2	1895	-7
	0,0	4812	-	-	-	-	-	-
	1,8	4486	4021	10	3616	19	4206	6
	3,7	4244	3861	9	3435	19	4062	4
	5,9	4062	3728	8	3302	19	3945	3
50	8,0	3938	3623	8	3208	19	3852	2
50	10,2	3768	3482	8	3107	18	3722	1
	16,0	3390	3199	6	2894	15	3448	-2
	22,4	3027	2922	3	2702	11	3168	-5
	37,1	2469	2416	2	2281	8	2655	-8
	52,9	1980	1946	2	1833	7	2172	-10

VSTUPNÍ VZDUCH Δ Δ $\alpha_{cond,exp}$ $\alpha_{cond,m4}$ Δ $\alpha_{\text{cond},m5}$ $\alpha_{cond,m6}$ RYCHLOST $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $m \cdot s^{-2}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ % obj. % % % -_ 0,0 2341 -_ -_ 1,8 1648 2521 -53 2708 -64 2753 -67 3,6 1634 2367 -45 2631 -61 2637 -61 -42 5,4 1589 2253 2577 -62 2563 -61 7,4 1344 2049 -52 2292 -71 2352 -75 13,4 9,4 1259 1958 -55 2222 -76 2280 -81 15,1 1239 -51 -72 2182 -76 1866 2137 20,9 916 1606 -75 1805 -97 1922 -110 34,1 829 1182 -43 1310 -58 1488 -80 0 0 48,8 715 0 0,0 3331 -_ _ _ _ _ -3 3091 2915 6 3328 -8 3188 1,8 4,5 2738 2567 6 3047 -11 2874 -5 2504 2442 2 2850 2743 -10 5,4 -14 2285 2312 -1 2618 -15 7,4 2691 -18 17,7 9,5 2114 2207 -4 2558 -21 2516 -19 -21 15,1 1947 2027 -4 2363 -21 2349 -3 21,0 1831 1889 2218 -21 2222 -21 34,6 1398 1584 -13 1810 -29 1895 -36 48,9 -15 -40 1178 1358 1541 -31 1651 63.3 946 1107 -17 1229 -30 1364 -44 3499 0,0 -----3046 3309 8 3539 -7 3297 0 1,8 10 3145 2 3,6 3195 2876 3383 -6 2591 2998 2875 5,4 2629 -1 -16 -11 0 7,4 2552 2560 2939 -15 2818 -10 22,3 -12 9,6 2423 2454 -1 2724 2821 -16 15,1 2265 2280 -1 2635 -16 2565 -13 21,0 2108 -1 2488 2434 -15 2133 -18 34,4 1425 1756 -23 1925 -35 2013 -41 49,2 1246 1500 -20 1623 -30 1754 -41 1090 -14 -23 1474 -35 63,6 1243 1343 0,0 3700 ----_ _ 9 4 1,7 3587 3247 3689 -3 3448 3184 3013 5 3432 -8 3220 -1 3,5 5,4 2999 2880 4 3293 -10 3099 -3 7,5 2792 5 -10 -3 2931 3214 3026 9,5 4 -5 26,6 2788 2689 3106 -11 2933 0 2723 -10 15,1 2467 2467 2850 -16 21,1 2156 2277 -6 2592 -20 2533 -17 34,6 1682 1943 -16 2137 -27 2184 -30 49,1 1376 1648 -20 1755 -27 1874 -36 1344 -14 1449 64,1 1176 -23 1547 -32 0,0 3859 ------8 3768 -3 3518 4 1,7 3655 3364 31,3 6 3,6 3377 3191 3605 -7 3365 0 3156 3 3464 3237 -3 3053 -10 5,6 7,5 2945 2919 1 3288 -12 3101 -5

P4 - Tab 14: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 20mm; Protiproudé chlazení; Kombinace 4-6.
	9,6	2844	2832	0	3210	-13	3029	-7
	15,1	2577	2623	-2	2975	-15	2830	-10
	21,3	2417	2466	-2	2792	-16	2688	-11
	34,8	2009	2136	-6	2365	-18	2356	-17
	49,9	1722	1806	-5	1961	-14	2019	-17
	64,5	1205	1447	-20	1534	-27	1618	-34
	0,0	4362	-	-	-	-	-	-
	1,8	3941	3607	8	3981	-1	3706	6
	3,7	3607	3406	6	3777	-5	3514	3
	5,7	3545	3311	7	3703	-4	3433	3
40	7,7	3478	3223	7	3620	-4	3354	4
40	9,8	3255	3119	4	3498	-7	3257	0
	15,6	3043	2923	4	3296	-8	3079	-1
	21,7	2574	2709	-5	2993	-16	2867	-11
	35,5	2040	2326	-14	2465	-21	2476	-21
	51,0	1765	1948	-10	2047	-16	2098	-19
	0,0	4812	-	-	-	_	-	-
	1,8	4486	3876	14	4240	5	3926	12
	3,7	4244	3710	13	4104	3	3768	11
	5,9	4062	3586	12	3994	2	3654	10
50	8,0	3938	3499	11	3908	1	3573	9
30	10,2	3768	3397	10	3789	-1	3481	8
	16,0	3390	3178	6	3531	-4	3275	3
	22,4	3027	2969	2	3262	-8	3073	-2
	37,1	2469	2528	-2	2765	-12	2644	-7
	52,9	1980	2062	-4	2283	-15	2176	-10

VSTUPNÍ DVCULOST	VZDUCH	$\alpha_{cond,exp}$	α _{cond,m4}	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
mis ⁻²	04	$W_{1}m^{-2}K^{-1}$	$W_{1}m^{-2}V^{-1}$	0/	$W_{1}m^{-2}K^{-1}$	0/	$W_{1}m^{-2}V^{-1}$	0/
111 5	⁷⁰ obj.	2241	W III K	70	Will K	70	W III K	70
	0,0	1649	-	-	-	-	-	-
	1,8	1648	2030	-01	2704	-04	2184	-35
	3,6	1634	2575	-58	2581	-58	2061	-26
	5,4	1589	2510	-58	2495	-57	1952	-23
13.4	7,4	1344	2207	-64	2271	-69	1670	-24
- 1	9,4	1259	2128	-69	2191	-74	1578	-25
	15,1	1239	2024	-63	2072	-67	1494	-21
	20,9	916	1699	-85	1824	-99	1194	-30
	34,1	829	1191	-44	1371	-65	773	7
	48,8	715		0		0		0
	0,0	3331	-	-	-	-	-	-
	1,8	3091	3319	-7	3176	-3	2762	11
	4,5	2738	3030	-11	2855	-4	2426	11
	5,4	2504	2821	-13	2712	-8	2231	11
	7,4	2285	2658	-16	2583	-13	2053	10
17,7	9,5	2114	2520	-19	2477	-17	1912	10
	15,1	1947	2316	-19	2302	-18	1699	13
	21,0	1831	2163	-18	2166	-18	1547	16
	34,6	1398	1747	-25	1834	-31	1194	15
	48,9	1178	1484	-26	1595	-35	976	17
	63,3	946	1180	-25	1315	-39	750	21
	0,0	3499	-	-	-	-	-	-
	1,8	3309	3561	-8	3325	0	3018	9
	3,6	3195	3406	-7	3174	1	2809	12
	5,4	2591	3018	-16	2897	-12	2434	6
	7,4	2552	2958	-16	2839	-11	2345	8
22,3	9,6	2423	2835	-17	2740	-13	2204	9
	15,1	2265	2644	-17	2575	-14	1989	12
	21,0	2108	2489	-18	2435	-16	1823	13
	34,4	1425	1917	-35	2006	-41	1346	6
	49,2	1246	1609	-29	1741	-40	1079	13
	63,6	1090	1334	-22	1466	-35	862	21
	0,0	3700	-	-	-	-	-	-
	1,7	3587	3740	-4	3515	2	3223	10
	3,5	3184	3486	-9	3287	-3	2930	8
	5,4	2999	3349	-12	3165	-6	2755	8
	7,5	2931	3272	-12	3093	-6	2639	10
26,6	9,5	2788	3161	-13	2997	-7	2506	10
	15,1	2467	2902	-18	2780	-13	2222	10
	21,1	2156	2636	-22	2579	-20	1966	9
	34,6	1682	2170	-29	2217	-32	1547	8
	49.1	1376	1782	-29	1901	-38	1215	12
	64.1	1176	1478	-26	1576	-34	977	17
	0.0	3859	-	-	-	-	-	-
	1.7	3655	3841	-5	3618	1	3359	8
31,3	3.6	3377	3689	-9	3472	-3	3131	7
	5.6	3156	3550	-12	3342	-6	2963	6
	7,5	2945	3376	-15	3205	-9	2776	6

P4 - Tab 15: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 20mm; Protiproudé chlazení; Kombinace 7-9.

	9,6	2844	3299	-16	3132	-10	2663	6
	15,1	2577	3063	-19	2927	-14	2406	7
	21,3	2417	2878	-19	2779	-15	2193	9
	34,8	2009	2443	-22	2434	-21	1775	12
	49,9	1722	2033	-18	2089	-21	1408	18
	64,5	1205	1599	-33	1682	-40	1083	10
	0,0	4362	-	-	-	-	-	-
	1,8	3941	4088	-4	3857	2	3631	8
	3,7	3607	3898	-8	3674	-2	3383	6
	5,7	3545	3834	-8	3602	-2	3267	8
40	7,7	3478	3757	-8	3526	-1	3157	9
40	9,8	3255	3638	-12	3426	-5	3015	7
	15,6	3043	3443	-13	3249	-7	2767	9
	21,7	2574	3137	-22	3023	-17	2454	5
	35,5	2040	2599	-27	2609	-28	1948	4
	51,0	1765	2177	-23	2225	-26	1554	12
	0,0	4812	-	-	-	-	-	-
	1,8	4486	4376	2	4128	8	3939	12
	3,7	4244	4254	0	3984	6	3769	11
	5,9	4062	4158	-2	3881	4	3625	11
50	8,0	3938	4083	-4	3807	3	3510	11
30	10,2	3768	3974	-5	3718	1	3357	11
	16,0	3390	3728	-10	3511	-4	3059	10
	22,4	3027	3460	-14	3298	-9	2772	8
	37,1	2469	2969	-20	2860	-16	2260	8
	52,9	1980	2487	-26	2388	-21	1801	9

VSTUPNÍ	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m4}$	Δ	$\alpha_{cond,m5}$	Δ	$\alpha_{cond,m6}$	Δ
RYCHLOST								
m·s ⁻²	% _{оbj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0,0	2341	-	-	-	-	-	-
	1,8	1648	2255	-37	2367	-44	2431	-48
	3,6	1634	2070	-27	2257	-38	2265	-39
	5,4	1589	1932	-22	2162	-36	2143	-35
13.4	7,4	1344	1751	-30	1867	-39	1944	-45
15,4	9,4	1259	1654	-31	1778	-41	1851	-47
	15,1	1239	1547	-25	1648	-33	1701	-37
	20,9	916	1332	-45	1371	-50	1509	-65
	34,1	829	935	-13	894	-8	1066	-29
	48,8	715		0		0		0
	0,0	3331	-	-	-	-	-	-
	1,8	3091	2552	17	2982	4	2793	10
	4,5	2738	2188	20	2659	3	2439	11
	5,4	2504	2085	17	2456	2	2320	7
	7,4	2285	1956	14	2280	0	2189	4
17,7	9,5	2114	1858	12	2138	-1	2087	1
	15,1	1947	1682	14	1924	1	1908	2
	21,0	1831	1551	15	1768	3	1772	3
	34,6	1398	1284	8	1385	1	1478	-6
	48,9	1178	1082	8	1146	3	1257	-7
	63,3	946	869	8	888	6	1017	-7
	0,0	3499	-	-	-	-	-	-
	1,8	3309	2661	20	3236	2	2919	12
	3,6	3195	2475	23	3045	5	2742	14
	5,4	2591	2265	13	2660	-3	2505	3
	7,4	2552	2184	14	2580	-1	2431	5
22,3	9,6	2423	2078	14	2443	-1	2325	4
	15,1	2265	1904	16	2233	1	2151	5
	21,0	2108	1760	16	2068	2	2006	5
	34,4	1425	1444	-1	1547	-9	1645	-15
	49,2	1246	1211	3	1259	-1	1395	-12
	63,6	1090	983	10	1016	1	1145	-5
	0,0	3700	-	-	-	-	-	-
	1,7	3587	2866	20	3432	4	3121	13
	3,5	3184	2628	17	3151	1	2883	9
	5,4	2999	2489	17	2989	0	2748	8
	7,5	2931	2387	19	2885	2	2655	9
26,6	9,5	2788	2282	18	2759	1	2551	8
	15,1	2467	2066	16	2480	-1	2331	6
	21,1	2156	1896	12	2215	-3	2148	0
	34,6	1682	1600	5	1770	-5	1823	-8
	49,1	1376	1338	3	1410	-2	1536	-12
	64,1	1176	1070	9	1144	3	1242	-6
	0,0	3859	-	-	-	-	-	-
31.3	1,7	3655	2993	18	3556	3	3240	11
51,5	3,6	3377	2795	17	3356	1	3059	9
	5,6	3156	2652	16	3197	-1	2919	8
	7.5	2945	2524	14	3012	-2	2786	5

P4 - Tab 16: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 20mm; Protiproudé chlazení; Kombinace 10-12.

	9,6	2844	2427	15	2911	-2	2695	5
	15,1	2577	2223	14	2659	-3	2488	3
	21,3	2417	2067	15	2453	-1	2333	3
	34,8	2009	1765	12	2019	-1	2009	0
	49,9	1722	1467	15	1628	5	1688	2
	64,5	1205	1165	3	1258	-4	1344	-12
	0,0	4362	-	-	-	-	-	-
	1,8	3941	3239	18	3821	3	3487	12
	3,7	3607	3019	16	3594	0	3278	9
40	5,7	3545	2903	18	3497	1	3177	10
	7,7	3478	2804	19	3399	2	3086	11
	9,8	3255	2700	17	3264	0	2982	8
	15,6	3043	2494	18	3034	0	2784	9
	21,7	2574	2300	11	2719	-6	2575	0
	35,5	2040	1961	4	2192	-7	2204	-8
	51,0	1765	1608	9	1778	-1	1833	-4
	0,0	4812	-	-	-	-	-	-
	1,8	4486	3505	22	4123	8	3758	16
	3,7	4244	3313	22	3971	6	3583	16
	5,9	4062	3172	22	3846	5	3456	15
50	8,0	3938	3071	22	3746	5	3363	15
30	10,2	3768	2960	21	3610	4	3259	13
	16,0	3390	2740	19	3329	2	3042	10
	22,4	3027	2542	16	3046	-1	2835	6
	37,1	2469	2121	14	2534	-3	2402	3
	52,9	1980	1689	15	2057	-4	1946	2

11) Trubka 26 mm – Souproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obi.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	4353	-	-	-	-	-	-
	2	3790	3421	10	3354	12	3676	3
	4	3565	3155	12	3096	13	3421	4
	6	3340	2975	11	2934	12	3236	3
	8	3222	2837	12	2819	13	3092	4
31,3	10	3052	2708	11	2694	12	2961	3
	16	2695	2423	10	2436	10	2660	1
	22	2350	2154	8	2218	6	2368	-1
	37	1752	1702	3	1810	-3	1876	-7
	52	1222	1329	-9	1454	-19	1463	-20
	0	4264	-	_	-	-	-	-
	2	3425	3224	6	3195	7	3418	0
	4	3297	3001	9	2970	10	3204	3
	6	3197	2889	10	2868	10	3092	3
	8	3053	2702	11	2695	12	2901	5
26,6	10	2670	2521	6	2556	4	2702	-1
	15	2452	2265	8	2325	5	2435	1
	22	2250	2057	9	2125	6	2213	2
	36	1710	1626	5	1755	-3	1750	-2
	51	1289	1297	-1	1429	-11	1396	-8
	59	1137	1167	-3	1282	-13	1255	-10
	0	4044	-	-	-	-	-	-
	2	3314	3105	6	3090	7	3241	2
	4	3034	2836	7	2835	7	2970	2
	6	2933	2679	9	2684	8	2811	4
	8	2758	2536	8	2559	7	2665	3
22,3	10	2649	2407	9	2455	7	2527	5
	15	2228	2117	5	2200	1	2221	0
	22	1977	1922	3	2004	-1	2011	-2
	36	1597	1542	3	1678	-5	1610	-1
	51	1259	1234	2	1378	-9	1289	-2
	66	869	947	-9	1057	-22	991	-14
	0	3851	-	-	-	-	-	-
	2	2985	2870	4	2928	2	2912	2
	4	2539	2596	-2	2605	-3	2649	-4
	6	2446	2437	0	2457	0	2485	-2
1.5.5	8	2414	2330	3	2364	2	2375	2
17,7	10	2123	2127	0	2224	-5	2162	-2
	15	1870	1893	-1	2009	-7	1919	-3
	21	1778	1735	2	1862	-5	1751	2
	35	1485	1423	4	1574	-6	1425	4
	50	1135	1122	1	1290	-14	1120	1
	65	803	898	-12	1026	-28	897	-12
13.3	0	3251	-	-	-	-	-	-
,-	2	2686	2595	3	2655	1	2561	5

P4 - Tab 17: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 26mm; Souproudé chlazení; Kombinace 1-3.

	4	2353	2372	-1	2423	-3	2334	1
	5	2120	2191	-3	2252	-6	2147	-1
	7	2009	2063	-3	2142	-7	2019	0
	10	2052	1992	3	2074	-1	1938	6
	15	1688	1725	-2	1838	-9	1667	1
	21	1526	1555	-2	1680	-10	1492	2
	35	1133	1222	-8	1395	-23	1160	-2
	49	936	995	-6	1167	-25	936	0
	63	772	792	-3	939	-22	745	3
	0	3182	-	-	-	-	-	-
	2	2453	2110	14	2359	4	1962	20
	4	2118	1959	8	2102	1	1813	14
	5	1794	1827	-2	1948	-9	1679	6
8.0	7	1720	1765	-3	1872	-9	1608	6
8,9	10	1719	1703	1	1805	-5	1540	10
	15	1413	1472	-4	1592	-13	1315	7
	21	1135	1270	-12	1419	-25	1123	1
	34	853	1001	-17	1177	-38	869	-2
	49	675	793	-18	975	-45	678	-1

VSTUPNÍ	VZDUCH	$\alpha_{cond,exp}$	α _{cond,m1}	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
RYCHLOST		0 1			0 1		0 1	
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	4353	-	-	-	-	-	-
	2	3790	3616	5	3795	0	3739	1
	4	3565	3368	6	3554	0	3503	2
	6	3340	3198	4	3377	-1	3340	0
31.3	8	3222	3075	5	3237	0	3221	0
51,5	10	3052	2948	3	3117	-2	3105	-2
	16	2695	2673	1	2824	-5	2836	-5
	22	2350	2431	-3	2536	-8	2596	-10
	37	1752	1983	-13	2033	-16	2139	-22
	52	1222	1588	-30	1594	-30	1718	-41
	0	4264	-	-	-	-	-	-
	2	3425	3392	1	3581	-5	3556	-4
	4	3297	3174	4	3385	-3	3358	-2
	6	3197	3072	4	3292	-3	3273	-2
	8	3053	2895	5	3102	-2	3096	-1
26,6	10	2670	2736	-2	2897	-8	2929	-10
	15	2452	2493	-2	2642	-8	2698	-10
	22	2250	2280	-1	2430	-8	2494	-11
	36	1710	1880	-10	1950	-14	2078	-21
	51	1289	1530	-19	1570	-22	1703	-32
	59	1137	1371	-21	1415	-24	1532	-35
	0	4044	-	-	-	-	-	-
	2	3314	3227	3	3462	-4	3450	-4
	4	3034	2969	2	3202	-6	3200	-5
	6	2933	2817	4	3056	-4	3061	-4
	8	2758	2687	3	2912	-6	2933	-6
22,3	10	2649	2574	3	2785	-5	2829	-7
	15	2228	2304	-3	2474	-11	2552	-15
	22	1977	2092	-6	2265	-15	2343	-19
	36	1597	1746	-9	1853	-16	1987	-24
	51	1259	1434	-14	1501	-19	1648	-31
	66	869	1102	-27	1156	-33	1271	-46
	0	3851	-	-	-	-	-	-
	2	2985	2969	1	3223	-8	3273	-10
	4	2539	2657	-5	2935	-16	2942	-16
	6	2446	2504	-2	2782	-14	2800	-14
	8	2414	2409	0	2684	-11	2715	-12
17,7	10	2123	2259	-6	2458	-16	2548	-20
	15	1870	2034	-9	2213	-18	2322	-24
	21	1778	1878	-6	2053	-15	2175	-22
	35	1485	1576	-6	1718	-16	1869	-26
	50	1135	1287	-13	1372	-21	1545	-36
	65	803	1025	-28	1109	-38	1246	-55
	0	3251	-	-	-	-	-	-
	2	2686	2621	2	2911	-8	2963	-10
13.3	4	2353	2386	-1	2700	-15	2746	-17
y -	5	2120	2209	-4	2515	-19	2570	-21
	7	2009	2098	-4	2385	-19	2458	-22

P4 - Tab 18: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 26mm; Souproudé chlazení; Kombinace 4-6.

	10	2052	2020	2	2326	-13	2402	-17
	15	1688	1781	-6	2032	-20	2140	-27
	21	1526	1617	-6	1849	-21	1970	-29
	35	1133	1331	-18	1475	-30	1647	-45
	49	936	1105	-18	1218	-30	1395	-49
	63	772	888	-15	984	-27	1141	-48
	0	3182	-	-	-	-	-	-
	2	2453	2225	9	2371	3	2585	-5
	4	2118	1961	7	2231	-5	2359	-11
	5	1794	1802	0	2100	-17	2210	-23
8.0	7	1720	1717	0	2054	-19	2153	-25
8,9	10	1719	1641	5	2001	-16	2097	-22
	15	1413	1434	-1	1743	-23	1858	-32
	21	1135	1269	-12	1514	-33	1659	-46
	34	853	1038	-22	1213	-42	1390	-63
	49	675	850	-26	975	-45	1165	-73

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obj.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	4353	-	-	-	-	-	-
	2	3790	4003	-6	3954	-4	3216	15
	4	3565	3778	-6	3732	-5	2937	18
	6	3340	3599	-8	3566	-7	2752	18
	8	3222	3456	-7	3441	-7	2609	19
31,3	10	3052	3338	-9	3327	-9	2475	19
	16	2695	3036	-13	3047	-13	2191	19
	22	2350	2732	-16	2789	-19	1926	18
	37	1752	2197	-25	2299	-31	1502	14
	52	1222	1723	-41	1843	-51	1166	5
	0	4264	-	_	-	-	-	_
	2	3425	3739	-9	3717	-9	2966	13
	4	3297	3555	-8	3530	-7	2730	17
	6	3197	3464	-8	3447	-8	2606	18
	8	3053	3274	-7	3269	-7	2417	21
26,6	10	2670	3055	-14	3084	-15	2244	16
	15	2452	2794	-14	2847	-16	1987	19
	22	2250	2572	-14	2635	-17	1782	21
	36	1710	2068	-21	2193	-28	1384	19
	51	1289	1667	-29	1798	-39	1095	15
	59	1137	1501	-32	1617	-42	985	13
	0	4044	-	-	-	-	-	-
	2	3314	3573	-8	3562	-7	2784	16
	4	3034	3313	-9	3312	-9	2511	17
	6	2933	3168	-8	3173	-8	2346	20
	8	2758	3023	-10	3042	-10	2204	20
22,3	10	2649	2890	-9	2932	-11	2071	22
	15	2228	2566	-15	2642	-19	1797	19
	22	1977	2345	-19	2422	-23	1611	18
	36	1597	1917	-20	2049	-28	1262	21
	51	1259	1553	-23	1700	-35	998	21
	66	869	1199	-38	1314	-51	766	12
	0	3851	-	-	-	-	-	-
	2	2985	3255	-9	3304	-11	2457	18
	4	2539	2976	-17	2983	-17	2220	13
	6	2446	2820	-15	2837	-16	2057	16
	8	2414	2720	-13	2751	-14	1943	20
17,7	10	2123	2487	-17	2575	-21	1758	17
	15	1870	2233	-19	2341	-25	1538	18
	21	1778	2063	-16	2185	-23	1385	22
	35	1485	1716	-16	1866	-26	1102	26
	50	1135	1365	-20	1538	-36	854	25
	65	803	1105	-38	1242	-55	679	16
	0	3251	-	-	-	-	-	-
	2	2686	2876	-7	2929	-9	2151	20
13,3	4	2353	2661	-13	2708	-15	1923	18
	5	2120	2469	-16	2526	-19	1752	17
	7	2009	2338	-16	2412	-20	1630	19

P4 - Tab 19: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 26mm; Souproudé chlazení; Kombinace 7-9.

	10	2052	2269	-11	2347	-14	1548	25
	15	1688	1970	-17	2080	-23	1317	22
	21	1526	1781	-17	1904	-25	1166	24
	35	1133	1406	-24	1580	-39	891	21
	49	936	1151	-23	1328	-42	708	24
	63	772	928	-20	1083	-40	557	28
	0	3182	-	-	-	-	-	-
	2	2453	2233	9	2467	-1	1622	34
	4	2118	2091	1	2228	-5	1477	30
	5	1794	1955	-9	2072	-16	1352	25
8.0	7	1720	1897	-10	2002	-16	1277	26
8,9	10	1719	1834	-7	1935	-13	1210	30
	15	1413	1580	-12	1699	-20	1023	28
	21	1135	1359	-20	1508	-33	867	24
	34	853	1068	-25	1246	-46	659	23
	49	675	846	-25	1031	-53	507	25

VSTUPNÍ VZDUCH Δ Δ $\alpha_{cond,exp}$ $\alpha_{cond,m1}$ Δ $\alpha_{\text{cond},m2}$ $\alpha_{cond,m3}$ RYCHLOST $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $m \cdot s^{-2}$ $W \cdot m^{-2} \cdot K^{-1}$ % obj. % % % -_ _ _ _ _ 31,3 -6 -5 -11 -21 -_ _ _ _ 26,6 -2 -10 -2 -12 _ ----22,3 -1 -5 -4 -17 -_ -_ --17,7 -1 -4 -1 -16 ------13,3

P4 - Tab 20: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 26mm; Souproudé chlazení; Kombinace 9-12.

	10	2052	1628	21	1797	12	1880	8
	15	1688	1426	16	1539	9	1652	2
	21	1526	1283	16	1372	10	1495	2
	35	1133	1046	8	1058	7	1225	-8
	49	936	855	9	847	10	1009	-8
	63	772	677	12	670	13	805	-4
	0	3182	-	-	-	-	-	-
	2	2453	1904	22	1841	25	2113	14
	4	2118	1628	23	1693	20	1844	13
	5	1794	1475	18	1561	13	1686	6
8.0	7	1720	1381	20	1489	13	1597	7
8,9	10	1719	1306	24	1421	17	1522	11
	15	1413	1133	20	1209	14	1325	6
	21	1135	1000	12	1028	9	1171	-3
	34	853	808	5	789	7	952	-12
	49	675	653	3	611	9	774	-15

12) Trubka 26 mm – Protiproud

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obi.}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	4299	-	-	-	-	-	-
	2	3752	3405	9	3010	20	3566	5
	4	3554	3217	9	2818	21	3394	5
	6	3407	3073	10	2677	21	3259	4
	8	3301	2971	10	2577	22	3164	4
31,3	10	3153	2847	10	2484	21	3040	4
	16	2765	2557	8	2275	18	2748	1
	22	2457	2316	6	2092	15	2498	-2
	37	1860	1823	2	1748	6	1981	-7
	51	1318	1402	-6	1417	-8	1528	-16
	0	4163	-	-	-	-	-	-
	2	3442	3229	6	2884	16	3358	2
	4	3349	3075	8	2706	19	3217	4
	6	3274	2963	9	2588	21	3110	5
	8	3059	2814	8	2483	19	2962	3
26,6	10	2768	2636	5	2376	14	2778	0
	15	2530	2408	5	2181	14	2549	-1
	22	2346	2192	7	2010	14	2326	1
	36	1820	1754	4	1689	7	1869	-3
	51	1367	1365	0	1380	-1	1461	-7
	0	3976	-	-	-	-	-	-
	2	3346	3138	6	2803	16	3231	3
	4	3088	2914	6	2603	16	3011	2
	5	2972	2774	7	2469	17	2874	3
	8	2833	2651	6	2372	16	2751	3
22,3	9	2689	2524	6	2284	15	2620	3
,	15	2351	2245	5	2081	12	2335	1
	21	2065	2037	1	1907	8	2115	-2
	36	1658	1641	1	1609	3	1705	-3
	50	1307	1293	1	1327	-2	1346	-3
	64	951	999	-5	1036	-9	1044	-10
	0	3770	-	-	-	-	-	-
	2	2990	2942	2	2638	12	2983	0
	4	2632	2679	-2	2413	8	2721	-3
	5	2588	2572	1	2299	11	2614	-1
	8	2548	2475	3	2196	14	2519	1
17,7	9	2205	2225	-1	2105	5	2256	-2
	15	1986	2015	-1	1923	3	2038	-3
	21	1828	1822	0	1777	3	1836	0
	36	1549	1500	3	1490	4	1502	3
	50	1216	1196	2	1252	-3	1193	2
	64	938	1042	-11	890	5	1100	-17
	0	3565	-	-	-	-	-	-
13,3	2	2745	2677	2	2472	10	2651	3
	4	2374	2434	-3	2260	5	2404	-1

P4 - Tab 21: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 26mm; Protiproudé chlazení; Kombinace 1-3.

	5	2158	2253	-4	2116	2	2218	-3
	7	2169	2185	-1	2044	6	2147	1
	9	2180	2135	2	1942	11	2101	4
	15	1784	1861	-4	1727	3	1829	-3
	21	1616	1688	-4	1570	3	1659	-3
	35	1189	1358	-14	1288	-8	1339	-13
	49	990	1130	-14	1041	-5	1120	-13
	63	793	828	-4	919	-16	780	2
	0	2953	-	-	-	-	-	-
	2	2525	2544	-1	2734	-8	2444	3
	4	2180	2050	6	2037	7	1921	12
	5	1848	1914	-4	1891	-2	1781	4
8.0	7	1828	1870	-2	1816	1	1725	6
8,9	9	1801	1805	0	1750	3	1654	8
	15	1431	1540	-8	1547	-8	1394	3
	21	1239	1360	-10	1407	-14	1214	2
	34	862	1038	-20	1156	-34	907	-5
	49	731	836	-14	967	-32	719	2

VSTUPNÍ RYCHLOST	VZDUCH	$\alpha_{cond,exp}$	$\alpha_{cond,m1}$	Δ	$\alpha_{cond,m2}$	Δ	$\alpha_{cond,m3}$	Δ
m·s ⁻²	% _{obi}	$W \cdot m^{-2} \cdot K^{-1}$	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%	$W \cdot m^{-2} \cdot K^{-1}$	%
	0	4299	-	-	_	-	_	-
	2	3752	3221	14	3639	3	3321	11
	4	3554	3039	14	3480	2	3150	11
	6	3407	2901	15	3356	1	3022	11
31,3	8	3301	2805	15	3271	1	2935	11
	10	3153	2705	14	3156	0	2842	10
	16	2765	2483	10	2878	-4	2629	5
	22	2457	2784	7	2639	-7	2436	1
	37	1860	1908	-3	2124	-14	2054	-10
	51	1318	1543	-17	1663	-26	1678	_27
	0	4163	-	-17	-	-20	-	-21
	2	3442	3047	11	3462	-1	3182	8
	2 4	3349	2879	14	3340	0	3033	9
	6	3274	2761	16	3248	1	2930	10
	8	3059	2652	13	3107	-2	2823	8
26,6	10	2768	2533	8	2927	-6	2703	2
	15	2530	2330	8	2717	-7	2514	- 1
	22	2346	2150	8	2511	-7	2344	0
	36	1820	1805	1	2054	-13	1992	-9
	51	1367	1476	-8	1629	-19	1643	-20
	0	3976	-	-	-	-	-	-
	2	3346	2918	13	3378	-1	3104	7
	4	3088	2717	12	3174	-3	2914	6
	5	2972	2583	13	3052	-3	2791	6
	8	2833	2483	12	2938	-4	2697	5
22.3	9	2689	2388	11	2819	-5	2609	3
7-	15	2351	2174	8	2546	-8	2399	-2
	21	2065	1987	4	2335	-13	2216	-7
	36	1658	1673	-1	1928	-16	1897	-14
	50	1307	1380	-6	1549	-18	1583	-21
	64	951	1082	-14	1210	-27	1249	-31
	0	3770	-	-	-	-	-	-
	2	2990	2687	10	3185	-7	2934	2
	4	2632	2461	7	2932	-11	2707	-3
	5	2588	2347	9	2841	-10	2606	-1
	8	2548	2245	12	2757	-8	2512	1
17,7	9	2205	2137	3	2500	-13	2394	-9
	15	1986	1947	2	2293	-15	2210	-11
	21	1828	1792	2	2102	-15	2061	-13
	36	1549	1492	4	1776	-15	1766	-14
	50	1216	1250	-3	1442	-19	1499	-23
	64	938	945	-1	1254	-34	1094	-17
	0	3565	-	-	-	-	-	-
	2	2745	2442	11	2915	-6	2743	0
13,3	4	2374	2228	6	2689	-13	2540	-7
	5	2158	2079	4	2510	-16	2390	-11
	7	2169	2004	8	2457	-13	2332	-7

P4 - Tab 22: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 26mm; Protiproudé chlazení; Kombinace 4-6.

	9	2180	1907	13	2418	-11	2243	-3
	15	1784	1694	5	2130	-19	2007	-13
	21	1616	1540	5	1954	-21	1842	-14
	35	1189	1269	-7	1595	-34	1527	-28
	49	990	1031	-4	1352	-37	1261	-27
	63	793	869	-10	1016	-28	1113	-40
8,9	0	2953	-	-	-	-	-	-
	2	2525	2643	-5	1523	40	1752	31
	4	2180	1908	12	2281	-5	2271	-4
	5	1848	1757	5	2152	-16	2131	-15
	7	1828	1670	9	2127	-16	2079	-14
	9	1801	1598	11	2069	-15	2019	-12
	15	1431	1401	2	1785	-25	1792	-25
	21	1239	1261	-2	1597	-29	1642	-33
	34	862	1022	-19	1242	-44	1358	-58
	49	731	843	-15	1021	-40	1156	-58

VSTUPNÍ VZDUCH Δ Δ $\alpha_{cond,exp}$ $\alpha_{cond,m1}$ Δ $\alpha_{\text{cond},m2}$ $\alpha_{cond,m3}$ RYCHLOST $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $m \cdot s^{-2}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ %_{obj} % % % -_ _ -_ -2 -3 -4 31,3 -5 -10 -2 -14 -6 -22 -18 -35 -36 -_ _ _ _ -3 -3 -3 -5 26,6 -10 -2 -12 -5 -12 -5 -19 -15 -26 -27 -_ ---_ -3 -5 -5 -7 22,3 -8 -5 -11 -16 -11 -20 -18 -22 -25 -32 -36 ------8 -13 -4 -11 -2 -10 17,7 -14 -10 -16 -12 -15 -13 -14 -14 -18 -23 -40 -23 ---_ ---5 -12 13,3 -6 -15 -9 -12 -6

P4 - Tab 23: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 26mm; Protiproudé chlazení; Kombinace 7-9.

	9	2180	2383	-9	2205	-1	1746	20
	15	1784	2097	-18	1971	-11	1500	16
	21	1616	1922	-19	1809	-12	1343	17
	35	1189	1572	-32	1504	-26	1067	10
	49	990	1338	-35	1247	-26	878	11
	63	793	962	-21	1057	-33	590	26
	0	2953	-	-	-	-	-	-
	2	2525	1428	43	1652	35	2080	18
	4	2180	2164	1	2152	1	1611	26
	5	1848	2028	-10	2006	-9	1475	20
8.0	7	1828	1989	-9	1938	-6	1407	23
8,9	9	1801	1923	-7	1870	-4	1337	26
	15	1431	1640	-15	1647	-15	1110	22
	21	1239	1449	-17	1495	-21	953	23
	34	862	1103	-28	1222	-42	697	19
	49	731	891	-22	1024	-40	541	26

VSTUPNÍ VZDUCH Δ Δ $\alpha_{cond,exp}$ $\alpha_{cond,m1}$ Δ $\alpha_{\text{cond},m2}$ $\alpha_{cond,m3}$ RYCHLOST $W \cdot m^{-2} \cdot K^{-1}$ $m \cdot s^{-2}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ $W \cdot m^{-2} \cdot K^{-1}$ %₀bj % % % -_ _ _ _ 31,3 -9 -8 -_ _ _ _ _ 26,6 ---_ _ _ 22,3 -1 -5 ------17,7 -8 -_ -_ --13,3

P4 - Tab 24: Hodnoty a odchylky analytického OHTC od experimentálního OHTC pro trubku o průměru 26mm; Protiproudé chlazení; Kombinace 9-12.

	9	2180	1547	29	1978	9	1780	18
	15	1784	1365	23	1713	4	1577	12
	21	1616	1227	24	1546	4	1427	12
	35	1189	1001	16	1240	-4	1171	2
	49	990	797	19	1031	-4	945	5
	63	793	666	16	706	11	791	0
	0	2953	-	-	-	-	-	-
	2	2525	2304	9	1312	48	1531	39
	4	2180	1598	27	1813	17	1799	17
	5	1848	1450	22	1674	9	1649	11
8.0	7	1828	1352	26	1613	12	1558	15
8,9	9	1801	1282	29	1542	14	1487	17
	15	1431	1117	22	1292	10	1299	9
	21	1239	996	20	1120	10	1165	6
	34	862	799	7	828	4	940	-9
	49	731	647	12	650	11	768	-5