
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

RAW IMAGE DEBAYERIZATION USING DEEP NEURAL
NETWORK
DEBAYERIZACE RAW FOTOGRAFIE POMOCÍ HLUBOKÉ NEURONOVÉ SÍTĚ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Peter Balušík

SUPERVISOR
VEDOUCÍ PRÁCE

prof. Mgr. Pavel Rajmic, Ph.D.

BRNO 2023

Date of project
specification:

6.2.2023
Deadline for
submission:

 26.5.2023

Supervisor: prof. Mgr. Pavel Rajmic, Ph.D.

prof. Ing. Jiří Mišurec, CSc.
Chair of study program board

Bachelor's Thesis
Bachelor's study program Telecommunication and Information Systems

Department of Telecommunications
Student: Peter Balušík ID: 230531
Year of
study:

 3 Academic year: 2022/23

TITLE OF THESIS:

RAW image debayerization using deep neural network

INSTRUCTION:

The student will learn about the physics of capturing light on the digital camera sensor and about the Bayer
mask, which enables the acquisition of an image in its RGB components. He will also study the principle of
debayerization/demosaicing [1], where individual spatially separated RGB values are interpolated into the format
of an usual square grid of pixels. Therefore, affter demosaicing, each pixel already “contains” the RGB values at
the same spatial coordinate. The student will also become familiar with the methods that are commonly used for
demosaicing. The work will then focus on studying and understanding the principle of the neural encoder based
on the “deep image prior” concept [2]. The neural network will be adapted for the problem of demosaicing a RAW
photo. The student will test the network, and he will qualitatively and quantitatively evaluate the outputs, also with
respect to usual demosaicing methods.

RECOMMENDED LITERATURE:

[1] MENON, Daniele a Giancarlo CALVAGNO. Color image demosaicking: An overview. Signal processing.
Image communication. Amsterdam: Elsevier B.V, 2011, 26(8), 518-533. ISSN 0923-5965.
doi:10.1016/j.image.2011.04.003

[2] ULYANOV, Dmitry, Andrea VEDALDI a Victor LEMPITSKY. Deep Image Prior. International journal of
computer vision. New York: Springer US, 2020, 128(7), 1867-1888. ISSN 0920-5691. doi:10.1007/s11263-020-
01303-4

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
This thesis focuses on the problem of demosaicing; specifically, demosaicing using deep
image prior. Deep image prior (DIP) is a concept that uses untrained convolutional neu-
ral networks to solve common reconstruction problems, with the only input information
being an image degraded in some way. The aim of this thesis is to find out whether the
DIP is a viable method for demosaicing problems. A new demosaicing method based on
DIP is proposed and compared with common demosaicing methods. Different color filer
arrays (CFAs) were tested to see the full potential of the proposed method. A numerical
comparison was made using a variety of assessment methods. Based on this comparison,
the proposed method proved to be similar, in some cases even better than the widely used
Malvar’s demosaicing method. Visually, the proposed method displayed similar results
to the finest method in the experiments – the Menon’s demosaicing method. Addition-
ally, averaging the last few images of the optimization process proved to bring positive
results in terms of numerical comparison. Even though the proposed method brought
some interesting results, it turned out to be extremely computationally challenging when
compared with other common demosaicing methods.

KEYWORDS
artificial neural network, Bayer filter, color filter array, convolutional neural network, Deep
Image Prior, demosaicing, image restoration, inpainting, Malvar’s demosaicing method,
Menon’s demosaicing method, X-Trans filter

ABSTRAKT
Táto práca sa zaoberá problémom debayerizácie a to konkrétne debayerizáciou pomocou
deep image prior. Deep image prior (DIP) je koncept riešenia bežných rekonštrukčných
problémov použitím netrénovaných konvolučných neurónových sietí. Jedinou vstupnou
informáciou je obrázok, ktorý bol nejakým spôsobom poškodený. Cieľom tejto práce je
zistiť, či je DIP použitelná metóda na problémy debayerizácie. Taktiež bola navrhnutá
nová debayerizačná metóda založená na DIP a porovnaná s bežnými debayerizačnými
metódami. Rôzne mozaikové farebné filtre (CFAs) boli otestované na zistenie plného po-
tenciálu navrhnutej metódy. Číselné porovnanie bolo spravené použitím rôznych metód
hodnotenia. Na základne tohto porovnania, zvolená metóda preukázala podobné, v nie-
ktorých prípadoch aj lepšie, výsledky ako Malvarova debayerizačná metóda. Vizuálne,
navrhovaná metóda ukázala podobné výsledky k najkvalitnejšej metóde v experimen-
toch – Menonovej debayerizačnej metóde. Dodatočne, spriemerovanie posledných pár
obrázkov optimizačného procesu prinieslo pozitívne výsledky vzhľadom na číselné porov-
nanie. Aj keď navrhovaná metóda priniesla zaujímavé výsledky, ukázalo sa, že je mimo-
riadne výpočetne náročná v porovnaní s ďaľšími bežnými debayerizačnými metódami.

KĽÚČOVÉ SLOVÁ
Bayerov filter, debayerizácia, Deep Image Prior, konvolučná neurónová sieť, Malvarova
debayerizačná metóda, Menonova debayerizačná metóda, mozaikový farebný filter, re-
konštrukcia obrazu, umelá neurónová sieť, vyplňovanie obrazu, X-Trans filter

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Prakticky každý človek spravil nejakú fotku vo svojom živote, či už to bolo s foťákom
alebo mobilom. Len pár z nich by vedelo povedať ako sa táto fotka stala farebnou.
Skrátene, digitálna fotka vznikne tým, že svetlo z vonkajšieho prostredia prejde
objektívom kamery a zachytí sa na senzori v kamere. Tento senzor má zvyčajne
na sebe nejaký farebný filter. Na to aby boli zachytené všetky farby (červená,
zelená a modrá) by kamera musela obsahovať tri rôzne senzory s troma rôznymi
farebnými filtrami. Toto riešenie by bolo veľmi zložité a finančne náročné, preto sa
v bežných kamerách používa len jeden senzor s jedným špecialnym farebným filtrom.
Tento filter sa nazýva mozaikový farebný filter (alebo CFA) a v spojení so senzorom
v kamere tvoria CFA senzor.

Mozaikový farebný filter (CFA) je spravený s príncípom, že každá časť mozaiky
prepustí inú zložku svetla, buď prepustí červenú, zelenú alebo modrú zložku. Týmto
spôsobom sa zachytia jednotlivé zložky svetla na jednom CFA senzori. Na získanie
všetkých zložiek na každej časti mozaiky sa používa debayerizácia (demosaicing).
Debayerizácia je proces, pri ktorom sa odhadujú alebo dopočítavajú chýbajúce
farebné zložky na mozaike. Tento proces sa uskutoční v kamere a spraví farebnú
fotku, ktorá je viditeľná uživateľom. Ak by bola fotka vybratá pred týmto proce-
som, vznikla by fotka v RAW formáte. Niektorí ľudia (hlavne fotografovia) preferujú
fotky v RAW formáte, pretože debayerizačný proces a úpravy môžu spraviť v ne-
jakom lepšom softvéri napr. Adobe Lightroom.

Existuje veľa metód debayerizácie. Tá najjednoduchšia sa nazýva bilineárna
interpolácia. Ďaľšie, viac efektívne, metódy používajú prepracovanejšie techniky,
medzi tieto metódy patrí napr. Malvarova interpolačná metóda a Menonova debay-
erizačná metóda. Táto práca sa snaží implementovať iný prístup k debayerizácii
a to pomocou hlbokej konvolučnej neurónovej siete. Cieľom tejto práce bolo im-
plementovať debayerizačnú metódu na základne konceptu Deep Image Prior (DIP)
a nasledovne túto metódu kvalitatívne a kvantitatívne porovnať s bežnými deba-
yerizačnými metódami.

Táto práca sa skladá zo štyroch hlavných kapitol. V prvej kapitole sú opísané
základy neurónových sietí a ich bežne používané architektúry. Druhá kapitola je
zameraná na Deep Image Prior a stručne opisuje metódu používanú v DIP. Ďaľej
sa zameriava na rôzne aplikácie navrhnuté v originálnom článku o DIP – odšu-
movanie, vyplňovanie obrazu, zväčšovanie rozlíšenia a ďaľšie. V tretej kapitole je
bližšie opísaná debayerizácia, Bayerov filter a rôzne metódy používané na debayerizá-
ciu. Taktiež popisuje čo sú a ako vznikajú RAW obrázky. Posledná (štvrtá) kapitola
opisuje implementáciu navrhnutej debayerizačnej metódy, jej výhody a nevýhody,
a následne porovnanie s bežne používanými metódami.

V rámci DIP sú debayerizácia (demosaicing) a vyplňovanie obrazu (inpainting)

veľmi podobné – obidve metódy sa snažia doplniť nejaké chýbajúce hodnoty pix-
elov. Avšak medzi nimi existuje aj niekoľko rozdielov. Hlavný rozdiel je v inter-
pretácii chýbajúcich častí. Inpainting na to používa binárnu masku a debayerizácia
využíva CFA masku. Na základe týchto vlastností bola navrhnutá aj metóda v tejto
práci. Takisto s touto metódou bolo vyskúšaných aj viacero CFA masiek ako napr.
Bayerova maska, náhodná maska a X-Trans filter.

Navrhovaná metóda bola porovnaná s týmito metódami – bilineárna interpolá-
cia, Malvarova metóda, Menonova metóda a funkcia demosaic v Matlabe. Na zák-
lade číselného porovnania, pomocou rôznych spôsobov hodnotenia (PSNR, PSNR-
HVS, PSNR-HVSM a SSIM), sa navrhovaná metóda podobala Malvarovej metóde.
V prípade využitia CFA masky X-Trans dokonca prekonala Malvarovu metódu.
Menonova metóda bola najkvalitnejšia vzhľadom na číselné porovnanie. Vizuálne
sa navrhnutá metóda podobala Menonovej metóde, najlepšej metóde používanej
v experimentoch. V rámci testovaných CFA masiek sa X-trans filter umiestil na
prvom mieste, náhodná maska na druhom a Bayerov filter na poslednom.

Zaujímavé zistenie bolo to, že spriemerovanie posledných pár obrázkov optimiza-
čného procesu neurónovej siete prinieslo pozitívne výsledky v rámci číselného porov-
nania (vizuálna kvalita sa nejako značne nezmenila). Dokonca toto spriemerovanie
prinieslo lepšie výsledky ako takzvaný „oracle approach“.

Bežné metódy sú spravené len na jeden typ CFA masky a to väčšinou na Bayerovu
masku. Okrem výborných vizuálnych výsledkov má navrhnutá metóda aj ďaľšiu
výhodu oproti bežným metódam – dá sa aplikovať na hocijakú CFA. Napriek týmto
výhodám má spomínaná metóda jednu veľkú nevýhodu a tou je jej výpočetná
náročnosť. Vďaka tejto veľkej výpočetnej náročnosti by navrhnutá metóda bola
tažšie využiteľná v praxi.

BALUŠÍK, Peter. RAW image debayerization using deep neural network. Brno: Brno
University of Technology, Faculty of Electrical Engineering and Communication, Depart-
ment of Telecommunications, 2023, 54 p. Bachelor’s Thesis. Advised by prof. Mgr. Pavel
Rajmic, Ph.D.

Author’s Declaration

Author: Peter Balušík

Author’s ID: 230531

Paper type: Bachelor’s Thesis

Academic year: 2022/23

Topic: RAW image debayerization using deep
neural network

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I would like to thank the supervisor of this thesis, prof. Mgr. Pavel Rajmic Ph.D, for
consultations, valuable feedback and great suggestions involving this thesis. The GPU
used for the research in this thesis was donated by the NVIDIA Corporation.

Contents

Introduction 14

1 Artificial neural networks 15
1.1 Deep learning . 16

1.1.1 Supervised learning . 16
1.1.2 Unsupervised learning . 17

1.2 Backpropagation . 18
1.3 Convolutional neural networks . 18

1.3.1 Architectures . 21

2 Deep Image Prior 24
2.1 Selected applications of DIP . 24

2.1.1 Denoising . 25
2.1.2 Super-resolution . 26
2.1.3 Inpainting . 28
2.1.4 Other applications . 29

3 Demosaicing of RAW images 30
3.1 RAW image . 30
3.2 Bayer filter . 31
3.3 Methods of demosaicing . 31

3.3.1 Heuristic approaches . 33
3.3.2 Reconstruction approaches . 34
3.3.3 Malvar’s method . 35
3.3.4 Menon’s method . 37

4 Experiments and results 38
4.1 Demosaicing using Deep Image Prior 38

4.1.1 Parameters of the neural network 38
4.1.2 Artificial mosaicing . 39
4.1.3 Usage of different filters . 39

4.2 Evaluation . 40
4.2.1 Assessment methods . 40
4.2.2 Randomness of DIP . 41

4.3 Findings . 42
4.3.1 Comparison in terms of different assessment methods 42
4.3.2 Visual comparison . 44
4.3.3 Additional improvements . 44

4.3.4 Downsides . 45
4.3.5 Surprises . 46

Conclusion 47

Bibliography 48

Symbols and abbreviations 52

List of Figures
1.1 A simple neural network with four inputs and three outputs 15
1.2 A CNN architecture and its training process. 19
1.3 An example of convolution with zero padding. 20
1.4 An example of max pooling with no padding. 20
1.5 A modern AlexNet architecture. 21
1.6 The U-net architecture. 22
2.1 Deep image prior denoising comparison with the CMB3D and NLM. . 25
2.2 Deep image prior 4× super-resolution comparison with the bicubic

upsampling, LapSRN and SRResNet. 26
2.3 Deep image prior text inpainting comparison with Shepard networks. 28
2.4 Deep image prior 50 % of pixels missing comparison with CSC. 29
3.1 The Bayer pattern. Source: Adapted from [23]. 30
3.2 Types of Bayer patterns. 31
3.3 The Bayer pattern for demonstration. 32
3.4 The optimal filters. Source: Adapted from [1]. 36
4.1 The selection of the number of epochs. 39
4.2 Different color filters used in experiments. 40
4.3 Comparison of SSIM and PSNR values of different images from the

Kodak data set. 43
4.4 Visual comparison of different demosaicing methods. 44
4.5 Visual comparison of the proposed method using different filters. . . . 45

List of Tables
2.1 Detailed 4× super-resolution PSNR comparison on the data set from

[20]. 27
2.2 Detailed 8× super-resolution PSNR comparison on the data set from

[20]. 27
4.1 The average PSNR (HVS/HVSM) and SSIM values. 42
4.2 The differences between the best and worst run. 43
4.3 The average improvement of PSNR (HVS/HVSM) and SSIM values

after averaging the last two and last 50 images. 45
4.4 The PSNR (HVS/HVSM) and SSIM value comparison between the

oracle approach and averaging the last few images. 46

Introduction
Virtually every person has taken a photo in their life, whether with a digital camera
or a phone. Only a few people know how that photo becomes colored. Briefly,
a digital photo comes into existence by light passing through the lens of a camera and
projecting itself onto an image sensor with a color filter. The color filter determines
a specific color of the pixel (red, green, or blue) and the image sensor captures its
value. Together they create a color filter array (CFA) sensor.

A CFA is designed with the idea that every array cell allows solely the red, green,
or blue light component to pass. After the CFA sensor captures the individual colors
a process called demosaicing begins. To put it briefly, demosaicing is a process of
estimating the missing color values of a CFA. If the photo was taken out straight
from the CFA sensor (before demosaicing), a RAW image would be obtained. Some
people (usually photographers) choose this method to do the demosaicing process
themselves – with an appropriate demosaicing software that is superior to the one
in their camera.

Many demosaicing algorithms exist. The simplest one is the bilinear interpola-
tion. Other, more effective, methods include more refined techniques – Malvar’s [1]
and Menon’s [2] demosaicing method. This thesis tries to implement a completely
different approach to demosaicing and that is using a deep convolutional neural
network – with a revolutionary concept called Deep Image Prior [3].

This thesis consists of four main chapters. First chapter “Artificial neural net-
works” describes what are artificial neural networks and how they learn. It also
described convolutional neural networks and some of their architectures. Second
chapter “Deep Image Prior” briefly describes what is Deep Image Prior and the
method it uses for image restoration. Furthermore, it focuses on the individual ap-
plications of DIP proposed in [3]. Third chapter “Demosaicing of RAW images”
describes the Bayer filter, what are RAW images and several of the demosaicing
methods. The last chapter “Experiments and result” describes the implementation
of the proposed demosaicing method. It compares the proposed method (numeri-
cally, visually and in regard to computational difficulty) with other common demo-
saicing methods such as the ones mentioned above. Additionally, it describes the
positives and negatives of the proposed method.

14

1 Artificial neural networks
An artificial neural network (ANN) is a system that is inspired by the human brain.
An ANN is composed of multiple layers – the input layer, the hidden layers and the
output layer. Each of these layers is made from nodes called neurons (also called
perceptrons). Every neuron is a function that is given some input numbers and
outputs a single number. For example, in a grayscale image, the input numbers
would correspond to the grayscale values of pixels (a range from 0 for black pixels
to 1 for white pixels). In the study of artificial intelligence, the output of a neuron
is called the activation of a neuron. Each activation of neurons in one layer affects
neurons in the other layer.

Hidden layers

Output layerInput layer

Fig. 1.1: A simple neural network with four inputs and three outputs. Blue circles
represent neurons. The lines between individual neurons amount to the weights of
an artificial neural network.

Different parameters are used to determine the activation of a neuron in the
output and hidden layers. Individual layers of neurons are connected by weights.
Weights are real numbers that can be adjusted, either by a human or the network it-
self, to influence the activation of neurons. To determine the activation in non-input
layers, a weighted sum is computed from the weights and previous layer activations.
In addition a bias is added to the weighted sum. The bias informs the network
about how high the weighted sum needs to be before the activation starts having
impact. Additionally, an activation function is used to compute the overall acti-
vation of a neuron. This is done for every neuron in every layer starting with the
first hidden layer and ending with the output layer. The activation of neurons in
the input layer is given by the input of an artificial neural network. The process
of moving in only one direction, from the input layer to the output layer, is called
forward propagation.

15

In earlier stages of neural networks a sigmoid function was used as the activation
function. Nowadays, the sigmoid function has been replaced by the rectified linear
unit or ReLU function. [4, 5]

A neuron can be described as the smallest computational unit of neural networks
and is given by:

𝑦 = 𝑓

(︃
𝐷∑︁

𝑖=1
𝑤𝑖𝑥𝑖 + 𝑏

)︃
(1.1)

where 𝐷 is the number of neuron inputs (given by the number of weights), 𝑥 is the
input vector of neural activations, 𝑤 is a set of weights corresponding to the input
vector, 𝑏 is the bias and 𝑓 is a non-linear activation function (e.g. ReLU). Weights
and biases of a neural network are sometimes combined into one parameter 𝜃.

1.1 Deep learning
Deep learning is a learning technique mainly used for identifying objects in images,
matching correct labels to images, speech recognition, language translation, search
engines and data analysis. In deep learning the individual weights and biases are
adjusted by the network itself. [4]

To learn, neural networks use a cost function, a data set, gradient descent and
an algorithm called backpropagation (see Section 1.2). In the cost function a cost
is calculated for each training example from the given data set. The cost can be
calculated using variety of methods. For example, it can be calculated by adding
up the square values of differences between the undesired outputs and the desired
outputs. This sum is small if the outputs are the desired ones and large if the output
values are wrong. The overall cost is usually calculated by averaging the cost for
each training example. The cost function takes all the weights and biases of an ANN
as an input and outputs the overall cost. The overall cost determines if a neural
network operates correctly or the parameters of the neural network need to change.
To minimize the cost function a gradient descent (see Section 1.2) is used. [5, 6]

1.1.1 Supervised learning

In supervised learning, the neural network is trained on a labeled data set. The data
set is usually labeled by humans. A label is a known value specified on each example
of the training data set. It could be as simple as a binary number, a category or
a score. The learning algorithm is given an input–output training sample. It uses the
knowledge of the desired output to adjust the parameters of a network accordingly.
After a learning period the network is given new input vectors. The goal is to predict
the output of these input vectors correctly.

16

Supervised learning can be divided into two main subcategories. First cate-
gory being classification, which uses an algorithm to assign test data into particular
categories. For example, in an image data set of animals, it divides them into mam-
mals, reptiles, fish and so on. This process is done by drawing some conclusions
about labeling of the specific entities. Common classification algorithms include
linear classifiers, random decision forests, K-nearest neighbor and support vector
machines. Second subcategory of supervised learning is regression. Regression mod-
els are used to understand the relationship between the input and the output. For
example, it can be used for analyzing survey data, forecasting sales based on what
the customers bought previously, or forecasting weather. Most common regression
algorithms are linear regression and logistic regression,

Labeling large volumes of data is almost impossible. Also, labeling is not always
as trivial as it sounds, not everything has a distinctive label. For that reason, semi-
supervised learning exists. Semi-supervised learning is a middle ground between
the supervised and unsupervised learning models, where a portion of the data set is
labeled and the remaining data is unlabeled. It is most commonly used in extremely
large data sets or when the extraction of certain features within the data set is
difficult. In most cases, a small amount of labeled data can lead to significant
improvements in time spent training and in accuracy of the neural network. [7, 8]

1.1.2 Unsupervised learning

In unsupervised learning, a neural network is trained without any labeled data. It
is used to discover hidden patterns, regularities in data or cluster unlabeled data. It
does not require any human supervision. The learning algorithm tries to label the
data based on the features of the given input data. The ability to distinguish certain
features is widely used in data analysis, image recognition or customer segmentation.

Unsupervised learning algorithms are used for three main tasks – clustering,
association and dimensionality reduction. In clustering, similar data is grouped to-
gether. It is commonly used in customer segmentation, where customers are grouped
together based on their common characteristics such as age or location. Associa-
tion finds the relationships between variables in the data. For example, it is often
used in market basket analysis, a technique to understand the customer purchasing
patterns. In other words, which items are often bought together. Lastly, dimen-
sional reduction is a technique which reduces the number of variables, while trying
to preserve as much information about the input as possible. It is often used in the
data preprocessing stage, where, e.g., the noise is removed from a corrupted image
to improve the overall quality of the image. [9]

17

1.2 Backpropagation
A cost function (sometimes called loss function) is a multivariable function. A gra-
dient is the direction of the steepest ascent. A negative gradient is the opposite of
this gradient. To obtain the direction that decreases the cost function efficiently,
a negative gradient vector is calculated. The negative gradient vector is calculated
by computing the negative gradient of each variable. The negative gradient vector
gives us the descent direction and additionally, the length of this vector indicates
the steepness of the slope. Minimizing a cost function is just repeatedly calculating
the negative gradient vector and taking a small step in that direction. This process
is called gradient descent. Gradient descent takes the variables closer to a local
minimum, where the output error is low on average. In other words, it minimizes
the overall cost (output) of the cost function.

Backpropagation is the core algorithm behind how artificial neural networks
learn. It computes the negative gradient vector. The magnitude of each negative
gradient shows the sensitivity of the change. For example, if the negative gradient
of one weight is 3 and the negative gradient of another weight is 0.2, the cost
function is 15× more sensible to the change of the first weight. Backpropagation
also determines how a single training example would change the weights and biases.
It repeatedly computes negative gradients in each layer of a neural network starting
at the output layer and outputs the desired change to the weights and biases. In
other words, what changes to the parameters cause the biggest decrease of the cost
function. A gradient descent step involves using backpropagation for all the training
examples and averaging the desired changes (their negative gradients). This process
is computationally very slow.

In common practice, a process called stochastic gradient descent is used instead of
normal gradient descent. It consists of feeding the neural network with few random
examples, computing the costs of the inputs, then averaging the negative gradients
of the examples and adjusting the weights accordingly. This process is repeated for
multiple small sets of examples in the training data set until the output of the cost
function stops decreasing. [4, 6]

1.3 Convolutional neural networks
Convolutional neural networks (CNNs or ConvNets) process data from 1D, 2D and
3D arrays. For example, 1D arrays represent signals and sequences such as language,
2D arrays are used for the representation of audio spectrograms and images, and 3D
arrays for videos and volumetric images. ConvNets are made form three types of
layers – convolution, pooling, and fully connected layers. A typical CNN architecture

18

consists of multiple convolution and pooling layers stacked on top of each other,
followed by a few fully connected layers. These layers will be described for 2D
arrays such as images. [4]

Fig. 1.2: A CNN architecture and its training process. Source: Adapted from [10].

The convolution layer is the key component of CNNs. It performs feature
extraction, using operations such as convolution and the activation function. Con-
volution is a linear operation commonly used for detecting edges and other features.
This detection is done using an array of small numbers called a kernel or a filter. The
filter is applied across the input image, also called the input tensor. A Hamadard
product (also called element-wise product) of each element of the filter and the input
tensor is calculated in each position of the input image. These products are then
summed and correspond to the output value in an output tensor called a feature map
(see Fig. 1.3). The process of applying different filters is repeated to obtain multiple
feature maps that represent different characteristics of the input image. Convolution
uses two main parameters – the size and the number of filters (kernels). The most
common filter size is 3×3 but sizes 5×5 and 7×7 are used occasionally. The number
of filters is arbitrary. Sometimes a padding, usually zero padding, is used to prevent
the reduction of dimensions of the feature map. It adds rows and columns of zeros
to the input tensor, so the filter can be applied for places such as the outer bounds
of an image. This allows the feature map to keep the same dimension throughout
the convolution. Other parameter used in convolution is called a stride. A stride
is the distance between two filters of an image. The most common stride is 1, that
means the filter will move one pixel at a time. However, the stride can be bigger
than one to achieve downsampling of the feature maps in the pooling layer. The
outputs of the convolution are then passed through a nonlinear activation function,
usually the ReLU. [10]

19

1

1 1

11

2
0

0
0
0
0
0
0

0
0

0
0

0
0

0
0

0

2

3
3

3

5 3

64

5

4

7
6

0

1 0

10

1

0

0
1

Input tensor
Filter

Feature map

Hamadard product

Sum up

Fig. 1.3: An example of convolution with zero padding. The filter size and the stride
are set to 3×3 and 1.

A pooling layer is used to reduce the in-plane dimensions of feature maps
using a downsampling operation. It provides translation invariance to small shifts
and distortions, and decreases the number of learnable parameters. Translation
invariance means that the neural network produces the same output, regardless of
the shift of the input. Two main pooling operations are discussed – max pooling
and global average pooling. Max pooling is the most popular pooling operation. It
divides the feature maps to multiple segments and outputs the maximum value of
each segment. Other values are then discarded. Most common max pooling filter
is a 2×2 filter with a stride of 2, which downsamples the feature map by a factor 2
(see Fig. 1.4). In global average pooling, a feature map is downsampled into a 1×1
array (1D array) by averaging all values in each feature map. This operation is
usually applied once before the fully connected (FC) layers. Additionally, it can be
used to replace the fully connected layers. It also reduces the number of learnable
parameters and accepts inputs of variable sizes.

5

7
3
11

2
1
5
11

7
2

4

2

4 3

11

1

2

5
7

Input tensor Output

Fig. 1.4: An example of max pooling with no padding. The filter size and the stride
are set to 2×2 and 2.

20

A fully connected layer is a layer, where every input is connected to every
output by a learnable weight. The output feature maps of the last convolution or
pooling layer are transformed into an 1D array and connected to one or more fully
connected layers. In classification tasks, the final fully connected layer has the same
number of outputs as is the number of classes. Each fully connected layer is followed
by an activation function like ReLU. The final fully connected layer can be followed
by a softmax function. Softmax function converts an output vector of 𝑘 real numbers
into a probability distribution of 𝑘 possible outcomes. [10]

1.3.1 Architectures

A networks architecture is a crucial factor in improving the performance of differ-
ent applications. Because of that many CNN architectures exist. Some examples
include: AlexNet, Network-in-network, VGG, GoogLeNet, ResNet, DenseNet, Cap-
sNet, U-Net and many others. AlexNet and U-net are briefly described below.

AlexNet [11] is a highly respected deep CNN architecture, that began the re-
search era in CNN applications. It was made in 2012 and excelled in many fields
of image recognition and classification. AlexNet improved the learning ability of
neural networks by increasing their depth. It also implemented multiple parameter
optimization methods. Two graphics processing units (GPUs) were used in parallel
to train the first AlexNet to overcome the limited learning ability of 2012 hardware.

Fig. 1.5: A modern AlexNet architecture. The convolution layer is represented by
light (convolution) and slightly darker orange boxes (ReLU funtion). Darker orange
boxes represent the max pooling layers. Light and darker purple (ReLU function)
boxes indicate the individual fully connected layers. Source: Adapted from [12].

21

The depth of this CNN is eight. The first five layers are convolutional and
other three are fully connected layers. The output of the last fully connected layer
is given to a softmax function. After every convolutional layer it uses special max
pooling layers called overlapping pooling layers described in [11]. A modern AlexNet
architecture can be seen in Figure 1.5.

U-net [14] is a modification of the fully convolutional network proposed in [13].
It is modified to work with fewer training images and allows for more precise seg-
mentation. The main idea is to supplement the network with layers where pooling
operators are replaced with upsampling operators. These layers increase the resolu-
tion of their outputs. Therefore, the following convolutional layers give more precise
outputs.

Fig. 1.6: The U-net architecture. Each blue box represents a feature map. The
number of feature channels is written on top of the box. The size of the layer can
be seen in the bottom left corner of the box. White boxes constitute copied feature
maps. Gray arrows represent skip connection and other arrows represent different
operations. Source: Adapted from [14].

The upsampling layers provide more feature channels, allowing the network to
propagate context to higher resolution layers, which results in the u-shaped architec-
ture (Fig. 1.6). This process is done with large skip connections. Skip connections,
as the name suggests, skip some layers in neural networks and feed the output of one

22

layer as the input in other layers. The architecture does not contain any fully con-
nected layers. It uses an overlap-tile strategy that allows for flawless segmentation
of large images. This strategy is described in [14]. The architecture consists of two
paths. First being a contracting path (encoder path), that follows the typical CNN
architecture. The second being an expansive path (decoder path), where the feature
maps are upsampled. At the final layer an 1D array convolution (1×1 convolution)
is used to map each feature vector to the number of classes. The network consists
of 23 convolutional layers. The most common application of U-net architecture is
in biomedical image segmentation. [14, 15]

23

2 Deep Image Prior
Deep Image Prior (DIP) [3] is a revolutionary concept that uses a generative con-
volutional neural network (CNN). It is used for image reconstruction problems like
denoising, super-resolution, inpainting and others. Generally such problems are
solved by CNNs trained on large data sets. This remarkable concept uses a CNN
that is completely untrained. The only input information of the CNN is an image
damaged or degraded in some way and the structure of the network. All the weights
of the network are randomly initialized and serve as a parameterization of the image.
DIP proves that the architecture of a neural network affects the results.

This neural network connects the gap between two most popular image restora-
tion methods. The first method uses learning-based convolutional neural networks
and the other is non-trained, purely based on handcrafted natural image priors such
as Total Variation (TV). DIP uses an U-Net-like “hourglass” architecture also called
encoder–decoder with skip connections. It demonstrates that an untrained deep
convolutional generator can replace the natural prior used in TV with significantly
better results. [3]

2.1 Selected applications of DIP
Before talking about the applications, the method used in DIP needs to be under-
stood. A deep neural network can be considered as a parametric function 𝑥 = 𝑓𝜃(𝑧)
that maps a code vector 𝑧 to an image 𝑥. The code vector 𝑧 is fixed and randomly
initialized. This method displays that a notable amount of information is stored
just in the structure of the function 𝑓𝜃. The parameter 𝜃 consists of the weights
and the bias of the filters in the network. Operations like the linear convolution,
upsampling and non-linear activation functions are used by the network. [3]

In reconstruction tasks, a restored image can be obtained by maximizing pos-
terior distribution. Conditional (posterior) distribution can be defined as 𝑝(𝑥|𝑥0),
where an image 𝑥 is made from corrupted counterpart 𝑥0. Instead of working with
the distribution explicitly, the task is interpreted as energy minimization:

𝑥* = min
𝑥

𝐸(𝑥; 𝑥0) + 𝑅(𝑥), (2.1)

where 𝐸(𝑥; 𝑥0) is the data term that is chosen by the given application, 𝑥0 is the
damaged image and 𝑅(𝑥) is an explicit regularizer. The regularizer 𝑅(𝑥) can be
removed since it is not usually tied to particular applications. As its alternative, an
implicit prior captured by the parameterization of a neural network is used:

𝜃* = argmin
𝜃

𝐸(𝑓𝜃(𝑧); 𝑥0), (2.2)

24

where the minimizer 𝜃* is found using gradient descent. The applications start
from a randomly initialized parameter 𝜃, that is why the only input information
needed is the corrupted image 𝑥0. The result, given the minimizer 𝜃*, is obtained as
𝑥* = 𝑓𝜃*(𝑧). An important point to mention is that the optimization process needs
to be stopped after a specific number of iterations because the result image 𝑥* will
eventually turn (in some applications) into the input image 𝑥0. Deeper dive into
this method is shown in the journal [3].

2.1.1 Denoising

Deep image prior can be used to remove noise from an image. Denoising generates
a clean image 𝑥 from a noisy equivalent 𝑥0. There are two types of noise. First type
is when the noise model is known, usually as: 𝑥 = 𝑥 + 𝜖, where 𝜖 follows a specific
probability distribution. Second type is when the noise model is not defined.

Fig. 2.1: Deep image prior denoising comparison with the CMB3D and NLM.
Source: Adapted from [3].

DIP works with the second type, but it can be replaced with the first type. The
equations for this problem are as follows:

If the value of the minimizer 𝜃* needs to be found, it can be done by optimizing
(2.2) using data term that compares the image 𝑥 and the noisy image 𝑥0

𝐸(𝑥; 𝑥0) = ||𝑥 − 𝑥0||2. (2.3)

If it is plugged to equation (2.2), it leads to the optimization problem

min
𝜃

||𝑓𝜃(𝑧) − 𝑥0||2. (2.4)

After replacing the minimizer 𝜃* of (2.2), a clean image 𝑥* = 𝑓 *
𝜃 (𝑧) is given.

25

This approach can also be used for restoration of JPEG-compressed images.
While the restoration process is running, it can remove a great deal of JPEG-
compression artifacts after about 2400 iterations, but ultimately becomes the input
image at 50K iterations.

The peak signal-to-noise ratio (PSNR) of this method is 29.22 after 1800 itera-
tions. If the restored images in the last iterations are averaged, the PSNR of about
30.43 is acquired. Maximal score of this method is 31.00 PSNR. It performs greatly
compared to other popular methods like CMB3D [16] and Non-local means (NLM)
[17] that achieved 31.42 and 30.26 PSNR. The comparison of these methods can be
seen in Figure 2.1. [3]

2.1.2 Super-resolution

Super-resolution takes a low resolution (LR) image 𝑥0 ∈ R3×𝐻×𝑊 , upsampling factor
𝑡 and it produces an upsampled image 𝑥 ∈ R3×𝑡𝐻×𝑡𝑊 also called high resolution (HR)
image. To find a solution to this inverse problem, the data term in (2.2) is set to:

𝐸(𝑥; 𝑥0) = ||𝑑(𝑥) − 𝑥0||2, (2.5)

where 𝑑(.) : R3×𝑡𝐻×𝑡𝑊 → R3×𝐻×𝑊 is a downsampling operator that rescales the
image by upsampling factor 𝑡. The problem is finding a HR image 𝑥 that is after
downsampling identical to LR image 𝑥0. There is infinite number of solutions for

Fig. 2.2: Deep image prior 4× super-resolution comparison with the bicubic upsam-
pling, LapSRN and SRResNet. Source: Adapted from [3].

26

the ill-posed problem that is super-resolution. As a result, regularization is needed
to choose the most reasonable from the infinite number of minimizers of (2.5). Reg-
ularization is done by reparameterization 𝑥 = 𝑓𝜃(𝑧) and optimization of the result
with respect to 𝜃. Neural networks and downsampling operators like Lanczos are
differentiable, so gradient descent is used for optimization. [3]

Tab. 2.1: Detailed 4× super-resolution PSNR comparison on the data set from [20].

4× super-res Baby Bird Butterfly Head Woman Avg.
No prior 30.16 27.67 19.82 29.98 25.18 26.56
Bicubic 31.78 30.20 22.13 31.34 26.75 28.44

TV prior 31.21 30.43 24.38 31.34 26.93 28.85
Glasner et al. 32.24 31.10 22.36 31.69 26.85 28.84

DIP 31.49 31.80 26.23 31.04 28.93 29.89
LapSRN 33.55 33.76 27.28 32.62 30.72 31.58

SRResNet-MSE 33.66 35.10 28.41 32.73 30.60 32.10

Tab. 2.2: Detailed 8× super-resolution PSNR comparison on the data set from [20].

8× super-res Baby Bird Butterfly Head Woman Avg.
No prior 26.28 24.03 17.64 27.94 21.37 23.45
Bicubic 27.28 25.28 17.74 28.82 22.74 24.37

TV prior 27.93 25.82 18.40 28.87 23.36 24.87
SelfExSR 28.45 26.48 18.80 29.36 24.05 25.42

DIP 28.28 27.09 20.02 29.55 24.50 25.88
LapSRN 28.88 27.10 19.97 29.76 24.79 26.10

Next, the quality of this method is compared to other methods, such as bicubic
upsampling, modern learning-based methods like SRResNet [18], LapSRN [19] and
others. For this comparison the numbers 4 and 8 are chosen to be the factor 𝑡. Fur-
thermore, the peak signal-to-noise ratios (PSNRs) are calculated. Visual comparison
can be seen in Figure 2.2 and computed PSNRs in Tables 2.1.2 and 2.1.2 adapted
from [3]. Visually, this method reaches the quality of learning-based methods. By
comparing the PSNRs it can be seen that this method is surpassed by the modern
learning-based methods, but still produces better results then bicubic upsampling
and other non-trained methods. [3]

27

2.1.3 Inpainting

Inpainting is a process where damaged, destroyed or missing portions of an image
are repaired (repainted). In this case, a portion of pixels is missing. A damaged
image 𝑥0 with binary mask 𝑚 ∈ {0, 1}𝐻×𝑊 of missing pixels can be restored with
data term

𝐸(𝑥; 𝑥0) = ||(𝑥 − 𝑥0) ⊙ 𝑚||2, (2.6)

where ⊙ is the Hadamard product. Data prior is needed, due to separation of the
energy and the missing sections. If the data prior was not present, the image would
not change after optimization over pixel values 𝑥. The prior is given by optimization
of the data term with respect to the reparameterization in (2.2).

Fig. 2.3: Deep image prior text inpainting comparison with Shepard networks.
Source: Adapted from [3].

Inpainting can be used for tasks such as removing text, filling missing segments
of pixels or restoring image with a certain percentage of pixels missing. This method
does not work for more semantic inpaintings like human or animal faces, equations,
text and others, due to not being trained. However, for other situations it works
wonderfully. For removing text it works better in comparison with other methods
like the Shepard networks method [21], which can be seen in Figure 2.3. When a cer-
tain percentage of pixels is missing, where the mask is randomly sampled according
to a binary Bernoulli distribution, it performs greatly, as opposed to convolutional

28

sparse coding (CSC) [22]. Example of 50 % of pixels missing is shown in Figure 2.4.
In architectural comparison, having deeper architectures proved to be favourable.
Also having skip-connections was shown to work greatly for recognition tasks. [3]

Fig. 2.4: Deep image prior 50 % of pixels missing comparison with CSC. Source:
Adapted from [3].

2.1.4 Other applications

Other applications presented in [3] include flash – no flash reconstruction, activation
maximization and image enhancement.

Flash – no flash reconstruction differs from other methods by its need of
two input images. One shot with camera flash which procures sharpened details,
the other shot with natural lighting. The goal of this application is to combine these
images into one having both sharp details and natural colors. Good reconstructions
were acquired by using (2.4) for denoising, with image shot with camera flash as in
input 𝑧. The result is given by guided image filtering.

Activation maximization is a method to visualize inner parts of a deep neural
network. It synthesizes an image where a specific neuron is active by solving the
optimization problem:

𝑥* = arg max
𝑥

𝜑(𝑥)𝑚, (2.7)

where 𝑚 is the index of a neuron. The layers of AlexNet and VGG-16 CNNs are
used for this application.

Image enhancement is used for high frequency enhancement of an image. It
is done by using (2.4) and choosing the target image to be 𝑥0. By stopping the
optimization process after particular number of iterations, image 𝑥c is obtained.
Detailed image (𝑥f) is calculated by subtracting the image 𝑥c from the target image
𝑥0. The enhanced image (𝑥e) is then constructed with equation: 𝑥e = 𝑥0 + 𝑥f .

Similar to denoising, undesirable high frequency details start to appear after
a certain amount of iterations. [3]

29

3 Demosaicing of RAW images
Demosaicing, also called color filter array (CFA) interpolation, is a process of esti-
mating missing color values from a CFA. Multiple color filter array patterns exist.
Bayer filter is one of the most popular CFA patterns. (Fig. 3.1).

Fig. 3.1: The Bayer pattern. Source: Adapted from [23].

To acquire an RGB color of an image precisely a digital camera would require
three color sensors. Each sensor would need proper driving electronics and precise
placement. Therefore, measuring the precise color could quickly get expensive. For
this reason many cameras use a single CFA sensor, allowing them to measure only
single color value of each pixel. The other values are then obtained by demosaicing.
The gray squares in Fig. 3.1 represent the image sensor. These squares combined
with the colored squares make up a CFA sensor. [24]

3.1 RAW image
A digital camera is made of an optical system, an image sensor and an electronic
system. The output signal of an image sensor is analog. This signal is then converted
by an A/D converter into a digital signal, that is recorded as digital image in RAW
format. RAW image is uncompressed and contains all the original information about
the image. The image sensor is not capable of separating the different color channels,
thus a CFA sensor like the Bayer pattern sensor is necessary. [25]

RAW files are produced not only by digital cameras, but also image scanners and
film scanners. They are created in multiple kinds of proprietary file formats. Like
.nef for Nikon cameras, .cr2 or .crw for Canon, .arw file used by Sony cameras and
many others. These files can be viewed, edited and converted into other formats

30

in multiple programs for image editing like Adobe Photoshop, Adobe Lightroom or
Zoner Photo Studio. [26]

RAW image files have the best detail possible compared to other raster or vector
files formats. They contain significantly more colors compared to a format like
JPEG. RAW files can be converted to lossless compressed RAW files that occupy
less space. Additionally, there are many adjustments to be made without changing
the RAW file itself. Meaning all the changes are never permanently applied to the
RAW file, instead they are saved in the editing software. Some adjustments include:
changing the image from grayscale to an RGB image, changing contrast, brightness
and others. A problem may arise in regards to the size, as it is larger compared to
compressed images like JPEG, or with certain software that cannot read formats
from particular cameras. Many people do not have the appropriate software to open
them; hence, they are more difficult to work with and share. [27]

3.2 Bayer filter
Bayer filter is the most common color filter array (CFA) used for demosaicing. It is
named after Bruce Bayer who invented it in 1974. CFA is a mosaic like pattern put
over the pixel sensors of an image. The Bayer filter is made from red (R), green (G)
and blue (B) colors that are arranged in a square pattern and displayed over the
whole filter. There are four types of this square pattern RG–GB, BG–GR, GR–BG
and GB–RG as shown in Fig. 3.2. [24]

Fig. 3.2: Types of Bayer patterns.

The pattern uses two green, one red and one blue component. Therefore, in
a 64 Megapixel Bayer pattern camera sensor, 16 Mpx store the red values, 16 Mpx
store the blue values and 32 Mpx store the green values. The higher focus of Mpx
is attributed to the heightened sensitivity of human eyes to the color green.

3.3 Methods of demosaicing
As mentioned, demosaicing is a process of calculating the missing color values from
a color filter array. Nowadays, a large amount of demosaicing methods exists. The

31

simplest method of demosaicing is bilinear interpolation. In this method the three
color channels are independently interpolated using symmetric bilinear interpolation
from the neighbors of the same color. Bilinear interpolation does not account for the
correlation between color values. Due to this it creates significant artifacts, mainly
near edges and other high-frequency content. [1]

For the explanation of the bilinear interpolation, the Bayer pattern shown in
Figure 3.3 is used.

Fig. 3.3: The Bayer pattern for demonstration.

To obtain the green value 𝑔(𝑖, 𝑗) at position (𝑖, 𝑗) (marked with ‘+’ in Fig. 3.3)
of a red or a blue pixel, the average of surrounding green pixels (marked with ‘×’ in
Figure 3.3) is calculated:

𝑔(𝑖, 𝑗) = 1
4
∑︁

𝑔(𝑖 + 𝑚, 𝑗 + 𝑛) (3.1)

where (𝑚, 𝑛) = {(0, −1), (0, 1), (−1, 0), (1, 0)}. In Figure 3.3 this equation can be
used when calculating the green value of the red pixel marked with ‘+’ sign. For
the red or blue values, in this case blue values marked with ‘−’, the same equation
applies with the difference that (𝑚, 𝑛) = {(−1, −1), (−1, 1), (1, −1), (1, 1)}. This
approach works for red and blue pixel positions. To calculate the R and B value in
the position of a G pixel, only the two R and B neighbouring values are averaged.
At the borders of an image, only values inside the bounds of the image are used for
the calculations. No overflow logic is needed, because the output value has the same
dynamic range as the input value. Meaning that the output value cannot move
outside the range 0–255 because bilinear interpolation is calculated by averaging
specific values in the same range. [1]

Demosaicing methods can be divided into multiple groups; however, only the
major two are described. The first group includes heuristic approaches. The second
group interprets demosaicing as an image restoration problem.

32

3.3.1 Heuristic approaches

Heuristic approaches, often called heuristic methods, are primarily filtering opera-
tions based on logical assumptions about an image. In other words, they do not
correspond to mathematically defined optimization problems. Already mentioned
bilinear interpolation is a heuristic approach that ignores to the correlation between
color channels. Other heuristic methods may utilize this correlation for a better
result. Several of these approaches exist, a portion of them is described below.

Edge-directed interpolation
Nonadaptive methods like bilinear interpolation and bicubic interpolation, which
are very similar with the main difference being the number of pixels interpolated
through, generally fail near edges and other highly-textured regions. On the con-
trary, edge-directed interpolation is an adaptive method. In this method, each
neighboring pixel in a 3×3 region is analyzed. The favourable interpolation direc-
tion is then chosen to avoid interpolating across edges and other textured content.

The choice of an interpolating direction can be done using multiple strategies.
For example, a red pixel in the Bayer pattern (Fig. 3.3) is taken. One strategy is
that the horizontal Δ𝐻 and vertical Δ𝑉 gradients of surrounding green pixels are
calculated, than compared. If Δ𝐻 > Δ𝑉 , the interpolation is done in the vertical
direction. If Δ𝐻 < Δ𝑉 , the interpolation is done in the horizontal direction and
if Δ𝐻 = Δ𝑉 , intuitively, the interpolation is done along both directions. Another
strategy compares the gradients to a constant threshold, like method in [28]. If the
gradient in one direction is below the selected threshold, the interpolation is done in
that direction. When both gradients fall below or above the threshold, the missing
value is obtained by interpolating along both directions. [24]

The edge-directed interpolation can also be altered by using bigger regions than
3×3. These modifications use more complex strategies to choose the interpolation
direction and make full use of texture similarity in different color channels. Conse-
quently, interpolation over e.g. 5×5 region performs better than the 3×3 counterpart.

Constant-hue-based interpolation
In demosaicing, there are many assumptions made about the correlation of colors.
One common assumption is that the hue (pure color) of an object in an image is
constant. Even though the brightness of an unicolored object changes, the hue is still
constant, although the originally measured color values might change. Thence, an
assumption that the color differences (distance between two colors) within objects
are also constant is made. This prevents sudden changes in hue and has been used
for interpolation of the red and blue channels by multiple algorithms such as [29].

Initially, the green channel is interpolated using bilinear or edge-directed interpo-
lation. Additionally, the red hue (ratio between red and green channel) and the blue

33

hue are interpolated. The values of the R and B channel are then estimated from
the interpolated hues. This estimation is done by multiplying the particular hues
with the green value. For the interpolation of hues, any interpolation method can be
utilized. Similar approach can be used for constant-difference-based interpolation,
only with color differences instead of hues.

Pattern matching
As the name suggests, this approach tries to find a specific pattern in the color
values or match the values to established templates. Each template uses a different
interpolation method. A pattern matching algorithm is described in [30]. It is used
on the green image, where every missing green value classifies as an edge, corner,
stripe or other feature usually found in natural images. Afterwards, a corresponding
interpolation method is chosen to find the missing color values. [24]

3.3.2 Reconstruction approaches

Reconstruction methods, unlike heuristic methods, try to solve a mathematical prob-
lem based on various beliefs about the correlation between channels and the prior
image. Several methods use iterative algorithms. Other interpret the problem as
a Bayesian estimation problem, where the beliefs about hue and spatial smoothness
are used for regularization. The Bayesian and artificial neural network approach
will be described.

Bayesian approach
Bayesian approach utilizes the noise information and prior knowledge (such as con-
stant hue, color difference, spatial smoothness) about the given image. It uses the
maximum a posteriori probability (MAP) estimate. The variables such as the ob-
served data 𝑂(𝑛1, 𝑛2), the color channels 𝑆(𝑛1, 𝑛2) and additive noise 𝑁𝑆(𝑛1, 𝑛2) are
assumed to be random. The MAP estimate 𝑆 is given by

𝑆 = arg max
𝑆

{𝑝(𝑆|𝑂)} = arg max
𝑆

{𝑝(𝑂|𝑆) · 𝑝(𝑆)}, (3.2)

where the 𝑝(𝑂|𝑆) is a conditional probability density function (PDF), 𝑝(𝑆) is a prior
PDF. The 𝑝(𝑂|𝑆) is obtained from the noise model, usually an additive white Gauss-
ian noise. The prior PDF (𝑝(𝑆)) is acquired using variety of methods. For example,
using Gibbs distribution. Gibbs distribution (also called Boltzmann distribution) is
described by an energy function 𝑈(𝑥) and a temperature parameter 𝑇 . A PDF with
this distribution can be written as

𝑝(𝑥) = 1
𝑍

e−𝑈(𝑥)/𝑇 , (3.3)

where 𝑍 is the normalizing constant. In [31], the energy function is written as sum
of the local energy functions at each pixel location. After defining the individual

34

energy functions, the total energy can be minimized with consideration of two main
factors. First, the image should be smooth i.e. the deviation of pixel values should
be small. Second, the color cross-ratios around the given pixel location should be
equivalent. The energy model is defined by the linear combination of these two
factors. [24, 31]

Artificial neural network approach
This approach learns the parameters for reconstruction from a set of training images.
It is used by Kapah and Hel-or in [32]. They propose three methods – perceptron,
backpropagation and quadratic perceptron. The inputs are obtained from a 2×2
region. The pixels around this region count towards the inputs. Thence, the neural
network uses 16 inputs and produces 8 outputs. Each method calculates the outputs
(missing color values) differently. [24]

The perceptron method acquires them using linear combination of the inputs.
It performs sufficiently in low-frequency regions, but its performance drops in high-
frequency regions. The backpropagation method can learn complex nonlinear func-
tions using sigmoid functions. Therefore, it produces better results in high-frequency
regions, compared to low-frequency regions. This problem is solved by a selector
that uses different methods depending on the selected 2×2 region. The last method
is a quadratic perceptron network, where the weights are functions of inputs. They
are obtained by a perceptron subnetwork. Deeper explanation of the quadratic
perceptron method can be found in [32].

3.3.3 Malvar’s method

Malvar’s interpolation method is a heuristic method used in this thesis, due to its
simple nature. It uses bilinear interpolation and a gradient correction to estimate
the output color value more accurately. For example, if the green value of a red
pixel location needs to be calculated, the red value at that location is not discarded.
Instead, it is compared to the bilinear interpolation of nearest red samples. If
it is different from the estimate of bilinear interpolation, there might be a sharp
luminance change at that pixel. In other words, our pixel is probably near an edge;
therefore, the bilinearly interpolated green value needs to be corrected by adding
some amount of the luminance change. To interpolate green values at a red pixel
position, this equation is used:

𝑔(𝑖, 𝑗) = 𝑔B(𝑖, 𝑗) + 𝛼 · ΔR(𝑖, 𝑗) (3.4)

where subscript ‘B’ means bilinearly interpolated, 𝛼 is a gain factor controlling the
correction amount and ΔR(𝑖, 𝑗) is the gradient of R at that position. It is given by:

ΔR(𝑖, 𝑗) ≜ 𝑟(𝑖, 𝑗) − 1
4
∑︁

𝑟(𝑖 + 𝑚, 𝑗 + 𝑛) (3.5)

35

where (𝑚, 𝑛) = {(0, −2), (0, 2), (−2, 0), (2, 0)}. As can be seen, the bilinear interpo-
lation is corrected with a gradient multiplied by a gain factor. To interpolate green
value at blue positions, the same equation is used only with gradient ΔB(𝑖, 𝑗). For
interpolating red values at green pixels, this equation is used:

𝑟(𝑖, 𝑗) = 𝑟B(𝑖, 𝑗) + 𝛽 · ΔG(𝑖, 𝑗) (3.6)

where the gradient ΔG(𝑖, 𝑗) is a 9-point region and (𝑚, 𝑛) = {(0, −2), (0, 2), (−2, 0),
(2, 0), (−1, −1), (−1, 1), (1, −1), (1, 1)}. For the interpolation of red value at the po-
sition of a blue pixel, this equation is used:

𝑟(𝑖, 𝑗) = 𝑟B(𝑖, 𝑗) + 𝛾 · ΔB(𝑖, 𝑗) (3.7)

where the gradient ΔB(𝑖, 𝑗) is a 5-point region and (𝑚, 𝑛) is the same as for the
equation (3.5). For interpolating blue values the equations are similar by symmetry.
The gradient 9-point and 5-point regions are shown in Fig. 3.4. [1]

Fig. 3.4: The optimal filters. Source: Adapted from [1].

To determine the gain factors {𝛼, 𝛽, 𝛾}, the values that led to minimum mean-
square error between the estimated value and the correct value were selected. These

36

factors were computed from the Kodak image data set used in [33]. The result of
this computation: 𝛼 = 1/2, 𝛽 = 5/8 and 𝛾 = 3/4. An optimal linear FIR filter
coefficients are determined by these factors. The optimal filters for a 5×5 region
are shown in Fig. 3.4. This method corrects the bilinearly interpolated values
by adding some amount of luminance change. In some cases, this correction is
done using a large number, causing the output value to overflow the range 0–255.
Therefore, this method needs the presence of some overflow logic. [1]

3.3.4 Menon’s method

Menon’s approach [2] is a bit different from standard methods. It employs directional
interpolation of the green positions of pixels. This directional interpolation is done
along both horizontal and vertical direction and creates two “green” images. After
the interpolation, a decision is made between the two images. This decision is
made using two classifiers that are described in [2]. Following the decision, the
red and blue components are interpolated. Apart from other methods, where only
the information captured by the Bayer filter is utilized, the two classifiers and the
selected “green” image help with the calculation of these (blue, red) components.
This approach results in more accurate images with less artifacts. [2]

37

4 Experiments and results
This chapter introduces the implementation of a new approach to demosaicing and
that is with a relatively new concept called Deep Image Prior [3]. It also describes
multiple experiments and comparisons done using this method. All the experiments
used a traditional data set called a Kodak image data set [33]. All 24 images with
the size of 768×512 or 512×768, depending on the image orientation, were used.
The images came in an uncompressed PNG-24 file format with 8 bits per channel.

The proposed method was compared with four commonly used demosaicing
methods – the bilinear interpolation (Section 3.3), Malvar’s method (Section 3.3.3),
Menon’s method (Section 3.3.4) and the demosaic function in Matlab.

4.1 Demosaicing using Deep Image Prior
Demosaicing using the DIP works similarly to other applications proposed in [3],
more precisely the application of inpainting. As mentioned in Section 2.1.3, a binary
mask 𝑚 ∈ {0, 1}𝐻×𝑊 is used to represent the missing image pixels that need to be
reconstructed. The data term (2.6) is used to restore the image. Considering the
behavior of DIP, demosaicing can be thought of as a form of inpainting, since both
of them try to find the missing values of pixels, only instead of the binary mask 𝑚,
a new mask 𝑀CFA is presented. The data term for demosaicing becomes

𝐸(𝑓𝜃(𝑧); 𝑥0) = ||(𝑓𝜃(𝑧) − 𝑥0) ⊙ 𝑀CFA||2. (4.1)

Similarly to inpainting, the inclusion of the data prior during the optimization of
the data (energy) term is crucial.

4.1.1 Parameters of the neural network

Multiple architectures and their configurations were tested for the proposed demo-
saicing method. The most promising proved to be an encoder-decoder architecture
similar to the U-net [14]. The configuration includes five downsampling and five up-
sampling convolutional layers. Unlike the U-net (Fig. 1.6), skip connections (even
though they led to faster optimization) were not used due to the fact that they
brought undesirable visual artifacts, at least with the configuration used in the ex-
periments. Both upsampling and downsampling layers used the same number of
feature maps, which were as follows: 64, 64, 128, 256, 512. This setting was the
most distinctive compared with the inpainting experiment in [3]. A 3×3 convolution
with zero padding was used to obtain the feature maps. This convolution was fol-
lowed by a LeakyReLU activation function. The weights of the neural network were

38

randomly initialized with Gaussian noise and the chosen learning rate was 0.001.
As for the optimization algorithm, the Adam optimizer [34] was used. The highest
PSNR values frequently appeared around 2000 epochs (see Fig. 4.1); therefore, 2000
epochs were chosen to be the stopping point of learning. The SSIM values were more
or less proportional to the highest PSNR values. The absolute highest values of ob-
jective criteria PSNR-HVS/PSNR-HVSM appeared around 1600 epochs; however,
the difference between 1600 epochs and 2000 epochs was negligible. The mentioned
assessment methods are described in Section 4.2.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of epochs [-] #104

25

26

27

28

29

30

31

32

33

34

35

P
S

N
R

 [d
B

]

PSNR value vs 50k epochs

2000 epochs kodim01

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of epochs [-] #104

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

S
S

IM
 [-

]

SSIM value vs 50k epochs

2000 epochs

kodim01

Fig. 4.1: The selection of the number of epochs. The graphs show the PSNR and
SSIM values of the first image of the Kodak data set (kodim01) throughout 50000
epochs. A similar behavior was observed for other images in the data set.

4.1.2 Artificial mosaicing

Artificial mosaicing is a term to describe the process of artificially creating “RAW”
images. Real “RAW” images are normally captured by the image sensor in a camera;
however, for the purpose of easier testing, these images had to be simulated. This
process takes an RGB image in the PNG-24 file format and converts it to an R, G,
B undersampled image using an CFA mask (filter). Three types of CFA masks were
employed in the experiments – the Bayer mask (Section 3.2), the X-Trans filter [35]
and a random filter.

4.1.3 Usage of different filters

Most cameras use the Bayer filter. Consequently, most demosaicing methods in-
cluding the ones compared with the proposed method use a demosaicing algorithm
based solely on the Bayer mask. These algorithms are specifically designed for

39

the Bayer CFA and therefore would be dysfunctional with other color filter arrays
(CFAs). One of the advantages of the proposed method is that it can be used with
multiple filters. As mentioned in Section 4.1.2, three filters were utilized in the ex-
periments. The random filter is easily imaginable – randomly placed red, green and
blue components. All filters can be seen in Fig. 4.2.

a) the Bayer mask b) the random filter b) the X-Trans filter

Fig. 4.2: Different color filters used in experiments.

The X-Trans filter [35] is a special CFA developed by Fujifilm and used in their
X series cameras. The X-Trans CFA consists of a 6×6 pattern (see Fig. 4.2). Due to
its more irregular layout, it offers a better reduction of the color artifacts (aliasing)
than e.g. the Bayer mask [35].

The random filter is randomly generated before the experiments. The color
distribution is 1/3 for every color value (red, green and blue).

4.2 Evaluation
As mentioned before, the proposed demosaicing algorithm was compared with other
commonly used methods. The comparison was done using a variety of assessment
methods. The evaluation is made possible due to the artificial mosaicing (Section
4.1.2), since the “mosaiced” image is made from an original fully colored image
(ground truth).

4.2.1 Assessment methods

These methods include – Peak signal-to-noise ratio (PSNR), PSNR-HVS and PSNR-
HVSM, and structural similarity index measure (SSIM). It is worth noting that the
SSIM value is defined in an interval [0, 1] with the maximum of 1. Additionally,
higher PSNR values are better (the same holds for PSNR-HVS and PSNR-HVSM).
All the objective scores of these methods were calculated in Matlab. SSIM and

40

PSNR have a built in function directly in Matlab. The Matlab code for PSNR-HVS
and PSNR-HVSM was taken from [36].

Peak signal-to-noise ratio

PSNR [37] is a quality measure between an original image and a reconstructed (or
compressed) image in decibels. It is the ratio between maximum (peak) power of
the signal and the maximum power of the noise. The calculation uses mean-square
error (MSE) and is calculated (for an 8-bit image) as

PSNR = 10 · log10

(︃
2552

MSE

)︃
, MSE =

∑︀
𝑚,𝑛[𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]2

𝑀 · 𝑁

where 𝑀 and 𝑁 are the number of rows and columns. 𝐼1 and 𝐼2 are the original
and the reconstructed image.

PSNR-HVS and PSNR-HVSM

PSNR-HVS [38] computes the standard PSNR, but takes into account the Human
Visual System (HVS), which is more sensitive to distortions in low frequency regions.
It removes the so called mean shifting and contrast stretching using a scanning
window [38]. PSNR-HVS is calculated with the same equation as the classic PSNR,
only the MSE is calculated differently. The image is split into 8×8 blocks and the
modified MSE is calculated using discrete cosine transform (DCT) coefficients and
a matrix of correcting factors. This method is thoroughly described in [38].

PSNR-HVSM [39] is an addition to the PSNR-HVS value. It takes into account
not just the HVS but also a model proposed in [39] that reduces the DCT coeffi-
cients by a contrast masking values that are calculated with the help of a contrast
sensitivity function (CSF). This method is considered to be one of the best objective
assessment methods for image quality. It is closely described in [39].

Structural similarity index measure

SSIM [40] is an index that models any image distortion as a combination of three
factors – luminance distortion, loss of correlation and contrast distortion. The SSIM
aims to replace the assessment methods that are based on the MSE. More in depth
description can be found in [40].

4.2.2 Randomness of DIP

Another difference between DIP and other common demosaicing methods is that ran-
domness of various kinds plays a role in the output of DIP-based methods. Firstly,

41

the neural network is initialized with a random code vector 𝑧 every time the opti-
mization is run. Secondly, along with the random 𝑧, a random parameter 𝜃 (initial
network weights) is generated, meaning that every optimization process possibly
finds a different local minimum of the cost (loss) function. Lastly, the optimization
algorithm Adam [34] leads to some randomness because of stochastic gradient de-
scent. All of this arbitrariness amounts to slight differences in the output PSNR
(PSNR-HVS/PSNR-HVSM included) and SSIM values over multiple runs of the
optimization process. In contrast to this, the other mentioned demosaicing methods
are purely deterministic.

4.3 Findings
This section compares the proposed method with commonly used demosaicing al-
gortihms such as the bilinear interpolation, Malvar’s method, Menon’s method and
the demosaic funtion in Matlab. It also mentions the downsides and describes any
additional improvements that can be done to improve its quality.

4.3.1 Comparison in terms of different assessment methods

Multiple experiments with different CFAs were done using the proposed method.
As already mentioned, all of the SSIM and PSNR (including PSNR-HVS/PSNR-
HVSM) values were calculated using Matlab. Ten runs of the program on all images
from the Kodak data set were averaged (due to randomness) for every CFA. The per-
formance of the proposed method with different CFA patterns and the performance
of other common demosaicing methods can be seen in Tab. 4.1.

Tab. 4.1: The average PSNR (HVS/HVSM) and SSIM values. The top part shows
the performance of common demosaicing methods. The bottom part shows the
performance of the proposed method with different CFAs. The best values in each
part are highlighted.

PSNR-HVSM PSNR-HVS PSNR SSIM
BILINEAR 27.361 25.207 29.207 0.9245
MALVAR 34.865 31.517 35.293 0.9808
MENON 39.238 35.569 39.076 0.9908
MATLAB 32.789 30.165 34.645 0.9800

DIP – bayer 33.515 30.301 33.911 0.9678
DIP – random 35.285 31.862 34.643 0.9725
DIP – x-trans 36.017 32.419 35.392 0.9750

42

24 26 28 30 32 34 36 38 40 42 44

PSNR [dB]

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
S

IM
 [-

]

SSIM vs PSNR

proposed method
bilinear interpolation
matlab function
Malvar's method
Menon's method

Fig. 4.3: Comparison of SSIM and PSNR values of different images from the Kodak
data set. The PSNR and SSIM values for the proposed method were calculated
using the X-Trans filter.

Additionally, a graphical comparison of SSIM and PSNR values of different im-
ages from the Kodak data set can be seen in Fig. 4.3.

By looking at Tab. 4.1 and Fig. 4.3 it can be seen that the proposed method
performs on par with the Malvar’s demosaicing method, in some cases even surpasses
the Malvar’s method (using the X-Trans CFA). Menon’s method proved to be the
best in terms of numerical comparison.

Section 4.2.2 described the effect of randomness on the output values of DIP-
based methods. As for the proposed method, the difference between the best and
worst run in terms of different assessment methods and different CFAs can be seen
in Tab. 4.2.

Tab. 4.2: The differences between the best and worst run (out of the 10 runs) in
terms of different assessment methods.

PSNR-HVSM PSNR-HVS PSNR SSIM
Bayer mask 0.927 0.782 0.570 0.0031

Random filter 0.537 0.436 0.390 0.0017
X-Trans filter 0.920 0.653 0.527 0.0018

43

4.3.2 Visual comparison

In the case of visual comparison, the proposed method performed significantly better
then all other methods, except for Menon’s demosaicing method. The proposed
algorithm achieved similar visual quality to Menon’s method. Additionally, images
reconstructed using the X-Trans filter proved to be the same or better than the
images obtained using the Menon’s method. The most visible differences can be
seen on the fence in the image no. 19 and the roof in the image no. 8 of the data
set. The visual comparison of different demosaicing methods on the fence in image
no. 19 can be seen in Fig. 4.4.

Fig. 4.4: Visual comparison of different demosaicing methods on the fence in image
no. 19 of the Kodak data set. The first image in the top row represents the ground
truth (original image), second image represents bilinear interpolation and the third
image corresponds to the Malvar’s method. The bottom row contains the Menon’s
method on the left, Matlab demosaic function in the middle and the proposed
method on the right.

The visual comparison of the proposed method using different CFAs can be seen
in Fig. 4.5. It is worth noting that the visual differences in the images are subjective
and no formal subjective tests were performed to prove the discussed information
statistically.

4.3.3 Additional improvements

The proposed method can be improved by a variety of actions. The first action
is the choice of a CFA. The X-Trans filter proved to be the best out of the three
filter types used in the experiments. Another and the main improvement that

44

Fig. 4.5: Visual comparison between the roof in image no. 8 reconstructed using the
proposed method with different filters and the Menon’s method. From right to left:
Bayer mask, the random filter, X-Trans filter, Menon’s method.

can be done to increase the image quality is averaging the images obtained from
last few epochs. Averaging just the last two images proved to increase the PSNR
(HVS/HVSM) values by a significant margin. Furthermore, averaging the last 50
images proved to be the best choice with regard to the objective quality, and without
any significant computational cost. The average PSNR (HVS/HVSSM) and SSIM
value improvements are shown in Tab. 4.3.

Tab. 4.3: The average improvement of PSNR (HVS/HVSM) and SSIM values after
averaging the last two and last 50 images.

Improvement PSNR-HVSM PSNR-HVS PSNR SSIM
Bayer mask – last 2 0.556 0.345 0.274 0.0011
Bayer mask – last 50 0.727 0.467 0.363 0.0015
Random filter – last 2 0.820 0.520 0.358 0.0013
Random filter – last 50 1.065 0.704 0.481 0.0018
X-Trans filter – last 2 0.938 0.587 0.420 0.0012
X-Trans filter – last 50 1.220 0.792 0.554 0.0017

However, averaging the images did not have a significant impact on the subjective
visual quality – the image at 2000 epochs, images 1999–2000 averaged, and images
1951–2000 averaged looked identical.

4.3.4 Downsides

Along with all the positives, the proposed algorithm and DIP as a whole has one
crucial downside and i.e. its computational complexity. The proposed method is
(compared with other mentioned demosaicing methods) extremely demanding when
it comes to the computer hardware. If the execution time is averaged across all
images, the classic demosaicing methods take under one second to compute, with
the fastest being bilinear interpolation at around 0.4 seconds. The computational

45

time of the proposed method is around 90 seconds on average, i.e. immensely slower
than the other methods.

The computational time can be reduced with a better graphics processing unit
(GPU). The time can fluctuate depending on the power of the GPU in the testing
PC. The computer used to acquire the said times had an NVIDIA Tesla V100S PCIe
32 GB graphics card. It is worth noting that the testing images were the size of
768×512, which is small compared with the size of images taken by today’s cameras.

4.3.5 Surprises

As an attempt to see the maximal capabilities of the proposed method, an exper-
iment using the oracle approach was made. This approach is made possible due
to the presence of the ground truth images. The oracle approach means that the
knowledge of the ground truth is utilized for the selection of the best possible image.
The best image in this situation means an image with the maximal PSNR/SSIM
value is picked out during the optimization process.

The biggest surprise arose with averaging the images in last few epochs. Averag-
ing just the last two images obtained similar results to the oracle approach. To take
it even further, averaging the images in last 10 epochs brought greater results than
the oracle approach. The comparison between averaging images in last few epochs
and the oracle approach can be seen in Tab. 4.4.

Tab. 4.4: The PSNR (HVS/HVSM) and SSIM value comparison between the oracle
approach and averaging the last few images. Comparison between different CFAs.
“2000 epochs” represents the PSNR/SSIM values of the image in the last epoch.

AVG PSNR-HVSM PSNR-HVS PSNR SSIM
Bayer – 2000 epochs 32.789 29.835 33.548 0.9663

Bayer – last 2 averaged 33.345 30.179 33.822 0.9674
Bayer – oracle approach 33.292 30.155 33.785 0.9672
Random – 2000 epochs 34.219 31.157 34.163 0.9707

Random – last 2 averaged 35.039 31.678 34.520 0.9719
Random – oracle approach 34.870 31.575 34.453 0.9717

X-Trans – 2000 epochs 34.797 31.627 34.838 0.9733
X-Trans – last 2 averaged 35.735 32.214 35.258 0.9745
X-Trans – oracle approach 35.489 32.064 35.151 0.9742

46

Conclusion
This thesis focused on the problem of demosaicing specifically demosaicing using
a revolutionary concept called Deep Image Prior [3]. This concept utilized an un-
trained convolutional neural network (CNN) to solve different reconstruction tasks,
such as denoising and inpainting. The main goal of this thesis was to implement
a new demosaicing method with DIP and compare it with other commonly used
demosaicing methods. The proposed method was compared with – bilinear inter-
polation, Malvar’s method [1], Menon’s method [2] and the demosaic function in
Matlab.

The application of inpainting helped with the implementation of the proposed
demosaicing method, because both problems behave similarly when considering deep
image prior – both of them try to find the missing values of pixels. The key difference
is in the usage of a mask that represents the missing color values. Instead of using
a binary mask as in inpainting, demosaicing uses a CFA mask.

It it worth noting that deep image prior is very versatile, which means it was not
expected to be the best at one specific task. However, it has shown some interesting
results. In the case of numerical comparison, the proposed method was compared
using a variety of assessment methods – PNSR, PSNR-HVS, PSNR-HVSM and
SSIM. A visual comparison was also done; however, no formal subjective tests were
performed. Additionally, the proposed method was tested with different CFAs – the
Bayer mask, a random filter, and X-Trans filter.

In the numerical comparison, the proposed method performed similarly to the
Malvar’s demosaicing method. When using an X-Trans filter the proposed method
performed even better than the Malvar’s method. However, the Menon’s method
proved to be the superior method (considering the numerical comparison). Further-
more, averaging the last few images of the learning process brought solid results,
even when compared with the oracle approach. Visually, the proposed method sur-
passed all other methods except the Menon’s method. Its performance was on par
with the Menon’s method. In the case of the X-Trans filter array the proposed
method performed better than every other method.

Even though the proposed method brought exceptional visual results, it would
be difficult to use it in practice due to the fact that it is extremely computationally
demanding when compared with other common methods.

47

Bibliography
[1] H. S. Malvar, L. He, and R. Cutler, “High-quality linear interpolation for demo-

saicing of Bayer-patterned color images,” in 2004 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, May 2004, vol. 3, pp. iii–485.

[2] D. Menon, S. Andriani, and G. Calvagno, “Demosaicing With Directional Fil-
tering and a posteriori Decision,” IEEE Transactions on Image Processing, vol.
16, no. 1, pp. 132–141, Jan. 2007.

[3] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep Image Prior,” International
Journal of Computer Vision, vol. 128, no. 7, pp. 1867–1888, Jul. 2020.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, May 2015.

[5] S. Razavi, “Deep learning, explained: Fundamentals, explainability, and bridge-
ability to process-based modelling,” Environmental Modelling & Software, vol.
144, p. 105159, Oct. 2021.

[6] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions,” Journal of Big Data, vol. 8, no. 1,
p. 53, Mar. 2021.

[7] Q. Liu and Y. Wu, “Supervised Learning,” in Encyclopedia of the Sciences of
Learning, N. M. Seel, Ed. Boston, MA: Springer US, 2012, pp. 3243–3245.

[8] “What is Supervised Learning?,” IBM, Jun. 30, 2021. https://www.ibm.com/
cloud/learn/supervised-learning (accessed Nov. 28, 2022).

[9] “What is Unsupervised Learning?,” IBM, Mar. 31, 2022. https://www.ibm.
com/cloud/learn/unsupervised-learning (accessed Nov. 28, 2022).

[10] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: an overview and application in radiology,” Insights into Imaging, vol.
9, no. 4, pp. 611–629, Aug. 2018.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” in Advances in Neural Information Pro-
cessing Systems, Dec. 2012, vol. 25, pp. 1097–1105.

[12] N. Strisciuglio, M. Lopez Antequera, and N. Petkov, “Enhanced robustness of
convolutional networks with a push–pull inhibition layer,” Neural Computing
and Applications, vol. 32, pp. 1–15, Dec. 2020.

48

https://www.ibm.com/cloud/learn/supervised-learning
https://www.ibm.com/cloud/learn/supervised-learning
https://www.ibm.com/cloud/learn/unsupervised-learning
https://www.ibm.com/cloud/learn/unsupervised-learning

[13] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Se-
mantic Segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 4, pp. 640–651, Apr. 2017.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for
Biomedical Image Segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, Oct. 2015, vol. 9351 pp. 234–241.

[15] N. Adaloglou, “Intuitive Explanation of Skip Connections in Deep Learning,”
AI Summer, Mar. 23, 2020. https://theaisummer.com/skip-connections/
(accessed Dec. 02, 2022).

[16] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by
Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Transactions on
Image Processing, vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[17] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image de-
noising,” in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), Jun. 2005, vol. 2, pp. 60–65.

[18] C. Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Gen-
erative Adversarial Network,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jul. 2017, pp. 105–114.

[19] L. Wei-Sheng, H. Jia-Bin, N. Ahuja, and M.-H. Yang, “Deep Laplacian Pyramid
Networks for Fast and Accurate Super-Resolution,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 5835–
5843.

[20] M. Bevilacqua, A. Roumy, C. Guillemot, and M. A. Morel, “Low-Complexity
Single-Image Super-Resolution based on Nonnegative Neighbor Embedding,”
in Proceedings of the British Machine Vision Conference 2012, Sep. 2012, pp.
135.1–135.10.

[21] J. S. Ren, L. Xu, Q. Yan, and W. Sun, “Shepard Convolutional Neural Net-
works,” in Advances in Neural Information Processing Systems, Dec. 2015, vol.
28., pp. 901–909.

[22] V. Papyan, Y. Romano, M. Elad, and J. Sulam, “Convolutional Dictionary
Learning via Local Processing,” in 2017 IEEE International Conference on
Computer Vision (ICCV), Oct. 2017, pp. 5306–5314.

49

https://theaisummer.com/skip-connections/

[23] en:User:Cburnett, English: A Bayer pattern on a sensor in isometric perspec-
tive/projection. 2006. Accessed: Dec. 08, 2022. [Online]. Available: https:
//commons.wikimedia.org/wiki/File:Bayer_pattern_on_sensor.svg

[24] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M.
Mersereau, “Demosaicking: color filter array interpolation,” IEEE signal pro-
cessing magazine, vol. 22, no. 1, pp. 44–54, Jan. 2005.

[25] T. Qiao, X. Luo, H. Yao, and R. Shi, “Classifying between computer generated
and natural images: An empirical study from RAW to JPEG format,” Journal
of Visual Communication and Image Representation, vol. 85, p. 103506, May
2022.

[26] K. Murugesh and P. K. Mahesh, “Camera Raw Image Processing and Registra-
tion Using Raw CFA Images,” Turkish Journal of Computer and Mathematics
Education, vol. 12, no. 10, pp. 4376–4381, 2021.

[27] “What is a RAW file and how do you open it? | Adobe,” Adobe. https://www.
adobe.com/creativecloud/file-types/image/raw.html (accessed Nov. 25,
2022).

[28] R. H. Hibbard, “Apparatus and method for adaptively interpolating a full color
image utilizing luminance gradients,” U. S. Patent 5 382 976, Jan. 04, 1995.

[29] C. A. Laroche and M. A. Prescott, “Apparatus and method for adaptively
interpolating a full color image utilizing chrominance gradients,” U. S. Patent 5
373 322, Dec. 13, 1994.

[30] D. R. Cok, “Signal processing method and apparatus for producing interpolated
chrominance values in a sampled color image signal,” U. S. 4 642 678, Feb. 10,
1987.

[31] J. Mukherjee, R. Parthasarathi, and S. Goyal, “Markov random field processing
for color demosaicing,” Pattern Recognition Letters, vol. 22, no. 3, pp. 339–351,
Mar. 2001,

[32] O. Kapah and H. Z. Hel-Or, “Demosaicking using artificial neural networks,”
in Applications of Artificial Neural Networks in Image Processing V, Apr. 2000,
vol. 3962, pp. 112–120.

[33] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation
using alternating projections,” IEEE Transactions on Image Processing, vol. 11,
no. 9, pp. 997–1013, Sep. 2002.

50

https://commons.wikimedia.org/wiki/File:Bayer_pattern_on_sensor.svg
https://commons.wikimedia.org/wiki/File:Bayer_pattern_on_sensor.svg
https://www.adobe.com/creativecloud/file-types/image/raw.html
https://www.adobe.com/creativecloud/file-types/image/raw.html

[34] D. P. Kingma and L. J. Ba, “Adam: A Method for Stochastic Optimization,”
in International Conference on Learning Representations (ICLR), 2015.

[35] M. Rafinazari and E. Dubois, “Demosaicking algorithm for the Fujifilm X-Trans
color filter array,” in 2014 IEEE International Conference on Image Processing
(ICIP), Oct. 2014, pp. 660–663.

[36] “Nikolay Ponomarenko homepage - PSNR-HVS-M download page.” https://
www.ponomarenko.info/psnrhvsm.htm (accessed May 20, 2023).

[37] “Compute peak signal-to-noise ratio (PSNR) between images – Simulink,”
MathWorks. https://www.mathworks.com/help/vision/ref/psnr.html (ac-
cessed May 16, 2023).

[38] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti, and M. Carli,
“New full-reference quality metrics based on HVS,” in Proceedings of the Second
International Workshop on Video Processing and Quality Metrics VPQM-06,
Scottsdale, USA, Jan. 2006.

[39] N. Ponomarenko, F. Silvestri, K.Egiazarian, M. Carli, V. Lukin, “On Between-
Coefficient Contrast Masking of DCT Basis Functions,” in Proceedings of Third
International Workshop on Video Processing and Quality Metrics for Consumer
Electronics VPQM-07, Scottsdale, USA, Jan. 2007.

[40] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal
Processing Letters, vol. 9, no. 3, pp. 81–84, Mar. 2002.

51

https://www.ponomarenko.info/psnrhvsm.htm
https://www.ponomarenko.info/psnrhvsm.htm
https://www.mathworks.com/help/vision/ref/psnr.html

Symbols and abbreviations
1D one-dimensional

2D two-dimensional

3D three-dimensional

ANN artificial neural network

A/D analog-to-digital

B blue

𝑏 bias

CapsNet Capsule Neural Network

CFA color filter array

CNN convolutional neural network

CSC convolutional sparse coding

CSF contrast sensitivity function

𝐷 the number of neuron inputs

𝑑 downsampling operator

DCT discrete cosine transform

DenseNet Dense Convolutional Network

DIP Deep Image Prior

𝐸 energy

FC fully connected

FIR finite impulse response

𝑓𝜃 neural network function

G green

GPU graphics processing unit

ℎ height

52

HR high resolution

HVS Human Visual System

LapSRN Laplacian Pyramid Super-Resolution Network

LR low resolution

MAP maximum a posteriori

MSE mean-square error

Mpx Megapixel

NLM Non-local means

PDF probability density function

PSNR peak signal-to-noise ratio

R red

𝑅 regularizer

ReLU rectified linear unit

ResNet residual neural network

RGB red-green-blue

SRResNet super-resolution residual neural network

SSIM structural similarity index measure

𝑡 upsampling factor

TV Total Variation

VGG Visual Geometry Group

𝑤 width

𝑥 original image (ground truth)

𝑥0 corrupted image

𝑥c image obtained by early stopping of optimization

𝑥e enhanced image

53

𝑥f detailed image

𝑥* restored image

𝑧 randomly initialized code vector

Δ𝐻 horizontal gradient

Δ𝑉 vertical gradient

⊙ Hadamard product

𝜃 parameter representing the weights and biases of neural network

𝜃* optimizer found using gradient descent

54

	Introduction
	Artificial neural networks
	Deep learning
	Supervised learning
	Unsupervised learning

	Backpropagation
	Convolutional neural networks
	Architectures

	Deep Image Prior
	Selected applications of DIP
	Denoising
	Super-resolution
	Inpainting
	Other applications

	Demosaicing of RAW images
	RAW image
	Bayer filter
	Methods of demosaicing
	Heuristic approaches
	Reconstruction approaches
	Malvar's method
	Menon's method

	Experiments and results
	Demosaicing using Deep Image Prior
	Parameters of the neural network
	Artificial mosaicing
	Usage of different filters

	Evaluation
	Assessment methods
	Randomness of DIP

	Findings
	Comparison in terms of different assessment methods
	Visual comparison
	Additional improvements
	Downsides
	Surprises

	Conclusion
	Bibliography
	Symbols and abbreviations

