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Abstrakt 
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záujmových máp využitím cieľov a stratégii. 
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Introduction 

Knowing, that somebody has previously solved a complex problem, but we are not able to find again 

the solution to that problem, record or note, can be shared with other process to help them solving a 

similar problem. It is not unusual that it exists a refusal to rework a solution, because some time has 

already been wasted to find a solution to a problem once again. 

In fact, retrieving a previous solution may take much more time than redoing the past work. If 

we have a general look on the situation, it is obvious, that we are actively managing only a little part 

of all the information, which we are creating. The final effect of this is loosing of productivity and 

reducing the content profit. 

The World Wide Web has dramatically changed the availability of electronically accessible 

information. According to recent survey, Web contains more than 3 billion of static documents [11] 

and at the same time, this huge amount of documents makes searches, accesses and management of 

relevant information very difficult. More or less, we can suppose that it is because document content 

is presented primary in human-readable language. And there is a large gap between information for 

automated processing and information kept in natural language for humans. 

By looking for the answer of the common problem there was created several researches for 

enriching information by machine-readable semantics. This step set the basic advance in creating the 

term Semantic web and his abilities for sharing and reusing the semantic content of the web. 
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1 Content of the work 

1.1 X M L 
X M L allows specifying an application-independent documents and data. It has a standard syntax for 

meta data and a standard structure for both documents and data. 

Listing 1.1. shows an example of X M L document (written export of text application in which 

we know only binary representation, but not the meaning of it) on which it can be obviously seen the 

simplicity of application understanding, with usage of open standard syntax and verbose descriptions 

of meaning of data. X M L is readable and understandable for everyone, including applications or 

humans, not only by the application and person who developed it. This is fundamental underpinning 

of the web, because it is not possible to predict the variety of systems, in fact the applications which 

will be managing the content on the Web. X M L documents can be searched more easily than web 

pages, in contrast of searching in the binary data in which are documents stored by the application in 

which they were created and which are known and readable only by own application. 

X M L offers easy and standard syntax for encoding information or meaning of meta data. In the 

other words, it provides a masculine mechanism for encoding information and meaning of the meta 

data. The essential accomplishment is a standard structure convenient for expressing information for 

both documents and data fields. This structure is using a hierarchy or more often a tree structure. An 

example of this structure is shown in Figure 1.1. 

<?xml v e r s i o n = " l . 0 " encoding="UTF-8"?> 
<!DOCTYPE o f f i c e : d o c u m e n t - c o n t e n t PUBLIC "-//OpenOffice.org//DTD 
O f f i c e -
Document 1.0//EN" " o f f i c e . d t d " X o f f i c e : document-content 
x m l n s : o f f i c e = " h t t p : / / o p e n o f f i c e . o r g / 2 0 0 0 / o f f i c e " 
x m l n s : s c r i p t = " h t t p : / / o p e n o f f i c e . o r g / 2 0 0 0 / s c r i p t " 
o f f i c e : c l a s s = " t e x t " 
o f f i c e : v e r s i o n = " l . 0 " > 
< o f f i c e : s c r i p t / > 
< o f f i c e : f o n t - d e c l s > 
< s t y l e : f o n t - d e c l s t yle:name="Thorndale" f o : f o n t - f a m i l y = " T h o r n d a l e " 
s t y l e : f o n t - f a m i l y - g e n e r i c = " r o m a n " s t y l e : f o n t - p i t c h = " v a r i a b l e " / > 
< / o f f i c e : f o n t - d e c l s > 
< o f f i c e : a u t o m a t i c - s t y l e s / > 
< o f f i c e : b o d y > 
< t e x t : s e q u e n c e - d e c l s > 
< / t e x t : s e q u e n c e - d e c l s > 
< t e x t : p text:style-name="Standard">We l i k e Semantic Web!</text:p> 
< / o f f i c e : b o d y > 
< / o f f i c e : d o c u m e n t - c o n t e n t > 

Listing 1.1 X M L example of document. 
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The last, but not the less important fact is, that X M L . It is a subset of the Standardized 

Generalized Markup language (SGML) from year 1969 by Dr. Charles Goldfarb, Ed Mosher and Ray 

Lorie. In small nutshell, X M L is " S G M L for the Web." X M L is a set of syntax rules for creating 

semantically rich markup languages in a particular domain. Furthermore, applying X M L understand 

to create new languages. The key principle of X M L is markup is separate from content. According to 

this principle, markup can surround or contain content. Table 1.2 shows examples of xml tags 

(markups). 

T A G TYPE 

Start tag <description> 

End tag </description> 

Empty tag <name /> 

Table 1.1 Example of X M L Tags. 

1.2 Semantic Web 

1.2.1 What is a semantic web ? 

We can say that there exists two parts of vision for the future of World Wide Web. First part means to 

make Web more collaborative medium. Second part consists of making a web understandable, and so 

machine-processable. According to (Berners-Lee et al.)[9] Figure 1.2 is the original diagram of the 

vision. In this figure we can clearly see the relations between information items like include, 

describes and wrote. Fortunately, these relations between resources are not currently captured on the 

web. The technology for technique of capturing information like this is called Resource Description 

Framework (RDF), which will be described in detail in Section 1.6. 
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Figure 1.2 Original Web proposal to C E R N by Tim Berners-Lee. 

Semantic web is not only the World Wide Web. It represents a set of technologies, which will equally 

work on different corporate architectures. Semantic web models and techniques aim at facing the 

overloading of information. In [10], Paul Kri l l indicates, that "This condition results from having a 

rapid rate of growth in the amount of information available, while days remain 24 hours long and our 

brains remain in roughly the same state of development as they were when cavemen communicated 

by scrawling messages in stone". 

1.2.2 Meta data 

X M L meta data are describing the purpose or meaning raw data values by means of text format 

for simple exchange, interpreting and application-independency. In fact, the meta data are increasing 

the fidelity of the data. Provide richer data means to provide computers more understanding for them 

and the more effectively they can handle complex tasks. 

The following shows steps which exist beyond the basic understanding of the simple meta data. 
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1.2.2.1 Semantic Levels 

Semantically aware applications require the evolution of data fidelity, which is shown in Figure 1.3. 

Instead of just meta data, we will have an information stack composed of semantic levels. It is 

currently at Level 1 with X M L Schema, which is represented as modeling the properties of our data 

classes. We are capturing and processing meta data about isolated data classes like purchase orders, 

products, employees, and customers. On the left side of the diagram we associate a simple physical 

metaphor to the state of each level. Level 1 is analogous to describing singular concepts or objects. 

In Level 2, we will move beyond data modeling (simple meta data properties) to knowledge 

modeling. Knowledge modeling enables us to model statements both about the relationships between 

Level 1 objects and about how those objects operate. This is diagrammed as connections between our 

objects in Figure 1.3. 

Beyond the knowledge statements of Level 2 are the superstructures or "closed world 

modeling" of Level 3. The technology that implements these sophisticated models of system is called 

ontologies. 

Level 3 
(Worlds) 

Level 2 
{Knowledge 

about Things) 

Level 1 
(Things) © ! 

0° 
Figure 1.3 Evolution in data fidelity. 

1.2.3 RDF 

In this section we will focus what is it RDF, why it is not widely spread and how RDF is based on 

simple model, which is distinct from RDF syntax. 

1.2.3.1 What is it RDF 

RDF is an XML-based language for describing resources. While definition of word resource may be 

a little wide expression, it is introduced a simple formulation, that resource is a file available through 
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the Web. This kind of resource can be accessed by Uniform Resource Locator (URL). Whereas X M L 

documents include meta data inside their bodies, RDF aims at providing meta data to describe a 

document in a distinct file. Written in other words, instead of marking up the internals of a document, 

RDF captures meta data about "externals" of document, for example author, date of creation and type. 

A particularly good use of RDF is to describe resources, which are opaque like images or audio 

files. Listing 1.2 displays an example of RDF file describing image resource. Besides embedding the 

meta data in the photo, RDF annotations are stored into an external file, as shown in Listing 1.2. 

<?xml v e r s i o n = ' 1 . 0 ' e n c o d i n g s I S O - 8 8 5 9 - 1 ' ? > 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs="http://www.w3.org/TR/199 9/PR-rdf-schema-199 90303#" 
xmlns:s0="http://www.w3.org/2 000/PhotoRDF/dc-l-0#" 
x m l n s : s l = " h t t p : / / s o p h i a . i n r i a . f r / ~ e n e r b o n n / r d f p i c l a n g # " 
xmlns:s2="http://www.w3.org/2 0 0 0 / P h o t o R D F / t e c h n i c a l - l - 0 # " > 
< r d f : D e s c r i p t i o n 
rdf:about="http://www.c2i2.com/~budstv/images/shopl.jpg "> 
< s 0 : r e l a t i o n > p a r t - o f S t o r e F r o n t < / s 0 : r e l a t i o n > 
<s0:type>image</sO:type> 
<s0:format>image/jpeg</sO:format> 
<sl : x m l l a n g > e n < / s i : x m l l a n g > 
< s 0 : d e s c r i p t i o n > B u d d y Belden's work bench f o r 
TV/VCR r e p a i r < / s 0 : d e s c r i p t i o n > 
<s2:camera>Kodak EasyShare</s2:camera> 
< s 0 : t i t l e > T V Shop r e p a i r b e n c h < / s 0 : t i t l e > 
< / r d f : D e s c r i p t i o n > 
</rdf:RDF> 

Listing 1.2 Example of RDF annotations. 

The first thing easy to notice is the consistent use of namespaces on all elements in the listing. 

In the root element <rdf:RDF>, four namespaces are declared. The root element specifies this 

document is an RDF document. An RDF document contains one or more "descriptions" of resources. 

A description is a set of statements about a resource. The <rdf:Description> element contains an 

rdfabout attribute that refers to the resource being described. In Listing 1.2., the rdfabout attribute 

points to the U R L of a webpage. The rdfabout attribute is critical to understand RDF because all 

resources described in RDF must be denoted via a URL The child elements of the Description 

element are all properties of the resource being described. In listing 1.2, two properties are bolded, 

one the Dublin Core namespaces and one on the technical namespace. The values of those properties 

are stored as the element content. In summary, Listing 1.2 has demonstrated a syntax where we 

describe a resource, a resource's properties, and the property values. This three-part model is separate 

from the RDF syntax. The RDF syntax in Listing 1.2. is considered to be one (actually of many) 

serializations of the RDF model. 
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1.2.3.2 Triple 

The RDF model is often called a "triple" because it has three parts, as described previously. 

Though described in terms of resource properties in the preceding text, in the knowledge 

representation community, those three parts are described in terms of the grammatical parts of a 

sentence: subject, predicate and object[12]. Figure 1.4. displays the elements of the tri part model and 

the symbology associated with the elements when graphing them. 

Figure 1.4 Showing the RDF triple. 

The key elements of an RDF triple are following: 

Subject, in grammar, this is the noun or noun phrase that is the factor of the action. In the sentence, 

for example, "The company sells guitars," the subject is "the company". The subject of the sentence 

tells us what the sentence is about. In logic, this is the term about which something is asserted. In 

RDF, this is the resource that is being described by the ensuing predicate and object. Therefore, in 

RDF we want a URI to stand for the unique concept "company" like 

http://www.company.Org/ontology/#company to denote that it is meant a form of business ownership 

and not friends coming for a visit. 

The general idea which is coming to the foreground is that an RDF resource stands for either 

electronic resources, like files or concepts, like "person". One way to think of an RDF resource is as 

"anything that has identity" [12]. 

Predicate, in grammar, this part of a sentence modifies the subject and includes the verb 

phrase. Returning to the sentence from previous example, the predicate is phrase "sells guitars." In 

other words, predicate tells some information about a subject. In logic, predicate is a function to form 

individuals (a particular type of subject) to truth-values with an arity based on the number of 

arguments it has. In RDF, a predicate is a relation between subject and object. And so, in RDF, would 

be defined unique URI for the concept "sells" like http://www.company.0rg/ontology/#sells 

Object, in grammar, this is noun, which behaves upon the verb. In our example, object is noun 

"guitars." In logic, object behaves upon by the predicate. In RDF an object is either a resource or a 

literal value. In the example, a unique URI for guitars would be defined like 

http://www.company.0rg/ontology/#guitars. 

C ~ ^ ) = URI 
] = Literal 

> = Property or Association 
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Statement, in RDF is the combination of the preceding three elements, subject, predicate and 

object as a single unit. Figure 1.4 represents a graph of two RDF statements. Note that the object can 

be represented by a resource or by a literal value. 

1.2.3.3 Capturing the knowledge with RDF 

It exists a wide-ranged harmony that the triple-based model of RDF which we find simpler than 

the R D F / X M L format, which is called the "serialization format." Because of this, a variety of simpler 

formats have been created to quickly capture knowledge expressed as a list of triples. For example, a 

scenario where the expression of four different ways: as natural language sentences, in a simple triple 

notation called N3, in R D F / X M L serialization format, and, finally, as a graph of the triples. 

If the model of subject, predicate and object is going to be followed, we can create a simple 

three statements and then capture a model. 

Jean can p l a y g u i t a r . 
The g u i t a r i s a a r c h t o p g u i t a r . 
Jean i s a son of O r v i l l e G i b s o n . 

In this example, the knowledge is managed via a bottom-up approach instead of a top-down approach. 

Let's examine how we capture the preceding sentences in N3 notation. 

<#Jean> <#plays> <#guitar> 
<#guitar> <#is> <#archtop> 
<#Jean> <#son-of> < # O r v i l l e Gibson> 

From every preceding sentence in the logic, it was extracted the subject, predicate and object. The 

sign # means that URI of the concepts would be the current document. This is a shortcut done for 

brevity; more accurate to replace the # sign with an absolute URI like 

"http://www.vutbr.cz/Jean/ontology" as a formal namespace. In N3 notation we can do that with a 

prefix tag like this: 

@ p r e f i x g t : <http://www.vutbr.cz/Jean/ontology/> 
Using the prefix, these resources will look like: 

<gt:Jean> <plays> < g u i t a r > 
To help us convert a N3 notation to R D F / X M L notation there exists several web semantic tools. An 

example of generated R D F / X M L representation is shown in following Listing 1.3. 
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<rdf:RDF 
xmlns:RDFNsIdl=' #' 
xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' > 
<rdf:Description rdf:about='#Jean'> 

<RDFNsIdl:plays> 
<rdf:Description rdf:about='#guitar'> 

<RDFNsIdl:is r d f : r e s o u r c e = ' a r c h t o p ' /> 
< / r d f : D e s c r i p t i o n > 

</RDFNsIdl:plays> 
<RDFNsIdl:son-of rdf:resource='#Orville Gibson/> 

< / r d f : D e s c r i p t i o n > 
</rdf:RDF> 

Listing 1.3 R D F / X M L representation of preceding statements. 

The first thing we can notice is that in R D F / X M L , RDF statements are nested within each other. It is 

this sometimes non-intuitive translation of a list of statements onto a hierarchical X M L syntax that 

makes the direct authoring of R D F / X M L syntax difficult; however, since there are tools to generate 

correct syntax for us, we can focus on the knowledge engineering and not author the R D F / X M L 

syntax. Second, note how predicates are represented by custom elements (like RDFNsIdLplays or 

RDFNsId: son-of). The objects are represented by either the rdfresource attribute or a literal values. 

1.2.3.4 RDF is not mainstream 

The Resource Description Framework has been a W3C Recommendation (synonymous with 

standard) since February, 1999. Only slightly more than a year after the X M L 1.0 

Recommendation [9]. When giving briefings on the future of X M L , it was a surprise to learn that 

many people have never heard about RDF. Outside of the digital library and artificial intelligence 

communities, RDF has not achieved mindshare with developers or corporate management. A 

demonstration of this mindshare gap is to compare the adoption of X M L to the adoption of RDF. One 

simple measure is to compare the number of technical books on RDF versus X M L and the number of 

commercial products supporting RDF versus X M L as shown in Figure 1.5. 

400^1 
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200 
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100 

50 

0 
Books 

• XML 

• RDF 

Software products 

Figure 1.5 Support of X M L in comparison with RDF. 
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The reasons why RDF adoption is so weak according to (Daconta M . , Obrst L. , Smith K.) [12]: 

R D F and X M L don't understand each other. It is not possible to validate RDF embedded in 

other X M L or X H T M L documents because of RDF's open grammar. In different meaning, RDF 

allows to mix in any namespace-qualified elements we want. Additionally, there is a fairly esoteric 

issue regarding a difference between how X M L schema and RDF process namespaces. This has led 

many people to view RDF and X M L documents as two separate paths for meta data. 

Parts of R D F are complex. Several factors combined make RDF significantly more complex 

that X M L documents. The three chief culprits in this equation are mixing metaphors, the serialization 

syntax and reification[3]. First, the model mixes metaphors by using terms from different data 

representation communities to include linguistic, object-oriented and relational data. This type of 

flexibility is a double-edged sword: Because it unifies modeling concepts from different domains, and 

that it causes confusion. This attempt to meld viewpoints is stated in the RDF Recommendation: "As 

a result of many communities coming together and agreeing on basic principles of meta data 

representation and transport, RDF has drawn influence from several different sources. The main 

influence has come from the Web standardization community itself in the form of H T M L meta data 

and PICS, the library community the structured document community in the form of S G M L and more 

importantly X M L , and also the knowledge representation (KR) community." (Resource Description 

Framework (RDF) Model and Syntax Specification, W3C Recommendation, February 22, 1999). 

Second, RDF syntax allows the RDF graph to be serialized via attributes of elements. In other words, 

we can express one RDF model in two different ways. This can be yet another problem for validation 

due to too much flexibility. Third, the hierarchical R D F / X M L syntax (called the "striped" syntax) is 

difficult to author by hand and is better left to tools. In general, it is confusing to represent lists of 

statements as a hierarchical tree. The current method used in the R D F / X M L syntax makes 

differentiating between object and properties very difficult. Lastly, reification has not yet proven itself 

and adds another level of abstraction to the RDF model. Reification matches natural language; it is a 

foreign concept to all of the other data communities. Most applications treat data as facts and 

implement data integrity procedures to ensure that axiom holds true. With reification, nothing is 

bedrock; everything is just an assertion, and you must follow a potentially infinite chain of assertions 

about assertions where one may contradict another at any time. Several RDF implementations and 

knowledge bases disallow the use of reification. Reification is a feature of RDF that is not for every 

application and can be safely avoided. 

1.2.4 RDF Schema 

RDF Schema is a language layered on top of RDF. This layered approach to creating the Semantic 

Web has been presented by the W3C and Tim Berners-Lee as the "Semantic Web Stack," as 
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displayed in Figure 1.6. The base of the stack is the concepts of universal identification (URI) and a 

universal character set (Unicode). Above those concepts, we layer the X M L Syntax (elements, 

attributes, and angle brackets) and namespaces to avoid vocabulary conflicts. On top of X M L are the 

triple-based assertions of the RDF model and syntax we discussed in the previous section. If we use 

the triple to denote a class, class property and value, we can create class hierarchies for the 

classification and description of objects. This is the goal of RDF Schema, as discussed in Section 

1.2.3. Above RDF Schema we have ontologies (taxonomy is a lightweight, ontology, and robust 

ontology languages like OWL). Above ontologies, we can add logic rules about the things in our 

ontologies. As it will be discussed in Section 1.2.4 a rule language allows us to infer new knowledge 

and make decisions. Additionally, the rules layer provides a standard way to query and filter RDF. 

The rules layer is sort of an "introductory logic" capability, while the logic framework will be 

"advanced logic." The logic framework allows formal logic proofs to be shared. Lastly, with such 

robust proofs, a trust layer can be established for levels of application-to-application trust. This "web 

of trust" forms the third and final web in Tim Berners-Lee's three-part vision (collaborative web, 

Semantic web, web of trust). Supporting this web of trust across the layers are X M L Signature and 

X M L Encryption. In this section we will try to focus on examining the RDF Schema layer in the 

Semantic Web Stack. RDF Schema is a simple set of standard RDF resources and properties to enable 

people to create their own RDF vocabularies. The data model for RDF Schema allows us to create 

classes of data. Class is defined as a group of things with common characteristics. In object-oriented 

programming (OOP), a class is defined as a template or blueprint for an object composed of 

characteristics (also called data members) and behavior (also called methods). An object is one 

instance of a class. 0 0 languages also allows classes to inherit characteristics and behaviors from a 

parent class (also called a super class). The software industry has recently standardized a single 

notation called the Unified Modeling Language (UML) to model class hierarchies. 

XML I Namespaces 

JRI Unicode 

Figure 1.6 The Semantic Web Stack. 
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In the following practical example in Listing 1.4 we will show generated RDF schema and RDF 

document. Then we will describe the individual attributes in details. 

<?xml v e r s i o n = ' 1 . 0 ' e n c o d i n g s I S O - 8 8 5 9 - 1 ' ? > 
<!DOCTYPE rdf:RDF [ 
<!ENTITY r d f Ahttp://www.w3.org/1999/02/22-rdf-syntax-ns#'> 
<!ENTITY example_chp5 
A h t t p : / / p r o t e g e . S t a n f o r d . e d u / e x a m p l e - c h p 5 # ' > 
<!ENTITY r d f s Ahttp://www.w3.org/TR/1999/PR-rdf-schema-
19990303#'> 
]> 
<rdf:RDF x m l n s : r d f = " & r d f ; " 

xmlns:example chp5="&example chp5;" 
x m l n s : r d f s = " & r d f s ; "> 

< r d f s : C l a s s rdf:about="&example c h p 5 / A r t i f a c t s " 
r d f s : l a b e l = " A r t i f a c t s " > 

< r d f s : s u b C l a s s O f r d f : r e s o u r c e = " & r d f s ; R e s o u r c e " / > 
< / r d f s : C l a s s > 
< r d f s : C l a s s rdf:about="&example chp5;DesignDocument" 

r d f s : l a b e l = " D e s i g n D o c u m e n t " > 
< r d f s : s u b C l a s s O f rdf:resource="&example c h p 5 ; A r t i f a c t s " / > 

< / r d f s : C l a s s > 

Listing 1.4 RDF Schema. 

< r d f s : C l a s s rdf:about="&example chp5;Employee" 
r d f s : l a b e l = " E m p l o y e e " > 
< r d f s : s u b C l a s s O f r d f : r e s o u r c e = " & r d f s ; R e s o u r c e " / > 

< / r d f s : C l a s s > 
< r d f s : C l a s s rdf:about="&example c h p 5 ; S o f t w a r e - E n g i n e e r " 

r d f s : l a b e l = " S o f t w a r e - E n g i n e e r " > 
< r d f s : s u b C l a s s O f rdf:resource="&example chp5;Employee"/> 

< / r d f s : C l a s s > 
<!-- C l a s s e s SourceCode, S y s t e m - A n a l y s t , Technology, and T o p i c 
o m i t t e d 
f o r b r e v i t y . They a r e s i m i l a r t o the above C l a s s e s . --> 
< r d f : P r o p e r t y rdf:about="&example chp5;knows" 

r d f s : l a b e l = " k n o w s " > 
<rdfs:domain rdf:resource="&example chp5;Employee"/> 

< r d f s : r a n g e rdf:resource="&example chp5;Topic"/> 
< / r d f : P r o p e r t y > 
< r d f : P r o p e r t y rdf:about="&example c h p 5 ; w r i t e s " 

r d f s : l a b e l = " w r i t e s " > 
< r d f s : r a n g e rdf:resource="&example c h p 5 ; A r t i f a c t s " / > 
<rdfs:domain rdf:resource="&example chp5;Employee"/> 

< / r d f : P r o p e r t y > 
</rdf:RDF> 

Listing 1.4 (continued). 

http://www.w3.org/1999/02/22-rdf-syntax-ns%23'
http://protege.Stanford.edu/example-chp5%23'
http://www.w3.org/TR/1999/PR-rdf-schema-


rdfs:Class. An element that defines a group of related things that share a set of properties. This is 

synonymous with the concept of type or category. Works in conjunction with rdfProperty, rdfs:range 

and rdfs:domain to assign properties to the class. Requires a URI as an identifier in the rdfabout 

attribute. 

rdfs:Label. An attribute that defines a human-readable label for the class. This is important for 

applications to display the class name in applications even though the official unique identifier for the 

class is the URI in the rdfabout attribute. 

rdfs:subclassOf. An element that specifies that a class is a specialization of an existing class. This 

follows the same model as biological inheritance, where a child class can inherit the properties of a 

parent class. The idea of specialization is that a subclass adds some unique characteristics to a general 

concept. Therefore, going down the class hierarchy is referred to as specialization, while going up the 

class hierarchy is referred as generalization. The class "Software-Engineer" is defined as a subclass 

of "Employee." Therefore, Software-Engineer is a specialization of Employee. 

rdf:Property. An element that defines a property of a class and the range of values it can represent. 

This is used in conjunction with rdfs:domain and rdfs:range properties. It is important to understand a 

key difference between modeling classes in RDFS versus modeling classes in object-oriented 

programming, in that RDFS takes a bottom-up approach to class modeling, whereas OOP takes a top-

down approach. In OOP, we define a class and everything it contains. In RDFS, we define properties 

and state what class they belong to. So, in OOP we are going down from the class to the properties. In 

RDFS, we are going up from the properties to the class. 

rdfs:domain. This property defines which class a property belongs to (formally, its sphere of 

activity). The value of the property must be a previously defined class. The property "knows" is the 

"Employee" class. 

rfds:range. This property defines the legal set of values for a property. The value of this attribute 

must be a previously defined class. The range of the "knows" property is the "Topic" class. 

Some other important RDFS definitions are as follows but they will not be described in details. 

rdfs:type, rdfs:subPropertyof, rdfs:seeAlso, rdfs:isDefinedBy, rdfs:comment, rdfs:Literal. 

1.2.5 Rules and logic 

The semantic levels of information provide the input for software systems. The operations that a 

software system uses to manipulate the semantic information will be standardized into one or more 

rule languages. In general, a rule specifies an action i f certain conditions are met. 
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1.3 Intentional Requirement Modeling 
In this section we will describe the meaning of the goals, respectively sub-goals and what are the 

conceptual maps. We will describe how these notions included in search process are. 

1.3.1 Semantic search process 

By trying to understand what can be presented as a search process, we can say that it is a sequence of 

queries enabling to find comprehensive and accurate information by composing results from different 

information sources [1]. The novice user could have some difficulties by retrieving information which 

is relevant to his searched keywords and it becomes more difficult because of the deeper 

specialization of knowledge sources. In the web, there also exists at a domain level specific processes 

which are implemented by domain experts to obtain relevant information. In most cases for novice 

users, these processes are hard to reach, and search engines like Yahoo!, Google or Bing are not able 

to provide enough and satisfying details, accuracy and complexness of information about most topics. 

The idea of this work is to bring possibility of reusing and sharing search queries and put them 

into search process. Search procedure is composed from a set of sub-goals. Sub-goals are composing 

one main goal which is the aim the novice user wants to reach in his intended search process. We can 

conclude from this statement that domain-related question types propose generalized templates useful 

to identify search procedure. Revert to the idea, choosing SPARQL standard query language and 

advantages of inference capabilities offered by ontologies specifying domain knowledge, offers us 

richer queries than the question types. 

So again, the search process can be seen as a dependent set of smaller atomic searches carrying 

out domain-specific tasks. According to [1] a search process may be seen as a particular kind of 

business limited to search activities [1]. Bussiness process modeling formalism can be split into three 

categories: activity-oriented, product-oriented and decision-oriented. 

Activity-oriented formalism includes: 

• aiming at providing linear view of activity decomposition 

• process is a set of predefined activities to be performed 

• relationships are predefined among activities regarding control and data flows 

Product-oriented formalism includes: 

• pushing forward the result of activities 

• keeping track of the product evolution 

Decision-oriented formalism includes: 

• based on the decision-oriented paradigm 

15 



• explanation not only how the process proceeds but why 

• is more semantically powerful 

If we take a think about the notions we stated, we get involved how to support knowledge 

transfer about search process for novice users to get sufficient results.. For example, why the search 

process is decomposed the way it is and how it is decomposed. In previous section we have stated that 

the search process is made of goals and goals are made of atomic sub-goals. It makes the process 

better for catching the complexity of searched knowledge, so why it is decomposed the way it is. 

By providing different levels of details the aim is to handle different user's profiles and levels 

of knowledge. A dulcification process from novice user's side is required to be able to decompose 

goals ~ intentions into atomic parts of goals to help getting a satisfactory understanding of a topic 

about which no source contains all the relevant information. The system in this research should be 

able to show the same information in various levels of abstraction depending who is using the system. 

For novice user is acceptable higher level of abstraction changing by knowledge maturity of users in 

less abstraction and opening a searched object in more detailed way. 

1.3.2 Map formalism 

The map model is an intentional process model in which a non-deterministic ordering of intentions 

and strategies has been included. In our case, we focus on search intentions and search strategies [1], 

In a detailed understanding, a map is a graph filled with intentions as nodes and strategies as 

connections between intentions. A search intention is a goal that can be achieved by the performance 

of a search strategy. An intention represents what we are looking for as example can be meant result 

that is expected to be reached and it doesn't matter how, when or where the results is provided and by 

who. In the map model there are 2 specific intentions to start and stop the process. A map consists of 

sections each which contains a triple (sources intention, target intention, strategy). The strategy is a 

stream which is followed from the source intention to the target intention by the way the user wants to 

achieve it. The map contains a finite number of paths from the start intention to the stop intention, 

each of the prescribing a way to achieve the goal of the search process under consideration. 

Indeed, in a map, each set which is made up by a source intention, a strategy and a target 

intention is a section of the map. Let's precise what is an intentional map. An intentional map is 

neither a state diagram, because there is no data structure, no object, and no assigned value, nor an 

activity diagram, because there is always a strong context for each section of the map: its source 

intention and its strategy. We can attach more information to this kind of schema (in order to help the 

user of the map to choose the adequate strategy, for example) [2]. 
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Let's try a example of beginner stock trader who is looking for resources how to start trading 

on a financial market. To fulfill his goal, he may search for resources about brokers to decide which 

one is the most convenient for him (minimal opening amount, leverage, portfolio, history, trust), then 

resources about platforms, trading by himself giving orders to broker or just by broker, and how to 

open an account.. Search for resource about brokers and search resources about platforms are 

examples of intention. The formalized scenario with the map model is presented in Figure 1.7. 

Intention: search for resources to open a trader's account at stock exchange 

• i l - search for resources about stock exchange history 

• i2 - search for resources about brokers 

• i3 - search for resources about platforms 

• i4 - search for resources about trading 

o personal trading 

o broker trading 

• i5 - search for resources about opening an account 

Figure 1.7 Example of a intentional map. 

Figure 1.7 shows that there can be a more streams from a source intention to a goal; let us say to a 

target intention, each corresponds to a specific strategy. In the intentional map we can see a intention 

i5 labeled Search for resources about opening an account which is reachable via a strategy based on 

personal trading option or via a strategy based on broker trading option. Next in the picture of 

intentional map can be seen few other strategies to reach a same intention from different source 
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intentions. The case which represents this situation is intention i2 labeled by Search for resources 

about brokers which is reachable from intention i l labeled by Search for resources about stock 

exchange history or directly from a start intention i l . 

The executing of each section of a map is supported by an intention achievement guideline 

which provides an operational or an intentional means to fulfill the target intention. In our work, we 

operationalize an intention achievement guideline by the execution of a query on the semantic 

community memory or we define it by a refined map. 

Here in the example map above, the intention achievement guideline associated with the 

section identified by the source intention start and the target intention i l labeled by search for 

resources about stock exchange history is operationalized by a query to search for relevant resources. 

The section identified by the source intention i2 labeled by search for resources about brokers and 

the target intention i3 labeled by search for resources about platforms requires. As it is shown in 

Figure 1.8, section i3 labeled by search for resources platforms is decomposed into intention i3a 

labeled by search for resources about web platforms and the intention i3b labeled by search for 

resources about stand-alone platforms. 

Sub-goal: search for resources about platforms: 

• i3 - search for resources about platforms 

o i3a - search for resources about web-based platforms 

o i3b - search for resources about stand-alone platforms 

Figure 1.8 Decomposition of the intentional map of example above. 

According to (Prat, 1997; Prat, 1999), an intention is represented by one verb and some 

parameters which play specific roles with respect to the verb. Among the parameters, there is the 

object on which the action described by is how the verb is processed. 
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1.3.3 Authoring process 

1.3.3.1 Phases 

We can split the intention map authoring process into 3 phases, Figure 1.9. First one is Elicitation 

phase, followed by Formalisation phase and finally Fragmentation phase. [2] 

Elicitation Formalisation Fragmentation 

Intentional RDF SPARQL CQRESE 
Approach Annotations Requests Rules 

Figure 1.9 Three phases of authoring process. 

1.3.3.2 Elicitation phase 

To begin with, in this phase, the end users should define their way of searching by describing 

intentions and from this way build a pipeline consisting of goals, sub-goals and strategies (i.e. means 

to reach goals). 

In figure 1.9 we can see an example of an intentional map. We can see two main intentions 

specified by the end user, let's call him a modern web user: Download music and Pay for the music. 

The second one is optional in the approach, because other ways can be selected and they could be 

easier for our user. In the area of these two intentions, we can find two strategies such as by Ethernet 

100Base-TX or by ITunes Store. With these strategies we are able to find out the way how to pass 

from an intention to a next one. Also, there can be any other strategies which lead to the same next 

intentions like by direct link and by YouTube steam from Download music to Stop. Indeed, in a map, 

each set which is made up by a source intention, a strategy and a target intention is a section of the 

map. Let's precise what is an intentional map. 

An intentional map is neither a state diagram, because there is no data structure, no object, and 

no assigned value, nor an activity diagram, because there is always a strong context for each section 

of the map: its source intention and its strategy [2]. We can attach more information to this kind of 

schema (in order to help the user of the map to choose the adequate strategy, for example). 
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Figure 1.10 Intentional Map 

This is the end of the Elicitation phase, a general and high-level definition of the image 

analysis pipeline under consideration, in very simple formalism. 

1.3.3.3 Formalization phase 

The Formalization phase is divided in two parts. We need to refine the intentional map which 

describes how to reach a target intention, by refining a section giving a new map more detailed way 

how to reach this intention (i.e. using more specific and low-level intentions and strategies). When 

this is completed, we have in use a general map and one or several level of refinements of its sections. 

The second part, we understand generating and/or writing a SPARQL query in order to 

operationalise each section by an adequate web service specification. Indeed, the SPARQL query 

aims at retrieving the description of a web service or a set of web services supporting the fulfillment 

of the target intention of the section the query is associated to. 

1.3.3.4 Fragmentation phase 

And in the end the last phase, Fragmentation phase, transformation of all specifications created and 

captured in the Formalization phase in a set of CORESE rules. This choice has three great 

advantages. First, CORESE is an RDF engine bases on Conceptual Maps. It enables the processing of 

RDFS, OWL and RDF statements relying on Conceptual Maps formalism. It performs SPARQL 

Queries and run rules over RDF graphs. The second benefit is that, during this transformation into 

rules, the original intentions and strategies are naturally modularized and this fact far improves the 

reusability of the concerned discovery process fragment. Last, CORESE provides a backward 

chaining engine and we take advantage of it in order to offer knowledge inference. [2] 
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2 Application to develop 

Now we will focus on the idea of need of application which will brings user a graphical interface to 

help him create bindings between schemas and RDF documents, creating bindings and drawing 

conceptual maps. Here we will discuss the phases of thought advancement of creating the whole 

process beginning the defining and describing the intentions and strategies. 

2.1 Parsing RDF(S) files 
We are going to describe in detail what the application is expected to look like and the main idea of 

this interface for novice user. 

The idea is to have a web application allowing a user to create new search process and to run 

existing search process. The web application is dedicated to create new search process using existing 

RDF and RDF schema files. As a most comfortable environment for user we have decided to use a 

two directory trees for representing loaded descriptors and schemas, this we understand as loading of 

the domain ontology. During this process we must think about that our descriptors are in fact X M L 

files, but they can be called "pure" X M L files respectively. For our needs we will use the Java class 

SAXParserFactory, which offers us an ability to define our own way of reading of selected document. 

In this action, we will use our own DocumentHandler, which consists of following methods: 

• startDocumentQ 

• startElement(String name, AttributeList atts) 

• characters (char[] ch, int start, int length) 

• endElementfString name) 

• endDocumentf) 

Method startDocumentQ is opening our selected file with resources descriptors and is not ended 

while there isn't end of file and the method endDocumentf) is not called. The following method 

startElementf), which task is to distinguish the actual working element which the parser method will 

be working with. The method startElementf) offers us important information from the markups from 

RDF file ( X M L file)like for example, name of the markup tag, content of opening and closing tag but 

not the inside value defined by these tags. We will show some attributes in example of our test 

descriptor file in Listing 1.5, which we are using in building the directory tree. 
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<rdf:RDF xmlns=http://www . i n r i a . f r / 2 0 07/04/17/humans.rdfs#> 
<Man rdf:ID="Harry"> 

<name>Harry</name> 
< h a s C h i l d r d f : r e s o u r c e = "#John"/> 
<hasSpouse r d f : r e s o u r c e 1 ="#Sophie"/> 

</rdf:RDF> 
</Man> 

Listing 2.1 The content of example file with one record. 

With the method startElement(String uri, String localName, String qname, Attributes attr), this 

method is the one used the in the application, we get output shown in Listing 3.2. In this case, we can 

point out the following stepped output of reading the descriptor: 

S t a r t document: 
S t a r t element: l o c a l name: RDF qname: rdf:RDF u r i : 
http://www.w3.org/1999/02/22-rdf-syntax-ns# 
a t t r : h t t p : / / w w w . i n r i a . f r / 2 0 0 7 / 0 4 / 1 7 / h u m a n s . r d f s - i n s t a n c e s 
S t a r t element: l o c a l name: Man qname: Man u r i : 
h t t p : / / w w w . i n r i a . f r / 2 0 0 7 / 0 4 / 1 7 / h u m a n s . r d f s # attr:Harry 
S t a r t element: l o c a l name: name qname: name u r i : a t t r : n u l l 
C h a r a c t e r s : Harry 
End element: l o c a l name: name qname: name u r i : 
S t a r t element: l o c a l name: hasChild qname: h a s C h i l d u r i : attr:#John 
End element: l o c a l name: hasChild qname: h a s C h i l d u r i : 
S t a r t element: l o c a l name: hasSpouse qname: hasSpouse u r i : 
h t t p : / / w w w . i n r i a . f r / 2 0 07/04/17/humans.rdfs# attr:#Sophie 
End element: l o c a l name: hasSpouse qname: hasSpouse u r i : 
h t t p : / / w w w . i n r i a . f r / 2 0 07/04/17/humans.rdfs# 
End element: l o c a l name: Man qname: Man u r i : 
End element: l o c a l name: RDF qname: rdf:RDF u r i : 
End document: 

Listing 2.2 Output of RDF parser 

Words in bold are string which are important and are parsed back to the tree directory. 

Parameter attr is actually the content of a tag, which i f exists has some identificator. Uri (Uniform 

Resource Identifier) consists of a string of characters used to identify or name a ressource on the 

Internet. Such identification enables interaction with representations of the resource over a network 

(typically the World Wide Web) using specific protocols. Schemes specifying a specific syntax and 

associated protocols define each URI. [6] 
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Detailed implementation of important algorithms will be discussed in Chapter 3. Within 

important methods we mean mainly startElementQ. 

2.2 Building a tree directory 
For this purpose we are using specialized open source Ajax, J2EE Ajax and JSF Java Framework. 

ICEfaces is an integrated Ajax Java application framework that enables Java EE Ajax application 

developers to easily create and deploy thin-client rich Internet applications (RIA) in pure Java. It is a 

fully featured product that enterprise developers can use to develop new or existing Java EE Ajax 

applications at no cost. [8] 

In other words, library ICEfaces can offer functionality based on a package java.swing.tree 

and functionality of creation of a tree and moving in the newly created tree in a class TreePath 

however in graphically friendlier look for end user. For creating such a tree we have decided for 

combination of parser, which directly and logically communicates with method for building a tree. 

For movement between pointers and for moving with them, we mean movement between nodes and 

branches, which includes creating of node or branch, going deeper in a tree, creating of leaf or 

another node and following the branch back into the root node. After creating one node with deep 

branch, we can make another new node continuously calling this library functions: 

• DynamicNodeUserObject(rootTreeNode, this) creating the tree object 

• DefaultMutableTreeNode() for creating a node 

• DynamicNodeUserObject(branchNode, this) for adding this node as an object 

• add(branchNode) adding child node into parent node 

• add(subBranchNode) adding leaf into parent node 

2.3 Drawing intentional map 
As we stated in Section 1.3.2 that a map is a process model in which a non-deterministic ordering of 

intentions and strategies has been included, we must have in mind following this thought when 

creating a graphical application for creating such map. Basically, we must allow user to let him 

decide by himself which way he would like to work with this map. He has the possibility of choosing 

between longer or shorter way. If he has chosen the longer, it means that first he must use the tree 

directory part understanding loading the files, choosing the desired source and target intentions and 

saving them by application into xml file. When this is successfully completed he can proceed into 

drawing part, where first the generated file is loaded. After loading he can decide i f the intentional 

map he created is correct or modify it by changing and/or adding more strategies or edit the desired 

pipeline of sub-goals. By choosing the shorter way, end-user is not required to pass all the parts of 
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web application, but just going directly into the drawing area and by simple drag and drop commands 

build an intentional map. 

Independently on the chosen ways, both can be saved for future reuse and can be sent to the 

CORESE engine to be executed. We will not use raw text format which will be created after drawing 

our required intentional map, but the whole map must be transformed into agreed SPARQL format. 

In this part of the research, the web application is working as a demo example application. The 

functionality after drawing a map is restricted and is located in hypothetical layer, thus we are 

working with a research approach. In next Section 2.3.1 we discuss possible annotation way how to 

finish methodically and technically development and introduce our idea of formatting, respectively 

transforming intentional map into SPARQL query and executing him to the CORESE engine. 

2.3.1 Search process annotation 

Based on the search process ontology, search processes are then represented by RDF annotations. Our 

example shows the expected output from drawing application and should be revised in future in the 

future. If we consider our running example with search for resources about platforms 

from Section 1.3.2. is then represented by the following RDF dataset in Listing 2.3 where namespace 

map refers to the search process ontology and namespace dom refers to a domain ontology: 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
<map:Section> 
<map:hasSource> 
<map:Intention> 
<hasVerb rdf:resourc=map:Search/> 
< b i n d > P l a t f o r m s / b i n d > 

</map:Intention> 
</map:hasSource> 
<map:hasTarget rdf:nodem="i3"> 
<map:Intention> 
<hasVerb rdf:resourc=map:Search/> 
<with>Forex</with> 

<map:Intention> 
<map:hasTarget> 

Listing 2.3 RDF dataset. 

2.3.2 Concrete rules 

Reusing search processes (or search process fragments) is intended to enable a dynamic connection of 

different search processes and therefore the building of whole search process by combining those 

(fragments of) search processes which both satisfy the global intention and retrieve available 
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resources [1]. This goes through modeling IAGs (Intention Achievement Guideline Modeling) which 

connect a section of a map representing a search process either with another map representing another 

search process which can be viewed as a fragment of the global process which fulfills the target 

intention of the connected section or directly with a query. The proposed idea is to present an IAG by 

a rule. The rule we call concrete and we use SPARQL language which provides a unified framework 

to represent our concrete rule through the CONSTRUCT query form, which is supporting the 

fulfillment of a target intention by enabling the retrieval of relevant resources in the semantic 

memory. We formalize it by a SPARQL query that's WHERE clause asks for relevant resources by 

matching with the RDF annotations of these resources. For example, we use and present it in Listing 

2.4, the instance generated from drawing application in Listing 2.3 and the intention from Figure 1.10 

Pay for the music. 

CONSTRUCT { 
:s map:hasTarget : i 
: i map:hasObject d : S t a n d - a l o n e P l a t f o r m s 
:s map:hasResource ? r 

} 
WHERE { 

? r r d f : a b o u t dom:Platforms 
UNION { 

? r r d f : b y ? t 

? t r d f s : s u b C l a s s O f dom:Platforms 

Listing 2.3 Concrete rule in IAG annotation. 

The CONSTRUCT clause of the query includes a statement about the resources fulfilling the section's 

intention and retrieved by the WHERE clause. This ensures that once retrieved, they are associated to 

the section. This query will retrieve all the resources about topics represented by sub-classes of 

dom:Metatrader, dom:Marketiva, dom.DealFX, dom.SaxoTrader, etc. 
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3 Implementation 

3.1 Directory tree 

In this section we will describe and discuss the created directory. 

3.1.1 Uploading and building 

These are our keywords in this part of the web application. First, the user should upload his required 

files with using the upload form. Files should be uploading one after another and they will be read by 

parser and simultaneously the tree will be build. User can decide from these loaded files which 

intentions he would like to reach by clicking the start intention and storing him in predefined format 

and clicking the target intention and storing him into predefined format. Process of storing intentions 

is made automatic. 

In some functions of these trees, which are beside required functionalities, belong deleting 

nodes or leaves in trees and deleting of the intentional file. 

We will have a look on how to implement such one tree, the second one is the same way as the 

first one without changes. Listing 3.1 shows a default constructor for setting up a pointer to our new 

tree. In Listing 3.2 is the basic initialization concerning the new object and binding this new object 

into our tree and a name of the default root node represented by ROOT NODE TEXT. 

model = new D e f a u l t T r e e M o d e l ( r o o t T r e e N o d e ) ; 

Listing 3.1 Setting up a new pointer for tree. 

DynamicNodeUserObject r o o t O b j e c t = 
new DynamicNodeUserObject(rootTreeNode, t h i s ) ; 

rootObject.setText(ROOT_NODE_TEXT); 
r o o t T r e e N o d e . s e t U s e r O b j e c t ( r o o t O b j e c t ) ; 

Listing 3.2 Initialization of a tree. 

After successful initialization we call the parsing method getParse(filename, rootTreeNode, 

model); which is logically connected with building method of a tree. We can see that this method 

require to know working pointer of our model tree, the main root node and file where to go parsing. 

We will show in Listing 3.3 the parsing method startElementQ as discussed before: 
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p u b l i c v o i d s t a r t E l e m e n t ( S t r i n g u r i . S t r i n g l o c a l N a m e , S t r i n g qname, A t t r i b u t e s a t t r ] ' { 

t e x s t . c h a i n s t a r t [ r o o t node p o s i t i o n ] = l o c a l N a m e ; 
i f ( c o u n t e r == 0) { 

t r y { 
TreeBeanl(ROOT N, l o c a l N a m e , r o o t T r e e N o d e , m o d e l ) ; 

} c a t c h ( E x c e p t i o n ex) { 
L o g g e r . g e t L o g g e r ( T r e e B e a n . c l a s s . g e t N a m e ( ) ) . l o g ( L e v e l . S E V E R E , n u l l , 

ex) ; 
i 

} e l s e { 
c o u n t e r l + + ; 
t r y { 

TreeBeanl(NODE N, l o c a l N a m e , r o o t T r e e N o d e , m o d e l ) ; 
} c a t c h ( E x c e p t i o n ex) { 

L o g g e r . g e t L o g g e r ( T r e e B e a n . c l a s s . g e t N a m e ( ) ) . l o g ( L e v e l . S E V E R E , n u l l , 
ex) ; 

i 

i f ( c o u n t e r l == 1) { 
c u r r e n t = tempNode; 

} 
} 
i f ( a t t r . g e t V a l u e ( O ) != n u l l ) { 

t r y { 
T r e e B e a n l ( L E A F N, a t t r . g e t V a l u e ( 0 ) , r o o t T r e e N o d e , m o d e l ) ; 

} c a t c h ( E x c e p t i o n ex) { 
L o g g e r . g e t L o g g e r ( T r e e B e a n . c l a s s . g e t N a m e ( ) ) . l o g ( L e v e l . S E V E R E , n u l l , 

ex) ; 
i 

i f (tempNode != ro o t T r e e N o d e ) { 
} 

} 
counter++; 

} 

Listing 3.3 Implementation of one of parsing method startElement(). 

The idea of adding nodes and leaves does not change heavily i f we compare it with idea of 

creating a root node. The only thing we should be aware of is to know exactly where we are in the 

tree and where we would like to be and of course, what element are we building. Listing 3.4 together 

with Listing 3.5 show us the differences: 

D e f a u l t M u t a b l e T r e e N o d e branchNode = new D e f a u l t M u t a b l e T r e e N o d e ( ) ; 
DynamicNodeUserObject b r a n c h O b j e c t = 

new DynamicNodeUserObject(branchNode, t h i s ) ; 

tempNode.add(branchNode) ; 

Listing 3.4 Creating a branch node. 
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D e f a u l t M u t a b l e T r e e N o d e subBranchNode = new D e f a u l t M u t a b l e T r e e N o d e ( ) ; 
DynamicNodeUserObject s u b B r a n c h O b j e c t = 

new DynamicNodeUserObject(subBranchNode, t h i s ) ; 

tempNode.add(subBranchNode); 

Listing 3.5 Creating of sub-branch leaf. 

Web Application 

P l e a s e , load your desi red R D F f i les. 

Please choose your document: 

Upload File 

User control 

T r e e Node Control: 

R e a d y I 

Load tree-1 J| Delete 

Se lec ted Node: 

Parcourir_ 

E • P lease load f i e one FJ P lease load file two 

S a v e select ion: 
Empty the file 
Created: Val id - Waiting for f i e 
to be created 
Check f i e 
Val idate ! 

Figure 3.1 The basic view on web application, with files not loaded. 

In Figure 3.1 we can see our idea implemented by Java technology. In the upper part is 

located the upload form waiting for user's files to be loaded and submitted. After uploading the files 

are loaded into the trees (this should be an semi-automatic process, user is required to confirm by 

clicking on a button Load 1 or 2 file) and parsing and building methods are executed. In Figure 3.2 

we will see that all files are parsed without mistakes and are correctly cascaded in a tree. When 

information from files is processed, user is able to choose his desired source and target intention or 

desired strategy. 
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Figure 3.2 The basic view on web application, with loaded files and trees deployed. 

3.1.2 Validating 
After evaluating our needs for the map modeling tool and according for the future development in the 

sense of standardization, our format for which we have decided, is simple and represents actual 

bindings created by user from Tree. What validating means, is that all pairs have their partners 

presented in the file and file begins and ends with introducing tags <start> and </start>. In listing 

3.6 we present such validated format. 
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< s t a r t > 
<bind>Pay</bind> 
<with>Download</with> 
< / s t a r t > 

Listing 3.6 Validated format from directory tree. 

The application during its work is step-after-step building a xml file until the user clicks button 

Validate. It is obvious that until this point some errors or syntax mistakes must be made simply by 

user fault. We have created a validating tool which will check the file against errors before loading 

him into map modeling tool. Several different occasions may occur, which some of them we present 

in the following Listing 3.7. 

<bind>Pay</bind> 
<with>Download</with> 
<bind>Cancel</bind> 

Listing 3.7a Showing not valid file. 

< s t a r t > 
<bind>Pay</bind> 
<with>Download</with> 
<bind>Cancel</bind> 

Listing 3.7b Showing not valid file. 

<bind>Pay</bind> 
<with>Download</with> 
< / s t a r t > 

<bind>Cancel</bind> 

Listing 3.7c Showing not valid file. 

First, we must expect that user will create several bindings and one binding which is unfinished, 

actually is not bound and his partner is missing. The validating tool will check all bindings and erase 

the ones which are not bound. Usually this situation occurs at the end of file at the last record. 

Second, i f user clicks Validate the file and add something else to the bindings, application will add 

after introducing tags another tags (Listing 3.7c). Then the file is not valid anymore and must be 

checked again by clicking the button Check file, then the not bound partners after introducing tags 
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will be erased and also the introducing tags themselves. The reason why a validating tool must be 

integrated in our application is i f the future development map modeling application will require valid 

file and won't check it before executing the inner content. In our map modeling application, we are 

expecting valid file without syntax errors. The integrated parsed can deal with not closed tags or 

missing tags, but the format introducing tags - inner tags - content has to be kept. 

3.1.3 Performance 

The balance tests showed us that our application is loading optimally and fluently. We did tests when 

application is loading, presented in Figure 3.3, when smaller RDF file is loaded and when larger RDF 

file is loaded, shown together in Figure 3.5. Time units used in graph are absolute units. 

3.1.3.1 Application loading 

• Total loading size: 281 004 bytes 

• Total packets: 604 

• Total loading time: 7.382591 second(s) 

Loading time 
300000 

0 0 0 0 0 0 < - i * - i r s i r s i r s i r M r s i r M r o r n r o ^ t L n i r j o o D O r ^ i / i r M r M L / i 
o o o o o o o o o o o o o o o o o o o o o o ^ H ^ H i r p o o r o r n 
O O O O O O O O O O O O O O O O O O O O O O O O O O f M r r i 
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Figure 3.3 Graph showing loading size according to time. 

3.1.3.2 Compiling tree with a smaller file 

• Size of file: 504 bytes, 2 records 

• Total loading size: 21 731 bytes 

• Total packets: 53 

• Total loading time: 1.514637 second(s) 
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3.1.3.3 Compiling tree with a larger file 

• Size of file: 42 144 bytes, 70 records 

• Total loading size: 198 269 bytes 

• Total packets: 261 

• Total loading time: 1.956699 second(s) 

250000 

ro r-- O LO <-H 
O CM 00 rM 
O O O O T-l C71 
O O O O O r-l 
O O O O O ro 
o o o o o Ln 

Figure 3.4 Graph showing the differences between loading a smaller and larger file. 

From the results it is obvious and can be extracted that compiling a tree with different sizes of 

files is not important and showed a better performance even when loading a larger files. 

32 



3.2 Graphical user interface to manage 

intentional maps 
The map management part of the application should consist of functions like loading previously 

generated file from directory tree and generating defined intentional map and/or drawing desired 

intentional map by simple drag and drop drawing commands. There is nothing more easier than using 

a java.awt and occasionally Java, swing class. In Figure 4.6 we stated a draft out of the application to 

be developed. 

Loaded RDF and RDFS 

files 

Selected source and target 

intentions 

i 

' Intentional drawing map 

Load file with intentions 

or 

Generate intentions by 

drawing them 

Figure 3.6 Purpose of the web application. 

Let's suppose that the user has decided to draw his own map. First thing we should do is to 

easily navigate to the drawing applet and drop the rectangles, this is the shape which we decided to 

use to represent a goals. After drawing shapes, it is still possible to move around into preferred 

positions. When started to draw arrows, we have started to draw a shape which represent strategy how 
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to reach one intention from another. Then we can decide i f we need to clean the painting, save for 

future use or generate SPARQL query. These functionalities are restricted, because the generated 

format is experimental and not well optimized for fluent use. In Figure 3.7 and Figure 3.8 we present 

the workplace and further description will follow. 

Figure 3.7 and Figure 3.8 Comparing first attempts to draw a map and correction into required 

appearance. 

In the Figure 3.7 we can see a canvas where user tried to draw his first intentional map. The 

intentional map is made from example stated in Section 1.3.2. The application allows, until the 

strategies are not drawn, to move and delete freely the so far created goals. Before putting the square 

into a place, the value from text field must be submitted into application. If we find out our 

satisfaction with our product, there exists several options. First one is Save created map into a file for 

future use and probable sharing. Option Generate offers us the possibility to transform map into 

format convenient for executing by CORESE engine. Load button takes the created bindings from 

Directory Tree application, save bindings and draw goals into the drawing screen. User is awaited to 

draw lines between the goals and give them respectively names. This functionality is not present 

because it is a subject of study and development. We are approaching our own results in this matter 

and we have implemented a short demo of this feature with presented format as described in Section 

3.1.2. After that, as the application takes the X M L file containing bindings, we start the integrated 

parser to extract content of inner tags and we store them in a field prepared to be used as a buffer of 

strings which will be inserted into goals (eventually sub-goals). Then we ask the application to draw 

expected goals into screen. 

We have tried not to reach out for our own way of developing the application and leave 

behind the current understanding of the study, but tried to follow the intentioned roadway and 

contribute into with the approach of our own idea. The future development should bring brighter light 

into the problem and decompose him in clear and agreed format, which would be used without 

doubts. 
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4 Conclusion 

Participating in this project has brought me a great understanding of the Semantic Web and 

developing my programming skills in Java language. The beginning of the project was carried in a 

theoretical spirit in reading literature about descriptors and semantics, what is more in understanding 

the research approach by working with intentions, maps and strategies. I understood the concept and 

purpose of this keywords and I have moved my future thinking about World Wide Web. 

In my mind I can see a future development of this project belonging in improving graphical 

user interface and functionalities like auto complete or suggestion in drawing a map after entering 

several keywords. 

Moreover, I spent one semester at Universitě de Nice - Sophia Antipolis in south of France, 

which gave me a great experience and I gained a fantastic practice of French and English language. 
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