
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

CHARAKTERIZACE KÓDU PRO AUTOMATICKÉ
GENEROVÁNÍ UŢIVATELSKÉHO ROZHRANÍ
CODE CHARACTERIZATION FOR AUTOMATED USER INTERFACE CREATION

AUTOR PRÁCE ING. JAROSLAV KADLEC

AUTHOR

VEDOUCÍ PRÁCE DOC. DR. ING. PAVEL ZEMČÍK

SUPERVISOR

OPONENTI TBD

OPONENTS

DATUM OBHAJOBY TBD

DEFENSE DATE

2

3

CONTENTS

1 INTRODUCTION _______________________________________ 5

2 PREVIOUS WORK ______________________________________ 5

2.1 Characterization _______________________________________ 5

2.2 Generating of user interface ______________________________ 6

3 THESIS OBJECTIVES ___________________________________ 6

4 CODE CHARACTERIZATION ____________________________ 6

4.1 Command Category ____________________________________ 7

4.2 Command Attribute ____________________________________ 8

4.3 Command Parameter ___________________________________ 9

4.4 Command Sense _____________________________________ 10

4.5 Event __ 11

5 GENERATING USER INTERFACE _______________________ 12

5.1 Data and code characterization __________________________ 12

5.2 Loading code characteristics ____________________________ 13

5.3 Creating Abstract Interface Objects _______________________ 15

5.4 Creating specific interface objects ________________________ 16

5.5 Instantiating ___ 18

6 CONCLUSION ___ 18

7 REFERENCES ___ 19

8 CURRICULUM VITAE__________________________________ 21

4

5

1 INTRODUCTION
Creation of user interfaces in various applications is getting more and more

complicated. Users request high quality user interfaces and complex applications

that are user friendly. Users also expect to have same applications on various

devices such as phones, PDAs, notebooks and others. Creation of interface of

application that can be portable between various platforms is very difficult, leading

in creation of multiple user interfaces which are based on expected device's

capabilities and features. Creation of such user interfaces is problematic, leading to

increased time of application development. That is why a concept of automatic

generation of user interfaces was developed.

Automatic user interface generation systems promise to simplify an application

programmer's design tasks by providing a set of design rules [3] and effectiveness

criteria [11]. To establish these criteria, it is necessary to understand which of the

properties of the information to be visualized are related to user interface design and

how they are related. This task is called data characterization [19][21]. With flexible

data characterization it is possible to create automatic presentation systems. These

however do not allow creation of rich user interfaces. To create rich user interface

with possibilities of various operations over the characterized data, a code

characterization is required.

With complete data and code characterization, application programmer is able to

describe application code that will be used for automatic user interface generation

[7]. Because automatic user interface generation is very complex process requiring

artificial intelligence, current user interface management systems are using designer

made user interfaces [4][8][13]. Such user interface management systems benefit

from current code which is independent on user interface which can be simply

modified for use with various devices having different presenting capabilities. Also

code can be modified independently from user interface design or its components

which increases maintainability of application.

2 PREVIOUS WORK

2.1 Characterization

First data characterization taxonomy was proposed by Mackinlay [11] who was

using data properties to guide automatic design of visual presentations. The

taxonomy was primarily designed for quantitative data. This taxonomy was later

extended by Roth and Matis [19] to address more complex quantitative data. Arens,

Hovy and Vossers [2] developed a vocabulary that was able to describe multimedia

information. Wahrend and Levis [20] introduced partitioning of data into several

categories such as shape and structure. Zhou and Feiner [21] restructured taxonomy

6

into six domains, introducing data role and data sense. While data role characterized

data based on user information seeking goals, data sense represented user

interpretation preferences.

2.2 Generating of user interface

Number of the systems exists from 1980's that use various techniques for

generating of user interface. A level of automation provided by these systems varies

from the programming abstraction (e.g. UIML [1]) to design tools (e.g. ProcSee

[18]), through the mixed systems requiring partial assistance from user interface

designer (TERESA [16]). Such systems that provide some mechanisms to

automatically generate user interface often use simple rule based approach where

every type is matched to the specific user interface element (e.g. UBI [14]). Some

systems rely on the type-based declarative model of the information exchanged

through the user interface called Abstract User Interface [17]. In many cases, a user

interface was specified explicitly (e.g. UIML) or inferred from a code [7]. Some

systems include additional information about a high level task or dialogue model

(e.g. ConcurTaskTrees [15]) or the task models [5]. Other systems generate the user

interface using constraint satisfaction and optimization (e.g. Supple [6]).

3 THESIS OBJECTIVES
The main objective of this thesis is to define approach for automated user

interface generation that would be simple to use and allow automated creation of

user interface for various platforms.

4 CODE CHARACTERIZATION
Code characteristic is expressed using annotation tags that are divided into five

dimensions: command category, command attribute, command parameter, command

sense and event. Command category represents a set of operations or commands that

can be executed with the object. Command attribute defines basic properties of the

operations and defines various usage options. Command parameter describes

properties and options for command parameters. Command sense distinguishes how

should be commands treated. Events define optional reactions of user interface on

internal object changes. Code characterization is proposed for object-oriented

environment and that is why each piece of information is supposed to be object.

Each object belongs to data domain and has data type as defined for data

characterization in [21] which was slightly modified and extended to support code

characterization presented here. Each data characterized object can define public

methods that can be characterized using code characterization. Because of object-

oriented environment, every inherited object inherits public data and methods

including data and code characterization. Because taxonomy for data and code

characterization is flexible, new types of methods or relations can be easily added to

7

the taxonomy. Following subsections describe code characterization taxonomy in

more detail.

4.1 Command Category

Command category defines set of operations or commands that can be executed

on the object. A typical example of command category can be set of methods that

allow playing, stopping, pausing of recorded data (might be audio or video

playback, or any other data that object can replay or record). Set of such commands

have usually default symbolic representation and users are used to this concept from

real world or other applications. Command categories can be easily defined in XML

format and extend existing set of categories. Categories can be represented in user

interface using concept of Smart-Templates [12] which contain information about

default symbolic representation and also default user interface design. Because

object can be of various categories, multiple categories can be defined for single

object. Following categories are basic for most applications and should always be

implemented.

4.1.1 Collection

Collection contains methods for adding, removing and selecting items contained

in object. With this category it is possible to create various objects that act like

collections of various data with possible multi-selections and other functions. Add or

Remove methods can add or remove objects of various types and do necessary

checking before added or removed object is processed. This functionality was

almost impossible with data characterization only.

4.1.2 Storage

Storage defines methods for saving, opening, and creation of contents. Methods

are usually represented by common symbols (e.g. save by diskette icon) and are very

important in applications that want to add functionality of creation of new objects

and their saving or loading.

4.1.3 Navigation

Methods in navigation are most usually used for moving of cursor in collections.

Navigation defines actions for previous or next item, first or last item. Navigation

can be defined separately from collection, because it can control cursors in various

collections at once. A typical example is media player with playlists: user can select

one playlist and let play next media file from selected playlist.

4.1.4 Media Player

This category defines methods for start (play), stop and pause of playback. These

methods are usually represented by standard symbols and should be always

implemented in default order.

8

4.1.5 Clipboard

Clipboard is widely used technique for data copying and moving. Clipboard

category describes methods that can be used for this purpose and that is why user

interface can offer this functionality to user. Typical clipboard methods are copy,

paste and cut, storing selected data to clipboard for other applications that may use

them.

4.1.6 Draggable

Object with method that belongs to draggable category informs that object can be

dragged. When object can be dragged, user interface allows user to drag certain

objects to another objects. Although object can be data characterized to be

draggable, it is missing method that could process the drag request. This method

now can be characterized using code characterization.

4.1.7 Droppable

Object containing methods with droppable category contain logic of checking

whether dragged object can be dropped and acquiring dropped object. Because drag

and drop operations require some logic that cannot be achieved by data

characterization, draggable and droppable categories are needed.

4.2 Command Attribute

Attributes express various information about methods that are implemented by the

objects. Although it might seem that information according to each of the method

are very different, they have quite lots of common attributes that need to be defined

for proper creation of user interface. If some object implements a method that should

be visible in user interface, basic attributes such as name, description, or importance

should be defined.

4.2.1 Name

Name attribute contains name of the method that should be presented to user in

user interface. Name is not required for methods that already have its category,

because it already has name attribute. Name attribute can also be specified in

multiple languages so that user can choose which of the languages he prefers.

4.2.2 Description

Description describes method and acts like a tip for the user. When user wants to

call certain command from menu or from other part of user interface, system can

display or play short help for the command based on the capabilities of the device or

user preferences.

9

4.2.3 Importance

Some commands are more important than others. It is good practice to make such

commands more accessible. In graphical user interfaces, important commands are

placed to toolbars or tool strips so that user can easily access them. Importance

attribute represents how important some commands are and whether it should be

somehow highlighted or placed in user interface to a location where it is easily

accessible.

4.2.4 Representation

Representation defines a symbol that represents certain commands.

Representation is especially important for commands that have high importance.

Representation can be defined as icon or image. For commands that belong to a

category representation is most usually defined in category definition file. In this

case, another definition of representation overrides default representation.

4.2.5 Dependence

Every method in the code has some dependencies that must be satisfied before the

code is executed. This is most usually checked by developer programming user

interface. In automatic user interface generation, user interface has to know when is

command enabled or disabled. So dependence expresses conditions which have to

be satisfied to allow execution of selected command. Dependence is very important

because without proper dependence checking, user can have access to unavailable

commands. An example can be playing of media file although there is no media file

open.

4.3 Command Parameter

Almost every implemented method has some parameters. Parameters init method

and method most usually works with available parameters or internal variables. That

is why its characterization is very important. Following parameters are basic

parameters that are important for proper calling of selected method. An example can

be drawing to image. Method that can draw a line has three main parameters: color,

starting point and ending point. User interface based on parameter characterization

knows that form, which is displaying the image, has a color palette to which is

related color in draw line method. User interface will not require user to specify this

parameter manually and take the value from the color palette. Because points are

data characterized and related to image, user interface knows that the location should

be taken from the displayed image and when user selects draw line command, user

interface expects user to select two points in the area. After both points are selected,

command is executed. Following parameters are important for proper parameter

characterization.

10

4.3.1 Name

Describes name of the parameter and is similar to name in command attribute.

Name is not always required but is very important in user interfaces that are not

based on visual interfaces (e.g. for blind people).

4.3.2 Description

Description acts as a tip for the parameter. It is also similar to description in

command attribute.

4.3.3 Relation

Relation is important for the parameters because it describes relation between

parameter and another object in environment. When relation is specified, user

interface automatically takes result of relation as input for the parameter. An

example is color from color palette. Drawing methods require color which is taken

from color palette automatically.

4.3.4 Default value

Some parameters, most usually quantitative, require certain value. Although user

can change the value, sometimes it is more convenient to show user some kind of

the default value that can be used for the command too. An example is number of

passes of some computational task. Although user can specify much greater value,

algorithm can have good results in five passes. Maximum and minimum values are

boundaries which can be specified in data characterization for the parameter data

type [21].

4.4 Command Sense

Sense helps to distinguish how are methods executed. By default, user selects

command, user interface asks for parameters and method is executed with all

specified parameters. Such default sense is called command. When tool sense is

specified, user interface runs method again and again as long as the command in

context is selected. Typical example is selecting some tool - e.g. a draw line tool -

from toolbox. As long as user keeps up with specifying points in the image or as

long as the tool is selected, user interface calls draw line command repeatedly and

user draws lines. Command and tool sense cover most of the types of method

executions and that is why various types of user interfaces can be generated.

For some objects there also exists default action that can be executed whenever

user selects the object and launches default action. In graphical user interfaces this is

most usually done by double-clicking. For blind users, there is usually voice

command run or open. In this case, it is possible to specify which command is

default and should be used in such cases.

11

4.5 Event

Events represent a mechanism that informs user interface for application code that

there have been some changes in the data from the user or from the application code.

Although various approaches exist for implementing such behavior using callbacks

[10], TAPS [3] or ORB [13], event mechanism is very simple and works well for

Figure 4.1: Code characterization taxonomy.

12

duplex communication. Base event, that should be implemented for every object is

changed. Such event should be executed always when application code changes data

of certain object. Because user interface cannot detect changes in data without

having checked every available public property, signaling data change using change

event is significant to increase performance of application. For data, that have data

characterization with high dynamic transience [21], user interface can check its state

very often and optimize the performance. Event mechanism can be used for static

data or data with low dynamic transience.

Because user interface sets the data that are changed in user interface immediately

to the object's properties, it is not necessary to inform object about changes in public

data. However for languages that do not support concept of properties (e.g. C++) it

is necessary to implement set method that should be characterized by userChanged.

This event contains also definition for what data is event designed so that user

interface can react correctly when user changes any data.

5 GENERATING USER INTERFACE
The approach is based on data and code characterization described above and is

combining rule-based concept for the interface abstraction from the characterized

code and constraint satisfaction and optimization for choosing interface objects.

General description of this approach was presented in [9]. The first step based on the

approach is the code characterization. The characterized code is analyzed and the

user interface is automatically created from the analysis, considering the properties

of the platform, device, user preferences, and the user context. The next step is a rule

based creation of the user interface abstraction using the abstract interface objects.

Then, the abstract interface objects are converted to the specific interface objects

using the optimization and constraint satisfaction. Finally, the user interface is

instantiated. Individual steps of the approach will be demonstrated on a "simple

media player" example.

5.1 Data and code characterization

The first step in the approach is the characterization of both the data and code.

Listing 5.1: Example of the characterized code in C#

[DataType(Atomic)]

[DataDomain(Measurement, "Time")]

[DataContinuity(Continuous)]

[DataTransience(Dynamic)]

[DataImportance(0)]

[CodeName("Time Line")]

[CodeDependence("IsMediafileOpened")]

[ParameterRange(0, 0)]

public ulong CurrentPosition{ get; set; }

13

The data and code characterization is a process of annotation of the data and code

with a special tags described above carrying important information for the future

user interface generation process. The characterization can be stored in a separate

file or directly in the source files (see Listing 5.1) and compiled and linked to the

library or assembly.

5.1.1 Example

A possible characterization of selected data and code will be demonstrated on a

simple media player. Media player consists of a playlist with media files to play,

pause, stop, next, and previous buttons, and a timeline to see and jump into selected

part of media file. Media player also has functions allowing adding of media files

and directories and removal of selected items from the playlist or clearing the list.

Method AddMediaFile(string mediaFile) can be code characterized by

Category(Collection(Add, playlist)) so that method is add method for the playlist

and user interface can group this list with this command together.

Attribute(Name("Add media file")) describes name to present to the user,

Attribute(Description("Adds selected media file to playlist.")) is a tooltip for the

user, Attribute(Importance(High)) to have the control quickly available.

Representation remains the same as specified in category and there is no dependence

for the addition of a media file. Parameter(mediaFile, Name("Media File")) defines

name of parameter, data characterization consist at least of type(Atomic) because

path to file is not divisible, domain(Entity(Path("*.mp3")) defines that string is a

path that should be specified by the user. With this data and code characterization,

user interface will show user a default exploring window and allows selection of

files with .mp3 extension. AddMediaFile method loads files that were selected by

the user from explorer window and launches event OnPlaylistChanged which is

characterized as Event(OnChanged(playlist)). This will let user interface update

contents of the list. Method that would allow addition of whole directory can be

characterized alike except that mask for the Path will be di

erent. Play method that starts playing of selected item in the list will be of

Category(MediaPlayer(Play)) so there is no need for name, description or

representation specification as it is already done in the category. Play is dependent

ona method that checks if list contains any items -

Attribute(Dependency(IsSelectedItem)). When object changes, this method must be

reevaluated to enable or disable the Play command. When user adds items to the list

using the Add media file command, the Play button and other buttons that are

dependent on IsSelectedItem will be available and user can start playing media files

in the list.

5.2 Loading code characteristics

After the code and data characterization is done, the data and code characteristics

should be loaded into a characterization tree. The characterization tree reflects well

14

the structure of the data types and their properties and can be used for the creation of

the abstract interface objects. A process of the creation of the characterization tree is

shown in Listing 5.2.

Figure 5.1: The characterization tree of the simple media player

First, an instance of the structure holding the characterization data is created.

Second, attributes are parsed and stored in the structure. Next, every variable is

Listing 5.2: Creation of characterization tree

LoadCharacteristics(tree, dataType)

{

 instance = new Characteristics();

 ParseCharacteristics(instance, dataType);

 foreach(variable in dataType)

 {

 v = LoadCharacteristics(variable, instance);

 instance.Data.Add(v);

 }

 foreach(method in dataType)

 {

 m = LoadCharacteristics(method, instance);

 m.Params = ParseParams(method);

 instance.Code.Add(m);

 }

 tree.Insert(instance);

}

15

parsed recursively. If the variable has already been parsed, a reference to the node is

saved. Similarly, for the methods, every method is parsed including its parameters

and stored in the tree. The resulting characterization tree of the media player is

shown in the Figure 5.2.

5.3 Creating Abstract Interface Objects

The Abstract Interface Objects (AIOs) are used to represent a user interface

structure. They do not represent specific user interface elements but rather indicate

what should be the data or code meaning in the terms of the user interface (the data

structure can be e.g. represented as a container with a public data). The process of

creation is rule-based with domain limitation and takes into consideration user

context and preferences. The process of creation of AIOs is presented in the Listing

5.3. AIO database is loaded, including all the rules for every AIO. The

characterization tree is parsed and for every node in the tree AIO is picked and

initialized. Initialization for every kind of AIO can be different.

To support a default behavior for commands, a smart template concept [12] is

used which groups commands of similar category together. For the methods that

Listing 5.3: Creation of AIO tree:

LoadAIODatabaseFromEepository();

CreateAIOs(char, prefs, context)

{

 selectedAIO = EvalRuleSet(char, prefs, context);

 selectedAIO.Initialize(char, prefs, context);

 char.AIO = selectedAIO;

 foreach(dch in char.Data) {

 CreateAIOs(dch, prefs, context);

 selectedAIO.Add(dch.AIOs);

 }

 foreach(cch in char.Code) {

 if (cch has category && smarttemplate exists) {

 cch.AIO = GetSmartTemplate(cch.category);

 cch.AIO.Link(cch);

 } else {

 cch.AIO = EvalRuleSet(cch, prefs, context);

 if (cch.Params > 0) {

 dlg = CreateDialogAIO();

 foreach(param in cch.Params)

 CreateAIOs(param, prefs, context);

 cch.AIO.Add(dlg);

} } } }

16

require attributes, a dialog AIO is created and filled with AIOs representing each

parameter respectively. Figure 5.2 demonstrates the resulting AIO tree created from

the characterization tree. The main media player object is represented by a container,

playlist as a collection, and seek-bar as a time measurement (both are sub-objects of

media player class). The methods were linked together into three main AIOs thanks

to smart template. The Playlist entry was placed separately during the collection

initialization because it is used for the internal representation of a collection items

and is not explicit part of the media player interface.

Figure 5.2: AIOs generated from the characterization tree

5.4 Creating specific interface objects

The specific interface objects (CIOs) contain information about the specific user

interface element that will be used in the final user interface. The AIO tree with a

user interface structure is used to choose the best CIO for every data or code

element. The presented process is generally enumeration of all the possible ways of

choosing and inserting user interface elements. The best solution with the smallest e

ort needed for the interaction is chosen. This process is described in Listing 5.4 and

Listing 5.5. The first step is evaluation of a cost function. The cost function

evaluates the effort of the user in the interaction with current user interface objects

in his current context and specified device. When the current cost is worse than the

best solution found so far, conversion will not continue.

The second step is checking if all the AIOs were converted to the CIOs and

saving solution. The third step enumerates all the CIOs available for the concrete

AIO. Each of these CIOs is applied to the user interface without violating

constraints. AIO conversion is repeated for sub AIOs recursively. AIOs with a

higher importance are always placed first. Finally, the CIO is removed from the user

interface because it can be replaced by other CIO in the last step of previous

recursion.

17

Figure 5.3: Created CIOs from the AIO tree.

Listing 5.5: Conversion of AIOs to CIOs

ConvertToCIOs(ChTree, AIO, Context, Device)

{

 if(CurrentCost(ChTree,Context,Device) >= BestCost) return;

 if (AllCIOsApplied()) {

 BestCost = Cost;

 BestCIOs = ChTree.CIOs;

 return

 }

 CIOs = GetCIOs(AIO, Context, Device);

 foreach(CIO in CIOs) {

 if(ApplyCIO(CIO, AIO, Device)) {

 subAIOs = GetSubAIOs(AIO);

 SortByImportance(subAIOs);

 foreach(subAIO in subAIOs) {

 ConvertToCIOs(ChTree, subAIO, Context, Device);

 } } }

UndoLastCIO();

}

Listing 5.4: Creation of CIO tree.

AIOsToCIOs()

{

 foreach(SubTree in ChTree) {

 while(true) {

 ConvertToCIOs(SubTree, SubTree.AIO, Context, Device);

 if (ConversionComplete(SubTree)) break;

 RegroupLstImportanceContainer(SubTree);

} } }

18

Figure 5.3 demonstrates the result of the conversion to the CIOs. Main class is

represented by the Form (window), containing ListView for the playlist, track bar

for the seek-bar and the smart templates for categorized commands.

5.5 Instantiating

Instantiation creates instances of CIOs and is responsible for generation and

registration of events. The instance of every CIO is created so that instances have

the same sub-objects as CIO nodes. Then, the parameters of the CIO are set to the

instance. The CIOs representing a data register their dependencies on other objects,

events for value changes of the data and the user interface instance. CIOs

representing a code register their dependencies and implementing routines calls,

generate events to show asterisks and code to show a dialog for input of the

parameters if required. Figure 5.4 shows final user interface generated from CIO tree

in Figure 5.3. All CIOs were placed in the top-bottom and the left-right order

representing highest to lowest importance.

Figure 5.4: Instance of CIOs.

6 CONCLUSION
The goal of this work was to define approach for automated user interface

generation that would be simple to use and allow automated creation of user

interface for various platforms. This goal was fulfilled.

A taxonomy and processes proposed and described in this work allow new way of

application development. While developers were forced to redesign user interface

every time a major change in the application has been done, using code

characterization together with automated user interface generation process can

shorten development time and allow developers to test new methods and functions

19

as the application is being developed even in early stage of development. The

proposed taxonomy and its usage lead to benefits in the user interface design. The

key benefits of the proposed characterization taxonomy are:

 no expert skills required,

 application code independence on user interface,

 simple application extensibility,

 good maintainability and readability of the application code,

 more effective and faster algorithm development,

 independence on user interface generation process,

 platform independency.

The taxonomy is ideal for creation of user interfaces on multiple platforms.

Automated user interface generation process can generate optimal user interface for

any device. To proof the concept of the characterization taxonomy, a process of

automated user interface generation was presented and demonstrated on examples.

At the moment, the weakest point of the automated user interface generation is

generation of layout of user interface elements. An experienced graphics designer is

able to produce layouts that are aesthetically superior and more effective than

current automatically generated user interfaces. Future work in the problematic of

characterization taxonomy should be focused on automated layout techniques to

enable higher quality user interfaces, and creation of complex applications to tweak

the data and code characterization taxonomy to cover any information required by

the automated user interface generation process. Future work should also consider

implementation of the user interface generation process for other modalities to take

the advantage of the presented approach.

7 REFERENCES
[1] M. F. Ali, M. A. Pérez-quinones, M. Abrams, and E. Shell. Building multi-

platform user interfaces with uiml, 2002.

[2] Y. Arens, E. Hovy, and M. Vossers. On the knowledge underlying multimedia

presentations. pages 280–306, 1993.

[3] T. Berlage. Using taps to separate the user interface from the application code.

In UIST ’92: Proceedings of the 5th annual ACM symposium on User interface

software and technology, pages 191–198, New York, NY, USA, 1992. ACM.

[4] P. A. Bernstein. Middleware: a model for distributed system services. Commun.

ACM, 39(2):86–98, 1996.

[5] F. Bodart, A. marie Hennebert, J. marie Leheureux, I. Provot, and J. V. A

model-based approach to presentation: A continuum from task analysis to

prototype. 1994.

[6] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld. Improving the performance of

motor-impaired users with automatically-generated, ability-based interfaces. In

CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on Human

20

factors in computing systems, pages 1257–1266, New York, NY, USA, 2008.

ACM.

[7] J. Jelinek and P. Slavik. Gui generation from annotated source code. In

TAMODIA ’04: Proceedings of the 3rd annual conference on Task models and

diagrams, pages 129–136, New York, NY, USA, 2004. ACM.

[8] H. Jokstad and S. Carl-victor. Picasso-3 user interface management system,

2002.

[9] J. Kadlec. Steps in automated user interface generation. In Proceedings of

Spring Conference on Computer Graphics 2006, volume 22, pages 25–28, 2006.

[10] G. E. Krasner and S. T. Pope. A cookbook for using the model-view controller

user interface paradigm in smalltalk-80. J. Object Oriented Program., 1(3):26–

49, 1988.

[11] J. Mackinlay. Automating the design of graphical presentations of relational

information. pages 66–82, 1999.

[12] J. Nichols, B. A. Myers, and K. Litwack. Improving automatic interface

generation with smart templates. In IUI ’04: Proceedings of the 9th international

conference on Intelligent user interfaces, pages 286–288, New York, NY, USA,

2004. ACM.

[13] K. Nihe, K. Seki, H. Nakamura, R. Yagishita, and T. Shimojima. Distributed

object system framework orb, 1994.

[14] S. Nylander, M. Bylund, and A. Waern. The ubiquitous interactor - device

independent access to mobile services. CoRR, cs.HC/0305003, 2003.

[15] F. Paterno, C. Mancini, and S. Meniconi. Concurtasktrees: A diagrammatic

notation for specifying task models. In INTERACT’97: Proceedings of the IFIP

TC13 Interantional Conference on Human-Computer Interaction, pages 362–

369. Chapman-Hall, 1997.

[16] F. Paterno, C. Santoro, J. Mantyjarvi, G. Mori, and S. Sansone. Authoring

pervasive multimodal user interfaces. Int. J. Web Eng. Technol., 4(2):235–261,

2008.

[17] F. Paterno, C. Santoro, and V. G. Moruzzi. A unified method for designing

interactive systems adaptable to mobile and stationary platforms. interacting

with. Computers, 15:347–364, 2003.

[18] H. O. Randem, H. Jokstad, T. Linden, H. O. Kvilesjo, S. Rekvin, and A. Hornas.

Procsee - the picasso successor, 2005.

[19] S. F. Roth and J. Mattis. Data characterization for intelligent graphics

presentation. In CHI ’90: Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 193–200, New York, NY, USA, 1990.

ACM.

[20] S. Wehrend and C. Lewis. A problem-oriented classification of visualization

techniques. In VIS ’90: Proceedings of the 1
st
 conference on Visualization ’90,

pages 139–143, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[21] M. X. Zhou and S. K. Feiner. Data characterization for automatically visualizing

heterogeneous information. In INFOVIS ’96: Proceedings of the 1996 IEEE

21

Symposium on Information Visualization (INFOVIS ’96), page 13, Washington,

DC, USA, 1996. IEEE Computer Society.

8 CURRICULUM VITAE

Education 1986 – 1991 Basic School Brněnská Prostějov, CR

1991 – 1994 Basic School Sídliště Svobody Prostějov, CR

 Specialized class in light athletic.

1994 – 1998 High school spec. in electrotechnical engineering Olomouc, CR

 Specialized in electrotechnical engineering, microprocessor technology.

1998 – 2003 FIT VUT Brno Brno, CR

 Ing

Skills

Driving license (type B). Programming in C/C++, Pascal, machine languages, OpenGL, DirectX,
.NET. Basics in HTML, DHTML, JavaScript, PHP, SQL. Skilled in work with Microsoft Windows,
basics in UNIX based systems.

Interests Sport, swimming, cycling, martial arts. Music classical, modern. Interested in user
interfaces.

Languages

 English (active)

 German (passive, 4 years)

 Spanish (passive, 1 year)

Work 2002 – 2002 (3 months) John Crane Sigma a.s.
Lutín, CR

Developer

 Development of electronical catalogue for central Europe. CD in HTML, multilingual.
Contact: martin.grepl@johncrane.cz

 2003 – 2005 FIT VUT Brno Brno, CR

Assistant lecturer

 Computer Graphics Principles, contact: krsek@fit.vutbr.cz

 User Interface Programming, contact: zemcik@fit.vutbr.cz

 Human-Machine Interfaces, contact: zemcik@fit.vutbr.cz

 2004 – 2005 Pavel Vavřín Brno, CR

Programmer

 Development and implementation of algorithms for project Archeological Sights journal
(Památky Archeologické) digitizing, containing approx. 41 000 high resolution pages.
Contact: pavel_vavrin@yahoo.com

 2005 – VR Group a.s. Brno, CR

Programmer / Analyst

 Development and implementation of virtual simulators VS-I and VS-II. Project management
of Wasp constructive simulation environment. Contact: vit.ryska@vrg.cz

22

Projects 2004 Augmented Multi-Party Interaction, Brno, CR

Research leader: Hynek Heřmanský
Team Leaders: Burget Lukáš, Černocký Jan, Grézl František, Kadlec Jaroslav, Karafiát Martin,
Matějka Pavel, Motlíček Petr, Potúček Igor, Schwarz Petr, Sumec Stanislav, Španěl Michal, Zemčík
Pavel, http://www.amiproject.org/, Agency: EU-6FP-IST,Code: 506811-AMI

 2005 User Interfaces for Hierarchical Structure Visualisation, Brno, CR
Research leader: Kadlec Jaroslav
Team Leaders: Chudy Robert, Zemcik Pavel, Agency: FRVŠ MŠMT, Code: FR200/2005/G1

Publications Kadlec, Jaroslav: Lip detection in low resolution images, In: Proceeding of the 10th
Conference and Competition STUDENT EEICT 2004, Volume 2, Brno, CZ, 2004, p. 303-
306, ISBN 80-214-2635-7

Herout, Adam; Zemčík, Pavel; Beran, Vítězslav; Kadlec, Jaroslav: Image and Video
Processing Sofware Framework for Fast Application Development, In: Joint
AMI/PASCAL/IM2/M4 workshop, Martigny, CH, 2004, s. 1

Kadlec, Jaroslav; Chudý Robert: Spatial Interface Design, In: ElectronicsLetters.com , Vol.
2004, No. 1, Brno, CZ, p. 13, ISSN 1213-161X

Sumec, S., Kadlec, J.: Event Editor - The Multi-Modal Annotation Tool, In: Workshop on
Multimodal Interaction and Related Machine Learning Algorithms (MLMI), Edinburgh, GB,
2005, p. 1

Kadlec, J., Potúček, I., Sumec, S., Zemčík, P.: Evaluation of Tracking and Recognition
Methods, In: Proceedings of the 11th conference EEICT, Brno, CZ, 2005, p. 617-622, ISBN
80-214-2890-2

Ashby, S., Bourban, S., Carletta, J., Flynn, M., Guillemot, M., Hain, T., Kadlec, J.,
Karaiskos, V., Kraaij, W., Kronenthal, M., lathoud, G., Lincoln, M., Lisowska, A., McCowan,
I., Post, W., Reidsma, D., Wellner, P.: The AMI Meeting Corpus, In: Measuring Behavior
2005 Proceedings Book, Wageningen, NL, 2005, p. 4

Ashby, S., Bourban, S., Carletta, J., Flynn, M., Guillemot, M., Hain, T., Kadlec, J.,
Karaiskos, V., Kraaij, W., Kronenthal, M., lathoud, G., Lincoln, M., Lisowska, A., McCowan,
I., Post, W., Reidsma, D., Wellner, P.: The AMI Meeting Corpus: A Pre-Announcement, In:
Workshop on Multimodal Interaction and Related Machine Learning Algorithms (MLMI),
Edinburgh, GB, 2005, p. 4

Kadlec, J.: Steps In Automated User Interface Generation, In: Proceedings of Spring
Conference on Computer Graphics 2006, Bratislava, 2006, p. 25-28, ISSN 1335-5694

Chudý, R., Kadlec, J.: FOXI - Hierarchical Structure Visualization, In: Proceedings of the
International Conference on Systems, Computing Sciences and Software Engineering
(SCSS05), Bridgeport, US, 2006, p. 5

Kadlec, J.: Code Characterization for Automatic User Interface Generation, In: Innovations
and Advanced Techniques in Computer and Information Sciences and Engineering,
Dordrecht, NL, Springer, 2007, p. 255-260, ISBN 978-1-4020-6267-4

Kadlec, J., Zemčík, P.: Generation of user interface from characterized code, In:
Proceedings of WSCG'10, Plzeň, CZ, ZČU v Plzni, 2010, p. 4

23

