
VYSOKÉ UCENI TECHNICKE V BRNE
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

F A C U L T Y OF INFORMATION T E C H N O L O G Y
D E P A R T M E N T O F C O M P U T E R G R A P H I C S AND MULTIMEDIA

CHARAKTERIZACE KÓDU PRO AUTOMATICKÉ
GENEROVÁNÍ UŽIVATELSKÉHO ROZHRANÍ
CODE C H A R A C T E R I Z A T I O N FOR A U T O M A T E D USER INTERFACE CREATION

AUTOR PRÁCE ING. J A R O S L A V KADLEC
AUTHOR

VEDOUCÍ PRÁCE DOC. DR. ING. PAVEL ZEMČÍK
S U P E R V I S O R

OPONENTI TBD
O P O N E N T S

DATUM OBHAJOBY TBD
D E F E N S E DATE

2

CONTENTS
1 INTRODUCTION 5
2 PREVIOUS WORK 5

2.1 Characterization 5
2.2 Generating of user interface 6

3 THESIS OBJECTIVES 6
4 CODE CHARACTERIZATION 6

4.1 Command Category 7
4.2 Command Attribute 8
4.3 Command Parameter 9
4.4 Command Sense 10
4.5 Event 11

5 GENERATING USER INTERFACE 12
5.1 Data and code characterization 12
5.2 Loading code characteristics 13
5.3 Creating Abstract Interface Objects 15
5.4 Creating specific interface objects 16
5.5 Instantiating 18

6 CONCLUSION 18
7 REFERENCES 19
8 CURRICULUM VITAE 21

3

4

1 INTRODUCTION
Creation of user interfaces in various applications is getting more and more

complicated. Users request high quality user interfaces and complex applications
that are user friendly. Users also expect to have same applications on various
devices such as phones, PDAs, notebooks and others. Creation of interface of
application that can be portable between various platforms is very difficult, leading
in creation of multiple user interfaces which are based on expected device's
capabilities and features. Creation of such user interfaces is problematic, leading to
increased time of application development. That is why a concept of automatic
generation of user interfaces was developed.

Automatic user interface generation systems promise to simplify an application
programmer's design tasks by providing a set of design rules [3] and effectiveness
criteria [11]. To establish these criteria, it is necessary to understand which of the
properties of the information to be visualized are related to user interface design and
how they are related. This task is called data characterization [19] [21]. With flexible
data characterization it is possible to create automatic presentation systems. These
however do not allow creation of rich user interfaces. To create rich user interface
with possibilities of various operations over the characterized data, a code
characterization is required.

With complete data and code characterization, application programmer is able to
describe application code that will be used for automatic user interface generation
[7]. Because automatic user interface generation is very complex process requiring
artificial intelligence, current user interface management systems are using designer
made user interfaces [4][8][13]. Such user interface management systems benefit
from current code which is independent on user interface which can be simply
modified for use with various devices having different presenting capabilities. Also
code can be modified independently from user interface design or its components
which increases maintainability of application.

2 PREVIOUS W O R K

2.1 Characterization
First data characterization taxonomy was proposed by Mackinlay [11] who was

using data properties to guide automatic design of visual presentations. The
taxonomy was primarily designed for quantitative data. This taxonomy was later
extended by Roth and Matis [19] to address more complex quantitative data. Arens,
Hovy and Vossers [2] developed a vocabulary that was able to describe multimedia
information. Wahrend and Levis [20] introduced partitioning of data into several
categories such as shape and structure. Zhou and Feiner [21] restructured taxonomy

5

into six domains, introducing data role and data sense. While data role characterized
data based on user information seeking goals, data sense represented user
interpretation preferences.

2.2 Generating of user interface
Number of the systems exists from 1980's that use various techniques for

generating of user interface. A level of automation provided by these systems varies
from the programming abstraction (e.g. UIML [1]) to design tools (e.g. ProcSee
[18]), through the mixed systems requiring partial assistance from user interface
designer (TERESA [16]). Such systems that provide some mechanisms to
automatically generate user interface often use simple rule based approach where
every type is matched to the specific user interface element (e.g. UBI [14]). Some
systems rely on the type-based declarative model of the information exchanged
through the user interface called Abstract User Interface [17]. In many cases, a user
interface was specified explicitly (e.g. UIML) or inferred from a code [7]. Some
systems include additional information about a high level task or dialogue model
(e.g. ConcurTaskTrees [15]) or the task models [5]. Other systems generate the user
interface using constraint satisfaction and optimization (e.g. Supple [6]).

3 THESIS OBJECTIVES
The main objective of this thesis is to define approach for automated user

interface generation that would be simple to use and allow automated creation of
user interface for various platforms.

4 CODE CHARACTERIZATION
Code characteristic is expressed using annotation tags that are divided into five

dimensions: command category, command attribute, command parameter, command
sense and event. Command category represents a set of operations or commands that
can be executed with the object. Command attribute defines basic properties of the
operations and defines various usage options. Command parameter describes
properties and options for command parameters. Command sense distinguishes how
should be commands treated. Events define optional reactions of user interface on
internal object changes. Code characterization is proposed for object-oriented
environment and that is why each piece of information is supposed to be object.
Each object belongs to data domain and has data type as defined for data
characterization in [21] which was slightly modified and extended to support code
characterization presented here. Each data characterized object can define public
methods that can be characterized using code characterization. Because of object-
oriented environment, every inherited object inherits public data and methods
including data and code characterization. Because taxonomy for data and code
characterization is flexible, new types of methods or relations can be easily added to

6

the taxonomy. Following subsections describe code characterization taxonomy in
more detail.

4.1 Command Category
Command category defines set of operations or commands that can be executed

on the object. A typical example of command category can be set of methods that
allow playing, stopping, pausing of recorded data (might be audio or video
playback, or any other data that object can replay or record). Set of such commands
have usually default symbolic representation and users are used to this concept from
real world or other applications. Command categories can be easily defined in X M L
format and extend existing set of categories. Categories can be represented in user
interface using concept of Smart-Templates [12] which contain information about
default symbolic representation and also default user interface design. Because
object can be of various categories, multiple categories can be defined for single
object. Following categories are basic for most applications and should always be
implemented.

4.1.1 Collection
Collection contains methods for adding, removing and selecting items contained

in object. With this category it is possible to create various objects that act like
collections of various data with possible multi-selections and other functions. Add or
Remove methods can add or remove objects of various types and do necessary
checking before added or removed object is processed. This functionality was
almost impossible with data characterization only.

4.1.2 Storage
Storage defines methods for saving, opening, and creation of contents. Methods

are usually represented by common symbols (e.g. save by diskette icon) and are very
important in applications that want to add functionality of creation of new objects
and their saving or loading.

4.1.3 Navigation
Methods in navigation are most usually used for moving of cursor in collections.

Navigation defines actions for previous or next item, first or last item. Navigation
can be defined separately from collection, because it can control cursors in various
collections at once. A typical example is media player with playlists: user can select
one playlist and let play next media file from selected playlist.

4.1.4 Media Player
This category defines methods for start (play), stop and pause of playback. These

methods are usually represented by standard symbols and should be always
implemented in default order.

7

4.1.5 Clipboard
Clipboard is widely used technique for data copying and moving. Clipboard

category describes methods that can be used for this purpose and that is why user
interface can offer this functionality to user. Typical clipboard methods are copy,
paste and cut, storing selected data to clipboard for other applications that may use
them.

4.1.6 Draggable
Object with method that belongs to draggable category informs that object can be

dragged. When object can be dragged, user interface allows user to drag certain
objects to another objects. Although object can be data characterized to be
draggable, it is missing method that could process the drag request. This method
now can be characterized using code characterization.

4.1.7 Droppable
Object containing methods with droppable category contain logic of checking

whether dragged object can be dropped and acquiring dropped object. Because drag
and drop operations require some logic that cannot be achieved by data
characterization, draggable and droppable categories are needed.

4.2 Command Attribute
Attributes express various information about methods that are implemented by the

objects. Although it might seem that information according to each of the method
are very different, they have quite lots of common attributes that need to be defined
for proper creation of user interface. If some object implements a method that should
be visible in user interface, basic attributes such as name, description, or importance
should be defined.

4.2.1 Name
Name attribute contains name of the method that should be presented to user in

user interface. Name is not required for methods that already have its category,
because it already has name attribute. Name attribute can also be specified in
multiple languages so that user can choose which of the languages he prefers.

4.2.2 Description
Description describes method and acts like a tip for the user. When user wants to

call certain command from menu or from other part of user interface, system can
display or play short help for the command based on the capabilities of the device or
user preferences.

8

4.2.3 Importance
Some commands are more important than others. It is good practice to make such

commands more accessible. In graphical user interfaces, important commands are
placed to toolbars or tool strips so that user can easily access them. Importance
attribute represents how important some commands are and whether it should be
somehow highlighted or placed in user interface to a location where it is easily
accessible.

4.2.4 Representation
Representation defines a symbol that represents certain commands.

Representation is especially important for commands that have high importance.
Representation can be defined as icon or image. For commands that belong to a
category representation is most usually defined in category definition file. In this
case, another definition of representation overrides default representation.

4.2.5 Dependence
Every method in the code has some dependencies that must be satisfied before the

code is executed. This is most usually checked by developer programming user
interface. In automatic user interface generation, user interface has to know when is
command enabled or disabled. So dependence expresses conditions which have to
be satisfied to allow execution of selected command. Dependence is very important
because without proper dependence checking, user can have access to unavailable
commands. An example can be playing of media file although there is no media file
open.

4.3 Command Parameter
Almost every implemented method has some parameters. Parameters init method

and method most usually works with available parameters or internal variables. That
is why its characterization is very important. Following parameters are basic
parameters that are important for proper calling of selected method. An example can
be drawing to image. Method that can draw a line has three main parameters: color,
starting point and ending point. User interface based on parameter characterization
knows that form, which is displaying the image, has a color palette to which is
related color in draw line method. User interface will not require user to specify this
parameter manually and take the value from the color palette. Because points are
data characterized and related to image, user interface knows that the location should
be taken from the displayed image and when user selects draw line command, user
interface expects user to select two points in the area. After both points are selected,
command is executed. Following parameters are important for proper parameter
characterization.

9

4.3.1 Name
Describes name of the parameter and is similar to name in command attribute.

Name is not always required but is very important in user interfaces that are not
based on visual interfaces (e.g. for blind people).

4.3.2 Description
Description acts as a tip for the parameter. It is also similar to description in

command attribute.

4.3.3 Relation
Relation is important for the parameters because it describes relation between

parameter and another object in environment. When relation is specified, user
interface automatically takes result of relation as input for the parameter. An
example is color from color palette. Drawing methods require color which is taken
from color palette automatically.

4.3.4 Default value
Some parameters, most usually quantitative, require certain value. Although user

can change the value, sometimes it is more convenient to show user some kind of
the default value that can be used for the command too. An example is number of
passes of some computational task. Although user can specify much greater value,
algorithm can have good results in five passes. Maximum and minimum values are
boundaries which can be specified in data characterization for the parameter data
type [21].

4.4 Command Sense
Sense helps to distinguish how are methods executed. By default, user selects

command, user interface asks for parameters and method is executed with all
specified parameters. Such default sense is called command. When tool sense is
specified, user interface runs method again and again as long as the command in
context is selected. Typical example is selecting some tool - e.g. a draw line tool -
from toolbox. As long as user keeps up with specifying points in the image or as
long as the tool is selected, user interface calls draw line command repeatedly and
user draws lines. Command and tool sense cover most of the types of method
executions and that is why various types of user interfaces can be generated.

For some objects there also exists default action that can be executed whenever
user selects the object and launches default action. In graphical user interfaces this is
most usually done by double-clicking. For blind users, there is usually voice
command run or open. In this case, it is possible to specify which command is
default and should be used in such cases.

10

Add

Remove

Select

Lose

Collection

Save , Storage

Next

Previous

First

Last

Novigaj on

Play

Stop

Pause

Player

Copy
Cut

Paste

Cupboard

User Defined

DoDrag Dragable

DragEnter

DragDrop
Dropab e

Nn r í f :

Descnprjon

Importance

Representation

Dependence

Name

Description

Re at or

Default Value

Maximum Value

Minimum Value

Category

A!ln:; . i : i -

Pom rr e l m

First Selected

Default

Tool

Command
Sense

OnChange

OnUserC hanged
Events

Figure 4.1: Code characterization taxonomy.

4.5 Event
Events represent a mechanism that informs user interface for application code that

there have been some changes in the data from the user or from the application code.
Although various approaches exist for implementing such behavior using callbacks
[10], TAPS [3] or ORB [13], event mechanism is very simple and works well for

11

duplex communication. Base event, that should be implemented for every object is
changed. Such event should be executed always when application code changes data
of certain object. Because user interface cannot detect changes in data without
having checked every available public property, signaling data change using change
event is significant to increase performance of application. For data, that have data
characterization with high dynamic transience [21], user interface can check its state
very often and optimize the performance. Event mechanism can be used for static
data or data with low dynamic transience.

Because user interface sets the data that are changed in user interface immediately
to the object's properties, it is not necessary to inform object about changes in public
data. However for languages that do not support concept of properties (e.g. C++) it
is necessary to implement set method that should be characterized by userChanged.
This event contains also definition for what data is event designed so that user
interface can react correctly when user changes any data.

5 GENERATING USER INTERFACE
The approach is based on data and code characterization described above and is

combining rule-based concept for the interface abstraction from the characterized
code and constraint satisfaction and optimization for choosing interface objects.
General description of this approach was presented in [9]. The first step based on the
approach is the code characterization. The characterized code is analyzed and the
user interface is automatically created from the analysis, considering the properties
of the platform, device, user preferences, and the user context. The next step is a rule
based creation of the user interface abstraction using the abstract interface objects.
Then, the abstract interface objects are converted to the specific interface objects
using the optimization and constraint satisfaction. Finally, the user interface is
instantiated. Individual steps of the approach will be demonstrated on a "simple
media player" example.

5.1 Data and code characterization
The first step in the approach is the characterization of both the data and code.

[DataType(Atomic)]
[DataDomain(Measurement, "Time")]
[D a t a C o n t i n u i t y (C o n t i n u o u s)]
[DataTransience(Dynamic)]
[D a t a l m p o r t a n c e (0)]
[CodeName("Time L i n e ")]
[CodeDependence("IsMediafileOpened")]
[ParameterRange(0, 0)]
p u b l i c u l o n g C u r r e n t P o s i t i o n { g e t ; s e t ; }

Listing 5.1: Example of the characterized code in C#

12

The data and code characterization is a process of annotation of the data and code
with a special tags described above carrying important information for the future
user interface generation process. The characterization can be stored in a separate
file or directly in the source files (see Listing 5.1) and compiled and linked to the
library or assembly.

5.1.1 Example
A possible characterization of selected data and code will be demonstrated on a

simple media player. Media player consists of a playlist with media files to play,
pause, stop, next, and previous buttons, and a timeline to see and jump into selected
part of media file. Media player also has functions allowing adding of media files
and directories and removal of selected items from the playlist or clearing the list.
Method AddMediaFile(string mediaFile) can be code characterized by
Category(Collection(Add, playlist)) so that method is add method for the playlist
and user interface can group this list with this command together.
Attribute(Name("Add media file")) describes name to present to the user,
Attribute(Description("Adds selected media file to playlist.")) is a tooltip for the
user, Attribute(Importance(High)) to have the control quickly available.
Representation remains the same as specified in category and there is no dependence
for the addition of a media file. Parameter(mediaFile, Name("Media File")) defines
name of parameter, data characterization consist at least of type(Atomic) because
path to file is not divisible, domain(Entity(Path("*.mp3")) defines that string is a
path that should be specified by the user. With this data and code characterization,
user interface will show user a default exploring window and allows selection of
files with .mp3 extension. AddMediaFile method loads files that were selected by
the user from explorer window and launches event OnPlaylistChanged which is
characterized as Event(OnChanged(playlist)). This will let user interface update
contents of the list. Method that would allow addition of whole directory can be
characterized alike except that mask for the Path will be di
erent. Play method that starts playing of selected item in the list will be of
Category(MediaPlayer(Play)) so there is no need for name, description or
representation specification as it is already done in the category. Play is dependent
ona method that checks if list contains any items
Attribute(Dependency(IsSelectedItem)). When object changes, this method must be
reevaluated to enable or disable the Play command. When user adds items to the list
using the Add media file command, the Play button and other buttons that are
dependent on IsSelectedltem will be available and user can start playing media files
in the list.

5.2 Loading code characteristics
After the code and data characterization is done, the data and code characteristics

should be loaded into a characterization tree. The characterization tree reflects well

13

the structure of the data types and their properties and can be used for the creation of
the abstract interface objects. A process of the creation of the characterization tree is
shown in Listing 5.2.

L o a d C h a r a c t e r i s t i c s (t r e e , dataType)
{

i n s t a n c e = new C h a r a c t e r i s t i c s () ;
P a r s e C h a r a c t e r i s t i c s (i n s t a n c e , d a t a T y p e) ;
f o r e a c h (v a r i a b l e i n dataType)
{

v = L o a d C h a r a c t e r i s t i c s (v a r i a b l e , i n s t a n c e) ;
i n s t a n c e . D a t a . A d d (v) ;

}
foreach(method i n dataType)
{
m = L o a d C h a r a c t e r i s t i c s (m e t h o d , i n s t a n c e) ;
m.Params = ParseParams(method);
instance.Code.Add(m);

}
t r e e . I n s e r t (i n s t a n c e) ;

}

Listing 5.2: Creation of characterization tree

MediaPlayer

•ttta'ift = (Hp«it«Stmctiirt
•OHltMun: Entity

7 'V
Data Code

Previous
Code 4

+{od*5w« = COMfld +{od*5w« = COMfld

Playlist

•Oltj 'iM = CotpMlttStnxtur»
•CatiCwtn*Entity

7 V
CurrentPoation

•Ut»T#* I ttonc

AddMediaFile

•CoöKat«90fj : Collection.Add

1

Ad d DI rectoryC on te n ts

•Ccd«Cit«gor> - Collection.**

Params
1

Params

Filelnfo

E-.;t,

/ 1
1

Data Code

Directorylnfo

Params

Next

*CodeCat«gory i muqatior.acit
•C«l*Sense = Coaard

Params

Remove

Clear Stop PlayPause

it v. *CDd*Cit*gory = •laytr.p'iay'aLM
nC'dfSense = Cwand

\
Params Params Params

Enut|

/ 1 \
Data Coc*

V
Params

PlaylistEntry

•OitlTyp»
tttai •

Data

Filename

•OitjTyp* I Atone
•Citatouin • Concept

Figure 5.1: The characterization tree of the simple media player

Code

Pias

Params

First, an instance of the structure holding the characterization data is created.
Second, attributes are parsed and stored in the structure. Next, every variable is

14

parsed recursively. If the variable has already been parsed, a reference to the node is
saved. Similarly, for the methods, every method is parsed including its parameters
and stored in the tree. The resulting characterization tree of the media player is
shown in the Figure 5.2.

5.3 Creating Abstract Interface Objects
The Abstract Interface Objects (AIOs) are used to represent a user interface

structure. They do not represent specific user interface elements but rather indicate
what should be the data or code meaning in the terms of the user interface (the data
structure can be e.g. represented as a container with a public data). The process of
creation is rule-based with domain limitation and takes into consideration user
context and preferences. The process of creation of AIOs is presented in the Listing
5.3. AIO database is loaded, including all the rules for every AIO. The
characterization tree is parsed and for every node in the tree AIO is picked and
initialized. Initialization for every kind of AIO can be different.

L o a d A I O D a t a b a s e F r o m E e p o s i t o r y () ;
C r e a t e A I O s (c h a r , p r e f s , c o n t e x t)
{

s e l e c t e d A I O = E v a l R u l e S e t (c h a r , p r e f s , c o n t e x t) ;
s e l e c t e d A I O . I n i t i a l i z e (c h a r , p r e f s , c o n t e x t) ;
char.AIO = s e l e c t e d A I O ;
f o r e a c h (d c h i n char.Data) {

Cre a t e A I O s (d c h , p r e f s , c o n t e x t) ;
s e l e c t e d A I O . A d d (d c h . A I O s) ;

}

f o r e a c h (c c h i n char.Code) {
i f (cch has c a t e g o r y && sma r t t e m p l a t e e x i s t s) {

cch.AIO = G e t S m a r t T e m p l a t e (c c h . c a t e g o r y) ;
c c h . A I O . L i n k (c c h) ;

} e l s e {
cch.AIO = E v a l R u l e S e t (c c h , p r e f s , c o n t e x t) ;
i f (cch.Params > 0) {

d i g = C r e a t e D i a l o g A I O () ;
f o r e a c h (p a r a m i n cch.Params)

CreateAIOs(param, p r e f s , c o n t e x t) ;
c c h . A I O . A d d (d i g) ;

} } } }

Listing 5.3: Creation of AIO tree:

To support a default behavior for commands, a smart template concept [12] is
used which groups commands of similar category together. For the methods that

15

require attributes, a dialog AIO is created and filled with AIOs representing each
parameter respectively. Figure 5.2 demonstrates the resulting AIO tree created from
the characterization tree. The main media player object is represented by a container,
playlist as a collection, and seek-bar as a time measurement (both are sub-objects of
media player class). The methods were linked together into three main AIOs thanks
to smart template. The Playlist entry was placed separately during the collection
initialization because it is used for the internal representation of a collection items
and is not explicit part of the media player interface.

-dataClw = P l a y l i s t
UtemChar = P lay l i s tEn t ry

+NextChar = Next
+PreviousChar = Previous
•LastChar = NULL
+FirstChar = NULL
+Previous{)
+Next()

CollectionControlsAlO ST
+Addchar[] = AddMediaFile, AddDirectoryContents
+RemoveChar = Remove
+RemoveAUChar - Clear
+Remove{)
+Add(Medial F i l e :F i l e In fo)
+Add(Directory:DirectoryInfo)
•C lea r O

ContainerAlO
•dataChar - P lay l is tEnt ry

PlayerControlsAlO ST
+StopChar = stop
+PlayPauseChar = PlayPaus
+PlayChar = NULL
+PauseChar = NULL
+Stop()
+PlayPause()

TextLabelAlO CommandAlO
+dataChar = Filename +codeChar - Play

+Play()

Figure 5.2: AIOs generated from the characterization tree

5.4 Creating specific interface objects
The specific interface objects (CIOs) contain information about the specific user

interface element that will be used in the final user interface. The AIO tree with a
user interface structure is used to choose the best CIO for every data or code
element. The presented process is generally enumeration of all the possible ways of
choosing and inserting user interface elements. The best solution with the smallest e
ort needed for the interaction is chosen. This process is described in Listing 5.4 and
Listing 5.5. The first step is evaluation of a cost function. The cost function
evaluates the effort of the user in the interaction with current user interface objects
in his current context and specified device. When the current cost is worse than the
best solution found so far, conversion will not continue.

The second step is checking if all the AIOs were converted to the CIOs and
saving solution. The third step enumerates all the CIOs available for the concrete
AIO. Each of these CIOs is applied to the user interface without violating
constraints. AIO conversion is repeated for sub AIOs recursively. AIOs with a
higher importance are always placed first. Finally, the CIO is removed from the user
interface because it can be replaced by other CIO in the last step of previous
recursion.

16

AIOsToCIOs()
{

fore a c h (S u b T r e e i n ChTree) {
w h i l e (t r u e) {

ConvertToCIOs(SubTree, SubTree.AIO, C o n t e x t , D e v i c e) ;
i f (ConversionComplete(SubTree)) break;
R e g r o u p L s t I m p o r t a n c e C o n t a i n e r (S u b T r e e) ;

} } }

Listing 5.4: Creation of CIO tree.

ConvertToCIOs(ChTree, AIO, C o n t e x t , Device)
{

i f (C u r r e n t C o s t (C h T r e e , C o n t e x t , D e v i c e) >= Be s t C o s t) r e t u r n ;
i f (A l l C I O s A p p l i e d ()) {

Be s t C o s t = Co s t ;
BestCIOs = ChTree.CIOs;
r e t u r n

}

CIOs = GetCIOs(AIO, C o n t e x t , D e v i c e) ;
f o r e a c h (C I 0 i n CIOs) {

i f (A p p l y C I O (C I O , AIO, D e v i c e)) {
subAIOs = GetSubAIOs(AIO);
S o r t B y l m p o r t a n c e (s u b A I O s) ;
f o r e a c h (s u b A I O i n subAIOs) {

ConvertToCIOs(ChTree, subAIO, C o n t e x t , D e v i c e) ;
} } }
UndoLastCIO () ;

}

Listing 5.5: Conversion of AIO s to CIOs
.NET Form

+dataChar = MediaPlayer
AIO = ContainerAIO

+type = System.windows.Forms.Form

.NET PlayerControlsSmartTemplate

+dataChar
+AI0 = PlayerControlsAIO_ST
+type = Characterization.SmartTemplates.PlayerControls

.NET NavigationControlsSmartTemplate

+dataChar
+AIO = NavigationControlsAIO_ST

type = Characterization.SmartTemplates.NavigationControls

.NET ListView

+dataChar = P lay l is t
+AI0 - CoUectlonAIO
+type = Characterization.CIO.ListView

.NET Horizontal Track Bar

+dataChar = CurrentPosition
+AIO = TimeMeasurementAIO
+type = Characterization.CIO.TrackBar

• NET CollectionControlsSmartTemplate

+dataChar
+AIO = CoLlectionControlsAIO_ST
+type = Characterization.SmartTemplates.CoLlectionControls

Figure 5.3: Created CIOs from the AIO tree.

17

Figure 5.3 demonstrates the result of the conversion to the CIOs. Main class is
represented by the Form (window), containing ListView for the playlist, track bar
for the seek-bar and the smart templates for categorized commands.

5.5 Instantiating
Instantiation creates instances of CIOs and is responsible for generation and

registration of events. The instance of every CIO is created so that instances have
the same sub-objects as CIO nodes. Then, the parameters of the CIO are set to the
instance. The CIOs representing a data register their dependencies on other objects,
events for value changes of the data and the user interface instance. CIOs
representing a code register their dependencies and implementing routines calls,
generate events to show asterisks and code to show a dialog for input of the
parameters if required. Figure 5.4 shows final user interface generated from CIO tree
in Figure 5.3. A l l CIOs were placed in the top-bottom and the left-right order
representing highest to lowest importance.

Time Line

0
Figure 5.4: Instance of CIOs.

6 CONCLUSION
The goal of this work was to define approach for automated user interface

generation that would be simple to use and allow automated creation of user
interface for various platforms. This goal was fulfilled.

A taxonomy and processes proposed and described in this work allow new way of
application development. While developers were forced to redesign user interface
every time a major change in the application has been done, using code
characterization together with automated user interface generation process can
shorten development time and allow developers to test new methods and functions

18

as the application is being developed even in early stage of development. The
proposed taxonomy and its usage lead to benefits in the user interface design. The
key benefits of the proposed characterization taxonomy are:

• no expert skills required,
• application code independence on user interface,
• simple application extensibility,
• good maintainability and readability of the application code,
• more effective and faster algorithm development,
• independence on user interface generation process,
• platform independency.

The taxonomy is ideal for creation of user interfaces on multiple platforms.
Automated user interface generation process can generate optimal user interface for
any device. To proof the concept of the characterization taxonomy, a process of
automated user interface generation was presented and demonstrated on examples.

At the moment, the weakest point of the automated user interface generation is
generation of layout of user interface elements. An experienced graphics designer is
able to produce layouts that are aesthetically superior and more effective than
current automatically generated user interfaces. Future work in the problematic of
characterization taxonomy should be focused on automated layout techniques to
enable higher quality user interfaces, and creation of complex applications to tweak
the data and code characterization taxonomy to cover any information required by
the automated user interface generation process. Future work should also consider
implementation of the user interface generation process for other modalities to take
the advantage of the presented approach.

7 REFERENCES
[1] M . F. A l i , M . A . Perez-quinones, M . Abrams, and E. Shell. Building multi-

platform user interfaces with uiml, 2002.
[2] Y . Arens, E. Hovy, and M . Vossers. On the knowledge underlying multimedia

presentations, pages 280-306, 1993.
[3] T. Berlage. Using taps to separate the user interface from the application code.

In UIST '92: Proceedings of the 5th annual A C M symposium on User interface
software and technology, pages 191-198, New York, N Y , USA, 1992. A C M .

[4] P. A. Bernstein. Middleware: a model for distributed system services. Commun.
A C M , 39(2):86-98, 1996.

[5] F. Bodart, A . marie Hennebert, J. marie Leheureux, I. Provot, and J. V. A
model-based approach to presentation: A continuum from task analysis to
prototype. 1994.

[6] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld. Improving the performance of
motor-impaired users with automatically-generated, ability-based interfaces. In
CHI '08: Proceeding of the twenty-sixth annual SIGCHI conference on Human

19

factors in computing systems, pages 1257-1266, New York, N Y , USA, 2008.
A C M .

[7] J. Jelinek and P. Slavik. Gui generation from annotated source code. In
TAMODIA '04: Proceedings of the 3rd annual conference on Task models and
diagrams, pages 129-136, New York, N Y , USA, 2004. A C M .

[8] H. Jokstad and S. Carl-victor. Picasso-3 user interface management system,
2002.

[9] J. Kadlec. Steps in automated user interface generation. In Proceedings of
Spring Conference on Computer Graphics 2006, volume 22, pages 25-28, 2006.

[10] G. E. Krasner and S. T. Pope. A cookbook for using the model-view controller
user interface paradigm in smalltalk-80. J. Object Oriented Program., 1(3):26-
49, 1988.

[11] J. Mackinlay. Automating the design of graphical presentations of relational
information, pages 66-82, 1999.

[12] J. Nichols, B. A . Myers, and K. Litwack. Improving automatic interface
generation with smart templates. In IUI '04: Proceedings of the 9th international
conference on Intelligent user interfaces, pages 286-288, New York, N Y , USA,
2004. A C M .

[13] K. Nihe, K. Seki, H. Nakamura, R. Yagishita, and T. Shimojima. Distributed
object system framework orb, 1994.

[14] S. Nylander, M . Bylund, and A. Waern. The ubiquitous interactor - device
independent access to mobile services. CoRR, cs.HC/0305003, 2003.

[15] F. Paterno, C. Mancini, and S. Meniconi. Concurtasktrees: A diagrammatic
notation for specifying task models. In INTERACT'97: Proceedings of the IFIP
TCI3 Interantional Conference on Human-Computer Interaction, pages 362-
369. Chapman-Hall, 1997.

[16] F. Paterno, C. Santoro, J. Mantyjarvi, G. Mori, and S. Sansone. Authoring
pervasive multimodal user interfaces. Int. J. Web Eng. Technol., 4(2):235-261,
2008.

[17] F. Paterno, C. Santoro, and V. G. Moruzzi. A unified method for designing
interactive systems adaptable to mobile and stationary platforms, interacting
with. Computers, 15:347-364, 2003.

[18] H. O. Randem, H. Jokstad, T. Linden, H. O. Kvilesjo, S. Rekvin, and A. Hornas.
Procsee - the picasso successor, 2005.

[19] S. F. Roth and J. Mattis. Data characterization for intelligent graphics
presentation. In CHI '90: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 193-200, New York, N Y , USA, 1990.
A C M .

[20] S. Wehrend and C. Lewis. A problem-oriented classification of visualization
techniques. In VIS '90: Proceedings of the 1 s t conference on Visualization '90,
pages 139-143, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[21] M . X . Zhou and S. K. Feiner. Data characterization for automatically visualizing
heterogeneous information. In INFOVIS '96: Proceedings of the 1996 IEEE

20

Symposium on Information Visualization (INFOVIS '96), page 13, Washington,
DC, USA, 1996. IEEE Computer Society.

8 CURRICULUM VITAE
Education 1986-1991 Basic School Brněnská Prostějov, C R

1991 - 1994 Basic School Sídliště Svobody Prostějov, C R
• Specialized class in light athletic.

1994 - 1998 High school spec, in electrotechnical engineering Olomouc, C R
• Specialized in electrotechnical engineering, microprocessor technology.

1998 - 2003 FIT VUT Brno Brno, C R
• Ing

Skills Driving license (type B). Programming in C/C++, Pascal, machine languages, OpenGL, DirectX,
.NET. Basics in HTML, DHTML, JavaScript, PHP, SQL. Skilled in work with Microsoft Windows,
basics in UNIX based systems.

Interests Sport, swimming, cycling, martial arts. Music classical, modern. Interested in user
interfaces.

Languages . English (active)

• German (passive, 4 years)
• Spanish (passive, 1 year)

Work 2002 - 2002 (3 months) John Crane Sigma a.s.
Lutin, C R
Developer
• Development of electronical catalogue for central Europe. CD in HTML, multilingual.

Contact: martin.grepl@johncrane.cz

2003 - 2005 FIT VUT Brno Brno, C R
Assistant lecturer
• Computer Graphics Principles, contact: krsek@fit.vutbr.cz
• User Interface Programming, contact: zemcik@fit.vutbr.cz
• Human-Machine Interfaces, contact: zemcik@fit.vutbr.cz

2004 - 2005 Pavel Vavřín Brno, C R
Programmer
• Development and implementation of algorithms for project Archeological Sights journal

(Památky Archeologické) digitizing, containing approx. 41 000 high resolution pages.
Contact: pavel_vavrin@yahoo.com

2005 - VR Group a.s. Brno, C R
Programmer / Analyst
• Development and implementation of virtual simulators VS-I and VS-II. Project management

of Wasp constructive simulation environment. Contact: vit.ryska@vrg.cz

21

mailto:martin.grepl@johncrane.cz
mailto:krsek@fit.vutbr.cz
mailto:zemcik@fit.vutbr.cz
mailto:zemcik@fit.vutbr.cz
mailto:pavel_vavrin@yahoo.com
mailto:vit.ryska@vrg.cz

Projects 2004 Augmented Multi-Party Interaction, Brno, C R
Research leader: Hynek Heřmanský
Team Leaders: Bürget Lukáš, Černooký Jan, Grézl František, Kadlec Jaroslav, Karafiát Martin,
Matějka Pavel, Motlíček Petr, Potůček Igor, Schwarz Petr, Sumec Stanislav, Španěl Michal, Zemčík
Pavel, httpy/www.amiprojectorg/, Agency: EU-6FP-IST,Code: 506811-AMI

2005 User Interfaces for Hierarchical Structure Visualisation, Brno, C R
Research leader: Kadlec Jaroslav
Team Leaders: Chudy Robert, Zemcik Pavel, Agency: FRVŠ MŠMT, Code: FR200/2005/G1

Publications Kadlec, Jaroslav: Lip detection in low resolution images, In: Proceeding of the 10th
Conference and Competition STUDENT EEICT 2004, Volume 2, Brno, CZ , 2004, p. 303-
306, ISBN 80-214-2635-7

Herout, Adam; Zemčík, Pavel; Beran, Vítězslav; Kadlec, Jaroslav: Image and Video
Processing Sofware Framework for Fast Application Development, In: Joint
AMI/PASCAL/IM2/M4 workshop, Martigny, C H , 2004, s. 1

Kadlec, Jaroslav; Chudý Robert: Spatial Interface Design, In: ElectronicsLetters.com , Vol.
2004, No. 1, Brno, CZ , p. 13, ISSN 1213-161X

Sumec, S., Kadlec, J . : Event Editor - The Multi-Modal Annotation Tool, In: Workshop on
Multimodal Interaction and Related Machine Learning Algorithms (MLMI), Edinburgh, G B ,
2005, p. 1

Kadlec, J . , Potůček, I., Sumec, S., Zemčík, P.: Evaluation of Tracking and Recognition
Methods, In: Proceedings of the 11th conference EEICT, Brno, CZ , 2005, p. 617-622, ISBN
80-214-2890-2

Ashby, S., Bourban, S., Carletta, J . , Flynn, M., Guillemot, M., Hain, T., Kadlec, J . ,
Karaiskos, V., Kraaij, W., Kronenthal, M., lathoud, G. , Lincoln, M., Lisowska, A., McCowan,
I., Post, W., Reidsma, D., Wellner, P.: The AMI Meeting Corpus, In: Measuring Behavior
2005 Proceedings Book, Wageningen, NL, 2005, p. 4

Ashby, S., Bourban, S., Carletta, J . , Flynn, M., Guillemot, M., Hain, T., Kadlec, J . ,
Karaiskos, V., Kraaij, W., Kronenthal, M., lathoud, G. , Lincoln, M., Lisowska, A., McCowan,
I., Post, W., Reidsma, D., Wellner, P.: The AMI Meeting Corpus: A Pre-Announcement, In:
Workshop on Multimodal Interaction and Related Machine Learning Algorithms (MLMI),
Edinburgh, G B , 2005, p. 4

Kadlec, J . : Steps In Automated User Interface Generation, In: Proceedings of Spring
Conference on Computer Graphics 2006, Bratislava, 2006, p. 25-28, ISSN 1335-5694

Chudý, R., Kadlec, J . : FOXI - Hierarchical Structure Visualization, In: Proceedings of the
International Conference on Systems, Computing Sciences and Software Engineering
(SCSS05), Bridgeport, US, 2006, p. 5

Kadlec, J . : Code Characterization for Automatic User Interface Generation, In: Innovations
and Advanced Techniques in Computer and Information Sciences and Engineering,
Dordrecht, NL, Springer, 2007, p. 255-260, ISBN 978-1-4020-6267-4

Kadlec, J . , Zemčík, P.: Generation of user interface from characterized code, In:
Proceedings o f W S C G ' 1 0 , Plzeň, CZ , ZČU v Plzni, 2010, p. 4

22

http://www.amiprojectorg/
http://ElectronicsLetters.com

23

