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1. INTRODUCTION 

1. INTRODUCTION 

Theory of homogenization was developed for modeling media with a fine period
ical structure. In a physical setting, homogenization means replacing a hetero
geneous material by an equivalent homogeneous one, in mathematical setting it 
means approximating equations with highly oscillating coefficients by equations 
with constant ones. 

The mathematical approach consists of considering a sequence of problems 
with a material with a more and more refined structure. Hence, we get a se
quence of solutions. The principal question is: How does the sequence behave? 
Does the limit, the so called homogenized solution, exists? If so, how can it 
be characterized? This approach was first introduced by J .B . Keller (1973) and 
developed by I. Babuska (1975). More about the homogenization can be found 
in the monograph [BLP78] or in the textbook [CD99]. 

Other problems for which a similar approach can be used are problems de
fined on periodically perforated domains. Let f2 be a domain in R w and let it 
be periodically perforated by holes. We shall construct a sequence of domains 
with an increasing number of holes and decreasing their volume. Again, we are 
interested in a behavior of the limit solution. 

When we try to find the homogenized solution several difficulties occur. Some 
of them are common for both the case with and without holes. The following 
problem can illustrate the typical situation in the setting with no holes. 

For e = l,l/2,l/s, • • •, let us assume a sequence of solutions {u£} to a problem 

f - V • (A£Vu£) = f in n , 

{ u£ = o on an, u 

where A£(x) = ^4(-) and A(y) is a ^-periodic function satisfying 0 < a < 
<A(y)<(3. 

Weak formulation of this problem is: 

f F ind u£ 6 HQ(Q) such that 

I / A£(x) Vu£(x) • Vv(x) dx= f f{x) v(x) dx, Vv e ffj(n). ^ I Jn Jn 

For A£ G L°°(f2), the domain f2 with a "good" boundary and / G £ 2 ( ^ ) , 
the unique weak solution u£ exists and satisfies 11 11 jyi(n) < C. Since the se
quence {u£} is bounded in HQ(Q), it contains a weakly converging subsequence 
of gradients {\7u£}. 

When we are tending to the limit, it turns out that the left-hand side of (2) 
contains a product of two weakly converging sequences, {A£} and {Vu£}. In 
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this case it is not possible to reach to the limit directly, since a limit of product 
need not to be a product of limits two weakly converging sequences. 

In the past, several approaches to overcome this problem were developed. 

• Multiple-scale method is summarized in monograph by A . Bensoussan, J . L . 
Lions and G . Papanicolaou [BLP78]. The method uses the asymptotic ex
pansion of the solution u£ to find the homogenized one. 

• Local energy method (called also the oscillating test function method) was 
introduced by L . Tartar [Tar97] in the years 1977 and 1978. The method is 
based on a special choice of oscillating test functions in the weak formulation 
of the problem. 

• Two-scale convergence method introduced by G . Nguetseng [Ngu89] in 1989 
and developed by G . Allaire [A1192] in 1992. In this method a new type 
of convergence is defined. The limit of two-scale convergent sequence has 
two variables, the second one describes local behavior. This method requires 
introducing a special space for test functions. 

• Periodic unfolding method is an alternative approach to the two-scale con
vergence. It was introduced by J . Casado-Díaz [CDOO] in 2000 and D. Ciorä-
nescu, A . Damlamian and G . Griso [CDG02], L . Nechvátal [Nec04] and J . 
Francu [FralO]. It removes problems with the choice of space for test func
tions, therefore it is more natural. A comprehensive survey of the application 
of this method to the problems in domains with holes is described by Ciorä-
nescu, Damlamian, Donato, Griso and Zaki [Cio+12]. 

Let us turn our attention back to the problems defined on the domain with 
holes. In this case, one more problem arises. Let ÍŽ* denotes a periodically 
perforated domain with period e Y. For e \ 0 the period is smaller and smaller 
and the domain is perforated by more and finer holes. 

A model situation looks as follows: For e = 1, 1/2, V 3 , . . . , let us assume a 
sequence {it e }, where ue is a solution of the problem 

The problem is that each solution u£ of problem (4) is defined on a differ
ent domain Q*. Hence, it is not clear in which sense the convergence of the 

(3) 

A weak formulation of the problem (3) is: 

( Find ue e HQ(Q*£) such that 
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1. INTRODUCTION 

sequence {u£} can be understood. Even if there existed some UQ for which 
||it £ — UoWn^n*) - ^ 0, as £ \ 0, one could not speak about "convergence" (in 
a strong or weak sense) of the sequence {u£}. 

Several methods to avoid this issue have been developed over time: 

• Quite an intuitive approach is a construction of an uniformly bounded ex
tension operator P£ from HQ(Q*£) to HQ(Q). Then, we can transform our 
problem of finding a "limit" of {ue} by another one: Find a limit of the 
sequence {P£(u£)} in the fixed space HQ(Q). 

This approach has a limitation. The existence of operator P£ depends on 
the boundary conditions of the problem (in the case that they are more 
complicated than in our model example) and also on the shape of the holes 
(for example they should have a sufficiently smooth boundary and should 
not intersect the boundary of Q). 

• Another approach is to use an unfolding operator to transform functions ue, 
resp. X7u£ defined on £7* to the fixed domain f2 x Y. 

As we shall see the periodic unfolding method is the technique which solves 
both problems mentioned above. This is the reason why the method is so suitable 
for problems defined on perforated domains. 

Goal and contribution of the thesis 
Let Q be a bounded set, and Y a reference cell in RN. The unfolding operator 
% maps a function in LP(Q) to a function in L p ( f2 x Y). 

The main disadvantage of an unfolding operator introduced in [CD00] and 
[CDG02] is that it does not conserve integrals. It means that in general for 
u G L°°(ft) 

Ju(x)dx ^ — JJT£{u)(x,y)dxdy. (5) 
fi flxY 

It can be shown that the left-hand side of (5), for u > 0, is always grater or equal 
than its right-hand side. The equality holds only in limit, i.e. for e —> 0. 

This issue was removed by redefining this operator. The operator was improved 
by J . Francu and N.Svanstedt in [FS12]. This change simplifies the proofs and 
removes several difficulties and necessity of introducing "unfolding criterion for 
integrals" (see e.g. [CDG08]). 

This thesis aims to prove properties of this improved unfolding operator, 
mainly the convergence for the sequence of gradients and applying an analogical 
approach to perforated domains. Finally, we apply this new operator to find 

7 



a homogenized solution of the special family of the problems with an integral 
boundary condition and we present some numerical results. 

The thesis intents to be self-contained work suitable as the first reading for 
engineers and applied mathematicians. 

Related works 
Homogenization on a periodically perforated domain for miscellaneous bound
ary value problems was treated by numerous authors. Let us mention some 
milestones in this area. 

The Laplace equation with a homogeneous Dirichlet condition in the domain 
where the holes are regularly distributed and the size of the holes decreases 
when the number of the holes increases was studied by Murat and Cioranescu 
[MC97]. They showed that even in this problem an interesting behavior of the 
limit solution occurs. 

In this problem three different situations were identified. The first situation 
is when the size of holes decreases too quickly - quicker than the size of the cell 
period. Then u£ converges to the solution of the Dirichlet problem in f2. The 
second situation is when the size of holes decreases too slowly. Then ue converges 
to the zero function. Between these two cases there is one when the size of holes 
is critical, in that case an additional zero order term appears in the right-hand 
side of the limit equation. 

In [MC97] there are quite strict assumptions on the distribution and shape of 
the holes. This limitation has been removed by Dal Maso and Garroni [MG94]. 
This break through made possible the solving the general case of homogeneous 
Dirichlet problems without any geometrical assumptions. 

A problem with homogeneous Neumann boundary condition with some geo
metrical assumptions on holes was studied by Hruslov [Hru79]. 

Some assumptions on the size and shape of holes which are admissible for a 
periodic homogenization with Neumann boundary condition are given by Dam-
lamian and Donato [DD02]. 

Classical situation is when the holes are distributed periodically and the ra
tio of material volume to the period volume is constant. This situation with a 
different type of boundary conditions has been described in numerous papers. 
Laplace equation with homogeneous mixed (Dirichlet and Neumann) bound
ary conditions was studied by Cardone, D'Apice and Maio [CDM02], elliptic 
equations with linear Robin resp. with non-linear conditions were studied by 
Cioranescu, Donato and Zaki in [CDZ06] resp. in [CDZ07], elliptic equations 
with non-homogeneous mixed boundary conditions were studied by Esposito, 
D'Apice and Gaudiello [EDG02]. 
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2. PERIODIC UNFOLDING ON PERFORATED DOMAINS 

A problem on domains with holes which are distributed periodically and their 
size is diminishing with respect to the period (the so called small holes) was stud
ied by Murat and Cioranescu in [MC97] (homogeneous Dirichlet boundary con
ditions), and also by Conca and Donato in [CD88] (non-homogeneous Neumann 
boundary condition), by Cioranescu and Ould Hammouda in [COH08] (elliptic 
equations with a non-homogeneous mixed boundary conditions), by Ould Ham
mouda in [OH 11] (elliptic equations with non-homogeneous Neumann boundary). 

A non-periodical behavior of the holes has been studied by Nguetseng in 
[Ngu04]. 

2. PERIODIC UNFOLDING ON PERFORATED DOMAINS 

2.1. DOMAIN WITH HOLES 

Let Q be a bounded domain in ~RN with Lipschitz boundary dQ. Let the reference 
cell Y in R w be AT-dimensional interval defined by 

Y = (0,Zi) x (0,/ 2 ) x ••• x ( 0 , W , (6) 

where / i , . . . , IN are fixed positive numbers. 
Space RN can be written as a union of the disjoint cells = Y + k, which 

are the cell Y shifted by vectors k, i.e. 

RN= \J(Y + k), JC={keRN | k = teiZi,6fe,...,6rM,f e z " } 

Let T C Y be an open bounded set with a smooth boundary. This set rep
resents reference holes in Y. The part of the reference cell Y occupied by a 
material is denoted by Y*, i.e. Y* = Y \ T. 

Furthermore, we consider so called scales E = {£k}, defined as followes: 

Defini t ion 2.1 (Scale). A descending sequence E = { £ f c } ^ 0 of positive num
bers, such that Ek \ 0 as k —> oo, is called the scale. 

In the following, as it is usual in the homogenization, all sequences wil l be 
denoted by the subscript €k, for example {a e f e }, or very often even only by the 
subscript e, for example {a£}. 

Now, we define ^-scaled system of the cells 

Y*k

£=s(Y* + k), Jfce /C. 

Similarly we define scaled system of the holes. Let us introduce function r, 
which determines how fast the shrinking of holes is. Let r be a positive increasing 
function, such that l im e ^o K 5 ) = 0-
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Then the set T£ is defined as a translates and scaled image of T , so 

Tk

£ = r ( e ) ( T + fc), k € K. 

It is necessary to choose the function r in such a way that ensures that the 
holes are always inside the cells, i.e. r(e) T c eY We. 

Furthermore, we suppose that, if the set T consists of more connected disjoint 
sets then these sets remain disjoint for all e. 

We can distinguish three typical kinds of behaviors of the holes. For that 
reason let us denote by 6£ the ratio of the volume of material in cell and the 
volume of cell, i.e. 

\sY - r(e)T\ 

9 e = w\ • 
The case when r(e) = £ is very classical, the ratio 6£ is constant for all e . The 
case when — —> 0 as s —> 0 is called small holes. In such case the volume of 

e 
holes goes to zero quicker than the volume of material in the cell, i.e. 9£ —> 1 as 
e —> 0. In the last case 9£ —> 0, which means that the shrinking of the holes is 
slower than the shrinking of the cells. A n example of these three cases is on the 
Figure 1. 

Let Q*£ denote the part of f2 occupied by material. It is defined as f2 without 
holes T e

f c, i.e. 

n* = n \ Te, where T£=\Jjf. (7) 
keIC 

Furthermore we denote by T ^ t e , i = 1 , . . . , m(e), the "interior holes", they are 
such sets T£ which are completely inside Q and do not intersect the boundary 
dft, i.e. T£

k C n. Their union is denoted by 7]nt e-, 
m(e) 

7int,e = ^int,e-

Let the sets T£ which intersect the boundary be denoted by T e x t ; e , i.e. Textj£ = 

(T£ \ r^ t e) fl and 5 e xt^* denote the exterior boundary of f2*, i.e. <9ext^* = 

2.2. UNFOLDING OPERATOR T* IN PERFORATED DOMAINS 

First of all we define splitting of each point in R w in two parts. The idea is 
analogical to the following one: each real number x can be uniquely split to the 
integer part [x] and the fractional part {x} G (0,1). Since the disjoint cells 
cover whole RN, for each point x G M,N it holds x = [x]Y + {x}Y, where [x]Y 
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2. PERIODIC UNFOLDING ON PERFORATED DOMAINS 

denotes the shift of the cell containing x, and {x]Y stands for the relative 
position of x with respect to the cell i.e. [x]Y € JC and x — [x]Y belongs to 
Y. Set {x]Y = x — [x]Y. 

Using ^-scaled system of the cells Y£

k, the domain f2 can be split into two parts: 
fl£ and A £ , and the domain £7* into £7* and A*, see Figure 3. The set fl£ contains 
cells Ye

k lying inside f2, while the set A e is a strip on the boundary composed of 
cells Ye

k intersecting the boundary <9f2. More precisely: 

E£ = {k e RN s.t. Yk c H}, n£ = ( u ) n n, A e = Q \ Q£, 
W s e / (8) 

n* = n e \ T i n t ; e and A* = Q*\n*, 

r e 

• • • • 
• y y y y y y y 

• 
• • • • • • 
• • • • • • 

^ ^ ^ ^ ^ 
q • • • • • • 

r e 

• • • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

r(e) = 2e — e1 

• • • • • • • • • • • • 

• •••[ 
• • • • [ 
• •••[ 
• •••[ 
• •••[ 
• •••[ 
• •••[ 

I II II ll ll l 
n n r r T T T l I n n 
n n r r T T T l I n n 
n n r r T T T l I n n 
• • • • • • • • • • 

• • • • • • • • • • • • 
• • • • • • • • • • 

ni I I I I I I I I in 
Figure 1: Example of three different behaviors of the holes depending on the 
choice of function r. A case on the middle line belongs to the cases called small 
holes. 
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Figure 2: Periodically perforated domain. Upper: domain £1 and the reference 
cell; lower left: inner holes T ^ t £; lower right: part of f2 occupied by material 
Q* (marked by cyan), with its exterior boundary dextQ* and interior boundary 

Figure 3: Domains A* (light) and £7* (dark). 

Now, we define the unfolding operator for perforated domains. In sequel, we 
cover the case where the ratio of the volume of material to the volume of cell is 
constant for all e, i.e. the function r(e) = e. 
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2. PERIODIC UNFOLDING ON PERFORATED DOMAINS 

1 ! 
: — 

> . 1 
eY* 

< — x — x x > 
A : Ag Text £ 

Y 

u(e[f]y + ey) 

u(x) 0 
: 0 u(x) 

u(e[f]y + ey) 

1 
A * fie A * Text 

Figure 4-' Example of the unfolding of a function u(x) defined on a periodically 
perforated domain Q*£. 

Defini t ion 2.2 (Unfolding operator for perforated domains). A n operator T* 
maps a function u : £7* —> R to T*(u) : £7 x F —> R , and is defined as follows: 

w ( £ [ f ] y + £2/) for (x,?/) e n e x y*, 
T£{u){x,y) = <J u{x) for (rc,?/) £ A* x F , 

0 otherwise. 
(9) 

For u defined on Q* we denote its extension by zero into Q by u. The same 
notation wil l be used for functions defined on f2 x Y* extended by zero into 
QxY. 

Theorem 2.3 (Properties of the unfolding operator for perforated domain). Let 
T* be the unfolding operator for perforated domains defined by (9). Then for all 
e G E we have: 

(i) The operator T* is multiplicative, i.e. for all u, v : Q 

T;(UV) = T;(U)T;(V). 

(ii) The unfolding operator T* is linear. 

we have 
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(Hi) The unfolding operator T* conserves the integral, i.e. for all u G Ll(Q*£) 
one has 

JJv(«)(*,v)d*4v = \r\ J«*)<!*• 

(iv) The unfolding operator T* conserves the norm in the sense that for every 

u e LP(Q*£), p G ( l , o o ) , it holds \\T*(U)\\LP(QXY} = \Y\p \\u\\LP^y 

Thus T* is bounded and its norm satisfies 11%*\\JC^LP(Q*) LP(ttxY)) = \Y\p. 

(v) T* is continuous operator for LP(Q*£) to LP(Q x Y), where p G (1, 0 0 ) . 

Using the unfolding operator, we define two-scale convergence. 

Defini t ion 2.4 (Two-scale convergence for perforated domains). Let {u£} be a 
sequence in Lp(Sl*£) and u0 G LP(Q x Y), p G (1, 0 0 ) . 

A sequence {u£} two-scale strongly (resp. weakly) converges to UQ in LP(Q) 
with respect to the scale E if the sequence {T*(u£)} converges to UQ strongly 
(resp. weakly) in Lp(Sl x Y). 

The following theorem describes relations among convergences. 

Theorem 2.5. Let {u£} be a sequence in LP(Sl*) and u$ G Lp(Sl x Y), p G 

( l ,oo) . Then 

(i) Any constant sequence {u} G LP(Q) strongly two-scale converges to 

( v / u(x) [x,y] e f i x r , 
uo[x, y) = i n ±i • v ' y / [ 0 otherwise. 

(ii) Any sequence {u£} G Lp(Sl*£) two-scale converging (strongly or weakly) in 
LP(Q) is bounded in LP(Q*£). 

(Hi) If {u£} strongly two-scale converges to UQ in LP(Q), then it weakly two-scale 
converges to the same limit. 

(iv) For p G ( l , oo) , if {u£} weakly two-scale converges to UQ in LP (SI), then 
its extension by zero converges weakly to u*(x) = ^ fY* UQ(X, y) dy = 

^MY*(u0)(x) in Lp(Q). 

2.3. UNFOLDING OPERATOR T* AND GRADIENTS 

Consider a function u G W1,p(St£). It is straightforward that 



3. APPLICATION - TORSION PROBLEM 

\VyV{u) on a x F , 

\7U = VT;{u) on A* x Y: (10) 

0 otherwise. 

Now we will state the main result about the convergence of an unfolded se
quence of gradients {T£{Vu£)}. 

Theorem 2.6. Let a sequence {u£} be bounded in Wl,p(Q?e), for p G ( l , o o ) . 

Then, there exists a subsequence (still denoted {u£}) and functions UQ G Wl,p(Q) 
and ul € LP{Q; W*?(Y)) such that 

(i) T£(u£) ->> u weakly in LP(Q; Wlj,(Y)), where 

_ ( u0(x) [x,y] e f i x y * , 
I 0 otherwise. 

u(x,y) 

(ii) T£{Vu£) ->> V w 0 + Vyul weakly in [LP(Q x Y)]N. 

Moreover, MY{UQ) = 0 and UQ = —yc • Vwo on Q x T. 

3. A P P L I C A T I O N - TORSION P R O B L E M 

Study of elastic torsion of a bar leads to a problem described in [FNJ12; FR15]. 
Here, a more general problem is studied and the case of elastic torsion is obtained 
as an application. 

Let us start with a definition: 

Defini t ion 3.1. Let a , ^ E 1, such that 0 < a < (3. We say that a matrix 
function A(x) = (afj(x)) G [L°°(£l)]NxN belongs to a set M(a, j3, Q) if and only 
if 

(i) (A(x)X,X) > a\X\ , (ellipticity), 

(ii) \A(x)X\ < P\X\, (boundedness). ^ ' 

VA € RN, a.e. in Q. 

Now we can state a boundary problem: 

-V-{A£Vu£) = f in Q*, 

u£ = 0 on d e xt^*, 

u e = const. on <9T t̂ £ ; z = 1 , . . . , m(e), 

y ^4e(x) -T^(X) dx = y /(a:) da: 
"-Mnt.e -Mnt.e 

12) 
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where Q*, dextfl*, T^T e , etc. are defined in the beginning of the Section 2.1, / <E 
L 2 (f2), T4£(X) = (afj(x))i N is a matrix function from the set M(a, (3, Q*), n 
is the outward-pointing unite normal (i.e. on the inner boundary, n is directed 
inward the holes), m(e) denotes number of interior holes. 

For f{x) = —2 and N = 2 we get a torsion problem derived in [FR15]. 
Let us introduce the linear space 

SE(Q) = € HQ(Q); v = 0 in TEXTJ£J v = const, in T> t £ , z = 1, . . . , m ( e ) | . 

(13) 
with the norm | H | 5 e ( 0 ) = | |Vv| | r i 2 m*)i^-

Weak formulation of the problem (12): 

F ind u£ G S£(Q.) such that 

jA£{x)Vu£{x) - Vv{x)dx = Jf{x)v{x)dx, VveS£{n). (14) 

Homogenized solution of the problem above is described by to following theo
rem: 

Theorem 3.2. Let u£ be the solution of the problem (14). Assume that 

r;{A£) -> A a.e. in QxY (15) 

for a matrix A = A(x, y) such that A = {aif)i - = 1 w G M ( a , ^ Q x Y ) . 
77ien; £/iere erases no G ^ o ( ^ ) one? UQ G L 2(£7, i / p e r ( y ) ) snc/i that 

\\ue — W O | | L 2 ( 0 * ) ~ ~ 0 ) 

T£{u£) —̂  u weakly in L 2(£7, i ? 1 ( F ) ) , where 

uixV) = l U o { x ) ^y^nxY*' m 

v 7 [ 0 otherwise. v ; 

T£{Vu£) -± VuQ + VyUl weakly in [L2(ft x Y)]N, where 

MY{UQ) = 0 and n^ = - n c • V n 0 on f2 x T. 
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4. NUMERICAL EXAMPLES 

The pair (ito, UQ) is the unique solution of the problem: 

Find UQ G HQ(Q) and UQ G L2(Q, H^er(Y)) such that 

JJA(x,y)[Vu0(x) + Vyu*0(x,y)} • [W(x) + Vy<S>(x,y)]dxdy = 
flxY* 

J f(x)^f(x) dx, 
h 

^ V<3? G L 2 ( Q , ^ e r ( F ) ) , swc/i $ + 2/c • W zs constant in yonftxT. 

;i7) 

4. N U M E R I C A L E X A M P L E S 

We present numerical example for dimension N = 2. 
Let x = ( x i , X2) G 2̂ and y = (y\, 2/2) G ^ , where f H s a simple domain in M.2 

and y = (0,h) x (0,Z2), 1̂,̂ 2 are real positive numbers. Vector function yc has 
the form yc = (yf, 1/2 )• Furthermore, let us suppose that A is a function only 
in variable y, i.e. A(x,y) = A(y). 

We would like to solve the problem, derived in the Theorem 3.2: 

f F ind u0 G H^(n) and u*0 G L 2 ( Q , # p e r ( T ) ) such that 

y J J A(y)[Vu0(x) + Vyu*0(x,y)} • [W(x) + Vy<S>(x,y)]dxdy = 
rtxY* 

= J f(x)i&(x)dx, 

v $ G L 2 ( Q , ^ e r ( y ) ) , 

G H^(Q), s. t. $ + yc • W is const, in y on Q x T, 

M y M = 0, 

Wo = - ? / c • V w 0 on H x T . 

We shall look for uo,Wg in two steps. A t first, we wil l compute auxiliary 
functions denoted X i , X2 and subsequently, using them, we wil l find homogenized 
solutions WQ, UQ. 
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Let us choose fy(x) = 0 as a test function in (18). We suggest function UQ in 
the form 

Then, (18) takes the form 

~du0 <9<3? <9w0 d$ 
A 

dxi dyi dx2 dy2_ 
dx dy = 

A 
dxi duo <9<3? dj(2 duo <9<3? d\\ duo <9<3? dx2 duo <9<3? 

dxi dyi dyi dx2 dyi dy2 dx\ dy2 dy2 dx2 dy2 

dx dy. 

From this we see that the problem (18) is fulfilled when the auxiliary function 
Xi, i = 1, 2, satisfies 

f A | i dy = [A VXZ-V$ dy, V $ e L 2 ( Q , H^iY)), s. t. $ is const, in y on T. 

Y* Y* 

Rewriting this, we derive the following problem 

Find Xi £ ^perOO s u c n that 

y ^ V ( x . - 2 / . ) - V $ d ? / = 0, 
Y * (19) 

V $ e L 2 ( Q , ^ e r ( y ) ) , s. t. $ is constant in y on T, 

I - M y ( X i ) = 0, & = - % c on T. 

Now, let us choose as a test function in (18) a function §(x,y) = —(pi(y)yc • 
^(x), where ^ G ^ ( ^ ) , ^ is F-periodic function and if\\y G T}(Y), </?i = 1 on 
r . 

Then, (18) takes the form 

1 

| y | 
A Vu0 + V« -xi 

8UQ 

dx\ 
X2 

dx<: 
[ W - V y ( y ? i ? / c -^ ) ]dxd? / = 

= J f^dx. (20) 

Simple computations yield the problem 

Find Wo € i^o(^) s u c n that 

i n y ^ V w 0 - W d x d ? / = y f^dx, V^eH^Q). 
(21) 
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4. NUMERICAL EXAMPLES 

Where matrix A is given by A = - = 1 2 

0 X i 
a n 1 

y * 
1 0(2/i<£iA # X i ^ f e i P i ) 

dyi 

an = 

«21 

y * 

dxi\ d{yc

2^i) , 0 % 

% / 02/i 
+ 02/2 

1 

0 X 2 \ 0(?/i V i ) , 0X2 

02/2/ 02/2 02/1 

02/2 02/2 

0(2/2^i) 

02/2 . 

0(2/i^i) 

02/1 . 

d2/5 
(22) 

dj/, (23) 

a 2 2 = / A 

y * 

0X2 

02/2 
0(2/2^1) A + 0X2 0(2/2^1) 

02/2 02/1 02/1 
dy. 

dj/, (24) 

(25) 

In the sequel, we present results of homogenization of the torsion problem 
derived in [FR15]. We assume Q = (0,1) x (0,1), reference cell Y = (0,1) x (0,1), 
reference hole T = ( | , | ) x ( | , | ) - Torsion problem is obtained for A{y) = 1, 
m = -2. 

According to the behavior of the holes, we distinguish three cases. They were 
described in Section 2.1. 

• First, let us present results for r(e) = e, as for this case the Theorem 3.2 and 
all results in this chapter were derived. The sequence of domains is shown 
on the upper line on Figure 1. In the first step, by solving problem (19) we 
get two auxiliary functions X i (on Figure 5) and %2-

In the second step the problem (21) is solved to obtain the homogenized 
solution. A comparison of functions ue and homogenized solution UQ is on 
Figure 7. Graph of function uy 4 is on Figure 6. 

In the following two cases we only present numerical results without any theo
retical result. 

• For r(e) = e2 (so called small holes), the results are on Figure 8. The 
sequence of domains is on the middle line on Figure 1. 

• For r(e) = e(2 — e), the results are on Figure 9. The sequence of domains is 
on the lower line on Figure 1. 

The numerical results are obtained by finite element method implemented in 
M A T L A B . 
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Figure 5: Auxiliary function Xi • 

5. CONCLUSION 

In problems which are set on perforated domains Q*, where the shape and distri
bution of holes depends on the parameter e, it may be difficult to define conver
gence for the sequence of solutions {u£}. There exist some approaches to solve 
this difficulty but their usage is usually limited. Limit ing factors are usually the 
shape of the perforations or boundary conditions on inner boundaries. 

The two-scale convergence, the approach presented in this thesis, is based on 
periodic unfolding operator for perforated domains T*. This method is suitable 
for periodically distributed holes. The unfolded sequence {T*(u£)} is defined on 
fixed domains which removes difficulties with the convergence. 

This technique was applied to the problem describing torsion of the bar (and 
its more general version). We derived a homogenized equation defined on a 
simply connected domain (without holes). We also presented numerical aspect 
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5. CONCLUSION 

0.09 

Figure 6: Graph of function uy 4 . 

of solving such a homogenized problem and in the last section there are some 
numerical examples. 

Moreover, we proved some interesting properties which make it suitable for 
more general situations than that presented here. Unfolding operator T*, used 
in this thesis, is slightly different than the one used in e.g. [CD00], [CDG02]. 
This change in definition allowed us to prove some properties in a more elegant 
way. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 7: Diagonal cuts of functions ue, for s = 1U, Vs, and of ho
mogenized solution UQ, the behavior of holes is described by r(e) = e. 
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5. CONCLUSION 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 8: Diagonal cuts of functions u£, for e = A,1/B,1/6,1/7, and solu
tion UQ of torsion problem on domain without holes (simply connected domain), 
the behavior of holes is described by r(e) = e2. 
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0.16 

of holes is described by r(e) = e(2 — e). 
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A B S T R A C T 

The numerical solving of mathematical models describing the mechanical be
havior of materials with a fine structure (composite materials, finely perforated 
materials etc.) usually requires huge computational performance. Hence in nu
merical modeling the original material is replaced by an equivalent homogeneous 
one. 
In this work a two-scale convergence based on a periodical unfolding operator 
is used to find the homogenized material. The operator was for the first time 
used by J . Casado-Diaz. In this Ph .D. thesis, the operator is defined in a slightly 
different way which allows us to prove some of its new properties. The unfolding 
operator for functions defined on a perforated domain is defined analogically and 
its properties are proved. Finally, this operator is used to find the homogenized 
solution of a special family of problems with an integral boundary condition; 
some numerical results are presented. 
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