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Annotation

Because in vitro drug design is resource intensive and therefore expensive, de novo drug design is

the preferred approach. In this paper a data driven machine learning approach for generating and

classifying molecules is presented. Using the data available via ChEMBL, a LSTM (Recurrent

Neural Network) has been trained to generate molecules in SMILES format. 2.2 million molecules

have been generated and screened for toxicity with an XGBoosted tree which has been trained on

the Tox21 data set. This set contains 12 toxicity assays of the type nuclear receptor signaling (NR)

and stress response (SR). In the end around 10,000 molecules have been classified as non-toxic

and made available for public use.
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Chapter 1

Introduction

Chemistry is a field of science which influences peoples daily lives. Especially the invention of

drugs is one that had a lasting impact on peoples lives.

But creating drugs is resource intensive. Estimations say that there are 1060[1] synthetically

available drug-like molecules, but state of the art high throughput screening allows for only 106

[2] molecules to be tested in the lab. This makes large in vitro experiments very cost and time

intensive. This is where de novo drug design comes into play. Virtual screening allows for

automatic creation and evaluation of molecules.

Currently, two different approaches exist for creating molecules. The first one builds novel

molecules from predefined groups of atoms while the second one conducts virtual reactions based

on rules set by experts. The problem with the first approach is that it artificially limits the possible

molecules by using a fixed set. Segler et. al have recently shown that virtual reactions can

sometimes fail[3].

The state of the art for classifying and filtering molecules are machine-learning approaches and

docking. The machine-learning approaches can be divided into two categories: Target prediction,

which labels molecules as either active or inactive, and Quantitative structure-activity relationships

(QSAR) which predicts a real value (via regression) for the desired property of the substance.

Popular descriptors are Structural Keys and Molecular Fingerprints. Neural networks and random

forests are most commonly used for the prediction.

Inspired by the publication of Segler et al.[4] a pipeline for creating and labeling molecules with

a data driven machine-learning approach has been implemented. The first part of the pipeline, the

generation of valid compounds, is a recurrent neural network trained on a set of molecules. Given

1



2 CHAPTER 1. INTRODUCTION

one atom and its predecessors this model returns the probabilities of being the next atom for all

possible atoms. A boosted tree which has been trained on the Tox21 data set is performing target

prediction on the created molecules classifying them as toxic or non-toxic.

The target prediction inspects 12 different pathways (7 nuclear receptor signaling and 5 stress

response assays) and if at least one of them is active the molecule is labeled as toxic.



Chapter 2

Methods

2.1 Data

2.1.1 ChEMBL

ChEMBL is a manually curated database which provides access to over 1.9 million bioactive drug-

like small molecules. It is currently maintained by the European Bioinformatics Institute (EBI),

of the European Molecular Biology Laboratory (EMBL) and part of the ELIXIR infrastructure.

The data, which is abstracted and curated from primary scientific literature, covers a huge portion

of structure–activity relationships (SAR) as well as newly discovered drugs. For each molecule

ChEMBLstores the 2-D structure, calculated properties (like theMolecularWeight), and abstracted

bioactivities. Its mission is to bring together chemical, bioactivity and genomic data to aid the

translation of genomic information into effective new drugs[5].

Data can be acquired via File Transfer Protocol (FTP) or a web interface. For generatingmolecules,

all SMILES from ChEMBL [6] have been downloaded via the web interface on 31.03.2019. This

means out of 1.9 million available molecules more than 1.7 million (1,780,407 to be exact) serve

as the data set for this task.

2.1.2 Tox21 Program

The Tox21 program was created by the US government and works together with the following

federal agencies: the Environmental Protection Agency (EPA), the Food and Drug Administration

3



4 CHAPTER 2. METHODS

(FDA) as well as the National Institutes of Health (NIH). Leadership is provided by National Center

for Advancing Translational Sciences (NCATS) and the National Toxicology Program (NTP) at

the National Institute of Environmental Health Sciences. Each of these agencies brings an unique

expertise to the organization[7]. The NTP provides animal toxicology knowledge while the EPA

supplies computational toxicology knowledge. The FDA has human toxicity data and NCATS has

in vitro cell-based assays, quantitative high-throughput screening and informatics proficiency.

The Tox21 program was founded because the current way of testing drugs is expensive, time-

consuming and relies on animal testing. Therefore the goal of this endeavor is for the FDA and

EPA to use the gathered data and created strategies on the products they regulate. To reach this

goal three phases have to be cleared.

Phase 1 consisted of the creation of public data sets by analyzing 2,800 compounds in more than

50 assays. Phase 2 consisted of testing more than 10,000 compounds (Tox21 10K library) with

an initial focus on stress response pathways and nuclear receptors. The resulting data set was

also made publicly available. The third and final phase is comprised of updating the compound

library, adding high-throughput gene expression profiling, training models via the created data sets

and enlisting the help of the wider scientific community via crowdsourcing (which resulted in the

Tox21 Challenge) and much more.

Tox21 Data Challenge 2014: was hosted by NCATS at NIH [8] and ran from August 18, 2014

to November 14, 2014. Its goal was to crowdsource data analysis to find out how well chemical

properties can be predicted from their chemical structure alone. Winners were announced on

January 12, 2015.

The provided data consisted of 12 assays of type nuclear receptor signaling (NR) for assay 1 - 7

and stress response (SR) for assay 8 - 12 (a visual representation can be found in Figure 2.1). They

encompassed the following receptors for NR: estrogen receptor alpha, LBD (ER, LBD), estrogen

receptor alpha, full (ER, full), aromatase, aryl hydrocarbon receptor (AhR), androgen receptor,

full (AR, full), androgen receptor, LBD (AR, LBD) and peroxisome proliferator-activated receptor

gamma (PPAR-gamma). For SR they gathered the following receptors: nuclear factor (erythroid-

derived 2)-like 2/antioxidant responsive element (Nrf2/ARE), heat shock factor response element

(HSE), ATAD5, mitochondrial membrane potential (MMP) and p53.

The challenge was divided into 15 subchallenges. Where subchallenges 1-12 consisted of predict-
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Figure 2.1: Tox21 challenge overview [9]

ing individual assays, 13 and 14 were about a group of assays (NR and respectively SR) and the

last subchallenge was the grand challenge where all assays were used.

All in all, three data sets were used in the competition. The first one was the training set which

was available to the participants from the start and consisted of roughly 12,000 compounds. Next

was a testing set consisting of nearly 300 molecules which was used to calculate the position on

the leaderboard. The last one was the final evaluation data set which was used to determine the

winner of the competition, it was compromised of around 650 compounds. The models had to

predict a probability of a chemical being active in the assay as well as classifying it as active or

inactive. The area under the receiver operating characteristic curve (area under the ROC curve)

was used as evaluation criterion.

2.2 Data Representation

2.2.1 SMILES

Simplified molecular-input line-entry system (SMILES) is a standard for representing molecules

in an (for humans) understandable way. It was initiated by David Weininger in the late 1980s and

is currently managed by the Daylight Chemical Information Systems [10]. It also includes two

other chemical languages: SMARTS and SMIRKS. If a SMILES string is canonicalized it serves

as a unique identifier for the given compound.
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Figure 2.2: SMILES Phentermine: CC(C)(N)Cc1ccccc1

Specification: It represents molecules as ASCII strings. Where c and C are used for aromatic

and aliphatic carbon atoms respectively. -, =, # and : represent single, double, triple and aromatic

bonds. + and - can also represent a formal charge. Branches and cyclic structures can also be built

with this notation by enclosing branches in parentheses and cycles in digits (illustrated in Figure

2.2) [11].

2.2.2 One Hot Encoding

One hot encoding is a technique for representing categorical data (in this case characters) as vectors

of length K.With K being the number of possible values. All possible values are assigned an index

i. To represent one value, a zero vector of length K is created and a 1 is assigned to the index i of

the given value.

Given a set of possible values {C,H,O} the corresponding one hot vector xt would be xt = (1,0,0)

for C, xt = (0,1,0) for H and xt = (0,0,1) for O.

2.2.3 Structural Keys and Fingerprints

Screens are algorithms which detect the absence of a pattern in a molecule and are used for high-

speed screenings of chemical databases. They look for the absence of patterns (O(N)) instead

of their presence
(
O(K kN )

)
because it is faster to detect the absence [12]. Screens are used to

dismiss molecules which do not have the needed pattern with a 100% confidence, allowing the

computationally more expensive substructure search to be used on the remaining molecules.

Structural Keys are bit vectors which mark specific patterns a molecule has. Which pattern each

bit represents has to be decided beforehand. This is the cause of one of the problems structural

keys have. Namely that their effectiveness is highly dependent on the chosen patterns. Another

problem is that structural keys are normally very sparse, meaning only a few bits are active.

MACCS is a structural key that uses 166 bits, each corresponding to a SMARTS pattern. The
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RDKIT implementation has been used in this paper [13].

Fingerprints are considered the next step in the evolution of screens. Each molecule has a

unique fingerprint. To calculate it, one generates patterns representing each group of atoms and

bonds connected by paths from 0 to bondlength bonds long. Using the molecule NC=CO as

example the following patterns are generated:

• 0-bond paths: N, C, O

• 1-bond paths: NC, C=C, CO

• 2-bond paths: NC=C, C=CO

• 3-bond paths: NC=CO

This means all possible paths are generated. These patterns serve as seeds for the pseudo-random

generation of bits representing them. As each pattern generates its set of bits, they are summed

with a logical OR. Which means that if a molecule has a certain pattern these bits will definitely

be set. This in turn allows one to easily dismiss molecules which do not have these particular bits

set. It has to be mentioned though that fingerprints can not indicate with 100% accuracy that a

pattern is present in a molecule if the pattern does not have a unique bit. If it does not have a

unique bit all the other bits could have been set by a mix of patterns. Fingerprints are still superior

to structural keys in most situations as they can store more patterns while still providing powerful

screening capabilities.

A subclass of fingerprints, of which Morgan Fingerprints are a part of, are circular fingerprints.

These do not look for specific features but rather use each heavy atom as a starting point for a

descriptor. The amount of neighbors each descriptor examines is called radius.

2.3 Neural Networks

Neural networks are systems for machine learning that originated in the 1940s. They were created

with the idea of mimicking the most powerful learner, the human brain.
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Figure 2.3: The layout of a single Perceptron

2.3.1 Multi-Layer Perceptrons

Multi-Layer Perceptrons are feed-forward artificial neural networks. They consist of perceptrons

connected via weights over a variable amount of layers.

Their output is calculated via the so called forward propagation. It functions the following way:

The input x is passed to the first layer which then passes its output on to the next layer (multiplying

it with the corresponding weight w) and so on until the output layer has been reached (compare

Figure 2.4).

The output for one perceptron is calculated the following way:

g(x;w, θ) = ϕ ©­«
d∑

j=1
w j ∗ x j − θ

ª®¬
where g(x;w, θ) is the classification function, x is a matrix of inputs, w holds the weights, θ the

threshold and ϕ is a differentiable activation function. (compare Figure 2.3)

The weights are the variables that can be adjusted to optimize the performance of the classifier.

This is done using the back propagation algorithm.

Back propagation: Forward propagation is performed to calculate the difference between the

computed and the desired output. Then from the last to the first layer the differences including the

deltas from the previous layer are calculated.
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Figure 2.4: The layout of a Multi-Layer Perceptron

2.3.2 Gradient Descent

Gradient descent is the most popular way of optimizing neural networks. It minimizes the objective

function L(.;w) by adjusting theweightswith its gradient and handles the intensitywith the learning

rate η. Due to its nature it is not guaranteed that the global minimum is found. Its formula is the

following:

wn+1 = wn − η
δL(.;w)
δw

where L is the loss function which is minimized, η is the learning rate and w0 are the initial values

of the weights.

Three variants of gradient descent exist that differ in the amount of data used for one update.

Batch Gradient Descent: calculates the update for the whole training set. It is the most resource

intensive because the whole data set has to fit into the memory but it converges to a local minimum

or even a global one if the optimization landscape is convex.

wn+1 = wn − η
δL(x, y;w)

δw
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Stochastic Gradient Descent: calculates the update for one sample at a time. It is faster than

batch gradient descent, but its objective function fluctuates heavily due to the high amount of

updates.

wn+1 = wn − η
δL(xi, yi;w)

δw

Mini Batch Gradient Descent: calculates the update for a subset of the training set. It gains

the advantages of both methods in that it is faster and less resource intensive than batch gradient

descent while not having a heavily fluctuating objective function. The only disadvantage is that

the batch size n is a hyper parameter that has to be optimized as well.

wn+1 = wn − η
δL(xi:i+n, yi:i+n;w)

δw

2.3.3 Deep Learning and Recurrent neural networks (RNNs)

Deep Neural Networks have recently emerged as one of the most powerful learners and are picked

up by major tech companies around the globe. A neural network is deep when it has many hidden

layers and broad when it has many hidden units.

It faces the problem of overfitting easily if not counteracted. Some of these measures include using

an activation function that returns 0 a considerable amount of time (e.g.: Rectified linear units

(ReLU) see Figure 2.5) or using a dropout rate. A dropout rate sets activations to 0 in proportion

to its rate (e.g.: a dropout rate of 0.5 is a 50% chance of an activation being set to 0).

Another problem is that back propagation will not work properly with more than two to three layers

because of vanishing gradients. The vanishing gradient problem is about updates converging to 0

for higher layers in gradient descent where the derivatives are 1.

Lastly, as neural networks take vectorial inputs and do not store prior inputs, they can not learn

time series or sequences. One way of handling this would be by applying them to a sliding window.

This method has the drawback of the net not being able to learn across windows due to the windows

fixed size. To combat this problem recurrent neural networks (RNNs) have been invented.

For each forward pass over a window t the activations are kept and potentially used in the next

window t+1 (compare Figure 2.6). This allows for a straight forward generalization of the forward

pass. The generalization of the back propagation algorithm is called back propagation through

time. Due to the activations being passed on between time steps the vanishing gradient problem is
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amplified in RNNs. Limiting their learning abilities to around 10 time steps only.

Figure 2.5: Rectified linear units activation function

Figure 2.6: Scheme of an RNN workflow[4]

2.3.4 LSTM

A LSTM [14] is a special form of a Recurrent Neural Network (RNN) that enhances perceptrons to

combat the vanishing gradient problem. It adds a linear self-connected memory unit (to combat the

vanishing gradient), a multiplicative input gate (to combat irrelevant input), and a multiplicative

output gate which only lets relevant content through (for a visualization see Figure 2.7).

Applied to the problem at hand, LSTMs keep track of time sequences which is crucial in the task

of creating molecules. Given t letters they calculate the distribution of the t + 1 th letter. This

means that the network predicts the most likely successors for a provided molecule. Then the

chosen successor is handed to the network to predict the next one until a stop criterion is reached.

(see Figure 2.6 for a visualization).

The number of possible characters for this network are all letters used in the SMILES data set

downloaded from ChEMBL . Start and stop characters are also added to the dictionary because

they enable the creation of a sequence by providing the start character as well as "automatic"

stopping.
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Figure 2.7: A LSTM cell [17]

For this implementation the Python [15] library Pytorch [16] and its implementations have been

used.

2.4 Decision Trees

Decision trees are classifiers that explicitly describe which combination of features the prediction

depends on. It starts at the root and then traverses the tree until it reaches a leaf which represents

a class.

Such a tree encompasses three major design choices: which criterion to use to split, when to stop

creating the tree, and whether to simplify the generated tree.

Splitting for categorical values can either be binary (is the value of type A) or on the entire feature

(of which type is the value). To determine which option is the best, two types of splitting criteria

exist.

Information Gain: uses entropy. For a variable X with possible values x1, ..., xn it is defined as:

H(X) = −
n∑

i=1
P(xi) log(P(xi)) =

n∑
i=1

P(xi) I(xi) = E[I(X)]
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Information gain compares how much information we can extract from a node by applying a

specific split. If the data from the ith node Z is split into k splits the information gain is:

IG = H(Z, i) −
k∑

j=1

|Z j |

|Z |
H(Z j)

Gini Impurity: uses the distribution of the labels to measure how often a random point would

be mislabeled if it was assigned its class according to this distribution. It is defined as:

IG(Z) = 1 −
J∑

j=1
p j(Z)2,

The gain then is defined as the amount of impurity we lose when applying a particular split:

gG(Z) = IG(Z) −
K∑

j=1

|Zk |

|Z |
· IG(Zk)

Stopping Criterion and Pruning Method: are important for counteracting overfitting. Two

pruningmethods exist. The first one is reduced error pruning which removes all nodes not affecting

the performance of the tree. The other one is called cost complexity pruning. It recursively removes

the sub-tree which has the smallest error increase per leaf. Once only the root tree remains the tree

which gives the best prediction performance is chosen as the final model.

2.4.1 Random Forest

Random forests are ensembles of decision trees. These trees are trained on a random subset of

samples and features. This method is called bagging.

Due to random forests only using a subset of the training data they allow an out of bag estimate

about the generalization performance. It is computed in the following way: For each tree one

calculates the error with those training samples which have not been used to train the particular

tree. Then the overall error is the mean of the individual errors.
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Figure 2.8: A sample decision tree

2.4.2 Gradient Boosting

Gradient Boosting is an ensemble technique that is used in supervised learning. Contrary to

bagging where new models are created in parallel, new models are fitted sequentially on the

residuals of the previous ones to correct the errors made by former models.

XGBoost stands for "Extreme Gradient Boosting" and is the next version of the algorithm. It

fits the new model on the gradient instead of the residual to facilitate a greater variety of loss

functions. Decision trees are the models that are optimized. They differ from random forests in the

following way: while random forests create trees by subsampling features and data, XGBoosted

trees successively add the tree that optimizes the gradient of the loss function of the previous

model.

For this task the python library dmlc XGBoost (eXtreme Gradient Boosting) has been used.[18]



Chapter 3

Experiments

3.1 Molecule Generation

Pre-Processing: An initial analysis of the data set has shown that the distribution of SMILES

lengths consists 97.64% of molecules that have a length lower than 150 characters (see Figure 3.1

and 3.2). To enable and optimize training on the available machines, all SMILES which are above

said threshold have been dropped from the data set.

Afterwards the data set has been randomly split into train, validation, and test set with a ratio of

60:20:20.

Training: For generating molecules an LSTM which accepts a one hot vector of length equal

to the possible number of molecules has been created. Its output is a vector of the same length

as the input, consisting of the probability of being the next molecule for each possible molecule.

Figure 3.1: Distribution of molecule lengths before preprocessing

15
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Figure 3.2: Distribution of molecule lengths after preprocessing

Its architecture is composed of 3 layers with 1024 hidden units each. In between layers a dropout

of 0.2 has been utilized. To optimize cross entropy loss, mini batch gradient descent with a batch

size of 128 and learning rate of 0.001 has been used. The model has been trained for 10 epochs

and afterwards molecules have been generated from the epoch with the best performance on the

validation set.

3.2 Molecule Classification

Pre-Processing: To address the imbalance in the Tox21 training data set the majority class has

been undersampled before being split into a training and validation set with a 70:30 ratio. This has

been done to reduce the rate of incorrectly classified toxic molecules. A test set has been provided

by NCATS and allows comparison to the participants of the Tox21 challenge. To determine the best

screen MACCS structural key and Morgan Fingerprints with different radii have been compared

(see Table 3.1) using their respective ROC AUC. In the end the MACCS key outperformed all

variants of Morgan Fingerprints and has therefore been chosen over the others. To further boost

performance the following features have been added: variants of molecular weight (exact, average,

without hydrogen), min/max (absolute) partial charge, Morgan Fingerprints with density 1 - 3 and

the number of radical and valence electrons.

Training: For each of the 12 categories a xgboosted tree has been trained using the respective

training set. Each boosted tree had a learning rate of 0.01 and minimum child weight of 5. Each

tree in a boosted tree subsampled 80% of the available data and was allowed to grow to a max

depth of 10. At each node 10% of the columns have been dropped. The ROC AUC has been used
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as evaluation criterion as it has also been used in the Tox21 competition and therefore enables a

comparison to the participants of the challenge.

MACCS Radius 1 Radius 2 Radius 3 Radius 4 Radius 5 Radius 6
nr-ahr 91.27 ± 0.05 90.07 ± 0.66 90.25 ± 0.56 89.79 ± 0.43 89.88 ± 0.62 89.88 ± 0.38 89.84 ± 0.37
nr-ar 82.94 ± 0.42 83.78 ± 0.17 83.65 ± 0.13 83.32 ± 0.9 83.54 ± 0.28 82.64 ± 1.15 82.81 ± 0.85
nr-ar-lbd 87.19 ± 0.27 86.47 ± 0.43 86.55 ± 1.09 86.05 ± 0.26 86.16 ± 0.25 86.13 ± 0.41 86.32 ± 0.57
nr-aromatase 86.69 ± 1.39 85.38 ± 0.9 85.91 ± 0.27 86.20 ± 0.28 86.28 ± 0.12 86.47 ± 0.13 86.60 ± 0.17
nr-er 77.44 ± 0.16 77.18 ± 0.66 77.49 ± 0.52 77.40 ± 0.22 77.57 ± 0.2 77.50 ± 0.24 77.63 ± 0.13
nr-er-lbd 84.47 ± 0.64 83.95 ± 0.22 83.57 ± 0.58 84.07 ± 0.51 84.13 ± 0.24 83.94 ± 0.49 84.55 ± 0.15
nr-ppar-gamma 80.78 ± 2.47 79.50 ± 3.64 79.92 ± 2.9 79.63 ± 2.61 79.79 ± 2.55 79.88 ± 2.11 79.98 ± 1.74
sr-are 84.17 ± 1.09 81.85 ± 2.07 81.90 ± 1.78 81.81 ± 2.42 82.38 ± 2.03 82.00 ± 2.23 82.09 ± 1.96
sr-atad5 85.59 ± 0.37 82.49 ± 0.48 82.42 ± 0.13 82.50 ± 0.28 82.98 ± 0.28 82.42 ± 0.16 82.52 ± 0.26
sr-hse 81.97 ± 2.83 80.75 ± 2.31 80.75 ± 2.09 80.85 ± 2.53 80.44 ± 2.87 80.50 ± 3.65 80.28 ± 3.79
sr-mmp 93.27 ± 0.42 91.05 ± 1.05 91.11 ± 0.89 91.14 ± 0.98 91.08 ± 1.21 91.23 ± 0.97 91.20 ± 1.08
sr-p53 85.12 ± 0.59 81.59 ± 0.6 82.14 ± 0.14 82.38 ± 0.07 82.43 ± 0.21 82.14 ± 0.31 82.21 ± 0.31
Average Score 85.07 ± 0.63 83.67 ± 0.98 83.81 ± 0.8 83.76 ± 0.75 83.89 ± 0.81 83.73 ± 0.85 83.84 ± 0.82

Table 3.1: The ROC AUC scores (in %) for all tested screens
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Chapter 4

Results

4.1 Generated Molecules

The generator reached its optimum at epoch 6 with a validation loss of 0.5123 and a cross-entropy

loss of 0.5117 on the test set (as illustrated in Figure 4.1).

This model has been used to generate 2,500,002 molecules, 61,694 or 2.46%, of which could not

be converted into RDKit molecules and were therefore deemed invalid. Another 192,813, 7.9%

of valid molecules, were duplicates. After sorting out invalid molecules and duplicates 2,245,495

molecules, 89.82% of the original batch, remained (as illustrated in Figure 4.2). Even though only

molecules of lengths shorter than 150 were used for training, molecules of lengths up to 300 have

been produced (compare Figure 4.3).

Figure 4.1: Train, Validation and Test loss
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Figure 4.2: Molecules per set

Figure 4.3: Distribution of lengths of generated molecules



4.2. CLASSIFIED MOLECULES 21

4.2 Classified Molecules

Of the 2,245,495 molecules, 0.45% have been classified as non-toxic (compare Figure 4.4) which

yields a set of 10,194 non-toxic molecules. An analysis of the distribution of non-toxic molecule

lengths also shows that some of the outliers have been discarded as the maximum length decreased

from 300 to around 200 (compare Figure 4.5).

The macro-average Area under the ROC curve (which can be seen in Figure 4.6 and 4.7) is 0.76.

When compared to the leaderboard of the Tox21 challenge, the classifiers would have missed a

leaderboard position in all categories by around 2% most of the time.

Examining the normalized distributions of assigned label probabilities (compare Figure 4.9) shows

that for some classifiers (especially NR-AR-LBD and SR-ADAT5) the majority of toxic molecules

have been misclassified as non-toxic. This is confirmed when looking at the False Negative Rates

(FNR) for each assay type in Figure 4.8.

The mean False Negative Rate over all classifiers is 35.40 ± 15.03 which means that every fifth to

second toxic molecule has been classified as non-toxic. The NR-AhR classifier has the lowest mean

False Negative Rate of 14% which still means that roughly every seventh molecule is misclassified

as non-toxic. The highest mean rate was produced by the NR-AR-LBD classifier which is around

65%, so nearly two thirds of toxic molecules of this type have been misclassified.

Figure 4.4: Ratio of toxic and non-toxic compounds in the library
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Figure 4.5: Distribution of lengths of non-toxic molecules

Figure 4.6: ROC of NR assays
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Figure 4.7: ROC of SR assays

Figure 4.8: False Negative Rate for all assays
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(a) NR-AhR (b) NR-AR

(c) NR-AR-LBD (d) NR-Aromatase

(e) NR-ER (f) NR-ER-LBD
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(g) NR-PPAR-gamma (h) SR-ARE

(i) SR-ADAT5 (j) SR-HSE

(k) SR-MMP (l) SR-p53

Figure 4.9: Sensitivity (TPR) and Specificity (TNR) plots depicting the proportion of correctly
and incorrectly classified molecules for each assay
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Chapter 5

Discussion

The molecule generation process has been successful with 89.82% of generated molecules being

valid and unique. The classification of said molecules needs further tuning especially when

compared to other classifiers.

To improve the molecule generation process, a dictionary of all possible characters of the SMILES

language could be provided. This would make the generator data set independent. For the training

of the LSTM, second order gradient descent methods as well as regularization could improve the

performance. An extensive hyperparameter grid search for both the generator and the classifier

should also be performed to obtain the optimal hyperparameters.

As discussed in Segler et al.[4] transfer learning is an option if one wants to combat the generation

of toxic molecules or produce focused molecule libraries. In that case the model trained in this

thesis would serve as the base model and would be fine tuned on a smaller set of molecules which

contain the required properties.

The performance of the molecule classifiers still has potential growth, which is evident when their

performance is compared to the classifiers on the Tox21 leaderboard[19]. The classifiers trained

in this experiment fell short of the top 10 for each assay by at least 1% and going up to 10% on the

ROC AUC score.

Another issue is that the examination of the false negative rate showed that the misclassification

for toxic molecules, depending on the assay type, ranges between 14% and 65%. This means

the generated library most likely contains toxic molecules. One way of improving the molecule

classifiers would be to collect more training samples, especially toxic ones. Another way would

be to take the same approach as Mayr et al.[9] by enhancing the whole pipeline. Such measures
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would include adding further pre-processing, extracting more features from the available data, as

well as introducing post-processing.



Chapter 6

Conclusion

The proposed molecule generation and classification pipeline has been implemented and has been

successful in creating molecules. However there is still further room for improvement when it

comes to the classification.

Due to the availability of millions of molecules via public libraries such as ChEMBL and standards

such as SMILES, data driven methods have sufficient training data for molecule generation.

Molecule classification seems feasible as well due to the Tox21 Program providing data and

driving development.

LSTMs proved to be an excellent tool for the task of generating molecules. While a few minor

improvements are possible for the molecule generator, the classifier still has much untapped

potential. This becomes obvious when one compares its performance to the leaderboard entries of

the Tox21 challenge. Further improvement is needed when it comes to its false negative rate, the

rate of incorrectly classifying toxic molecules as non-toxic ones. This rate is considerably high

with rates ranging between 14% and 66% depending on the assay. This results in the molecule

library most likely containing toxic molecules.

To extend the work described here one could make the generator data set independent, by providing

all possible letters of the SMILES language. It is also feasible to use the provided generator as a

base model for transfer learning on a smaller set of compounds. This could yield a more focused

library. To make the classifier more robust to misclassifying toxic molecules, one would either

need more toxic training samples or a more sophisticated approach.

Out of the more than 2.5 million generated compounds, 2.25 million (∼ 90% of the initial data set)

remained after dropping invalid and duplicate molecules. Of those only 0.5% have been classified
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as non-toxic, leaving 10,194 molecules in the library.
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