
T
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

D E P A R T M E N T O F I N T E L L I G E N T S Y S T E M S

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

A U T O M A T I C T E M P L A T E P A T T E R N R E C O G N I T I O N
AUTOMATICKÁ IDENTIFIKACE ŠABLONY GENERUJÍCÍ S P A M KAMPANĚ

M A S T E R ' S T H E S I S

DIPLOMOVÁ PRÁCE

A U T H O R B c . D A V I D K O V A Ř Í K

A U T O R PRÁCE

S U P E R V I S O R M g r . B c . H A N A P L U H A C K O V A

VEDOUCÍ PRÁCE

BRNO 2018

Master's Thesis Specífícation/20198/2017/xkovar66

Brno Un i ve r s i t y of Te chno l ogy - Facu l t y of I n f o r m a t i o n Te chno l ogy

Department of Intel l igent Sys tems Academic year 2017/2018

M a s t e r ' s T h e s i s S p e c i f i c a t i o n

For: K o v a r i k D a v i d , Be .

Branch of study: Intel l igent Sys tems

Title: A u t o m a t i c T e m p l a t e P a t t e r n R e c o g n i t i o n

Category: Secur i ty

Instructions for project work:
1. Prostudujte metody pro identifikování stejných a různých částí textů (tokenizace,

lineární programování, grafy, konečné automaty atd.) a jej ich použitelnost na velký
počet krátkých textů generovaných podle jedné šablony (př. SMS spam kampaně).

2. Navrhněte a lgor i tmus, který bude schopen automat i cky rozpoznat šablonu, ze které
je kampaň generována, a popsat j i formálním j a z ykem (např. regulárním výrazem).

3. Implementuj te daný algor i tmus.
4. Otestujte a lgor i tmus na datasetech od f i rmy Maven i r s texty generovanými ze stejné

šablony.
5. Vizual izujte uživateli společné a rozdílné části v dané skupině textů. Výstupem

apl ikace je formát uchovávající tuto vizual izaci (obrázek, HTML soubor atd.) a
nalezený formální popis (regulární výraz).

6. Analyzuj te použitelnost a rozšíření algor itmu na další problémy a na jiný typ
vstupních dat (např. Na dlouhé texty, na binární data atd.).

Basic references:
• Dle pokynů vedoucího práce.

Requirements for the semestral defense:
Body 1 a 2.

Detai led formal specif ications can be found at http://www.f i t .vutbr.cz/ info/szz/

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources,

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of
the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

Supervisor: Pluháčková H a n a , Mg r . B e , DITS FIT BUT
Beginning of work: November 1, 2017
Date of delivery: May 23, 2018

F a k u \ \ & j ^ m ^ m x ü ^ ^
^ ^ Ú s t s v l n t e l l g e n t n í c h systémů

<— 612 66 Brno, Boietéchova 2

Petr Hanáček
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

A b s t r a c t
Spam does not occur as separate messages, but it is sent i n so-called campaigns. They
are usually generated by a certain template which allows producing large amount of se-
mantically, but not syntactically, equivalent messages. The goal of this work is to design
an a lgori thm able to reversely extract a template of a campaign from a set of concrete
messages. The main focus is on spam in S M S communicat ion. However, proposed method
is general enough for wider use. The proposed a lgor i thm is based on a method of aligning
to sequences, which is used in bioinformatics to detect s imilar regions of protein strings.
Resul t ing templates are represented as regular expressions. The tool is able to visualize
extracted templates using H T M L . Results of the tool were validated on more than three
hundred real-world campaigns. In most cases extracted regular expressions were able to
identify their source campaign.

A b s t r a k t
Spam se typicky nevyskytuje ve formě s a m o s t a t n ý c h zp ráv , ale ča s to bývá sd ružován do
t a k z v a n ý c h k a m p a n í . T y bývaj í automaticky generovány p o m o c í šab lon . D íky tomu jsou
j edno t l ivé z p r á v y sémant icky , ale ne syntakticky, ekviva len tn í . C í lem p r á c e je navrhnout
algoritmus schopný z m n o ž i n y z p r á v j e d n é k a m p a n ě z p ě t n ě extrahovat šab lonu , ze k te ré
tyto z p r á v y byly generovány. P r á c e se zaměřu je na spam v S M S komunikaci , ale nav ržené
postupy jsou d o s t a t e č n ě obecné pro širší použ i t í . Algor i tmus je postaven na m e t o d ě
za rovnáván í dvou sekvencí , použ ívané v bioinformatice pro na lezen í p o d o b n ý c h ob las t í pro
te inových ře tězců . V ý s t u p e m je r egu lá rn í vý raz popisuj íc í š ab lonu d a n é k a m p a n ě . Součás t í
řešení je t a k é n á s t r o j pro vizual izaci šab lony p o m o c í H T M L . Řešen í bylo ověřeno na př i
bl ižně t ř ech s tovkách sku t ečných k a m p a n í z celého svě ta . V n a p r o s t é vě t š ině p ř í p a d ů je
p o s k y t n u t ý výs ledek pos tačuj íc í pro identifikaci k a m p a n ě .

K e y w o r d s
S M S , Spam, Spam campaigns, Template extraction, Regular expression induct ion, Regular
expressions

K l í č o v á slova
S M S , Spam, S p a m o v é k a m p a n ě , Ext rakce šablony, Indukce regu lá rn ích vý razů , R e g u l á r n í
v ý r a z y

Reference
K O V A Ř Í K , D a v i d . Automatic Template Pattern Recognition. Brno , 2018. Master 's thesis.
Brno Univers i ty of Technology, Facul ty of Information Technology. Supervisor M g r . Be .
Hana P luháčková

R o z š í ř e n ý abs t rakt
Spam se typicky nevyskytuje ve formě s a m o s t a t n ý c h zp ráv . Mís to toho je d i s t r i buován
v t a k z v a n ý c h k a m p a n í c h . J e d n á se o m n o ž i n y s p a m o v ý c h zp ráv s podobnou s trukturou
a s t e j n ý m úče lem. T í m m ů ž e bý t n a p ř í k l a d propagace u r č i t ého v ý r o b k u nebo distribuce
škodl ivého softwaru. K a m p a n ě bývaj í generovány automaticky p o m o c í šab lon — abstrak
t n í h o popisu s t ruktury zp ráv . Šab lona obsahuje s ta t i cké a p roměn l ivé čás t i , k t e r é jsou
v p r ů b ě h u generování k a m p a n ě e x p a n d o v á n y na r ů z n é hodnoty. D íky tomu mohou dis
t r i b u t o ř i spamu produkovat velké m n o ž s t v í s éman t i cky s te jných, ale syntakt icky odl i šných
zp ráv . Tato p r á c e se p r i m á r n ě zaměřu je na s p a m o v é k a m p a n ě ve s lužbě S M S . Čís la z
pos ledn í d e k á d y ukazuj í , že je ve světě s tá le více mobi ln ích p ř e d p l a t i t e l ů , s č ímž roste i
poče t odes laných zp ráv . P ř e s t o ž e tato platforma p ředs t avu j e pro spam obrovský po tenc iá l ,
nebylo m u věnováno tolik pozornosti , jako n a p ř í k l a d e-mailové komunikaci .

Cí lem p r á c e je navrhnout algoritmus schopný z m n o ž i n y zp ráv j e d n é k a m p a n ě z p ě t n ě
extrahovat šab lonu , ze k t e r é tyto z p r á v y byly generovány. Tuto šab lonu nás l edně v h o d n ě
reprezentovat na v ý s t u p u . Z p ě t n o u extrakci šab lony je m o ž n é c h á p a t t a k é jako proces
učení fo rmáln ího j azyka z m n o ž i n y jeho vět . Pro to jsou na ú v o d p r á c e shrnuty různé
metody, k t e r é byly za t í m t o úče lem navrženy . P r i m á r n ě jsou p o p s á n y metody g r a m a t i c k é
indukce, jej ichž výs l edkem je konečný automat popisuj íc í d a n ý jazyk. Navíc jsou u k á z á n y
a l t e r n a t i v n í p ř í s t u p y jako n a p ř í k l a d za rovnáván í sekvencí nebo genet ické p rog ramován í .

J á d r e m n a v r ž e n é h o řešení je Needleman-Wunsch algoritmus použ ívaný v bioinformatice
pro z a r o v n á n í dvou sekvencí p r o t e i n ů nebo nuk leo t idů . B y l p a t ř i č n ě rozš í řen tak, aby by l
schopen zarovnat dva r ů z n é texty. E x t r a k č n í algoritmus p rovád í i n k r e m e n t á l n í generalizaci
p o č á t e č n í šab lony tak, aby na jeho konci d a n á š a b l o n a popisovala všechny z p r á v y d a n é
k a m p a n ě . P r v n í n a č t e n á zp ráva slouží pro konstrukci p o č á t e č n í šablony. N á s l e d n ě jsou
n a č í t á n y dalš í zprávy. P o k u d šab lona akceptuje č t e n o u zp rávu , p ře jde se k dalš í . P ř i
neshodě , dojde k z a r o v n á n í š ab lony a z p r á v y a jejich n á s l e d n é m u sloučení . T í m t o krokem
vznikne nová šab lona , k t e r á popisuje všechny dř íve a k c e p t o v a n é z p r á v y a a k t u á l n ě č t e n o u
zp rávu . P o zpracován í všech z p r á v je výs l edkem šab lona , k t e r á popisuje všechny z p r á v y
d a n é k a m p a n ě . V ý s t u p e m algori tmu je r egu lá rn í vý raz popisuj íc í extrahovanou šab lonu .

Součás t í a lgori tmu jsou i da lš í kroky. P ř i n e s h o d ě šab lony a zprávy, m u s í bý t d a n á
zpráva ne jdř íve p ř e v e d e n a na lexikální jednotky, aby mohla bý t dá le zp racovávána . Zdro
jová k a m p a ň m ů ž e obsahovat u rč i tý š u m v p o d o b ě zp ráv , k t e r é do t é t o k a m p a n ě n e p a t ř í .
Součás t í extrakce je t a k é detekce a eliminace t akových zp ráv . E x t r a k č n í algoritmus je imple
m e n t o v á n v r á m c i nás t ro j e , k t e r ý t a k é umožňu je ověření kval i ty z í skané šablony. Šab lonu
lze t a k é extrahovat pouze z p o d m n o ž i n y k a m p a n ě , nebo n á h o d n ý c h vzorků . V ý s t u p e m
validace je informace o tom, kolik zp ráv k a m p a n ě š ab lona popisuje, a kolik ne. Lze t aké
generovat v ý s t u p ve f o r m á t u H T M L , k t e r ý demonstruje obecné vzory, k t e r é se v kampani
vyskytu j í .

Díky procesu p o s t u p n é generalizace je v ý s l e d n á š a b l o n a velmi specifická pro zdrojovou
k a m p a ň . P l a t í tedy, že celou k a m p a ň lze identifikovat na zák ladě šablony. P o k u d je t aková
š ab lona p ř i d á n a do s p a m o v é h o fi l tru, všechny nás l edně p ř i j a t é zprávy, k t e r é se s š ab lonou
shoduj í , mohou bý t označeny za spam.

Kva l i t a e x t r a k č n í h o algori tmu byla ověřena na př ib l ižně t ř ech s tovkách k a m p a n í z celého
svě ta . Jel ikož existuje p o t e n c i á l n ě nekonečně mnoho výrazů , k t e r é popisuj í stejnou kam
paň , a č i te lnos t je součás t í ohodnocen í , lze jen těžko p ře sně ř íc t , co je to s p r á v n ý výsledek.
Co však konstatovat lze je fakt, že v n a p r o s t é vě tš ině p ř í p a d ů je výs ledek dos tačuj íc í pro
identifikaci d a n é k a m p a n ě . Navíc , ve vě tš ině p ř í p a d ů popisuje zdrojovou k a m p a ň min imal
i s t i ckým z p ů s o b e m — či te lnos t je tedy t a k é velmi vysoká .

A u t o m a t i c T e m p l a t e P a t t e r n R e c o g n i t i o n

D e c l a r a t i o n
Hereby I declare that this master's thesis was prepared as an original author's work under
the supervision of M g r . Be . Han a Pluhackova.

The supplementary information was provided by M r . Petr Salomoun.

A l l the relevant information sources, which were used during preparation of this thesis,
are properly cited and included in the list of references.

D a v i d Kovař ík
M a y 21, 2018

Acknowledgements
I would like express my gratitude to M g r . Be. Hana P l u h á č k o v á for her supervision of my
work, as well as to M r . Pe t r Salomoun for a l l the advice he provided.

Contents

1 Introduction 3

2 Spam and Spam Campaigns 4
2.1 Spam 4
2.2 S M S Spam 4
2.3 Spam Campaigns 6
2.4 Templates 6
2.5 F igh t ing S M S Spam 7

3 Methods for Template Extract ion 8
3.1 Naive Approach 8
3.2 Inferring a Formal Descr ipt ion 10

3.2.1 A u t o m a t a Induction 11
3.2.2 Al ign-Based Approach 12

3.3 Sequence Al ignment 13
3.3.1 Needleman-Wunsch A l g o r i t h m 14

3.4 Genetic Algor i thms 16

4 Design of the A l g o r i t h m 18
4.1 Task Descr ipt ion 18
4.2 Addressing the Challenges 18
4.3 Output Format 19
4.4 Ex t rac t ion M e t h o d Design 19

4.4.1 Templates and Segments 20
4.4.2 Top-Level V i e w on the A l g o r i t h m 20
4.4.3 Tokenizat ion 22
4.4.4 Al ignment of a Template and a Message 22
4.4.5 Outl iers Detect ion 25
4.4.6 Merging an Al ignment 26
4.4.7 Regular Expression Construct ion 27
4.4.8 Regular Expression Opt imiza t ion 27
4.4.9 Properties of the Design — Pros and Cons 29

4.5 Architecture of the Tool 31
4.5.1 Val ida t ion Sub-System 32
4.5.2 Extending the System 33

5 Implementation 34
5.1 Modules and Packages 34

1

5.2 Regular Expression Generators 35
5.3 Output Methods 36
5.4 Graph ica l Interface 36

6 M e t h o d Evaluation and Experiments 38
6.1 Used S M S Spam Datasets 38
6.2 Template Ex t r ac t ion Performance 39
6.3 Template Qual i ty on Specific Examples 40

6.3.1 Campaigns wi th Strong Patterns 40
6.3.2 Pre-Sort ing of the Campaign 40
6.3.3 A n Outl ier Ru in ing It A l l 41
6.3.4 Token Sequences Disconnected 42
6.3.5 T y p i n g Conventions 43
6.3.6 Campaign w i t h M a n y Highly-Var iable Parts 43
6.3.7 Campaign w i t h M a n y Frequent Sub-Patterns 43
6.3.8 Template Degeneration 44
6.3.9 Patterns of Rota ted Messages 45
6.3.10 Order of Messages 45
6.3.11 Campaigns w i t h Weak Patterns 46
6.3.12 Mul t i - l i ne Messages 47
6.3.13 L o n g Sequences 48
6.3.14 Overal l Result Qua l i ty 49

6.4 Future Work Based on Experiments 49

7 Conclusion 51

Bibl iography 52

A P r o g r a m execution 55

B C D Contents 56

2

Chapter 1

Introduction

Short Message Service (SMS) is one of the key and most popular services available on
mobile phones. Accord ing to the annual report of the International Telecommunication
Union , there were up to 6.1 t r i l l ion S M S sent i n 2010 [14] (around 200 000 every second).
A few years later, in 2015, there were up to 7 b i l l ion cellular subscriptions world-wide
[15]. Even though the use of S M S has been decreasing in some parts of the world, it is s t i l l
popular i n others. Especial ly in developing countries. O n the other hand, private companies
now send S M S to their customers much more. Therefore, the amount of sent S M S is s t i l l
high. These facts represent significant potential for immora l or unethical activities, such as
spamming. However, protection against spam i n S M S has not received enough attention
by researches.

Spam is usually not sent as separate messages, but rather i n so-called campaigns. Mes
sages wi th in a campaign have similar structure and the same purpose (advertisement, etc.).
Campaigns are generated automatical ly using templates — a meta-description of message's
structure. Therefore, each message can be more personalized and more difficult to detect.
The goal of this work is to design an algori thm which is able to reversely extract a template
from a set of campaign's messages and describe it w i t h a formal model.

A t the beginning, i n Chapter 2, more detailed description of spam, wi th focus on spam
in S M S communicat ion, and prevention against it is provided. Relat ionship between cam
paigns and templates is also further explained and demonstrated. This part is based on
research done wi th in the Term project together w i th an in i t i a l draft of the extraction algo
r i thm.

The task of template extraction can be seen as learning a formal description of a lan
guage. Chapter 3 provides exactly this point of view. F i rs t , very naive approaches are
shown. Thei r only goal is to demonstrate, why more advanced methods are required. Then ,
several methods of language acquisit ion, such as automata induct ion and genetic program
ming, are presented. Lastly, an idea of using sequence alignment algorithms, adopted from
bioinformatics for aligning D N A strings, as a method of learning a language is shown.

Chapter 4 contains detailed description of the proposed extraction algori thm. F i rs t ,
the overall view and the general idea is presented followed by further specification of each
crucial step. Some of the implementat ion details, such as an overview of available output
methods can be found i n Chapter 5.

There were over 300 real-world campaigns used to validate quali ty of outputs of the
algori thm. Chapter 6 provides overview of these results. There are experiments a iming
on specific aspects of the template extraction, as well as over-all summary of algorithm's
performance.

3

Chapter 2

Spam and Spam Campaigns

Firs t part of this chapter contains a brief description of what spam is, what is it used
for and how it affects the communicat ion environment. Second part is dedicated to spam
campaigns and fighting them.

2.1 Spam

The term spamming stands for the practice of using electronic communicat ion systems to
send unsolicited messages to users. It is mostly used for advertisement, spreading malware
and sending fraudulent messages i n order to obtain sensitive information (such as passwords)
of recipients. There are many forms of spam. The most common is e-mail spam. However,
there are other forms too — instant messaging or S M S spam.

Back in early 2000s, right after the boom of the Internet, the O E C D summarized charac
teristic properties of spam. They can be split into two categories — primary and secondary.
The primary category contains characteristics which would lead most people to identify a
message as spam. The secondary properties are frequently associated wi th spam, but not
necessarily [20]. These properties are shown i n Table 2.1.

P r i m a r y characteristics Secondary characteristics
Electronic message Uses addresses collected without prior consent or knowledge
Sent i n bulks Repeti t ive
Unsol ici ted Untargeted and indiscriminate
Commerc ia l Unstoppable

Anonymous and/or disguised
Illegal or offensive content
Deceptive or fraudulent content

Table 2.1: P r i m a r y and secondary characteristics of S P A M defined by the O E C D [20]

2.2 S M S Spam

According to the International Telecommunication U n i o n (ITU) of the Uni ted Nations,
there were up to 7 bill ions cellular subscriptions in the world i n 2015 [15]. D u r i n g the year
of 2010, around 6.1 t r i l l ion S M S messages were sent — approximately 200 000 messages
every second. Astonishing is that in 2007, I T U predicted only 1.8 tr i l l ions to be sent in

4

2010 [14]. The reality was three times more than what was predicted. These numbers
represent huge potential for spammers and their fraudulent activities.

Spam i n S M S and protection against it is, however, not as well-researched as e-mail
spam. Fi l ters for e-mail spam are much more sophisticated. Users also consider S M S to be
a more reliable source (awareness of S M S spam is not as high as it is w i th e-mails). It results
in higher response rate for S M S spam. Also , S M S spamming is, thanks to in t roduct ion of
unl imited S I M cards, becoming more and more cost-effective for spammers. These facts
are reasons why spammers are moving their attention to S M S service more and more.

The ratio of spam i n S M S differs from region to region. In N o r t h Amer i ca it is below 1%,
while i n A s i a it can go from 20% to 30%. For example, according to [5], mobile subscribers
in the world received over 200 bill ions spam S M S during a single week of 2008.

However, S M S spam is not just an annoying th ing that could be easily ignored. Mobi le
subscribers can actually suffer from it financially. B y s imply responding to an S M S , a person
can sign up for a certain subscription service, or cal l a p remium number. A n example of
an S M S spam message is shown in Figure 2.1.

3G 1:50 PM 71 % E *

I Call J Add to Contacts

Toxi Me
Feb 24. 201 2 5:06 PM

Special thank you for our
registered users. Please
call 1-800-385-1803 to
claim your $100.00 Wal-
Mart Gift Voucher! 2 Quit
Reply Stop

f "ext Message i ^ ^ j ^

Figure 2.1: A n example of an S M S spam message (Source: [17])

The previous description defines spam from user's point of view. However, from provider's
point of view, a spam message can actually be solicited and important for its recipient. P r i
vate companies often abuse unl imi ted subscription plans designed for regular customers to
send their commercial messages. They t ry to avoid using more expensive means designated
for commercial purposes. Such behavior is often a violat ion of provider's terms of service. It
is i n their best interest to detect such behavior as it is a financial loss for them. Therefore,
commercial messages sent v ia non-commercial channels can be seen as spam from provider's
point of view. Even though these messages are solicited for its recipient.

We can say that it is the providers who suffer from S M S spam the most. Fi rs t ly ,
unsolicited messages may cause higher operating and customer-support costs. It can be
harmful to their reputation too. Secondly, private companies abusing unl imi ted plans is
financial loss for providers.

5

2.3 Spam Campaigns

Spammers usually do not send a single spam message. Instead, they put the effort into so-
called campaigns. It is a set of messages wi th similar structure focusing on a part icular goal,
such as selling a product, malware dis t r ibut ion, financial fraud, etc. Unfortunately, S M S
spam and campaigns are not covered much in the literature. However, the core principles
are the same or at least s imilar to e-mail spam campaigns where much more work has been
done.

Campaigns may be executed i n a single run, or repeatedly. The frequency of sending
messages may vary i n t ime. The dis t r ibut ion platform is often reused by mult iple campaigns
(especially w i th e-mail spam campaigns, where the same botnet infrastructure is reused).
For sending S M S spam, so-called SIM farms — a device grouping many S I M cards connected
to a server. They can be controlled to send messages, d ia l numbers, etc.

To demonstrate how advanced spam campaign business is, we can briefly look into
Cu twa i l botnet on which authors in [13] focus. They describe how sophisticated is the
customer support provided by the owners of the botnet. Even a manual on how to make
a "successful" campaign is provided to customers. The manual provides guidelines i n three
categories:

• Text guidelines — In order to lure as many vict ims as possible, a spam message
needs to be well-crafted. It needs to be convincing enough, so its vict ims think it is
a genuine message.

• E m a i l address database guidelines — Helps customers to overcome issues related
to non-existing addresses, dis t r ibut ion of addresses among b o t s , . . .

• Technical guidelines — How to increase performance of the botnet, and setting
up the campaign durat ion (the shorter, the lower chance of being detected by spam
filters).

To make a campaign efficient, a target list (email addresses, phone numbers, etc.) is
necessary. Spammers can get this list by many means — crawling the Internet, malware or
even purchase them.

2.4 Templates

A key component of a campaign is a template — a meta-description used to craft concrete
messages for each recipient. It contains variable fields which are expanded during generation
process. It allows a concrete message to be more personalized, as well as it makes messages
more difficult to be detected or grouped w i t h other messages of the same campaign. A n
example of a template could be:

Dear {John DoejJane Doe}, we have a special offer for you. C a l l 123-223-111, report a
code { R A N D N U M B E R } to get your $100 Walmar t gift card.

The grouping attr ibute of a template is important for spam prevention. Not only that a
template can be used to generate a campaign, it can also be used to identify i t . Therefore,
if we are able to reconstruct a template from a set of concrete messages of a campaign,
we can add this template to a spam filter. A n y message matching the template can be
associated wi th the campaign and marked as spam.

(i

Another reason is that the volume of spam is too high. A n a l y z i n g each message would
be impossible. Merging single messages into larger sets (campaigns), while preserving their
characteristic properties, reduces the amount of data that needs to be analyzed.

2.5 Fighting S M S Spam

One way of fighting S M S spam is so-called content-based filtering where the content of each
message is analyzed (typical for e-mail spam prevention). However, due to the restricted
length of S M S messages, there is not much "material" to work wi th . Also , the language used
in S M S is a bit different — abbreviations, slang, phonetic contractions, emoticons, as well
as intentional incorrect spelling are more common. A l l of these factors make content-based
filtering more difficult and less efficient.

Another type of methods is based of generating signatures (or a fingerprints) from the
content of known spam messages. Th is signature is distr ibuted to subscribers. W h e n a
subscriber receives a message, its signature is computed and it is checked against a l l of the
known spam signatures. If a matching signature is found, the incoming message is marked
as spam.

However, in order to get around this filtering method, spammers started inserting vari
able parts into their messages. They use templates to create mult iple versions of semanti-
cally, but not syntactically, equivalent messages. Therefore, the signature of each message
is different. It is even common to spot completely random sequences in each message -
typical ly numbers. This practice is called textual polymorphism.

7

Chapter 3

Methods for Template Extract ion

Even though the purpose of this work is S M S spam analysis, the core idea is more general.
The goal is to develop an algori thm for reversely extracting a template from a set of messages
and describe it using a formal language. The core idea, however, can be seen as learning a
formal language from a finite set of its sentences.

In this section, we are going to describe several methods which can be used for extracting
a formal description of a language, what is their output, pros and cons. For example, some
of the discussed methods use finite automata as their model , or regular expressions.

M a n y of the examples presented in this section are going to be real-world spam cam
paign. A n y sensitive information (names, phone numbers, dates, etc.) contained in them
w i l l be replaced and randomized.

3.1 Naive Approach

In this part, we are going to describe a very simple approach for template extraction.
It provides good results only in very specific cases and it fails on more complex data.
However, it is good for demonstrating why more advanced methods are required to get
satisfying results. The method does not require any advanced tokenization and basic string
operations are sufficient. Therefore, it is a very fast approach. The process is demonstrated
in A l g o r i t h m 1.

A s mentioned before, this is a very t r i v i a l approach and it w i l l provide good results only
in very specific cases. It uses the first message to construct a template by spl i t t ing it into
lexical tokens. Then , it goes through each message and tokenizes i t . For each token i n each
message it is checked whether there is the same value on the same posit ion i n the template.
If yes, nothing happens. If not, the value in the template is set to N u l l (to indicate a
variable part).

After that, a l l sequences of N u l l s are merged into a single one and the resulting regular
expression (R E) is constructed. It goes through each token i n the template — if it is a
string l i teral , it is appended to the result. If a N u l l value is found, an expression " (. * ?) "
is added to cover values in the variable part.

The a lgori thm is very abstract, it does not handle white space characters, possible over-
generalization, and so on. It could also be extended to remember which concrete values are
present i n variable parts and list them in the result. The key issue is that it only works for
messages which have the same amount of tokens (no matter how is the tokenization process
defined).

8

A l g o r i t h m 1: Naive template extraction for t r iv i a l cases.
Input: Set of messages
Output: Template i n form of a regular expression

temp <— tokenize the first message
foreach msg in messages do

tokens tokenize msg
for (i=0 ; i < length(res) ; i++) do

if tempfi] 7̂ tokensfi] then
tempfi] <— N u l l

if res contains sequences of multiple Null values then
| Reduce the sequence into a singe N u l l

regex <— ""
foreach token in res do

if token is Null then
A p p e n d "(.*?)" to regex

else

A p p e n d token to regex

return regex

It is very common that messages of the same campaign are different in length. Therefore
this approach is going to fail . However, its purpose is to demonstrate the simplest way
to achieve the goal. O n the other hand, there are also real-world campaigns, where this
approach would work perfectly. Here is an example of such spam campaign from Argent ina:

Estimado/a A B le recordamos que su cuota vencio el 15/09/2016. Puede abonarla en
Sucursal. Si pago desestime el sms. Ribeiro S.A.
Estimado/a C D le recordamos que su cuota vencio el 20/09/2016. Puede abonarla en
Sucursal. Si pago desestime el sms. Ribeiro S.A.

The corresponding template generated by this method is:

Estimado/a (.*?) le recordamos que su cuota vencio el (.*?). Puede abonarla en Su
cursal. Si pago desestime el sms. Ribeiro S.A.

Another example of a naive approach is shown in A l g o r i t h m 2. It s imply finds tokens
which occur in every message and then concatenates them together in proper order. Variable
parts are, again, represented as " (. * ?) " . Th is method w i l l be also very fast and it w i l l
produce relatively good results for campaigns wi th simple structure. However, it w i l l fail
on more complex sets.

Proposed naive approaches do not a i m to solve the problem. They are useful i n un
derstanding why more advanced methods are necessary i n order to get good results from
real-world (more complex and unpredictable) examples.

9

A l g o r i t h m 2: Another method of naive template extraction.
Input: Set of messages
Output: Template i n form of regular expression

global_tokens tokenized first message
foreach msg in messages do

tokens tokenize msg
global_tokens <— global_tokens f] tokens

ordered global_tokens ordered by occurrence i n the first message
regex <— put the placeholder (.*?) between tokens and concatenate it a l l together
return regex

3.2 Inferring a Formal Description

The procedure of constructing a template of a given spam campaign can be seen as a
problem of extracting a formal description of a language (a grammar, automaton, etc.)
from a set of positive examples.

Grammatical Inference is a task of discovering common patterns i n examples which
were generated by the same process. Result is a finite model in which these patterns are
appropriately described. The inference process can be done using either positive data only,
or from complete representation (both positive and negative samples). Posit ive samples are
sentences of a language, while negative samples are sentences which do not belong to the
language. Major i ty of algorithms related to grammatical inference proposed in the past are
based on Gold 's work — Language identification in the limit [11].

We are going to focus only on the class of finite languages, since we can see a spam
campaign as a language and each concrete message as a val id sentence of the language.
This fact helps us a lot, because G o l d proved i n [11] that only the class of finite languages
can be learned from positive samples only. Other classes require negative examples. Even
the class of regular languages. A summary of learnabil i ty of each class of languages is shown
in Table 3.1.

Learnabil ity model Class of languages
Informant P r imi t ive recursive

Context-sensitive
Context-free
Regular

Text Fini te-cardinal i ty languages

Table 3.1: Table shows which classes of languages are learnable by which means. Text
model provides the learner only wi th positive examples of a language. Informant gives the
learner information whether each example belongs to the language or not. (Source: [11])

W h e n it comes to induct ion of regular languages, algorithms developed in the past can
be divided by the type of model they work wi th — finite state automata, grammars, regular
expressions. P robab ly the most popular formal model is finite state automata as majority
of methods use it for the inference. Therefore, we are also going to focus mostly on it.

10

3.2.1 A u t o m a t a I n d u c t i o n

One of the formalism that can be used to learn regular languages is a finite automaton. This
model is also useful for understanding, why finite languages can be learned from positive
examples only. Intuitively, we can construct an automaton in which each "branch" accepts
one sentence of the language. Such automaton is called Maximal Canonical Automaton
(MCA). A n example is shown i n Figure 3.1. However, such model does not produce an
efficient R E , because it is merely a union of sentences of the given language. Another
representation used as a start ing point for induct ion is Prefix Tree Acceptor (PTA) — a
tree structured automaton i n which each sentence of the input dataset is accepted. If two
sentences have the same prefix, they share transitions of the automaton for this prefix. A n
example is shown i n Figure 3.2

Figure 3.1: A n example of a Maximal Canonical Automaton for the language {abc, ac, 66c}.

Figure 3.2: A n example of Prefix Tree Acceptor for the language {abc, ac, 66c}.

State-Merging Approach

After establishing the in i t i a l model, sequential merging of states, as a way of generalizing
the model, is performed. The order in which states are merged is important . One of the
first such algorithms proposed was RPNI (Regular Positive and Negative Inference) [21].
Given a set of positive and negative sentences, the a lgori thm retrieves a Determinist ic
F in i te Au toma ton (D F A) consistent w i th the language (it accepts a l l positive and rejects
al l negative sentences). It constructs a P T A from positive samples. Then , it recursively
merges states in lexicographical order (a state and its predecessor), un t i l the condit ion to
accept every positive and reject every negative sample is satisfied.

A n extension to R P N I , called RPNI2 was proposed i n [8]. The main difference between
them is that when two states cannot be merged i n R P N I , R P N I 2 tries to find an inclusion
relation between them i n order to predict whether the prefixes of the data belong to the
language, or its complement. B o t h R P N I and R P N I 2 produce a D F A on the output.

11

However, non-deterministic finite automata (N F A) are generally smaller, more compact
description of a language. A l so R E s generated from N F A s are less complex. Algor i thms
producing N F A have been proposed it the past. One of the well-known is DeLeTe2[Q\.
Another method, independent on the order of merging states, producing N F A on the output
has been proposed in [9].

The problem wi th discussed methods is that they a l l require a set of negative examples
to guide the merging algori thm. Whenever two states are merged it is checked, whether the
new automaton accepts a l l positive and rejects a l l negative samples. It allows the a lgori thm
to be more precise. Using these algorithms, when only positive samples are available, would
require reducing the consistency check, which would reduce accuracy of the result.

Using an automaton as an output of template induct ion has several drawbacks. Fi rs t ly ,
it is more difficult for humans to read i t . Therefore, it would be necessary to provide users
wi th a way of transforming it to, for example, R E s (which are easier to understand for
humans). However, even though R E s and finite state automata are equivalent, algorithms
for generating R E s from automatons produce very complicated, hard-to-read results. Es
pecially when an automaton contains loops. This issue is called exponential blow-up [12].

3.2.2 A l i g n - B a s e d A p p r o a c h

There are not many algorithms designed to generate R E s directly as a result of grammar
induct ion. Mos t of them focus on constructing D F A / N F A . However, one of such methods
was proposed i n [7]. It consists of several steps. Samples are first split into blocks -
sequences of same characters. Then, a l l of the samples are aligned from the left. Let 's
assume an example (from [7]) of the language {ababb,aabb,ababa,abc}, the alignment can
be seen here:

(a) (b) (a) (bb)
(aa) (bb)
(a) (b) (a) (b)
(a) (b) (c)

Authors use the left-most alignment, because finding "the best" alignment for multiple
sequences is an N P - h a r d problem. F i n d i n g it for several hundreds or thousands of samples
in reasonable t ime is, therefore, not possible.

A s the next step, a tree-shaped N F A (shown in (A) of Figure 3.3) is constructed from
this alignment where, ini t ial ly, block values are used for edges. If one column contains two
different block values, the tree w i l l contain an edge for both of them. Note that it does not
matter how long concrete blocks are, but from which symbols they are composed from. A s
the next step, sequences of characters are used to construct loops w i th in the automaton
(shown in part (B) of Figure 3.3).

A s mentioned before, the ma in drawback is the necessity to al ign a l l of the samples
together. Tha t might be problematic w i t h large data sets. Another problem is that the
left-most alignment would not be sufficient for more complex sentences. F i n d i n g a better
alignment of mult iple sequences together is too difficult to compute i n reasonable t ime,
though. More on this issue is described in following section.

12

(A) (B)

Figure 3.3: N F A (A) and D F A (B) generated by the method proposed i n [7].

3.3 Sequence Alignment

In this section we are going to dive deeper into methods of al igning two sequences based on
similar i ty of their parts. It is most commonly used i n bioinfromatics for arranging D N A ,
R N A or protein sequences. Its goal is to find similar regions i n two or more sequences,
which may indicate some sort of relationships i n the structure, and put these regions under
each other. However, the scope of usage of these methods is beyond just bioinformatics. It
is used i n natural language processing or financial data processing.

Alignments of short and simple messages can be done easily by hand. However, the
more complex they are, the more difficult it gets. Instead, automatic alignment algorithms
have been designed. There are two types of alignment methods — global and local. G loba l
alignment takes into consideration whole length of sequences i n order to find the best
alignment. Therefore, it is more suitable for sequences wi th similar length. L o c a l alignment
is better for sequences that differ in length. W i t h local alignment we can find regions wi th
high level of s imilar i ty in sequences which are not very similar i n general.

Another classification of these methods is based on how many sequences they t ry to
align. Pairwise methods, as the name suggests, attempt to find alignment of only two
sequences. Multiple Sequence Alignment (MSA) methods are designed to find an alignment
among three and more sequences. Comput ing M S A is very expensive i n terms of both time
and space, therefore these methods are usually used to find an alignment among three or
four sequences.

Here is an example demonstrating why an alignment of two sequences might be useful.
It makes further analysis easier and reveals patterns i n a campaign:

Pelanggan 00000, K a m u dapat 1 Pesan d i Inbox-mu.
P l g n Y t h 11111, K a m u dapat 1 Pesan Chat t ing .

13

A s the example demonstrates, i f corresponding segments are aligned under each other, it is
easier for both humans and an algori thm to recognize a pattern wi th in a campaign. One
of the possibilities is to bu i ld a finite automaton based on this alignment. A n example is
shown i n Figure 3.4. Also , a R E can be easily generated from such automaton.

Figure 3.4: A n example of a finite automaton generated from aligned messages.

3.3.1 N e e d l e m a n - W u n s c h A l g o r i t h m

Needleman-Wunsch A l g o r i t h m (N W A) [18] is designed to find a global alignment of two
protein or nucleotide sequences using dynamic programming. However, the a lgori thm can
be extended to make the procedure more general. Th is way the a lgori thm could support
sequences of custom objects, rather than just protein/nucleotide sequences. In this section,
the original version of the a lgori thm is presented. B o t h space and time complexity of this
algori thm is 0(mn), where m/n is the length of the first/second sequence.

The algori thm uses two matrices — score matrix and trace-back matrix. It puts both
sequences to headers of these matrices, each on one axis. It consists of three steps: (i)
in i t ia l izat ion of the score mat r ix (ii) computing scores and filling the trace-back matr ix (iii)
deducing the alignment from the trace-back matr ix . The basic idea is to compare each
possible pair, compute their scores (or qual i ty) , and find an alignment based on the best
scores.

Initialization Step
Firs t , several execution parameters have to be defined — match reward, mismatch penalty
and gap penalty. If symbols i n bo th row and column are the same, match reward is added.
Otherwise mismatch penalty is used. G a p penalty is applied when a symbol aligns to a gap
in the other sequence.

In the following example the match reward is +1, mismatch penalty —1 and gap penalty
—2. Next , the score mat r ix T has to be constructed — one sequence is put into the first
column, the other one i n the first row as headers. The first value to be put into the matr ix
is 0 into the first empty cell T (0 , 0) (excluding headers). Let us demonstrate the algori thm
on two sequences s\ = TGGTG and S2 = ATCGT. To symbol on the i - th posit ion
of a sequence s, the notat ion sx(i), where x G {1, 2} is used.

14

Fil l ing Score and Trace-back Matrices
The mat r ix is filled by traversal of the matr ix row by row, computing the value of each
cell at a t ime. A cell value is defined as the highest value computed from existing values
of the left, top and top-left neighbor. Values coming from top or left represent gaps i n the
alignment. W h e n it comes from the diagonal neighbor it represents the alignment of those
two symbols. Here is a more precise definition of cell value computat ion:

T(i,j) max

T{i-l,j-l)+a{sl{i),s2{j))

T(i — + gap_penalty

T(i,j — 1) + gap_penalty

Where a is a scoring function returning the match_reward i f given symbols are the same,
otherwise returns the mismatch_penalty:

o-(s1,s2) {match_reward

mismatch_penal ty

if S! = s2

otherwise

The first row and column are special cases. The i r left (or top) and diagonal neighbors
are not defined. Therefore, they can be easily pre-filled w i t h mult ipl icat ions of the gap
penalty, as shown i n Table 3.2a. The completely filled matr ix is shown i n Table 3.2b.

T G G T G
0 - 2 - 4 - 6 - 8 - 1 0

A - 2
T - 4
C - 6
G - 8
T - 1 0

T G G T G
0 - 2 - 4 - 6 - 8 - 1 0

A - 2 - 1 - 3 - 5 - 7 - 9
T - 4 - 1 - 2 - 4 - 4 - 6
C - 6 - 3 - 2 - 3 - 5 - 5
G - 8 - 5 - 2 - 1 - 3 - 4
T - 1 0 - 7 - 4 - 3 0 - 2

(a) (b)

Table 3.2: F i l l i n g of the score table. Sub-table (a) shows the pre-filling of the first row and
column.

Each cell takes values from three neighbors, adds proper reward or penalty and then
chooses the highest of them. For extracting an alignment, it is important to keep track
from where each cell got its value. That is what the trace-back mat r ix is for. For each
cell i n the score matr ix , it holds the information about the origin of its value. If two
neighbors provide the same value, bo th sources are stored. Th i s represents two equally
good alignments. Table 3.3a shows from where each value i n the score mat r ix comes from.

Tracing Back
The last step of producing an alignment is the trace-back phase. F i rs t , a path w i t h the
highest scores connecting the last (bottom-right) and the in i t i a l (top-left) cells is found. It
is done by s imply following the arrows from the last cell. If a cell on this path contains two
or more arrows, more equally good alignments can be found. The path is shown i n part (B)
of Figure 3.3a. The alignment is constructed by following the path in reversed direction
and applying these rules:

• Diagonal arrow - Symbols on corresponding positions from both sequences are aligned
under each other. It is not important , whether there was a match or not.

15

T G G T G T G G T G
X <— <(— <(— <(— <(— x <— <(— <(— <(— <(—

A t \ <- \ <- \ <- \ <- \ A t \ < - \ <- \ <- \ <- \
T t \ \ < - \ \ <— T t \ \ < - \ \ <—
C t t \ \ < - \ \ C t t \ \ <- \ \
G t t \ \ <— \ G t t \ \ <— \
T t t \ t \ <— T t t \ t \ <-

(a) (b)

Table 3.3: Sub-table (a) shows the trace-back table, where each cell keeps information
about where it got its value from. Sub-table (b) shows the path from the last to the in i t i a l
cell, which is used to create the final alignment.

• Left arrow - There w i l l be a gap inserted to the sequence wri t ten on the side.

• Vertical arrow - There w i l l be a gap inserted to the sequence wri t ten on the top.

Based on these rules, the following alignment of sequences s\ and S2 from the trace-back
matr ix is constructed:

- T G G T G
A T C G T -

3.4 Genetic Algorithms

Another method of grammar induct ion is genetic programming (GP) — an evolutionary
computing paradigm which performs a search in space of possible candidates t ry ing to find
the best.

It consist of a set of possible candidate solutions (called individuals) . The whole set
of individuals is called a populat ion. Qua l i ty of each ind iv idua l (how well it solves the
problem) is computed by a fitness function. G P performs stochastic and heuristic solution-
space exploration in order to find an ind iv idua l w i th opt imal fitness. In order to do so,
an in i t i a l populat ion is necessary. It usually consists of randomly generated individuals .
G P execution is an iterative procedure in which (i) new individuals are created from the
existing populat ion (there are specific genetic operators such as crossover and mutation),
(ii) adding new individuals to the populat ion, (i i i) , e l iminat ing individuals w i t h the lowest
fitness. Th is whole procedure is repeated unt i l a certain condit ion is satisfied (number of
iterations, an ind iv idua l w i th sufficient fitness is found, etc.).

In case of grammar induct ion a candidate is an instance of desired language represen
tat ion (a grammar, automaton, R E) . Its quali ty (fitness) is based on how many samples of
the input dataset it accepts and how many it rejects.

M a n y GP-based methods for grammar induct ion have been proposed i n the past. A u
thors i n [4] present an automatic method for R E extraction, where the input is only positive
samples. Individuals i n this case represent a candidate R E . They are encoded as trees, where
each node represents a sub-part of the final R E . W h e n creating a new candidate by cross
over operator, some sub-trees are swapped. S imi lar ly for the muta t ion operator, a certain

16

sub-tree is randomly modified, in attempt to access different parts of the searched solution
space.

Whenever an ind iv idua l which is not a val id R E generated it is removed from the
populat ion. Authors performed an interesting comparison between 70 human annotators
and the proposed automatic extraction method. Based on their results they c la im to be
highly competitive w i th human capabilities. The implementat ion of the method is available
as an online tool , together wi th several datasets and extraction tasks at [2]. A preview can
be seen in Figure 3.5.

Dataset (200 examples)

Example Length Matches TE/FE
&' @book{capp1979astrology, title={Astrology and the popular press: English almanacs, 1500-1800}, ... 186 2 o
(2; @artide{cunliffe1999rotavirus, title={Rotavirus G and P types in children with acute diarrhea in... 521 9 <B
Gs @article{zlokavid997cellular, title={Cellular and molecular neurosurgery: Pathways from concept... 377 2 <E>
©' @article{davis1989user, title={User acceptance of computer technology: a comparison of two theore... 305 3 CD
& @article{thartn2007functlonal, tltle={Functional brain mapping and Its applications to neurosurge 264 2 CE»
ry @article{burns1996protective, title={Protective effect of rotavirus VP6-specific IgA monoclonal a... 398 4 €3
& @article{paras ha r2006 rotavirus, title={Rotavirus and severe childhood diarrhea}, author={Parash... 356 4 4/0

GS' @article{kumcz1993atlas9, title={ATLAS9 Stellar Atmosphere Programs and 2 km/s grid.}, author=... 299 1 m

I + New example 1 ©Import - 1 ffl Clear dataset 1 0 Export dataset 1 J» Try an example! 1 1 2 3 4 5 6 7 8 ... Next Last

Result

(?<= \w\w\w)]++, ["]++(?= \w\w\w)I[A-W][*,]*+, [A-W]\w*+ [A-W]]*+(?=)

Figure 3.5: Onl ine tool for G P search for learning regular expressions from examples
(Source: [2]).

A n advantage of G P is that it can be used to learn grammars more complex than
regular. There is a method of learning context-free grammars from language examples in
[23]. The method is successful to recognize patterns i n parenthesis pairs and reflect it on
the output. However, it is successful only w i t h very basic examples. To move from the
scope of regular languages even further, G P is also used i n attempts to extract grammars
from natural languages, as presented i n [16].

To evaluate usabil i ty of G P — wi th respect to the goal of this work — there are several
drawbacks. Firs t ly , it may take a long t ime to get results. In case of the method presented
in [4], it took over 2 hours to get a result, when working wi th 200 instances of BibT^X
entries. Secondly, the method requires many walk-through of the data set. To compute
fitness of an ind iv idua l , it needs to be compared wi th every data sample. The result of G P
is just the best solution found, it is not guaranteed that it would produce a R E matching
every message of a spam campaign. Another issue is the possible over-generalization. A s
it can be seen i n Figure 3.5, the result is rather too general. O u r goal is to propose an
algori thm, which would be as specific to a certain campaign as possible.

17

file:///w/w/w
file:///w/w/w

Chapter 4

Design of the Algor i thm

In this chapter we are going to detail ly describe the proposed algori thm. B u t first, we are
going to further specify the task it is meant to solve, and address issues it has to overcome.
Then , we w i l l focus on each crucial component of the a lgori thm and how they a l l cooperate
in order to achieve the desired goal. In the end, we present overall architecture of the whole
system.

4.1 Task Description

The goal is to design an algori thm which is able to reversely extract a template of a given
S M S spam campaign, when only samples of the campaign are available. A template must
be represented as a formal model — regular expressions (R E) are preferred. The length
constraint of S M S messages (160 characters) can be taken into consideration for the final
design.

A resulting template should match every message of a given campaign, but not messages
from other campaigns. In case that not every message can be matched, a measure of quali ty
of the output should be provided at the end (chance of mismatching a message from the
same campaign).

The a lgori thm must be able to process large amount of data, as the volume of mes
sages in campaigns can be very high. It should reliably process texts w i th different typing
conventions, separators, etc.

4.2 Addressing the Challenges

There are several issues that need to be overcome i n order to provide sufficient results.
F rom high volume of data, to the fact that messages are intentionally crafted to be highly
variable. Here is a list of these challenges.:

• Volume and variety — To design the a lgori thm and evaluate it , around 300 real
S M S spam campaigns from around the world were used. The smallest campaign
contains around 800 messages. The largest one has over 27000 samples.

• Over-generalization — Produced templates should be able to identify campaigns
from which they were extracted. Therefore, an extracted template should be as
campaign-specific, to the source campaign, as possible. Consider an extreme case
where the resulting R E describing a campaign would be (~\w+ \w+ \w+ \d+$) (a

18

sequence of three words and a digit separated by white-space characters). Even
though it may match every message of the source campaign, it could not be used to
identify the campaign.

• Static/semi-static parts — There might be parts of messages which appear to be
static at the beginning, but turn out to be variable later (date, time, etc.).

• Only positive data — There are only genuine examples of each campaign available.
The learning algori thm is not shown any counter-examples. The input file can, of
course, contain noise (messages that do not belong to the campaign) and messages of
other campaigns. However, they cannot be treated as negative examples, as none of
them is helpful in defining structure of the language.

• Quality of the output — There are mult iple ways i n which a campaign can be
formally described. Even i f we assume to use only R E s as the output, there are
multiple semantically-equivalent representations. The goal is to provide campaign-
specific, easy-to-read results.

• Intentional confusion — The algori thm has to assume that spammers put a lot
of effort into confusing spam filters (intentional misspelling of words, etc.). These
practices make extraction more difficult and they have to be overcome.

4.3 Output Format

We decided to use regular expressions (RE) as the mean of template representation. There
are mult iple reasons for that. A s we consider a campaign to be a finite (therefore regular)
language, R E s are an appropriate tool . They are easier to read and manipulate w i th than
finite automata. Thanks to their usage in many programs (such as grep, awk, lex), they
are very well-known. In terms of further processing, R E s are supported in almost every
programming language.

There are, especially wi th in programming languages, mult iple implementations of R E s
wi th different capabilities. For example, R E s implemented in U N I X grep overcome — in
terms of descriptive power — their formal definition. Therefore, we need to specify which
constructions are going to be used. A s we want to make campaign descriptions simple and
readable, the a lgori thm is restricted to use following constructions only:

• Str ing l i teral — it can be wrapped wi th in a R E group (parenthesis), or not

• Selection of string literals — such as (a |b |c) , also called a choice group

• Opt iona l group indicator — symbol " ? " indicat ing that the value can, but does not
have to, be present

• W i l d c a r d group — " (. * ?) " , non-greedy variant "consuming" as l i t t le as possible

• Type-specific wi ldcard groups — such as an integer wi ldcard " (\ d *) " , etc.

4.4 Extraction Method Design

In this section the general idea of the proposed template extraction algori thm is described.
It is based on finding an alignment of two sequences. The alignment a lgori thm is a modified

19

version of Needleman-Wunsch a lgor i thm described i n Section 3.3.1. The modifications are
explained i n Section 4.4.4. Besides the alignment, there are several more key steps, such as
tokenization and R E construction. A l l of them are also detail ly described i n this section.

4.4.1 T e m p l a t e s a n d Segments

Before demonstrating the proposed algori thm, two terms need to be clearly defined — a
template and a segment. A template is an abstract representation of characteristic proper
ties of a campaign. It is not a certain formal model, but models can be constructed from
it. Therefore, it cannot be used to decide whether a message belongs to a campaign or not.
It needs to be transformed first. The transformation process is not restricted in any way.
Even mult iple formal models (such as a R E and a finite automaton) can be constructed
from a single template.

A template is an ordered collection of segments — typed sets of lexical tokens (described
i n 4.4.3). Segments are filled w i th data during the alignment process. The i r types are helpful
w i th deciding, where each token should be put. For example, a number i n a message is
more l ikely to be aligned wi th a numeric segment, rather than wi th a punctuat ion segment.

W h e n a template is transformed to a formal model, each segment is transformed wi th it.
Segment's type helps wi th handling the data inside (a number is transformed i n a different
way than a date). Here is a list of currently supported segment types:

• TextSegment

• PunctuationSegment

• NumericSegment

• TimeSegment

• DateSegment

Type of a segment is determined by its tokens. If a new token is added to a segment, but
it is incompatible w i t h other tokens i n it , the segment is replaced by a general TextSegment.

4.4.2 T o p - L e v e l V i e w o n the A l g o r i t h m

The extraction procedure is demonstrated in A l g o r i t h m 3. Input of the a lgori thm is a list
containing messages of a single campaign (clustering of messages into campaigns is not part
of this work). The extraction procedure consists of several major steps — tokenization,
alignment, outlier detection, alignment merging and RE construction. These steps w i l l
receive more attention i n following sections.

A n in i t i a l template is constructed from the first message of a campaign. It matches just
the first message. Then , the a lgori thm performs incremental generalization of the template.
Each message updates the template, so it matches a l l of the previously matched messages
and the current message itself. After going through the whole campaign, a template (po
tentially) matches every message of the campaign.

Optionally, messages can be sorted decreasingly by the number of tokens they consist of,
prior to the execution. It improves extraction results i n certain cases. However, it requires
to tokenize the whole campaign. Even messages which would not be tokenized otherwise.
This feature is described more by an experiment i n Section 6.3.2.

20

A l g o r i t h m 3: A n incremental method of message template extraction

Tokens <— tokenize the first message of the data set
Template <— create template from Tokens
TemplateRegex <— generate regex from the template
foreach msg in the campaign do

if msg matches TemplateRegex then
continue

Tokens <— tokenize msg
Alignment <— align(template, tokens)
Similarity <— compute s imilar i ty of the message and the template

if Similarity < THRESHOLD JV ALU E then
Discard the alignment
continue

Merged Alignment <— merge Alignment(Alignment)
Template create new template from the merged alignment
TemplateRegex <— generate regex from Template

OptimizedRegex <— Opt imize template regex for presentation
return OptimizedRegex

Dur ing the generalization process, one message at a t ime is read from the input (whether
it was presorted, or not). If the message matches the current template, nothing is changed
and the message is skipped, because it is already covered by the template. Otherwise, an
alignment between the template and message's token str ing is computed. The alignment
tries to identify s imilar or related parts in the template and the message and pair them
together. The alignment process is further described i n Section 4.4.4.

Of course, some noise (a message which does not belong to the campaign) can be present
in the campaign file. These messages have to be identified and removed, otherwise they
would degenerate the final template. Simi lar i ty of the template and the current message
is computed. If it is lower than a certain threshold, the alignment is discarded and the
message is skipped. Otherwise, the message is accepted and alignment pairs are merged
together — a new template is constructed. More on detecting outliers can be found in
Section 4.4.6.

B y merging an alignment we mean put t ing tokens of a message into template's segments
to which they were aligned to. Th is step produces a new template. The new template is a
generalized version of the old one in a way that the new one covers the previously uncovered
message. A new R E is constructed from the updated template, so the next input message
is compared wi th an accurate template. R E construction is described more in Section 4.4.8.
B y repeating this procedure for a l l messages, the final template w i l l eventually match every
message of the source campaign (except those excluded).

21

4.4.3 T o k e n i z a t i o n

A token is a lexical unit of a message. It encapsulates a string l i teral (a certain part of
a message), its type and possibly more meta-data. It is a unit of extraction (the smallest
data instance). Every extraction-related a lgor i thm works wi th tokens or higher structures
composed from them (such as segments).

Each token type is defined by a R E (e.g. \d+ for numbers). Tokenization is a process
of spl i t t ing an input message into an ordered collection of tokens. However, considering
the character of the data (in sense of our task), it is very difficult to define clear rules
specifying token types. For example, let us assume the string 1011-2365. Does " - " indicate
a subtraction of two numbers, making it three separate tokens "1011", " - " and "2465", or
is the whole sequence a single token indicat ing a serial code? In fact, both of these options
can be val id, even wi th in the same campaign.

It is impossible to define rules which would be val id i n every possible case. Therefore,
we t r ied to extract the most characteristic constructions occurring i n real-world campaigns.
Here is a list of rules that are used to extract tokens:

• numbers — Several types, such as decimal, integer, comma/dot-separated, etc.

• U R L s — Basic representation of U R L s and e-mails.

• punctuat ion

• t ime — It has a relatively consistent representation (there are not that many time
formats).

• date — O n l y a subset of possible date formats, as there are too many.

• slugs — Constructions such as uabl-b4-33,:

• special characters — For example, Unicode characters (© , etc.).

• "any" — A n y sequence of alphanumeric characters.

• white characters — They are not part of the extraction as the other types are, but
it is important to keep the information, whether a token was preceded by a space, or
not.

However, not each of these rules produces its own token type. For example, rules defined
as "slugs" and "any" in the list, produce tokens of the same type. A l l types of tokens are
shown i n Figure 4.1 i n form of a class diagram.

Spaces and other "white" characters do not make separate tokens. They are, however,
extracted from the source file. E a c h token contains information whether it was preceded
by a white-space character or not. Hav ing this information is crucial for generating correct
R E s . A single missing space could make the whole R E incorrect.

4.4.4 A l i g n m e n t of a T e m p l a t e a n d a Message

This is a crucial part of the algori thm. It aligns a template and an input message to
identify their related parts, even though they are lexicographically different and i n different
positions. A s a result, it helps detecting a general pattern of a campaign, such as static
and variable parts.

22

A b s t r a c t T o k e n

JiasLeadingSpace: bool
_value: String
- getValueO : String
- setValue(String)
- setHasLeadingSpace(bool)
- hasLeadingSpaceO : bool

f
TextToken NumericToken DecimalToken

1
Punctuat ionToken DateToken TimeToken

Figure 4.1: Types of tokens and their hierarchy.

A n alignment is basically two sequences of the same length. Items on the same positions
are identified to be related. Some items of these sequences can be empty, which indicates
a gap i n the alignment. A n example of an alignment is shown i n Figure 4.2. F i n d i n g
alignments is performed using Needleman-Wunsch a lgor i thm described in Section 3.3.1.
However, i n order to make it applicable for template extraction, it had to be modified in
several ways.

template: { a , b } {10} {d} {e} {f}

tokens: 11 {d}

a l i g n m e n t . t e m p l a t e : {a,b} {10} {d} {e} {f}

a l i gnmen t . t okens : 11 {d}

Figure 4.2: Representation of an alignment as a structure.

There are two major differences — the algori thm does not al ign just characters, and
lexicographical variabi l i ty is common, when spammers t ry to confuse spam filters. Instead
of just characters, the a lgori thm aligns a template (a collection of sets of tokens) and a
collection of tokens (strings w i t h assigned types). However, the core principle of the method
remains the same. Score and trace-back matrices are used, but a more sophisticated score-
computing function had to be introduced.

The function has to be able to assign a score to (segment-token) pairs. Since a segment is
a set of tokens, the score is computed as the m a x i m u m score of each (segment-token-token)
pair. Formal ly defined as score(Segment, token) = max(Subscores), where Subscores =
{score(segmentToken, token) \ segmentToken G Segment]. The function score is defined
in A l g o r i t h m 4.

The original a lgori thm works wi th three constants — match reward, mismatch penalty
and gap penalty. However, when working w i t h strings, it is more appropriate to use a
measure of similarity, rather than just binary equality concept. A difference i n a single
character is not a reason to apply the full gap penalty. Especial ly when the variabil i ty
of messages is intentionally high. Therefore, the proposed algori thm works wi th only two
constants — gap penalty and full match reward.

23

A l g o r i t h m 4: Simplified version of computing scores for the score mat r ix in modified
Needleman-Wunsch algori thm.

Function score (segment, token):
subscores <— []
foreach segtkn in segment do

if neither is TextToken and both are of the same type then
A p p e n d E X A C T M A T C H V A L U E to subscores

else
s im <— similarity(segtkn, token)
A p p e n d E X A C T M A T C H V A L U E * s i m to subscores

return max(subscores)

Function s i m i l a r i t y (si, s2) :
| return 1 — normalized_levenshtein_distance(sl, s2)

The meaning of the gap penalty remains the same. F u l l match reward is the value
applied when two strings are equal. This value is then mul t ip l ied w i t h the s imilar i ty score,
to reflect how much are those two strings different or similar. More similar pairs, there
fore, w i l l be rewarded more. The s imilar i ty of two tokens is computed using Levenshtein
similarityllO]1.

Next to the s imilar i ty measure, token types are also taken into consideration. If two
non-textual tokens are of the same type, their score is equal to the full match. This , for
example, reflects relations between numbers. Two numbers can be lexicographically com
pletely different (therefore low similar i ty) , but semantically they should be aligned together.
Another example is punctuat ion. Characters like " . " and " , " are completely different, yet
they can have the same meaning wi th in a message. A l so applies that non-textual tokens
are more significant for alignments. If there is a punctuat ion token in both message and
template (relatively close to each other), it is more likely that the best alignment is to put
them under each other and fi l l the remaining space wi th gaps. These relations need to be
emphasized by the score-computing function.

The relationship between full match reward and gap penalty is following. If their differ
ence is too low, the a lgori thm prefers to create gaps in the alignment, or it puts unrelated,
highly different tokens into the same segments, even though there is a better option a bit
further i n the sequence. If the difference is too high, the a lgori thm tries to align tokens
and segments which are too far from each other i n the alignment. Th is may result in too
many gaps and optional segments. B y experimenting, we discovered that the configuration
gap__penalty = 1 and full_match G {4, 5} provides good results on real-world campaigns.

If a segment of a template is aligned wi th a gap, the segment is set to be optional .
Tokens of this segment w i l l not have to be present i n every message. To properly catch
and handle this si tuation is very important . Hav ing an optional segment set as mandatory
could lead to mismatching many messages, which would be matched otherwise.

s i m i l a r i t y is computed from Levenshtein distance by formula: similarity = 1 — normalized_distance

24

4.4.5 O u t l i e r s D e t e c t i o n

Input of the algori thm should be a file containing a single campaign. However, it would
be naive to expect this requirement to be satisfied i n any case. Some noise can always be
present. For this reason the algori thm contains an outlier detection mechanism.

The idea is to compute overall s imilar i ty between the aligned template and the token
string of current message. A l g o r i t h m 5 shows how the general s imilar i ty is computed. It
is very similar to the approach shown i n A l g o r i t h m 4 wi th several differences. It does not
mul t ip ly the s imilar i ty measure wi th any constant value and it "punishes" type incompat
ibilities and gaps more.

If a computed s imilar i ty is less than a certain value (SIMILARITY_THRESHOLD), this
message is discarded and skipped. The threshold is set — based on experiments — to 0.2.
However, it can be easily modified.

A l g o r i t h m 5: The algori thm for computing general s imilar i ty of an alignment,

similarities []
foreach (segment, token) pair of the alignment do

if segment or token is a gap then
A p p e n d —1 to similarities

else
A p p e n d similarity {segment, token) to similarities

OverallSimilarity <— sum(similarities)/size(similarities)

Function s i m i l a r i t y (segment, token):
subscores <— []
foreach segtkn in segment do

if neither is TextToken and both are of the same type then
A p p e n d 1 to subscores

else if segtkn and segment have different types then
A p p e n d —1 to subscores

else
A p p e n d levenshtein_similarity(segtkn, token) to subscores

return max(subscores)

Detection of outliers can be very unclear and subjective. See the example shown in
Figure 4.3 wi th focus on the 9th line. Major i ty of the message matches perfectly wi th other
messages (green parts) or follow similar patterns (e.g. aligned numbers). However, by the
end there are some parts of the message missing, text tokens begin to differ and it even puts
a number where a text l i teral is expected. The decision is, as it was said, very subjective —
is this message an outlier, or not? In the example shown, there is only one such message,
but i n the whole campaign this pattern repeats (less frequently than the major pattern).

A clearer example of an outlier is shown Figure 4.4. Here it is more obvious that
a high-scoring alignment cannot be found. There are only few parts that match precisely,
compared to a l l the parts that are not similar at a l l .

25

(.1) N
V, (Ainda ,iind.i)

nao recebemos s-eu c
a n t íi to para tratar de
ntato para tratar de sei

seu beneficio disponivel
beneficiodisponivel

(enlre|Entre) em contato ío oaoti
o 0800

(ľ+-]?\d+>

1111

\, \.)? (aguardamos Aguardamos)?
aguardarnos

(H .) (-.-u Wh.il.) (KintdMi 1111122222) \,

C) r: nao recebemos sen c
l.ľ i IĽ(.Ľ)L'n](''. SĹ'LI (_

nao recebemos s-eu c
nao recebemos sen c

ntato para tratar de sei
ntato para tratar de sei
ntato para tratar de sei
ntato para tratar de sei

beneficiodisponivel
beneficio disponivel
beneficiodisponivel
beneficiodisponivel

Entre em contato r, o 0800
o 0800
o 0800
o 0800

7777 Aguardamos
Aguardam os
Aguardamos
aguardamos

° s,,,

:;::::: (a)
ta) o

M

nao recebemos sen c
l.ľ i IĽ(.Ľ)L'n](''. SĹ'LI (_

nao recebemos s-eu c
nao recebemos sen c

ntato para tratar de sei
ntato para tratar de sei
ntato para tratar de sei
ntato para tratar de sei

beneficiodisponivel
beneficio disponivel
beneficiodisponivel
beneficiodisponivel enn-e em contato r,

o 0800
o 0800
o 0800
o 0800

SößB
1111

Aguardamos
Aguardam os
Aguardamos
aguardamos ° n :;:::::

(a)
ta)
(a)

J
E
I S: nao recebemos seu c

nao recebemos s-eu c
nao recebemos seu c

ntato para tratar de sei
ntato para tratar de sei
ntato para tratar de sei

beneficiodisponivel
beneficiodisponivel
beneficiodisponivel

Entre

Entre
ZZZl

o 0800
o 0800
o 0800

7777
2222
7990

Aguardamos
Aguardamos
Aatiardamos

™

:;:::::

(a) L Ainda nao recebemos seu c ntato para tratar de sei beneficiodisponivel Entre em contato n o 0800 4444 311 whdts
ta) N Ainda nao recebemos s-eu c ntato para tratar de sei beneficiodisponivel Entre em contato r, o 0800 7777 Aguardamos ! seu contato

Figure 4.3: Demonstrat ion of subjectivity of outliers detection. Does the 9th message
belong to the campaign, or not?

BpkVIbu Yth\,trima kasih servis Toyota (B2|B4|B3|B1) tgl 14V05\.2016 di Auto2000 (G|R|B)? (S|B) \. Jika ada keluhan\, hub (M)? (J|S|R) (P|A)?
1 Bpk/Ibu Yth.trima kasih servis Toyota B l tgl 14.05.2016 di Auto2000 G S . Jika ada keluhan, hub S P
2 Bpk/Ibu Yth.trima kasih servis Toyota B2 tgl 14.05.2016 di Auto2000 B B . Jika ada keluhan, hub J P
3 Bpk/Ibu Yth.Toyota B X akan jatuh tempo utk Service Berkala 10000km. Nikmati C C C C J di Auto2000.S&K* berlaku. Utk Booking hub 061-8888000
4 Bpk/Ibu Yth.Toyota B X akan jatuh tempo utk Service Berkala 30000km. Nikmati C C C J di Auto2000.S&K* beriaku. Utk Booking hub 061-8888000
5 Bpk/Ibu Yth.trima kasih servis Toyota B3 tgl 14.05.2016 di Auto2000 R B . Jika ada keluhan, hub R A
6 Bpk/Ibu Yth.trima kasih servis Toyota B4 tgl 14.05.2016 di Auto2000 S . Jika ada keluhan, hub M S

Figure 4.4: A clearer example of a campaign containing outliers.

4.4.6 M e r g i n g a n A l i g n m e n t

After it is decided that the currently processed message belongs to the campaign, the current
template can be appropriately generalized, so it matches the message. The generalization
is done by merging the previously computed alignment.

Merging of an alignment is a simple process of extending template's segments wi th
tokens they were paired wi th . Since segments are sets, no duplicates are added. There are
three situations that need proper handling:

• Gaps wi th in alignments:

— In the message line — the corresponding segment is set to be optional.

— In the segment line — new segment (of appropriate type) containing the corre
sponding token is created and inserted on the specific posit ion.

• Type-compat ib i l i ty of segments:

— Newly added token is type-compatible w i th the segment to which it is inserted
- nothing special happens.

— Token and segment are type-incompatible — new segment of a more general type
is created and inserted on the correct posit ion. A l l of the o ld and new tokens
are inserted to this segment.

• Token's attributes — if a token of the same value is already i n the segment, informa
t ion about preceding spaces needs to be properly copied.

B y merging the alignment the algori thm approximates construction of Multiple Sequence
Alignment, which is otherwise very difficult to compute, as described in Section 3.3. V i s u a l
demonstration of the merging process is shown i n Figure 4.5. It shows a l l possible cases of
merging a segment and a token (or a gap). E a c h case is highlighted by a different color.

26

http://Wh.il

{a,b} {10} {d} {e} {f}

a 11 c {d}

Merge

{a,b} {10,11} {c} {d} {e} {f, 5}

Figure 4.5: A diagram demonstrating the merging process of segments and tokens. There
are following possible cases of merging: segment-token (both type compat ible / incompat i
ble), segment-gap, gap-token.

4.4.7 R e g u l a r E x p r e s s i o n C o n s t r u c t i o n

A template is just an abstract representation of a campaign and its characteristic prop
erties. Before it can be used to decide whether it matches a message, or not, it needs
to be transformed to a certain formal model — a R E expression i n our case. However,
R E s are not generated directly from templates. A mid-product is introduced — so-called
RegexGroups. Each segment corresponds to a single RegexGroup instance. The i r goal is to
simplify manipulat ion wi th segments during the transformation, by reducing the number
of distinct values and types which segments contain. Also segments' attributes, such as
optionally and leading spaces, are reflected to newly created groups. The transformation
proceeds by following rules:

• If a segment has only one token —>• construct a SingletonGroup.

• Else i f the number of distinct tokens is smaller than a given l imi t —> construct a
ChoiceGroup.

• Else (the number is higher than the l imit) —> bui ld a WildCardGroup.

However, it is not groups' responsibili ty to transform themselves into R E s . T h i s re
sponsibil i ty is given to so-called RegexGenerators. They take each group and bui ld a
corresponding R E from it . The final R E is constructed by merging each groups' R E . Gen
erators need to properly reflect optionali ty and leading spaces of each segment. A n invalid
R E could be generated otherwise. A class diagram of the R E construction sub-system is
shown i n Figure 4.6.

4.4.8 R e g u l a r E x p r e s s i o n O p t i m i z a t i o n

The R E opt imizat ion process is present to increase readabili ty of the result for the user.
Therefore, it only affects "visual" aspects of R E s . Considering that every segment gets
transformed to a corresponding group and then a R E , a si tuation where two R E s cover
each other can occur. Therefore, it is unnecessary to have both of them i n the result.

Let us assume an example of the " (. * ?) " wi ldcard. It is applied whenever a segment
contains too many distinct tokens. Obviously, two consequent segments can be transformed
this way, giving " (. * ?) (. * ?) " as a result. However, i n the semantics of R E s , the latter
wi ldcard completely covers potential matches of the first one, as it is non-greedy. Therefore,
it can be removed.

There are three main opt imizat ion procedures a iming to improve overall readabili ty of
R E s :

27

A b stractReg exG roup

isOptional : bool
hasLeadingSpace: bool <-

- isOptional()
- setOptional(bool)
- setValue(obj)
- getValuei): obj
- hasLeadingSpaceO : bool
- setHasLeadingSpace(bool)

57

AbsractReg exGenerator

+ toRegex(Template): String
+ groups!): [AbstractRegexGroup]
+ reduced Groups)): [AbstractRegexGroup]

+ toRegex(Template): String
+ groups!): [AbstractRegexGroup]
+ reduced Groups)): [AbstractRegexGroup]

Extends

Extends
DefaultRegexGenerator Grouped RegexGenerator IgnoreSpacesRegexGenerator

Singleton Group ChoiceGroup Wildcard Group

ngleton Group

77^
Extends Extends

WildcardGroup WildcardGroup

Figure 4.6: Class diagram of RegexGroups and RegexGenerators.

• Merging sequences of (.*?) wildcards,

• merging sequences of (.*?) wildcards interspaced by optional groups,

• merging sequences of static singletons (mandatory single-token segments).

These three opt imizat ion steps are demonstrated i n Figure 4.7. The original R E got
simplified from 9 to only 4 groups while maintaining the same semantics. However, it is
not just readabili ty that the opt imizat ion process improves. It also helps visual izat ion of
results. The (.*?) wi ldcard is non-greedy (it "consumes" as l i t t le as possible). Therefore,
in a sequence of two such wildcards, the first one would match an empty string. Hav ing
such constructions right next to each other is unnecessary.

(.*?) (.*?) (ab) (cd) (*?) (e)7 (f)7 (*?) (J|k|D?

(.*?) (abed) (*?) (J|k|D?

Figure 4.7: Demonstrat ion of R E opt imizat ion.

There are two more R E opt imizat ion steps present. They are described separately,
because they are left opt ional i n the tool's implementation. Implici t ly, they are turned
off. They are also related to wi ldcard groups. This time, however, they consume optional
groups right in front and behind them, un t i l a mandatory group is found.

The need for these optimizations came up dur ing experimenting wi th real-world cam
paigns. Personal names appear in most of the campaigns. Sometimes they consist of 2
parts, but sometimes they can have up to 4 or 5 parts. Let us assume an example from
Figure 4.8. Mos t names consist of two parts and thanks to their variety, a wi ldcard is
constructed. However, if some messages contain a name wi th three parts, the extra part
w i l l remain as a separate group in the result. In this case an extra opt imizat ion is i n place
(shown in the bo t tom part of Figure 4.8).

However, there are cases in which these second-step optimizations are rather harmful.
A n example of the same, but slightly modified, campaign is shown i n Figure 4.9. The
period character from the second static part was removed from some messages, which
makes it a separate optional R E group. Th i s group is direct ly attached to the wildcard

28

tgl 14\.05\.2016 di Auto2000 (E|I|A|C)? (.*?) (Z|G|K|M)? \. Jika ada keluhan\,
tgl 14.05.2016 di Auto2000 A B . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 C F . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 E FF G . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 H Z . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 I J K . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 L M . Jika ada keluhan,
tgl 14\.05\.2016 di Auto2000 (.*?) \. Jika ada keluhan\,
tgl 14.05.2016 di Auto2000 AB . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 C F . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 EFFG . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 HZ . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 U K . Jika ada keluhan,
tgl 14.05.2016 di Auto2000 L M . Jika ada keluhan,

Figure 4.8: A n example of a real campaign i n which more opt imizat ion is in place (upper
part). A n d how does it look after opt imiz ing optional groups before/after wildcards.

group and, therefore, it gets consumed dur ing the opt imizat ion. In this case it would be
more appropriate to exclude this group from the opt imizat ion.

tgl 14\.05\.2016 di Auto2000 (.*?) Jika ada keluhan\,
1 tgl 14.05.2016 di Auto2000 A B Jika ada keluhan,
2 tgl 14.05.2016 di Auto2000 C F Jika ada keluhan,
3 tgl 14.05.2016 di Auto2000 E FF G Jika ada keluhan,
4 tgl 14.05.2016 di Auto2000 H Z. Jika ada keluhan,
5 tgl 14.05.2016 di Auto2000 I J K. Jika ada keluhan,
6 tgl 14.05.2016 di Auto2000 L M . Jika ada keluhan,

Figure 4.9: A n example of a real campaign i n which the second set of R E opt imizat ion
can be rather harmful. The period character would be, i n this case, better as a standalone
optional group.

Descriptive power of R E s before and after optimizations is the same. Therefore, it is not
necessary to perform them in every step of template generalization. Do ing so right before
the resulting R E is presented to the user is sufficient. Also , it can be completely turned off
without affecting the number of matched/mismatched messages.

4.4.9 P r o p e r t i e s of the D e s i g n — P r o s a n d C o n s

There are several major advantages, as well as drawbacks, to this approach of template
extraction. It is important to mention that the properties described bellow apply mostly
on real-world examples. It is always possible to construct an artificial example in which the
listed advantages w i l l not occur.

Firs t ly , it is important to understand that correctness of a R E on the output is difficult
to measure. There is, potentially, an infinite number of R E s describing the same campaign.
Our goal is to provide a simple, easy-to-read result. However, readabil i ty can be very sub
jective. Therefore, correctness of the result is also very subjective. Sometimes it might be
better to exclude some messages from matching the R E , in exchange for better readability.
It is impossible to draw a clear line here. W h a t we can say is that R E s on the output do not
suffer from so-called exponential blow-up, as they do when they are generated from finite
automata.

29

The algori thm is designed in a way that complex and t ime-consuming operations (e.g.
finding an alignment) are executed only when the current message does not match the tem
plate. Mismatches are expected to happen more frequently at the beginning of execution.
However, as the template becomes more general, it begins to match more and more mes
sages i n the campaign (mismatches become less frequent). This way even large campaign
(with tens of thousands of messages) can be processed relatively fast.

Since the template is generalized only when a mismatch happens and it is modified
only to match the current message, the resulting template is very specific to the source
campaign. Therefore, an extracted template can be (in most cases) used to identify the
campaign from which it was generated. It also makes adding new messages to a campaign
possible without recomputing the whole template.

F rom this advantage — the incremental template generalization — comes the biggest
drawback. The consequence is, that the first message read has the biggest influence on
the output. If the first message happens to be a noise, the result w i l l probably tu rn
out incorrect. This at tr ibute of the a lgori thm should be removed i n the future. One of
the solutions would be extracting mult iple templates from a single campaign. This way
unwanted messages would cluster in their own templates, while the majority of messages
would be matched to the ma in template.

A token is a unit of data manipulat ion in the algori thm. It allows very fine-grained
template extraction. However, in combinat ion wi th the inner representation of templates, it
leads to loss of information about token sequences. For two neighboring segments containing
mult iple values, it is difficult to say which combinations of tokens (if any) occurred on the
input. Th is issue is demonstrated i n Figure 4.10. Par t (1) shows a case i n which a R E
" (s r (a) | s r \ a) \ . " would be a better, more readable result. Case (2), on the other hand,
shows a si tuation where the fine-grained approach is beneficial. It prevents replacing the
whole part of the message by a wi ldcard (because there would be too many distinct values)
and it provides more readable result.

sr (\()? a (\))? \ . sr (\[|\()? a (\]|\))?\.
1 sr (a) . 1 sr (a)
2 sr a I 2 sr (a

•

3sr a
4 sr [a]
5 sr a]
6 sr [a

•

(1) (2)

Figure 4.10: Demonstrat ion of the token sequence disconnection problem. In case (1) fine
grained result decreases readabili ty of the R E . In case (2) it , on the other hand, makes
clearer result and prevents replacing this part w i th a wi ldcard.

The algori thm w i l l always, by its nature, learn a template, because there can always be
an alignment found. E v e n though it is incorrect and does not reflect real characteristics
of the campaign, some alignment be can always found. Therefore, the process has to be
restricted by the outlier detection mechanism. Otherwise, in case of mixed campaigns, the
result would be a combination of both campaigns.

Segments w i th higher volume of distinct tokens are mostly replaced wi th the " (. * ?) "
wi ldcard. It is not an approach helping R E s to be as campaign-specific as possible. W i l d c a r d

30

groups are a trade-off between readabili ty and accuracy. It also makes R E s more flexible
in case of unexpected value.

Lastly, the option of presorting messages by the number of their tokens helps to improve
results i n some cases. However, It requires a l l the messages to be tokenized prior to the
extraction process. Even messages which would be covered by the template and, therefore,
skipped. It also makes slightly less obvious how d id each message affect the template,
because messages are not processed i n the visible order.

4.5 Architecture of the Tool

The template extraction process is an essential part of the tool , but it is not the only thing.
After a template is retrieved, a val idat ion process and result presentation follows. However,
these processes can be logically separated. Therefore, their architectures are also presented
separately, even though they share mult iple components. The top-level architecture of the
template extraction sub-system, i n form of a class diagram, is shown in Figure 4.11.

Sequent ia l Extractor

Random Extractor

Buf feredExtractor

DefaultTokenizer

^dvancedTokenize i

TextSegment

DateSegment

Numer icSegment

Min imal is t icGrouped Generator Ignores pacesGenerator

Grouped Reg exGenerator

Defaul tReg exGenerator

DateWild card Group TimeWild card Group

AbstractReqexGenerator

+ toRegex(Template): String

Abs t rac tReqexGroup

• optional: bool
• hasLeadingSpace: bool
• value: obj
+ setValue(obj)
+ getValue(): obj
+ hasLeadingSpace(): bool
+ isOptional(): bool

Wi ldcardGroup

''Yv AbstractSampleExtractor

+ readline(): String

A
Return

<Use;-
-t> Abst rac tToken izer

•£> + tokenize(String): [AbstractToken]
OUsel-

TemplateExt ractor

+ extract Tern palte (AbstractSampleExtractor
, AbsractTokenizer
, AbstractRegexGenerator
, AbstractAligner
, AbstractMerger) : Template

Sing le tonGroup

Agg regated Si ng I eto n G ro u p

Cho iceGroup

TextToken TextToken

DecimalToken DecimalToken

Punctuat ionToken Punctuat ionToken

Abs t rac tToken

i ^ + setValue(String)
+ getValue() : String
+ set HasLeadingSpace (bool)
+ hasLeadingSpace(): bool

Return
V

Template

segments: [AbstractTempI ate Segment]

- getSegmentsO
- group!) <

AbstractTemplateSegment

value: String
isOptional: bool
hasLeadingSpace: bool

t±+ getValueO : String
n+ removeValueO

+ setOptional(bool)
+ isOptionalO : bool
+ set HasLeadingSpace (bool)
+ hasleadingSpaceO : bool

A
Use

A l i gnmen t

• tokens: [AbstractToken]
• template: Template
+ getTemplate(): Template
+ getTokens(): [AbstractTokens]
+ getGeneralSimilarity(): double

•A- Return

Abs t rac tA l igner

- align([AbstractToken], Template): Alignment

Use

Abst rac tMerger

+ merge(Alignment): Template

1
Need lemanWunschA l igner

• score(AbstractSegment, AbstractToken)

i
Defaul tM erger

Figure 4.11: Class diagram of the template extraction sub-system. Highl ighted classes are
essential components for extraction. It demonstrates how customizable the sub-system is,
because every concrete component is hidden behind an interface/abstract class.

The ma in class is TemplateExtractor w i th its extract Template (. . .) method. The
diagram shows, how customizable the system is. Highl ighted classes represent crucial com
ponents — sample extractor, tokenizer, aligner, merger and R E generator. A l l of them

31

are abstract and contain min ima l interface required from concrete classes. Thanks to this
design, it is very easy to modify behavior of TemplateExtractor or to extend the whole
sub-system. A l l it takes is to implement the desired behavior i n a new class which imple
ments the necessary interface. Then connecting an instance of this class to the system.
Interfaces guarantee compat ibi l i ty wi th other components.

4.5 .1 V a l i d a t i o n S u b - S y s t e m

Val ida t ion is a standalone sub-system wi th in the whole tool . It takes a R E (as a string) on
the input . O n the output it tells how many messages of given campaign match the template
and how many do not. Optional ly, other output-generating components can be connected
to produce addi t ional outputs.

Ex t rac t ion and val idat ion sub-systems share some components (such as sample extrac
tors), but they do not depend on each other i n any way. A template can be extracted
without further val idat ion, as wel l as an existing R E can be just validated on a campaign.

Architecture of the validat ion sub-system (again i n form of a class diagram) is shown
in Figure 4.12. Also this sub-system is easy to modify or extend. There are two bui l t - in
validators available — sequential and random. B o t h of them use SampleExtractor classes
to retrieve a message from a campaign.

de f onMatch(matchObject) : L\
fo r listener in val idationListeners:

l istener.onMatch(matchObject)

de f onMismatch() :
fo r listener in validationListeners

l istener.onMismatchQ

A b s t r a c t S a m p l e E x t r a c t o r

- readline(): String

Seq u ent ia l Ex t rac to r

Abs t rac tVa l i da to r

• val idationListeners: [ValidationListener]

- validate(regex:String, n:int)
- addValidationListener(ValidationListener)
- onMatch()
- onMismatchQ

Seq uent ia l Val id ator RandomVa l ida to r

R a n d o m E x t r a c t o r

de f onMatch(regex, n):

extractor = <Concrete>Extractor()
msgs = extractor.read(n)

fo r m in msgs:
if m matches reges:

fo r listener in validationListeners:
listener.onMatch(...)

e lse:
fo r listener in validationListeners:

listener.onMatch(...)

Va l ida t ionL is tener

h onMatchQ
h onMismatch()
h getOutput()

1
HTMLBu i l de r

1
S i m p l e H T M L B u i l d e r

Figure 4.12: Archi tecture of the validat ion sub-system.

ValidationListeners are components which can be connected to the validat ion pro
cess. Every t ime a match or a mismatch occurs, these components are notified about the
result. E a c h ValidationListener can react to the result differently. So far, HTMLBuilder
has been introduced. It constructs H T M L output i n order to visualize validat ion results.
Most of the examples presented i n this document are generated using this component.
Each t ime a message mis/matches the template, a mis /ma tch callback method of each lis
tener is executed. More Val ida t ion listeners can be introduced in the future for different
visual izat ion methods, or data processing i n general.

32

4.5.2 E x t e n d i n g the S y s t e m

The architecture makes extending system's behavior relatively simple. E a c h crucial part
of the extraction sub-system, can be implemented i n a different way, because a l l of them
are hidden behind interfaces. One of the examples is adding support for binary sequences.
They differ significantly from regular messages, therefore a new tokenizer, which respects
patterns i n binary data, would have to be implemented (potentially new token types). If
it requires updates i n alignment rules, a new aligner can be created and plugged to the
existing environment.

A s long as the new component respects the corresponding interface, there should be no
problem i n extending the system. Interfaces guarantee compat ibi l i ty of components and
make them a l l work together.

33

Chapter 5

Implementation

In this chapter, we briefly describe implementat ion of the template extraction tool based
on the a lgori thm proposed i n Chapter 4. We are going to focus on technologies used to
develop the tool and its features.

The "working" name of the tool is tempex (it stands for Template Ext rac tor) . It is
implemented i n python 3 (version 3.5 was used for development). One of the ma in reasons
why python was selected is that it makes text processing, which is a major por t ion of this
work, much easier than it is i n other (mostly stat ically typed) languages. It also allows fast
development, quick prototyping, supports OOP paradigm1 and has cross-platform support.
There are several other dependencies:

• numpy[19] — A scientific computing l ibrary used for basic mat r ix support.

• PLY[1] — Implementation of lex and yacc parsing tools for Py thon . However, only
Lex part is used to implement input message tokenizer. Support of this l ibrary is only
required when AdvancedTokenizer is used to tokenize messages.

• distance l i b r a ry 2 — Contains python implementat ion of Levenshtein distance (de
veloped using vO.1.3).

• PyQt5 (v5.10.03) [3] — B i n d i n g of the Qt G U I toolki t for python. It is used to bui ld
a simple graphical interface for viewing and modifying outputs of the core program.

5.1 Modules and Packages

There are several modules and packages from which the program is bui l t . Each of them
has its own purpose. This section provides a brief description of a l l of them. If some parts
need to be described i n greater detail , there w i l l be a separate section provided for them.

Here is a list of modules in (partial) logical order of how they are used during the
template extraction process:

• tempex — Separates the class i n control of the template extraction process. The class
is called TemplateExtractor.

1 O O P stands for Object Oriented Programming.
2https: //pypi.org/proj ect /Distance/
3Note that there were some issues considering H T M L rendering when using versions slightly higher.

34

• redef — Th is module s imply contains definitions of several R E s which are used by
multiple modules.

• io. input — It wraps methods of input message extraction. Two main approaches are
sequential and random. Sequential reads given number of message from the beginning
of the source file, while random selects samples randomly.

• tokenize — It contains classes for representing tokens (such as numeric, textual,
punctuation, time, date) and so-called tokenizers, classes dedicated for turning input
messages into collection of tokens.

• template — It encapsulates implementat ion of template and its segments.

• align — The module contains methods for aligning a template and a collection of
tokens, as well as tools for merging the aligned sequences together.

• regex — A set of classes for generating val id R E s from abstract templates. There
are mult iple methods for different R E s present.

• validation — A module designed for val idat ion of extracted R E s .

• io.output.html — Provides an interface for generating H T M L output dur ing the
validat ion process.

5.2 Regular Expression Generators

Output of the extraction process is an abstract representation of campaign's characteristics.
It is not a specific formalism. Thanks to that, it is not l imi ted i n the output presentation.
Even though the tool provides only R E s for template presentation, there are several types
of R E s constructed from the same templates by different RegexGenerator classes. Here is
their list and explanation:

• Def aultRegexGenerator — It creates a val id R E , but it does not put non-variable
parts into python R E group (parenthesis syntax). These parts do not get extracted
during val idat ion. Therefore, it is not a good idea to use a R E , generated by this
generator, for val idat ion wi th H T M L output. Static parts w i l l not be shown. However,
the overall readabili ty is better, R E s are more compact and good for presentation to
humans.

• IgnoreSpacesRegexGenerator — It has s imilar rules as Def aultRegexGenerator,
but ignores leading spaces of each segment. Therefore, the output might be incorrect
for val idat ion. It is used, for example, i n H T M L table headings, where addi t ional
spaces make it more confusing.

• GroupedRegexGenerator — Every part of a message is captured i n a named R E group
(in P y t h o n (?P<name>RE) syntax). This makes R E s difficult to read, but crucial for
val idat ion of a campaign wi th H T M L output, because every part of a message is
captured i n one of the groups.

• MinimalisticGroupedRegexGenerator — S imi lar to GroupedRegexGenerator, but
it uses R E groups without names (simply " (. . .) " syntax).

35

5.3 Output Methods

A support tool would be useless without a way to present its results. Our extraction tool
offers several ways of presenting results to users. The tool is designed to be mostly used in
a command line, where users can use variety of parameters, through which they can modify
behavior of the program. See Append ix A for details on program execution.

For this reason, we focused on presenting results using the command line interface
(CLI). It is demonstrated i n Figure 5.1. It is very simple and it provides users w i th an
extracted template and information about how many messages of a campaign does the
template match.

"(.*?)\As*confira\s*a\s*CAMPANHA\s*PRIMAVERA\s*de\s*DESCONTOS\s*(ESB|ESBELTY|JB|HOT)?\s*(CR|POINT|PRO)?\.\s*
Condicoe5 \ 5*INCRIVEIS \ 5*p\/\s*liquidar \ 5*seu\s*contrato\!\s*ligue\s*0800\s*lll\s*1234\s*ou\s*WhatsApp \ 5*ll\s*
(45678V 55555 199999V 3333) \ . \ 5 * $

Read: 16
Matched: 16

Figure 5.1: The basic output method — command line interface. It provides users w i th the
extracted template and information about how many messages of the campaign it matched.

C L I can be also used to generate H T M L output, which is a visualizat ion of the validat ion
process. Each column represents a R E group. Groups have different colors to make patterns
in campaigns more obvious. A l l static groups (parts that are present in every message) are
green. Opt iona l single-token parts are bright yellow. In choice groups, each option has its
own color assigned. A n d finally a l l wi ldcard groups are red. H T M L output of val idat ing a
real-world campaign is shown in Figure 5.2.

Regex: *?)\, conf ira a CAM PAN HA PRIMAVERA de DESCONTOS(JB|ESBELTY|HOT|ESB)';'(CR P<)[NT PRO|?\. Condicoes 1NCR1VEIS pV liquidar seu contraloV! ligue 0800 111 1234 ou WhatsApp ll(99999\-3333|45678\-55555)(\.)?\s"$

(.*?) \, confira a CAMPANHA PRIMAVERA de DESCONTOS (JB|ESBELTY|HOT|ESB)? (CR|POINT|PRO)? \. Condicoes INCRIVEIS pV liquidar seu contratoM ligue 0800 111 1234 ou WhatsApp 11 <99999\-3333|45678\-55555) (\.)?
ALEX confira a CAMPANHA PRIMAVERA de DESCONTOS JB CR Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
VAND confira a CAMPANHA PRIMAVERA de DESCONTOS JB CR Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
ELIS confira a CAMPANHA PRIMAVERA de DESCONTOS ESB Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
VVER confira a CAMPANHA PRIMAVERA de DESCONTOS JB CR Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
GRA confira a CAMPANHA PRIMAVERA de DESCONTOS PRO Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
REN confira a CAMPANHA PRIMAVERA de DESCONTOS PRO Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
ADA confira a CAMPANHA PRIMAVERA de DESCONTOS JB CR Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
JUC confira a CAMPANHA PRIMAVERA de DESCONTOS PRO Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
DON confira a CAMPANHA PRIMAVERA de DESCONTOS PRO Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
LES confira a CAMPANHA PRIMAVERA de DESCONTOS JB CR Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
NID confira a CAMPANHA PRIMAVERA de DESCONTOS JB CR Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
JUN
ALI

confira a CAMPANHA PRIMAVERA de DESCONTOS
confira a CAMPANHA PRIMAVERA de DESCONTOS

ESB
HOT POINT

Condicoes INCRIVEIS p/ liquidar seu conüato
Condicoes INCRIVEIS p/ liquidar seu conüato

ligue 0800 111 1234 ou WhatsApp 11
ligue 0800 111 1234 ou WhatsApp 11

45678-55555
99999-3333

WEL confira a CAMPANHA PRIMAVERA de DESCONTOS HOT POINT Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 99999-3333
WIL confira a CAMPANHA PRIMAVERA de DESCONTOS ESBELTY Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555
SIL confira a CAMPANHA PRIMAVERA de DESCONTOS JB CR Condicoes INCRIVEIS p/ liquidar seu conüato ligue 0800 111 1234 ou WhatsApp 11 45678-55555

Figure 5.2: H T M L output of the tool . It shows both the extracted template and the
validat ion process visual izat ion. Green columns are static and do not change i n any message,
multi-color columns are choice groups, where each option has its own color, and red ones
are w i ld cards.

5.4 Graphical Interface

The tool also provides a very simple user interface (UI) implemented w i t h PyQt5. B o t h
template extraction and validat ion processes can be performed i n i t . P robab ly the biggest
advantage of using the U I is the possibil i ty to modify the extracted R E , re-execute validat ion
process and see the difference. The U I and modification of the R E is demonstrated in
Figure 5.3. In the example, it is obvious that the first group should be consumed by the
following wildcard. However, this process is difficult to automatize, because i n some cases
this behavior is desired. Therefore, there is a tool for easy modification of the final R E .

36

The U I s imply visualizes H T M L generated during the validat ion process, s imilar ly as in
Section 5.3. However, there are couple of drawbacks. A l l of them are caused by the fact that
the U I is intended to work wi th purely textual R E , not an abstract template. Therefore,
there is less information to use. The most obvious drawback is that the group-coloring
mechanism is less sophisticated. Here, each group gets its own color, without checking i f it
is a static group, a choice group, etc.

'[s*<AP.A)?(»i[\s*LE\s*IMFORMA\s*QUE,^*SrGUE\s*PErJDrENTE\s*EL^*PAGO\=*DE\s*SU\s*CRED:TO\s*PER50rJAL\.ABONE\siEN\5iLAS\si^ÍOfflMAS\si24HS\.)\si$

Input: c_54.csv

Regex: ~ \ S ' J (A Ř A) ? (^ \ S * L E \ S * I N F O R M A \ S * Q U E \ S * S I G ^

K A M A I N E S
E R C A R E L I
L E M A B E A
5 I L M A B E L
N E C C A R L U J
D I M A L A R G E
C I V A S Y L
M A C K A R E L I

A R A R O A P A L A C I O M A R
(J A R A C L A H E C A M E R

.E INFORMA QUE

.E INFORMA QUE

.E INFORMA QUE

.E INFORMA QUE
,E INFORMA QUE
E INFORMA QUE
.E INFORMA QUE
E INFORMA QUE
E INFORMA QUE
E INFORMA QUE

SIGUE
SIGUE
SIGUE
SIGUE
SIGUE
SIGUE
SIGUE
SIGUE
SIGUE
SIGUE

PENDIENTE
PENDIENTE
PENDIENTE
PENDIENTE
PENDIENTE
PENDIENTE
PENDIENTE
PENDIENTE
TENDIENTE
PENDIENTE

EL PAGO
E L PAGO
E L PAGO
E L PAGO
E L PAGO
E L PAGO
E L PAGO
E L PAGO
E L PAGO
E L PAGO

DE SU
DE S U
DE S U
DE S U
DE SU
DE S U
DE S U
DE S U
DE S U
DE S U

MnpC-AT.

CREDITO
CREDITO
CREDITO
CREDITO
CREDITO
CREDITO
CREDITO
CREDITO
CREDITO
CREDITO

PERSONAL
PERSONAL.
PERSONAL.
PERSONAL.
PERSONAL
PERSONAL
PERSONAL
PERSONAL
PERSONAL.
PERSONAL

ABONE
ABONE
ABONE
ABONE
ABONE
ABONE
ABONE
ABONE
ABONE
ABONE

E N LAS
E N LAS
E N LAS
E N LAS
E N LAS
E N LAS
E N LAS
E N LAS
E N LAS
E N LAS

PROXIMAS
PROXIMAS
PROXIMAS
PROXIMAS
PROXIMAS
PROXIMAS
PROXIMAS
PROXIMAS
PROXIMAS
PROXIMAS

24HS.
24IIS.
24HS.
24HS.
24HS.
24HS.
24HS.
24HS.
24HS.
24HS.

LE^b*INFORMA\i*QUE\i•51GUE\^*PENDlENTE^b*ELV,*PAGO^^,iDE\ii5U^l*CREDITO\b*PE^50W\.A30NE\l*E^\5•LA5\b*PROXlMAS\^*24MSV)\i*S

Input: c_54.csv

Recjex: "\st(.*?)(ks*LE\s*INF01VMA\s*QUE\s*SIGUE\s*rENDIENTE\s*EL\s*PAGO\s*DE

K A M A I N E S

E R C A R E L I

L E M A B E A

S I L M A B E L

N E G C A R L U J

D I M A L A R G E

C I V A S Y L

M A C K A R E L I

A R A R O A P A L A C I O M A

A R A C L A H E C A M E R

. E I N F O R M A Q U E

_ E I N F O R M A Q U E

^ E I N F O R M A Q U E

. E I N F O R M A Q U E

^ E I N F O R M A Q U E

. E I N F O R M A Q U E

\M I N F O R M A Q U E

I N F O R M A Q U E

^ E I N F O R M A Q U E

JL I N F O R M A Q U E

S I G U E

S I G U E

S I G U E

S I G U E

S I G U E

S I G U E

S I G U E

S I G U E

S I G U E

S I G U E

P E N D I E N T E

P E N D I E N T E

P E N D I E N T E

P E N D I E N T E

P E N D I E N T E

P E N D I E N T E

P E N D I E N T E

P E N D I E N T E

P E N D I E N T E

P E N D I E N T E

E L P A G O

E L P A G O

E L P A G O

E L P A G O

E L P A G O

E L P A G O

E L P A G O

E L P A G O

E L P A G O

E L P A G O

D E S U

D E S U

D E S U

D E S U

D E S U

D E S U

D E S U

D E S U

D E SU

D E S U

C R E D I T O

C R E D I T O

C R E D I T O

C R E D I T O

C R E D I T O

C R E D I T O

C R E D I T O

C R E D I T O

C R E D I T O

C R E D I T O

P E R S O N A L .

P E R S O N A L .

P E R S O N A L .

P E R S O N A L .

P E R S O N A L .

P E R S O N A L

P E R S O N A L

P E R S O N A L

P E R S O N A L

P E R S O N A L

A B O N E

A B O N E

A B O N E

A B O N E

A B O N E

A B O N E

A B O N E

A B O N E

A B O N E

A B O N E

E N L A S

E N L A S

E N L A S

E N L A S

E N L A S

E N L A S

E N L A S

E N L A S

E N L A S

E N L A S

P R O X I M A S

P R O X I M A S

P R O X I M A S

P R O X I M A S

P R O X I M A S

P R O X I M A S

P R O X I M A S

rROXIMAS
P R O X I M A S

P R O X I M A S

2 4 H S .

2 4 H S .

2 4 H S .

2 4 H S .

2 4 H S .

2 4 H S .

2 4 H S .

2 4 H S .

2 4 H S ,

2 4 H S .

Figure 5.3: Simple G U I provided wi th the tool plus demonstration of the possibil i ty to
modify the regular expression and re-run validation.

A s it was mentioned before, the U I is very simple. It has never been intended to be
the main output method of the tool . It mostly serves as a support mechanism for the
extract ion/val idat ion process.

37

Chapter 6

Method Evaluation and
Experiments

The main focus of this chapter is to demonstrate how well does the proposed extraction
algori thm perform on real-world data, what is the quali ty of its outputs, and what are the
benefits and drawbacks. Before that, the datasets used during development and experi
menting are described.

6.1 Used S M S Spam Datasets

For a l l phases of a lgori thm design and result evaluation, real-world examples of S M S spam
campaigns were used. A l l together, there were 300 campaigns — 100 from B r a z i l , 100 from
Indonesia and 100 from Argent ina . They often contain sensitive data. Therefore, i f there
are examples presented, such information is modified to get randomized character.

Variety of campaigns that can be found i n the datasets is really high. F r o m campaigns
wi th several hundreds of messages, to campaigns wi th almost 30 000 messages. Rea l ly
simple ones w i t h low variety among messages, as well as campaigns so complex that it
would be very difficult for a human to discover a pattern in i t . Some are purely ascii-based,
some contain special Unicode characters. Most of them are wri t ten i n a natural language,
others are closer to formal languages.

W h a t is common to a l l of them is that every message of every campaign is somehow
different. There are mult iple mechanisms to achieve this intra-campaign variabili ty. Here
is a list of the most common practices:

• Variable data — E a c h message contains a different value for a certain smal l part
(typical for names).

• Variable length — Messages consist of different number of tokens.

• Missing parts — A subset of the previous case. Cer ta in parts are completely missing
in some messages.

• Lower/upper-case — M i x i n g upper-case and lower-case notation.

• Different formats — Messages use mult iple formats to display the same type of data
(typical for time, dates, etc.)

38

Most common or interesting practices, as well as overall evaluation of tool's perfor
mance, are shown in following sections. Out of those three country-based campaign sets,
the Braz i l i an and the Argent in ian provide the best results. The Indonesian set contains
campaigns, which often lack structure, patterns are very weak, and they contain a lot of
noise.

W h e n an example is shown in this chapter, only a smal l por t ion of the whole campaign
is shown. This way the results are compact enough for presentation. However, some
information my be missing. For example, not every token, which appears i n the R E , can
be shown in the messages. O f course, we t ry not to omit any important detail , but it is not
possible to show everything.

6.2 Template Extraction Performance

The algori thm is designed i n a way that the most t ime-consuming algorithms are executed
only when the current template does not cover the currently processed sample. The more
general the template becomes, the less mismatches occur. The goal of this practice is to
significantly reduce t ime necessary for the extraction. It is important to understand that
the amount of samples needed to extract a template depends on complexity of a campaign.

Firs t ly , 10 large campaigns were selected (10 000 messages and more), without taking
their complexity into consideration. Here are the observed results:

Campaign name Used samples Campaign's size

A r g e n t i n a / c _ 0 13 28 760
A r g e n t i n a / c _ l 12 24 974
A r g e n t i n a / c _ 8 5 11706

B r a z i l / c _ 0 5 11740
B r a z i l / c _ l 5 11121

lndones ia /c_0 15 16 522
I n d o n e s i a / c _ l 13 12 625

Table 6.1: For 7 selected large campaigns, it shows how many samples were used for tem
plate extraction and how many samples are there i n total .

Here average results for a l l campaigns [average number of samples used / average size of
the campaign]:

• Brazil - 7.72/2726

• Argentina - 7.62/4364

• Indonesia - 13.02/2697

We can see that there are very few samples (compared to campaigns' sizes) used to
extract a template. It significantly reduces t ime necessary for extraction. Especial ly finding
an alignment is a very "expensive" procedure. E l imina t i ng it to so few executions is a great
benefit. It is also common that these characteristic samples are often spread somewhere
close to the beginning of a campaign. Therefore, it is usually possible to use first, let us
say, 100 samples to get a template matching up to 99% percent of the whole campaign.

39

6.3 Template Quality on Specific Examples

This section is dedicated to presenting several examples of real-world S M S spam campaigns
wi th certain characteristic properties. The goal is to show how does the extraction tool
handle these si tuation and to justify certain mechanisms buil t into the tool , such as R E
opt imizat ion and data pre-sorting. Besides showing real-world data only, there are also
several examples crafted precisely to target certain aspects of the tool .

6.3.1 C a m p a i g n s w i t h S t r o n g P a t t e r n s

In the beginning, we are going to present the type of campaigns for which a good result
is provided without any problem. Those are campaigns i n which large por t ion of tokens is
static (does not change). They can be used as reference examples for further, more complex,
campaigns.

A t r i v i a l example is shown i n Figure 6.1. The pattern in this case is very strong. There
are only two variable parts. One results i n a wi ldcard group, because the amount of distinct
values is too high. The other ends up as an integer wi ldcard group, because only numbers
are present i n there.

(.*?) \, A L E A L assessoria Bradesco te convida pV regularizacao da sua pendencia\. Ligue\: 0800055555V40222333 oil Whats 11 99999\-8888\. Cod ([+-]?\d+)
C H E I L A , A L E A L assessoria Bradesco te convida p/ regularizacao da sua pendencia. Ligue 0800055555/40222333 ou Whats 11 99999-8888. Cod 11226817
A L L A N , A L E A L assessoria Bradesco te convida p/ regularizacao da sua pendencia. Ligue 0800055555/40222333 ou Whats 11 99999-8888. Cod 20178297
G A B R I E L , A L E A L assessoria Bradesco te convida p/ regularizacao da sua pendencia. Ligue 0800055555/40222333 ou Whats 11 99999-8888. Cod 20308489
A N T O N I O , A L E A L assessoria Bradesco te convida p/ regularizacao da sua pendencia. Ligue 0800055555/40222333 ou Whats 11 99999-8888. Cod 20266208

Figure 6.1: A n example of a t r i v i a l campaign, w i th a very strong pattern and only two
variable parts.

A sl ightly more complicated example is shown i n Figure 6.2. The pattern there is s t i l l
strong, but more variable parts are detected. However, the R E describing this campaign
s t i l l perfectly reflects the pattern of the campaign.

(.*?) Seu (desconto|DESCONTO) foi atualizadoV Confira agora a nova propostaV Ligue (08001111111|08009999999) \. Valido ate 09V10V
CIRLENE Seu DESC0NT0 foi atualizado. Confira agora a nova proposta. Ligue 08001111111 . Valido ate 09/10.
A N D R E L I N A Seu DESC0NT0 foi atualizado. Confira agora a nova proposta. Ligue 08009999999 . Valido ate 09/10.
JEISYANE Seu desconto foi atualizado. Confira agora a nova proposta. Ligue 08001111111 . Valido ate 09/10.
JOSIVALDO Seu desconto foi atualizado. Confira agora a nova proposta. Ligue 08001111111 . Valido ate 09/10.
JOSEILDO Seu DESCONTO foi atualizado. Confira agora a nova proposta. Ligue 08001111111 . Valido ate 09/10.
OZIANE Seu desconto foi atualizado. Confira agora a nova proposta. Ligue 08001111111 . Valido ate 09/10.
JANDIRA Seu DESCONTO foi atualizado. Confira agora a nova proposta. Ligue 08001111111 . Valido ate 09/10.
J O S E L M A Seu DESCONTO foi atualizado. Confira agora a nova proposta. Ligue 08009999999 . Valido ate 09/10.

Figure 6.2: A campaign wi th a strong pattern, but mult iple variable parts.

6.3.2 P r e - S o r t i n g of the C a m p a i g n

The extraction algori thm allows processing campaign messages sorted by the number of
tokens they consist of (in decreasing fashion). Through experimenting we discovered that
i n some cases pre-sorting of the input dataset improves results of the aligning process.

Once a token is assigned to a segment, it cannot be moved to another one, even though
it would fit there better. It is not known where does a token fit the best, un t i l a l l samples
are processed. However, then it is too late to move them around. If a token appears first
in the longest possible message (which contains this token), it is easier to al ign the same
token when shorter messages are being processed.

40

(.*?) CONSULTEVNEGOCIE SEU DEBITO (.*?) CONSULTEVNEGOCIE SEU DEBITO
1 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 1 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
2 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 2 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
3 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 3 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
4 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 4 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
5 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 5 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
6 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 6 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
7 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 7 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
8 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 8 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
9 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 9 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
10 PEDRO, CONSULTE/NEGOCIE SEU DEBITO 10 PEDRO CONSULTE/NEGOCIE SEU DEBITO
11 JOSE, CONSULTE/NEGOCIE SEU DEBITO 11 JOSE CONSULTE/NEGOCIE SEU DEBITO
12 PREZADO(A), CONSULTE/NEGOCIE SEU DEBITO 12 PREZADO(A) CONSULTE/NEGOCIE SEU DEBITO
13 M A R C E L O , CONSULTE/NEGOCIE SEU DEBITO 13 M A R C E L O CONSULTE/NEGOCIE SEU DEBITO
14 LUIZA, CONSULTE/NEGOCIE SEU DEBITO 14 LUIZA CONSULTE/NEGOCIE SEU DEBITO

(1) (2)

Figure 6.3: A difference between not pre-sorting the campaign (1) and doing so (2). The
correct posit ion is better identifiable, if longer (token-wise) messages are processed first.

A n example of pre-sorting is shown in Figure 6.3. Par t (1) shows that the comma
character is not identified and gets covered by the wi ldcard . In (2), which had been pre
sorted, it becomes a static part. However, benefits of pre-sorting do not apply to every
campaign. Therefore, it is left as an optional step. It is controlled by an argument of the
program. A s presented i n Section 4.4.9, the main drawback of pre-sorting is the necessity
of tokenizing every message of a campaign. Even though it would not be used to generalize
the template.

6.3.3 A n O u t l i e r R u i n i n g It A l l

Following experiment shows that it is not always desirable to use the whole campaign for
template extraction, but rather its subset. Figure 6.4 shows a problem of one message
significantly decreasing readabili ty of the resulting R E . The message is similar enough to
the common case, so it is not removed as an outlier. Its certain part is significantly different,
though. In this case, the message might be deformed by an error dur ing I / O operation,
however its influence on the result is visible. This specific campaign contains 5 832 messages.
Less than twenty of them is problematic i n the described way. The generated R E matches
5 813 of messages (the others are correctly removed as outliers).

Regex: AOLA(.*?> tudo bem(\;|\?)(sn|sou|seu)(a|VeliiHGerem^

OLA (••?) tudo bem (\;|\?) (sn|sou|seu) (a|Velit) <Gerente|a ue) (Marta |Aline) (.*? (\)|\A|\@|\,)
OLA r tudo bem ? sou a Gereme Aline e preciso falar com voce sobre o sc u DEBITQ Itau zamos seu DESCONTO me
OLA A tudo bem sou a Serenle Aline e preciso falar com voce sobre o sc u DEBITQ Itau atual zamos seu DESCONTO me
OLA 5 tudo bem sou a Gereme Aline ' preciso falar com voce sobre o se u debito Itau atual zamos seu desconto me
• L A H tudo bem sou a Gereme Aline = preciso falar com voce sobre ost u DEBITO Itau atual zamos seu desconto me
OLA S tudo bem sou a Gereme Aline e preciso falar com voce sobre o sc u DEBITQ Itau atual zamos seu desconto me
OLA A tudo bem sou a Gereme Aline e preciso falar com voce sobre o sc u debito Itau zamos seu desconto me
OLA R tudo bem sou a Gereme Marta ° preciso falar com voce sobre o sc u debito do Itau atual zamos seu desconto me
OLA L tudo bem sou a Gereme com wD9g A []V,A[](P o sen DEBITC| Itau.atu lizamos seu desconto me
OLA T tudo bem sou a Serenle Aline e preciso falar com voce sobre o sc u debito Itau atual zamos seu desconto me
OLA 1 tudo bem sou a Gereme Marta ' preciso falar com voce sobre o se 4 DEBITO do cart ao Cetelem, Jtual zamos seu DESCONTO me
• L A tudo bem sou a Gereme Aline = preciso falar com voce sobre ost u debito Itau atual zamos seu desconto me

Figure 6.4: A n example of a campaign in which a very smal l por t ion of a message (which
is not detected as an outlier) influence the result i n a very significant way.

41

O n the other hand, Figure 6.5 shows the very same campaign, but only 100 samples were
used to extract the template (and the number could go even lower). The result matches
5 743 messages of the campaign and it successfully gets r i d of those problematic samples.
Another , but less significant, advantage is a slightly reduced execution t ime.

OLA (.*?) tudo bem\? sou a Gerente (Aline Marta) e preciso falar com voce sobre o seu (debito|DEBlTO) (do)? Itau\,atualizamos seu (DESC0NT0 |desconto) me
1 O L A J tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu DEB1TO Itau,atualizamos seu DESC0NTO me
2 O L A J tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu DEB1TO Itau,atualizamos seu DESCONTO me
3 O L A W tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu DEB1TO Itau,atualizamos seu DESCONTO me
4 O L A J tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu DEB1TO Itau,atualizamos seu DESCONTO me
5 O L A N tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu debito Itau,atualizamos seu desconto me
6 O L A M tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu DEB1TO Itau,atualizamos seu DESCONTO me
7 O L A F tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu debito Itau,atualizamos seu desconto me
8 O L A A tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu DEBITO Itau,atualizamos seu DESCONTO me
9 O L A S tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu debito Itau.atualizamos seu desconto me
i n or A H tudo bem? sou a Gerente Aline e preciso alar com voce sobre o sen DEBITO Ttau.atualizamos sen desconto me
11 O L A S tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu DEBITO Itau,atualizamos seu desconto me
12 O L A A tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu debito Itau,atualizamos seu desconto me
13 O L A A tudo bem? sou a Gerente Aline e preciso alar com voce sobre o seu debito Itau,atualizamos seu desconto me
14 O L A R tudo bem?sou a Gerente Marta e pieciso alar com voce sobre o seu debito do Itau,atualizamos seu desconto me

Figure 6.5: The same campaign, but only 100 samples were used for extraction. The
template d id not degrade, because problematic samples got filtered out.

6.3.4 T o k e n Sequences D i s c o n n e c t e d

It was already briefly mentioned in the summary of extraction algorithms' properties (Sec
t ion 4.4.9). A token is a unit of alignment and a segment is an aggregation of tokens. Dur ing
merging of an alignment, each token is put into a segment. B y this step, information about
sequences of tokens is lost. The result is shown i n Figure 6.6 — part (1) shows the result
w i t h secondary R E opt imizat ion turned off, in part (2) it is turned on.

(Sr)? (\.)? (\()? (a)? (\))? (.*?) \, (Ainda|ainda) nao recebemos (.*?) \, (Ainda|ainda) nao recebemos
1 Sr • (a) M , ainda nao recebemos 1 Sr.(a) M , ainda nao recebemos
2 W | Ainda nao recebemos 2 W , Ainda nao recebemos
3 o , Ainda nao recebemos 3 o , Ainda nao recebemos
4 Sr (a I I E | Ainda nao recebemos 4 Sr.(a)E , Ainda nao recebemos
5 Sr • (a I I R | ainda nao recebemos 5 Sr.(a) R , ainda nao recebemos
6 Sr (a I I H | ainda nao recebemos 6 Sr.(a) H , ainda nao recebemos
7 D j Ainda nao recebemos 7 D , Ainda nao recebemos
8 M , Ainda nao recebemos 8 M , Ainda nao recebemos
9 Sr • (a I I M , ainda nao recebemos 9 Sr.(a) M , ainda nao recebemos
10 Sr • (a I I Ainda nao recebemos 10 Sr.(a)L , Ainda nao recebemos
11 Sr (a I I w , Ainda nao recebemos 11 Sr(a) W , Ainda nao recebemos
12 Sr (a) F | Ainda nao recebemos 12 Sr(a) F | Ainda nao recebemos

(1) (2)
Figure 6.6: Token sequence disconnection caused by loss of information during alignment
(1) w i t h addi t ional R E opt imizat ion turned of. Same campaign wi th addi t ional R E opti
mizat ion shown in (2). The optional segments get covered by the wildcard.

The described problem is mostly visible i n part (1), but it affects both . The correct
solution is, however, subjective. If a l l possibilities (of yellow sequence) were listed, it would
easily exceed the given l imi t . Therefore, it would degrade into a wi ldcard group. It would
end up as shown i n part (2). The part "(Sr)?(\.)?" is not so harmful, considering that
the ' . ' does not appear i n every instance. However, the sequence " (\) ? (a) ? (\) ? " always

42

occurs together. R E " (\ (a \)) ?" would be more suitable. W h a t is the correct solution here
depends on users' requirements. The algori thm catches and visualizes the pattern nicely.
Users can always modify the resulting R E manual ly to fit their needs.

However, such fine-grained approach allows detecting smal l deviations from the (cur
rent) pattern. It is shown i n part (1) of Figure 6.6, where the missing dot character is
detected, even though such pat tern has not been observed yet. Sadly, the meta R E char
acters (parenthesis, question marks) make the result more difficult to read.

6.3.5 T y p i n g C o n v e n t i o n s

A very common trick to make spam detection more difficult is using different typing conven
tions. Most common cases are shown in Figure 6.7. Par t (1) displays different conventions
used for representing date and time.

Another very common case affects phone numbers (or long sequences of numbers in
general). A s shown i n part (2), some of them are typed as whole, others are split into
several parts. Th is is extremely difficult to catch correctly during tokenization. Therefore,
a more suitable analysis is required after. However, in terms of visual presentation the tool
makes the pattern nicely visible for users.

\ @ (31\-05|31V05|31V05V17|31\.05
@ 31/05
I 31/05
@ 31.05.17
@ 31/05
131-05
I 31/05
I 31/05
@ 31/05/2017
@ 31/05

.17) (\d\d\: \d\d(ľ:\: \d\d)?)?
07:40:20
14:04
06:30:22
15:57:16
19:13:13
09:50
11:44:17
20:48:15
19:08:58

(agora ?paia
para

(4444)? (44446666|5555|2222)
4444 5555
4444 5555

4444000(5

oil (0800
ou 0800
ou 0800

? (777|666)? (08001238888|6333|8888) \.

777 6333 1

pľra

(4444)? (44446666|5555|2222)
4444 5555
4444 5555

4444000(5

oil (0800
ou 0800
ou 0800

0(1001 2.1(1(1(1(1
para 4444 r,r,r,1 ou 0800 777 0.™
paiň 44440000 on 0(tooi2iítítítíi

agora para 4444 2222
4444 2222

in OfiOO
ou 0800

f,f,r,
666

8(1(1(1
3333

.gor. z 4444 2222
4444 5555

ou 0800
ou 0800

66G
777

8888
6333 ^Ml

para 44446666 on 08001238888
para 4444 2222 ou 0800 bbb 8888
para 4444 5555 ou 0800

agora para 4444 2221 ou 0800 bbb 8888
para 4444 5555 ou 0800 777 6333
para 4444 5555 ou 0800 6333

([+-]?\d+[.,]\d+(?:U\d+)*) \= <[+-]'/\d+[.,]\d+<?:[.,]\d+r)
10.700 = 168.3(10
5.950 = 249.700
10.900 = 130.259
5.875 = 1.691.279
10,699 - 267,404
5.700 1 168.100
10.900 - 146.201
5,800 = 370,200
6,100 - 248,200

(1) (2) (3)

Figure 6.7: Examples of the most common cases where spammers use different notations
- (1) date and time, (2) phone numbers, (3) numbers.

Last, but not least, case shown in part (3) of Figure 6.7 affects numbers i n general.
M u l t i p l e conventions can be used to write down a number. M o s t l y thanks to different
decimal and thousands separators.

6.3.6 C a m p a i g n w i t h M a n y H i g h l y - V a r i a b l e P a r t s

M a n y campaigns that we have analyzed follow this pattern — the structure is more or less
fixed, but they contain mult iple parts where highly variable data is placed. A n example is
shown in Figure 6.8. The ratio of fixed and variable parts is similar. The example contains
five fixed parts, as well as five variable parts. We can see that variable parts can differ bo th
lexicographically and i n the number of tokens they consist of. However, we can conclude the
algori thm succeeded in this case. It discovered the structure of the campaign and provided
a readable R E on the output.

6.3.7 C a m p a i g n w i t h M a n y Frequent S u b - P a t t e r n s

This example shows a campaign wi th many sub-patterns (Figure 6.9). M a n y of the con
structions discussed it this section can be seen here — a highly variable part w i t h names,
different token types, opt ional groups, value-selection groups, rarely occurring va lues , . . . A l l

43

(.*?) \, (.*?) tenes \$ ([+-]?\d+) para c omprar en (.*?) presenta este cod de CY\! ([+-]?\d+) FELIZ DIA MAMA\!
1 C A L A CR tenes $ 13900 para c omprar en B U HO presenta este cod de C Y ! 11111 FELIZ DIA M A M A !
2 JA G R NO tenes $ 21300 para c omprar en L U HO presenta este cod de C Y ! 22222 FELIZ DIA M A M A !
3 R O R O E N tenes $ 4900 para c omprar en C A A L presenta este cod de C Y ! 33333 FELIZ DIA M A M A !
4 M O R A E S tenes $ 10500 para c omprar en LOS 5 HE presenta este cod de C Y ! 44444 FELIZ DIA M A M A !
5 M A A R M A tenes $ 7500 para c omprar en CRI M A presenta este cod de C Y ! 55555 FELIZ DIA M A M A !
6 OL SE ED tenes $ 20400 para c omprar en G A A U presenta este cod de C Y ! 66666 FELIZ DIA M A M A !
7 SO EL FI tenes $ 6700 para c omprar en L A TA H O G A R presenta este cod de C Y ! 77777 FELIZ DIA M A M A !

Figure 6.8: A n example of a campaign where the ratio of fixed and highly variable parts is
similar.

of them make extracting a pattern difficult for a human. Visua l iza t ion can be, therefore,
very useful.

It is difficult to automatical ly detect and remove outliers. In this case, certain parts
of messages can differ significantly from each other. Hav ing a visual representation of the
template can be very useful in case a user decides to modify the R E manually.

(.*?) (Hasra|Del) 6)?
6

(el|al) 16V10
d 16/10

en (Changoma |Walmart) (\,l? 35'i%
35%

(de)? (ahorro)? EN (3|5) CSI
EN 2 CSI

(•••0? (con|Con)
Con

tu)? Tarjeta Wal mar eri tablets\, peque)o electro., indumentaria (y)? (V)? (calzado ? (100C|y) (tope|Tope) (1000)? (\.)? (Desust
y Tope 1000 Info

Info; ,

IS Del e d 16/10 n Wal mart de ahorro EN 3 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a y Tope 1000 Info

C Hasta el 16/10 D Charigomas EN 5 CSI con Tarjeta Walmart e (ablets, peque)o e ectro, indumenlai'a calzado y Tope 1000 Info
] Haste d 16/10 n Changomas EN 5 CSI con Tarjeta Wdmart e lablets, peque)o e ectro, indumentaria calzado y Tope 1000 Info
D Del e íl 16/10 n Walmart de ahorro EN 3 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a y Tope 1000 Info
R Del 6 d 16/10 n Walmart d-? ahorro EN 3 CSI con Tarjeta Walmart e lablets. peque)o e ectro, indumentaria y Tope 1000 Info

*
|DC1

el 16/10
el 16/10
d 16/10

n Charigomas EN 5
EN 5
EN 3

CSI
CSI
CSI

con Tarjeta Walmart e lablets, peque)o e ectro, indtimemarla calzado
calzado

y Tope 1000
1000
1000

info

H |DC1 6

el 16/10
el 16/10
d 16/10

n Charigomas

do ahorro

EN 5
EN 5
EN 3

CSI
CSI
CSI con

Tarjeta Walmart e
Tarjeta Wdmart c

lablets, peque)o e ectro, indumenlai'a

calzado
calzado

y Tope

1000
1000
1000 ľĹ ',

E Del e d 16/10 31 Walmart de ahorro EN 3 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a y Tape 1000 Into /
U Del fi d 16/10 n Walmarl 35% EN 3 CSI ron n Tarjeta Walmart e lahlets. pequp)n p prtrn, indiimenlar'a y . 1000 topp
F Del 6 d 16/10 n Walmarl de •diurru EN 3 CSI con Tarjela Wallnau e lablels, peque)u e ecliu, iiidumeiilaila y T"T* 1000 IILÍU /

J Hasta el 16/10 D Charigomas EN 5 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a calzado y Tope 1000 Info /
M Del 6 d 16/10 n Walmart d? ahorro EN 3 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indumemaria Y Tope 1000 Info /
Ü Del fc d 16/10 n Walman 35% EN 3 CSI con Ľ Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a y • 1000 tope Desusc /
VI Del e d 16/1D n Walmart 35% EN 3 CSI con Ľ Tarjeta Walmart e lablets, peque)o e ectro. indumenlai'a y . 1000 tope Desu.sc /
P Del 6 d 16/10 en Wdmart , 35% de ahorro EN 3 CSI con Tarjeta Walmart e liable, pequejoe ectro, indumemaria y Tope 1000 Info 1
K Hasta el 16/1D D Charigomas EN 5 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a calzado y Tope 1000 Info /
M Hasta d 16/10 TI Changomas EX 5 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indumentaria calzado y Tope 1000 Info /
A Del e d 16/10 n Walmart 35% EN 3 CSI con Ľ Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a y 1000 tope
L Hasta el 16/10 D Changomas EN 5 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indu menlar: a calzado y Tope 1000 Info /
O j Del 6 d 16/10 n Walmart de ahorro EN 3 CSI con Tarjeta Walmart e .table*, pequejoe ectro, indumeniai-a y Tope 1000 Info 1
C Del e d 16/10 TI Walmart de ahorro EN 3 CSI con Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a y Tope 1000 Info /
T Del 6 d 16/10 n Walmart d-? ahorro EN 3 CSI con Tarjeta Walmart e lablets. peque)o e leclro, indumemaria y Tope 1000 Info /
R
O

R |DC1

el 16/10
el 16/10
d 16/10

n Changomas

35%

EN 5
EX 5
EX 3

CSI
CSI
CSI

con Tarjeta Walmart e
Tarjeta Walmart e

u Tarjeta Walmart c

tablets, peque)o e
lablets, peque)o e ectro, indumenlai'a

calzado

1000 tope

1000
1000

info j R
O

R |DC1 6

el 16/10
el 16/10
d 16/10

n Changomas

35%

EN 5
EX 5
EX 3

CSI
CSI
CSI con

Tarjeta Walmart e
Tarjeta Walmart e

u Tarjeta Walmart c

tablets, peque)o e
lablets, peque)o e ectro, indumenlai'a

y •

calzado

1000 tope

1000
1000

Desusc /
L Del e d 16/10 n Walmart 35% EX 3 CSI con Ľ Tarjeta Walmart e lablets, peque)o e ectro, indumenlai'a y • 1000 tope Desusc /
n Del fi d 16/10 n Walmarl 35% FX -. CSI ron n Tarjeta Walmarl p lahlets. pequp)n p prtrn, indiimenlar'a y . 1000 topp Denn w /
E Del 6 d 16/10 n Walmarl de ahorro EN 3 CSI con Tarjela Wallnau t lablels, peque)u e ecliu, iiiduineiilaiia y Tbuf 1000 IiiTu §

Figure 6.9: A campaign wi th a significant fixed part, but several frequent sub-patterns.

6.3.8 T e m p l a t e D e g e n e r a t i o n

A s much as the algori thm tries to extract a template, there is certain weakness in i t . The
threshold between transforming a segment into a choice group or a wi ldcard is a fixed
number, which can be exceeded.

In figure 6.10 is shown an example which emphasizes this issue. Each segment s imply
gets more value than the threshold allows. This makes every segment to be transformed
into a wi ldcard . The result after opt imizat ion is " (. * ?) " . O f course, the threshold can be
raised, but it w i l l s t i l l be a finite value. This significant drawback represents a trade-off (or
a conflict) between readabili ty and accuracy.

Even though this is an artificially constructed example, it demonstrates another spam
mers' approach to make S M S spam campaigns more diverse — intentional typos. Figure
6.11 shows a real-world example. Especia l ly i n S M S spam, typos can be quite common,
because people do not care that much about them. This way a spammer can construct a
more "trustworthy" message for advertisement, phishing, etc.

44

http://Desu.sc

(.*?)

1 a b c d e f

2 aa bb cc dd ee ff

3 aaa bbb ccc ddd eee fff

4 aaaa bbbb cccc dddd eeee ffff

5 aaaaa bbbbb ccccc ddddd eeeee fffff

6 aaaaaa bbbbbb cccccc dddddd eeeeee ffffff

Figure 6.10: A constructed example demonstrating problem wi th campaign degrading.

(.*?) (para)?
WhatsApp Messenger para
WhatsAppc Messenger para
WhatsApp Messenger para
WhatsApp heMessenger para
WhatsApp wMessenger para
WhatsApp Messengerp. para
WhatsApp
WhatsApp6 Messenger para
WhatsApppp Messenger

Figure 6.11: A n example of a real campaign wi th intentional typos to make messages more
diverse.

6.3.9 P a t t e r n s of R o t a t e d Messages

Another art if icial experiment constructed to test algorithm's capabilities i n terms of pattern
detection. Messages of this campaign contain the same sequence of tokens. However, in
each message the start of the sequence is rotated by one step. The result is shown in
Figure 6.12. We can see that the a lgori thm successfully detected the static sequence in
each message and aligned corresponding parts.

(1)? (m)? (n)? (o)? (p)? a b c d e f g h i j k (1)? (m)? (n)? (o)? (p)?
1 ab c d e f t í h i j k 1 m n 0

2 P ab c d e f f í h i j k 1 m n 0

3 0 P ab c d e f f í h i j k 1 m n
4 n 0 P ab c d e f f 5 h i j k 1 m
5 m n 0 P a b c d e f f > h i j k 1
61 m n 0 P a b c d e f f > h i j k

Figure 6.12: Campa ign i n which each message is a different rotat ion of the same sequence.
The extraction algori thm correctly detects the shifted pattern.

6.3.10 O r d e r of Messages

A s discussed in Section 4.4.9, the incremental generalization of a template brings a sig
nificant drawback. The first message read decides what a genuine message is. If the first
message happens to be an outlier, a l l the actually genuine messages w i l l be discarded as
outliers. A n example is shown in Figure 6.13. In this case, a l l of the genuine messages are

45

skipped. Figure 6.14 shows different order of messages, where major pattern is properly
reflected. A modification resolving this problem is proposed i n Section 6.4. However, as
results in Section 6.3.14 indicate, this issue occurred only i n 2 (out of 300) cases.

BpkVIbu Yth\,Toyota (BX|BX4) akan Jatuh tempo utk Service Berkala (30000km| 10000km)\. Nikmati CC (C|CC) J di Auto2000\.S\&K* berlakuV Utk Booking hub 061V8888000
1 Bpk'Ibu Yth,Toyota B X akan jatuh tempo utk Service Berkala 10000km . Nikmati CC C C J di Auto2000.S&K* berlaku. Utk Booking hub 061-8888000
2 Bpk'Ibu Yth,trima kasih servis Toyota B l tgl 14.05.2016 di Auto2000 G S. Jika ada keluhan, hub S P - ServAdvisor di 061-8888000
3 Bpk'Ibu Yth,trima kasih servis Toyota B2 tgl 14.05.2016 di Auto2000 B B . Jika ada keluhan, hub J P - ServAdvisor di 061-8888000
4 Bpk'Ibu Yth,trima kasih servis Toyota B3 tgl 14.05.2016 di Auto2000 R B . Jika ada keluhan, hub R A - ServAdvisor di 061-8888000
5 Bpk'Ibu Yth,Toyota B X 4 akan jatuh tempo utk Service Berkala 30000km . Nikmati CC C J di Auto2000.S&K* berlaku. Utk Booking hub 061-8888000
6 Bpk'Ibu YLh,lrima kasih servis Toyola B4 Lgl 14.05.2016 di Aulu2000 S. Jika ada keluhan, hub M S - ServAdvisor di 061-8888000
7 Bpk'Ibu Yth,trima kasih servis Toyota B l tgl 14.05.2016 di Auto2000 G S. Jika ada keluhan, hub S P - ServAdvisor di 061-8888000
8 Bpk'Ibu Yth,trima kasih servis Toyota B2 tgl 14.05.2016 di Auto2000 B B . Jika ada keluhan, hub J P - ServAdvisor di 061-8888000

Figure 6.13: A demonstration of the first message defining what a genuine message is.

BpkVIbu Yth\,trima kasih servis Toyota (B4|B2|B3|B1) tgl 14\.05\.2016 di Auto2000 (G|R|B)? (B|S) \. Jika ada keluhanA, hub (M)? (J|R|S) (P|A)? \- ServVAdvisor di 061V8888000
1 Bpk/Ibu Yth,trima kasih servis Toyota B l tgl 14.05.2016 di Auto2000 G S . lika ada keluhan, hub S P - ServAdvisor di 061-8888000
2 Bpk/Ibu Yth,trima kasih servis Toyota B2 tgl 14.05.2016 di Auto2000 B B . lika ada keluhan, hub I P - ServAdvisor di 061-8888000
3 Bpk/Ibu Yth,trima kasih servis Toyota B3 tgl 14.05.2016 di Auto2000 R B . lika ada keluhan, hub R A - ServAdvisor di 061-8888000
4 Bpk/Ibu Yth,Toyota B X akan jatuh tempo utk Service Berkala 10000km. Nikmati C C CC J di Auto2000.S&K* berlaku. Utk Booking hub 061-8888000
5 Bpk/Ibu Yth.Toyota B X 4 akan jatuh tempo utk Service Berkala 30000km. Nikmati C C C J di Auto2000.S&K* berlaku. Utk Booking hub 061-8888000
6 Bpk/Ibu Yth.trima kasih servis Toyota B4 tgl 14.05.2016 di Auto2000 S . lika ada keluhan, hub M S - ServAdvisor di 061-8888000
7 Bpk/Ibu Yth.trima kasih servis Toyota B l tgl 14.05.2016 di Auto2000 G S . lika ada keluhan, hub S P - ServAdvisor di 061-8888000
8 Bpk/Ibu Yth.trima kasih servis Toyota B2 tgl 14.05.2016 di Auto2000 B B . lika ada keluhan, hub 1 P - ServAdvisor di 061-8888000

Figure 6.14: A demonstration of the first message defining what a genuine message is
(correct order reflecting what a majority looks like).

6.3.11 C a m p a i g n s w i t h W e a k P a t t e r n s

Unfortunately, there are also campaigns which cause significant troubles to the algori thm.
They usually have very weak patterns or the pattern is masked by large amount of noise.
Especial ly the noise brings too many distinct values into each segment and they eventually
degenerate into a wi ldcard . Then , mult iple wildcards in a row get opt imized into a single
one. The result is usually s imilar to what is shown i n Figure 6.15. The final R E is not
very campaign-specific, as it mostly consists of wildcards. Therefore, it does not describe
patterns wi th in the campaign.

(•*?((\=|tgl|\:|\.) (•*?) (\= |V | \ :) (.*?) (V |Awal)

1 S875-J P'belian SS10 | | 081267606679 Hrg = 10700 S U K S E S S N : 7053115453261752460 S (Awal

2 S 5S20 H 082162734034 Hrg = 20300 S U K S E S S N : 705311609396135B020 S (Awal

3 T R X A M A N OM„fl l091674 T S E L S10 085370628914 S U K S E S S N Ret: 7053122562561305190. Saldo 300.250 -

4 sonasoni : A50.085216778887 Hrg = 49600 S U K S E S S N : 41001436297290 T R X : S50.(Awal

6 PL N 20 520051587836 Hrg = 20550 S U K S E S S N : 1013 -
7 jaketdata 508*100 ok /XL 000 X L 10.081993330890 S U K S E S . S N / Rel: 17050411455001. Saldo 19,175 -

a S A T R I A (1 INIK 085747854416 S U K S E S S N / Ref: 00881900001564219469. Saldo 256.294 -

9 TRIO 089505202703 Htg = 10400 S U K S E S S N : V10 . SaldD Rp.(Awal

10 S1055-8-274, P'belian SSId 085271060367 Hrg = 10700 S U K S E S S N : 705311644126131B090 S (Awal

11 S10 081218041270Hrg = 10575 S U K S E S S/N: 7053108190421217580.SALDO Rp.(Awal

12 S2453, P'belian SS5 082273475713 Hrg = 5600 S U K S E S S N : 7053116080261317690 S (Awal

13 085240347058 Hrg = 5750 S U K S E S V S N : 7053115230701525731. Saldo Rp.(Awal

14 TG5 082319010345 Hrg 5600 S U K S E S S/N: 7053109430921707090. Saldo Rp.(Awal

16 2.081248683269 Hľg 20500 S U K S E S S/N: 7053116254321604310. Saldo Rp.(Awal
17 M D , T lx X 5 087850198883 Hrg 5500 S U K S E S S/N: 17050411044216. Saldo (Awal

18 S47-178, P'belian SS5 081275106087Hrg 5750 S U K S E S S N : 7053108020361482300 S (Awal

19 S468, P'belian SS10 082165063006 Hrg 10600 S U K S E S S N : 7053108232061065850 S (Awal

2 0 Yth F E B R I ISAT 110 085851164132 S U K S E S . S N Rel : 00881300001563445553. Saldo 32.125 -

Figure 6.15: A very noisy campaign wi th a weak pattern. The extraction algori thm does
not provide a sufficient R E on the output.

One of the possible solutions i n such case is, again, to reduce the number of sample
used for extraction. Noisy samples are usually dispersed over the campaign. This way they

46

can be filtered away or, at least, reduced. Figure 6.16 shows the same campaign, but the
number of input samples was reduced to 100. Such R E matches around 72% of the whole
campaign, while its readabili ty is much better. Lucki ly , such campaigns are quite rare.
In datasets used for development and testing, there are only few such examples among
campaigns from Indonesia.

(.«?) \. a+-]?\d+) (\.)7 Hrg\= ([+-]?\d+) S U K S E S (SN|S)7 (V)V (SN|REF|VSN|TID|]N) \: (.-?) \(Awal
1 SB75-131-196, P'belian SS10 081267606679 Hrg= 10700 SUKSES s N 7053115453261752460 S (Awal
2 S3091, P'belian SS20 082162734034 Hrg= 20300 SUKSES s 7053116093961358020 S (Awal
4 sonasoni : A50 085216778887 IIrg= 49600 SUKSES s 41001436297290 T R X : S50. (Awal
6 PLN20 520051587836 Hrg= 20550 SUKSES s 1013-4932-1742-7977-2835/RUBINAH/B1/1300/19.0 Sal (Awal
9 TRIO 089505202703 Hrg= 10400 SUKSES s V10. Saldo Rp. (Awal
10 S1055-8-274, P'helian SS10 085271060367 Hrg= 10700 SUKSES s 7053116441261318090 S (Awal
11 S10 081218041270 Hrg= 10575 SUKSES s / 7053108190421217580.SALDO Rp. (Awal
12 S2453, P'belian SS5 082273475713 Hrg= 5600 SUKSES s 7053116080261317690 S (Awal
13 S5 085240347058 Hrg= 5750 SUKSES V S N 7053115230701525731. Saldo Rp. (Awal
14 TG5 082319010345 Hrg= 5600 SUKSES s / 7053109430921707090. Saldo Rp. (Awal
1G \nS20.2 081248683269 Hrg= 20500 SUKSES s / 7053116254321604310. Saldo Rp. (Awal
17 M D , Trx X5 087850198883 Hrg= 5500 SUKSES s / 17050411044216. Saldo (Awal
18 S47-178, P'belian SS5 081275106087 Hrg= 5750 SUKSES s 7053108020361482300 S (Awal
19 S468, P'belian SS10 082165063006 Hrg= 10600 SUKSES s N 7053108232061065850 S (Awal

Figure 6.16: A result of template extraction from only a few samples of a campaign wi th a
very weak pattern.

6.3.12 M u l t i - l i n e Messages

The algori thm is designed to work i n line-oriented fashion, expecting each line to be a
standalone message of a campaign. Therefore, a new line character is considered a separator
of messages. However, data sets, which have been used to evaluate performance of the
algori thm, contain several campaigns where messages are spread across mult iple lines. A n
example is shown i n Figure 6.17.

(WnEND|\\nREV|BEGIN) \: (V|20170531T222248Z|VCARD|20170531T142944Z|VCA)?

1 BEGIN : V C A R D

2 \nVERS10N:2.1

3 \nN;ENCODINC=QUOTED-PRINTABLE;CHARSET=UTF-8:;=

4 \nEadly.;;;

5 \nTEL;VOlCE;CELL:082259699643

6 \nEND : V C A R D

7 \n

8 BEGIN : V C A R D

9 \nVERSTON:2.1

10 \nN;ENCODING=QUOTED-PRINTABLE;CHARSET=UTF-8:;=

11 \nadek=20/amran;;;

12 \llTEL;V01CE;CELL:+6285831337313

13 \nEND : V C A R D

14 \n

Figure 6.17: A n example of a campaign in which messages are spread across mult iple lines.
The algori thm cannot reconstruct the message from several lines and fails to provide a
satisfying result.

We can see that it is the first line that is taken as a genuine message of the campaign.
It cannot recognize other lines as parts of the same message and fails to provide a good
result. Th is make the algor i thm unfit for different types of communications, such as net
working protocols, where such pattern is common. However, an extension of the a lgori thm
is proposed i n Section 6.4.

47

file:///nS20.2
file:///nEadly
file:///nEND
file:///nEND

6.3.13 L o n g Sequences

The last experiment is focused on observing how does the a lgori thm perform on long se
quences. It is important to, again, realize the length l imi ta t ion of S M S messages. L o n g
sequences for this experiment were constructed from existing campaigns. Messages of mul
tiple campaigns were concatenated together to create longer sequences. T ime necessary for
extracting a template from 1 to 15 merged campaigns were observed. Campaigns i n which
length of messages is around 160 characters (the l imi t for S M S messages) were picked. Re
sults are shown i n Figure 6.18. There were 100 messages used for template extraction and
the required times are an average from five execution on a single machine.

There were 4 long-message campaigns constructed. One was constructed by concate
nating a t r i v i a l campaign repeatedly (blue curve). Its messages contained only one variable
part, the rest was static. The second experiment (red curve) is also a concatenation of the
same, s t i l l relatively simple, campaign w i t h 3 variable parts. The th i rd one (yellow curve)
is constructed i n the same way, but the pattern of its structure is more complex — up
to seven highly variable parts. The last one (green curve) is a concatenation of randomly
selected campaigns, which provided good results dur ing experimenting.

Extraction Time Compared to Length of Messages

Number of merged campaigns and its approximate length per messag

Figure 6.18: Char t shows relation between length of messages i n a campaign and time
necessary for extraction. Blue, red and orange curves shows results when a same campaign
is repeated to construct longer messages. The green line shows concatenation of random
messages.

In the cases where the same campaign was just repeated, to construct a longer message,
the t ime necessary for template extraction reflects complexity of the campaign. F r o m the
basic constructed campaign, where messages are up to 2400 characters long, a template is
extracted under 30 seconds. In a slightly more complex case it is s t i l l under one minute

18

for 2400 characters per message. In the most complex repetitive campaign it takes slightly
over two minutes.

However, when random campaigns are concatenated to create a single long one, the
results get bad around 7 merged instances. We d id not observe any extra high complexity in
campaigns 8 and 9, to influence the result so much. Nevertheless, it is a good demonstration
that for complex campaigns, there is a l imi t around 1000 characters, before the extraction
starts taking too long. After that it depends on complexity of the campaign.

6.3.14 O v e r a l l R e s u l t Q u a l i t y

Here we provide a chart summarizing quali ty of extracted R E s from each campaign of the
dataset. Eva lua t ion of a R E ' s quali ty is subjective, because it is impossible to make it
standardized for a l l possible campaigns. Especial ly when readabil i ty is its part. In total ,
300 hundred campaign were evaluated. The chart w i th results is shown i n Figure 6.19.
Fol lowing trends were observed:

• Ok — Template reflects the pattern i n a clear understandable way. It does not
degenerate.

• Minor Outlier — A certain part of a single message is very different from the general
pattern, while its majority is the same. If this sample is not identified as an outlier, it
decreases readabili ty of the result. Th is si tuation can be avoided by using less samples
for template extraction.

• Sequence Disconnection — A phenomenon described in Section 6.3.4.

• Partially degrades — A small part of the R E degrades to a single wi ldcard R E , while
the rest reflects the pattern appropriately.

• Significantly degrades — Major i ty of the R E degrades into a wildcard, due to high
variety of messages wi th weak pattern. Th is issue can be usually resolved by using
less samples to extract the template, while maintaining high match ratio.

• Multi-line — A campaign contains messages spread across mult iple lines.

• Order of Messages - If an outlier is the first message, genuine messages are then
rejected due to a design flaw.

We can see that the extraction is most efficient on campaigns from B r a z i l . O n the other
hand, campaigns from Indonesia are the most problematic. It reflects the reality that they
have the highest ratio of campaigns wi th weak patterns and a lot of noise. However, i n a l l
three cases, satisfying output makes majority of results.

Categories Minor Outlier, Sequence Disconnection, Degrades Partially/Significantly pro
vide slightly worsen results. However, they can be usually significantly improved by using
less samples for extraction, or simple modification by the user.

6.4 Future Work Based on Experiments

Doing experiments w i t h many real-world campaigns showed how does the a lgori thm (and
the whole tool) perform. Thanks to the highly variable character of the data, we were able
to discover several drawbacks which were not so obvious at the beginning. Major i ty of

49

Regular Expression Quality on Real-World Data
7 9 • Brazil "Argentina Indonesia

80
68

Minor Outlier Sequence Degrades- Degrades- Multi-line Order of
Disconnection Partially Significantly Messages

Figure 6.19: Eva lua t ion of regular expressions extracted from real-world data.

these observations were already implemented and resolved. Some of them are left for future
extensions. Those are discussed i n this section.

Probably one of the main drawback is the order-dependent extraction process. It is one
of the very few cases in which the extraction can fail completely. However, the incremental
generalization of a template brings one of the biggest advantages — good performance.
Therefore, there has to be a good trade-off found. One of the solution can be extraction
mult iple templates from a single campaign. If a message does not match the current tem
plate, a new template is created. Based on alignment w i th each template, messages would
be assigned to an existing template, or they would create a new one. This process would
be a burden for performance, but as experiments have shown, these cases are rather rare.
The good new is that this issue occurred only twice, out of 300 campaigns.

Second extension, which could improve provided results, is implementing a mechanism
for re-merging tokens back into original sequences. Currently, the information about exact
token sequences gets lost dur ing alignment merging. This is sometimes beneficial, because
it allows detecting slight changes i n otherwise fixed patterns. O n the other hand i n some
cases it decreases readabili ty of the resulting R E .

Another extension, based on over-all evaluation of experiments, is adding support for
multi- l ine messages. User could manual ly define what the separator is — a new line, a
sequence of characters , . . . Th is way more types of data could be processed, not just short
messages on a single line.

Performing intra-segment analysis for constructing more accurate R E for each segment,
to make a R E more specific to each campaign. However, benefits of this feature would have
to be discussed i n comparison wi th the extra computat ion necessary.

Considering the interaction part of the tool , a more advanced graphical interface wi th
more options could be introduced. T h i s way users would not be forced to use the tool mainly
in the command line. Last ly, providing users wi th a list of a l l concrete values matched in
each R E group, could be very useful for further analysis of a campaign.

50

Chapter 7

Conclusion

S M S is a basic service present on almost every mobile device. Hundreds of thousands of
messages are sent every minute. Even though the usage of S M S service is decreasing i n some
parts of the world, they are s t i l l very popular and widely used i n others. Therefore, S M S
platform represents huge potential for variety of fraudulent activities, such as spamming.
Unfortunately, not enough attention has been paid to S M S spam and methods to fight it ,
as it has been wi th e-mail spam.

Firs t , we a made brief summary of spam, wi th focus on S M S communicat ion. We pre
sented its properties and basic methods of fighting i t . We further specified the relationship
between a campaign and a template and how a template can be used to identify its source
campaign.

Even though the purpose of this work is to help fighting spam i n S M S , the task can
be generalized — learning a formal description of a language from a finite set of positive
examples. Therefore, we showed several methods (such as automata induct ion, genetic
programming, etc.) to accomplish this task, their advantages and possible drawbacks.

We designed an algori thm capable of reversely extracting a template from given mes
sages of a campaign. It is based on aligning two sequences based on s imilar i ty of their
certain parts. Th is idea was adopted (and extended) from bioinformatics, where this ap
proach is used to find regions of s imilar i ty in protein sequences. It performs incremental
generalization of an in i t i a l template. The algori thm is design i n a way that t ime-consuming
algorithms are executed only when a message does not match the current template. Th is
way even very large campaigns can be processed fast.

A t the end of execution, a template i n form of a regular expression is provided. M a k i n g
a conclusion on whether the resulting template is correct, or not, is very subjective, as
readability is one of the cri teria. Performance of the a lgori thm was validated against more
than three hundred real campaigns from a l l around the world.

In the future, a few drawbacks of the a lgori thm design should be eliminated. For
example, as of now the result of extraction is dependent on the order of messages. A l so ,
detecting situations when a token-oriented (fine-grained) approach is not opt imal , and
using coarse-grained. Implementing more advanced graphical interface support ing a l l of
the features, would also be beneficial for users.

51

Bibliography

[1] P L Y (Python Lex-Yacc) . http://www.dabeaz.com/ply/. accessed: 2018-03-13.

[2] Regex Generator-I—h http://machinelearning.inginf.units.it/data-and-tools.
accessed: 2017-12-22.

[3] Riverbank Comput ing L imi t ed .
https: //www.riverbankcomputing.com/software/pyqt/intro. accessed:
2018-04-15.

[4] Bar to l i , A . ; Lorenzo, A . D . ; Medvet , E . ; et a l . : Inference of Regular Expressions for
Text Ex t r ac t ion from Examples . IEEE Transactions on Knowledge and Data
Engineering, vol . 28, no. 5. M a y 2016: pp. 1217-1230. I S S N 1041-4347.
doi :10.1109/TKDE.2016.2515587.

[5] Delany, S. J . ; Buckley, M . ; Greene, D . : S M S spam filtering: Methods and data.
Expert Systems with Applications, vo l . 39, no. 10. 2012: pp. 9899 - 9908. I S S N
0957-4174. doi:https://doi.org/10.1016/j.eswa.2012.02.053.
Retrieved from:
http: //www.sciencedirect.com/science/article/pii/S0957417412002977

[6] Denis, F . ; Lemay, A . ; Terlutte, A . : Learning regular languages using R F S A s .
Theoretical Computer Science, vol . 313, no. 2. 2004: pp. 267 - 294. I S S N 0304-3975.
doi:https://doi.org/10.1016/j.tcs.2003.11.008. algori thmic Learning Theory.
Retrieved from:
http: //www.sciencedirect.com/science/article/pii/S0304397503006121

[7] Fernau, H . : Algor i thms for learning regular expressions from positive data.
Information and Computation, vol . 207, no. 4. 2009: pp. 521 - 541. I S S N 0890-5401.
doi:https://doi.org/10.1016/j. ic.2008.12.008.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/S0890540109000169

[8] Garc ia , P. ; Ru i z , J . ; Cano, A . ; et a l . : Inference Improvement by Enlarging the
Training Set While Learning DFAs. Ber l in , Heidelberg: Springer Be r l i n Heidelberg.
2005. I S B N 978-3-540-32242-9. pp. 59-70. doi:10.1007/11578079_7.
Retrieved from: https://doi.org/10.1007/11578079_7

[9] Garc ia , P. ; de Parga, M . V . ; Alvarez , G . I.; et a l . : Universal automata and N F A
learning. Theoretical Computer Science, vol . 407, no. 1. 2008: pp. 192 - 202. I S S N
0304-3975. doi:https://doi.org/10.1016/j.tcs.2008.05.017.
Retrieved from:
http: //www.sciencedirect.com/science/article/pii/S0304397508003976

52

http://www.dabeaz.com/ply/
http://machinelearning.inginf.units.it/data-and-tools
http://www.riverbankcomputing.com/software/pyqt/intro
https://doi.org/10.1016/j.eswa.2012.02.053
http://www.sciencedirect.com/science/article/pii/S0957417412002977
https://doi.org/10.1016/j.tcs.2003.11.008
http://www.sciencedirect.com/science/article/pii/S0304397503006121
https://doi.org/10.1016/j.ic.2008.12.008
http://www.sciencedirect.com/science/article/pii/S0890540109000169
https://doi.org/10.1007/11578079_7
https://doi.org/10.1016/j.tcs.2008.05.017
http://www.sciencedirect.com/science/article/pii/S0304397508003976

[10] Gi l le land , M . : Levenshtein Distance, i n Three Flavors.

[11] G o l d , E . M . : Language identification i n the l imi t . Information and Control, vol . 10,
no. 5. 1967: pp. 447 - 474. I S S N 0019-9958.
doi:https://doi.org/10.1016/S0019-9958(67)91165-5.
Retrieved from:
http: //www. sciencedirect.com/science/art icle/pii/S0019995867911655

[12] Gruber , H . J . ; Holzer, M . : F r o m F in i t e A u t o m a t a to Regular Expressions and Back -
A Summary on Descript ional Complexi ty . In Int. J. Found. Comput. Sci.. 2015.

[13] Iedemska, J . ; Str inghini , G . ; Kemmerer , R . ; et a l . : The Tricks of the Trade: W h a t
Makes Spam Campaigns Successful? In 2014 IEEE Security and Privacy Workshops.
M a y 2014. pp. 77-83. doi :10.1109/SPW.2014.21.

[14] I T U W o r l d Telecommunication: I C T Facts & Figures 2010.
http: //www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf. accessed:
2017-12-10.

[15] I T U W o r l d Telecommunication: I C T Facts & Figures 2015. https://www.itu.int/
en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf. accessed:
2017-12-10.

[16] Junczys-Dowmunt, M . : A Genetic Programming Exper iment i n Na tu ra l Language
Grammar Engineering. In 15th International Conference on Text, Speech and
Dialogue (TSD), Lecture Notes in Computer Science, vol . 7499, edited by P . Sojka:
A . Horák ; I. Kopeček; K . Pa la . Brno , Czech Republ ic : Springer. 2012. pp. 336-344.
Retrieved from: http://emjotde.github.io/publications/pdf/mjd2012tsd2.pdf

[17] Murynets , I.; Piqueras Jover, R . : Cr ime Scene Investigation: S M S Spam D a t a
Analys is . In Proceedings of the 2012 Internet Measurement Conference. I M C '12.
New York , N Y , U S A : A C M . 2012. I S B N 978-1-4503-1705-4. pp. 441-452.
doi:10.1145/2398776.2398822.
Retrieved from: http://doi.acm.org/10.1145/2398776.2398822

[18] Needleman, S. B . ; Wunsch, C . D . : A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology.
vol . 48, no. 3. 1970: pp. 443 - 453. I S S N 0022-2836.
doi:https://doi.org/10.1016/0022-2836(70)90057-4.
Retrieved from:
http: //www.sciencedirect.com/science/article/pii/0022283670900574

[19] N u m P y developers: N u m P y . http://www.numpy.org/. accessed: 2018-03-05.

[20] O E C D : Background Paper for the O E C D Workshop on Spam.
doi:http:/ /dx.doi.org/10.1787/232784860063.
Retrieved from: /content/workingpaper/232784860063

[21] Oncina , J . ; Garc ia , P.: Inferring regular languages in polynomia l update t ime. In
Pattern Recognition and Image Analysis, Series in Machine Perception and Artificial
Intelligence, vol . 1, edited by N . P . de la Blanca; A . Sanfeliu; E . V i d a l . W o r l d
Scientific, Singapore. 1992. pp. 49-61.

53

https://doi.org/10.1016/S0019-9958(67)91165-5
http://sciencedirect.com/
http://www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf
https://www.itu.int/
http://emjotde.github.io/publications/pdf/mjd2012tsd2.pdf
http://doi.acm.org/10.1145/2398776.2398822
https://doi.org/10.1016/0022-2836(70)90057-4
http://www.sciencedirect.com/science/article/pii/0022283670900574
http://www.numpy.org/
http://dx.doi.org/10.1787/232784860063

[22] Rafique, M . Z . ; Alrayes, N . ; K h a n , M . K . : App l i ca t i on of Evolu t ionary Algor i thms i n
Detecting S M S Spam at Access Layer. In Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation. G E C C O '11. New York , N Y , U S A : A C M .
2011. I S B N 978-1-4503-0557-0. pp. 1787-1794. doi:10.1145/2001576.2001816.
Retrieved from: http://doi.acm.org/10.1145/2001576.2001816

[23] Wyard , P.: Context free grammar induct ion using genetic algorithms. In IEE
Colloquium on Grammatical Inference: Theory, Applications and Alternatives. A p r
1993. pp. P l l / l - P l l / 5 .

54

http://doi.acm.org/10.1145/2001576.2001816

Appendix A

Program execution

tempex.py [-h] [--imethod {s,r,sb,rb}] [--isamples ISAMPLES] [-o OUTPUT]]
[—omethod {html}] [—vmethod {s,r}] [—vsamples VSAMPLES]
[~gui]
[input]

Posi t ional arguments::
input

Opt iona l arguments:
-h, — h e l p
—imethod {s,r,sb,rb}

—isamples ISAMPLES

-o OUTPUT
—output OUTPUT
—omethod {html]-

—vmethod {s,r}
—vsamples VSAMPLES

— g u i
— p r e s o r t
—extraoptim
—verbose

Input data set for template extraction.
Manda tory unless ' —gui' is set.

Show this help message and exit.
Input extraction method [buffered] [sequential | random].
Default value is ' sb'.
How many input samples extract.
None for sequential means the whole file.

Name of the output file. Stdout used i f not set.
If not set, simple a template and validat ion result are printed.
Value html produces H T M L validat ion result on the output.
Val ida t ion extraction method [sequential)random])
How many samples should be used to validate the result.
Reads the whole file in default.
Opens a simple graphical viewer.
Samples are ordered by number of tokens in decreasing fashion.
If set, performs extra opt imizat ion of resulting R E .
If set, more detailed output is provided.

55

Appendix B

C D Contents

/
data/
docs/

latex/
thesis.pdf

_LICENCES/
src/
_README.md

requirements.txt
tempex.py
tempex/

. Campaigns for demonstration

. Project documentation

. BlgX source f i l e s

. Thesis i n PDF format

. License f i l e s for used l i b r a r i e s

. Source f i l e s of the extraction tool

. L i s t of dependencies

. Main execution f i l e

. Modules and packages

56

