UNIVERZITA PALACKÉHO V OLOMOUCI

Přírodovědecká fakulta

Katedra biochemie

Imunoblotová analýza a lokalizace fúzního proteinu fosfolipasa D alfa 1-YFP (PLDa1-YFP) v *plda1-1* a *plda1-2* mutantních rostlinách *Arabidopsis thaliana*

BAKALÁŘSKÁ PRÁCE

Autor:	Pavel Krupař
Studijní program:	B1406 Biochemie
Studijní obor:	Biotechnologie a genové inženýrství
Forma studia:	Prezenční
Vedoucí práce:	Ing. Pavol Vadovič, Ph.D.
Rok:	2019

Prohlašuji, že jsem bakalářskou práci vypracoval samostatně s vyznačením všech použitých pramenů a spoluautorství. Souhlasím se zveřejněním bakalářské práce podle zákona č. 111/1998 Sb., o vysokých školách, ve znění pozdějších předpisů. Byl jsem seznámen s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorský zákon, ve znění pozdějších předpisů.

V Olomouci dne 6. května 2019

Pavel Krupař

Poděkování

Rád bych poděkoval vedoucímu této práce Ing. Pavlu Vadovičovi, Ph.D. za cenné rady a připomínky. Dále děkuji kolektivu Oddělení buněčné biologie Centra regionu Haná pro biotechnologický a zemědělský výzkum za poskytnutí prostředí a vybavení pro vypracování experimentální části práce, zvláště pak Yulii Krasylenkové, Ph.D. za pomoc při práci s mikroskopy a zpracováním dat.

V neposlední řadě děkuji svým rodičům a prarodičům za materiální a psychickou podporu během celého studia. Zvláštní dík patří Marku Přikrylovi za proofreading a vytrvalou útěchu během posledních nejnáročnějších měsíců studia.

"There can be 100 people in a room and 99 of them don't believe in you, but all it takes is one and it just changes your whole life."- Lady Gaga

Bibliografická identifikace

Jméno a příjmení autora	Pavel Krupař
Název práce	Imunoblotová analýza a lokalizace fúzního proteinu
	fosfolipasa D alfa 1-YFP (PLD α 1-YFP) v pld α 1-1 a
	pldα1-2 mutantních rostlinách Arabidopsis thaliana

Typ práce	Bakalářská
Pracoviště	Centrum regionu Haná pro biotechnologický a
	zemědělský výzkum, oddělení buněčné biologie
Vedoucí práce	Ing. Pavol Vadovič, Ph.D.
Rok obhajoby práce	2019

Abstrakt

Fosfolipasy jsou enzymy, které hydrolyzují strukturní fosfolipidy - základní složky cytoplasmatické membrány buňky. Fosfolipasa D alfa 1 se prostřednictvím svého produktu kyseliny fosfatidové podílí na regulaci řady procesů, jako jsou růst a vývoj rostliny nebo reakce na abiotický i biotický stres. Předkládaná práce má za cíl imunoblotovou analýzou ověřit přítomnost fúzního proteinu PLD α 1-YFP v pld α 1-1 a $pld\alpha 1-2$ mutantních rostlinách **Arabidopsis** thaliana komplementovaných s *proPLDa1::PLDa1:YFP* konstruktem a následně tento protein lokalizovat v nadzemní i kořenové části komplementovaných rostlin pomocí konfokální laserové skenovací mikroskopie. Imunoblotová analýza ověřila přítomnost fúzního proteinu v komplementovaných rostlinách a mikroskopická analýza potvrdila zvýšenou přítomnost PLDa1-YFP proteinu v buňkách kořenové čepičky, ve špičkách kořenových vlásků, ve středním válci kořene a ve svěracích buňkách průduchů. Tím se dokázal značný podíl PLDα1 na regulaci vývojových procesů u Arabidopsis thaliana, jako vývoj kořenových vlásků, zakládání laterálního kořene nebo regulace otvírání a zavírání průduchů.

olipasa D, Arabidopsis thaliana, lokalizace,
noblotová analýza, konfokální mikroskopie
ký

Bibliographical identification

Autor's first name and	Pavel Krupař
surname	
Title	Immunoblotting analysis and localization of
	Phospholipase D alpha 1 protein tagged with YFP
	(PLD α 1-YFP) in <i>pldα1-1</i> and <i>pldα1-2</i> Arabidopsis
	thaliana mutant plants
Type of thesis	Bachelor
Department	Centre of the Region Haná for Biotechnological and
	Agricultural Research, Department of Cell Biology
Supervisor	Ing. Pavol Vadovič, Ph.D.
The year of presentation	2019

Abstract

Phospholipases are enzymes which hydrolyse structural phospholipids –components of the cytoplasmic membrane. Plant phospholipase D alpha 1 is involved in the regulation of a variety of processes, such as plant growth and development or response to various biotic or abiotic stresses. This thesis aims to verify the presence of fusion protein PLD α 1-YFP in *pld\alpha1-1* and *pld\alpha1-2 Arabidopsis thaliana* mutant plants complemented with *proPLD\alpha1::PLD\alpha1:YFP* construct and to localize PLD α 1-YFP protein in root, leaves and petiole using confocal laser scanning microscopy. In this thesis the presence of PLD α 1 in transformed plants is confirmed and the functional role of this enzyme in the regulation of various plant developmental processes such as root hair formation and stomata dynamics is elucidated.

Key Words	phospholipase D, Arabidopsis thaliana, localization,
	immunoblotting, laser scanning confocal microscopy
Number of pages	50
Number of appendices	0
Language	Czech

Obsah

1 2	 Úvod Současný stav řešené problematiky 	
	2.1 Arabidopsis thaliana jako modelová rostlina	9
	2.2 Fluorescenční proteiny v buněčné biologii	
	2.3 Fosfolipasy	
	2.4 Fosfolipasa D u Arabidopsis thaliana	
	2.5 Struktura a vlastnosti fosfolipas D	
	2.6 Kyselina fosfatidová – důležitý produkt PLD	
	2.7 Role PLDα1 v odpovědi na stres rostliny	
	2.7.1 Interakce PLDα1 s kyselinou abscisovou	
	2.7.2 Úloha fosfolipasy Dα1 v reakci na osmotický stres	
	2.7.3 Role PLDα1 v interakci rostliny s patogeny	
3	3 Buněčná a subcelulární lokalizace PLDα1	
	3.1 Subcelulární lokalizace ostatních fosfolipas D	
	3.2 Vliv fosfolipas D na organizaci rostlinného cytoskeletu	
4	4 Materiál a metody	
	4.1 Biologický materiál	
	4.2 Seznam použitých chemikálií	
	4.3 Seznam použitých roztoků a jejich složení	
	4.4 Seznam použitých přístrojů	
	4.5 Seznam použitého software	
	4.6 Příprava a selekce rostlinného materiálu	
	4.7 Extrakce proteinů	
	4.8 Měření koncentrace proteinů	
	4.9 Denaturující polyakrylamidová elektroforéza a imunoblotová analy	ýza 25
	4.10 Lokalizace fúzního proteinu pomocí konfokální laserové skenov	vací mikroskopie 26
5	5 Výsledky	
	5.1 Ověření fluorescenčního signálu YFP	
	5.2 Detekce PLDα-1-YFP imunoblotovou analýzou	
	5.3 Lokalizace PLDα1-YFP fúzního proteinu v kořenové části rostliny	<i>y</i>
	5.4 Lokalizace PLDα1-YFP fúzního proteinu v nadzemní části rostliny	y 40
6	6 Diskuse	
7 Závěr		
8	8 Literatura	
9	9 Seznam použitých zkratek	

CÍLE PRÁCE

TEORETICKÁ ČÁST

- Zpracování literární rešerše na téma fosfolipasa D alfa 1 (PLDα1) u Arabidopsis thaliana její funkce a její role v buněčné signalizaci a její pletivová a subcelulární lokalizace u Arabidopsis thaliana.
- 2. Zpracování literární rešerše na téma buněčná a subcelulární lokalizace ostatních fosfolipas D u *Arabidopsis thaliana*.

PRAKTICKÁ ČÁST

- Napěstování mutantních *pldα1-1* a *pldα1-2* rostlin *Arabidopsis thaliana* komplementovaných s konstruktem *proPLDα1::PLDα1:YFP* v T2 generaci a jejich pre-selekce pomocí Axio Zoom Mikroskopu (Zeiss). Napěstování mutantních rostlin *pldα1-1* a *pldα1-2* a rostlin divokého typu (Col-0) využitých jako kontrola při imunoblotové analýze.
- 2. Imunoblotová analýza $pld\alpha l l$ a $pld\alpha l 2$ rostlin *Arabidopsis thaliana* komplementovaných s PLDa1-YFP fúzním proteinem pod kontrolou nativního promotoru v T2 generaci za použití anti-pld α -1/2 a anti-GFP protilátek.
- 3. Buněčná a subcelulární lokalizace PLD α 1-YFP fúzního proteinu u komplementovaných linií mutantních rostlin *pld\alpha1-1* a *pld\alpha1-2* u *Arabidopsis thaliana* za kontrolních podmínek.

1 Úvod

Sucho a přílišné zasolení půdy v současné době představují výrazný problém pro světové zemědělství kvůli ovlivňování růstu a vývoje rostlin. Studie z posledních let odhalují na buněčné a molekulární úrovni mechanismy, které jsou zodpovědné za zvýšenou toleranci rostlin k těmto druhům stresu. Jedním z těchto mechanismů je lipidová signalizace, která je součástí komplexní sítě signálních drah, zapojených v odpovědi rostlin na stres ze sucha či přílišného zasolení půdy (Wang et al. 2006; Hong & Wang 2010).

Fosfolipasy D jsou enzymy, které hydrolyzují membránové fosfolipidy za produkce kyseliny fosfatidové, která se často ujímá role sekundárního posla při přenosu nitrobuněčných signálů (Wang *et al.*, 2006; Kravets *et al.*, 2008) nebo regulátora membránového transportu (Idkowiak-Baldys *et al.*, 2009).

Experimentální část předkládané práce si klade za cíl imunoblotovou analýzou potvrdit přítomnost fúzního proteinu PLD α 1-YFP zvlášť v nadzemní a kořenové části *pld\alpha1-1* a *pld\alpha1-2* mutantních rostlin *Arabidopsis thaliana*. Byla také provedena lokalizace fúzního proteinu v nadzemní a kořenové části rostlin *Arabidopsis thaliana* pomocí konfokální laserové skenovací mikroskopie.

2 Současný stav řešené problematiky

2.1 Arabidopsis thaliana jako modelová rostlina

Arabidopsis thaliana (A. thaliana), česky huseníček rolní, je malá rostlina z čeledi brukvovitých široce rozšířená v Evropě, Asii a Severní Americe. V nedávné době se stala modelovým organismem pro různá odvětví biologie rostlin. Její význam dokazuje vznik velké mezinárodní vědecké komunity věnující se právě studiu *A. thaliana*. Dříve byl rostlinný výzkum založen na zkoumání mnoha druhů významných pro zemědělství jako např. kukuřice, rýže, rajče, a podobně. Přestože tento přístup přinesl mnoho výsledků, pokrok v jednotlivých oblastech byl limitován roztříštěným úsilím a zdroji. Až do 80. let 20. století bylo obtížné dojít ke konsensu, který rostlinný druh je vhodný pro studium základních procesů všem rostlinám společným.

Obr. 1: A. thaliana (Meinke et al., 1998)

Poprvé byla *A. thaliana* použita jako modelová rostlina pro molekulární biologii německým botanikem Friedrichem Laibachem v roce 1907. Ten se snažil najít rostlinu s malým počtem velkých chromozomů vhodnou pro studium individuality chromozomů. Nicméně malé chromozomy *A. thaliana* pro jeho experimenty nebyly vhodné (Laibach, 1907). Průlom ve výzkumu *A. thaliana* nastal až v 80. letech 20. století se vznikem detailní genetické mapy. Tento objev následoval zrod řady transformačních protokolů a možnosti detailní molekulárně biologické analýzy genomu *A. thaliana*.

V roce 2000 byl genom *A. thaliana* kompletně sekvencován. Její genom obsahuje 25 498 genů kódujících proteiny na 5 chromozomech (The Arabidopsis Genome Initiative, 2000).

Arabidopsis thaliana disponuje řadou vlastností, které ji předurčili za modelovou rostlinu v biologických experimentech, například krátký životní cyklus rostliny (od semena po dospělou rostlinu), schopnost samoopylení, široká databáze mutantních rostlin a taky poměrně jednoduchá manipulace s rostlinami při mikroskopii (Van Norman & Benfey, 2009).

2.2 Fluorescenční proteiny v buněčné biologii

Fluorescenční proteiny jsou členy strukturně homologní třídy proteinů s jedinečnou vlastností soběstačnosti pro vytvoření viditelného chromoforu ze sekvence 3 aminokyselin v rámci své vlastní polypeptidové sekvence (Campbell, 2008). Přítomnost fluorescenčních komponent v orgánech medúzy *Aequorea victoria* (obr. 2) byla poprvé objevena v roce 1955 (Davenport & Nicol, 1955), avšak až Osamu Shimomura v roce 1962 zjistil, že podstatou luminiscence je protein, později pojmenovaný aequorin. Během izolace aequorinu byl izolován i jiný protein, který sice postrádal modrou bioluminiscenci aequorinu, ale byl schopen silné zelené fluorescence po ozáření ultrafialovým zářením (Shimomura *et al.*, 1962). Podle těchto vlastností byl pojmenován zelený fluorescenční protein (Green Fluorescent Protein, GFP).

Kompletní aminokyselinová sekvence GFP byla odhalena v roce 1992 klonováním a sekvencováním cDNA (Prasher *et al.*, 1992). O dva roky později byla objevena možnost exprese GFP ve smyslových neuronech modelového živočicha *Caenorhabditis elegans* (Huang & Chalfie, 1994). V ten samý rok exprese GFP klonovaného do baktérií *Escherichia coli* vytvořila zeleně fluoreskující baktérii (Inouye & Tsuji, 1994). Za objev a rozvoj metod s GFP obdrželi v roce 2008 Nobelovu cenu za chemii Roger Y. Tsien, Osamu Shimomura a Martin Chalfie.

10

Jedním z limitů použití GFP z medúzy *Aequora victoria* v buněčné biologii byla emise fluorescence GFP jen v jedné oblasti spektra Tento limit byl překonán proteinovými inženýry v polovině 90. let 20. století, kteří vytvořili sérii mutací GFP proteinu s odlišným excitačním a emisním maximem. Příkladem může být modrý fluorescenční protein (Blue Fluorescent Protein, BFP, Heim *et al.*, 1994) nebo žlutý fluorescenční protein (Yellow Fluorescent Protein, YFP, Ormo, *et al.*, 1996).

Mezi nečastější aplikace fluorescenčních proteinů patří lokalizace, zobrazování a sledování dynamiky buněčných organel (Rizzuto *et al.*, 1995), případně rekombinantních proteinů (Ballestrem *et al.*, 1998) v živých buňkách a taky sledování proteinproteinových interakcí v živých buňkách (Kerppola 2006). Pro zobrazení specifických organel je využito fúze genu, kódujícího fluorescenční protein s cDNA, kódující protein či peptid, lokalizovaný ke specifické organele. Díky této fúzi je chimérický gen přepsán jako jeden polypeptid s kovalentní vazbou mezi proteinem zájmu a fluorescenčním proteinem. Při použití fluorescenční mikroskopie lze tímto způsobem pozorovat morfologii, dynamiku, distribuci a interakce zájmových proteinů v rámci organel v závislosti na čase.

Obr. 2 Medúza Aequorea victoria, foto Steven Haddock, (Campbell, 2008)

2.3 Fosfolipasy

Fosfolipasy jsou enzymy, které štěpí strukturní fosfolipidy. Nachází ve všech živých organismech včetně rostlin a živočichů. Rozdělují se podle místa štěpení fosfolipidu, podle druhu produktů, které štěpením vznikají a podle biologické aktivity jednotlivých vzniklých produktů. Rostlinné fosfolipasy se třídí do 5 skupin: A1, A2, C a D (PLA1, PLA2, PLC a PLD; Wang *et al.*, 2012).

Fosfolipasa A1 a A2 štěpí SN-1 a SN-2 acylové řetězce za vzniku mastných kyselin a 2-acyl lysofosfolipidu resp. 1-acyl lysofosfolipidu. Fosfolipasa C štěpí fosfolipidy za vzniku diacylglycerolu a fosfátové skupiny spojené s cholinem, inositolem, ethanolaminem atd. Fosfolipasa D štěpí fosfolipidy za vzniku kyseliny fosfatidové (PA) a polárního zbytku cholinu, inositolu, ethanolaminu (Wang *et al.*, 2012; Takáč *et al.*, 2019). V předkládané bakalářské práci byla studována fosfolipasa D u rostlin *A. thaliana*.

2.4 Fosfolipasa D u Arabidopsis thaliana

Fosfolipasa D (PLD) katalyzuje hydrolýzu fosfodiesterové vazby membránových fosfolipidů (hlavně fosfatidylcholinu, méně často fosfatidylethanolaminu a fosfatidylglycerolu) za produkce PA a různých rozpustných produktů na bázi cholinu nebo ethanolaminu. Mnoho enzymů, které mají za substrát právě lipidy jsou v rostlinném genomu přepisovány jako multigenové rodiny. Právě v genomu *Arabidopsis thaliana* bylo identifikováno 12 genů kódujících PLD α (3), β (2), γ (3), δ , ε a ζ (2) (Qin & Wang, 2002). Produkty těchto genů mají různou strukturu, lokalizaci a funkci v buňce.

Obr. 3 Rozdělení fosfolipas podle místa štěpení strukturního fosfolipidu (Ruelland *et al.*, 2014)

rostlinných fosfolipas je výrazně ovlivněna post-translačními Aktivita modifikacemi samotných enzymů (např. fosforylací, aktivací G-proteinem). Signální dráhy zahrnující taky fosfolipasy jsou v rostlinách propojeny s řadou jiných signálních drah – například hormonální signalizace pomocí kyseliny abscisové (Zhang et al., 2004; Mishra et al., 2006), signalizace pomocí ethylenu (Testerink et al., 2007), prostřednictvím dusnatého (Lanteri et al. 2008), nebo reaktivních forem kyslíku oxidu (Zhang et al., 2009).

2.5 Struktura a vlastnosti fosfolipas D

Většina fosfolipas D je asociovaná s cytoplasmatickou membránou nebo s membránami vnitrobuněčných organel (Fan *et al.*, 1999; Novák *et al.* 2018; Takáč *et al.* 2019a; Takáč *et al.* 2019b). Pro svou aktivitu vyžadují různou koncentraci Ca^{2+} iontů v závislosti na druhu fosfolipasy D (Pappan *et al.*, 1997). Fosfolipasy D α , β , γ , δ a ε se označují jako C2-PLD, protože ve své proteinové struktuře, blízko N-konce obsahují tzv. C2 doménu, ke které se váží Ca^{2+} ionty a tím aktivují samotný enzym (Eliáš *et al.*, 2002). Naopak fosfolipasy PLD ζ se označují jako PX/PH-PLD díky přítomnosti pleckstrin (PH) a phox (PX) homologních domén, které jsou strukturně homologní právě k fosfolipasam přítomným u savců. Vápenaté ionty vytvoří koordinační vazbu se čtyřmi až pěti kyselými zbytky aminokyselin části C2 domény zvané CBL (Calcium Binding Loop). U PLD α jsou dvě z těchto kyselých aminokyselin nahrazeny neutrálními aminokyselinami (Pappan *et al.*, 1997). Tato substituce způsobuje nižší afinitu PLD α k Ca²⁺ iontům, a proto vyžadují pro svou funkci vysokou koncentraci těchto iontů v buňce (Hong *et al.*, 2010).

Rostlinné fosfolipasy D mohou být *in vitro* aktivovány od mikromolárních až po milimolární koncentrace Ca²⁺ iontů nezávisle na přítomnosti jiných lipidových kofaktorů (Stumpe *et al.*, 2007). PLD α 1 vyžaduje pro svou aktivitu milimolární koncentrace Ca²⁺ iontů, ale při kyselém pH (4,5 – 5,5) je aktivní i při mikromolárních koncentracích vápenatých iontů (Pappan *et al.*, 2004). Maximální aktivita PLD α 1 u *A. thaliana* však byla detekována při koncentraci Ca²⁺ iontů 25 mmol.l⁻¹ (Hong *et al.*, 2016). Pro srovnání jsou uvedeny v tabulce 1 i ostatní druhy fosfolipas D a jejich vlastnosti. Například enzym PLD β 1 je aktivní již při mikromolárních koncentracích a PLD ζ 1 Ca²⁺ ionty k aktivitě vůbec nevyžaduje. Tab. 1 Katalytické a regulační vlastnosti vybraných fosfolipas D u A. *thaliana*. CM – cytoplasmatická membrána, PC – fosfatidylcholin, PE – fosfatidylethanolamin, PG – fosfatidylglycerol.

Enzym:	Optimální koncentrace Ca2+ iontů:	Preferovaný substrát:	Lokalizace v buňce:
PLDa1	mM/μM	PC>PE	Mezi cytosolem, vnitřními membránami, CM
PLDa3	mM	PC>PE, PG	Převážně CM
PLD _β 1	μM	PC=PE	Vazba aktinu
PLDy1	μM	PE>PC	Převážně vnitřní membrány
PLDδ	μM-mM	PE>PC	CM, vazba tubulinu
PLDÇ1	nevyžaduje	PC	СМ

2.6 Kyselina fosfatidová – důležitý produkt PLD

Funkce fosfolipas D v buněčné signalizaci je ve značné míře podmíněná jejich produktem – kyselinou fosfatidovou (PA), která je považována za univerzální signální molekulu regulující řadu fyziologických procesů (Wang *et al.*, 2006; Hong *et al.*, 2016). Molekula PA je v podstatě hydrofobní a převážně se hromadí v buněčných membránách. V rostlinách se značné zásoby PA nachází především v endoplasmatickém retikulu a plastidech, tedy v místech aktivního metabolismu lipidů (Harwood & Jr., 1989).

Funkce PA jako signální molekuly spočívá především v přímé reakci s efektorovými proteiny. Je známo množství proteinů reagujících s PA u rostlin (Cao *et al.*, 2017) a savců (Wang *et al.*, 2017). Specificita interakcí PA je dána specifickým zastoupením mastných kyselin v PA a tím i různá afinita PA k interakcím s různými efektorovými proteiny (Pokotylo *et al.*, 2018). Většina proteinů reagující s PA nicméně nereaguje s ostatními nabitými lipidy (Testerink *et al.*, 2007). Tyto proteiny se tedy jeví jako specifické cíle PA.

2.7 Role PLDa1 v odpovědi na stres rostliny

2.7.1 Interakce PLDa1 s kyselinou abscisovou

Kyselina abscisová (ABA) je důležitý fytohormon zodpovědný za odpověď rostliny na stres z chladu, sucha a také na osmotický stres. (Mahajan *et al.*, 2005; Verslues & Zhu, 2005). Ukázalo se, že PLD je zapojená do signálních drah, jejichž spouštěčem je kyselina abscisová například při navození senescence u rostlin (Fan, 1997) a při regulaci uzavírání a otevírání průduchů u rostlin *A. thaliana* (Sang *et al.*, 2001; Zhang *et al.*, 2004; Mishra *et al.*, 2006).

Mechanismus regulace uzavírání průduchů pomocí ABA spočívá v interakci PA, produkovanou PLDα1, s fosfatasou ABA INSENSITIVE I (ABI 1), čím dochází k odblokování signální dráhy umožňující uzavření průduchů (Zhang *et al.*, 2004, 2009; Mishra *et al.*, 2006). Dalším způsobem regulace prostřednictvím PA po indukci ABA je aktivace enzymu NADPH oxidasy, který dále produkuje peroxid vodíku. Ten oxiduje enzym glyceraldehyd-3-fosfát dehydrogenasa (GAPC), jehož oxidovaná forma interaguje s isoformou fosfolipasy D delta, a zároveň podněcuje další tvorbu PA a tím zesiluje buněčnou odpověď jak na působení ABA, tak na působení H₂O₂ (Guo *et al.*, 2012; Hong *et al.*, 2016).

2.7.2 Úloha fosfolipasy Dal v reakci na osmotický stres

Nadměrné zasolení půdy představuje vážný problém pro světové zemědělství. U rostlin rostoucích v půdě s příliš vysokou salinitou dochází k osmotickému stresu a iontové nerovnováze, což vede ke sníženým výnosům u zemědělsky důležitých plodin (Ward *et al.*, 2003; Kim *et al.*, 2007; Munns & Tester, 2008).

Během působení osmotického stresu dochází k aktivaci hned několika PLD – například PLD α 1, α 3 a δ a k následné produkci PA (Yu *et al.*, 2010). Ve zvýšené míře nadprodukovaná PA aktivuje mitogenem aktivovanou protein kinasu 6 (MPK6), která *in vitro* aktivuje SOS1 transportér. SOS1 protein pak odčerpává Na⁺ ionty ven z buňky a tím zmírňuje vliv NaCl na buňku. Vyřazením *PLD\alpha1* genu dochází u mutantních rostlin *A. thaliana* ke zvýšené citlivosti k solnému stresu (Katagiri *et al.*, 2001; Bargmann *et al.*, 2009; Yu *et al.*, 2010; Hong *et al.*, 2010; Zhang *et al.*, 2017). U rostlin *A. thaliana* bylo dokázáno, že při působení solného stresu dochází k interakci PA s proteinem asociovaným s mikrotubuly 65-1 (MAP65-1), který stimuluje polymerizaci mikrotubulů, a tím zvyšuje jejich stabilitu a taky toleranci rostlin vůči solnému stresu (Yu *et al.*, 2010; Zhang *et al.*, 2012; Zhang *et al.*, 2017). Nedávno byla taky zjištěna interakce mezi PLDα1 a MPK3 proteiny, přičemž společné vyřazení obou proteinů vede k zvýšené toleranci rostlin *A. thaliana* vůči solnému stresu (Vadovič *et al.*, 2019).

2.7.3 Role PLDa1 v interakci rostliny s patogeny

Během útoku patogenního organismu na rostlinu dochází k aktivaci membránového receptoru Pattern Recognition Receptor (PRR), který rozpozná molekulu Microbe-associated Molecular Pattern (MAMP), produkovanou sekrečními systémy mikrobů (Boller & Felix, 2009; Dodds & Rathjen, 2010). Rozpoznání molekul MAMP vede ke spuštění signálních drah, které končí aktivací obranného systému rostliny (Dodds & Rathjen, 2010). Tento způsob obranné reakce rostliny se označuje jako MAMP- Triggered Immunity (MIT).

Existuje však i jiná strategie rostlin pro spuštění obranných mechanismů. Tou je využití proteinů Intracellular Resistance Proteins, které rozpoznají specifické patogenem vylučované efektory. To je podstatou systému Effector-Triggered Immunity (ETI; Dodds & Rathjen, 2010). Předpokládá se, že PLDα1 a PA působí jako signální molekuly pro spuštění obou těchto mechanismů (Zhao, 2015).

PLDα1 také pravděpodobně způsobuje odolnost rostliny proti penetraci patogeny jako jsou například houby (Young *et al.*, 1996). Důležitá role PLDα1 byla pozorována po napadení endofytickou houbou *Piriformospora indica* kdy byla potvrzena indukce růstu kořene *Arabidopsis thaliana* (Camehl *et al.*, 2011). V tomto případě je pomocí PA aktivována signální dráha protein kinasy závislé na 3-fosfoinositidu (PDK1; Camehl *et al.*, 2011).

3 Buněčná a subcelulární lokalizace PLDa1

Přítomnost PLDα1 byla imunoblotovou analýzou potvrzena v buňkách stonku, květu, kořene, šešule a starších listů (Fan, 1997). Jak uvádí nedávná práce (Novák *et al.*, 2018), k vysoké úrovni exprese PLDα1 dochází především v buňkách apikální a laterální kořenové čepičky, trichoblastů a vyvíjejících se kořenových vlásků. Toto zjištění naznačuje roli PLDα1 při vývoji kořenových vlásků.

V nadzemní části rostliny je exprese značná v dlaždicových buňkách mezofylu listů a také v buňkách průduchů. Oproti původním předpokladům tato práce zaznamenala vysokou úroveň exprese v buňkách trichomů. Výsledky této práce naznačují roli proteinu PLDα1 při polarizaci buňky (Novák *et al.*, 2018).

Podle imunoblotové analýzy frakcionovaných extraktů listů *A. thaliana* je fosfolipasa D alfa 1 přítomna jak v cytoplasmatické membráně, tak v cytosolu. Právě při poranění rostliny dochází k její translokaci mezi CM a cytosolem. Dále se značné množství enzymu nachází v klathrinem obalených váčcích a vnitrobuněčných membránách, zatímco pouze malé množství PLDα1 je přítomno v buněčném jádře (Fan *et al.*, 1999; Novák *et al.* 2018).

3.1 Subcelulární lokalizace ostatních fosfolipas D

Výskyt PLD $\zeta 2$ je spojen s membránou tonoplastu (Yamaryo *et al.*, 2008), kdežto PLD γ se nachází u intracelulárních membrán (Fan *et al.*, 1999). PLD δ , PLD ε , a PLD $\alpha 3$ jsou spojovány převážně s CM (Hong *et al.*, 2008, 2009; Takáč *et al.* 2019b). Ve většině buněk *A. thaliana* se nachází větší množství transkriptu genu PLD $\alpha 1$ a PLD δ než genů kódujících ostatní fosfolipasy D (Li *et al.*, 2006). Velké množství transkriptu PLD $\alpha 1$ se nachází ve všech pletivech kromě pylu, kdežto exprese PLD δ , $\alpha 2$, $\beta 1$, $\beta 2$, ε je výrazná právě v pylu. Aktivita PLD $\zeta 2$ je zase indukovaná nedostatkem fosforu (Li *et al.*, 2006). Přesto zatím nejsou prozkoumány všechny detaily týkající se regulace transkripce fosfolipas D.

3.2 Vliv fosfolipas D na organizaci rostlinného cytoskeletu

Cytoskelet rostlinné buňky slouží především jako síť pro stabilizaci buňky a umožnění intracelulárního transportu. Skládá se z mikrotubulů a aktinových filament. Aktinové filamentum (F–aktin) je vysoce dynamická polymerizovaná struktura. Základní stavební jednotkou aktinových filament je G – aktin, který polymerizuje do pravotočivé šroubovice.

Ukázalo se, že změna aktivity kyseliny fosfatidové uvnitř buňky má vliv na organizaci aktinového cytoskeletu. Ztráta aktivity fosfolipas D a s ní spojený pokles tvorby kyseliny fosfatidové vedou k poškození aktinových filament, zatímco dodání kyseliny fosfatidové z vnějšího prostředí vede ke zvýšení hustoty a tím i stability aktinových vláken (Li *et al.*, 2012; Pleskot *et al.*, 2012). Závislost aktivity fosfolipas D na aktinu dokazuje i zjištění, že PLDβ rostliny *Nicotiana tabacum* je aktivována přítomností F-aktinu - aktinovými mikrofilamenty, kdežto její aktivita je inhibována G-aktinem, tedy nepolymerizovanou molekulou aktinu (Kusner *et al.*, 2003; Pleskot *et al.*, 2010).

Jako prostředník v mechanismu reakce PA s aktinem se jeví tzv. capping protein (CP), který in vitro regulován fosfolipidy je (Staiger & Blanchoin, 2006; Cooper & Sept, 2008). Tento protein se váže na rychle rostoucí konec aktinového filamentu a chrání jej před výměnou podjednotek a případnou depolymerizací (Huang et al., 2003). Tuto teorii potvrdila studie provedená s mutantními rostlinami A. thaliana s umlčeným genem pro CP, kdy bylo u těchto mutantů pozorováno výrazně větší množství aktinových filament v epidermálních buňkách hypokotylu (Li et al., 2012).

4 Materiál a metody

4.1 Biologický materiál

Pro imunoblotovou analýzu a pro lokalizaci s konfokální mikroskopii byly použity kořeny a listy rostlin *Arabidopsis thaliana* ekotypu Columbia (Col-0), T-DNA mutantních rostlin *pldα1-1* (SALK_067533) a *plda1-2* (SALK_053785) komplementovaných s PLDα1-YFP fúzním proteinem (*proPLDα1::PLDα1:*YFP), T-DNA inzerčních mutantů *plda1-1* (SALK_067533) a *plda1-2* (SALK_053785) a transgenní linie G5 s expresí volného GFP. Mezi *pldα1-1* (SALK_067533) a *plda1-2* (SALK_067533) a *plda1-2* (SALK_053785) mutantními rostlinami a divokým typem (Col-0) nebyl shledán žádný fenotypový rozdíl.

4.2 Seznam použitých chemikálií

Chemikálie	Výrobce
2-merkaptoethanol	Sigma Aldrich
akrylamid (40%)	Bio-Rad
peroxodisíran amonný(APS)	Sigma Aldrich
Blotting Grade-Blocker	Bio-Ra
chlorid hořečnatý	Sigma Aldrich
Clarity TM Western ECL Blotting Substrate	Bio-Rad
cOmplete TM	Roche
Coomassie Brilliant Blue G-250	Bio-Rad
dithiotreitol (DTT)	Sigma Aldrich
dodecylsulfát sodný (SDS)	Sigma Aldrich
ethanol	lihovar Kojetín
ethylenglykol-bis(2-aminoethylether)-N,N,N,N tetraoctocvá kyselina (EGTA)	Sigma Aldrich
glycerol	Sigma Aldrich
glycin	Sigma Aldrich
HEPES	Duchefa Biochemie
hovězí sérový albumin (BSA)	Sigma Aldrich
kyselina octová	Sigma Aldrich
methanol	Sigma Aldrich
Murashige&Skoog medium, Basal salt mixture	Duchefa Biochemie
PhosStop TM	Roche

Ponceau S	Sigma Aldrich
sacharosa	Sigma Aldrich
tetramethylethylenediamin (TEMED)	Sigma Aldrich
tris(hydroxymethyl)aminomethan	Sigma Aldrich
Tween 20 BioXtra	Sigma Aldrich

4.3 Seznam použitých roztoků a jejich složení

1/2 MS (Moorashige & Skoog) medium (pevné)

 2,15 g MS Salt Basal Mixture 1 g MES 6 g Gellan Gum Doplněno MiliQ vodou na objem 1 l, pH 5,8 (KOH), sterilizováno autoklávování 	10 g	sacharosa
1 g MES 6 g Gellan Gum Doplněno MiliQ vodou na objem 1 l, pH 5,8 (KOH), sterilizováno autoklávování	2,15 g	MS Salt Basal Mixture
6 g Gellan Gum Doplněno MiliQ vodou na objem 1 l, pH 5,8 (KOH), sterilizováno autoklávování	1 g	MES
Doplněno MiliQ vodou na objem 1 l, pH 5,8 (KOH), sterilizováno autoklávování	6 g	Gellan Gum
	Doplněno Mili	Q vodou na objem 1 l, pH 5,8 (KOH), sterilizováno autoklávováním

¹/₂ MS medium (tekuté)

10 g	sacharosa
2,15 g	MS Salt Basal Mixture
1 g	MES
Doplněno Mili	Q vodou na objem 1 l, pH 5,8 (KOH), sterilizováno autoklávováním

Blokovací roztok

25 ml	TBST
1 g	BSA
1 g	Protein Grade Blocker

Extrakční pufr

1,19 g	HEPES		
0,43 g	NaCl		
38 mg	EGTA		
100 µ1	NaF (1M)		
10 ml	10% (v/v) glycerol		
2,5 ml	1M DTT		
2,0 ml	cOmplete [™]		
4,0 ml	PhosStop TM		
		 ,	011

Doplněno MiliQ vodou na objem 100 ml, pH 7,5 (NaOH), sterilizováno filtrací

Pufr pro barvení Ponceau S

0,1 gPonceau S10 mlkyselina octováDoplněno MiliQ vodou na objem 1 l.

Reakční směs pro měření koncentrace proteinů (Bradford)

5 mlCoomassie Brilliant Blue G-25020 mlMiliQ voda

Tris/glycin/SDS pufr (elektrodový pufr)3 gTris14,4 gglycin1 gSDSDoplněno do objemu 1 l MiliQ vodou

Transferový pufr

100 ml10x Tris/glycinový pufr100 mlmethanolDoplněno MiliQ vodou na objem 1 l.

Trisový pufr s přídavkem Tween 20 (TBST)

100 ml 10 x TBS

1 ml Tween 20

Doplněno MiliQ vodou na objem 1 l.

10 x Trisový pufr (TBS)

24,23 g Tris Base

87,66 g NaCl Doplněno MiliQ vodou na objem 1 l., pH 7,6 10x Tris/glycinový pufr

30,3 g Tris base

144 g glycin

Doplněno MiliQ vodou na objem 1 l, pH 8,3.

Tab. 2 Seznam použitých protilátek

Název protilátky	Dodavatel	Klonalita	Ředění
anti-PLD α 1/2	Agrisera	polyklonální	1:3000 v 1% BSA v TBST
anti-GFP	ABCAM	monoklonální	1:1000 v 1% BSA v TBST
Kozí anti-králičí	Life Technologies	-	1:5000 v 1% BSA v TBST
Kozí anti-myší	Life Technologies	-	1:5000 v 1% BSA v TBST

4.4 Seznam použitých přístrojů

Název přístroje	Výrobce
Analytické váhy (XA 110/2X)	Radwag
Automatické pipety (2,5 µl, 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl, 10 ml)	Eppendorf
Centrifuga (Allegra 64 R)	Beckman Coulter
Chladnička (LCV 4010)	Liebherr
Digestoř (900 M)	Merci
Dokumentační zobrazovací systém (ChemiDoc MP)	Bio-Rad
Fluorescenční stereomikroskop Axio Zoom.V16	Zeiss AG
Hlubokomrazící box (MDF-U500VX-PE)	Panasonic
Konfokální laserový skenovacího mikroskop LSM 710	Zeiss AG
Laminární box (SCS 2-6 119)	Merci
Magnetická míchačka (IKA Combinag REO)	Drehzahl Electornic
Míchačka Vortex	Winn
Mikrocentrifuga s vortexem (FVL - 2400N)	BioSan
Mikrovlnná trouba (MGE 23)	Hitachi
Mraznička (G 5216 513 L)	Liebherr
pH metr (PC 2700)	Eutech Instruments
Promývačka Rocker (Shaker MR-12)	BioSan
Spektrofotometr (Smart Spec Plus)	Bio-Rad
Stolní počítač (Idea Centre 10062)	Lenovo
Třepačka s vyhříváním (TS-100)	BioSan
Vana pro elektroforézu (Mini Protean Tetra System)	Bio-Rad
Zdroj pro elektroforézu (E 265)	Consort

4.5 Seznam použitého software

Název software

Image Lab 6.0.0 ZEN 2.3. SP1, edice Black InkScape 0.92.3 Vývojář

Bio-Rad Laboratories, Inc. Carl Zeiss AG The Inkscape Team

4.6 Příprava a selekce rostlinného materiálu

Semena *Arabidopsis thaliana* byla povrchově sterilizována inkubací v 70% (v/v) ethanolu po dobu 2 minut, následně byl aplikován 1% (v/v) hypochlorid sodný s přídavkem 0,1% (v/v) Tweenu 20 po 8 minut. Nakonec byla semena třikrát propláchnuta sterilní MilliQ vodou po dobu 2 minut.

Sterilní semena byla vysušena na filtračním papíru a následně ve sterilním prostředí vysazena na Petriho misky obsahující pevné ½ MS medium (Murashige a Skoog, 1962) s přídavkem 6 g/l ztužující látky Gellan Gum. Vysazená semena na miskách byla stratifikována při 4 °C ve tmě po dva dny a následně přenesena do růstové komory při fotoperiodě 16/8 h (světlo/tma), teplotě 21 °C a relativní vlhkosti 68 %.

Po 4 dnech od vysazení byly vyklíčené rostliny komplementovaných linií PLDα1 1-YFP a PLDα1-2-YFP vyselektovány na základě fluorescence pomocí fluorescenčního stereomikroskopu Axio Zoom V16 (Carl Zeiss AG, SRN).

Po 14 dnech od vysazení na živné medium byly z vyselektovaných rostlin odebrány odděleně kořeny i nadzemní části a zhomogenizovány na třecí misce za působení tekutého dusíku. Homogenát byl skladován při teplotě -80 °C. Rostliny, vykazující expresi PLDα1-YFP fúzního proteinu, byly použity k další analýze.

4.7 Extrakce proteinů

Ke zmraženému homogenátu ze vzorků komplementovaných linií PLDα1-1-YFP a PLD1-2-YFP, z *plda1-1* a *plda1-2* mutantních rostlin, z GFP rostlin a z Col-0 rostlin bylo přidáno 200 µl extrakčního pufru. Vzorky s extrakčním pufrem byly inkubovány při 4 °C po 20 minut a místy vortexovány. Dále byly vzorky centrifugovány 15 minut při RCF 16000 x g a teplotě 4 °C. Po centrifugaci byl supernatant odebrán do čisté zkumavky a udržován při teplotě 4 °C.

4.8 Měření koncentrace proteinů

Koncentrace proteinů ve vzorcích byla měřena metodou podle Bradforda (Bradford, 1976). Do čistých zkumavek byl napipetován 1 ml reakční směsi pro měření koncentrace proteinů a do každé zkumavky přidán 2 µl vzorku. Po 10 minutách inkubace byla pomocí spektrofotometru změřena absorbance při 595 nm. Pomocí kalibrační křivky vytvořené z roztoku BSA byla vypočítána koncentrace proteinů.

4.9 Denaturující polyakrylamidová elektroforéza a imunoblotová analýza

K 60 μ l připraveného proteinového extraktu bylo přidáno 16 μ l 4x Laemmliho vzorkového pufru a 4 μ l 2-merkaptoethanolu. Připravená směs byla denaturována na třepačce s vyhříváním při 96 °C a při této teplotě inkubována 10 min. Poté byly vzorky rychle centrifugovány na mikrocetrifuze. Byly připraveny dva 10% polyakrylamidové gely (tab. 3). Do každé jamky gelu bylo naneseno 12 μ l vzorku. Elektroforéza probíhala při napětí 180 V po dobu cca 45 minut.

Rozdělené proteiny z obou gelů byly přeneseny na PVDF (polyvinylidenfluoridové) membrány. Přenos probíhal přes noc v prostředí transferového pufru při napětí 24 V a teplotě 4 °C. Membrány byly po přenosu propláchnuty v TBS-T (Transferový pufr s přídavkem 1% Tweenu) a inkubovány přes noc v blokovacím roztoku při teplotě 4 °C.

Po inkubaci v blokovacím roztoku byla aplikována primární protilátka (tab. 2). Na jednu membránu byla aplikována anti-pldα-1/2 protilátka (Agrisera) proti PLDα1 proteinu ředěná v roztoku 1% BSA v poměru 1:3000. Na druhou membránu byla použita anti-GFP protilátka proti GFP proteinu ředěna v roztoku 1% BSA v poměru 1:1000. Membrány byly v roztoku s primární protilátkou inkubovány 90 minut při pokojové teplotě. Po inkubaci v primární protilátce byly membrány šestkrát promyty v TBS-T po dobu 10 min. Následně byla aplikována sekundární protilátka.

Na membránu s primární protilátkou anti-pldα-1/2 proti PLDα1 proteinu byla aplikována sekundární protilátka kozí anti-králičí a na membránu s protilátkou anti-gfp proti GFP proteinu byla aplikována sekundární protilátka kozí anti-myší. Membrány byly se sekundární protilátkou inkubovány při pokojové teplotě po 90 minut. Po inkubaci se sekundární protilátkou byla membrána třikrát promyta v TBST.

Signál na obou membránách byl detekován chemiluminiscenčně po inkubaci 1 minutu s ECL Western Clarity Substrate na zařízení ChemiDoc.

	4% zaostřovací gel	10% separační gel
40% akrylamid	0,500 ml	5,000 ml
1,5 mol.l-1 Tris HCl, pH 8,8	-	5,000 ml
0,5 mol.l-1 Tris-HCl, pH 6,8	1,260 ml	-
10% SDS	0,050 ml	0,200 ml
MiliQ voda	3,180 ml	9,700 ml
APS	0,025 ml	0,100 ml
TEMED	0,005 ml	0,010 ml

Tab. 3 Složení polyakrylamidového gelu pro elektroforézu.

4.10 Lokalizace fúzního proteinu pomocí konfokální laserové skenovací mikroskopie

Pro lokalizaci PLDα1-YFP fúzního proteinu byly použity 4 dny staré rostliny *A. thaliana*, komplementované linie PLDα1-1-YFP, PLDα1-2-YFP, jako negativní kontrola rostliny divokého typu (ekotyp Columbia) a jako pozitivní kontrola rostliny exprimující volné GFP.

Rostliny byly přeneseny na podložní sklo do kapky tekutého ½ MS media (Murashige & Skoog, 1962), přikryty krycím sklem a pozorovány pomocí konfokálního laserového skenovacího mikroskopu LSM 710 vybaveného objektivy Plan-Apochromat 20x/0.8 a alpha Plan-Apochromat 63x/1.46 Oil (Carl Zeiss AG, SRN). Vzorky byly nasnímány pomocí laseru s excitační vlnovou délkou záření 514 nm a použito bylo emisní spektrum o vlnové délce 519 – 550 nm. Analýza získaných dat byla provedena pomocí softwaru ZEN 2.3. SP1, edice Black (Carl Zeiss AG, SRN).

5 Výsledky

Cílem bakalářské práce bylo pomocí imunoblotové analýzy ověřit, zda $pld\alpha$ -1-1 a $pld\alpha$ -1-2 T-DNA mutantní rostliny komplementované s $proPLD\alpha$ 1:: $PLD\alpha$ 1::YFP konstruktem obsahují v T2 generaci PLD\alpha1-YFP fúzní protein. PLD α 1-YFP protein byl detekován imunoblotovou analýzou pomocí komerčních protilátek proti PLD α a proti GFP. Díky fluorescenci emitované YFP spojené s fúzním proteinem PLD α 1-YFP byl následně tento protein lokalizován pomocí konfokální laserové skenovací mikroskopie na buněčné a subcelulární úrovni v semenáčcích *A. thaliana*.

5.1 Ověření fluorescenčního signálu YFP

Z komplementovaných PLDα1-1-YFP a PLDα1-2-YFP rostlin byly tři dny po vysazení vyselektovány rostliny s nejvyšší expresí YFP. Rostliny PLDα1-1-YFP, u kterých byla exprese YFP pozorována, byly použity pro mikroskopickou analýzu (tab. 4). Tabulka 4 ukazuje, kolik rostlin z celkového počtu vysazených vykazovalo takovou fluorescenci, aby mohly být použity pro konfokální laserovou skenovací mikroskopii.

U linie PLDa1-1-YFP vykazovalo 50 rostlin z 60 vysazených dostatečně silnou fluorescenci, aby mohly být použity pro další analýzu. U linie PLDa1-2-YFP vykazovalo dostatečnou fluorescenci 33 rostlin z 40 vysazených. V obou případech byla fluorescence dostatečná u 83 % vysazených rostlin. Rostliny divokého typu (Col-0) nevykazovaly žádnou expresi YFP proteinu a byly použity jako negativní kontrola, a naopak GFP linie rostlin vykazovala stálou expresi GFP proteinu a rostliny byly tedy použity jako pozitivní (GFP) kontrola.

Rostliny	S expresí YFP	Bez exprese YFP	Celkem vysazeno rostlin	% rostlin vhodných pro další analýzu
PLDα1-1- YFP	50	10	60	83 %
PLDα1-2- YFP	33	7	40	83 %
Col-0 (kontrola)	0	20	20	0 %
GFP (kontrola)	20	0	20	100 %

Tab. 4 Selekce rostlin A. thaliana na základě fluorescence.

Obr. 4 Selekce rostlin na základě fluorescence. BF – procházející světlo, GFP – filtr GFP. Měřítko 1 mm.

Selekce komplementovaných rostlin v T2 generaci probíhala pomocí fluorescenčního stereomikroskopu Axio Zoom V16. Vzorky byly pozorovány s použitím filtru GFP pro sledování fluorescence a v procházejícím světle (obr. 4). Vzorky byly pozorovány za stejných světelných podmínek. Při pozorování v procházejícím světle nejsou patrné žádné signifikantní morfologické rozdíly mezi rostlinami PLDα1-1-YFP (obr.4, C), PLDα1-1-YFP (obr. 4, E) a divokým typem Col-0 (obr. 4, A), ovšem při použití GFP filtru je patrný silný signál pouze u komplementovaných linií PLDα1-1-YFP (obr. 4, D) a PLDα1-2-YFP (obr. 4, F), na rozdíl od kontrolních rostlin Col-0, kde naopak nebyl zaznamenán žádný signál (obr.4, B). Pro další mikroskopickou analýzu byly použity rostliny PLDα1-1-YFP.

5.2 Detekce PLDa-1-YFP imunoblotovou analýzou

Pro imunoblotovou analýzu byly použity 14 dní staré nadzemní a kořenové části semenáčků $pld\alpha l$ -1 a $pld\alpha l$ -2 mutantních rostlin *A. thaliana* obsahující fúzní protein PLD αl -YFP (PLD αl -1-YFP, PLD αl -2-YFP). Jako kontrola byly použity stejně staré rostliny divokého typu – ekotyp Columbia-0 (Col-0) a mutantní rostliny $pld\alpha l$ -1 a $pld\alpha l$ -2 s T-DNA inzercí v genu $PLD\alpha l$. U experimentu s protilátkou proti GFP proteinu byla navíc použita transgenní linie G5 s expresí volného GFP jako kontrola detekce volného GFP.

Při použití protilátky proti PLD α 1/2 proteinu (obr. 5, A a 6, A) byl očekáván pás v oblasti odpovídající molekulové hmotnosti přibližně 92 kDa u proteinových vzorků jak z kořenové, tak z nadzemní části Col-0 rostlin a rostlin exprimujících volný GFP protein. U proteinových vzorků z kořenové i nadzemní části PLD α 1-1-YFP a PLD α 1-2-YFP komplementovaných rostlin byl očekáván pás v oblasti odpovídající molekulové hmotnosti přibližně 119 kDa. U proteinových vzorků z obou částí *pld\alpha1-1* a *pld\alpha1-2* mutantních rostlin proteinový pás očekáván nebyl kvůli vyřazení genu *PLD\alpha1* T-DNA inzercí.

Po aplikaci protilátky proti PLD α -1/2 je u kořenové části rostlin divokého typu Col-0 viditelný silný proteinový pás v oblasti odpovídající molekulové hmotnosti PLD α -1 přibližně 92 kDa (obr. 5, A). U *pld\alpha-1-1* a *pld\alpha-1-2* mutantů se tento proteinový pás nevyskytuje kvůli vyřazení *PLD\alpha-1* genu T-DNA inzercí. U komplementovaných linií s fúzním proteinem se nachází proteinový pás v oblasti odpovídající molekulové hmotnosti PLD α -1-YFP tedy přibližně 119 kDa, ovšem u vzorku PLD α 1-1-YFP se jeví jako velmi slabý (obr. 5, A). U nadzemní části rostlin divokého typu Col-0 a u rostlin exprimujících volný GFP protein po aplikaci protilátky proti PLD α -1/2 je možné pozorovat pás v oblasti molekulové hmotnosti přibližně 92 kDa odpovídající PLD α -1 (obr. 7A). Podobně u nadzemní části rostlin komplementovaných s fúzním PLD α -1-YFP proteinem je možné sledovat pás v oblasti molekulové hmotnosti přibližně 119 kDa odpovídající PLD α -1-YFP fúznímu proteinu (obr. 6, A).

Při použití protilátky proti GFP proteinu (obr. 7, A a 8, A) byl očekáván pás v oblasti 119 kDa u proteinových vzorků z kořenové a nadzemní části PLD α 1-1-YFP a PLD α 1-2-YFP komplementovaných linií. U proteinových vzorků z obou částí rostlin, které exprimovali volné GFP byl očekáván pás v oblasti 27 kDa. U proteinových vzorků z Col-0 rostlin a z *pld\alpha1-1* a *pld\alpha1-2* mutantních rostlin pás na imunoblotové membráně očekáván nebyl, protože rostliny neobsahovaly fluorescenční GFP nebo YFP protein.

Protilátka proti GFP proteinu u kořenové části PLD α 1-1-YFP a PLD α 1-2-YFP komplementovaných rostlin rozpoznala u obou vzorků pás v oblasti 119 kDa, který odpovídal molekulové hmotnosti fúzního proteinu PLD α 1-YFP (obr. 7, A). U kořenové části rostlin exprimujících volné GFP bylo podle očekávání možno sledovat pás v oblasti 27 kDa tedy odpovídající molekulové hmotnosti volného GFP . Naopak u kořenových vzorků z Col-0 rostlin a z *pld\alpha1-1* a *pld\alpha1-2</sub> mutantních rostlin se dle očekávání žádný pás neobjevil (obr. 7, A).*

U nadzemní části PLD α 1-1-YFP a PLD α 1-2-YFP komplementovaných rostlin protilátka proti GFP proteinu rozpoznala přítomnost PLD α -1-YFP fúzního proteinu o přibližné velikosti 119 kDa, podobně jako u kořenové části komplementovaných linií (obr. 8, A). Stejně jak u kořenové části, tak i u nadzemní části rostlin exprimujících volné GFP se pomocí protilátky proti GFP proteinu potvrdila přítomnost pásu o přibližné velikosti 27 kDa. Tento pás vyjadřoval přítomnost volného GFP u zmíněných rostlin. Podobně v shodě se vzorky z kořenů se u vzorků z nadzemní částí Col-0 rostlin a z *pld\alpha1-1 a pld\alpha1-2 mutantních rostlin žádný pás neobjevil (obr. 8, A).*

Pomocí imunoblotové analýzy se za použití protilátek proti PLDα-1/2 a proti GFP proteinům potvrdila přítomnost PLDα-1-YFP fúzního proteinu u obou komplemenovaných PLDα1-1-YFP a PLDα1-2-YFP rostlinných linií jak v kořenové tak i v nadzemní části obou rostlinných linií.

Obr. 5 (A) Membrána s nanesenými proteiny ze vzorku kořenové části rostliny po aplikaci protilátky proti PLD α 1/2 (B) Kontrola množství nanesených proteinů na membránu pomocí restripování membrány s protilátkou proti tubulinu.

Obr. 6 (A) Membrána s nanesenými proteiny ze vzorku nadzemní části rostliny po aplikaci protilátky proti PLD α 1/2 (B) Kontrola množství nanesených proteinů na membránu pomocí barvení Ponceau S.

Obr. 7 (A) Membrána s nanesenými proteiny ze vzorku kořenové části rostliny po aplikaci protilátky proti GFP (B) Kontrola množství nanesených proteinů na membránu pomocí barvení Ponceau S.

Obr. 8: (A) Membrána s nanesenými proteiny ze vzorku nadzemní části rostliny po aplikaci protilátky proti GFP. Jedná se o jednu membránu. (B) Kontrola množství nanesených proteinů na membránu pomocí barvení Ponceau S.

5.3 Lokalizace PLDa1-YFP fúzního proteinu v kořenové části rostliny

PLD α 1-YFP fúzní protein byl lokalizován metodou laserové skenovací konfokální mikroskopie v kořenové části čtyřdenních *pld\alpha1-1* mutantních rostlin *A. thaliana* se stabilní expresí konstruktu *propld\alpha1::PLD\alpha1:YFP*. Exprese byla pozorována v buňkách kořenové čepičky, zóny meristematické, přechodné, elongační a diferenciační (obr. 9).

Obr. 9 Funkční zóny primárního kořene Arabidopsis thaliana (Gotté et al., 2016)

Nejsilnější úroveň exprese fúzního proteinu je v epidermálních buňkách laterální kořenové čepičky. V této části jsou zřetelné parenchymatické metabolicky aktivní buňky s velkým množstvím vakuol. Především z obrázku 10, A je patrné, že PLDα1-YFP se v jádrech buněk spíše nenachází. Směrem od kořenové čepičky k přechodné zóně kořene exprese spíše slábne.

V oblasti diferenciační zóny kořene byl zaznamenán výrazný rozdíl v úrovni exprese PLD α 1-YFP u trichoblastů a atrichoblastů (obr. 11). Silnější exprese PLD α 1-YFP u buněk trichoblastů je nejzřetelnější právě v místech vytváření kořenových vlásků a dále ve špičkách rostoucích kořenových vlásků (obr. 12).

Obr. 10: Exprese fúzního proteinu PLD α 1-YFP u epidermálních buněk kořenové čepičky (A), přechodné (B) a meristematické zóny kořene (C). Měřítko: A – 50 µm; B – 20 µm; C – 20 µm.

Naopak poměrně nízká úroveň exprese PLD α 1-YFP je patrná v oblasti meristematické zóny kořene (obr. 10, B; 11, A). Tudíž je zřejmý přechod mezi nízkou expresí PLD α 1-YFP v buňkách aktivně se dělících buněk a poměrně silnou expresí v buňkách po buněčném dělení, se začínající elongací.

Úroveň exprese PLDα1-YFP byla zkoumána i u již vyvinutých kořenových vlásků (obr. 12). V tomto případě je nejsilnější exprese patrná ve špičkách vyvinutých kořenových vlásků.

Obr. 11 Exprese PLD α 1-YFP v kořenových buňkách trichoblastů a atrichoblastů v přechodné zóně (A), elongační zóně (B) a v diferenciační zóně s vyvíjejícím se kořenovým vláskem (C). Šipka ukazuje na vyrůstající kořenový vlásek. Měřítko 50 μ m.

Obr. 12 Exprese fúzního proteinu PLDα1-YFP ve špičkách již vyvinutých kořenových vlásků. Šipky ukazují na špičky kořenových vlásků se silnou expresí fúzního proteinu. Měřítko 100 μm. Poměrně silný signál byl zaznamenán také v oblasti zakládajícího se laterálního kořene. Na obrázku 13, A - C lze pozorovat linii buněk se silnou expresí v oblasti středního válce. Dále je možné vidět vyrůstající laterální kořen se silnou expresí fúzního proteinu v jeho špičce.

Obr. 13 Exprese PLDa1-YFP v oblasti zakládajícího se laterálního kořene. Měřítko 50 µm.

Pro subcelulární lokalizaci PLD α 1-YFP byly analyzovány buňky kořenové čepičky. V těchto buňkách je pozorovatelná distribuce PLD α 1-YFP v okolí cytoplasmatické membrány (obr. 14). Tento snímek ukazuje především cytoplasmatickou lokalizaci PLD α 1-YFP. V centrální části buněk jsou také pozorovatelné shluky PLD α 1-YFP, které mohou znamenat přítomnost PLD α 1-YFP u intracelulárních membrán (endoplasmatické retikulum).

Obr. 14 Lokalizace PLDα1-YFP na subcelulární úrovni v buňkách kořenové čepičky. Měřítko 20 μm.

5.4 Lokalizace PLDa1-YFP fúzního proteinu v nadzemní části rostliny

Fúzní protein PLDα1-YFP byl lokalizován na čtyřdenních rostlinách *A. thaliana,* v pletivech děložních listů a řapíku komplementovaných linií PLDα1-1-YFP pomocí konfokální laserové skenovací mikroskopie.

Exprese PLD α 1-YFP proteinu v nadzemní části rostliny nebyla tak silná jako v kořenové části, přesto byl signál emitovaný fúzním proteinem patrný v buňkách děložních listů a řapíku. Z buněk děložních listů je zjevná výrazná exprese PLD α 1-1-YFP v buňkách průduchů (obr. 15 A - C). O něco slabší je exprese v dláždicových buňkách listového mezofylu.

Obr. 15 Exprese fúzního proteinu PLD α 1-YFP v buňkách děložních listů (A) a svěracích buňkách průduchů (B, C). Měřítko: A - 25 μ m; B – 5 μ m; C – 5 μ m.

Zvláště na protáhlých buňkách řapíku je patrné rozmístění fúzního proteinu v oblasti cytoplasmatické membrány (obr. 16).

Obr. 16 Exprese fúzního proteinu PLD α 1-YFP v buňkách řapíku. Měřítko 50 μ m.

Subcelulární lokalizace PLD α 1-YFP dále proběhla protáhlých buňkách řapíku (obr. 17). Tyto metabolicky aktivní buňky ukázaly opět vysokou akumulaci PLD α 1-YFP v okolí cytoplasmatické membrány, zde navíc pozorujeme intenzivní signál ve středu buňky. Tento silný signál by mohl odpovídat PLD α 1-YFP akumulované u intracelulárních membrán (endoplasmatické retikulum) poblíž jádra.

Obr. 17 Lokalizace PLDa1-YFP na subcelulární úrovni u buněk řapíku. Měřítko 20 µm.

6 Diskuse

Předkládaná práce potvrdila výsledky nedávno publikovaného článku Novák *et al.*, 2018, který přinesl detailní analýzu lokalizace fosfolipasy D alfa 1 na pletivové a subcelulární úrovni.

analýza Mikroskopická kořenové části pldα1-1 mutantní rostliny komplementované proplda1::PLDa1:YFP konstruktem ukázala na silnou expresi PLDα1-YFP proteinu v apikálním meristému kořene, konkrétně v buňkách hlavní a boční kořenové čepičky a v buňkách kolumely. Slabší expresí bylo možné sledovat v meristematické zóně kořene. Tyto výsledky jsou v souladu s prací Novák et al., 2018 kde autoři sledovali totožnou lokalizaci PLDa1-YFP fúzního proteinu v semenáčcích Arabidopsis. Autoři práce Fan et al., 1999 pozorovali vysokou aktivitu PLDa1 proteinu v kořenové části rostlin Arabidopsis, co potvrzuje zvýšenou přítomnost tohoto proteinu v kořenech rostlin. Zvýšený výskyt PLDa1 proteinu ve špičkách kořenových vlásků u Arabidopsis hraje důležitou roli proteinu při zakládání a vývoji kořenových vlásků, navíc silnější exprese v trichoblastech diferenciační zóny kořene, tento vliv naznačují. Tyto výsledky byly ve shodě s prací autorů Novák et al., 2018.

Při lokalizaci PLDα1-YFP v kořenové části u Arabidopsis byla věnována pozornost také buňkám zakládajícího se laterálního kořene. Pozoruhodně silná exprese proteinu je patrná v buňkách středního válce kořene pravděpodobně v pericyklu. Toto zjištění potvrzuje univerzální funkci PLDα1 v metabolicky aktivních buňkách a je ve shodě s prací Fan *et al.*, 1999 kde autoři sledovali právě vysokou aktivitu PLDα1 v estonku rostlin Arabidopsis která je přímým pokračováním středního válce u kořene

V nadzemní části rostliny se sledovala vysoká úroveň exprese PLDα1 proteinu ve svěracích buňkách průduchů u děložních listů. Opět tyto zjištění potvrzují důležitou úlohu PLDα1 proteinu při otvírání a zavírání průduchů v reakci na různé vnější podněty (Sang *et al.*, 2001; Zhang *et al.*, 2004; Mishra *et al.*, 2006).

Pro subcelulární lokalizaci fúzního proteinu PLDα1-YFP v semenáčcích *Arabidopsis* byly použity buňky kořenové čepičky. Na základě výsledků prací Fan *et al.*, 1999 a Novák et al., 2018 se předpokládal výskyt PLDα1 cytosolu a v okolí cytoplasmatické membrány, kde migruje mezi CM a intracelulárními membránami. Tuto skutečnost potvrdily i naše výsledky. V souvislosti s intracelulárními membránami nutno poukázat na shluky signálu z PLDα1-YFP proteinu v oblasti okolo předpokládaného výskytu jádra. Předpokládáme, že tyto útvary by mohly být membrány endoplasmatického retikula, které slouží jako

substrát PLDα1 při tvorbě kyseliny fosfatidové (Wang & Wang, 2001; Takáč *et al.*, 2019). Přesná lokalizace PLDα1-YFP v okolí jádra a endoplasmatického retikula nebyla za použitých metod možná, protože nebylo možné přesně a jednoznačně v nasnímaných buňkách lokalizovat jádro snímaných buněk. (Novák *et al.*, 2018) Jednou z možností, jak jádro v buňkách u živých rostlin přesně vizualizovat, by bylo barvení jaderné DNA interkalačním barvivem Hoechst.

7 Závěr

Teoretická část této práce je zaměřena na charakterizaci rostlinných fosfolipas, především pak fosfolipasy D, jakož i jejího produktu kyseliny fosfatidové. Práce dále popisuje role rostlinných fosfolipas při vývoji rostliny a jejich zapojení do regulace buněčných procesů. Zvláštní důraz je kladen na účast těchto látek při odpovědi rostliny na abiotický i biotický stres. Další kapitola teoretické části se věnuje lokalizaci rostlinných fosfolipas jak na úrovni rostlinných orgánů, tak na subcelulární úrovni.

Experimentální část práce analyzovala výskyt fúzního proteinu PLD α 1-YFP u *pld\alpha1-1* a *pld\alpha1-2* v mutantních rostlinách *Arabidopsis thaliana*. Před samotnou imunoblotovou analýzou byly třídenní rostliny selektovány pomocí mikroskopu na základě fluorescence. U rostlin s expresí fúzního proteinu byla provedena imunoblotová analýzou obou mutantů, kdy byla analyzována zvlášť nadzemní a zvlášť kořenová část rostlin. Při imunoblotové analýze byla použita protilátka jednak proti PLD α 1 proteinu a také proti GFP proteinu, která detekovala YFP část fúzního proteinu. U obou komplementovaných linií mutantních rostlin byla přítomnost fúzního proteinu detekována oběma protilátkami.

Po ověření přítomnosti PLD α 1-YFP fúzního proteinu v rostlinách byl fúzní protein lokalizován pomocí konfokální laserové skenovací mikroskopie v nadzemní i kořenové části rostlin. Při pozorování kořenové části rostliny byl zaznamenán silnější signál v buňkách kořenové čepičky, v buňkách, ze kterých vyrůstají kořenové vlásky – trichoblastech a ve špičkách kořenových vlásků. Kumulace PLD α 1 v těchto buňkách naznačuje důležitou roli tohoto enzymu na vývoj kořenových vlásků (Novák *et al.*, 2018). Kromě kořenových vlásků byl pozorován silný signál také v oblasti zakládajícího se laterálního kořene, především v oblasti středního válce, zřejmě v pericyklu. To pravděpodobně souvisí s výskytem PLD α 1 v metabolicky aktivních pletivech rostliny (Fan *et al.*, 1999).

Z nadzemní části rostliny byla PLDα1 lokalizována v buňkách mezofylu listů a řapíku. V buňkách listového mezofylu byla velmi silná aktivita PLDα1 zjištěna v buňkách průduchů, což souvisí s rolí enzymu při regulaci jejich otevírání a zavírání (Zhang *et al.*, 2004, 2009; Mishra *et al.*, 2006).

8 Literatura

- Ballestrem C., Wehrle-haller B. & Imhof B.A. (1998): Actin dynamics in living mammalian cells. *Journal of Cell Science*.
- Bargmann B.O.R., Laxalt A.M., Riet B. Ter, Van Schooten B., Merquiol E., Testerink C., *et al.* (2009): Multiple PLDs required for high salinity and water deficit tolerance in plants. *Plant and Cell Physiology* **50**, 78–89.
- Boller T. & Felix G. (2009): A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. *Annual Review* of Plant Biology.
- Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry* **72**, 248–254.
- Camehl I., Drzewiecki C., Vadassery J., Shahollari B., Sherameti I., Forzani C., *et al.* (2011): The OXI1 kinase pathway mediates Piriformospora indica -induced growth promotion in Arabidopsis. *PLoS Pathogens* 7, e1002051.
- Campbell R.E. (2008): Fluorescent proteins. Scholarpedia 3, 5410.
- Cao C., Wang P., Song H., Jing W., Shen L., Zhang Q., *et al.* (2017): Phosphatidic acid binds to and regulates guanine nucleotide exchange factor 8 (GEF8) activity in Arabidopsis. *Functional Plant Biology*.
- Cooper J.A. & Sept D. (2008): New Insights into Mechanism and Regulation of Actin Capping Protein. *International Review of Cell and Molecular Biology* **267**, 183–206.
- Davenport D. & Nicol J.A.C. (1955): Luminescence in Hydromedusae. *Proceedings of the Royal* Society B: Biological Sciences.
- Dodds P.N. & Rathjen J.P. (2010): Plant immunity: Towards an integrated view of plantĝ€" pathogen interactions. *Nature Reviews Genetics*.
- Eliáš M., Potocký M., Cvrčková F. & Žárský V. (2002): Molecular diversity of phospholipase D in angiosperms. *BMC Genomics* **3**, 2-.
- Fan L. (1997): Antisense Suppression of Phospholipase D[alpha] Retards Abscisic Acid[mdash] and Ethylene-Promoted Senescence of Postharvest Arabidopsis Leaves. *The Plant Cell* ONLINE 9, 2183–2196.
- Fan L., Zheng S., Cui D. & Wang X. (1999): Subcellular Distribution and Tissue Expression of Phospholipase Dα, Dβ, and Dγ in Arabidopsis. *Plant Physiology* **119**, 1371–1378.
- Gotté M., Bénard M., Kiefer-Meyer M.-C., Jaber R., Moore J.P., Vicré-Gibouin M., *et al.* (2016): Endoplasmic Reticulum Body–Related Gene Expression in Different Root Zones of Arabidopsis Isolated by Laser-Assisted Microdissection. *The Plant Genome*.
- Guo L., Devaiah S.P., Narasimhan R., Pan X., Zhang Y., Zhang W., *et al.* (2012): Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase D to Transduce Hydrogen Peroxide Signals in the Arabidopsis Response to Stress. *The Plant Cell* **24**, 2200–2212.
- Harwood J. & Jr. T.S.M. (1989): Lipid metabolism in plants. *Critical Reviews in Plant Sciences* **8**, 1–43.
- Heim R., Prasher D.C. & Tsien R.Y. (1994): Wavelength mutations and posttranslational autoxidation of green fluorescent protein. *Proceedings of the National Academy of Sciences*.
- Hong Y., Devaiah S.P., Bahn S.C., Thamasandra B.N., Li M., Welti R., *et al.* (2009): Phospholipase De and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. *The Plant Journal* 58, 376–387.
- Hong Y., Pan X., Welti R. & Wang X. (2008): Phospholipase D 3 Is Involved in the Hyperosmotic Response in Arabidopsis. *The Plant Cell Online* 20, 803–816.
- Hong Y., Zhang W. & Wang X. (2010): Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. *Plant, Cell & Environment* **33**, 627–635.
- Hong Y., Zhao J., Guo L., Kim S.-C., Deng X., Wang G., *et al.* (2016): Plant phospholipases D and C and their diverse functions in stress responses. *Progress in Lipid Research* **62**, 55–74.
- Huang M. & Chalfie M. (1994): Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. *Nature*.

- Huang S., Blanchoin L., Kovar D.R. & Staiger C.J. (2003): Arabidopsis Capping Protein (AtCP) Is a Heterodimer That Regulates Assembly at the Barbed Ends of Actin Filaments. *Journal* of Biological Chemistry 278, 44832–44842.
- Idkowiak-Baldys J., Baldys A., Raymond J.R. & Hannun Y.A. (2009): Sustained receptor stimulation leads to sequestration of recycling endosomes in a classical protein kinase C-and phospholipase D-dependent manner. *Journal of Biological Chemistry*.
- Initiative T.A.G. (2000): Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. *Nature* **408**, 796.
- Inouye S. & Tsuji F.I. (1994): Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. *FEBS Letters*.
- Katagiri T., Takahashi S. & Shinozaki K. (2001): Involvement of a novel Arabidopsis phospholipase D, AtPLD, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. *Plant Journal* **26**, 595–605.
- Kim B.G., Waadt R., Cheong Y.H., Pandey G.K., Dominguez-Solis J.R., Schültke S., *et al.* (2007): The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. *Plant Journal* **52**, 473–484.
- Kravets V.S., Kolesnikov Y.S., Kuznetsov V. V. & Romanov G.A. (2008): The Second International Symposium Plant Growth Substances: Intracellular Hormonal Signaling and Applying in Agriculture (Kiev, Ukraine, October 8–12, 2007). *Russian Journal of Plant Physiology*.
- Kusner D.J., Barton J.A., Qin C., Wang X. & Iyer S.S. (2003): Evolutionary conservation of physical and functional interactions between phospholipase D and actin. *Archives of Biochemistry and Biophysics* **412**, 231–241.
- Laibach F. (1907): Zur Frage nach der Individualität der Chromosomen im Pflanzenreich...
- Lanteri M.L., Laxalt A.M. & Lamattina L. (2008): Nitric Oxide Triggers Phosphatidic Acid Accumulation via Phospholipase D during Auxin-Induced Adventitious Root Formation in Cucumber. *Plant Physiology* 147, 188–198.
- Li J., Henty-Ridilla J.L., Huang S., Wang X., Blanchoin L. & Staiger C.J. (2012): Capping Protein Modulates the Dynamic Behavior of Actin Filaments in Response to Phosphatidic Acid in Arabidopsis. *The Plant Cell* 24, 3742–3754.
- Li M., Quin C.. & Welti R. (2006): Double Knockouts of Phospholipases D 1 and D 2 in Arabidopsis Affect Root Elongation during Phosphate-Limited Growth But Do Not Affect Root Hair Patterning. *Plant Physiology* 140, 761–770.
- Mahajan S., Mahajan S., Tuteja N. & Tuteja N. (2005): Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics 444, 139–158.
- Meinke D.W., Cherry J.M., Dean C., Rounsley S.D. & Koornneef M. (1998): Arabidopsis thaliana: A model plant for genome analysis. *Science*.
- Mishra G., Zhang W., Deng F., Zhao J. & Wang X. (2006): A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. *Science* **312**, 264–266.
- Munns R. & Tester M. (2008): Mechanisms of Salinity Tolerance. Annual Review of Plant Biology 59, 651–681.
- Murashige T. & Skoog F. (1962): A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. *Physiologia Plantarum* **15**, 473–497.
- Van Norman J.M. & Benfey P.N. (2009): Arabidopsis thaliana as a model organism in systems biology. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine*.
- Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., et al. (2018): Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy. Frontiers in Plant Science 9.
- Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., Remington S.J. (1996): Green Fluorescent Protein from Aequora Victoria.
- Pappan K., Zheng L., Krishnamoorthi R. & Wang X. (2004): Evidence for and Characterization of Ca 2 Binding to the Catalytic Region of Arabidopsis thaliana Phospholipase Dβ. *Journal* of Biological Chemistry 279, 47833–47839.
- Pappan K., Zheng S. & Wang X. (1997): Identification and Characterization of a Novel Plant

Phospholipase D That Requires Polyphosphoinositides and Submicromolar Calcium for Activity in Arabidopsis. *Journal of Biological Chemistry* **272**, 7048–7054.

- Pleskot R., Li J., Žárský V., Potocký M. & Staiger C.J. (2013): Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. *Trends in Plant Science* 18, 496–504.
- Pleskot R., Pejchar P., Bezvoda R., Lichtscheidl I.K., Wolters-Arts M., Marc J., *et al.* (2012): Turnover of Phosphatidic Acid through Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in Tobacco. *Frontiers in Plant Science* **3**.
- Pleskot R., Potocký M., Pejchar Př., Linek J., Bezvoda R., Martinec J., et al. (2010): Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant Journal 62, 494–507.
- Prasher D.C., Eckenrode V.K., Ward W.W., Prendergast F.G. & Cormier M.J. (1992): Primary structure of the Aequorea victoria green-fluorescent protein. *Gene*.
- Qin C. & Wang X. (2002): The Arabidopsis Phospholipase D Family. Characterization of a Calcium-Independent and Phosphatidylcholine-Selective PLDzeta 1 with Distinct Regulatory Domains. *Plant Physiology* **128**, 1057–1068.
- Rizzuto R., Brini M., Pizzo P., Murgia M. & Pozzan T. (1995): Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. *Current Biology*.
- Ruelland E., Kravets V., Derevyanchuk M., Martinec J., Zachowski A. & Pokotylo I. (2014): Role of phospholipid signalling in plant environmental responses. *Environmental and Experimental Botany*.
- Sang Y., Zheng S., Li W., Huang B. & Wang X. (2001): Regulation of plant water loss by manipulating the expression of phospholipase Dalpha. *The Plant Journal* **28**, 135–144.
- Shimomura O., Johnson F.H. & Saiga Y. (1962): Extraction, purification and properties of aequorin, a bioluminescent. *Journal of cellular and comparative physiology*.
- Staiger C.J. & Blanchoin L. (2006): Actin dynamics: old friends with new stories. *Current Opinion in Plant Biology* 9, 554–562.
- Stumpe S., König S. & Ulbrich-Hofmann R. (2007): Insights into the structure of plant α-type phospholipase D. *FEBS Journal* **274**, 2630–2640.
- Takáč T., Novák D. & Šamaj J. (2019): Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants. *Frontiers in Plant Science* **10**.
- Testerink C., Larsen P.B., Van Der Does D., Van Himbergen J.A.J. & Munnik T. (2007): Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. *Journal of Experimental Botany*.
- Vadovič P., Takáč T., Šamaj J., Novák D., Šamajová O., Colcombet J., et al. (2019): Biochemical and Genetic Interactions of Phospholipase D Alpha 1 and Mitogen-Activated Protein Kinase 3 Affect Arabidopsis Stress Response. Frontiers in Plant Science 10.
- Verslues P., E. & Zhu J.-K. (2005): Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. *Biochemical Society transactions* **33**, 375–379.
- Wang C. & Wang X. (2001): A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. *Plant physiology*.
- Wang G., Ryu S. & Wang X. (2012): Plant Phospholipases. Lipases and Phospholipases, 123– 137.
- Wang X., Devaiah S., Zhang W. & Welti R. (2006): Signaling functions of phosphatidic acid. *Progress in Lipid Research* **45**, 250–278.
- Wang Z., Zhang F., He J., Wu P., Tay L.W.R., Cai M., et al. (2017): Binding of PLD2-Generated Phosphatidic Acid to KIF5B Promotes MT1-MMP Surface Trafficking and Lung Metastasis of Mouse Breast Cancer Cells. Developmental Cell.
- Ward J.M., Hirschi K.D. & Sze H. (2003): Plants pass the salt. *Trends in Plant Science* 8, 200–201.
- Yamaryo Y., Dubots E., Albrieux C., Baldan B. & Block M.A. (2008): Phosphate availability affects the tonoplast localization of PLDζ2, an Arabidopsis thaliana phospholipase D. *FEBS Letters* **582**, 685–690.
- Young S.A., Wang X. & Leach J.E. (1996): Changes in the Plasma Membrane Distribution of Rice Phospholipase D during Resistant Interactions with Xanthomonas oryzae pv oryzae. *Plant Cell* 8, 1079–1090.

- Yu L., Nie J., Cao C., Jin Y., Yan M., Wang F., et al. (2010): Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytologist 188, 762– 773.
- Zhang Q., Qu Y., Wang Q., Song P., Wang P., Jia Q., *et al.* (2017): Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. *Journal of Plant Research* **130**, 193–202.
- Zhang W., Qin C., Zhao J. & Wang X. (2004): Phospholipase D 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. *Proceedings of the National Academy of Sciences* 101, 9508–9513.
- Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., *et al.* (2009): Phospholipase D 1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis. *THE PLANT CELL ONLINE* 21, 2357–2377.
- Zhao J. (2015): Phospholipase D and phosphatidic acid in plant defence response: From proteinprotein and lipid-protein interactions to hormone signalling. *Journal of Experimental Botany*.

9 Seznam použitých zkratek

ABA	kyselina abscisová
APS	Ammonium persulfate (peroxodisíran amonný)
BF	Bright Field (světlé pole)
BFP	Blue Fluoerscent Protein (modrý fluorescenční protein)
BSA	Bovine Serum Albumin (hovezí sérový albumin)
CBL	Calcium Binding Loop (vápník vážící doména)
cDNA	komplementární DNA
СМ	cytoplasmatická membrána
СР	Capping protein
DTT	Dithiothreitol
ECL	Enhanced chemiluminescence
ETI	Effector-Triggered Immunity
EGTA	ethylenglykolbis(2-aminoethyl ether)-N,N,N',N'-tetraoctová kyselina
GAPC	glyceraldehyd-3-fosfát dehydrogenasa
GFP	Green Fluorescent Protein (zelený fluorescenční protein)
HEPES	N-2-hydroxyethylpiperazin-N'-2-ethansulfonová kyselina
LSM	Laser Scanning Microsopy (laserová skenovací mikroskopie)
MAMP	Microbe-associated Molecular Pattern
MAP65-1	protein asociovaný s mikrotubuly 65-1
MIT	MAMP- Triggered Immunity
MPK6	mitogen aktivovaná protein kinasa 6
MS	Moorashige & Skoog
NADPH	nikotinamidadenindinukleotidfosfát
PA	kyselina fosfatidová
PDK1	protein kinasa závislá na 3-fosfoinositidu
PC	fosfatidylcholin
PE	fosfatidylethanolaminu
PH	plekstrin homologní doména
PLA	fosfolipasy A
PLC	fosfolipasy C
PLD	fosfolipasy D
PRR	Pattern Recognition Receptor

PVDF	polyviniliden difluorid
PX	phox homologní doména
RCF	Relative Centrifugal Force (relativní centrifugační síla)
SDS	dodecylsulfát sodný
SOS1	Salt Overly Sensitive 1
TBS	Trised Buffer Saline (trisový pufr)
TBST	Tris Buffered Saline s přídavkem Tweenu 20
YFP	Yellow Fluorescent Protein (žlutý fluoprescenční protein)