
VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A

2D STRATEGICKÁ HRA V JAVE
2D JAVA S T R A T E G Y G A M E

BAKALÁRSKA P R A C E
B A C H E L O R ' S THESIS

AUTOR P R A C E
AUTHOR

VEDOUCÍ PRÁCE
S U P E R V I S O R

JIRI NYVLT

Ing. MICHAL ZACHARIAS

B R N O 2012

Abstrakt
Tato práce se zabývá návrhem a implementací strategické video hry v jazyce Java. Součástí
práce bude simulace netriviálního počítačového protivníka. V praktice části je popsán
postup implementace jednoduché strategické hry War paths.

Abstract
This thesis aims at designing and implemetation of video strategy game. Part of thesis will
be aimed at simulation of nontrivial computer enemy. Implementation process of simple
computer game War paths will be described in practical part of thesis.

Klíčová slova
Android OS, strategická videohra, umělá inteligence, fuzzy logika, programovací jazyk Java

Keywords
Android OS, strategy videogame, artificial inteligence, fuzzy logic, Java programming lan
guage

Citace
Jiří Nývlt: 2D Java Stratégy Game, bakalářská práce, Brno, F IT V U T v Brně, 2012

2D Java Strategy Game

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Michala Zachariase. Uvedl jsem veškeré literární prameny a publikace, ze kterých jsem
čerpal.

Jiří Nývlt
May 16, 2012

Poděkování
Rád bych poděkoval panu Ing. Michalu Zachariášovy za rady a odbornou pomoc při vývoji
aplikace a tvorbě zprávy a kamarádům za pomoc při testování.

© Jiří Nývlt, 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Theory 3
2.1 History of strategy games 3
2.2 Artificial intelligence 4
2.3 Application architecture patterns 7

3 Analysis 9
3.1 Game design 9
3.2 Game upgrades 10
3.3 Android 2D frameworks 10

4 Implementation 12
4.1 Application life-cycle using Libgdx 12
4.2 Model 13
4.3 Internal 14
4.4 View 14

4.5 Logic 17

5 Survey and game performance 22

6 Conclusion 25

A Minimax 27

B Survey 28

C Content of C D 30
C . l How to run the game 30

1

Chapter 1

Introduction

Java language is often blamed for being slow, but nowadays Java proves, that these are
mostly just rumors. Java is used for its portability and support for web applications in
combination of html or using Java server pages (jsp) technology. It also found use in
mobile phone technologies and not only for games. In lots of benchmarks is Java doing
better than his main rival C++ language [2], however it's graphics frameworks are not so
much effective as current DirectX. Due to it's portability most of video games written in
Java are aimed for web pages and mobile phones.

Goal of this thesis is to explore free Java language frameworks with support for 2D
graphics and use it to implement simple strategy game. Game will be executable on Unix,
Windows and Android operating systems and will have non-trivial computer opponent.

Thesis is divided into 6 chapters. In second chapter I will present design patterns,
algorithms and technologies used for implementation of video strategy game War paths.
In first part of third chapter I ' l l introduce features of War paths and its rules, in second
part I ' l l describe and compare currently freely available Java 2D graphics frameworks.
Afterwards in chapter four I ' l l describe core parts of architecture of War paths and process
of creating artificial player.

After implementation of War paths I created survey, which is dedicated chapter five.
At last in chapter six I will summarize achieved knowledge and discus future of War paths.

2

Chapter 2

Theory

In following chapter will be introduced evolution of different types of strategy games, tech
niques and paradigms used in implementing my strategy game War paths. There will be
also presented two different approaches of solving simulation of human player in computer
games.

2.1 History of strategy games

Video game genres has been evolving since 50', when was developed Tennis for two probably
the first video game ever. Strategy games appeared around early 80'. First strategy games
were mostly only simulation of some board games. Connection of board games and video
strategy games proves Sid Meier: Civilization series1, which was based on Civilization
board game, and Civilization III: Board game, which was on the other hand derived from
mentioned video game. [9]

Strategy games can be classified as turn-based (TBS) or real-time (RTS). Turn-based
strategies are mostly divided into turns. In each turn player can plan his future moves,
which will be executed in given order at the end of a turn. On the other hand in real
time strategies players actions take effect immediately, so it requires better reflexes, but it
doesn't need so much of tactic planing. [1]

Goal of most strategy games is to make army, collect resources, build troops from those
resources and annihilate your opponent. Ancestor of this military strategy game genre is
Dune II as a real-time and Civilization as turn-based game. But strategy games doesn't
necessarily have to be a military games. Goal of construction strategies is not annihilate
your opponent, but to manage economy of a complex system. Those games are mostly sub-
classified as simulation games. For example in 1989 Simcity was released by Maxis 2 , which
is a simulation of creation of a new city. Another popular series of this genre is Tycoon.
This series started with Transport tycoon5, which was business simulation and nowadays
there is more than 30 different types of tycoon games, which are mostly simulations of
common problems.

In the present classic real-time military genre is slowly fading. Strategy game genre
was mixed with role-playing (RPG) and nowadays most played games belongs to so-called

1 First Civilization was released in 1991 and nowadays Civilization V is in stores with release date 2010.
2Maxis developed more than 5 versions of Simcity and in co-operation with Electronic arts created

popular The Sims series, famous family simulator
3 Transport tycoon, released in 1994, was designed by Chris Sawyer, who also designed Rollercoaster

tycoon series, simulation of creation of a new entertainment park

3

action strategy game genre. Those games are mostly massively multiplayer online (MMO)
games, where are two teams fighting each other. Players gains experiences like in R P G and
attempts to conquer some strategy point. The first attempt of this genre is custom map for
Warcraft 3 4 Defense of the Ancients (DotA). In same way as DotA was created Castle
fight, which became paradigm for strategy game designed in this thesis.

2.2 Artif icial intelligence

Artificial intelligence (AI) is a simulation of human player to make game playable even when
user does not have internet connection to face other human players. Unlike human player
AI player has advantage of knowing, what actions human player did. AI must be therefore
balanced to be beatable. Strategy game AI algorithms often suffers from it's unconformity
to new human player tactics. This kind of issue could be solved by using some learning
algorithm, but it requires large effort and computing time, so that's why nowadays in most
strategy games is used cheating to get better results.

There are two types of AI , which needs to be handled in strategy games[10]:

• High-level AI used to simulate human player. Modern game developing techniques
separates this AI into special module, which runs in different thread, then game.
Result of this AI are actions, which also use human player like upgrade attack speed.

• Low-level AI used by game units. Goal of this AI is for example to pick correct
path, where shall unit move, or to pick enemy, which will be most vulnerable for units
attack.

2.2.1 Fuzzy logic

Fuzzy logic simply describes common problem of a real world. It is also used in mathematics,
industry, quantum physics. It is often incorrectly associated with probability or neural
networks. Fuzzy set instead of allowing only full and no membership like classic set allows
also partial membership. To each element of set is assigned degree of membership to a
set. Degree of membership is determined by membership function with range of values
in the interval < 0,1 >. This function can be described either by graph or table.

On a figure 2.1 is graph, which describes degree of membership of attributes describing
speed of some objects. Objects from this example should be categorized as slow for speed <
40 mph and it membership will gradually reduce to zero as speeds increases to 55 mph.
Same approach can be applied on other two attributes. So at 43 mph is object for 0.6 slow
and 0.4 medium. Sum of all memberships is 1 as in propositional logic.

4 Warcraft 3 is game developed by Blizzard entertainment, which is also creator of other famous titles
like Diablo, Starcraft and World of warcraft.

4

slow medium fast

40 55 70 Speed

Figure 2.1: membership function

2.2.2 Fuzzy systems

Fuzzy logic principles are used in fuzzy control systems (FCS). Besides artificial intelli
gence FCS can be found in washing machine to control water temperature, digital cameras
with automatic light adjustment, robotics, pattern recognition. They are used for it's sim-
pleness of design, implementation and upkeep. FCS consists of parts displayed on figure 2.2

Input
.0. <b

w — Kl S
LL

Fuzzy Inference
Engine

Output

Data Types
— fuzzy
— crisp

Fuzzy Set
Database

Fuzzy Rule
Base

Figure 2.2: Fuzzy system

At first crisp input, it can be for example temperature water in washing machine,
is sent to unit handling fuzzyfication. Fuzzyfication is process during which is the crisp
input transformed into degrees of membership in fuzzy sets. Water is in this step assumed
as cold. This fuzzy input is then passed to inference engine, which uses fuzzy rules base
to conduct output. Fuzzy rules base is a collection of linguistic terms in form of IF-THEN
constructions.

Combining rules from fuzzy rules base and fuzzy input from fuzzyfication fuzzy outputs
are conducted (water is cold therefore heating element should use lot of power for heating)
and pushed into defuzzy neat ion unit, where are all fuzzy sets transformed back to crisp
output and spread to affected parts of either machine or application. [5]

5

Algorithm 1 Rules in fuzzy system
if some condition is true then

do some processing
end if
if water temperature is hot then

set heating level 2
end if
if water temperature is very cold then

set heating level 4
end if

2.2.3 Minimax

Minimax is an algorithm used to simulate human player in turn-based strategies for two
players like chess or tic-tac-toe. Each game situation can be described by acquiring all
informations about current game objects. This is called game state. Whenever player
do some action (move a figure, buy an upgrade), he changes the game state. Applying all
actions generates all possible game states to which can opponent get from players current
state. Applying this technique recursively gives overview of where is current game heading
and which action will be the correct one to perform in current state. Minimax is mostly
visualized as a tree (figure 2.3).

X o o
X
X o

X o 0
X X

x o

X o o
X

X X o

X o o
X X
X o

x o o
X X
O X D

X O O
X X
n x i i

x o o

X

x o o
o
X X D

o
X O O

X X
X O

X O O
X X
X O

+oo _ w _ m 0 0

X O o

O X 0

X O O
OX"
x x o

x o o
o x x

x o

x o o
- X X
o x o

0

i n
£ Lfl

Figure 2.3: Example of minimax tree

Current game state is a root of a tree. By applying all possible actions all game states are
generated until game is over, it means no more actions can be applied or player placed three
symbols to a row. To leaves nodes is assigned a value sometimes called score determined by
heuristic function. This function describes current player situation. If score is negative
it signalize bad game situation for player on turn. Heuristic function is used only on leaves
of a tree. Tree is queried from leaves taking maximum value from lower level of tree, if
player is on turn, and minimum value, if enemy is on turn. Mostly its impossible to create
full game tree until end of a game, so usually is defined a maximum depth to which will
algorithm plunge. Algorithm is usually implemented by recursive function described in
algorithm 2 [6].

6

Algorithm 2 Minimax pseudocode
Node minimax(Node processedNode, int depth)
if isLeaf(processedNode) or depth > MAXDEPTH then

return heuristicFunction(proce,s,se<iiVo<ie)
end if
depth+ = 1
if processedNode isMaxNode then

resultNode := —oc
end if
for all child of processedNode do

tempNode :=mimmax(child, depth)
if tempNode > resultNode then

resultNode := tempNode
end if

end for
return tempNode
if processedNode isMinNode then

resultNode := oc
end if
for all child of processedNode do

tempNode :=mimmax(child, depth)
if tempNode < resultNode then

resultNode := tempNode
end if

end for
return tempNode

2.3 Applicat ion architecture patterns

2.3.1 Model-view-controller

This pattern is popular in designing web applications, what proves number of frameworks
following this pattern. It separates classes of application into three different modules for
data manipulation, application logic and rendering informations to end user. First module
model takes care about storing data using any available technology like SQL databases or
simple X M L files. Second module controller uses model interface for gathering required
informations, performs actions required by end user and passes data to third module view.
Views work is just rendering informations passed from controller on canvas. It is very
necessary for this architecture to keep all those 3 modules separated, otherwise there raises
risk of creating dependencies between modules, which will make it hard for upkeep in a
future. []

2.3.2 Event system

Event system is a pattern for dispatching informations through application. It is com
posed from EventListener, Eventlnterface and EventData. EventListener can regis
ter itself for listening on some event on object implementing Eventlnterf ace. Registra-

7

tion is done on Eventlnterface by one method addEventListener(EventListener). It
adds EventListener into List container. When required event occurs, Eventlnterf ace
alerts all EventListeners based on type of event. Usually there are EventData passed to
EventListener containting more detailed informations about fired event. Pros of this kind
of communication is, that object implementing Eventlnterf ace does not need to know,
who is EventListener and how he will react on specific event. For example sound module
and graphics module can be registered for listening on shoot event of tank. Sound module
would react to this event by playing explosion sound, while graphics module plays shooting
animation. Tank object does not care, what other modules do with event.[]

2.3.3 Next event calendar

Next event calendar is data structure used for simulation of some real problem. It is
governed by simulation algorithm. In simulation is used simulation time, which can
flow faster than time from real world. This allows to predict events, which will occur in
future, in very short period of time.

Calendar is ordered list of activation records. Activation record contains following
informations:

• activation time in order to know, when event occurs

• priority of event to determine, which event should be executed first, when there are
two events with same execution time

• name of event, that is planned to be launched

Any newly inserted activation record must be placed to the right place to calendar
according to activation time and priority of event.

In the beginning of simulation process simulation time is initialized, initial events are
inserted into calendar and maximum simulation time is set to make simulation deterministic.
Simulation algorithm then takes first activation record of calendar. If the activation time
of event exceeds the limit, simulation is stopped. Otherwise time is synchronized with
activation time of record and required event is executed. Simulation also ends if there
aren't any activation records left. During simulation it's possible to collect statistics and
use them for any purposes.[3]

8

Chapter 3

Analysis

In following sections will be introduced basic rules and design of strategy game War paths.
In second part of this section will be described and compared free frameworks, that can be
used for developing video games using Java language.

3.1 Game design

War paths will be military RTS. Like in classic military RTS goal of this game will be to
control objects in two-dimensional space called scene and eliminate all objects possessed
by other players.

Figure 3.1: First idea about game

First idea in the figure 3.1 shows different types of game objects that can appear on
scene. Each game object has hitpoints attribute. If this attribute drops bellow zero, object

9

is destroyed and removed from the scene. Each player has one main object called strategy
point (E), which needs to be protected in order to win the game. Based on settings of
level, there will be number of lanes (B), which makes connections between two strategy
points. In front of strategy points are situated objects called productors, which creates
new instances of another type of game objects, attackers (A).

Role of attacker object is to change its position in scene using lanes towards to opponents
strategy point and destroy it. On its way to strategy point attackers meet attackers of other
players. They are able to perform actions so-called attacks to lower others hitpoints to
destroy them. At last there will be objects called protectors (C), which can't change
position, but they can also attack enemy's attackers.

3.2 Game upgrades

Attackers will have several attributes.

• Attack speed (as) attribute will be time between two attacks

• Movement speed (ms) will indicate how fast will object move between two points

• Amount of hitpoints (hp) reduced by one attack will be stored in damage attribute

(dmg)

• Distance from which is object able to attack others is called range attribute(rng)

• Time between creation of two instances of attackers is called spawning time(st).

Each productor contains information about enhancement level (EL) of each attribute.
E L is a number determining value of specific attribute for newly created objects. E L value
can be increased by action called upgrade. Human player can do it by clicking on productor
and then choosing from upgrades menu screen. Not all attributes will be connected with
attackers. There will be also attribute income and attribute money. Amount of money
attribute will be periodically increased by income value, which'll be also possible to upgrade.
To upgrade attribute player must reduce certain value of his money attribute. This value
is called upgrade cost. Its amount is based on current E L value of upgraded attribute
and on specific settings of this attribute. Player wins the game, when his attackers reach
last waypoint, which is always position of enemy's strategy point.

3.3 Android 2D frameworks

Game engine represents application layer of common application architecture. Ideal engine
for War paths should support these features:

• handling input from user

• organizing game life-cycle

• collision detection support

• easy manipulation with sprites and animations

• tiled map support

10

• possibility to adapt engine to application architecture, where objects communicates
using events

• sound support

• multi-platform support

Currently there are Libgdx, AndEngine, Slick and some other Android 2D free engines.
Most common problems of free open source engines is that its developing team does not
earn money for its work. Free engines may therefore contain bugs as there is not enough
of motivation for developers, but more famous one should be tested by lot of users, whose
opinions will be also aspect of picking right engine. Slick engine is very low-level engine
with poor documentation and without collision detection support. Use of this framework
was rejected it in early begging.

3.3.1 Libgdx

Libgdx is a product of Badlogic Games with copyright owned by Mario Zechner, author
of Beginning Android Games book. Engine is updated every day and many users joined
testing it, which proves users fan page1, where can be found basic tutorials how to use this
engine. Libgdx offers TexturePacker, box2D support, J S O N classes loading and many other
utilities which will be described in chapter Implementation. It also supports Jogl, L W J G L
(OpenGL) and Angle (NVidia 3D Vision) back end libraries for drawing graphics, which
provide engine portability on different platforms.

3.3.2 AndEngine

AndEngine offers against Libgdx larger documentation with better tutorials. There is even
book 2 about how to create Android game using AndEngine and it's framework with low-
level of abstraction. This makes framework easier modifiable, but creates more work to
develop some application.

3.3.3 Comparison of frameworks

Libgdx provides easy manipulatable classes with lot of utilities. Even it has almost no
documentation, support from it's users is good. It fits all War paths requirements and al
though it has some chaotic functionality, it's easy-to-use engine. AndEngine provides way
larger documentation, but low-level abstraction of interface would cause another unneces
sary development. Basically these two engines offers almost same functionality and it's up
to users implementation style, which engine will fit for him. In the end was chosen Libgdx
as simple way of developing at cost of documentation.

xhttp: / / code.google.com/p/libgdx-users/
2Learning Android Game Programming: A Hands-On Guide to Building Your First Android Game by

Richard A. Rogers

11

Chapter 4

Implementation

Application architecture follows M V C pattern. This pattern is extended by additional part
internal. Internal part handles loading of all resources and also it provides parsing input
from user. Controller module was renamed to logic. Global architecture overview is shown
in figure 4.1.

Internal

Package:: factor ies

Package:: inputs

Package:: loat lers

Model

Package::definit ions

Logic

Package::AI

Package: : ! : rains

Package::col l is ion

Package: :gameorjjects

Package: :moneyrnanagernent

Package::upgracies

Package::pathf inding

Package: :map

View

Package::animat ions

Package: :body

Package::renclerers

Package: :screens

Package: :u i

Package: :map

Figure 4.1: Game architecture overview

Game objects are represented by two classes. One is Body, which represents view of an
object and one is Brain for handling objects logic.

4.1 Applicat ion life-cycle using Libgdx

Main function of graphics framework is to make abstraction over basic graphics libraries
(f.e. OpenGL) and provide interface for loading resources like textures, audio files or other
data files. In game development life-cycle is realised by one infinite cycle. In each pass
through the cycle is performed update of logic and graphic part of application. Cycle is in
case of War paths interrupted when game is over and application is terminated. Usually is
application terminated, when user presses the exit button.

12

Libgdx provides basic interface composed of backend class and interface for manag
ing screens. For Windows and Unix based operating systems there is JoGLApplication
backend class using OpenGL graphic library, for Android version of application there is
AndroidApplication backend class.

Backend
Packaqei icorn. l ibodx.backends

initialization depends on type
of backend class
J o G L => construct Game, ...)
Android => onCreateQ-> initialize(Game)
life-cycle and process management

Game
Pa ckaq ei: co m. bad log i c.qdx. G a me

render(floatdeltaTime)
setScreen(Screen screen)

{Type}Screen
Packagencom.view.screens

{notpart of framework}
©Override following
show()
hide()
render(floatdeltaTime)
pause()
disposeQ
resizefint, int)

Implementation of screen
depends on type of
informations, which shall
be displayed

Screen
Pa ckag e:: co m. bad log i c.gdx. Sere e n

«Interface»

show()
j i m ^ l e m e n t s A ^ hide()

^ render(floatdeltaTime)
pause()
disposef)
resize(int, int)

Figure 4.2: Basic Libgdx structure

Connection of core Libgdx classes is shown in figure 4.2. Libgdx backend handles cre
ation of new graphic context to which will be scene rendered and also controls life-cycle. It
also raises events that are dispatched using Game class to Screens. Screens are implemen
tations of Libgdx Screen interface, that serves events received from Game class. Switching
of Screen classes is done by themselves using setScreenO method of Game class. Each
Screen therefore needs to have reference to its parent Game class.

4.2 Model

For implementation of model was used JSONLoader class. JSONLoader can store any in
stance of class as text into a J S O N file format or create new copy of instance from a JSON
file in future. J S O N (Javascript object notation) is file format easily readable for humans
as well as easy for machines to parse it. Using Reflection class JSONLoader works as
a database containing all informations about game settings. Objects attributes were ran
domly initialized to values shown in table 4.1. Those values must go through balancing
process[], so one unit or upgrade is not too good in comparison with others. It will be
done by releasing beta version of a game and using survey.

Table 4.1 Basic units attributes settings
Unit name Hitpoints Damage Spawning time Attack speed Range Ms
Helicopter 400 40 30 3 s 120 80

Tank 600 16 30 2 s 80 80

Units of distance are virtual units recounted by framework to fit each resolution of
screen.

1Type of backend class depends on operating system on which It's necessary to make deploy of application

13

4.3 Internal

Internal module consists of loaders, factories and input packages. It handles input from user,
provides interface for instancing game objects and takes care about loading all resources
before game starts. Loading can't be done in different thread from which applications run,
because framework disables process sharing resources.

4.3.1 Input handling

Android devices are mostly equipped with touch screen and number of action buttons. For
designing handling of input for user, it is necessary to take in mind restrictions, which its
necessary to follow to make game portable for those devices. Moving around map therefore
can't be realised like in common computer strategy games by moving cursor to the edge
of the screen but by scrolling on map. It is handled by Cameraman class. It handles zoom
distance of camera according to screen resolution and it disables the user from scrolling out
of map.

4.3.2 Factories package

Factories package provides interface for instancing new game objects using Reflection class
and definitions. There is only one function for instancing new object. It is not necessary
to make any modifications to factories, when creating for example new attacker.

4.4 View

Rendering of game scene is separated into two parts. Rendering of game map and rendering
of game objects. Libgdx uses special external tool for packing all graphic resources called
TexturePacker. It clusters more images into one texture, which size is power of 2, and cre
ates text file called packf i l e containing informations about positions, labels and identifier
of images. Loading resources is done using TextureAtlas class, that represents big image
produced by TexturePacker. Small images (TextureRegion class) can be gathered from
atlas according to their labels or identifiers using f indTextureRegionO.

4.4.1 Game map

For game map rendering was used free external application TiledMap editor. 2 Game map
is like in chess quadrangle divided into smaller squares of same size called tiles. Tiled map
loader accepts images containing small parts of scene called tilesets5 like road curves or
cliffs, which can be arranged in graphic interface.

Tiled map editor main function is to create tmx file format4 containing informations
about used tiles and their position in map. To each tileset is assigned range of integer
values, that will identify single tiles in each of them. Tmx file and tilesets are loaded by
classes provided by framework and rendered in main loop.

2available at http://www.mapeditor.org
3A11 graphics used in War paths was extracted from HardVaccum tileset collection available free at

http://lunar.lostgarden.com/game_HardVacuum.htm
4file format based on xml file format

14

http://www.mapeditor.org
http://lunar.lostgarden.com/game_HardVacuum.htm

Figure 4.3: Examples of tileset

4.4.2 Game objects, scene and collision

Part of game objects designed for rendering is represented by ObjectsBody class. Each
ObjectsBody reacts on events generated by Brains from a logic part and visualise them to
end user. Libgdx provides support for moving objects around scene, so it was necessary to
extend their classes for War paths's purposes.

Actor
Package:: l ibqdx

-void draw();
-void actffloat delta);
-void action(Action action);

"TT

«extandsw

ObjectsBody
Packaqei icom.jvq.view

x te /ds»

void addTexture(TextureReqion texture);|<|-
void setPosition(Vector2D position);

«extends»

TankBody
Pa ckaq e:: go m. jvg;. vi ew. body .ta n k

@ Overriden
-void draw();

almplern ents»

A.
Listener Interfaces

IMavementListener

IShootingListener

almplernents»

I
I

HelicopterBody
Pa ckaq ei: co m. jvg. vi ew. body.ta n k

@ Overriden
-void drawQ;

addActor »

Scene
Packaqe:: l ibqdx

-void addActor(Actor object);
-void removeActor(Actor object):
-void act();
-void draw();

addA Dtor »

Figure 4.4: Objects body classes structure

15

In figure 4.4 is shown structure of one ObjectsBody. Core of objects body is Actor class
provided by Libgdx. It has got x and y attribute to keep information about position of
body on scene. Its main pros is its actionO method, which handles moving actor around
scene by modifying position attributes. It uses different coordinate system than one used in
case of map, unit of this coordinate system is pixel. ObjectsBody class inherits from Actor

class and adds basic functionality like adding textures to draw etc. From ObjectsBody

inherits specific game object attacker, productor, strategy point or protector. A l l those
objects can choose from various EventListener interfaces to be informed about certain
events from Brains. Each ObjectsBody listens at least on one event generated by Brain of
same type. ObjectsBodys are created by factories from internal module and their reference
is stored in Scene class. Calling act() and draw() method on Scene instance renders all
ObjectBodys.

4.4.3 User interface

User interface (UI) for War paths is composed of buttons, that needs to be pressed, when
user wants to purchase upgrade. Three possible solutions of designing user interface were
designed for purposes of War paths. First one is classic strategy game user interface. It
divides screen into two parts one for scene and one for user interface.5

Game screen

(Constructor,

o
Upgrade

o (Constructor, o
Upgrade Upgrade

O
Upgrade

Figure 4.5: Menu designs - Classic and quick buy UI menu designs

Classic design, displayed on left on figure 4.5, is good for screens with big resolutions.
A l l informations to user can be displayed there including informations about money amount
and attribute details, but on mobile phones this design leaves almost no space for rendering
the scene. Quick buy menu design on the other hand can be used on mobile devices without
any issues. Screen is all free for scene, but issue raises, when it's necessary to display other
informations than buttons for shopping like price and effect of button. This way of solving
UI is anyway used in some mobile applications. Last possibility displayed on figure 4.6 is
displaying menu on full screen, which was in the end chosen for War paths.

On game start scene is displayed on full screen. After touching key structure, in case of
War paths productor, scene screen swaps with menu screen. Scene can be swapped back
by pressing close button. This design is easily controllable but on the other hand removes

5This version of UI was also implemented in version 0.09

16

Description of upgrade

Button Button Button

Button Button Button

Close

Figure 4.6: Full screen menu

total feeling from a game by hiding simulation, which is necessary to end user and also adds
extra actions from user to achieve his goal.

Button is represented by UIButton class. Button images must be small in order to place
them all on one screen. Clicking them on computer is not big issue, but touching them
on mobile phones by finger can be sometimes tricky, therefore places on which UIButton
reacts as touch are extended over button image to help end user.

4.5 Logic

Structure of logic representation of game object (ObjectsBrain) is similar to structure of
its view representation. As it was said ObjectBody usually implements EventListeners,
ObjectsBrain serves as source of events handled by Bodies and other classes.

4.5.1 Creation of a game object

To make event system works, to Eventlnterfaces must be assigned EventListeners.
With raising number of game objects putting initialization of event system directly into
code would increase code duplicity and it would be also very ineffective. To solve this
issue was implemented structure of Initializer classes. Each Initializer has one main
i n i t i a l i z e (Brain,Body) function, that according to settings in brain definition file shown
in figure 4.7, registers listeners on required interfaces.

In the definition file basic attributes definition, collision details and initializer settings
are stored. Initializers array from previous example indicates, that tank brain will be
able to move across scene, will inform other objects, when he is destroyed and will also raise
event each time he executes fire action. TankBrain and TankBody classes must therefore
implement interfaces required by initializer. At last it is necessary to specify textures
assigned to body in tank body definition file according to implementation of TankBody
class.

17

" c l a s s " : "com. jvg.model.definitions.BrainDefinitian",

"parameters" :

•:

"brain_class" : "coir.. j v g . l o g i c .brains .vehicles . TankBrain",

"ir.ove_speed" : "30. Of",

"attack_speed" : "2f",

" r a n g e s i g h t " : "80f",

"r.Lt£CLr.t3" : "633",
"damage" : "16",

>,
"collisionHandlers" :

[

"sight",

"body"
] ,

" i n i t i a l i s e r s " :

[

"ir.oveir.ent",

"destroyable",

"shootable",

1,
:•

Figure 4.7: Example of definition of Tank game object brain

4.5.2 A I Implementation

Because the player can't control his attackers implementation of low-level intelligence is fully
in control of game logic. Game units follow way points, list of map coordinates, which
always ends at coordinates of opponents strategy point. Low-level AI is implemented to
force attacker to attack enemy game objects in range of sight with the lowest amount of
hitpoints attribute. For simulation of human player I've tried two approaches. In first
approach I've modified Minimax method to fit real-time application and apply it on War
paths. In second I have implemented fuzzy control system for filtering possible actions.

Collision system

Game objects detects each other using Libgdx box2D collision interface. It consists of
World class representing scene and Body classes of various shapes. There are two different
shapes, which needs to be placed in collision World.

• Body representing physical part of game object. It is a quadrangle usually with same
size as game objects texture.

• Body representing game objects range of sight, which is a circle with diameter defined
in definition file.

When two bodies collides each other, World class generates appropriate events. Coor
dinates of bodies in world are updated by ObjectBody classes.

18

Fuzzy logic

When human player faces a decision, what upgrade to pick, first thing what he do is, that
he checks current situation. If the game is progressing well, he thinks, if is it better to create
some reserves in case opponent is planning some action or if it's better to quickly buy some
power to try to beat opponent right now. In general human filters possible solutions to get
final decision. I decided to try to filter possibilities using fuzzy control systems.

Current game variables
- numbers of units
- levels of upgrades

I I I I

I I I I I
I I I I I

& A v- v- <7
Fuzzyficator

Pa ckag ei: co m j vg. log i c. a i. age nt. e val u atio n
getLanesEvaluat ionsf)

LanesEvaluat ions
Pa ckag e:: co rn. j vg. log i c. a i. age nt. eval u a tio n

getTowerState(lane)
getUpgradeState(lane)
getMoneyState(lane)
getOverallStateQ

Upgrade Agent

fi lterLanes(lanes)

A lAgent
Lane agent

A lAgent
Lane agent

f i l teredLanes^ makeDecisionf)
fi lterLanes(lanes)

f i l teredLanes^ makeDecisionf)
fi lterLanes(lanes)

filteredLar1es> filteredLar1es>
1 1

MoneyAgent
^-fflte red La ne s •

1 i

fi lterLanes(lanes)
^-fflte red La ne s •

1 1

V V v"
Purchase upgrade or wait
for resources

Figure 4.8: Structure of classes included in fuzzy system

In figure 4.8 is shown process of filtering actions. In first step Fuzzyficator class trans
form crisp inputs to fuzzy values. For evaluation of situation on lanes was used version of
simulation algorithm next event calendar impoverished of priorities.

Table 4.2 fuzzy values used for evaluation

Fuzzy variable name Dependency crisp or fuzzy variables Fuzzy values

defender state Hitpoints attribute of defenders per lane
0 - weak

1 - average
2 - full

upgrade advantage simulation evaluation

0 - worst
1 - bad

2 - average
3 - good
4 - best

upgrade cost price of upgrade
0 - cheap

1 - average
2 - expensive

global situation

player ELs

enemy ELs

defender state

0 - worst
1 - bad

2 - average
3 - good
4 - best

19

Evaluation class creates same conditions in simulation engine and counts, how will
situation unfold. Second step, fuzzy inference engine, is handled by AIAgent class. It has
also it's own definition file, in which it's possible to set all fuzzy sets boundaries described
in table 4.2. This makes possibility to create different versions of AIAgent for example
agent who focuses on resources, aggressive or defensive agent etc...

- < ^ A t t S '' Attackers or Income?

attackers

Which lane?

identification of lane

U p 9p^- - (J ^ p g ^) w-;
^ _ v

End state

Figure 4.9: Design of decision process of fuzzy system

AIAgent filters possibilities using Sub-agents classes, which are specialised on a specific
kind of issue. This was done for future extension which would allow to assign priority to
sub-agents in order to create more types of AI .

First sub-agent is GlobalAgent. It checks current game situation without any esti
mations of future and decides if attacker or income shall be upgraded. In second step
LaneAgent chooses based on current game situation and states of defenders lane, which
should be strengthened in third step by UpgradeAgent. A l l agents computes with fuzzy
values like in example in algorithm 3.

Algorithm 3 examples of rules from rules base
/ / example from GlobalAgent
if GlobalSituation in (good, best) A N D MoneySituation is bad then

upgrade income
end if
if GlobalSituation is best A N D MoneySituation is average then

upgrade income
end if
/ / example from upgrade agent
if GlobalSituation in (good) A N D UpgradeState in (good, best) then

mark as possible upgrade
end if

From all possibilities filtered this way is randomly chosen one for next upgrade. In
both cases there is a possibility to wait for resources to buy picked upgrade. Last step
defuzzyfication is done in UpgradesManager class, which stores information about all ELs
of all game attributes.

20

Minimax

I've also tried to simulate human player using Minimax algorithm, last update was in version
0.1.03. As Minimax algorithm is intended for two players turn-based strategy games, its
implementation for real-time game War paths must be modified, so game looks like its
turn-based. In order to do so, future progress of a game must be simulated. I divided game
progress into smaller pieces defined by time interval by default set to 3 seconds.

At the beginning of decision process all current game attributes are duplicated in order
to keep game running during simulation. Root of a minimax tree is current game situation
and artificial player is on turn. Set of all possible actions player can perform is collected
filtering those, which are impossible to perform due to amount of money attribute. At last
is added possibility to not perform any action and performing those actions are generated
descendants of root node, that represents produced opponents game states. Same step is
applied on each opponents game situation.

After opponents step comes the simulation process. Time elapsed from the beginning
of game is increased by time interval and money attribute of both players is also increased
based on its current E L . Simulation process comes after every opponents action. Those two
steps repeats until maximum depth or end of a game is reached. To get evaluation of leaves
nodes is used same simulation function as for fuzzy logic. Evaluation is propagated to parent
nodes like in classic minimax 6 . War paths then appears as turn-based to minimax even its
real-time. Problem I have encountered and a reason, why I didn't use this approach in final
version of application, is that its hardly manageable. There is no possibility of creating
artificial players with different behaviour and also I did not found a way, how to integrate
resources management to it. From a view of performance its bad as well as it requires lot
of processor time. On the other hand it proved, that even this method can be used in some
kind of real-time games.

6Example of tree generated by customized minimax algorithm can be found in appendix A . l

21

Chapter 5

Survey and game performance

As games are developed for players only possibility to test game performance is let other
people play it. I made survey to get feedback about specific areas of game that makes
largest impact on quality of gameplay.

• User interface

• Difficulty of artificial player

• Game idea and game itself

I made two versions of game, one for personal computers and one for mobile phones
with Android OS and gave the survey to random people (testers) without any knowledge
about a game with random P C or mobile devices skills. As there is no tutorial in game it
may be hard to find out goal of a game. To help testers orientate in a game I put quick
introduction to game into R E A D M E file attached to version. Whole survey is attached in
appendix.

Numberof games played

• number of testers
with game count in
interval on x axis

16-30 30 and
more

User interface

much
better

Figure 5.1: Graphs of results from UI part of survey

War paths did not get best rating, which is mostly caused by bad user interface, which
proves graphs in figure 5.1. Due to it most of respondents ended they're testing after few
attempts. In most cases testers did not understood, what happened after purchasing of any
upgrade. There was also problem with back button on Android devices. Testers used it for
exiting upgrades menu, which leaded to exiting the game. Some of testers also mentioned

22

Overall rating

• overal l
rating of
game (1

— —

1 2 3 4 5

Figure 5.2: O

low amount of units. Large amount of testers was surprised, that strategy point doesn't
have any defending abilities. There was also idea to add new repair upgrade, which would
set hitpoints attribute of defender back to initial value.

On the other hand even it was alpha testing, no one reported any kind of crash or bug.
Only issue was with fonts and Android devices. They were loaded for a very long time
and in the end, they were unreadable. Some of devices were for unknown reason probably
caused by framework unable to recognize custom fonts imported into framework. I decided
to use default framework fonts to avoid those kind of issues. Game was tested on notebook
and three android devices. Hardware details and test results are displayed in table 5.1.

Table 5.1 Performance test with device details
Device name Operating system Processor Memory F P S

Acer aspire 6920G Windows 7
2 GHz
2 cores

2 G B 60

Z T E Blade Android 2.3 600 MHz 512 35

ASUS Transformer Prime Android 4.0
1.5 GHz x 4 cores

700 MHz batery-saver core
1 G B 60

L G Optimus one Android 2.2 600 MHz 512 M B 38

25 -

Alvs player

20 -

1
• number of testers 10 - with games won

coun in interval on x

1 — axis
0 - J LI • - -

0-5 6-10 11-20 21-30 more
than

30

Column FPS is abbreviation of frames per second and represents count of rendering,
which was device able to do in one second. Libgdx life-cycle has limitation to 60 frames
per second, so on good machines its impossible to get better performance. For human eye
is acceptable game with at least 30 fps in order to see it fluently, so its also acceptable even
for mobile phones.

To solve issue with orientation in game it is necessary to extend current UI by adding
informations that testers lacked. Most confusing for them was, that they don't see any
progress after purchasing upgrade and that there is no information about amount of money
attribute required for purchasing upgrade and effect, which will upgrade cause. I designed
two possible modification to solve this issue.

First possibility is to use classic UI design from figure 4.5 and combine it with full
screen UI (figure 4.6). In classic UI would be displayed current progress of creation of new
attackers and possibility to enter full screen UI with upgrades and description. Second one
is to put all informations in full screen menu. Choosing between those two possibilities will

23

be part of next release process.
As skills of every players are not on same level in each video game should be possibility

to choose difficulty of artificial computer player. In War paths To adjust computer player
skills, I must have a look on differences between good and bad player. Bad player unlike
good player makes mistakes in decision making and it takes him longer time to make one,
because he have no knowledge base about game and neither tactic. Using this pattern on
War paths decision making system I can add probability to do a bad decision or longer the
period between two actions to decrease difficulty of AI player. Another way of adjusting
difficulty is to give to one or more player advantages like more money attribute per interval
or to add more percentage bonuses to each upgrade, which will on the other hand increase
the difficulty. Graph of survey aimed on artificial intelligence (figure 5.2) showed, that
nearly 30% of testers were not able to beat computer opponent. Given the fact that the
difficulty of artificial intelligence is also affected by low-quality of user interface, I labelled
current implementation of artificial intelligence as advanced and adjusted it to five difficulty
levels (very easy, easy, normal, hard and brutal) using mentioned methods.

24

Chapter 6

Conclusion

A i m of the thesis was to create playable strategy game with artificial player controlled by
computer.

In theoretical part I described different approaches, that can be used for simulation of
human player, and presented patterns that I used in designing strategy video game War
paths. In analysis I tested and compared two different 2D graphics frameworks and decided
to choose Libgdx for implementation of War paths. In last part of thesis I described core
parts of implementation of strategy game War paths.

I found out that modifying Minimax algorithm is not a good way to simulate artificial
computer player in real-time video games. For common decision system Fuzzy proved to
be a good solution to create average computer opponent.

Except issues with fonts chosen framework Libgdx proved to be good tool for develop
ing graphics applications for devices with Android operating system mainly thanks to its
support of different operating systems. In addition to portability of application, it removes
need of uploading and installing translated source codes onto Android device for each test
of application, which speeds up the development process.

I made a survey to test quality of a game, which thanks to fact, that user interface
doesn't offer enough informations to human player, didn't give a very good results. To
solve problems with user interface I designed two possible solutions. Choosing between
them will be done in next testing process.

In future I would like to extend current logic part of a game by adding more units and
maps for more than two players. Also I would like to add possibility to play War pathsover
network and then I would like to offer War paths on Google play for free with adverts.

25

Bibliography

[1] Apperley, T.: Genre and Game Studies: Toward a Critical Approach to Video Game
Genres. Simulation and Gaming: An International Journal of Theory Practice and
Research, ročník 37, č. 1, 2006: str. 23.

[2] Bourles, J.-Y.; Uso, T.: Java and Open V M S : Myths and realities. 2007.

[3] Delaney, W.: Dynamic models and discrete event simulation. New York: M . Dekker,
1989, ISBN 9780824776541.

[4] Freeman, E . T.; Robson, E. ; Bates, B. ; aj.: Head First design patterns. Sebastopol,
C A : O'Reilly, 2004, ISBN 9780596007126.

[5] Ganesh, M . : Introduction to fuzzy sets and fuzzy logic. India: Prentice Hall, 2006,
ISBN 9788120328617.

[6] Jones, M . : Artificial intelligence : a systems approach. Hingham, Mass: Infinity
Science Press, 2008, ISBN 9780977858231.

[7] McShaffry, M . : Game Coding Complete, Third Edition. Charles River Media, 2009,
ISBN 1584506806.
U R L h t tp :
//www.amazon.com/Game-Coding-Complete-Third-McShaffry/dp/15845068067,
3FSubscriptionIdy03D0JYNlNVW651KCA56C1027„26tag7„3Dtechkie-20y„261inkCodey0

3Dxm2y026campy03D2025y„26creativey03D165953y„26creativeASINy„3D1584506806

[8] Morris, D.; Rollings, A . : Game Architecture and Design: A New Edition. New
Riders, první vydání, October 2003, 960 s.

[9] Rollings, A . ; Adams, E . : Andrew Rollings and Ernest Adams on Game Design. New
Riders Games, 2003, ISBN 1592730019.

[10] Walther, A . : AI for real-time strategy games. Diplomová práce, IT-University of
Copenhagen, 2006.

26

http://www.amazon.com/Game-Coding-Complete-Third-McShaffry/dp/15845068067

Appendix A

Minimax

upgrade tankLeve l

Artificial players turn

T i m e E l a p s e d : 0
P laye r lncomeLeve l : 1
PI aye rD a mag G Level : 1
PI aye rTankLeve l : 0
Al PI aye r lncorne Level :
A l P l a y e r D a m a g e L e v e l :
A l PI aye rTankLeve l : 0

H u m a n players LUIT

T i m e E l a p s e d : 0
P laye r l ncomeLeve l : 1
PI aye rD a mage Level :
PI aye rTankLeve l : 0
A l PI aye r lncorne Level
A l P l a y e r D a m a g e L e v e l
A l PI aye rTankLeve l : 1

H u m a n players Turn

T i m e E l a p s e d : D
3I aye rlncorne Level : 1
3I aye rD a mage L e v e l : 1
->l aye rTankLevel : 0
A IP I aye rlncorne Level :
A l P l a y e r D a m a g e L e v e l :
A lP laye rTankLeve l : 0

H u m a n players turn

upgrade income level upgrade D a m a g e level

T i m e E l a p s e d : D
P l a y e r l n c o m e L e v e l : 1
PI a ye rD a mage Level :
PI aye r T a n k L e v e l : 0
A l P l a y e r l n c o m e L e v e l :
A l P l a y e r D a m a g e L e v e l
Al PI aye r T a n k L e v e l : 0

upgrade • ;

Simulation procRssNrimfl filapM-.fi and money aftrihutes am increased

Artificial players turn

T imeElapsed: 3

P laye r lncomeLeve l : 2
PI aye rD a mage Level : 1
PI aye rTankLevel : -0
A l P l a y e r l n c o m e L e v e l : 1
A l P l a y e r D a m a g e L e v e l : 1
A lP laye rTankLeve l : 1

Artificial players turr

TimeElapsed: 3
3I aye rlncorne L e v e l : 1
-1 a ye rD a mage Level : 1
^1 aye r T a n k L e v e l : 0
A l P l a y e r l n c o m e L e v e l :
A l P l a y e r D a m a g e L e v e l
A l P l a y e r T a n k L e v e l : 1

läge level wait for moi ley attribute

v

Artificial players turn

TimeElapsed: 3
P l a y e r l n c o m e L e v e l : 1
P l aye rDamageLeve l : 2
PI a ye r T a n k L e v e l : 0
A l P l a y e r l n c o m e L e v e l : 2
A l P l a y e r D a m a g e L e v e l : 1
A l P l a y e r T a n k L e v e l : 0

provide nfcxle va lue

upgrade Damage level

Leave of tree

TimeElapsed: 12
P l a y e r l n c o m e L e v e l : 2
^ l a y e r D a r n a g e L e v e l : 4
- l a y e r T a n k L e v e l : 1
A lP laye r l ncomeLeve l : 3
A l P l a y e r D a m a g e L e v e l : 2
A l P l a y e r T a n k L e v e l : 1
Node value: 200D

Figure A . l : Tree generated by custom Minimax algorithm

27

http://filapM-.fi

Appendix B

Survey

War paths game alfa testing

Hello. Wellcome to alfa testing of strategy game Warpaths. Please follow instructions in

R E A D M E ! file attached in archive.

What kind of device did you used for testing?

r Personal computer

r Android phone

r Android tablet

* How many times did you play War path?

r 0 -5

r 6-15

r 16-30

r 30 - more

How you orientate in game after playing few times?

Much Better

r Better

r Neutral

r Worse

r Much Worse
Can you specify what was most confusing?

2<S

Did you beat the computer opponent?

r Yes

r No

Can you specify what was your tactic if you used any?

If you beat computer opponent, how many times did you beat him?

r 0 - 5

r 6-10

r 11-20

r 21 - 30

r more than 30

' If you can rate the game using scale from 1 (bad) to 5 (good), what would be your
rating?

Do you have some notes or comments to War path? Did you encountered any
issues or missed anything?

Thats all. Thanks for filling the survey.

Jiří Nývlt

29

Appendix C

Content of CD

Structure of directories is following:

• /thesis/src directory contains source files for thesis

• /thesis/pdf directory contains .pdf version of thesis

• /warpath/android directory contains .apk file for Android OS devices

• /warpath/portable directory contains required .jar file with translated sources
and data directory with data resources

• /warpath/versions directory contains archives with different versions of the game
as it was implemented.

• /warpath/sources directory contains source two Eclipse projects. One for desktop
version of a game and one for Android OS. Sources are linked so changes are done
only in desktop project.

C . l How to run the game

C . l . l Andro id OS

To install game on Android OS device follow next steps:

1. On Android device go to Settings-/,Applications menu and allow Unknown sources.

2. Connect device to P C using USB cable.

3. On Android device click on Turn on USB storage.

4. Copy warpath.apk file from /warpath/android directory anywhere onto device SD
card.

5. Disconnect device from P C .

6. Find warpath.apk file on your SD card and choose install option.

7. Game icon should appear in menu.

30

C.1.2 Windows OS

To run game on Windows it is necessary to have Java runtime environment (JRE) installed.
It can be downloaded for free from ht tp : / / java .com/en/download/ index. jsp .

1. Copy content of /warpath/portable directory anywhere on computer.

2. Double click War paths .jar file.

3. Other possibility is from command line. Go to command line and go to game root
directory.

4. Execute following command: Java -jar warpath, jar

C.1.3 Unix based OS

For unix based systems is also necessary Java runtime environment or open Java. To install
it execute following command: sudo apt-get install openjdk-7-jre

1. Open command line and go to game root directory.

2. Execute following command: Java -jar warpath, jar

31

http://java.com/en/download/index.jsp

