Czech University of Life Science
 Faculty of Economics and Management

Department of Economics

Bachelor Thesis
Indian Stock Market

Author
Dharmi PATEL

© 2019 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT

abs. v. š. Dharmi Patel, Cert Mgmt

Thesis title
Indian Stock Market

Business Administration

Objectives of thesis

The core purpose of the thesis is to compare Indian stock indices with leading stock indices of the world. And to find out the relation on between different stock exchanges of the World to that with Indian stocks. One of the major purposes is also to find out how different stock indices fluctuations affect Indian indices. To achieve this goal there will be used the SAS statistical so ware by comparing indices through regression model. The secondary objective of the thesis is to predict the future stock prices of selected Indian stocks through me series analysis. Lastly to gain knowledge of stocks and be a useful tool in se ng up the IPO for the family business.

Methodology

The literature part of the thesis is done by reviewing and drawing key ideas from all me best investment books. Listening to market news and interviews. For the practical part will be used two types of mathematical methods; Regression Model, which will help in finding out the relation on between different world indices to that of India and their dependency on each other. And Time Series Analysis which will be used for forecasting future price of stocks.

The proposed extent of the thesis
30-40

Keywords

analysis, buying, company, correlation, dependency, indices, investment, market, predictions, stocks,
supply

Recommended information on sources

FISHER, Philip A. Common stocks and uncommon profits and other writings by Philip A. Fisher. New York:

Wiley, 1996. ISBN 047111927X
GRAHAM, Benjamin a Jason ZWEIG. The intelligent investor: a book of practical counsel. Rev. ed. New York: HarperBusiness Essentials, c2003. ISBN 978-0060555665.
GRAHAM, Benjamin and Charles MCGOLRICK. The interpretation on of financial statements. 3d rev. ed.
New York: Harper \& Row [1975]. ISBN 0060115661.
HLAVSA,Tomas. Statistical-I, Ceska zamedelska univerzita v Praze. 2016. ISBN 9788021326590
SUKHANI,Sudarshan.Trading the Markets.Delhi. Vision Books Original. 2012, 2014. ISBN 8170948452

Expected date of thesis defence

2019/20 WS - FEM (February 2020)

The Bachelor Thesis Supervisor

Ing. Karel Malec, Ph.D.

Supervising department

Department of Economics

Electronic approval: 5. 11.
2019
prof. Ing. Miroslav Svatoš, CSc.

Head of department

Electronic approval: 7. 11. 2019

Ing. Mar n Pelikán, Ph.D.
Dean

Prague on 24. 11. 2019

Declaration

I declare that I have worked on my bachelor thesis titled "Stock Market Analysis: Business and Customers" by myself and I have used only the sources mentioned at the end of the thesis. As the author of the bachelor thesis, I declare that the thesis does not break copyrights of any their person.

Acknowledgment

I would like to thank Ing. Karel Malec, my supervisor. And my Mom and Dad for their faith and support in me. Also, a big thank you to Mr. Chetan Barai and team for teaching me the official work. And thank you to all my friends for being there with me throughout.

Indian Stock Market

Abstract

As we all know the world is moving in a pace where it's quite hard to meet our requirements. And our necessities keep on increasing. People are living from pay-cheque to paycheque. So, it is very much necessary to generate a second source of income. And what better than investing in stocks. Investment in stocks allow us to form a habit of savings. The rising interest on stocks, captivates us to invest more. The thesis focuses on the criteria, key rules, the time to buy and sell stocks for investors. Another personal interest is to analyse the Indian stock market and compare it to different stock market of the world and find out the relation between them. Also analyse it with a method which allows the author to forecast future stock prices, to see the buying and selling opportunity and support the objective of the thesis.

Keywords: analyse, buying, company, correlation, dependency, indices, investment, market, predictions, stocks, selling.

Indický akciový trh

Abstract

Abstrakt Jak všichni víme, svět se pohybuje v tempu, kde je ticho těžké splnit vaše požadavky. A naše základní potřeby neustále rostou. Lidé žijí of výplaty po výplatu. Je tedy velmi důležité generovat druhý zdroj příjmů. A co lepší než investování do akcií. Investice do akcií nám umožňují vytvářet zvyk úspor. Rostoucí zájem o akcie nás podnítí k větší investici. Práce se zamě̌̌uje na kritéria, klíčová pravidla, čas na nákup a prodej akcií pro začátečníky. Dalším osobním zájmem je analyzovat indický akciový trh a porovnat je s různými akciovými trhy světa a zjistit jejich vzájemný vztah. Rovněž jej analyzujte pomocí metody, která umožňuje autorovi předpovídat budoucí ceny akcií, aby viděl příležitost k nákupu a prodeji a podpořil cíl práce.

Klíčová slova :analyzovat, nakupovat, společnost, korelace, závislost, indexy, investice, trh, předpovědi, akcie, prodej.

Table of Contents

1. Introduction 12
2. Objectives and Methodology 13
2.1 Objectives of Thesis 13
2.2 Methodology 13
2.3 Regression Model 13
2.4 Time Series Analysis 14
3. Literature Review 16
3.1 Introduction to Stocks 16
3.2 History of Indian Stock Market 16
3.3 What is traded on stock Market? 16
3.4 How does the Indian Stock Market works? 17
3.5 Types of stocks and its Trading 17
3.6 Trading other than Stocks 18
3.7 Current Market Situation in India 18
3.8 Things to be taken care of while Investing 20
3.9 How does Investor and Traders invest in different market situation? 21
3.10 How and When to buy stock? 22
3.11 Fisher's Scuttlebutt Method 25
3.12 When to sell Stock? 26
3.13 Dividends 26
3.14 A Growth Stock 27
4. Practical Part 29
4.1 Introduction 29
4.2 Regression Model Examples 29
4.2.1. Hang-seng and BSE 29
4.2.2. FTSE Singapore and BSE 32
4.2.3. Nikkei and BSE 34
4.2.4. NASDAQ and BSE 36
4.2.5. S\&P 500 and BSE 38
4.2.6. DAX and BSE 40
4.3 Time Series Analysis 42
5. Results and Discussions 43
5.1. Results: Regression Model 43
5.2. Results: Time Series Analysis 43
6. Conclusion 47
7. References 48
8. Appendix 49
8.1 Banking 49
8.2 Industries 56
8.3 IT 62
8.4 Automobiles 68
8.5 Healthcare 74
List of Figures
9. Scatter plot diagram hang-sang - BSE 30
10. Regression Result Hang - Sang - BSE 31
11. Scatter plot diagram FTSE Singapore - BSE 32
12. Regression Result FTSE Singapore - BSE 33
13. Scatter plot diagram Nikkei - BSE 34
14. Regression Result Nikkei - BSE 35
15. Scatter plot diagram NASDAQ - BSE 36
16. Regression Result NASDAQ - BSE 37
17. Scatter plot diagram S\&P 500 - BSE 38
18. Regression Result NASDAQ - BSE 39
19. Scatter plot diagram DAX - BSE 40
20. Regression Result DAX - BSE 41
21. Original Result ICBK 49
22. Missing Frequencny Result ICBK 50
23. Original Result HDFC 51
24. Missing Frequencny Result HDFC 52
25. Original Result YES 53
26. Missing Frequencny Result YES 54
27. Original Result NTPC 55
28. Missing Frequencny Result NTPC 56
29. Original Result ONGC 57
30. Missing Frequencny Result ONGC 58
31. Original Result TISC 59
32. Missing Frequencny Result TISC 60
33. Original Result WIPRO 61
34. Missing Frequencny Result WIPRO 62
35. Original Result TCS 63
36. Missing Frequencny Result TCS 64
37. Original Result INFY 65
38. Missing Frequencny Result INFY 66
39. Original Result HROM 67
40. Missing Frequencny Result HROM 68
41. Original Result MAHM 69
42. Missing Frequencny Result MAHM 70
43. Original Result MRTI 71
44. Missing Frequencny Result MRTI 72
45. Original Result CIPL 73
46. Missing Frequencny Result CIPL 74
47. Original Result REDY 75
48. Missing Frequencny Result REDY 76
49. Original Result SUN 77
50. Missing Frequencny Result SUN 78
List of Graphs
51. Banking Forecast 44
52. Industries Forecast 44
53. IT Forecast 45
54. Automobile Forecast 45
55. Healthcare Forecast 46
List of Tables
56. Manufacturing Business 19
57. E-Government - 1 19
58. E-Government - 2 20

List of Abbreviation

STOCK FULL NAME	ABBREVIATION
Bombay Stock Exchange	BSE
Cipla Ltd.	CIPL
DAX	DAX
FTSE Singapore	FTSE
Hang-Seng	HANG-SANG
Housing Development Finance Corporation Ltd	HDFC
Hero MotoCorp Ltd.	HROM
ICICI Bank Ltd	ICBK
Infosys Ltd	INFY
Mahindra \& Mahindra Ltd	MAHM
Maruti Suzuki India Ltd	MRTI
Nasdaq Composite	NASDAQ
Nikkei 225	NIKKEI
Ntpc Ltd	NTPC
Oil and Natural Gas Corporation India	ONGC
Dr. Reddy's Laboratories Ltd	REDY
Standard and Poor's 500	S\&P 500
Sun Pharmaceutical Industries Ltd	SUN
Tata Consultancy Services	TCS
Tata Steel Ltd.	TICS
Wipro Ltd	WIPRO
Yes Bank	YES

(Investing.com, 2019)

1. Introduction

After the time money was invented human life became much easier as there was a common medium of exchange for buying and selling any commodity. As time and ages passed the world transformed. New inventions and discoveries lead us to this modern era. Now to be practical, for sustaining life, human needs these four bases: food, water, clothing, shelter. But for gaining all these basic human needs we require money. Human always worked hard to acquire all the comforts of life. But sometimes the money he earned was not just enough. So, to gain profit and consume more wealth human came with concept of stock market. Where with the proper wisdom he could earn more with doing less. Not only just to earn but the stock markets are great economic developers. They do the job of circulating money in the economy. So, it is a win-win situation for people and the country if no politics, involved. Investment in stock market is advantageous in many ways. Which the thesis will describe. We will see much more deeper concepts of stock market in this thesis. The thesis focuses on knowing the relations among world market. How the economy of one country depends on other? The thesis will discuss different types of market investment. When to buy and sell stocks. How stocks perform in different market situation. How investors should react in different market situation. Practical part will focus more on analysing the nature of relation between different world markets and forecasting of stock prices.

2. Objectives and Methodology

2.1 Objectives of Thesis

The core purpose of the thesis is to compare Indian stock indices with leading stock indices of the world. And to find out the relation between different stock exchanges of the World to that with Indian stock exchange. One of the major purposes is also to find out how different stock indices fluctuations affect Indian indices. To achieve this goal the author will use SAS statistical software by comparing indices through regression model. The secondary objective of the thesis is to predict the future stock prices of selected Indian stocks through time series analysis. Lastly to gain knowledge of stocks and be a useful tool in setting up the IPO for the family business.

2.2 Methodology

The literature part of the thesis is done by reviewing and drawing key ideas from all-time best investment books. Also, by consulting people belonging to investment fields. For the practical part the author will use two types of mathematical methods which are (i) Regression Model, which will help in finding out the relation between different world indices to that of India. And their dependency on each other. In other words, the cause-effect relationship. (ii) Time Series Analysis will help in predicting the future stock price and analysing the market trends.

2.3 Regression Model

The concept of regression was initially given by Statistician Francis Galton when he was engaged in the study of human inheritance. In regression model it is pre-assumed that there is a cause-effect relationship between the random variable. So, the random variable responsible for the cause- effect relationship is called Independent variable ' X '. It is also called causal variable. The remaining random variable which is affected is called the dependent variable ' Y '.
"The relationship between X and Y as determined by a mathematical function is called Regression. If the relation between variable Y and X is determined by a linear function, then the relationship is called Linear Regression." (Statistics, 2005) The linear regression model is given below:

Regression Model: $\mathrm{Y}=\boldsymbol{\alpha}+\boldsymbol{\beta} \mathrm{X}$
Where,
$\mathrm{Y}=$ dependent variable
$\mathrm{X}=$ independent variable
$\boldsymbol{\alpha}=$ parameter of model
$\boldsymbol{\beta}=$ parameter of model

Why is it important to study Regression Model?

- We can know the nature of relationship between independent variable X and dependent variable Y . We can also find an estimated value $\hat{\mathrm{Y}}$ of the dependent variable Y for a given value of $x(0)$ of the independent variable X and say that it is equal to $\hat{\mathrm{Y}}=\boldsymbol{\alpha}+\boldsymbol{\beta} \quad x(0)$. Therefore, the expected value of Y for a given value of $x(0)$ of X can be estimated. The fitted line $\hat{\mathrm{Y}}=\boldsymbol{\alpha}+\boldsymbol{\beta} x(0)$ is also called prediction formula for predicting the value of Y for given $\mathrm{X}=x$.
- We can identify the amount of change in the value of Y for a unit change in the value of X.

Coefficient of Determination: Denoted by R^{2}. Is the value which indicates the goodness of fit of the model. It means how closer the predictable value for the dependent variable will be given the independent variable, in real life. The value ranges from 0 to 1 .

2.4 Time Series Analysis

We observe the occurrence of some phenomena in our day to day life at regular intervals of time. For example, supply of goods, imports, exports, prices of shares and stocks of company etc. The observation of such phenomena is made on a periodic basis. We study the phenomena and the time period and draw conclusions. This conclusion we make based upon phenomena and time period is called forecasting.
"The data collected to study the matter of business and industrial interest is based on time and hence are called time series data. The method of drawing inferences on different characteristics of time series by analysis of such data is called time-series analysis."

The time series model is as below:
Time Series Analysis: $\mathrm{Y} t=\mathrm{X} t \boldsymbol{\beta}+\boldsymbol{\mu} t$
Where,
$\mathrm{Y} t=$ time (in days, months or year)
$\mathrm{X} t=$ observations
$\boldsymbol{\beta}=$ parameter
$\boldsymbol{\mu} t=$ error

Trend: Trend is the main component of time series. Trend means the general change or development in a direction of the time series data being analysed.

Usefulness of studying Time Series Data:

- It is easier to make future decisions based upon the analysis of the time series data from the past. The data helps us in analysing the situation and retaining from making mistakes in decision.
- We can predict the future value of the variable quantity through the help of time series data.
- Time series data are very much useful for government bodies to compare the present and past performances of economic activities and make reports of actual progress achieved.

3. Literature Review

The literature part of the thesis will focus on conceptualization the basic components of financial market. Describing strategies of investment. The time to buy and sale the stocks. Analysing various market situation and reaction of investors to the situation.

3.1 Introduction to Stocks

A stock in a general sense can have various meanings. But what we are talking here are the market stocks. Market stocks are the amount raised by a company or corporate from the public at the time of public issue, when the company is listed on the stock market. Now question may arise what is a stock market? Stock market is a platform or the base where the stocks are traded. Or in economic terms it is a place where buyers and sellers meet to exchange the stocks.

3.2 History of Indian Stock Market

India holds the position to be the oldest stock market in Asia. In about 1830, corporate stocks and shares were traded in banks. A small number of companies came together in 1875 and formed Bombay Stock Exchange shortly known as BSE. In 1956, the government of India recognised BSE as the first stock exchange of the country under the act of Securities Contracts Regulation. The stock exchange by that time was not advanced and reliable. Time passed and it developed. In 1986, it introduced BSE Sensex. (Sensex =sensitive index) The Bombay Stock Exchange index which was made from top 30 trading stocks in the market. In the 1980's due to economic crises and financial crises, the Government established SEBI- Securities and Exchange Boards of India (1999). SEBI controls the BSE. (nseindia, 2019)

In 1992, the BSE crashed due to a scam. The Finance Minister Mr. Manmohan Singh pleaded the need of another Stock Exchange in competition with BSE. So, in November 1992, The National Stock Exchange (NSE) was established. It is the first electronically traded market of India. In 1996, NSE brought the S\&P CNX Nifty (Nifty=National Fifty). The nifty index comprises of 50 stocks from 26 different sectors of the economy. (nseindia,2019)

3.3 What is traded on stock Market?

Stocks are traded on the stock market. Stocks or shares of various kinds of companies such as IT, Pharmaceutical, Commodities, Spices, Businesses, Mutual Funds etc. All these companies come under one roof to sell their shares to the common public. Shares can be bought in two different ways. Through a broker or buy online. If you have a very good knowledge of Stocks. (Economics, 2013)

3.4 How does the Indian Stock Market works?

The Indian stock market operates from Monday-Friday from IST 9:15-15:30. The share prices are decided based on market situations. There are many factors affecting the market. It reacts volatilely to different news, political situation, economic reforms or protests, global events etc. Indian stock markets are majorly news based. Let us see how stock prices are affected due to the news. The author is taking a recent example from the year 2016. It was the year of US election. It would be a benefit to India if Hillary Clinton won the election. It would probably lead the market to rise. And a loss to market if Donald Trump wins. So, the Prime Minister of India declared demonetization on the previous night of election results of US. i.e. $8^{\text {th }}$ November, 2016. The next day the results were out, and Trump won the election. So, these two-situation demonetization and victory of Trump lead the market to go down. On $8^{\text {th }}$ November, 2016 Nifty opened at 8540 . High was 8559 , low was 8480 . And closed at 8543 . Next day on the result announcement date it opened at 8067 , high was 8476 , low was 8002 , and closed at 8432 . The effect of election result was negative so was the effect of demonetization. It reduced the price of nifty by 111. So, it is highly volatile. (Economics, 2013)

3.5 Types of stocks and its Trading

Equity Stock

Before understanding equity stocks, we shall understand equity. Equity simply means ownership in an asset. Equity stocks or common stocks are shares owned by the public for any company. Equity are the riskiest stocks. If the market is good equity holders get good returns. But if the market is low, they have to bear losses. So, the equity holders are also called risk-bearers. E.g.: Ram buys 100 equity stocks of a company at ₹ 10 each. So, the total money invested is ₹ 1000 . Then the share prices rise to ₹ 12 . So, Ram decides to sell the shares. The selling price is ₹ 1200 . Ram gains a profit of ₹200. Now if the stock prices drop to ₹ 8 and Ram fears that the prices will go further down. So, Ram decides to sell the shares. In this case selling price is ₹800. Ram must bear loss of ₹200.

Now let us imagine a scenario where a company is liquidated. In this case the company is liable to pay all the other members connected to the company first and at last equity holders are paid. So, there is a chance that equity holders are paid more profit if the company has money or paid no money at all.(organisation of commerce textbook, 2013)

Preference Shares.

Preference shares are special because these shareholders are given priority over equity shareholders for returns and dividends. Preference shareholders do not take much risk. So, the percentage of returns are low compared to equity shareholders. Also, during the time of liquidation, the company is liable to pay preference shareholders first. So, these shareholders do not have the disadvantage of losing money in any situation. (Organisation of commerce textbook)

3.6 Trading other than Stocks

Bonds

"A Bond is a fixed income investment in which an investor loans money to an entity which borrows the funds for a defined period of time at a variable or fixed investment rate." (Investopedia, 2019) Generally, there is a 5 -year lock in period of bonds. Bonds are issued by the company when in need of large amount of money. Rather from loaning through bank they invite investors to loan money. In return the investor gets a coupon rate as interest. In other words, bonds are like fixed deposits of banks which pays a high amount of interest. Generally, government bonds are great safety investment.

Mutual Funds

"A mutual fund is an investment vehicle made up of a pool of money collected from many investors for the purpose of investing in securities such as stocks, bonds, money market instruments and other assets." (Investopedia, 2019) Mutual funds are maintained and observed by a professional money manager, typically in India an "advisor". The objective of investing in stock is to earn capital gains from various funds.

Debentures

"A debenture is a type of debt instrument which is not secured by physical assets or collateral." (Investopedia, 2019) There are two types of debentures convertible and nonconvertible debentures. The convertible debentures after a period converts into equity shares. This is a good option for investors to invest in as they can get a higher return on equity.

3.7 Current Market Situation in India

Let's talk about something economical to understand more about the present market scenario. India is an emerging economy. Investing in an emerging economy will always generate good returns. During the last few years many acts, political events and movements, constitutional changes brought drastic change in various economic sectors in India. These boost ups the economy leading to better exchanges. Telecom companies and IT sector have developed majorly in the past four-five years.(ibef.org,2019)

Let us now look at the acts performed in India in the past few years and its impact on the market. The Prime Minister of India launched the "Make in India" concept on $15^{\text {th }}$ September, 2014. The goal was to raise the manufacturing sector of India and make India the hub of global manufacturing. The below table shows the result of the step taken. (ibef.org,2019)
Table 1: Manufacturing Business

Manufacturing Business	Percentage	
	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 3}$
Margin increase in part of 6 months	37%	30%
Margin expected to increase in the next 12 months	47%	54%

(pwe,2019)
From the table above, we can clearly see there is a major jump in the manufacturing sector. So, investment in this sector can lead to a good amount of returns.
There was another act in the following year 2015. The "Digital India" act launched on $1^{\text {st }}$ July 2015. The main aim was to provide internet facility to all the rural areas of India and to improve the digital literacy. It can be said that this act of government has really changed the shape of Indian economy and market. Almost every sector of the economy is now connected digitally, and the work is done more speedily and effortlessly than before. The E-governance can now provide services to all the gram panchayats. Also due to this step the energy sector acquired a great business. Let us investigate statistics below. (ibef.org,2019)
Table 2: E-Government

E - Government	Year	
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 4}$
Transaction (E - Taal)	$\$ 6.95 \mathrm{BN}$	$\$ 3.53 \mathrm{BN}$

(pwe,2019)
Besides manufacturing and digitalization there were also launched programs for healthcare and better sanitization which lead to better health of public and maintaining hygiene. The following table/chart represent the statistics of the health care sector.

Table 3: E-Government

E - Government	Year	
	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 7}$
Expected Growth	\$6 BN	\$3 BN

(pwe,2019)
Budget was disclosed on $1^{\text {st }}$ February 2018 by Finance minister Mr. Arun Jaitley. This year's budget focuses on the development of the agriculture sector, healthcare and infrastructure in rural areas. These three sectors are developing faster and there are many good opportunities in investing in these. The data from the government says that the employment opportunities in the prime eight sectors of the economy which includes IT, travelling and manufacturing will increase by 136000 . According to ASSOCHAM, the labour force of India will increase by approximately 160-170 million by 2020 due to its population growth. This will lead to an increase in GDP. The GDP is currently growing with rate of 7.2. Increased GDP means increase in foreign exchange. The Central Statistics Organisation says that corporate earnings will increase by $15-20 \%$ in 20182019. (ibef.org,2019)

3.8 Things to be taken care of while Investing

There are no proper rules to be followed while investing in the market. As the market is volatile, it can turn anytime. Perhaps this is the only field where without following the rules we can earn much.

However, we must keep something in mind.

- An individual should only invest how much he/she can afford to lose.
- Mr. Sudarshan Sukhani in his book ("Trading the Markets") says "don't go against the market. Go with the flow of market." It means let the market decide if it is rising or falling. And make decision after the market throw you hints.
- There's a famous English idiom "Don't put all your eggs in one basket." Same applies with market. One must diversify his/her investment in various economic fields. So, if one sector fails to give the return, we must not lose all our investment.
- We must choose a very wise advisor or refer to the market every now and then to be alert with everything going on.
- Every one of us has a thought of making big money in short time. But it can lead us to destroying our investment if not planned properly. So instead of running for monthly big gains one must go for yearly good returns.
- Always use stop losses.
- "The 15 -minute rule: When markets open, wait for 15 minutes, then identify the high and low of this period. Only buy when prices go above the first 15-minute high. Sell only if prices go below the first 15 -minute low (specially for traders)"(Sukhani, 2012)
- Stocks are good for long term investment. But if the investor expects lotteries from the stock market, he/she will be disappointed. Expectations must be reasonable.
Thus, by keeping certain things in mind or keeping your own rule book one can earn well through stocks.

3.9 How does Investor and Traders invest in different market situation?

Let us first know what the key difference between investing and trading is. Investing is wealth building by buying and holding of stocks, bonds or mutual funds for a long period of time. Investors expect $10-15 \%$ of the profit margin per year. Trading means to buy and sell stocks or commodities more frequently. Traders imagine acquiring 10-20\% returns per month. Market can show us various phases it can sometimes be stable, sometimes choppy, highly volatile or low. In short it can be bullish or bearish. Make money in market through trend. Trend is movement of money in one direction. So, we need to know whether it is an up-trend or down-trend. "When the market creates higher highs and higher lows it is uptrend." "When there is lower highs and lower lows it is a downtrend." There is a saying of market "Buy Low Sell High". (Sukhani,2012)
Bullish Market: Bullish market is when most stocks in the market rises. In this time traders and investors should put their stocks to sell. But be alert! When a market is bullish there are major chances of correction. Also, technical analysis should be made like following the chart patterns. Evaluating highs and lows. (Sukhani, 2012)

Bearish Market: Bearish market is when shares prices runs low. In this time of downmarket investors and traders should look out for proper companies by studying its fundamentals and analysing financial statements and then buy companies shares. This is the time to buy the shares at lower prices. Once gone down the market will rise again. (Sukhani,2012)
Choppy Market: Choppy market is a situation where one cannot decide the correct position of the market. It may go high in the starting of the day, come back to low in the next few hours and end it where it started. One should play safe and avoid any kind of new investment in the market. (Sukhani,2012)
Market Crash: Crash of market can be expected once a decade. Not that it is compulsory, but who likes to fall ill or wishes to fall ill! So, it can be said that there is no definite time to enter the market but there is a definite time to leave the market. As you feel the market will go more down take your stop losses and come out of it with minimum loss.(Sukhani, 2012)

3.10 How and When to buy stock?

The author would like to emphasize on making savings. After deducting all expenses whatever money, the person's left with should be used in investing. One should start small and slow. One must know what amount of money you can afford to lose. So, for beginners SIP is a very good thing to invest in. SIP stands for Systematic Investment Plans. Instead of paying a lump sum amount to a mutual fund investor can pay it periodically in a small amount. The period may vary from weekly to monthly. By this method there is no worry to pay the full amount at once. As you pay it periodically it creates a habit of saving and generates wealth in the future. This is a good process for students to save money. Also, for jobbers who cannot accumulate fat amount of wealth in the short run.

Here are some points to look for while buying stocks or investing in any funds:

- How will the company survive the Expanding Markets? One should have an eye on the sales graph of the company. This is the era where technology keeps updating and replaces the older one. For example, Televisions when invented were rare things. And its sales were high. Then came the mobile and internet which affected the television business. Although televisions are still in business, but their sales are quite lower than before. So, a company must think how in the expanding markets with its services it can make the customers happy and so to their investors. For example, updating the television and connecting it with internet, phones and laptop. (Fisher, 1996)
- To develop products and services that will still increase total sales potential. The management should take into consideration their current product and emphasize on making new products for future not only for higher sales but for company's growth too. It is a matter of management's attitude. It is a company that has both a good rating on the first point and an affirmative attitude on the second that is likely to be of greatest investment interest. (Fisher, 1996)
- Research and Development: One should observe how much amount a company spends on research and development. Many financial analysts compare the figures of research and development of various companies. These figures can give a guideline of one company doing an abundance of research and the other not quite much. It depends on the company what do they include in the list of research and so their figures differ. For example, testing and developing of new product some companies include this expense as research and development and some in production and engineering. (Fisher, 1996)
- Above average sales organization: A company achieving a good sales target is good. But it sets a standard of success when its sales repeatedly to its customers. The extraordinary services of the products are what makes the company's sales going. It is easier to set standards of production and finance department of the company by using some averages or ratio. But it's quite a difficult task to set advertisement and sales target. So, one must buy a stock comparing the overall sales of various companies. As this figure directly reflects its management's contribution to the products. (Fisher, 1996)
- Worthy Profit Margins: This is the thing which every investor is looking for in a company's financial statements. The first step in examining the profit as quoted by Mr. Fisher is to study a company's profit margin, that is, to determine the number of cents of each dollar of sales that is brought down to operating profit. Knowing the profit margins of different companies of the same industry will help you more in selection of stocks. From it we can understand that companies with smaller profit margins nearly always increase their profit margins by a greater percentage when in good years as compared to lower cost companies, whose profit margins also get better but not to so great a degree. (Fisher, 1996)
- Keeping the Profit Margins: We just not want to invest in any company that has a good profit margin but want to invest in a company which can maintain its profit margin in the future or even increase it. The success of a stock purchase doesn't depend on what is generally known about a company at the time the purchase is made. Rather it depends on what gets to be known about it after the stock has been bought. [Philip Fisher, "Common Stocks and Uncommon Profits, Page 64] so, the future profits are of greater interest to investors. For this the company should emphasize on Cost cutting. It can be done by purchasing raw material in bulk or by bringing down the break-even point. Sometimes due to the competitors the profit margins are also increased. (Fisher, 1996)
- Great Labour Relations: The personnel are regarded as the limbs of an organization. Without them no task can take place. A company ensuring higher care of employees indicates motivated workers. And motivated workers bring good production which later leads to higher sales and growth of company. And growth of company buys them wealthy investors. (Fisher, 1996)
- Awesome Executive Relations: Executives are the mediators between the company and customers. They are the deal maker or deal breaker. So, we want to ensure the management along with the labours is also taking care of their executives. After all they are the one to bring in the business! (Fisher, 1996)
- Depth in management: The key here is to maintain the key person of business. What happens to a company when its CEO retires or leaves the company? The goodwill be affected and so will the investors trust in the company. In this scenario the investor should have an idea of what should be done to prevent disaster. However, companies worthy of investment are those that grows continuously. At what point in the future the company will reach a point where it cannot take advantage of the coming opportunities unless it develops executive talents. (Fisher, 1996)
- Great cost-analysis: This is another key aspect in which a company should have its mark. Resource allocation is an easy task, if done by the right person. An investor can't really say if the company has allocated the resources properly or not, but he/she can properly say if resources allocation is not done properly. The best that the careful investor usually can do in this field is to recognize both the importance of the subject and his own limitations in making a worthwhile appraisal of it. A company well above in business aspects will also be above average in the field can be only known when the top management understands the basic importance of expert accounting controls and cost analysis. (Fisher, 1996)
- Great Industry Specifics: A company should know how much better or weak they are than their rivalries. This will give a company a clear picture of where they stand. SWOT analysis is the best way to find this out. A company however doesn't want to lose their customers as they invest in them. From an investor point, one might disagree to invest in a company which is inferior. A competitive investor may see some growth and might invest in it, but a passive investor is more concerned about his money and returns. A company can outperform and rule this pillar by outstanding customer services or excellent product marketing strategy. (Fisher, 1996)
- Long-Range Outlook on Profit: Some companies will conduct their affairs to gain the greatest possible profit right now. Others will deliberately curtail maximum immediate profits to build up good will and thereby gain greater overall profits over a period of years. Treatment of customers and vendors are examples of it. Good relations with not only customers but also with the supply chain are important. At the times of unfavourable market conditions, the build-up relation will benefit the company and not profit. An investor should put his money in a company who knows how to work with profit. (Fisher, 1996)
- Low Risk of Dilution in Future: The intelligent investor should not buy stocks simply because they are cheap but only if they ensure a major gain to him. It is the time to talk about the company's ability to generate equity at times of need. An investor will always
want to invest in a company which is stable and has a sufficient amount of cash so that in several future years if there is a time of recession it can still survive. If equity financing will be occurring within several years of time of common stock purchase, and if this equity financing will leave common stockholders with only a small increase in subsequent pershare earnings, only one conclusion is justifiable. This is that the company has a management with sufficiently poor financial judgment to make the common stock undesirable for a worthwhile investment. (Fisher, 1996)
- Communicates Risks Too: We all want to invest in a company which has sound values and ethics. It is in the nature of the business cycle that unfavourable markets occur, profit goes down or demand of certain product drops. Does the management need to talk about this to its investors? Naturally yes! As a shareholder of the company we have the rights to know what is going in and around the company. How if a company makes losses consecutively for several years and then there is a time to shut down the business? What about the investors' money and trust? Can the company get back on its feet again and gain the reputation it had earlier? (Fisher, 1996)
- Unquestionable Integrity: The management of the company is far closer to its assets than its shareholders are. They can use it as they want to. But it is not always certain that they are using it for themselves. So, the investor should only invest in a company whose management has highly developed sense of trusteeship and moral responsibility towards their shareholders. If there is a lack of trusteeship in the management one should not invest in that company. (Fisher, 1996)
However, in today's time it is hard to find the companies which fulfil all the above criteria for investors to invest in. So, Mr. Fisher says if the company fails to fulfil some of them it's okay to invest in it. But if it fails to fulfil in major of them than you must not invest in that company.

3.11 Fisher's Scuttlebutt Method

After checking out all the fifteen points in a company we can decide to invest or not. But the question arises where do we get all this information from? Fisher's scuttlebutt method. Scuttlebutt method is talking or using "The Main Street Resources". The resources to this method are suppliers of company, trade unions, research and development department and former employees of the company. It's a bit tricky to rely on the information given by a former employee. It sometimes contains the deepest and truest information hidden from common public. And sometimes misinterpreted information maybe because of the employ got fired or left because of justified grievances. These are some of the people who can give some depth information which
can be later used in analysing and decision making of purchasing a stock. Other ways of researching for a proper stock are checking on different companies of the same field and doing SWOT analysis for having a clearer picture. (Fisher, 1996)

Lastly, this method is very much useful for investors, but the investor may not have time to go through all this aspect and apply it. So, one must seek the help of a professional advisor who can select the best stock for them. (Fisher, 1996)

3.12 When to sell Stock?

There are many reasons why an investor might want to sell his/her stocks. One of the major reasons to invest is to have a good amount of money in times of financial emergency. Or for further education of your children, buying your dream house or car etc.

Well, these are personal reasons why you want to sell your stock. Let's talk about some financial reasons, wherein you might want to sell your stock. The first reason is when there is a mistake in the initial purchase of stocks, and it is clearly visible that holding on to this stock will lead to only loss. At this time an investor should sincerely accept his/her mistake and sell the stock with less profit or bearing some loss. It is very important to understand and accept your mistake as an investor to prevent further larger amount of losses. An investor must be honest with himself/herself. "The long-range profits from really good common stocks should more than balance the losses from a normal percentage of such mistakes." (Fisher, 1996, Page-106) Second reason why an investor should sell off his/her stocks is when over a period of time the company fails to maintain the standards of qualifying the fifteen points of buying a stock. So, an investor should constantly guard his/her investment. A company fails to maintain its standards when there is a change in higher level of management. Or the company no longer has the drive to increase its markets. Generally, it happens when the new top executives are not as strong as the predecessors. Thus, after a while of investing in the same company it has stop growing and is exhausted it is the time to sell the stocks. If an investor has been sincere in his choices and maintained the standards of purchasing stocks than the third reason of selling stocks is when the investor is sure about no interesting and attractive opportunities of investment in the future. If an investor is investing his funds in a company from quite earlier and now the growth prospect of the company has stabilized it is time to sell the stocks. (Fisher, 1996)

3.13 Dividends

A dividend is what an investor is waiting for after he/she invests in stocks. It is a payout given by the company to its investor quarterly or annually or sometimes monthly if a company is doing extremely well from the part of company's profit or reserves. As it is said one is more
interested in the interest on capital rather than the capital. Sometimes investors buy the stocks not because of the price but because of the dividend paid on it. What if when investing in this type of company, the company stops paying the dividend and says it will use the earnings for some business purpose like buying new plant or launching a new product line? Will it be beneficial for the investor? One aspect of it says the investor will be unhappy as its primary goal is not satisfied. The other aspect says its good as the company will make progress which will later increase its market value. Let us say it's a risk. If the company uses its retained earnings in the purpose of improving some aspects of the company and its attempt fails miserably both the company and investor, make loss. Another way when a stockholder is not benefited is when the management starts piling up cash and liquid assets over the need. In this way the management overthinks of his security and gathers too much of liquid assets. Let us take an example of a fictitious company. A company ABC is very good in attaining market growth. It pays the stockholders very well. Let's assume it uses 50% of its earnings to pay dividend. Years passes and the company is still doing well and now it only requires 25% of earnings to pay dividends. So now, there's a meeting of the Board of Directors where half of them says to increase the dividends and remaining half says to maintain the dividends and invest the remaining amount in growth stocks. So, in this case if they raise the dividends than the higher stockholders will not be benefited as much as the lower or normal stockholders because of the taxes. And if they choose to maintain the dividend standard and invest the remaining part in growth stocks all the stockholders and company will be benefited. But again, it depends on the company. The regularity of the dividend flow is more affected while taking this decision of raising the dividend or to plough back the profit. (Fisher, 1996)

3.14 A Growth Stock

Every investor has a wish to earn higher gains in market. Who doesn't? In this fast-growing world, it's quite difficult to fulfil all your needs in just your salary. And especially when you are earning member of family. The important question is "To buy a stock currently or not to buy?" One might trip over answering this question. Sometimes you make decisions by not investing in a stock which later creates fortunes in the market. Investing also depends on how much time you can devote in research and studying the market. (Fisher, 1996)
Here is how you can hunt for a growth stock:

- One of the important factors in analysing a stock as growth stock is to have a deep knowledge and relations with companies' executives and senior members.
- Secondly, talking to other people who invests regularly and are updated with all the news of the market. As they are more insightful people in investment field one can get their opinion quickly and a great help in choosing a growth stock.
- Thirdly, it is important to check whether the company has all the essential fifteen points discussed earlier to buy the stock. Figures like sales should be analysed. Is there a tremendous high in sales of company?
- One of the helpful resources in finding out a growth stock are from well-known brokerage firms. These reports are not for everyone but special people. Also, financial periodicals and magazines are a good source of it. But not all are accurate.
- Lastly, take a view over the company's balance sheet. How is the capitalization structure? And what is its financial position. (Fisher, 1996)

4. Practical Part

The practical part of the thesis will focus on finding out the relation between two variables which in this content will be two different indices of world. And forecasting the prices of selected stocks.

4.1 Introduction

For the practical part of the thesis the author will use two methods as mentioned earlier in the methodology. These two methods will help in collecting the indices of different stock markets and making the analysis of whether the market is correlated or not? Is there any relation between them? Does correction in different stock market of the world effects to Indian market? If yes than how much? How can I predict the future stock prices of my portfolio?

4.2 Regression Model Examples

The author will use SAS Enterprise Guide for computing the regression model. For the analysis the dependent variable will be Indian index, BSE in all the calculations. And the independent variable will be various indices of the world.

The author proposes hypothesis as under:
H_{0} : There is no relation between World index and BSE
H_{A} : There is a relation between World index and BSE
We will check the hypothesis with the help of t -value, p -value comparing it with alpha $\alpha=0.05$.
We accept the H_{0} if p -value $>\alpha$ and reject the H_{A}
We accept the H_{A} if p -value $<\alpha$ and reject the H_{0}

4.2.1. Hang-seng and BSE

The author wants to know whether there is any relation between Hang-sang and BSE? Is BSE affected due to any correction in Hang-seng?
H_{0} : There is a relation between Hang-seng and BSE
H_{A} : There is no relation between Hang-seng and BSE

Figure 1: Scatter plot diagram Hang Seng - BSE

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:01:20 PM
(SAS, own creation, 2019)
From the above chart we can see there is a positive correlation between hang-seng and BSE. The chart shows an uptrend.

Figure 2: Regression Result Hang-sang - BSE.

Linear Regression Results

The REG Procedure Model: Linear_Regression_Model

Dependent Variable: BSE

Number of Observations Read	264
Number of Observations Used	264

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	197154506	197154506	106.72	<. 0001
Error	262	484009458	1847364		
Corrected Total	263	681163964			

Root MSE	1359.17782	R-Square	0.2894
Dependent Mean	37257	Adj R-Sq	0.2867
Coeff Var	3.64810		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathbf{t}\|$
Intercept	1	20340	1639.73230	12.40	$<.0001$
hang sang	1	0.62002	0.06002	10.33	$<.0001$

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:03:06 PM
(SAS, own creation, 2019)

Interpretation:

$$
\begin{gathered}
\mathrm{Y}=\mathrm{BSE}(\text { Intercept) } \mathrm{X}=\text { hang-seng } \\
\text { Regression Model: } Y=20340+0.62002 x
\end{gathered}
$$

$r^{2}=0.2894=28.94 \%$ which means if there is a change in hang-sang than it will affect 29% to BSE.

Checking the Hypothesis
T -value for the intercept is $12.40, \mathrm{p}$-value is $<0.0001 . \alpha=0.05$
T -value for the hang-sang is 10.33 , p -value is $<0.0001 . \alpha=0.05$
Therefore, p -value $<\alpha$
I.e. $0.0001<0.05$

So, we reject the null hypothesis and accept the alternative hypothesis which means there is a relation between hang sang and BSE. From the equation, if hang-sang increases by 100 points than BSE will increase by 62 points.

4.2.2. FTSE Singapore and BSE

Is there a correlation between FTSE Singapore and BSE? If yes, what kind of correlation it is?
Does changes in FTSE Singapore effects BSE?
H_{0} : There is a relation between FTSE Singapore and BSE
H_{A} : There is no relation between FTSE Singapore and BSE
Figure 3: Scatter plot diagram FTSE Singapore - BSE

(SAS, own creation, 2019)
From the above chart we can see there is a positive correlation between hang-sang and BSE. The chart shows an uptrend.

Figure 4: Regression Result FTSE Singapore - BSE.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: BSE

Number of Observations Read	264
Number of Observations Used	264

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	173903970	173903970	89.82	<. 0001
Error	262	507259994	1936107		
Corrected Total	263	681163964			

Root MSE	1391.44057 R-Square	0.2553
Dependent Mean	37257	Adj R-Sq
Coeff Var	3.73470	

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Intercept	1	12238	2641.28296	4.63	$<.0001$
FTSE Singapore	1	7.84088	0.82732	9.48	$<.0001$

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:07:52 PM
(SAS, own creation,2019)

Interpretation:

$Y=\operatorname{BSE}($ Intercept $) \mathrm{X}=$ FTSE Singapore
Regression Model: $Y=12238+7.84088 x$
$r^{2}=0.2553=25.53 \%$ which means if there is a change in FTSE Singapore than it will affect 25% to BSE.

Checking the Hypothesis
T-value for the intercept is 4.63, p -value is $<0.0001 . \alpha=0.05$
T -value for the hang-sang is 9.48 , p -value is <0.0001. $\alpha=0.05$
Therefore, p -value $<\alpha$
I.e. $0.0001<0.05$

So, we reject the null hypothesis and accept the alternative hypothesis which means there is a relation between FTSE Singapore and BSE. From the equation, if FTSE increases by 100 points than BSE will increase by 784 points.

4.2.3. Nikkei and BSE

Is there a correlation between Nikkei and BSE? If yes, what kind of correlation it is? Does changes in Nikkei effects BSE?
H_{0} : There is a relation between Nikkei and BSE
H_{A} : There is no relation between Nikkei and BSE
Figure 5: Scatter plot diagram Nikkei - BSE

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:12:03 PM
(SAS, own creation, 2019)
From the above chart we can see there is a negative correlation between hang-sang and BSE. The chart shows a downtrend.

Figure 6: Regression Result Nikkei - BSE.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: BSE

Number of Observations Read	264
Number of Observations Used	260
Number of Observations with Missing Values	4

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	9571154	9571154	3.75	0.0540
Error	258	658949967	2554070		
Corrected Total	259	668521121			

Root MSE	1598.14569	R-Square	0.0143
Dependent Mean	37230	Adj R-Sq	0.0105
Coeff Var	4.29261		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	42235	2587.22700	16.32	$<.0001$		
Nikkei Japan	1	-0.23297	0.12035	-1.94	0.0540		

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:13:45 PM
(SAS, own creation, 2019)

Interpretation:

$\mathbf{Y}=$ BSE (Intercept) $\mathbf{X}=$ Nikkei

Regression Model: $Y=42235-0.23297 x$
$r^{2}=0.0143=1.43 \%$ which means if there is a change in Nikkei than it will affect 1.43% to BSE. which is very less.

Checking the Hypothesis
T -value for the intercept is 16.32 , p -value is $<0.0001 . \alpha=0.05$
T-value for the hang-sang is $-1.94, \mathrm{p}$-value is $>0.0001 . \alpha=0.05$
Therefore, p -value $>\alpha$
I.e. $0.0540>0.05$

So, we accept the null hypothesis and reject the alternative hypothesis which means there is no relation between Nikkei and BSE.

4.2.4. NASDAQ and BSE

Is there a correlation between NASDAQ and BSE? If yes, what kind of correlation it is? Does changes in NASDAQ effects BSE?
H_{0} : There is a relation between NASDAQ and BSE
H_{A} : There is no relation between NASDAQ and BSE
Figure 7: Scatter plot diagram NASDAQ - BSE

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:15:49 PM
(SAS, own creation, 2019)
From the above chart we can see there is a positive correlation between hang-sang and BSE. The chart shows an uptrend.

Figure 8: Regression Result NASDAQ - BSE.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: BSE

Number of Observations Read	264
Number of Observations Used	264

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	220493035	220493035	125.40	$<.0001$
Error	262	460670929	1758286		
Corrected Total	263	681163964			

Root MSE	1326.00377	R-Square	0.3237
Dependent Mean	37257	Adj R-Sq	0.3211
Coeff Var	3.55906		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error			
t Value	Pr $>\|\mathrm{t}\|$					
Intercept	1	21564	1403.75078	15.36	$<.0001$	
NASDAQ	1	2.05219	0.18326	11.20	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:17:11 PM
(SAS, own creation, 2019)

Interpretation:

$\mathbf{Y}=\mathbf{B S E}$ (Intercept) $\mathbf{X = N A S D A Q}$

Regression Model: $Y=21564+2.05219 x$
$r^{2}=0.3237=32.37 \%$ which means if there is a change in NASDAQ than it will affect 32% to BSE.

Checking the Hypothesis
T -value for the intercept is $15.36, \mathrm{p}$-value is $<0.0001 . \alpha=0.05$
T-value for the hang-sang is $11.20, \mathrm{p}$-value is $<0.0001 . \alpha=0.05$
Therefore, p -value $<\alpha$
I.e. $0.0001<0.05$

So, we reject the null hypothesis and accept the alternative hypothesis which means there is a relation between NASDAQ and BSE. From the equation, if hang-sang increases by 100 points than BSE will increase by 205 points.

4.2.5. S\&P 500 and BSE

Is there a correlation between S\&P 500 and BSE? If yes, what kind of correlation it is? Does changes in S\&P 500 effects BSE?
H_{0} : There is a relation between S\&P 500 and BSE
H_{A} : There is no relation between S\&P 500 and BSE
Figure 9: Scatter plot diagram S\&P 500 - BSE

(SAS, own creation, 2019)
From the above chart we can see there is a positive correlation between S\&P 500 and BSE. The chart shows an uptrend.
(Figure 10: Regression Result NASDAQ - BSE.)

Linear Regression Results The REG Procedure					
Model: Linear_Regression_Model					
Dependent Variable: BSE					

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:21:07 PM
(SAS, own creation, 2019)

Interpretation:

$\mathbf{Y}=\mathbf{B S E}$ (Intercept) $\mathbf{X}=\mathbf{S \& P} \mathbf{5 0 0}$

Regression Model: $Y=19046+6.45327 x$
$r^{2}=0.3042=30.42 \%$ which means if there is a change in $\mathrm{S} \& \mathrm{P} 500$ than it will affect 30% to BSE.

Checking the Hypothesis
T -value for the intercept is 11.18, p -value is $<0.0001 . \alpha=0.05$
T-value for the hang-sang is $10.70, \mathrm{p}$-value is $<0.0001 . \alpha=0.05$
Therefore, p -value $<\alpha$
I.e. $0.0001<0.05$

So, we reject the null hypothesis and accept the alternative hypothesis which means there is a relation between S\&P 500 and BSE. From the equation, if S\&P 500 increases by 100 points than BSE will increase by 645 points.

4.2.6. DAX and BSE

Is there a correlation between DAX and BSE? If yes, what kind of correlation it is? Does changes in DAX effects BSE?
H_{0} : There is a relation between DAX and BSE H_{A} : There is no relation between DAX and BSE

Figure 11: Scatter plot diagram - BSE

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:23:19 PM
(SAS, own creation, 2019)
From the above chart we can see there is a positive correlation between DAX and BSE. The chart shows an uptrend.

Figure 12: Regression Result DAX - BSE.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: BSE

Number of Observations Read	264
Number of Observations Used	264

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	262754440	262754440	164.53	<. 0001
Error	262	418409524	1596983		
Corrected Total	263	681163964			

Root MSE	1263.71789 R-Square	0.3857	
Dependent Mean	37257	Adj R-Sq	0.3834
Coeff Var	3.39188		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathbf{t}\|$
Intercept	1	14836	1749.71997	8.48	$<.0001$
DAX	1	1.91013	0.14891	12.83	$<.0001$

Generated by the SAS System ('SASApp', Linux) on October 30, 2019 at 1:24:34 PM
(SAS, own creation,2019)

Interpretation:

$\mathbf{Y}=\mathbf{B S E}$ (Intercept) $\mathbf{X =} \mathbf{D A X}$

Regression Model: $Y=14836+1.91013 x$

$r^{2}=0.3857=38.57 \%$ which means if there is a change in DAX than it will affect 38% to BSE.
Checking the Hypothesis
T-value for the intercept is 8.48 , p -value is <0.0001. $\alpha=0.05$
T-value for the hang-sang is $12.83, \mathrm{p}$-value is $<0.0001 . \alpha=0.05$
Therefore, p -value $<\alpha$
I.e. $0.0001<0.05$

So, we reject the null hypothesis and accept the alternative hypothesis which means there is a relation between DAX and BSE. From the equation, if DAX increases by 100 points than BSE will increase by 191points.

4.3 Time Series Analysis

For the time series analysis, the author has selected three stocks per field of economy, from the Indian stock market. The fields are banking, industries, healthcare, IT and automobiles. The stock prices of every stock are gathered from November 2009 until November 2019 on a monthly basis. The aim is to find trends and forecast future prices of each stock for the coming 12 months. And to see which sector is doing well. The author will use equation (2) from the methodology part of time series as stated in the beginning of the thesis.

Calculating Procedure: Import data to SAS. Then carry the regression procedure. Our explanatory variable will be time and dependent variable will be various stocks. Run the procedure. Take note of the equation. Name it first(original) equation. Then again go to the imported data and delete the last cell for quantity dependent variable. Run again the procedure. Take note of the new equation. With the help of new equation find out the value of missing cell. And for forecasting the data use the first(original) equation. All the calculations are shown at the end of thesis in Appendix part.

5. Results and Discussions

This chapter will serve the purpose of giving results mainly discussing the practical part of the thesis, wherein the author has used fundamental methods of regression model and time series analyses.

5.1. Results: Regression Model

By analysing various World indices with India, it is found that there is a kind of linear relationship with every index included in the thesis. Using the scatter plot diagram and regression coefficient " r " which is derived from square root of coefficient of determination" r^{2} " we can determine the type of linear relationship between the two indices which are:

- Hang-Sang and BSE \rightarrow Positively correlated $\rightarrow r=0.53$ i.e. medium correlation
- FTSE Singapore and BSE \rightarrow Positively correlated $\rightarrow r=0.50$ i.e. medium correlation
- Nikkei and BSE \rightarrow Negatively correlated $\rightarrow r=0.11$ i.e. very weak correlation
- NASDAQ and BSE \rightarrow Positively correlated $\rightarrow r=0.56$ i.e. medium correlation
- S\&P 500 and BSE \rightarrow Positively correlated $\rightarrow r=0.55$ i.e. medium correlation
- DAX and BSE \rightarrow Positively correlated $\rightarrow r=0.62$ i.e. medium strong correlation Positive correlation implies that whenever world indices rises BSE also rises and whenever world indices fall, BSE also falls. Negative correlation implies whenever world index (Nikkei) rises, BSE falls. And whenever world index (Nikkei) falls, BSE rises.

5.2. Results: Time Series Analysis

The charts below are forecast for each sector of the economy for the following twelve months based on data for the past ten years. Charts will help in identifying which sector is worth investing in the future and making own portfolio.

Graph 1: Banking Forecast.

Own creation, 2019
The graph of banking indicates forecast of future stock price three banks. From the overall analysis banking sector is in uptrend. HDFC seems growth stock as compared to ICBK and YES. Investment is banking is recommended.

Result: BUY
Graph 2: Industries Forecast.

Own Creation, 2019
The above graph comprises of big industries of India two of which are handled by government. i.e. ONGC and NTPC. But Industries forecast is a negative trend. NTPC and ONGC are losing shares. Meanwhile TISC is showing uptrend. Investment is not recommended.

Result: NO, BUYING

Graph 3: IT Forecast.

Own Creation, 2109
IT is a booming sector nowadays. The selected IT companies are doing very well. IT is in uptrend. Investment in IT is recommended.

Result: STRONG BUY

Graph 4: Automobile Forecast.

Own creation,2019
Automobiles sector , from the above graph is seen booming. These companies are old and have made goodwill. Automobiles are safe bet. Investment is recommended.

Result: STRONG BUY

Graph 5: Healthcare Forecast.

Own creation, 2019
Healthcare sector is also seen booming from the above graph. All the three stocks are performing well. SUN and CIPLA are appearing to be on same track. REDY is high value generating and rising stock. Investment is recommended.

Result: STRONG BUY

From the study of graph, it can be said that all the sectors are in boom except the industrial sector. For the investors it is a good opportunity to invest in banking, automobiles, IT and Healthcare sectors as they can generate a good result. For conservative investors it is good to pick stocks from various sectors and make own portfolio to avoid risk.

From the overall analysis of the practical part it is found that India's Market relation with world market are getting strong which leads to direct foreign investment, collaboration with multinational companies, good trade relations which indeed rises the share market.

6. Conclusion

The main objective of the thesis was to find out relation between Indian Stock Market and other Stock market of the World. And predicting the future stock prices of selected Indian stocks to know how the market is doing and which sectors are doing well. So, the investors can invest in them. Regression Model and Time Series Analysis are two great methods in achieving the goal.

It is seen in the Result part that Indian stock Market is positively correlated with many World Stock Market. Which means it is highly effected if any other World Market faces any circumstances. The higher the value of "r", higher effects. More tied with foreign markets ,more stronger market relation.

It is worth investing in Indian Market. As investing money in a developing nation will be worth in future. The Trade-War between USA-China has opened emerging markets for India and a great opportunity to make itself a giant producer. Due to the trade war many manufacturing companies are moved to India and Southeast Asian countries. As a third-world country labour is cheap here which attracts foreign clients to bring in the business. From the results above Banking, IT services, Automobiles and Healthcare are in the boom. From these four sector IT services and Healthcare are the two which are worth investors notice. India has been a leading provider of medicines and drug to many countries. IT is newly emerged in India and slowly and steadily spreading its wings. Moreover, India's geographical location helps in many ways to bring business. Snow-peak mountain, cool ocean breezes, desert and varied culture all at the same place. India is working hard in developing the tourism sector.

However, the thesis is concerned to lower risk-taking investors and does not promise that the methods shown in the thesis will be 100% successful while investing in the markets. These are just suggestions to use money in the financial market rather than saving in banks. Financial market can give larger interest than banks. Also, investors are urged to not just rely on the methods described in thesis but to also use different other methods or seek help of financial instructor.

Mr Sudarshan Sukhani always say one must know how much he could afford to loss. Which the author agrees. And, that an investor should have a stop loss marked while investing. It saves oneself from losing more. There are always many ways to plan an investment keeping in mind the amount and risk.

7. References

Books: FISHER, Philip A. Common stocks and uncommon profits and other writings by Philip A. Fisher. New York:

Wiley, 1996. ISBN 047111927X
GRAHAM, Benjamin a Jason ZWEIG. The intelligent investor: a book of practical counsel. Rev. ed. NewYork: Harper Business Essentials, c2003. ISBN 978-0060555665.

GRAHAM, Benjamin and Charles MCGOLRICK. The interpretation on of financial statements. 3d rev. ed. New York: Harper \& Row [1975]. ISBN 0060115661.

HLAVSA,Tomas. Statistical-I, Ceska zamedelska univerzita v Praze. 2016. ISBN 9788021326590

SUKHANI,Sudarshan.Trading the Markets.Delhi. Vision Books Original. 2012, 2014. ISBN 8170948452

THAKAR,H.K. PATEL, Vijay. SHUKLA, Nimisha. Economics Standard 12. Umyakrupa offset. 2013

THAKAR,H.K. PATEL, Vijay. SHUKLA, Nimisha. Organisation of commerce Standard 12. Umyakrupa offset. 2013
GAJJAR, A.V. Statistics Standard 12. Shree R.K. Printers \& Binders. 2011

Articles:

How the stock market works in India [online] 12 Sep 2017. inurl:adigitalblogger.com/share-market/stock-market-india Accessed 23 Dec 2018.
bond[online] 25 June 2019. https://www.investopedia.com/terms/b/bond.asp Accessed 8 July 2019
mutual fund[online] 9 October 2019. https://www.investopedia.com/terms/m/mutualfund.asp Accessed 15 October 2019
debenture definition[online] 19 April 2019.https://www.investopedia.com/terms/d/debenture.asp Accessed 20 April 2019

Indian Economy-IBEF[online] 14 October 2019. https://www.ibef.org/economy.aspx. Accessed 20 October 2019.

India's per capita income rises 10\%[online] 31 May 2019. https://www.livemint.com/politics/policy/india-s-per-capita-income-rises-10-to-rs-10-534-a-month-in-fy 19-1559318636062.html Accessed 8 June 2018

8. Appendix

8.1 Banking

Selected stocks ICBK, HDFC and YES
$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{ICBK}$
Figure 13: Original Result ICBK.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model Dependent Variable: ICBK

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	487762	487762	283.06	$<.0001$
Error	118	203334	1723.16866		
Corrected Total	119	691096			

Root MSE	41.51107	R-Square	0.7058
Dependent Mean	244.69600	Adj R-Sq	0.7033
Coeff Var	16.96434		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\mathrm{Pr}>\|\mathrm{t}\|$
Intercept	1	133.34522	7.62647	17.48	< 0001
time	1	1.84051	0.10940	16.82	<. 0001

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 11:49:02 AM
(SAS, own creation, 2019)
$\mathrm{Yt}=133.34522+1.84051 \mathrm{xt}$

Figure 14: Missing Frequency Result ICBK.

Linear Regression Results

The REG Procedure Model: Linear_Regression_Model Dependent Variable: ICBK

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance												
Source	DF	Sum of Squares	Mean Square	F Value	$\operatorname{Pr}>$ F	$	$	Model	1	451137	451137	277.46
:---	---:	---:	---:	---:	$<.0001$.							

Root MSE	40.32312	R-Square	0.7034
Dependent Mean	242.83000	Adj R-Sq	0.7009
Coeff Var	16.60549		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	135.28480	7.43967	18.18	$<.0001$		
time	1	1.79242	0.10761	16.66	$<.0001$		

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:05:23 PM
(SAS, own creation,2019)
$y^{\prime} t=135.28480+1.79242 x t$
Forecasting: $\quad y^{\prime} t(120)=135.28480+1.79242(120) \Rightarrow 350.3752$

$$
\begin{aligned}
& Y(121)=133.34522+1.84051(121) \Rightarrow 356.04572 \\
& Y(122)=133.34522+1.84051(122) \Rightarrow 357.88622 \\
& Y(123)=133.34522+1.84051(123) \Rightarrow 359.72672 \\
& Y(124)=133.34522+1.84051(124) \Rightarrow 361.56722 \\
& Y(125)=133.34522+1.84051(125) \Rightarrow 363.40772 \\
& Y(126)=133.34522+1.84051(126) \Rightarrow 365.24822 \\
& Y(127)=133.34522+1.84051(127) \Rightarrow 367.08872 \\
& Y(128)=133.34522+1.84051(128) \Rightarrow 368.92922 \\
& Y(129)=133.34522+1.84051(129) \Rightarrow 370.76972 \\
& Y(130)=133.34522+1.84051(130) \Rightarrow 372.61022 \\
& Y(131)=133.34522+1.84051(131) \Rightarrow 374.45072 \\
& Y(132)=133.34522+1.84051(132) \Rightarrow 376.29122
\end{aligned}
$$

$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{HDFC}$
Figure 15: Original Result HDFC.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: HDFC

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	26570134	26570134	1349.98	$<.0001$
Error	118	2322454	19682		
Corrected Total	119	28892589			

Root MSE	140.29190	R-Square	0.9196
Dependent Mean	1149.15375	Adj R-Sq	0.9189
Coeff Var	12.20828		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathbf{t}\|$	
Intercept	1	327.31600	25.77460	12.70	$<.0001$	
time	1	13.58409	0.36971	36.74	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:01:53 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=327.31600+13.58409 \mathrm{xt}$

Figure 16: Missing Frequency Result HDFC.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model Dependent Variable: HDFC

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	1	25861526	25861526	1303.39	$<.0001$
Error	117	2321487	19842		
Corrected Total	118	28183013			

Root MSE	140.86080	R-Square	0.9176
Dependent Mean	1142.10462	Adj R-Sq	0.9169
Coeff Var	12.33344		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$	
Intercept	1	327.84324	25.98900	12.61	$<.0001$	
time	1	13.57102	0.37590	36.10	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:06:57 PM
(SAS, own creation,2019)

$$
y^{\prime} \mathrm{t}=327.84324+13.57102 \mathrm{x}^{\prime} \mathrm{t}
$$

Forecasting : $y^{\prime}(120)=327.84324+13.57102(120) \Rightarrow 1949.16564$

$$
\begin{aligned}
& Y(121)=327.31600+13.58409(121) \Rightarrow 1970.99089 \\
& Y(122)=327.31600+13.58409(122) \Rightarrow 1984.57498 \\
& Y(123)=327.31600+13.58409(123) \Rightarrow 1998.15907 \\
& Y(124)=327.31600+13.58409(124) \Rightarrow 2011.74316 \\
& Y(125)=327.31600+13.58409(125) \Rightarrow 2025.32725 \\
& Y(126)=327.31600+13.58409(126) \Rightarrow 2038.91134 \\
& Y(127)=327.31600+13.58409(127) \Rightarrow 2052.49543 \\
& Y(128)=327.31600+13.58409(128) \Rightarrow 2066.07952 \\
& Y(129)=327.31600+13.58409(129) \Rightarrow 2079.66361 \\
& Y(130)=327.31600+13.58409(130) \Rightarrow 2093.2477 \\
& Y(131)=327.31600+13.58409(131) \Rightarrow 2106.83179 \\
& Y(132)=327.31600+13.58409(132) \Rightarrow 2120.4158
\end{aligned}
$$

$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{YES}$
Figure 17: Original Result YES.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: YES

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	624400	624400	136.78	$<.0001$
Error	118	538681	4565.09581		
Corrected Total	119	1163082			

Root MSE	67.56549	R-Square	0.5368
Dependent Mean	148.48033	Adj R-Sq	0.5329
Coeff Var	45.50467		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\mathrm{Pr}>\mid \mathbf{t \|}$
Intercept	1	22.49477	12.41322	1.81	0.0725
time	1	2.08241	0.17806	11.70	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:03:00 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=22.49477+2.08241 \mathrm{xt}$

Figure 18: Missing Frequency Result YES.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: YES

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value		Pr > F	Pqu
:---							
Model							
Error							

Root MSE	65.15074	R-Square
Dependent Mean	149.13395	Adj R-Sq
Coeff Var	43.68606	

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\mathrm{Pr}>\|\mathrm{t}\|$
Intercept	1	19.01895	12.02040	1.58	0.1163
time	1	2.16858	0.17386	12.47	<. 0001

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:09:04 PM
(SAS, own creation, 2019)
$y^{\prime} t=19.01895+2.16858 x^{\prime} t$
Forecasting: $y^{\prime}(120)=19.01895+2.16858(120) \Rightarrow 279.24855$

$$
\begin{aligned}
& Y(121)=22.49477+2.08241(121) \Rightarrow 274.46638 \\
& Y(122)=22.49477+2.08241(122) \Rightarrow 276.54879 \\
& Y(123)=22.49477+2.08241(123) \Rightarrow 278.6312 \\
& Y(124)=22.49477+2.08241(124) \Rightarrow 280.71361 \\
& Y(125)=22.49477+2.08241(125) \Rightarrow 282.79602 \\
& Y(126)=22.49477+2.08241(126) \Rightarrow 284.87843 \\
& Y(127)=22.49477+2.08241(127) \Rightarrow 286.96084 \\
& Y(128)=22.49477+2.08241(128) \Rightarrow 289.04352 \\
& Y(129)=22.49477+2.08241(129) \Rightarrow 291.12566 \\
& Y(130)=22.49477+2.08241(130) \Rightarrow 293.20807 \\
& Y(131)=22.49477+2.08241(131) \Rightarrow 295.29048 \\
& Y(132)=22.49477+2.08241(132) \Rightarrow 297.37289
\end{aligned}
$$

8.2 Industries

Stocks: NTPC, ONGC, TISC
$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{NTPC}$
Figure 19: Original Result NTPC.

Linear Regression Results

The REG Procedure
Model: Linear Regression Model Dependent Variable: NTPC

| Number of Observations Read 120 |
| :--- | :--- |
| Num | Number of Observations Used 120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1543.00858	1543.00858	5.27	0.0235
Error	118	34572	292.98209		
Corrected Total	119	36115			

Root MSE	17.11672	R-Square	0.0427
Dependent Mean	128.01783	Adj R-Sq	0.0346
Coeff Var	13.37057		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	134.28070	3.14471	42.70	$<.0001$		
time	1	-0.10352	0.04511	-2.29	0.0235		

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:13:41 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=134.28070-0.10352 \mathrm{xt}$

Figure 20: Missing Frequency Result NTPC

Linear Regression Results

The REG Procedure
Model: Linear Regression Model Dependent Variable: NTPC

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	1519.58987	1519.58987	5.14	0.0252
Error	117	34570	295.47367		
Corrected Total	118	36090			

Root MSE	17.18935	R-Square	0.0421
Dependent Mean	128.05958	Adj R-Sq	0.0339
Coeff Var	13.42293		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathbf{t}\|$	
Intercept	1	134.30124	3.17146	42.35	$<.0001$	
time	1	-0.10403	0.04587	-2.27	0.0252	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:19:40 PM
(SAS, own creation, 2019)

$$
y^{\prime} t=134.30124-0.10403 x t
$$

Forecasting : $y^{\prime}(120)=134.30124-0.10403(120) \Rightarrow 121.81764$

$$
\begin{aligned}
& \mathrm{Y}(121)=134.28070-0.10352(121) \Rightarrow 121.75478 \\
& \mathrm{Y}(122)=134.28070-0.10352(122) \Rightarrow 121.65126 \\
& \mathrm{Y}(123)=134.28070-0.10352(123) \Rightarrow 121.54774 \\
& \mathrm{Y}(124)=134.28070-0.10352(124) \Rightarrow 121.44422 \\
& \mathrm{Y}(125)=134.28070-0.10352(125) \Rightarrow 121.3407 \\
& \mathrm{Y}(126)=134.28070-0.10352(126) \Rightarrow 121.23718 \\
& \mathrm{Y}(127)=134.28070-0.10352(127) \Rightarrow 121.13366 \\
& \mathrm{Y}(128)=134.28070-0.10352(128) \Rightarrow 121.03014 \\
& \mathrm{Y}(129)=134.28070-0.10352(129) \Rightarrow 120.92662 \\
& \mathrm{Y}(130)=134.28070-0.10352(130) \Rightarrow 120.82310 \\
& \mathrm{Y}(131)=134.28070-0.10352(131) \Rightarrow 120.71958 \\
& \mathrm{Y}(132)=134.28070-0.10352(132) \Rightarrow 120.61606
\end{aligned}
$$

$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{ONGC}$
Figure 21: Original Result ONGC.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: ONGC

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	1	20315	20315	24.06	$<.0001$
Error	118	99646	844.45361		
Corrected Total	119	119961			

Root MSE	29.05948 R-Square	0.1693
Dependent Mean	187.88092 Adj R-Sq	0.1623
Coeff Var	15.46697	

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathrm{t}\|$	
Intercept	1	210.60568	5.33885	39.45	$<.0001$	
time	1	-0.37562	0.07658	-4.90	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:15:51 PM
(SAS, own creation,2019)
$\mathrm{Yt}=210.60568-0.37562 \mathrm{xt}$

Figure 22: Missing Frequency Result ONGC.

Linear Regression Results

The REG Procedure Model: Linear_Regression_Model Dependent Variable: ONGC

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	18741	18741	22.14	<. 0001
Error	117	99046	846.54575		
Corrected Total	118	117787			
Root MSE		29.095	546 R-Squa	re 0.159	
Dependent	Mean	188.27	109 Adj R-S	q 0.15	
Coeff Var		15.45			

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value $\mathrm{Pr}>\|\mathrm{t}\|$	
Intercept	1	210.19066	5.36815	39.16	$<.0001$
time	1	-0.36533	0.07764	-4.71	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:21:27 PM
(SAS, own creation,2019)
$y^{\prime} t=210.19066-0.36533 x t$
Forecasting : $y^{\prime}(120)=210.19066-0.36533(120) \Rightarrow 166.35106$
$\mathrm{Y}(121)=210.60568-0.37562(121) \Rightarrow 165.15566$
$\mathrm{Y}(122)=210.60568-0.37562(122) \Rightarrow 164.78004$
$\mathrm{Y}(123)=210.60568-0.37562(123) \Rightarrow 164.40442$
$\mathrm{Y}(124)=210.60568-0.37562(124) \Rightarrow 164.02880$
$\mathrm{Y}(125)=210.60568-0.37562(125) \Rightarrow 163.63518$
$\mathrm{Y}(126)=210.60568-0.37562(126) \Rightarrow 163.27756$
$\mathrm{Y}(127)=210.60568-0.37562(127) \Rightarrow 162.90194$
$\mathrm{Y}(128)=210.60568-0.37562(128) \Rightarrow 162.52632$
$\mathrm{Y}(129)=210.60568-0.37562(129) \Rightarrow 162.1507$
$\mathrm{Y}(130)=210.60568-0.37562(130) \Rightarrow 161.77508$
$\mathrm{Y}(131)=210.60568-0.37562(131) \Rightarrow 161.39946$
$\mathrm{Y}(132)=210.60568-0.37562(132) \Rightarrow 161.02384$
$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{TISC}$
Figure 23: Original Result TISC.

Linear Regression Results

The REG Procedure Model: Linear_Regression_Model

Dependent Variable: TISC

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	10909	10909	0.72	0.3977
Error	118	1786965	15144		
Corrected Total	119	1797874			
Root MSE					

Parameter Estimates					
Variable	DF	Parameter	Standard	t Value	Pr> $\mathrm{lt} \mid$
Intercept	1	406.73334	22.60874	17.99	<. 0001
time	1	0.27525	0.32430	0.85	0.3977

Generated by the SAS System ('SASApp', Linux) on November 22, 2019 at 4:20:05 PM
(SAS, own creation,2019)
$\mathrm{Yt}=406.73334+0.27525 \mathrm{xt}$

Figure 24: Missing Frequency Result TISC.

Linear Regression Results

The REG Procedure Model: Linear_Regression_Model

Dependent Variable: TISC

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	12704	12704	0.83	0.3631
Error	117	1783272	15242		
Corrected Total	118	1795976			

Root MSE	123.45702	R-Square	0.0071
Dependent Mean	423.75050	Adj R-Sq	-0.0014
Coeff Var	29.13437		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t	
Intercept	1	405.70338	22.77798	17.81	$<.0001$	
time	1	0.30079	0.32946	0.91	0.3631	

Generated by the SAS System ('SASApp', Linux) on November 22, 2019 at 4:22:53 PM
(SAS, own creation, 2019)
$y^{\prime} t=405.70338+0.30079 x ' t$
Forecasting : $\mathrm{y}(120)=405.70338+0.30079(120) \Rightarrow 441.79818$

$$
\begin{aligned}
& Y(121)=406.73334+0.27525(121) \Rightarrow 440.03859 \\
& Y(122)=406.73334+0.27525(122) \Rightarrow 440.31384 \\
& Y(123)=406.73334+0.27525(123) \Rightarrow 440.58909 \\
& Y(124)=406.73334+0.27525(124) \Rightarrow 440.86434 \\
& Y(125)=406.73334+0.27525(125) \Rightarrow 441.13959 \\
& Y(126)=406.73334+0.27525(126) \Rightarrow 441.41484 \\
& Y(127)=406.73334+0.27525(127) \Rightarrow 441.69009 \\
& Y(128)=406.73334+0.27525(128) \Rightarrow 441.96534 \\
& Y(129)=406.73334+0.27525(129) \Rightarrow 442.24059 \\
& Y(130)=406.73334+0.27525(130) \Rightarrow 442.51584 \\
& Y(131)=406.73334+0.27525(131) \Rightarrow 442.79109 \\
& Y(132)=406.73334+0.27525(132) \Rightarrow 443.06634
\end{aligned}
$$

8.3 IT

Stocks: WIPRO, TCS, INFY
$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{WIPRO}$
Figure 25: Original Result WIPRO.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: WIPRO

Number of Observations Read	120
Number of Observations Used	120

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:45:44 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=116.56988+1.14671 \mathrm{xt}$

Figure 26: Missing Frequency Result WIPRO.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model Dependent Variable: WIPRO

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	183802	183802	311.32	<. 0001
Error	117	69077	590.40447		
Corrected Total	118	252879			
Root MSE		24.298	824 R-Squa	re 0.726	
Dependent	Mean	185.32	092 Adj R-S	q 0.724	
Coeff Var		13.11	144		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\mathrm{Pr}>\|\mathrm{t}\|$
Intercept	1	116.67544	4.48306	26.03	$<.0001$
time	1	1.14409	0.06484	17.64	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:52:50 PM
(SAS, own creation, 2019)
$y^{\prime} t=116.67544+1.14409 x t$
Forecasting : $y^{\prime}(120)=116.67544+1.14409(120) \Rightarrow 253.96624$

$$
\begin{aligned}
& Y(121)=116.56988+1.14671(121) \Rightarrow 255.32179 \\
& Y(122)=116.56988+1.14671(122) \Rightarrow 256.46850 \\
& Y(123)=116.56988+1.14671(123) \Rightarrow 257.61521 \\
& Y(124)=116.56988+1.14671(124) \Rightarrow 258.76192 \\
& Y(125)=116.56988+1.14671(125) \Rightarrow 259.90863 \\
& Y(126)=116.56988+1.14671(126) \Rightarrow 261.05534 \\
& Y(127)=116.56988+1.14671(127) \Rightarrow 262.20205 \\
& Y(128)=116.56988+1.14671(128) \Rightarrow 263.34876 \\
& Y(129)=116.56988+1.14671(129) \Rightarrow 264.49547 \\
& Y(130)=116.56988+1.14671(130) \Rightarrow 265.64218 \\
& Y(131)=116.56988+1.14671(131) \Rightarrow 266.78889 \\
& Y(132)=116.56988+1.14671(132) \Rightarrow 267.93560
\end{aligned}
$$

$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{TCS}$
Figure 27: Original Result TCS.

Linear Regression Results
The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: TCS

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	28260835	28260835	904.61	<. 0001
Error	118	3686442	31241		
Corrected Total	119	31947276			

Root MSE	176.75132	R-Square	0.8846
Dependent Mean	1085.97758	Adj R-Sq	0.8836
Coeff Var	16.27578		

Parameter Estimates					
Variable	DF	Parameter	Estimate	Standard	Error
t Value	$\operatorname{Pr}>\|t\|$				
Intercept	1	238.39563	32.47298	7.34	$<.0001$
time	1	14.00962	0.46580	30.08	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:49:43 PM
(SAS, own creation,2019)
$\mathrm{Yt}=238.39563+14.00962 \mathrm{xt}$

Figure 28: Missing Frequency Result TCS.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: T $\overline{\mathrm{C}} \mathrm{S}$

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	26990609	26990609	885.43	$<.0001$
Error	117	3566519	30483		
Corrected Total	118	30557128			

Root MSE	174.59402 R-Square	0.8833	
Dependent Mean	1076.11101	Adj R-Sq	0.8823
Coeff Var	16.22454		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Intercept	1	244.26467	32.21283	7.58	$<.0001$
time	1	13.86411	0.46592	29.76	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:53:57 PM
(SAS, own creation,2019)
$y^{\prime} t=244.26467+13.86411 x t$
Forecasting : $\mathrm{yt}(120)=244.26467+13.86411(120) \Rightarrow 1907.95787$

$$
\begin{aligned}
& Y(121)=238.39563+14.00962(121) \Rightarrow 1933.55965 \\
& Y(122)=238.39563+14.00962(122) \Rightarrow 1947.56927 \\
& Y(123)=238.39563+14.00962(123) \Rightarrow 1961.57889 \\
& Y(124)=238.39563+14.00962(124) \Rightarrow 1975.58851 \\
& Y(125)=238.39563+14.00962(125) \Rightarrow 1989.59813 \\
& Y(126)=238.39563+14.00962(126) \Rightarrow 2003.60775 \\
& Y(127)=238.39563+14.00962(127) \Rightarrow 2017.61737 \\
& Y(128)=238.39563+14.00962(128) \Rightarrow 2031.62699 \\
& Y(129)=238.39563+14.00962(129) \Rightarrow 2045.63661 \\
& Y(130)=238.39563+14.00962(130) \Rightarrow 2059.64623 \\
& Y(131)=238.39563+14.00962(131) \Rightarrow 2073.65585 \\
& Y(132)=238.39563+14.00962(132) \Rightarrow 2087.66547
\end{aligned}
$$

$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{INFY}$
Figure 29: Original Result INFY.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model Dependent Variable: INFY

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	1770187	1770187	387.62	<. 0001
Error	118	538885	4566.82357		
Corrected Total	119	2309072			
Root MSE		67.57	828 R-Squar	- 0.7666	
Dependen	Mean	470.90	125 Adj R-Sc	q 0.7646	
Coeff Var		14.35	084		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error		
I Value	Pr $>\|\mathbf{t \|}\|$				
Intercept	1	258.77287	12.41557	20.84	$<.0001$
time	1	3.50625	0.17809	19.69	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:51:07 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=258.77287+3.50625 \mathrm{xt}$

Figure 30: Missing Frequency Result INFY.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: INFY

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	1721767	1721767	373.90	<. 0001
Error	117	538765	4604.82985		
Corrected Total	118	2260532			
Root MSE		67.85	890 R-Squar	e 0.761	
Dependent	Mean	469.05	756 Adj R-Sq	q 0.7596	
Coeff Var		14.46	707		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	$\mathrm{Pr}>\|\mathrm{t}\|$	
Intercept	1	258.95859	12.52006	20.68	$<.0001$	
time	1	3.50165	0.18109	19.34	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:55:15 PM
(SAS, own creation, 2019)

$$
y^{\prime} \mathrm{t}=258.95859+3.50165 \mathrm{xt}
$$

Forecasting : $\mathrm{y}(120)=258.95859+3.50165(120) \Rightarrow 679.15695$
$Y(121)=258.77287+3.50625(121) \Rightarrow 683.02912$
$\mathrm{Y}(122)=258.77287+3.50625(122) \Rightarrow 686.53537$
$Y(123)=258.77287+3.50625(123) \Rightarrow 690.04162$
$Y(124)=258.77287+3.50625(124) \Rightarrow 693.54787$
$Y(125)=258.77287+3.50625(125) \Rightarrow 697.05412$
$Y(126)=258.77287+3.50625(126) \Rightarrow 700.56037$
$Y(127)=258.77287+3.50625(127) \Rightarrow 704.06662$
$Y(128)=258.77287+3.50625(128) \Rightarrow 707.57287$
$Y(129)=258.77287+3.50625(129) \Rightarrow 711.07912$
$Y(130)=258.77287+3.50625(130) \Rightarrow 714.58537$
$\mathrm{Y}(131)=258.77287+3.50625(131) \Rightarrow 718.09162$
$Y(132)=258.77287+3.50625(132) \Rightarrow 721.59787$

8.4 Automobiles

Stocks: HROM, MAHM, MRTI
$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{HROM}$
Figure 31: Original Result HROM.

Linear Regression Results

The REG Procedure Model: Linear_Regression_Model Dependent Variable: HROM

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	35084710	35084710	211.88	$<.0001$
Error	118	19539063	165585		
Corrected Total	119	54623773			

Root MSE	406.92171	R-Square	0.6423
Dependent Mean	2505.52917	Adj R-Sq	0.6393
Coeff Var	16.24095		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error				
t Value	Pr > \|t						
Intercept	1	1561.14618	74.76017	20.88	$<.0001$		
time	1	15.60964	1.07237	14.56	$<.0001$		

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:26:10 PM
(SAS, own creation,2019)
$\mathrm{Yt}=1561.14618+15.60964 \mathrm{xt}$

Figure 32: Missing Frequency Result HROM.

Linear Regression Results

The REG Procedure
Model: Linear Regression Model
Dependent Variable: HROM

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	35574135	35574135	219.00	<. 0001
Error	117	19005095	162437		
Corrected Total	118	54579230			

Root MSE	403.03438	R-Square	0.6518
Dependent Mean	2503.76303	Adj R-Sq	0.6488
Coeff Var	16.09715		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathbf{t}\|$	
Intercept	1	1548.76178	74.36037	20.83	$<.0001$	
time	1	15.91669	1.07554	14.80	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:32:18 PM
(SAS, own creation,2019)

$$
y^{\prime} t=1548.76178+15.91669 x^{\prime} t
$$

Forecasting : $y(120)=1548.76178+15.91669(120) \Rightarrow 3458.76458$

$$
Y(121)=1561.14618+15.60964(121) \Rightarrow 3449.91262
$$

$$
Y(122)=1561.14618+15.60964(122) \Rightarrow 3465.52226
$$

$$
Y(123)=1561.14618+15.60964(123) \Rightarrow 3481.13190
$$

$$
Y(124)=1561.14618+15.60964(124) \Rightarrow 3512.35118
$$

$$
Y(125)=1561.14618+15.60964(125) \Rightarrow 3512.35118
$$

$$
Y(126)=1561.14618+15.60964(126) \Rightarrow 3527.96082
$$

$$
Y(127)=1561.14618+15.60964(127) \Rightarrow 3543.57046
$$

$$
Y(128)=1561.14618+15.60964(128) \Rightarrow 3559.18010
$$

$$
Y(129)=1561.14618+15.60964(129) \Rightarrow 3574.78974
$$

$$
Y(130)=1561.14618+15.60964(130) \Rightarrow 3590.39938
$$

$$
Y(131)=1561.14618+15.60964(131) \Rightarrow 3606.00902
$$

$$
Y(132)=1561.14618+15.60964(132) \Rightarrow 3621.61866
$$

$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{MAHM}$
Figure 33: Original Result MAHM.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: MAHM

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	2827708	2827708	442.55	$<.0001$
Error	118	753974	6389.61232		
Corrected Total	119	3581682			

Root MSE	79.93505	R-Square
Dependent Mean	543.88842	Adj R-Sq
Coeff Var	14.69696	

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	\mathbf{t} Value	Pr > $\|\mathbf{t \|}\|$
Intercept	1	275.78244	14.68577	18.78	$<.0001$
time	1	4.43150	0.21065	21.04	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:28:51 PM
(SAS, own creation, 2019)
$Y=257.78244+4.43150 x t$

Figure 34: Missing Frequency Result MAHM.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model Dependent Variable: MAHM

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	2895722	2895722	493.94	$<.0001$
Error	117	685909	5862.47026		
Corrected Total	118	3581631			

Root MSE	76.56677	R-Square	0.8085
Dependent Mean	543.82866	Adj R-Sq	0.8069
Coeff Var	14.07921		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathbf{t}\|$	
Intercept	1	271.36083	14.12667	19.21	$<.0001$	
time	1	4.54113	0.20433	22.22	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:34:57 PM
(SAS, own creation, 2019)
$y^{\prime} \mathrm{t}=271.36083+4.54113 \mathrm{x}^{\prime} \mathrm{t}$
Forecasting : $y^{\prime}(120)=271.36083+4.54113(120) \Rightarrow 816.30363$
$Y(121)=257.78244+4.43150(121) \Rightarrow 811.99394$
$Y(122)=257.78244+4.43150(122) \Rightarrow 816.42544$
$Y(123)=257.78244+4.43150(123) \Rightarrow 820.85694$
$Y(124)=257.78244+4.43150(124) \Rightarrow 825.28844$
$Y(125)=257.78244+4.43150(125) \Rightarrow 829.71994$
$Y(126)=257.78244+4.43150(126) \Rightarrow 834.15144$
$Y(127)=257.78244+4.43150(127) \Rightarrow 838.58294$
$Y(128)=257.78244+4.43150(128) \Rightarrow 843.01444$
$Y(129)=257.78244+4.43150(129) \Rightarrow 847.44594$
$Y(130)=257.78244+4.43150(130) \Rightarrow 851.87744$
$Y(131)=257.78244+4.43150(131) \Rightarrow 856.30894$
$Y(132)=257.78244+4.43150(132) \Rightarrow 860.74044$
$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{MRTI}$
Figure 35: Original Result MRTI.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: MRTI

Root MSE	1181.05021 R-Square	0.8117
Dependent Mean	3824.40792 Adj R-Sq	0.8101
Coeff Var	30.88191	

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathrm{t}\|$	
Intercept	1	-422.56182	216.98403	-1.95	0.0539	
time	1	70.19785	3.11245	22.55	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:27:26 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=-422.56182+70.19785 \mathrm{xt}$

Figure 36: Missing Frequency Result MRTI.

Linear Regression Results

The REG Procedure
Model: Linear_Regression Model
Dependent Variable: MRTI

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	695463161	695463161	494.90	$<.0001$
Error	117	164416690	1405271		
Corrected Total	118	859879851			

Root MSE	1185.44121	R-Square	0.8088
Dependent Mean	3792.80630	Adj R-Sq	0.8072
Coeff Var	31.25499		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Intercept	1	-429.73427	218.71546	-1.96	0.0518
time	1	70.37568	3.16348	22.25	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 12:33:37 PM
(SAS, own creation, 2019)
$y^{\prime} t=-429.73427+70.37568 x^{\prime} t$
Forecasting: $y^{\prime}(120)=-429.73427+70.37568(120) \Rightarrow 8015.34733$

$$
\begin{aligned}
& Y(121)=-422.56182+70.19785(121) \Rightarrow 8071.37803 \\
& Y(122)=-422.56182+70.19785(122) \Rightarrow 8141.57588 \\
& Y(123)=-422.56182+70.19785(123) \Rightarrow 8211.77373 \\
& Y(124)=-422.56182+70.19785(124) \Rightarrow 8281.97518 \\
& Y(125)=-422.56182+70.19785(125) \Rightarrow 8352.16943 \\
& Y(126)=-422.56182+70.19785(126) \Rightarrow 8422.36728 \\
& Y(127)=-422.56182+70.19785(127) \Rightarrow 8492.56513 \\
& Y(128)=-422.56182+70.19785(128) \Rightarrow 8562.76298 \\
& Y(129)=-422.56182+70.19785(129) \Rightarrow 8632.96083 \\
& Y(130)=-422.56182+70.19785(130) \Rightarrow 8703.15868 \\
& Y(131)=-422.56182+70.19785(131) \Rightarrow 8773.35653 \\
& Y(132)=-422.56182+70.19785(132) \Rightarrow 8843.55438
\end{aligned}
$$

8.5 Healthcare

stocks: CIPL, REDY, SUN
$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{CIPL}$
Figure 37: Original Result CIPL.

Linear Regression Results

The REG Procedure Model: Linear_Regression_Model

Dependent Variable: CIPL

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	1142856	1142856	167.97	<. 0001
Error	118	802868	6803.96842		
Corrected Total	119	1945724			
Root MSE		82.48	617 R-Squar	e 0.5874	
Dependen	Mean	476.27	167 Adj R-Sq	q 0.5839	
Coeff Var		17.31	1914		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard	t Value	
Intercept	1	305.82641	15.15446	20.18	<. 0001
time	1	2.81728	0.21738	12.96	<. 0001

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 1:00:02 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=305.82641+2.81728 \mathrm{xt}$

Figure 38: Missing Frequency Result CIPL.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model Dependent Variable: CIPL

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1175024	1175024	178.40	$<.0001$
Error	117	770619	6586.48887		
Corrected Total	118	1945643			

Root MSE	81.15719	R-Square	0.6039
Dependent Mean	476.34706	Adj R-Sq	0.6005
Coeff Var	17.03741		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathbf{t}\|$
Intercept	1	302.78289	14.97361	20.22	$<.0001$
time	1	2.89274	0.21658	13.36	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 1:04:26 PM
(SAS, own creation, 2019)
$y^{\prime} t=302.78289+2.89274 x^{\prime} t$
Forecasting: $y^{\prime}(120)=302.78289+2.89274(120) \Rightarrow 649.91169$

$$
\begin{aligned}
& Y(121)=305.82641+2.81728(121) \Rightarrow 646.78263 \\
& Y(122)=305.82641+2.81728(122) \Rightarrow 649.60045 \\
& Y(123)=305.82641+2.81728(123) \Rightarrow 652.41827 \\
& Y(124)=305.82641+2.81728(124) \Rightarrow 655.23609 \\
& Y(125)=305.82641+2.81728(125) \Rightarrow 658.05391 \\
& Y(126)=305.82641+2.81728(126) \Rightarrow 660.87173 \\
& Y(127)=305.82641+2.81728(127) \Rightarrow 663.68955 \\
& Y(128)=305.82641+2.81728(128) \Rightarrow 666.50737 \\
& (129)=305.82641+2.81728(129) \Rightarrow 669.32519 \\
& Y(130)=305.82641+2.81728(130) \Rightarrow 672.14301 \\
& Y(131)=305.82641+2.81728(131) \Rightarrow 674.96083 \\
& Y(132)=305.82641+2.81728(132) \Rightarrow 677.77865
\end{aligned}
$$

$\mathrm{Xt}=$ time $\mathrm{Yt}=\mathrm{REDY}$
Figure 39: Original Result REDY.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: REDY

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	25028212	25028212	74.94	$<.0001$
Error	118	39409658	333980		
Corrected Total	119	64437870			

Root MSE	577.91016	R-Square	0.3884
Dependent Mean	2386.20833	Adj R-Sq	0.3832
Coeff Var	24.21876		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	$\mathrm{Pr}>\|\mathrm{t}\|$	
Intercept	1	1588.57348	106.17438	14.96	$<.0001$	
time	1	13.18405	1.52298	8.66	$<.0001$	

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 1:01:24 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=1588.57348+13.18405 \mathrm{xt}$

Figure 40: Missing Frequency Result REDY.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model Dependent Variable: REDY

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	25021637	25021637	74.58	$<.0001$
Error	117	39255862	335520		
Corrected Total	118	64277499			

Root MSE	579.24104	R-Square	0.3893
Dependent Mean	2382.85714	Adj R-Sq	0.3841
Coeff Var	24.30868		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	1581.92703	106.87073	14.80	$<.0001$		
time	1	13.34884	1.54577	8.64	$<.0001$		

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 1:05:31 PM
(SAS, own creation,2019)

$$
y^{\prime} t=1581.92703+13.34884 x \text { x't }
$$

Forecasting: $y(120)=1581.92703+13.34884(120) \Rightarrow 3183.78783$

$$
\begin{aligned}
& Y(121)=1588.57348+13.18405(121) \Rightarrow 3183.84353 \\
& Y(122)=1588.57348+13.18405(122) \Rightarrow 3197.02758 \\
& Y(123)=1588.57348+13.18405(123) \Rightarrow 3210.21163 \\
& Y(124)=1588.57348+13.18405(124) \Rightarrow 3223.39568 \\
& Y(125)=1588.57348+13.18405(125) \Rightarrow 3263.57973 \\
& Y(126)=1588.57348+13.18405(126) \Rightarrow 3249.76378 \\
& Y(127)=1588.57348+13.18405(127) \Rightarrow 3262.94783 \\
& Y(128)=1588.57348+13.18405(128) \Rightarrow 3276.13188 \\
& Y(129)=1588.57348+13.18405(129) \Rightarrow 3289.31593 \\
& Y(130)=1588.57348+13.18405(130) \Rightarrow 3302.49998 \\
& Y(131)=1588.57348+13.18405(131) \Rightarrow 3315.68403 \\
& Y(132)=1588.57348+13.18405(132) \Rightarrow 3328.86808
\end{aligned}
$$

$\mathrm{Xt}=$ time $\mathrm{Yt}=$ Sun
Figure 41: Original Result SUN.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: SŪN

Number of Observations Read	120
Number of Observations Used	120

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1962751	1962751	50.18	$<.0001$
Error	118	4615369	39113		
Corrected Total	119	6578121			

Root MSE	197.77082 R-Square	0.2984
Dependent Mean	515.00150	Adj R-Sq
Coeff Var	38.40199	

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|\mathbf{t}\|$
Intercept	1	291.63304	36.33471	8.03	$<.0001$
time	1	3.69204	0.52119	7.08	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 1:02:44 PM
(SAS, own creation, 2019)
$\mathrm{Yt}=291.63304+3.69204 \mathrm{xt}$

Figure 42: Missing Frequency Result SUN

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: SUN

Number of Observations Read	120
Number of Observations Used	119
Number of Observations with Missing Values	1

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	2049505	2049505	53.03	$<.0001$
Error	117	4522040	38650		
Corrected Total	118	6571545			

Root MSE	196.59581	R-Square	0.3119
Dependent Mean	515.68008	Adj R-Sq	0.3060
Coeff Var	38.12360		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\mid \mathbf{t \|}$
Intercept	1	286.45546	36.27219	7.90	$<.0001$
time	1	3.82041	0.52464	7.28	$<.0001$

Generated by the SAS System ('SASApp', Linux) on November 18, 2019 at 1:06:42 PM
(SAS, own creation, 2019)
$y^{\prime} t=286.45546+3.82041 x^{\prime} t$
Forecasting: $y(120)=286.45546+3.82041(120) \Rightarrow 744.90466$
$Y(121)=291.63304+3.69204(121) \Rightarrow 738.36988$
$Y(122)=291.63304+3.69204(122) \Rightarrow 742.06192$
$Y(123)=291.63304+3.69204(123) \Rightarrow 745.75396$
$Y(124)=291.63304+3.69204(124) \Rightarrow 749.44600$
$Y(125)=291.63304+3.69204(125) \Rightarrow 753.13804$
$Y(126)=291.63304+3.69204(126) \Rightarrow 756.83008$
$Y(127)=291.63304+3.69204(127) \Rightarrow 760.52212$
$Y(128)=291.63304+3.69204(128) \Rightarrow 764.21416$
$Y(129)=291.63304+3.69204(129) \Rightarrow 767.90620$
$Y(130)=291.63304+3.69204(130) \Rightarrow 771.59824$
$Y(131)=291.63304+3.69204(131) \Rightarrow 775.29028$
$Y(132)=291.63304+3.69204(132) \Rightarrow 778.98232$

