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ABSTRACT 
Cryo-electron microscopy imaging has its irreplaceable position in analysis of various 
biological structures. Localization of the cells cultivated on grid and their segmentation 
towards background or contamination is essential. With the development of various 
deep learning methods, the performance of semantic segmentation tasks dramatically 
increased. In this thesis, we will develop a deep convolutional neural network for semantic 
segmentation of the cells cultivated on grid. Dataset for this thesis was created with 
dual-beam cryo-electron microscope developed by Thermo Fisher Scientific Brno. 

KEYWORDS 
cryo-electron microscopy, grid sample preparation, deep learning, machine learning, con­
volutional neural networks, semantic segmentation. 

ABSTRAKT 
Zobrazovanie pomocou kryo-elektrónovej mikroskopie má svoje nezastupitelné miesto v 
analýze viacerých biologických štruktúr. Lokalizácia buniek kultivovaných na mriežke a 
ich segmentácia voči pozadiu alebo kontaminácii je základom. Spolu s vývojom viacerých 
metód hlbokého učenia sa podstatne zvýšila úspešnosť úloh sémantickej segmentácie. V 
tejto práci vyvinieme hlbokú konvolučnú neurónovú sieť pre úlohu sémantickej segmen­
tácie buniek kultivovaných na mriežke. Dátový súbor pre túto prácu bol vytvorený pomo­
cou dual-beam kryo-elektónového mikroskopu vyvinutého spoločnosťou Thermo Fisher 
Scientific Brno. 
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Introduction 
Cryo-electron microscopy is popular method for imaging biological samples. Quick 
cooling renders the specimen stationary and, while constantly cooled, may be ana­
lyzed. Various procedures obtaining this conditions are in use [1]. Sample analysis 
and further processing dictates a demand for automatic distinction of the samples 
towards background or contamination. This task can be subjected to semantic seg­
mentation. 

Numerous methods for image segmentation has been published, as summed in 
[2]. However, with the development of machine learning and Deep neural networks, 
these challenges can be tackled with higher precision, robustness and automation. 

In the first chapter, we will introduce principles of cryo-electron microscopy 
imaging with its advantages and disadvantages, together with illustration of the 
procedures used in practice. Second chapter will outline deep learning principles 
and practices. Third chapter is dedicated to convolutional neural networks, theoret­
ical background, components and their impact in reinforcing the network. Fourth 
chapter is an overview research of deep neural networks used in practical applications 
for semantic image segmentation and proposal of the architecture for practical part 
of this thesis. Fifth chapter presents proposed architecture for the task of semantic 
image segmentation of the cell samples acquired from cryo-electron microscopy. In 
this chapter, proposed architecture and several experiments, together with optimiza­
tion of the final model's performance will be described. In sixth chapter, results of 
the fifth chapter will be discussed. 
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1 Electron microscopy imaging 

1.1 Past and Present 

One of the essential traits of humanity is progress. People were always fascinated 
by diving into the unknown. History depicts, that observation plays a crucial part 
on the path of gaining new knowledge. This was a cause of developing new methods 
and practices, when observing and collecting information. There was a need to 
observe smaller and smaller objects, that surround us, over the time. Small things 
(from Greek mikros), needed to be looked on (skopeo). 

The first invention of compound electron microscope took place in year 1590 
and belongs to Janssens. With magnification up to 30 times of the object's natural 
size, microscopy started to evolve. In following century, Antonie van Leeuwenhoek 
improved magnification up to 300 times, with development of single lens microscope. 
1000 times magnification and 0.2 fim distinction of adjacent objects was possible in 
early twentieth century. Biological structures showed dynamic, complex and vivid 
behavior. 

1930s were accompanied with observation of submicroscopic world via electron 
microscope. With many times shorter wavelength of the electron, it was possible to 
increase the magnification by a thousandfold. This was a tremendous leap for many 
fields of science including biology. It was a time, when the smallest structures of cell 
were inspected, following with DNA, R N A , viruses, molecules and even the atom 
itself. From that point, refinement of the technology and imaging was essential [3]. 

Eventually, two basic types of technology evolved. Both using electron beam, but 
with different applications. The main microscope types are Transmission Electron 
Microscope (TEM) and Scanning Electron Microscope (SEM) [4]. 

T E M focuses electrons through specimen, that is very thin, to form a 2D image. 
Number of transmitted electrons through the sample controls the brightness of par­
ticular area of the image. S E M scans the surface of the sample, creating secondary 
electrons emitted from the specimen, that are subsequently detected via sensor. The 
image is formed sequentially, as the sample is being scanned [5]. 

While T E M images offer information about internal structure of the specimen, 
S E M produces impression of 3D imaged surface. More precisely, magnified images 
of S E M offer variety of information of the examined specimen including shape, size, 
composition, crystallography and other chemical and physical properties. Currently, 
S E M and T E M have many components in common. However, the main difference 
regarding image acquisition is their spatial resolution. S E M is limited approximately 
to 0.5 nm. For T E M , reports with spatial resolution lesser than 50 pm have been 
published [6]. Fig. 1.1 depicts componential difference of T E M and S E M . 
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TRANSMISSION ELECTRON MICROSCOPE (TEM) SCANNING ELECTRON MICROSCOPE (SEM) 

Fig. 1.1: Operating principle of S E M and T E M . T E M on the left transmits electron 
beam through the sample and transmitted electrons are captured under the sample, 
while S E M on the right scans with electron beam and emitted electrons are captured 
over the sample [7]. 

Practical solution of this thesis process images formed via cryo-SEM. Thus, S E M 
principle of operation will be discussed, along with an explanation of possibilities 
and drawbacks of using cryogenic mode. 

1.2 Scanning electron microscopy 

There are several operating parameters, by which the operator can manipulate 
the character of electron beam reaching the surface of the sample. Energy can 
typically range from 0.1 - 30 keV, diameter from 0.5 nm to 1 fj,m, beam current 
from 1 pA to 1 \iA and beam convergence angle from 0.001 to 0.05 rad. 

When focused electron beam reaches the surface of the material, atom density 
rapidly increases due to high density of the specimen. This is accompanied with a 
set of physical manifestations, that are known as scattering events. These events 
produce signals in the form of back-scattered electrons, secondary electrons, char­
acteristic x-ray radiation and other photons with different energy levels [1]. 

For S E M , the primal interest lies in secondary and backscattered electrons. The 
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depth of field and the shadow relief effect of these electrons allows three-dimensional 
appearance of produced images. S E M is preferred for producing images at high-
resolution, when scanning bulk objects. Next valuable feature is its depth of field. 
With greater depth of field, higher amount of information from specimen is acquired, 
as well as 3D specimen appearance. This feature allows examination of 3D objects, 
which is widely used in stereoscopy. In addition, S E M is able to produce images at 
very low magnification. In applications such as forensic studies, these images can 
serve as a complement to images taken via light microscope. 

Further development of S E M allowed structure analysis. This capability of S E M 
can determine crystalline structure and crystal's grain orientation on the speci­
men's surface. This is allowed mainly by backscattered electrons, and hence it is 
known as electron back-scattering diffraction. The specimen's surface is generally 
tilted up to 70° from horizontal orientation in order to acquire maximal intensity 
of the diffraction pattern. This pattern of back-scattered electrons is referred to as 
Kikuchi's pattern. Its intensity is very low and highly sensitive cameras (such as 
charge-coupled devices in the present) are essential in analysis [6]. 

X-rays in S E M are used in energy-dispersive x-ray analysis (EDX). When S E M is 
equipped with an E D X detector, it is possible to obtain information about chemical 
composition of the sample, elements present in the bulk, as well as their distri­
bution and concentration. The principle of E D X analysis can be briefly described 
as follows. When an electron beam is focused on the sample, it has a chance to 
knock-off electron from the inner shell of the atom, that creates positively charged 
electron hole. After displacement, another electron from outer shell will fill the va­
cancy. While moving from outer higher-energy shell to inner lower-energy shell, the 
remaining energy can be released among others in the form of x-ray radiation with 
characteristic properties. These properties, such as x-ray energy, are specific for 
particular elements and transitions. Followingly, x-rays are detected via silicon drift 
detectors and interpreted through software. Various visualizations of the chemical 
composition of a sample can be performed, giving qualitative and also quantitative 
information of elements present, as well as their concentrations [1], [8]. 

1.3 Low-temperature sample preparation 

Low-temperature sample preparation is essential, when it is required to study hy-
drated specimens. Applications are various. It is a prerequisite to examine naturally 
frozen samples, such as snow and ice. In the food industry, it is used to examine 
frozen foods like meat, vegetables or ice cream. Chemical industry requires use of 
frozen samples of different substances, emulsions, suspensions, non-aqueous materi­
als like oils, even gases and volatile materials. Cryo-temperatures are beneficial also 
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in preparations of plastic materials, polymers or elastomers. Construction industry 
requires closer examination of different soils, clays or cements. In biological stud­
ies, there is a need to freeze aqueous and non-aqueous fluids of biological specimen, 
which are very active and move in natural temperatures. 

When an examination and following analysis of these materials is needed, they 
require to be solidified with application of cooling substance and acquire temper­
ature below their melting point. Main advantage of this process is maintenance 
of particular triphasic state of the material. Liquid, flexible or soft materials and 
their dissolved elements and molecules remain in situ in the form of solid matrix. 
In biological applications, low temperatures, especially cryogenic temperatures, can 
immobilize dynamics and physiology of the specimen. In addition, very low temper­
atures mitigate radiation damage from high-energy electron beam. 

The drawback of cooling the hydrated material is formation of crystalline mate­
rials. When a hydrated material is in transit from liquid to solid phase, it normally 
forms high-ordered eutectic mixture of ice crystals and partitioned solids. This di­
minishes the ability to examine structural information of the specimen in comparison 
to its originally random organization [1]. 

1.3.1 Properties of water and ice 

Water is connected with numerous interactions via chemical reactions. Its prop­
erties are related to the ability of its molecules to form hydrogen bonds with hy-
drophilic substances and with each other. Water's crucial property, in order to 
solidify, is its binding state. The ability to form ice is decreased, when water is more 
closely bonded to hydrophilic solids or solutes. Another factors affecting transition 
to solid state are pressure and temperature, based on which water can stay in one 
metastable amorphous form and several crystalline forms. 

Temperature below 273.15 K is specific for hexagonal crystalline form of ice. 
Transition from disorganized liquid to highly organized solid at the temperature 
below 273.15 K causes substantial restructuralization. Characteristic examples are 
snowflakes, ice cubes or frozen food. This crystalline form is undesirable when 
preparing samples. On the other hand, when the sample is extremely small and 
rapidly cooled, non-crystalline, i.e., amorphous form of ice is present. This form is 
metastable, which creates higher pressure on conditions for its maintenance. Once 
this non-crystalline ice is formed, it must be maintained below glass transition tem­
perature. Otherwise, the random arrangements of water start to devitrificate and 
initiate crystallization. The glass transition temperature of demineralized water 
is 135 K . In practice, water is bounded and contains solutes, which elevates glass 
transition temperature [9]. 

13 



1.3.2 Transition from liquid to solid 

There are three closely related processes in transition from liquid water to solid 
ice that occur, respectively: 

1. Heat removal. Specimen-dependent process, in which thermal energy is re­
moved from the specimen and transmitted to the ambient low-temperature 
environment until thermal equilibrium is balanced. 

2. Nucleation. Random movement of water molecules creates tiny clusters, that 
allow condensation of another water molecules, and eventually form the ice 
crystal's nucleus. These nuclei define crystal structure of the solid. Homoge­
nous nucleation occurs when pure water is present. In practice, this process is 
rarely seen because water in specimen is not completely pure. Heterogenous 
nucleation occurs around a disturbance, solvents or contamination of water. 
The effect of this process can be reduced with higher concentration of water 
or with lower temperature. 

3. Ice crystal growth. Nucleation created nuclei for crystal growth. The rate of 
growth is affected by several factors such as transport speed of water molecules 
to the crystallization point, accommodation of the molecules and transport of 
the heat from crystal-growing site [10]. 

Overall crystal growth rate is crucially dependent on heat removing rate of the 
material. This can be categorized by cooling rate. Very slow cooling with the rate 
approximately 0.01 K/s, creates only few nucleation events and develops large crys­
tals. Increasing the rate up to ultrarapid cooling with rate approximately 100 000 
K/s, produces so many nucleation events, that crystallization cannot virtually hap­
pen in such a short time. Higher the cooling rate, the higher amount of amorphous 
ice is produced [5]. 

1.3.3 Quench cooling 

The process of cooling the specimen as rapidly as possible is called quench cool­
ing. It is the most crucial part in the preparation of specimen. The aim is to create 
as little crystals of ice as possible. Cooling substances are referred to as cryogens 
and can be solid or liquid. Important characteristics of cryogens are: 

1. Low melting point and high boiling point 
2. High thermal capacity and thermal conductivity 
3. Low viscosity and high density at boiling point 
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4. Harmless, environmentally friendly, inexpensive... 

There are various cryogens that are used in practice and various methods for 
quench cooling. Modality for cryogenic sample preparation and image acquisition 
for this thesis used liquid nitrogen as cryogen [5]. 

1.4 Cryogenic sample preparation 

Samples for Cryo-SEM were prepared via Thermo Fisher's cryogenic sample 
preparation guideline. The main principles are summed by: 

1. Vacuum in the chamber should be lower than 4 x 10 _ 4 Pa . 
2. Cryo stage and cryo trap were supplied by liquid nitrogen with flows at least 

2 IJ rain for two hours. 
3. Every item in the preparation station should be dry and clean (avoiding con­

tamination with water crystals and impurities). 
4. Samples are cooled in a preparation base with liquid nitrogen. Grid with cell 

samples is gently placed to the shuttle. Preparation base and shuttle is visible 
in Fig. 1.2 a, b. 

5. Cooled samples are removed from the preparation base and inserted into the 
airlock lid of the microscope via transfer rod. Transfer rod is show in Fig. 1.2 
c. 

6. Samples are pushed with the transfer rod to the cryo stage, which is constantly 
cooled from the cryogen dewar. 

7. In order to render sample conductive, sputter coating of the grid with samples 
needs to be applied. This will depone a thin layer of a metal over the sample. 
It is a compulsory step in imaging organic samples. 

8. In the microscope control environment, the grid is centered and each window 
in the grid is imaged. This creates final images that are used in practical part 
of this thesis. Image of the whole grid is depicted in Fig. 1.2 d. 

After image acquisition, it is common to create a thin lamella from the samples. 
This is accomplished via focused ion beam that is installed in the microscope. Ion 
beam (mainly Gallium) is focused on the sample. Ions are large particles which, in 
this particular milling through the sample from two opposite directions, 
creating thin layer of sample. These thin layers are then extracted from the grid 
and transported to transmission electron microscope for further analysis. 

15 



Fig. 1.2: Grid sample preparation. Part (a) depicts the preparation base with cryo-
gen reservoir and sample shuttle, (b) provides closer look to the samples in the 
preparation base, (c) shows transfer rod to move the sample from preparation base 
to microscope chamber, (d) depicts the image of the whole grid with the samples. 

[11] 
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2 Deep Learning principles 

2.1 Artificial neuron model 

Deep neural networks with numerous layers are state-of-the-art models for a va­
riety of challenges in computer vision. Deep Learning (DL) is subset of machine 
learning (ML) and its progress was facilitated by substantial increase in computa­
tional capability of Graphics Processing Units (GPU) [12]. 

The computation occurs on the fundamental basis of neural network (NN), an 
artificial neuron. It is a mathematical representation inspired by processes in mam­
mal brain. Using artificial neuron chaining and activating the neurons with different 
activation functions can create specific architectures of NNs [13]. Fig. 2.1 shows 
basic schematic of artificial neuron with its activation function. 

* <P0 >Y 

Fig. 2.1: Artificial neuron model. Inputs x are multiplied with weights u and pro­
ceeded to summation element. Bias b is added and activation function </?(•) is applied 
to generate output y. 

Output y is computed as follows: 

m 
y = <p{Y,{u>iXi) + b) (2.1) 

i=l 

y Artificial neuron output 
ip(-) Activation function 
oji Input weight i 
Xi Input value i 
m Number of input values 
i Index of input value 
b Bias - modifies activation function input 
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Activation is a key operation in transferring information from neuron to output. 
Different activation functions will be presented in section 3.2.2. 

2.2 Designing a neural network 

Multitude of architectures solving different challenges of deep learning has been 
published [13]. Generally, an architecture comprises input layer, hidden layers and 
output layer. Basic arrangement of neural network layers is shown in Fig. 2.2. 

Input Layer Hidden Layers Output Layer 

Fig. 2.2: Basic arrangement of N N layers. Input layer transfers the data to hidden 
layers for processing and output layer produces output representation. 

Input layer's function is only to pass data, activated by activation function to 
the hidden layer. Hidden layer then applies weights to the inputs, applies specific 
activation function, and subsequently passes the data to another hidden layer or to 
the output. Output layer is then responsible for calculation the output from the 
previous layers via its activation function [13]. 

2.3 Training neural network 

With designed architecture of neural network, training may begin. The first 
step is weight initialization, which aims to generate initial parameters from certain 
distribution. There are several techniques for weight initialization. The most used 
are Xavier initialization, used with hyperbolic tangent activation function [14] and 
He initialization, used with ReLU activation function [15]. 

The next phase is the forward pass. In this phase, input values are passed through 
each layer of the architecture in the forward direction. Calculations for each neuron 
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are performed, neurons are activated and the process ends in the output layer. 
Neurons of the output layer are activated depending on solving either classification 
or regression task. 

Followingly, it is required to estimate how well the model predicts with given set 
of values. The loss function will estimate the error of the prediction from the actual 
ground truth. Loss functions can be distinguished by the aspect of particular task 
[16]. The most common functions include: 

• Regression loss functions - used in predicting real number values. 

1. L I / Mean Absolute Error (MAE) loss - finds average of sums of abso­
lute differences between the predictions and ground truth [17]. M A E is 
computed as follows: 

1 1 1 

MAE=-Y,\Vi-Vi\ (2-2) 
n i=i 

Hi Ground truth value 
xji Predicted value 
n Number of observations 
% Observation index 

L2 / Mean Square Error (MSE) loss - finds average of sums of squared 
differences between the predictions and ground truth [17]. Equation is 
given by: 

1 1 1 

MSE = -J2(yl-yl)2 (2.3) 

• Classification loss functions - used in predicting correspondence to the partic­
ular class. 

1. Cross-entropy (log loss) - computes differences between the probability 
of predicted class and ground truth class across logarithmic scale. Cross-
entropy can be expanded to weighted cross-entropy, which favors under-
represented classes in imbalanced datasets. This can be further expanded 
to multi-class weighted cross-entropy to calculate weighted loss for more 
than two classes [18]. Binary cross-entropy loss can be calculated as: 
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BCE = - Y^iVi • log{Pi) + (1 - yi) • log{\ - Pi)) 
1 ^ (2.4) 

i=l 

Hi Ground truth class 
Pi Predicted probability of a class 

2. Tversky loss - computes overlap between the predicted and ground truth 
class with 1 as entire overlap. Used heavily in image segmentation tasks. 
By setting a and (3, which are weights of false positive and false negative 
predictions, respectively, other loss functions can be derived: 

(a) a = (3 = 0.5 - Dice coefficient ( F l score) 
(b) a — 13 — 1 - Jaccard coefficient (Tanimoto) 
(c) a + (3 = 1 - Higher a results in higher weight for false positives. 

Higher (3 results in higher weight for false negatives. Used for unbal­
anced datasets [19]. 

Binary Tversky loss function is defined as: 

Backward pass phase follows. Main task of this phase is to adjust weights and 
biases to minimize loss. Level of optimization is determined by gradients of loss 
function over network's parameters. Assume an objective function w.r.t. all param­
eters of the network J (9). Gradients determine the difference of these parameters 
w.r.t. difference in loss. Parameters are updated in the opposite gradient's direction 
of the objective function —VQJ{9). This is multiplied by learning rate [/,, which 
controls the magnitude of gradient updates to reach a local optimum [20]. This 
optimization method is known as batch gradient descent defined by: 

Tversky E?=i Vi,i • Vi,i + e (2.5) 
E?=i Vi,i • V%,\ + P E?=i Vi,i • Vijo + " E?=i Vi,o • V%,\ + e 

Vi,i,yi,o Ground truth classes 1 and 0 
Vi,i,yi,o Predicted probability of classes 1 and 0 
(3 Weight for balancing false negatives 
a Weight for balancing false positives 
e Coefficient preventing zero division 
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9 = e-[i-VeJ{6) (2.6) 

9 Network parameters 
\i Learning rate 
V0 Gradient w.r.t. network parameters 
J{6) Objective function w.r.t network parameters 

Batch gradient descent is, however, poor optimization technique. More sophis­
ticated techniques will be discussed in the following section 2.3.1. 

Computation of gradients is directed backwards in architecture via back-propagation 
algorithm [21]. After update of parameters, new iteration with forward pass begins. 
Gradual minimization of loss function is the actual learning in context of neural net­
works. This progressively boosts performance of the model. Here is also introduced 
the first hyper parameter of the network, which is the learning rate \i. 

One process of forward and backward pass of the entire training dataset is called 
an epoch. Batch is a subset of training dataset, when it not possible to pass whole 
training dataset to network. The number of iterations in epoch is defined by ratio 
of training dataset's size to batch size [22]. 

2.3.1 Optimization algorithms 

Back-propagation algorithm works in conjunction with an optimization method. 
Optimization methods of neural network via gradient-based methods are referred to 
as optimizers. Several optimizers are available and their performances differ given 
the task. 

Stochastic gradient descent (SGD) 

Unlike basic batch gradient descent (BGD) method, which is not in use, weight 
update is performed every iteration. It is computationally expensive with large 
datasets and the variance of updates is on high level. This can be beneficial for 
jumping to more suitable local extrema, however, the global extreme can be leaped 
over. Combination of B G D and SGD called Mini-batch GD arose, where weight 
update is performed after n iterations. Computational time is reduced, so as the 
variance of updates. Mini-batch GD algorithm enables computational parallelization 
and is widely used in practice [20]. 
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SGD with momentum, Nesterov acceleration 

This optimizer incorporates momentum. When previous iteration has the same di­
rection of movement as current iteration, SGD movement will accelerate. Opposite 
direction will decelerate the movement. Besides having parameter of learning rate \x. 
this approach has another hyperparameter of momentum a, which controls exponen­
tially decayed average of the past gradients. SGD with momentum is more willing to 
abandon local extrema and tracks the loss function more effectively. Another mod­
ification of SGD with momentum is Nesterov accelerated gradient (NAG). N A G 
is suchlike SGD with momentum, however, gradient is calculated from the point 
of prior estimation of the movement. This approach restrains fast movement in 
improper direction, which helps converge faster than SGD with momentum [23]. 

Adagrad, RMSprop/Adadelta 

Adagrad helped solving learning rate initialization problem by changing learning rate 
separately for each weight. Algorithm accumulates sum of squares of past gradients 
for each weight as a matrix. As the gradient accumulates, learning rate experience 
shrinking, which may vanish the weights. Further optimization methods, such as 
RMSprop/Adadelta, solved shrinking of the weights by calculating only with w of 
past accumulated gradients instead of all past squared gradients [24], [25]. 

Adaptive moment estimation (Adam) 

This method benefits from using both exponentially decaying average of past squared 
gradients, as incorporates RMSprop/Adadelta, and exponentially decaying average 
of past squared gradients, as incorporates SGD with momentum. Optimizer works 
with additional hyperparameters j3i and /32, which control decay rate of first and sec­
ond moment. It is a state-of-the-art optimizer with many variants explained below. 
Since AdamW is used as an optimizer in the practical part of this thesis, further 
explanation will be provided. The core of this optimizer with its modifications lies 
in the following equations: 

(2.7) 

(2.9) 

mt = 
1-/31 

(2.10) 
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(2.12) 

g t Gradient in timestep t 
Voft(0) Vector of partial derivates of differentiable objective function ft, w.r.t. 

parameters 0, evaluated at timestep t 
0t-i Parameters at the previous timestep 
wt Rate of the weight decay at timestep t 
mt,Vt Biased first and second moment estimates 
fli, 02 Decay rates for first and second moment estimates 
mt,vt Bias-corrected first and second moment estimates 
a Learning rate 
rjt Schedule multiplier 
e Coefficient preventing zero division (10~8) 

The original Adam optimizer, as proposed in [26], is calculated without the 
highlighted parts, mt and v% are actually moving averages of mean and uncentered 
variance of the gradient, which are updated as in equation 2.8 and 2.9. They are 
initialized by zeroes, and when /?!, /32 are close to 1, they are zero-biased. This is 
thus negated by bias-corrected moments rht and vt, updated by equation 2.10 and 
2.11. 

The update of learning rate a, as described by equation 2.12, is prudent, guided 
by element rht/\f$t (assuming omission of e). When this element is small, (authors 
resemble it to a signal-to-noise ratio), the effective step size a • rht/y/v~t is going to 
be close to zero. This behavior is desirable, for instance, when close to optimum, 
the effective step will be smaller and vice versa, a dictates the upper bound of the 
range of steps in parameter space, which allows to deduce correct range order to 
achieve optimum in a few iterations. 

Addition of the pink element to the equation 2.7, is known as L2 regularized 
Adam or Adam with weight decay. However, authors of [27] have observed, that 
L2 regularization in not identical with weight decay. While for SGD algorithm L2 
regularization equals weight decay, in Adam, it is not effective. When L2 is combined 
with adaptive gradients of Adam, large past gradients are regularized less than with 
weight decay. In order to improve the regularization, authors have proposed weight 
decay decoupled from the gradient-based update called AdamW. This improvement 
is changing the pink element of the equation 2.7, to red highlighted part in equation 
2.12. In result, the weight decay is not calculated with the moving averages. r)t is 
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the scaling factor, which allows scheduling learning rate a, as well as weight decay 
rate wt. 

Decoupling the weight decay in Adam also improved the performance of the 
previously proposed method of the same authors for learning rate scheduling. This 
modification combines AdamW with normalized weight decay, where the scaling 
factor rjt decays according to cosine annealing. This method is known as Adam with 
warm restarts, AdamWR [27]. 

As an extension of AdamW algorithm, the calculation can be improved with 
AMSGrad modification [28]. The core amend is usage of maximum of past squared 
gradients instead of its exponential average. Thus, equation 2.11 is modified to 
vt = max(vt-i,vt). 

2.4 CNN regularization 

Required ability of M L model is its performance on inputs previously unseen. 
This ability is called generalization. However, DL models produces substantial num­
ber of parameters and they are prone to overfitting in training phase. Overfitting 
occurs when the difference between training and testing (or validation) error is too 
high. In addition, the training error is low, the model's complexity is high and fits 
too much for the training data. This will result in high testing error on new data. 
For model to perform well, the possibility is either lower the training error, or reduce 
the difference between testing and training error [21], [29]. 

Regularization techniques are tackling these challenges. Regularization is modi­
fication of the model, whose outcome is to diminish testing error, but not training 
error. Regularization approaches are various in their idea, and those, which are 
related to Convolutional Neural Networks (CNNs), will be introduced. 

2.4.1 Dataset augmentation 

In general, if the model can be trained on more input data, higher level of 
generalization can be achieved. However, in several cases (usually sensitive, lawfully 
protected data, e.g., medical images), it is difficult, if not even impossible, to acquire 
plentiful dataset. There is a possibility to generate fake data and add them to 
dataset. Such an approach is called dataset augmentation. It has proven more 
than useful, especially with images, because they contain high amount of variability, 
which can be effortlessly simulated [21]. The augmented data are produced from 
original data in the dataset. Approaches for image augmentation include: 
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1. Geometrical transformations. Cropping, scaling, rotation or nipping 
2. Modifications of intensity. Point-wise operations, color modifications 
3. Blurring/sharpening 
4. Noise addition 
5. Random image generation via Generative Adversarial Networks 

2.4.2 Early stopping 

As mentioned earlier, sophisticated models with high representational capacity 
are prone to overfit after several epochs. This behavior is accompanied with contin­
ued decrease of the training error, however, validation error switches from decreasing 
tendency to increasing. Theoretically, when the training process is terminated in 
this point, the most suitable model with the lowest validation error (and in the 
test phase supposedly lower test error) is acquired. Development of testing and 
validation error is presented in Fig. 2.3. 

Early stopping algorithm is ensuring, that the parameters of the model with 
lowest validation error are returned at the end of training (and not the parameters 
from the last epoch). Such an approach has proven to behave effectively and is 
valued for its simple implementation, which does not affect learning dynamics of the 
training process. Another feature of early stopping is, that it reduces computational 
time, as the additional training can be ceased, when there are no improvements in 
diminishing validation error for certain number of iterations. Early stopping requires 
validation dataset, so training dataset must split into training and validation part, 
which naturally reduces training ability of the model. Early stopping algorithm 
needs to be incorporated and a copy of the best parameters needs to be stored [21], 
[30]. 

2.4.3 Dropout 

Dropout is powerful regularization tool. Solving advanced challenges of Deep Learn­
ing often requires building several architectures with gigantic number of parame­
ters. Ensemble methods are striving to suffice the demand, however, this approach 
is highly time consuming, complex and requires enormous computational power. 
Dropout can be depicted as an approximation to ensemble methods, but with ex­
ponential number of neural networks, compared to a few networks in bagging for 
instance. Dropout's core function is to disable percentual number of neurons in a 
layer, by setting neuron's output to zero. More specifically, as Fig. 2.4 depicts, 
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Epochs 

Fig. 2.3: Idealized development of learning curves. When validation error (red) 
switches from decreasing to increasing tendency, training should be stopped in that 
epoch. 

there is no input or output connection of a neuron dropped out within the architec­
ture. This is applicable only for hidden layers (dropout in input or output layer is 
counterproductive). 

Each neuron is given a probability to be kept (higher probability equals lower 
dropout ratio). Forward pass follows with division of output from each neuron by 
the probability from previous layer to conserve energy in the architecture. Backward 
pass computes gradient and loss for not disabled neurons and weights are updated. 
Finally, all neurons are activated and another epoch or mini-batch is started with 
another realization of dropout. In testing phase, all sub-architectures are combined 
by activating all neurons (omitting the dropout or setting the probability to 1). 

The resemblance with bagging is, that in each epoch/mini-batch, a subset of 
architecture's neurons is actually participating in the training process, creating dif­
ferent architecture. However, in the case of dropout, different architectures share 
weights, in contrast with independent weights in architectures of bagging. To sum­
marize, it is very simple, fast and easy to implement regularization. Dropout can 
provide 2^ possible sub-architectures, where N stands for number of neurons in 
whole network [21]. 
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Standard neural network After applying dropout 

Fig. 2.4: Dropout schematics. Left image represents neural network without 
dropout. Right image depicts an architecture with dropout included, containing 
suppressed neurons depicted with a cross. 

2.4.4 Batch normalization 

Batch Normalization is efficient regularization technique used in very deep net­
works. As the name suggests, this procedure takes an input batch and normalizes 
mean and variance of the output activations from convolutional layer to acquire 
Gaussian distribution. This method suppress internal covariance shift of the convo­
lutional layer's activations. This shift can be understood as a change in the distri­
bution, that a layer is trying to predict. If it is high, the convergence and training 
process will be slowed. The effect of batch normalization has multiple advantages 
including: 

1. Derivable functions allowing incorporation of batch normalization layer to the 
network, thus allowing end-to-end network training 

2. Stabilization of the network, such as diminishing exploding or vanishing gra­
dient and reduction of asymptotic saturation 

3. Reduction of overall epochs required for training, thus reducing computational 
time 

4. Regularization effect allows the network to increase its generalization perfor­
mance 

5. Training is less prone to wrong hyper parameter setting (e.g., learning rate) 
6. Robustness against poor weight initialization 
7. Making model less dependent on dropout or similar regularization methods 
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In CNNs, placement of batch normalization layer is directly between convolu-
tional layer and activation layer. After normalization, activations are given scale 
and shift to adapt to searched representation. The scale 7 and shift (3 are trainable 
parameters updated during back-propagation [29], [31]. 

2.5 Improving model performance 

2.5.1 Ensemble methods 

On the pathway to increase generalization capability of the model, reliance on 
more models is possible. Ensemble methods such as Bagging, which belongs to 
model averaging methods, use several models, which are trained separately and then 
tested on particular task. For classification tasks, the final predictions are collected, 
and the final prediction is stated by a majority vote from individual models. This 
technique is also used to decrease variance in the prediction. 

Various patterns for ensemble formation exist. In the process, it is possible to 
change models, their components, activation functions and loss functions. Also, 
dataset variations can be changed. It is possible to use the same dataset on all 
models, use random subsets with or without replacement from original dataset, use 
subsets with or without repetition etc. Even if the dataset and individual model 
structure is invariant in the ensemble, it is possible for ensemble parts to produce 
partially independent errors by random weight initialization, different hyperparam-
eters, or random mini-batch initiation. 

By contrast to averaging methods, boosting methods, such as AdaBoost, is aim­
ing to sequentially connect and thus, produce empowered ensemble from generally 
weaker models. This type of approach preferrable, when main goal in creating an 
ensemble is to reduce the bias of the combined estimator [21] [32]. 

2.5.2 Hyperparameter optimization 

Building a solid model is always accompanied with hyperparameter tuning. Every 
model has several parameters, and the purpose is to find the optimal combination 
to improve performance. 

The first option is to create a set of values for every parameter and perform a 
brute-force combination of all. This approach is called grid search and despite being 
simple and parallelizable, it is computationally expensive and results are poor. Grid 
search is used sparsely [33]. 
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Random search is a variation of grid search using random numbers from uniform 
distribution. Computational time is equal to grid search, however, provides higher 
performance [33]. 

Bayesian optimization is defining a probabilistic surrogate model, that includes 
prior distribution describing unknown objective function. Surrogate model is itera-
tively fitted to all observations of objective function to update the prior, which will 
provide more precise posterior distribution in parameter space. Acquisition function 
is then maximized to define the most suitable configuration of hyperparameters for 
the next iteration. The configuration is guided by trading off exploration (amount 
of uncertainty of the surrogate model) and exploitation (precision in model's pre­
diction). This approach, with high number of iterations, can converge to optimum. 
Nevertheless, the drawback lies in inability to process categorical hyperparameters 
and, given algorithm nature, inability to be parallelized [34]. 

Successive halving, belong to bandit-based algorithms. It assumes initial amount 
of resources (time, iterations, data samples etc.) and number of model configura­
tions. After one iteration, half of the worse performing models is discarded, and 
next iteration starts with double amount of resources. This process is repeated 
till maximum budget is reached or when only one model remains. The disadvan­
tage of this approach is in number of configurations and initial resources trade­
off, which was solved by Hyperband optimization. Hyperband method allocates 
resources among random configurations of hyperparameters and performs a grid 
search over the optimal culling threshold in the outer loop of successive halving. 
This approach showed solid performance, however, since it is model-free algorithm 
(based on random search), the effectivity is only moderate [35]. 

A successful combination of Hyperband and Bayesian optimization was per­
formed in B O H B (Bayesian Optimization and HyperBand). Bayesian part is com­
puted by a modification of tree Parzen estimator with multidimensional kernel den­
sity estimators. Hyperband begins the computation with deciding the number of 
configurations and resources, however, the random search in configuration selec­
tion is replaced with Bayesian optimization. In this fashion, algorithm benefits from 
strong anytime performance by fast improvements in the initial iterations, due to low 
fidelity successive halving in Hyperband. Strong final performance is then achieved 
by replacement of random search with Bayesian optimization. This approach fur­
ther benefits from parallelization, high range of hyper parameter space dimensions, 
adapting to multitude of machine learning tasks and different hyperparameter types 
processing [36]. 

Many various approaches for hyperparameter optimization are available, includ­
ing utilizing particle swarm in [37] or populations in [38]. 
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3 Convolutional neural networks 

3.1 Background 

Convolutional Neural Networks (CNNs) are special kind of neural networks, 
that have proven to have significant success in processing grid-like data. Especially 
high-dimensional data e.g., time-lapse signals, images or videos. Traditional neural 
networks use matrix multiplication of input matrix with matrix of separate weights. 
CNNs are based on operation of convolution. Convolution is an operation of two 
functions, of which one is reversed and shifted [39]. For 2D input, such as images, 
2D convolution is calculated from functions K (kernel) and I (image) and is defined 
as: 

S(i,j) 2D convolution function of image axes i,j 
K * I Kernel and image functions. Asterisk denotes convolution operation 
m, n Kernel axes 

From equation 3.1 is noticeable, that convolution uses flipped kernel. Since 
convolution is commutative, it is possible to flip the kernel again in relation to 
image. Outcome of this change is cross-correlation. For implementation in machine 
learning, these two operations are equivalent. In fact, several machine learning 
libraries implemented cross-correlation instead of convolution [21]. 

CNNs are valued for sparse connectivi ty and weight sharing attributes. 
In traditional Fully Connected Neural Network (FCNN), each neuron has separate 
weight and process information from every neuron from the previous layer and for­
wards it to every neuron in the following layer. Sparse connectivity is achieved by 
using smaller kernel (typically 3 x 3 , 5 x 5 , 7x7 . . . ) , compared to image. Spatial 
dimensions (width and height) of the kernel inform about receptive field of the 
input image, processed by output neuron. 

The contrast between F C N N and C N N network in the context of their receptive 
field is depicted for one-dimensional case in Fig. 3.1. 

This leaves us with a few advantages. Input from small receptive field is impor­
tant, because it is possible to capture small specific features e.g., edges, which are 
located in different parts of the image. This is reducing the total number of weights 
and also the number of calculated operations, which diminishes computational time. 

S(i,j) = (K*I)(i,j) = ^ ^ I ( i - m , j -n)K(m,n) 
m n 
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FCNN 
0 © 

CNN (3x3 kernel) 

Fig. 3.1: Receptive field of output neuron s3. Highlighted are neurons contributing 
to the receptive field. In FCNNs (left), the receptive field of output neuron s3 is 
defined by size of the data, and thus, n (n 2 for image) input neurons. In CNNs 
(right) the receptive field is k, defined by k x k kernel, thus, only three (9 for image) 
input neurons affect output neuron s3. 

As mentioned above, in F C N N each neuron has its separate weight, so the num­
ber of weights is determined by the number of neurons. CNNs, however, have shared 
weights, which reduces the number of all weighs in the network, by allowing them 
to be used for other neurons from the layer. This dramatically reduces memory re­
quirements for weight storage during computation. Reducing the number of weights 
prevents overfitting, and thus, is a form of regularization [21]. Weight sharing also 
enable, that when an interesting feature in the image is discovered, this feature can 
be recognized at any other location in the image [39]. 

For instance, the computational demand for F C N N networks and CNNs in a 
single layer is provided. A n input R G B image (C) has height (H) = 600, width 
(W) = 500, and the number of neurons in the layer (N) is 100. Number of total 
weights for F C N N network is defined a,sHxWxCxN = 90 million weights to 
be stored. On the CNNs side, if kernel 3x3 ( M x N) is used, and the number of 
searched features in the image (F) is 2, the final number of weights is defined as 
MxNxCxF = 54 weights. 
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3.2 Building blocks 

3.2.1 Convolutional layer 

Convolutional layer is basis of CNNs. As mentioned above, it comprises filter 
(kernel), which is convolved with the input image to form an output image, that is 
referred to as a feature map. The learning parameters in this layer are values of the 
kernel. Kernel is multiplied with region of the same dimensions in the input image 
or feature map and sum is performed. In order to calculate whole feature map, the 
kernel moves one pixel vertically or horizontally over the input, till a whole image 
is scanned. 

The step of the kernel movement can also be greater than one pixel. Therefore, 
the movement can be extended by stride, which is a hyperparameter. Higher stride 
results in sub-sampled output feature map, which moderates pose and scale invari­
ance of the objects [29]. Kernel is most of the time square-shaped (Fx F), therefore, 
input feature map is square-shaped as well (D x D). After denoting stride as S, the 
output feature map dimension can be then calculated as follows, while [J denotes 
floor operation: 

In some tasks including segmentation or de-noising, constant spatial dimensions 
after convolution or even bigger may be ensured. In these tasks, denser pixel-
level predictions are needed. Moreover, deeper architectures can be proposed, since 
spatial dimensions of feature maps are not reduced along depth of the architecture. 
One of the approaches is zero-padding, when zeroes are added around the input 
feature map. In general, zero-padding extend the size of input feature map in order 
to acquire specific dimension of output feature map [29]. Calculation of output 
feature map with zero-padded input feature map and stride of two is shown in Fig. 

After introduction of P as padding, it is possible to extend the equation 3.2 for 
calculation of output feature map dimensions to: 

D'=[ 
D-F + S 

Š J (3.2) 

3.2. 

D'=[ 
D-F+S+P 

Š J (3.3) 

32 



Fig. 3.2: Process of feature map obtention with zero-padding and stride of 2. Input 
image's (orange) size is 6 x 6, kernel's (violet) is 2 x 2. Kernel will move in nine 
steps to obtain final feature map (red), with size of 3 x 3. 

Zero-padding convolution is generally divided into three categories: 

1. Valid Convolution. Zero-padding is not involved. Convolution is performed 
from "valid" positions of input feature map. Output feature map's dimension 
D is reduced by F - l . 

2. Same Convolution. Zero-padding is performed with respect to stride and ker­
nel size. Output feature maps' dimension will be "same" as the input feature 
map's dimension. 

3. Full Convolution. Zero-padding is performed in a manner, where in extremes 
(corners) at least one valid value will be present when convolution if calcu­
lated. This is tantamount to padding the input feature map with F - l zeroes. 

Regarding the receptive field of the kernel it is necessary to mention, that it 
relates to input image dimensions [29]. During stacking of convolutional layers along 
the depth of the architecture, it is essential to include effective receptive field into 
account. Effective receptive field of the current convolutional layer is a function of all 
receptive fields from previous convolutional layers used in the architecture. Effective 
receptive field for N convolutional layers involving stride and different kernel sizes 
is defined as: 
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n— 1 
RF2„ = RF:f-/ + ((/„ - 1) * I] Si), ne [2, TV] (3.4) 

i=l 

Effective receptive field of current convolutional layer 
Effective receptive field of previous convolutional layer 
Kernel size of current layer 
Stride of all previous layers 

As a demonstration of effective receptive field, assume two filters 5 x 5 and 3 x 3 , 
both with stride 1. Equation 3.4 can calculate the effective receptive field in relation 
to input image as 7 x 7. If no padding is added in the architecture, the final output 
feature map will have its spatial dimensions reduced by the size of effective receptive 
field [29]. 

As was shown previously, if the same kernel size is used, effective receptive field 
is increasing linearly (two 3 x 3 filters returns effective receptive field of size 5 x 5 , 
three 3 x 3 filters size 7 x 7 , four 9 x 9 etc.). Possible solution to exponentially 
magnify effective receptive field is to expand kernel size in every convolutional layer. 
This approach increases number of weights with each layer and thus, with deep 
networks is computationally demanding. Dilated convolution was introduced. This 
approach extends receptive field size with the same number of weights. Dilated 
convolution introduces parameter 5, that defines the gap between the weights of the 
kernel. These empty spaces in the kernel are set to zeroes [29]. 

For instance, assume three convolutional layers with dilated convolution with 
parameter 5 equal to one, two and three, respectively. First layer's kernel size is 
3 x 3 and 5—1. Its effective receptive field is therefore 3 x 3 . Second layer's kernel 
has the same number of weights as the first, however, with 5 of 2, its kernel size is 
increased to 5x5. From equation 3.4, effective receptive field is equal to 7 x 7. Third 
layer's kernel has again same number of weights and the 5 factor of three makes 
the kernel size expand to 7 x 7. By usage of equation 3.4 again, the final effective 
receptive field is 13 x 13. 

Possible disadvantage of this approach is, that several positions of the input fea­
ture map are disregarded based on the dilation factor. However, in applications such 
as labeling or segmentation, moreover segmentation of images in high-resolution, it 
is required to assemble wider contextual relationships with bigger receptive fields 
[29]. 
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Parameters and hyper parameters 

As mentioned before, elements which are going through learning process are called 
parameters. They are weights and biases. In CNNs, it is the kernel parameters and 
biases, that are learnable in the training process. However, there are also hyper-
parameters. Hyperparameter is any attribute of the neural network, that can be 
controlled and set before the training process. In convolutional layers they are: 

1. Number of kernels in the layer 
2. Spatial dimensions of the kernels 
3. Stride 
4. Dilation factor 
5. Padding 

3.2.2 Activation layer 

After convolutional layer comes the activation in the form of activation layer. 
The parameters from feature map act as an input to activation layer. Activation 
layer applies specific non-linear function point-by-point on the parameters, which 
also transforms them into small range (usually [0; 1] or [—1; 1]). This is desirable, 
because during learning process, some values can increase rapidly and create huge 
data range. Output of activation layer has the same dimensions as its input and 
there are no hyperparameters to be set. Activation function decides, whether the 
neuron will fire or otherwise [29]. In order to successfully accomplish this, activation 
function should offer some desirable features including: 

1. Differentiability. This is necessary feature. At least partial differentiability is 
required, since the training process is calculated via gradient descent. 

2. Avoiding gradient vanishing. With depth of the architecture of neural net­
work comes the problem of gradient vanishing. Consequence of this problem 
happens during back-propagation of the gradients, when small values of the 
gradient are multiplied along the architecture's depth. In result, first layers are 
learning very slowly, even stop the learning process and compromise prediction 
metrics. 

3. Zero-centering. Activation function's output must be symmetrical at zero. 
Otherwise, gradients will be shifted to that direction. 

4. Computational efficiency. Activation functions are calculated after each con­
volutional layer on huge number of weights [40]. 
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Common activation functions used in deep learning are listed in [41] and shown 
in the Fig. 3.3. 

Sigmoid Tanh ReLU 

Fig. 3.3: Activation function representations used in deep neural networks, where x 
axis stands for input parameter value and y axis for output parameter value. ReLU 
is the most common. 

1. Sigmoid function. Transforms output to range [0; 1]. It is rarely used after 
convolutional layers for causing vanishing gradient. It is computationally diffi­
cult and not zero-centered. Nevertheless, it is used as a final layer's activation, 
which transforms output feature map values to probabilities. It is defined as: 

fsigm{x) = - • — (3-5) 

Hyperbolic tangent. Transforms output to range [-1;1]. Compared to sigmoid, 
it is zero-centered, however, computationally more demanding. Definition is 
given as: 

g"** g •*' 
W * ) = e * + — x (3-6) 

3. Rectified Linear Unit. ReLU transforms negative values to 0 and positive 
leaves unchanged. It is quick to compute, solves gradient vanishing and pre­
vents saturation. It is popular among CNNs. Disadvantage is its dying ReLU 
problem, when negative values are zeroed. This is solved by ReLU modifica­
tions. Definition of ReLU is: 

36 



ÍReLu(x) = max(0,x) (3.7) 

4. Noisy ReL U. Sample form Gaussian distribution with zero mean and variance 
is added to positive inputs. Definition is: 

fn-ReLu(x) = max(0,x + e) e ~ jV(0, a(x)) (3.8) 

5. Leaky ReLU. Improves dying ReLU problem by downscaling negative input by 
small leak factor a. It is defined as: 

fi-ReLu(x) = max(ax,x) (3.9) 

New activation functions have been developed. For instance, Swish, developed 
by Ramachandran et.al. in [42], or its computationally effective version Hard-Swish 
[40]. 

3.2.3 Pooling layer 

After convolution and activation, it is preferable to use pooling. Pooling layer ap­
plies certain function on input activation map's neighborhood, to combine them. 
Most used function is maximum or average, which process rectangular region in 
feature map. Pooling layer downsamples the input feature map's spatial dimensions 
and helps to obtain moderate invariance to scale transformations or translations of 
the image. This is beneficial, when augmentation of dataset is performed to in­
crease generalization ability. No parameter learning occurs in pooling layer. Its 
hyperparameters include stride and spatial size (most common two or three) [21]. 

3.2.4 Fully connected layer 

Fully connected layer is equivalent to the layers present in FCNNs. Each neuron of 
fully connected layer is densely interconnected with all neurons in the previous layer. 
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These layers within CNNs are typically situated at the end, with softmax activa­
tion. Their purpose is to learn a non-linear relationship of high-level features and 
classify them to the corresponding classes. However, there are architectures, that 
implement fully-connected layers at intermediate locations within the architecture, 
such as Network-in-Network architecture proposed by Lin et al. [43]. 

3.2.5 Transposed convolution layer 

This layer is heavily used in encoder-decoder C N N architectures. While convolu-
tional layers reduce spatial dimensions (downsample feature maps), transposed con­
volution layers upsample feature maps. This operation enables the architecture to 
restore dimensions of original input image. There are other methods for upsampling 
the image, such as interpolation or max-unpooling, however, transposed convolution 
creates desired feature map via learnable parameters of the kernel. Parameters of 
transposed convolution layer are updated over iterations to provide more precise 
upsampling of input feature maps. Sometimes this layer is incorrectly referred to as 
a deconvolution layer. In practice, the kernel forms a Toeplitz matrix K, which is 
transposed and then multiplied with a vectorized input feature map x. The equation 
follows: 

y = KTx (3.10) 

Visually, transposed convolution can be understood with imputing null values 
between input feature map's values and padding of input feature map, along with re­
versed filter values. The desired size of output feature map is achieved by amending 
these hyperparameters. Regarding implementation, it is more efficient to calcu­
late transposed convolution with the equation 3.10, rather than with imputing and 
padding with zeroes [29]. 
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4 CNN architectures for semantic segmen­
tation 

The field of semantic segmentation has been experiencing a grand improvement 
with expanding possibilities, which deep learning offers. Implementation of deep 
learning algorithms proficiently improved understanding the scene, as well as re­
inforced current methods for semantic segmentation. Great advancements were 
achieved with deep neural networks, especially convolutional neural networks [44]. 

Since development of AlexNet in 2012 [45], numerous researchers began devel­
oping C N N based algorithms. AlexNet also popularized ReLU activation function 
in its architecture. In 2013, network-in-network structure was developed [43], with 
implementation of global average pooling, which decreased tendency to overfitting. 
In 2014, ImageNet database was subjected to VGGNet and GoogLeNet, with the 
outcome of accuracy improvement [46]. Later versions used Inception module with 
l x l convolutions, to decrease computational requirements. Successful incorpo­
ration of residual connections, batch normalization and Inception module further 
improved the performance [31] [47]. Fixed-length representations generation with 
various input image's size or scale, together with increase in generalization accuracy 
is possible with spatial pyramid pooling [48]. 

First efforts to use deep learning approaches for semantic segmentation was aimed 
at training classification networks e.g., V G G and then adjusting the model for seg­
mentation. These approaches, however, could not sufficiently describe image's se­
mantics with given number of layers. Fully connected layers were representing the 
issue with high quantity of parameters. 

These layers were removed in in Fully Convolutional Networks (FCNs) [49]. Ar­
chitectures, such as FCN-32, FCN-16 or FCN-8 were developed. With removed fully 
connected layers, inference of an image was significantly accelerated. Another benefit 
lied in generation of feature maps for images with various resolutions. Additionally, 
FCNs proposed skip connections, which were transferring local information between 
unconnected layers. This information is generally lost by dropout or pooling layers. 
Skip connections were later incorporated into encoder-decoder architectures, such 
as U-Net or SegNet. Performance of F C N on a P A S C A L V O C 2012 dataset was 
62.2 % mloU. 

U-Net is a popular F C N based architecture, widely used for medical and biolog­
ical imaging [50]. It is based on encoder-decoder structure, where encoder progres­
sively extracts features and downsamples the input image and decoder progressively 
restores the spatial dimensions of the feature map via up-convolution while further 
convolutional layers are applied. U-net also utilize skip-connection features by con-
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catenating the feature map from one level of encoder to the same level of decoder. 
This allows the decoder to recover spatial information lost by down-sampling, as 
well as enables feature reusability for stabilization of convergence during training 
[51]. Performance of U-Net on a P A S C A L V O C 2012 dataset was 72.7 % mloU. 

SegNet was initially developed to solve intelligent robots and autonomous driv­
ing, but has been used for the biological image segmentation as well [52]. The 
architecture is based on encoder-decoder structure, similar to U-Net. When the 
down-sampling occurs with max-pooling operation, SegNet saves information about 
element position and restores the image in decoder part accordingly. Final layer ap­
plies softmax as final activation compared to U-Net's l x l convolution. Performance 
of SegNet on a P A S C A L V O C 2012 dataset was 59.9 % mloU. 

DeepLab architecture utilizes expanding effective receptive field with atrous 
convolution. It enables control over the resolution of feature maps, along with 
capturing wider contextual information without introduction of additional param­
eters. DeepLab's final layer is fully connected conditional random field (CRF). 
CNNs usually lack solid segmentation performance in the area of class borders. 
C R F is addressing this problem with construction of multi-class interaction map, 
which contributes with global contextual information and finer label localization [53]. 
DeepLab.v2 further introduced atrous spatial pyramid pooling (ASPP). This fea­
ture allows convolutional layers to incorporate a set of kernels with several sampling 
rates and effective receptive fields, which capture multi-scale contextual information. 
DeepLab.v3 has further optimized hyperparameters of A S P P layer and C R F layer 
was omitted for faster computation. DeepLab.v3+ finally enhanced DeepLab.v3 
with encoder-decoder structure modified to perform atrous convolutions. Perfor­
mance of DeepLab, DeepLab.v2, DeepLab.v3 and DeepLab.v3+ on a P A S C A L V O C 
2012 dataset was 66.4, 79.7, 85.7 and 87.7 % mloU, respectively. 

G C N is an architecture based on residual blocks incorporated in ResNet architec­
ture as encoder with combination with FCN-4 for segmentation. Authors proposed 
Global Convolutional Network (GCN), which utilizes usage of large kernels to com­
bine low- with high-level features, while extracting multi-scale feature maps along 
the network. This arrangement is extending valid receptive field. Additionally, a 
boundary refinement residual block is connected in the network [54]. Performance 
of SegNet on a P A S C A L V O C 2012 dataset was 83.6 % mloU. 

EMANet architecture incorporates attention modules in its architecture. Atten­
tion modules generally bring focus to important or foreground context of the scene. 
Output of attention module is attention map, which is pixel-wise multiplied with 
the feature map, to highlight useful context. Attention brings global contextual 
information of the scene, nevertheless, it is computationally demanding. EMANet 
introduces Expectation-Maximization Attention (EMA) module with more compact 
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computation bases, that are iteratively computed via expectation-maximization al­
gorithm. E M A ' s output is resilient to input variance and can be quickly incorporated 
to another C N N architectures [55]. Performance of SegNet on a P A S C A L V O C 2012 
dataset was 88.2 % mloU. 

Results achieved with particular architectures were acquired from [56]. There 
are several other methods challenging semantic segmentation including utilization 
of recurrent neural networks [57] or even transformers [58]. 

In practical part of this thesis, U-Net architecture with batch normalization and 
transposed convolutions was chosen. Researching for a method suitable for practical 
part, there has not been an article discussing any deep segmentation algorithm 
processing cell on grid images from S E M in cryo conditions. One of the reasons 
to choose this architecture was, that it achieved solid results in numerous cell or 
cell component segmentation tasks [59] [50]. Besides already incorporated skip-
connections in encoder-decoder structure, proposed architecture was enhanced by 
batch normalization layers for benefits discussed in section 2.4.4 and with decoder 
upsampling via transposed convolution for benefits discussed in section 3.2.5. 
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5 Thesis Results 
Practical purpose of this thesis is to implement, train, test and optimize ap­

propriate deep convolutional neural network for images acquired from cryo-electron 
microscope. 

Practical solution was implemented in Python with Pytorch library for neural 
networks. Google Colab Pro was used as a developing environment mainly for the 
benefit of connection to the hosting G P U and its usage in calculation. Implemen­
tation code for the model was created and adjusted on the basis of GitHub commit 
available at [60]. Hyperparameter optimization was performed via Bayesian opti­
mization algorithm available at GitHub repository [61]. Calculations were executed 
via G P U NVIDIA P100 with 16 GB memory and with R A M with 27.4 G B of usable 
memory. Algorithms created for the purposes of this thesis together with final model 
are available for public at: h t tps: / /gi thub.com/PincO/Masters- thesis-U-Net . 

The dataset was created, consisting of 120 grayscale images of yeast cells from 
cryo-SEM. Images contain cells on a cultivation mesh, with occasional ice crystals 
and mesh deformations. Acquisition of images was performed in transversal plane, in 
different resolutions and saved with different bit depth. The dataset was annotated 
manually, with binary masks containing information about the cells and background. 
Images were randomly ordered and further divided into two subfolders. One for 
testing with 20 images and the other for training and validation with 100 images. 
The variability of features in the dataset is presented in Fig. 5.1. Images vary 
in their mean intensities, rotations, amount of ice crystals and mesh deformations, 
shapes of the cells, as well as intensity profiles of particular cells or cell clusters. 

5.1 Algorithm 

Proposed architecture is widely used in image segmentation tasks. It is encoder-
decoder type convolutional neural network based on U-Net architecture. A variation 
of this architecture with modifications described in Fig. 5.2 was implemented. 

In data preprocessing, images were resized 512 x 512. In training phase, Dice 
loss was selected for error calculation, due to its consideration of both local and 
global information, while ignoring true negative background in the image. AdamW 
was chosen as optimizer for its benefits described in section 2.3.1. Learning rate 
scheduler was added. Weight initialization was chosen as proposed by Xavier in 
[14] and biases were set to zero. Forward-pass and backward-pass is followed by 
thresholding output probabilities from sigmoid with 0.5 to acquire final mask of 
prediction. 
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Fig. 5.1: Variability of features in the dataset. Images on the left were intentionally 
picked to demonstrate dataset feature variability. Images on the right corresponds 
to their ground truth masks. 
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Fig. 5.2: Proposed architecture. The difference compared to original U-Net ar­
chitecture [50] is in input size reduced to 256 x 256 pixels, as well as output size, 
upconvolution replaced with transposed convolution and incorporation of batch nor­
malization layer after convolutional layers. 

Training and validation dataset was split into five folds for the purposes of cross-
validation with 80/20 ratio. A l l five models with the lowest Dice loss on the vali­
dation set were saved after the training. These models were then evaluated on 20 
images from the test set. Reproducibility of experiments was ensured, by setting 
random number generator to the same seed. Since the task was semantic segmenta­
tion, metrics that incorporate true negative values was omitted. Three metrics were 
chosen: Recall, Precision and Dice score. 

5.2 Experiments 

The first experiment to perform was to train the model with empirically set hy-
perparameters. The hyperparameters were: 
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Train , and val id , batch size 20 
Number of epochs 30 
Ini t ia l learning rate 10~3 

Learning rate decay 0.1 
A d a m W weight decay 10~8 

Tab. 5.1 shows evaluation metrics of the models with their validation loss and 
the index of epoch, in which was this loss minimal during training phase. 

Model 1 Model 2 Model 3 Model 4 Model 5 Model avg. 
Training loss 0.335 0.527 0.534 0.749 0.376 0.504 

Lowest loss epoch 30 19 13 10 8 -
Avg. recall 0.612 0.627 0.604 0.441 0.599 0.577 

Avg. precision 0.612 0.569 0.581 0.663 0.631 0.611 
Avg. Dice score 0.586 0.574 0.560 0.484 0.577 0.556 

Tab. 5.1: Evaluation of the first experiment. Table merges 5-fold cross-validation 
results, i.e., reached training Dice loss, epoch, in which the loss was recorded with 
average recall, precision and Dice score achieved during testing on all five folds and 
their average. 

It is noticeable, that the outcome of this experiment produced models with high 
Dice loss, in extreme case for the model 4 at 0.749. Lowest loss epoch row suggests, 
that in four models, the training was sufficient early before the end of 30 epochs. 
Given the outcome, it may be assumed, that models were not capable to generalize 
with training on such a small dataset. 

One way to increase generalization ability of a model is to increase the number of 
training samples, which was added via training and validation dataset augmentation. 
This approach, as was mentioned in section 2.4.1, can also prevent overfitting of the 
model and improve its performance. As a result, every image from training and 
validation dataset produced 10 augmented images. 

It is usual, that images in general process of image acquisition from cryo-electron 
S E M microscope are rotated, zoomed, flipped, blurred, or contain specific noise. 
Augmentation was performed via random crop to half-sized image, random flipping 
horizontally or vertically and random 90-degree rotation. Since the software for 
image acquisition produces images, that are already focused and occasionally blurred 
images are discarded, blur was omitted from augmentation. Noise augmentation 
was also omitted, since the data were collected from different microscope systems 
and obtention of all point spread functions of noise to mimic real noise could be 
challenging. The hyperparameters were set the same, as in the first experiment. 
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Tab. 5.2 summarizes the outcome of training on augmented dataset. 

Model 1 Model 2 Model 3 Model 4 Model 5 Model avg. 
Training loss 0.168 0.156 0.156 0.153 0.171 0.161 

Lowest loss epoch 28 29 30 30 30 -
Avg. recall 0.692 0.721 0.729 0.747 0.664 0.711 

Avg. precision 0.762 0.766 0.773 0.760 0.753 0.763 
Avg. Dice score 0.713 0.729 0.737 0.742 0.688 0.722 

Tab. 5.2: Evaluation of the augmentation experiment. Table merges 5-fold cross-
validation results, i.e., reached training Dice loss, epoch, in which the loss was 
recorded with average recall, precision and Dice score achieved during testing on all 
five folds and their average. 

Table shows, that the training Dice loss decreased heavily, even in the model 4. 
From the lowest loss epoch row may be suggested, that training of the models ended 
close to the end of 30 epochs, which implies underrating. Thus, adding more epochs 
may improve the performance of the models (it will be done during hyperparameter 
optimization). Last column informs about approximately 0.15 improvement of the 
average recall, precision and Dice score, compared to the experiment with no aug­
mentation. Thus, experiments will continue with augmented training and validation 
dataset containing 1000 images. 

Skip-connections, as was explained in chapter 4, have advantages of enabling 
feature reusability and stabilize training and convergence. In this experiment, skip-
connections were removed from the architecture, to assess the level of impact on 
model's performance. The hyperparameters were set the same, as in the first exper­
iment. 

Tab. 5.3 summarizes the outcome of removing skip-connections from the archi­
tecture. 

Model 1 Model 2 Model 3 Model 4 Model 5 Model avg. 
Training loss 0.160 0.165 0.168 0.182 0.166 0.168 

Lowest loss epoch 30 29 30 29 28 -
Avg. recall 0.733 0.710 0.727 0.684 0.693 0.709 

Avg. precision 0.766 0.756 0.757 0.719 0.773 0.754 
Avg. Dice score 0.735 0.720 0.726 0.682 0.717 0.716 

Tab. 5.3: Evaluation of the skip-connection experiment. Table merges 5-fold cross-
validation results, i.e., reached training Dice loss, epoch, in which the loss was 
recorded with average recall, precision and Dice score achieved during testing on all 
five folds and their average. 
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By removing skip-connections from the architecture, the last column shows, that 
there has been only slight depression of the average model metrics in the order of 
thousandths. This experiment shows, that despite the general advantages of using 
skip-connections, their removal has depressed average model evaluation metrics only 
marginally. However, the difference in average metrics of individual models ranged 
from thousandths to hundredths. Experiments will continue with skip-connections 
incorporated into the architecture. 

Another way to increase generalization performance of the model is to perform 
hyperparameter optimization. There are several hyperparameters optimization tech­
niques, as was mentioned in section 2.5.2, from which Bayesian optimization was 
chose for its ability to converge to optimal solution, simple implementation and 
because no categorical hyperparameters were optimized (only integers and floats). 
Since the model 4 from augmentation experiment was the most successful in average 
metrics on test set, it was decided to optimize hyperparameters with training and 
validation dataset split equivalent to split in this model. 

Process was executed on above mentioned graphic card with 30 iterations. One 
iteration lasted approximately 80 minutes and the target for maximalization was 
maximal Dice score on validation dataset. As was observed from previous experi­
ments, models with the lowest validation loss were acquired very close to the total 
number of epochs, which implies underfitting. Additionally, validation curve did not 
reached plateau in convergence. The parameter space of the optimization was thus 
set to: 

Tra in , and val id , batch size 8-16 
Number of epochs 60-140 
Ini t ia l learning rate 10~4 10~2 

Learning rate decay 0.1-1 
A d a m W weight decay 10~9 10~5 

First run of the optimization was interrupted in 17th iteration of 
disconnection from hosting G P U . Google Colab Pro platform only allows hosting 
of G P U up to 24 hours. However, the best iteration of the trial maximized Dice 
score to 0.809, compared to 0.742 achieved in augmentation experiment in Tab. 5.2. 
Hyperparameters, which achieved this result are summarized below: 
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Train , and V a l i d , batch size 16 
Number of epochs 140 
Ini t ia l learning rate 10~2 

Learning rate decay 1 
A d a m W weight decay 10~8 

These hyperparameters indicated, that the best result can be achieved disregard­
ing learning rate scheduler. Despite time limitation of G P U computing, another op­
timization was performed, with modified hyperparameter space, according to results 
from the first run. 

Second optimalization was again interrupted in 19th iteration for the same cause 
as the first. Nevertheless, during this run, the iteration with most successful com­
bination of hyperparameters achieved worse mean Dice score, as in the first run. 

Following hyperparameter suggestion from the first optimization run, five models 
were trained resulting from 5-fold cross-validation. The results were refined com­
pared to augmentation experiment from Tab. 5.2 and are summarized in Tab. 5.4. 

Model 1 Model 2 Model 3 Model 4 Model 5 Model avg. 
Training loss 0.122 0.118 0.173 0.159 0.114 0.136 

Lowest loss epoch 130 137 133 135 137 -
Avg. recall 0.801 0.800 0.797 0.762 0.853 0.803 

Avg. precision 0.758 0.827 0.823 0.868 0.774 0.810 
Avg. Dice score 0.763 0.806 0.804 0.805 0.806 0.797 

Tab. 5.4: Evaluation of hyperparameter optimization. Table merges 5-fold cross-
validation results, i.e., reached training Dice loss, epoch, in which the loss was 
recorded with average recall, precision and Dice score achieved during testing on all 
five folds and their average. 

It is noticeable, that average loss on validation fold has decreased, compared 
to augmentation experiment, except model 4 which shows slight increase. Average 
evaluation metrics has increased from 0.711, 0.763 and 0.722 into 0.803, 0.810 and 
0.797, for recall, precision and Dice score, respectively. As optimization was per­
formed on fourth fold for validation (model 4), the biggest improvement in fact, 
was shown in model 5, with almost two tenths increase in recall and over one tenth 
increase in Dice score. This could be caused by small amount of iterations with 
the hyperparameter optimization. Despite the fact, that suggested hyperparame­
ters increased Dice target score for model 4, however, they were not yet specific for 
particular model, eventually these hyperparameters actually improved model 5 to a 
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higher extent. Lowest loss epoch row is again near the number of maximal epochs 
for the models. 

Throughout all the experiments, the models reported precision metric higher 
compared to recall. Based on this, it can be claimed, that trained models are more 
susceptible to produce false negative prediction, rather than false positive. Average 
recall, precision and Dice score of model 5 was comparable also to models 2 and 4, 
all reaching value of 0.811. However, model 5 achieved the lowest Dice loss during 
validation. As model 2 and 4 were more successful regarding average precision, 
model 5, on the other hand, was most successful in average recall. After discussion 
with consultant of this thesis, it was decided to mark model 5 as final for utilization 
in the company. Results of model 5 after hyperparameter optimization were further 
analyzed. Fig. 5.3 depicts boxplots of testing images of model 5 for each metric. 
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Fig. 5.3: Boxplot metrics from testing of model 5. Recal boxplot with two outliers 
in red, precision boxplot in orange and Dice score in red. 

Boxplot of recall has the shortest range and interquartile range from all metrics. 
This behavior is attributable only to this model (other models showed the opposite 
behavior). Spread of false negatives across models is thus lower than false posi­
tives. Precision, on the other hand showed wider range and interquartile range for 
this model. A l l boxplots show, that more than 50 % of all metrics lies higher than 
0.75 % of metric range. Also, no testing image resulted with any metric below 0.55. 
Tab. 5.5 presents final results of the model 5. 

Learning curves of the final model are depicted in Fig. 5.4. Both training and 
validation curves exhibit exponential improvement. This shows healthy convergence 
of the network. Validation curve showed prominent spikes during training. They are 
caused by training with mini-batches. Generally, spikes occur when learning rate is 
too high and predictions oscillate in the parametric space toward optimum. Another 
cause could have been small batch size compared to training dataset size, which in 
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Final model 
Training loss 0.114 

Lowest loss epoch 137 
Avg. recall 0.853 

Avg. precision 0.774 
Avg. Dice score 0.806 

Tab. 5.5: Final model's results. Table shows reached training Dice loss, epoch, in 
which the loss was recorded with average recall, precision and Dice score achieved 
during testing of final model. 
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Fig. 5.4: Final model's testing and validation learning curves. Curves show average 
dice loss during training epochs. Validation loss in red shows prominent spikes. 
Training loss is showed in orange. 

this model's case was 1/50. Spikes can also manifest when training data contain 
high amount of features or noise. It may be suggested, that the most probable 
cause was small mini-batch to training size ratio. After 70th epoch the convergence 
of the curves reached almost plateau, however, still decreasing until final epoch. 

Successively, it was decided to perform analysis of the final model's results and 
how effective it was, coping with test set variability. Outliers will be examined and 
behavior of the model on testing images will be described. Following figure depicts 
the most salient testing images in overlay with cell borders from mask image (yellow) 
and output of the model (red). These results were consulted with a specialist in the 
company and the following observations were made. 

Top left image in Fig. 5.5, depicts, that the model was able to identify all cells 
from the grid. This image also shows a remarkable feature of this model, when 
borders surrounding a cell were predicted more authentically by the network, than 
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Fig. 5.5: Salient testing image results of the final model. Images depict four testing 
images in overlay with cell borders from mask image (yellow) and output of the 
model (red). 

with the manual annotation. Recall, precision and Dice score for this image were 
0.926, 0.833, and 0.877, respectively. 

Top right image belongs to the minority of images added to the dataset, which 
contained mostly single individual cells. The focus from the company was to an­
notate mostly bigger cell clusters, than a single individual cells. However, image 
shows, that some of the cells not marked in label image was predicted correctly, 
even though are evaluated as false positive. This had an overall impact on depres­
sion of precision metric. Correct prediction of unlabeled small cells was present in 
most of the testing images. Recall, precision and Dice score for this image were 
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0.774, 0.676, and 0.722, respectively. 
Bottom left image shows again, that all labeled cells were identified and seg­

mented. However, the big cell cluster on the left was segmented approximately in 
the area of high charge from electron beam (area with high intensities), omitting the 
rest of the cluster with low intensities. Some false positive present here as 
well. Recall, precision and Dice score for this image were 0.697, 0.937, and 0.799, 
respectively. 

Bottom right image shows, that the central object was recognized as a cell, even 
though most of the cell's surface is covered with ice. Despite the fact, that the 
model successfully ommited the object below as an ice crystal, some objects are 
indistinguishable for a specialist to cell or ice crystal. Image also shows, 
that in this case the network was not able to segment small cell clusters, which 
contained very small charge from electron beam (having very low intensities, similar 
with the mesh). Nevertheless, there are cells at the bottom, that was evaluated as 
false positives, even though they are in fact small cells, which was only not labeled in 
ground truth images. Additionally, these false positive regions successfully evaded 
ice crystal contamination. Recall, precision and Dice score for this image were 0.669, 
0.568, and 0.614, respectively. 

Algorithms created for the purposes of this thesis together with final model were 
provided to the research and development department of Thermo Fisher Scientific 
Brno, and are available at: https://github.com/PincO/Masters-thesis-U-Net. 
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6 Discussion 
Semantic cell segmentation utilizing deep learning algorithms is a widespread 

approach. Nevertheless, as far as was researched, there has not been an article 
discussing any deep segmentation algorithm processing cell on grid images from 
S E M in cryo conditions. Practical part of this thesis is thus a first proposal to cope 
with this challenge without an option to compare the results. 

The dataset feature variability is influenced by a variety of factors. To begin 
with quality of cultivated cells on the mesh, their intracellular fluid volume, han­
dling during sample preparation, cryo-cooling time, contamination of the sample, 
formation of cells or cell clusters, fusion of ice crystals with the cells, thickness of 
metal coating layer, electron beam charge, optical defects of the microscope system 
and more. 

Annotation of the dataset should be done with utmost precision and deliberation 
by an expert. Moreover, sharp distinction level should be adopted to precisely 
separate ice crystal contamination from cells. One of the main contributors to 
mitigation of segmentation results was that mostly, only cell clusters in training 
images were annotated and small individual cells were not. However, the final 
proposed model has shown its ability to detect even unannotated cells correctly and 
with a tendency to separate ice crystal contamination from cells. 

It was proven, that if the dataset is limited, data augmentation of the dataset 
via naturally present transformations, such as cropping, rotation or flipping, can 
substantially improve model's generalization ability. 

Throughout the experiments, it has been shown, that high-end graphic card is 
essential in computation. Together with high graphical and R A M memory require­
ments, also data storage for the models should be created. Trained models with 
proposed architecture contain 31,044,289 parameters with 335 M B size. Training of 
final model lasted around 90 minutes, which w.r.t modern DL architectures is really 
quick. Nevertheless, computational time requirements can be elevated, especially 
with sequential hyperparameter optimization, such as Bayesian. 

Results of the experiment with dataset containing original 120 images without 
augmentation were poor, improper for utilization in practice. Even though skip-
connections have an irreplaceable place with encoder-decoder type of architectures, 
it was suggested that implementation of skip-connections to the architecture for this 
task contributed only negligibly. 

Bayesian hyperparameter optimization can converge, with the high number of 
iterations, to the global extreme. However, this approach encountered the limitation 
in the form G P U hosting time. Nevertheless, even the small number of iterations has 
indicated more accurate hyperparameters and the most suitable model. The biggest 
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improvement in hyperparameters occurred disregarding learning rate scheduler and 
with higher learning rate. 

Among the positive qualities of the final model, after discussion with expert, a 
notable property is its ability to distinguish a proper cell without actual annotation 
in the label image. Secondly, in most of the cases the cell boundaries, that were 
predicted by the model are actually more genuine and natural-looking, compared 
to annotated dataset. The model was also partially successful in recognition of ice 
crystal contamination incorporated into cells clusters. 

One of the observed disadvantages of final model was in prediction of small 
individual cells, rather than bigger cell clusters. This occurred partially due to 
major presence of large, annotated cell clusters in the training images. Another 
inability of the model to distinguish the cells occurred with small cell clusters with 
low level of charge from electron beam, so they contained small variability of features 
and their intensity profile was comparable with that of a background mesh. The 
partial distinction was present in bigger cell clusters with subarea containing high 
level of charge from electron beam. 

Results of this thesis cannot be compared due to lack of a similar segmentation 
method. Even though the advisor from the company considered contribution of this 
thesis as sufficient, the potential to expand this work is present. Expansion of the 
dataset with new real images is a likely scenario that will definitely improve current 
model. Presence of the contamination in form of ice crystals or mesh deformations 
can expand this work to a multi-class segmentation. New architecture, with different 
optimizer can be used. More recent hyperparameter optimization method can be 
utilized. Final model achieved the lowest validation in epoch near to total number of 
epochs, which indicates, that the convergence did not completely stopped and there 
is a space for improvement with a fine tuning of hyperparameters. Tuning only on 
five hyperparameters was performed. However, fa and fa in AdamW optimizer or 
stride, padding and kernel sizes of the convolutional layers was omitted, which is an 
option to cover in the future optimization. 
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Conclusion 
Cryo-electron microscopy has its irreplaceable position in analysis of biological 

samples. Early parts of this thesis explained fundamental principles of cryo-electron 
microscopy imaging, what is essential in sample preparation and its stages, together 
with illustration of the procedures used in practice. In the following chapter, a 
concept of neural networks and machine learning principles required for proper un­
derstanding the behavior of models and their dynamics was illustrated. Follow-
ingly, the concept of convolutional neural networks was explained. Depicted was 
an improvement in incorporation of CNNs to neural architectures and uniqueness 
of individual layers used in conjunction with them. Followingly, a research of deep 
neural networks used in practical applications for semantic image segmentation was 
elaborated. Based on this knowledge the final architecture was chosen. 

It was confirmed, that high-end graphic card, high R A M memory and disk stor­
age are essential coping with the challenges of deep learning. A n annotated dataset 
with 120 images from cryo-SEM modality was created in collaboration with Thermo 
Fisher Scientific Brno. In practical solution, several experiments were performed. 
It was illustrated, that such a small dataset with high feature variability produced 
unsatisfactory results for practical implementation. It was shown that augmentation 
of training dataset is essential in boosting model's performance. Skip-connections in 
the architecture were considered, as with negligible effect in the overall performance. 
Incorporating hyperparameter optimization, was depicted, that it is an essential step 
in generation of successful model, with regard to numerous hyperparameters of the 
architecture. Learning curves are the first indicator of performance, which were con­
sidered during hyperparameter optimization in order to achieve satisfactory results. 

The detailed evaluations of results and final model were provided with the anal­
ysis of outliers and notable testing image results. This was further discussed with an 
expert and final findings regarding optimal hyperparameters, together with descrip­
tion of advantages and disadvantages of proposed model were stated. Discussion 
continued with explanation of factors affecting quality of the model and possible 
extensions for future work. 

Results of this thesis were provided to research and development department of 
Thermo Fisher Scientific Brno. Algorithms created for the purposes of this thesis 
together with final model are available for public at: https ://github. com/PincO/ 
Masters-thesis-U-Net. 
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List of symbols, quantities and abbreviations 
AI Artificial Intelligence 
BCD Batch Gradient Descent 
CNN Convolutional Neural Network 
DL Deep Learning 
FCNN Fully Connected Neural Network 
FCN Fully Convolutional Network 
GPU Graphics Processor Unit 
ML Machine Learning 
NN Neural Network 
RGB Red Green Blue 
SEM Scanning Electron Microscope 
SGD Stochastic Gradient Descent 
TEM Transmission Electron Microscope 
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