

Termodynamický návrh a optimalizace Organického Rankinova Cyklu (ORC)

Diplomová práce

Studijní program:N2301 – Strojní inženýrstvíStudijní obor:2302T010 – Konstrukce strojů a zařízení

Autor práce: Vedoucí práce:

Liberec 2016

Bc. Petr Kirchner Ing. Miloš Müller, Ph.D.

Thermodynamics design and optimization of Organic Rankine Cycle (ORC)

Diploma thesis

Study programme:N2301 – Mechanical EngineeringStudy branch:2302T010 – Machine and Equipment SystemsAuthor:Bc. Petr KirchnerSupervisor:Ing. Miloš Müller, Ph.D.

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta strojní Akademický rok: 2014/2015

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Petr Kirchner
Osobní číslo:	S11000898
Studijní program:	N2301 Strojní inženýrství
Studijní obor:	Konstrukce strojů a zařízení
Název tématu:	Termodynamický návrh a optimalizace Organického Rankinova Cyklu (ORC)
Zadávající katedra:	Katedra energetických zařízení

Zásady pro vypracování:

Cílem práce je provést termodynamický návrh ORC a zjistit citlivost celkové účinnosti cyklu na vybraných vstupních parametrech. Součástí práce bude i návrh jednotlivých komponent cyklu a jejich experimentální ověřování.

- 1. Stav problematiky ORC.
- 2. Příprava výpočetního nástroje pro výpočet cyklu.
- 3. Implementace optimalizace do výpočetního modelu.
- 4. Srovnání s reálným ORC cyklem.

Rozsah grafických prací: Rozsah pracovní zprávy: cca 50 stran Forma zpracování diplomové práce: tištěná Seznam odborné literatury:

[1] MAGO, P., J., CHAMRE, L., M. a SOMAYAJI, C., 2007. Performance analysis of different working fluids for use in organic Rankine cycles. Proc. IMECHE, Vol. 221, Part A: J. Power and Energy DOI: 10.1243/09576509JPE372.

[2] WEI, D., LU, X. a GU, J., 2007. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy conversion and Management 48, 1113?1119. DOI: 10.1016/j.enconman.2006.10.020

[3] DETLEV, D., K. Air-Cooled Heat Exchangers and Cooling Towers: Thermal-Flow Performance Evaluation and Design.

[4] KUPPAN, T., 2000. Heat exchanger design handbook. CRC Press.

[5] TRAVISS, D., P., ROHSENOW, W., M., BARON, A., B., 1972. Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation for Condenser Design. ASHRAE Transactions.

[6] INCROPERA, F., P., DeWITT, D., P., BERGMAN, L. T. a LAVINE, A., S., 2007. Fundamentals of Heat and Mass Transfer. John Wiley & Sons.

Vedoucí diplomové práce:

Ing. Miloš Müller, Ph.D. Katedra energetických zařízení

Datum zadání diplomové práce: Termín odevzdání diplomové práce: 26. května 2016

25. února 2015

prof. Dr. Ina Petr Lenfeld děkan

doc. Ing. Václav Dvořák, Ph.D. vedoucí katedry

V Liberci dne 25. února 2015

Prohlášení

Byl jsem seznámen s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé diplomové práce pro vnitřní potřebu TUL.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Diplomovou práci jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím mé diplomové práce a konzultantem.

Současně čestně prohlašuji, že tištěná verze práce se shoduje s elektronickou verzí, vloženou do IS STAG.

Datum: 23.2.2016

Podpis: Kirchnep

Poděkování

Tímto chci poděkovat za veškeré připomínky a dobré rady při rozvržení a vhodném doplnění své diplomové práce mému vedoucímu Ing. Miloši Müllerovi, Ph.D. Diplomová práce vznikla v rámci řešení projektu TA02020716 Výzkum technologie ORC s nízkoobjemovým pístovým parním motorem pro malé a odpadní zdroje tepla.

TERMODYNAMICKÝ NÁVRH A OPTIMALIZACE ORGANICKÉHO RANKINOVA CYKLU (ORC)

- Anotace: Diplomová práce se zaměřuje na optimalizaci provozních parametrů Organického Rankin - Clausiova cyklu (ORC), pracujícího s organickým chladivem R134a. V rámci práce je sestaven virtuální model reálného ORC cyklu v prostředí MatLab, kde parametry virtuálního modelu přesně odpovídají parametrům referenčního reálného cyklu. Na virtuálním modelu jsou provedeny analýzy citlivosti vstupních parametrů cyklu na účinnost cyklu a také na velikosti některých komponent cyklu. V úvodu je vysvětlen základní princip ORC. Následně jsou uvedeny tlakové ztráty, které mohou v oběhu vzniknout a možnosti zvyšování tepelné účinnosti cyklu. Dále jsou popsány základní principy jednotlivých komponent ORC. Součástí popisu jsou i konkrétní provozní a technické parametry cyklu. Další část je zaměřena na sestavení fyzikálních modelů jak samotného ORC cyklu, tak jeho některých komponent. Fyzikální modely zahrnují termodynamický výpočet cyklu a výpočet velikosti tepelných výměníků. V další části je popsán vlastní postup a nastavení výpočtu v prostředí MatLab a implementace počátečních a okrajových podmínek. Následující část představuje analýzu cyklu na změny provozních parametrů. Jsou zde vykresleny vypočtené průběhy velikostí teplosměnných ploch, tepelných účinností a tepelných výkonů v závislosti na zvolených parametrech. Vybrané průběhy jsou dále porovnány s referenčními průběhy získanými na reálném referenčním cyklu. Dle vypočtených průběhů jsou odhadnuty optimální provozní parametry reálného ORC, které jsou později diskutovány v ekonomickém zhodnocení návratnosti vložených investic.
- Klíčová slova: Organický Rankin Clausiův cyklus; optimalizace provozních parametrů; organické chladivo R134a; rekuperace; přehřívání páry

THERMODYNAMICS DESIGN AND OPTIMIZATION OF ORGANIC RANKINE CYCLE

- Diploma thesis presents parametric optimization of Organic Rankine Cycle Annotation: (ORC), using R134a as a working fluid. In this thesis, a virtual model of a real ORC is composed with parameters, matching parameters of the reference real one. An analysis of an influence of input parameters on cycle efficiency along with the size of components of the cycle is performed in this virtual model. Thesis starts explaining basic principle of ORC. It is followed by an introduction to both heat and pressure losses that may appear with ways of raising thermal efficiency of the cycle. Furthermore, description of basic functionality of ORC equipment is given including specific technical and operational parameters of the cycle. along with description of equipment in PolyComp Company and real operation parameters of a whole cycle. Next chapter of this thesis is focused on physical model creation of both ORC and its given components. Physical models include cycle calculations, especially in terms of thermal efficiency and the size of heat exchangers. Next, a computer program in MatLab has been developed to compute the cycle. Computation method, precision, initial and boundary conditions are also included. Following chapter comprises a cycle analysis with changing operational conditions. It includes plotting of calculated heat transfer surfaces, thermal efficiencies and thermal power with given parameters. Then, selected plots are compared with reference ones, using data from real reference cycle. Optimal operation parameters of the real ORC are selected based on these plots, which are discussed in economic evaluation of investments.
- Keywords: Organic Rankine Cycle; optimization of operation parameters; working fluid R134a; regeneration; steam superheating

Obsah

Se	eznam	použitých symbolů a zkratek	9
Se	eznam	obrázků	13
Se	eznam	tabulek	15
1	ÚV	7OD	16
2 C	SO YKLU	UČASNÝ STAV PROBLEMATIKY ORGANICKÝ RANKIN - CLAUS JS (ORC)	IŮV 17
	2.1	ORC cyklus – princip a použití	17
	2.2 (RC)	Porovnání Organického Rankine–Clausiova cyklu (ORC) s Rankine-Clausic cyklem	ovým 18
	2.3	Porovnání parního motoru s parní turbínou	19
	2.4	Ztráty ORC	20
	2.5	Zvyšování účinnosti ORC	21
	2.5	.1 Změna tlaku a teploty chladiva	21
	2.5	.2 Rekuperace	21
	2.6	Základní komponenty	22
	2.6	.1 Chladicí věže	22
	2.6	.2 Parní motor	22
	2.6	.3 Boiler	25
3	OR	RC S PARNÍM MOTOREM A JEHO KOMPONENTY	26
	3.1	Popis reálného ORC cyklu	26
	3.2	Čerpadlo	28
	3.3	Boiler	29
	3.4	Chladicí věž	30
	3.5	Parní motor	31
	3.6	Protiproudý rekuperační výměník	32
	3.7	Olejový hořák Wieshaupt WL 10	33
	3.8	Radiální spalinový ventilátor	33
	3.9	Použité chladivo a jeho výběr	35
4	FY	ZIKÁLNÍ MODEL SKUTEČNÉHO ORC	36
	4.1	Mezní podmínky výpočtu veličin ORC	36
	4.2	Výpočet stavových veličin, tepelné účinnosti a práce ORC	36
	4.3	Přesnost výpočtu	40
	4.4	Stechiometrie spalin olejového hořáku referenčního ORC	41
	4.5	Konstrukční parametry pro výpočet teplosměnných ploch boileru	44
	4.6	Výpočet teplosměnné plochy ohříváku	47
	4.7	Výpočet teplosměnné plochy výparníku	50
	4.8	Výpočet teplosměnné plochy přehříváku	51
	4.9	Výpočet teplosměnné plochy kondenzátoru	52
5	AP	LIKACE VÝPOČETNÍHO MODELU	58

5.1	OR	C bez rekuperace a bez přehřátí	
5.	1.1	Porovnání výsledků výpočtu s referenčními daty získanými na 63	reálném modelu
5.2	OR	C s rekuperací a přehřátím	
5.3	Ek	onomické vyhodnocení	74
6 Z.	ÁVĚ	R, SUMARIZACE A KOMPARACE VÝSLEDKŮ	
Seznan	n pou	žité literatury	
Seznan	n příl	oh	86

Seznam symbolů a jednotek

<i>a</i>	měrná práce	[J/kg]
<i>a</i> ₀	měrná práce cyklu	[J/kg]
<i>a</i> _{ts_Č}	ideální měrná technická práce čerpadla	[J/kg]
<i>a</i> _{ts_M}	ideální měrná technická práce motoru	[J/kg]
<i>a</i> _{t_M}	skutečná měrná technická práce motoru	[J/kg]
η _z	účinnost odvodu tepla žebrem kondenzátoru	[%]
<i>a</i> _m	měrná práce motoru	[J/kg]
<i>a</i> _i	měrná indikovaná (změřená) práce motoru	[J/kg]
<i>c</i> _p	měrná tepelná kapacita	[J/kg·K]
<i>C</i> _z	korekce na počet řad v podélném směru	[-]
$C_{\rm s}$	korekce na uspořádání svazku	[-]
<i>d</i>	poměrný vodní obsah páry	[-]
<i>d</i> _i	vnitřní průměr potrubí	[m]
<i>d</i> _k	hloubka kondenzátoru	[m]
<i>d</i> _{ik}	vnitřní průměr trubky kondenzátoru	[m]
<i>d</i> _{0k}	vnější průměr trubky kondenzátoru	[m]
<i>d</i> ₀	vnější průměr potrubí	[m]
<i>d</i> _x	rozteč trubek na hloubku kondenzátoru	[m]
<i>d</i> _y	rozteč trubek na výšku kondenzátoru	[m]
<i>d</i> _z	průměr trubky se žebrováním	[m]
<i>∆t</i>	teplotní rozdíl	[°C]
Δp	tlakový rozdíl chladiva	[°C]
Δp_1	tlaková ztráta plněním válce motoru	[Pa]
Δp_2	tlaková ztráta výfukem	[Pa]
Δh_1	rozdíl entalpií mezi vstupem a výstupem kondenzátoru	[kJ/kg]
Δh_2	…rozdíl entalpií mezi vstupem a trubkou v kondenzátoru	[kJ/kg]
<i>h</i> _{exp}	měrná entalpie chladiva po skutečné expanzi v motoru	[J/kg]
h _{exp_id}	měrná entalpie chladiva po ideální expanzi v motoru	[J/kg]
<i>h</i>	měrná entalpie	[J/kg]
<i>h</i> _k	výška kondenzátoru	[m]
<i>k</i>	součinitel prostupu tepla	$[W/m^2 \cdot K]$
K ₃ , K ₄	konstanty Rosin-Frelingova vztahu	[Nm ³ /kg]
<i>l</i>	délka trubky	[m]
<i>l</i> ₀	latentní teplo chladiva	[J/kg]
<i>ṁ</i>	hmotnostní průtok	[kg/s]
<i>m</i> _s	…hmotnostní průtok vztažený na příčný průřez	$[kg/m^2 \cdot s]$

npočet roztečí v podélném směru	[-]
<i>n</i> dpočet roztečí na hloubku	[-]
<i>n</i> _h počet roztečí na výšku	[-]
<i>n</i> _s počet roztečí na šířku	[-]
<i>n</i> _z počet žeber	[-]
Oobjem spalin na jednotku paliva	[m ³ /kg]
Ptepelný výkon	[W]
$P_{\rm OH}$ tepelný výkon olejového hořáku	[W]
<i>p</i> tlak	[Pa]
$p_{\rm b}$ barometrický tlak	[Pa]
$p_{\rm p}$ parciální tlak par	[Pa]
$p_{\rm i}$ tlak vstupní páry	[Pa]
<i>p</i> etlak výstupní páry	[Pa]
Qmnožství celkového dodaného tepla	[J]
$q_{ m i}$ měrná výhřevnost paliva	[kJ/kg]
qměrné teplo	[J/kg]
\dot{q} měrný tepelný tok	$[W/m^2]$
směrná entropie chladiva	[J/kg⋅K]
<i>s</i> _k šířka kondenzátoru	[m]
<i>s</i> ₁ podélná rozteč trubek	[m]
<i>s</i> ₂ příčná rozteč trubek	[m]
s _{pk} rozteč žeber	[m]
$S_{1 \text{tr}}$ Čelní plocha trubky mezi dvěma žebry	[m ²]
S_{cel} čelní průřez tahu v ohříváku a výparníku	[m ²]
S_{celk} součet celkové čelní plochy trubky a celkové plochy žeber	[m ²]
S_{cel2} čelní průřez tahu v přehříváku	[m ²]
$S_{\text{cel}_{tr}}$ celková čelní plocha trubky v kondenzátoru	[m ²]
S _{cel_z} čelní plocha žeber	[m ²]
$S_{ m kcel}$ čelní plocha kondenzátoru	[m ²]
$S_{\rm kond}$ celková plocha kondenzátoru	[m ²]
St teplosměnná plocha	[m ²]
S_{zuz} plocha zúžená o celkovou plochu trubky a žeber	[m ²]
$t_{\rm chlm}$ teplota chladiva na vstupu do motoru	[°C]
tteplota	[°C]
<i>t</i> _z tloušťka žebra	[m]
Ttermodynamická teplota	[K]
v měrný objem chladiva	[m ³ /kg]

<i>V</i> _V	zdvihový objem	$[m^3]$
<i>V</i> _o	škodný objem	[m ³]
<i>V</i>	objemový průtok	$[m^3/s]$
<i>w</i>	rychlost	[m/s]
<i>x</i>	měrná vlhkost vzduchu	[kg _p /kg _{sv}]
Z	poměrné zúžení	[-]

Řecké symboly

α součinitel přestupu tepla	$[W/(m^2 \cdot K)]$
hohustota	$[kg/m^3]$
σ_1 příčná poměrná rozteč	[m]
σ_2 podélná poměrná rozteč	[m]
σ_{21} úhlopříčná poměrná rozteč	[m]
φ relativní vlhkost vzduchu	[%]
φ_{σ} korekční součinitel rozteče trubek	[-]
μ dynamická viskozita	$[N \cdot s/m^2]$
λ tepelná vodivost	$[W/(m \cdot K)]$
$\tau_{\rm p}$ roční doba provozu zařízení 8000 h	[h/r]
η účinnost	[%]
η_i vnitřní termodynamická účinnost	[%]
$\eta_{ m th}$ tepelná účinnost cyklu	[%]
$\psi_{\rm f}$ korekční součinitel žebrování	[-]

Dolní indexy

boil – boiler dod – dodané ekv - ekvivalentní exp – skutečná expanze exp_id – ideální expanze chl – chladivo id – ideální k - konec kond – vstup do kondenzátoru LG – oblast vypařování m – parní motor max – maximální

- min minimální
- mh místo hoření
- MP mokrá pára
- N normální podmínky při teplotě 273K a barometrickém tlaku 101,325 kPa
- o_h stav v ohništi
- $odv-odveden\acute{e}\\$
- pal palivo
- P pára
- PP přehřátá pára
- r-rekuperace
- rekup rekuperace
- s střední hodnota
- s1 střední hodnota při ohřevu chladiva
- s2 střední hodnota při přehřívání chladiva
- S spaliny
- SS spaliny suché
- SV spaliny vlhké
- tr trubka
- vzd-vzduch
- V vzduch
- $VS vzduch \ such \acute{y}$
- VVS směs vlhkého vzduchu a vlhkých spalin
- z začátek
- 1 vstup do čerpadla
- 2 výstup z čerpadla
- 3 vstup do ohříváku
- 4 vstup do výparníku
- 5 výstup z výparníku
- 6 vstup do parního motoru
- 7 ukončení expanze a zároveň vstup páry chladiva do rekuperačního výměníku
- 8 výstup páry chladiva z rekuperačního výměníku
- 9 vstup do kondenzátoru
- I první strana tepelného výměníku
- II druhá strana tepelného výměníku

Horní indexy

S – spaliny V – vzduch

Seznam zkratek

HÚ – horní úvrať DÚ – dolní úvrať LMTD – logaritmický teplotní spád

Bezrozměrná čísla

NuNusseltovo číslo	$[Nu = \frac{\alpha \cdot d}{\lambda}]$
Pr Prandtlovo číslo	$[\Pr = \frac{\nu \cdot \rho \cdot c_p}{\lambda}]$
ReReynoldsovo číslo	$[\operatorname{Re} = \frac{w \cdot d}{v}]$
Bo podobnostní číslo varu	$[Bo = \frac{\dot{q}}{h_{LG} \cdot \dot{m}_s}]$

Seznam obrázků

Obrázek 2.1: Schema ideálního ORC pro chladivo R11	17
Obrázek 2.2 Schéma zapojení ORC	17
Obrázek 2.3: T-s diagram voda – vodní pára	18
Obrázek 2.4: T-s diagram chladiva R134a použitého v ORC	18
Obrázek 2.5: Parní turbína	19
Obrázek 2.6: Parní motor firmy PolyComp, a.s.	19
Obrázek 2.7: Ideální a skutečný parní cyklus	20
Obrázek 2.8 Zvyšování účinnosti ORC cyklu	21
Obrázek 2.9 Rekuperace pro chladivo R134a	21
Obrázek 2.10: Schéma chladicí věže	22
Obrázek 2.11: Indikátorový p–V diagram parního motoru	23
Obrázek 2 12: Pracovní cyklus pístového parního motoru	23
obluzer 2.12. Theorem eyrlds pisto teno pulmito motoru	
Obrázek 2.13: Přibližné energetické toky v malém pístovém parním motoru s jedn	ím
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem	ím 24
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp	ím 24 26
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp Obrázek 3.2: Reálná instalace ORC firmy PolyComp	ím 24 26 27
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp Obrázek 3.2: Reálná instalace ORC firmy PolyComp Obrázek 3.3: T-s diagram reálného ORC	ím 24 26 27 28
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp Obrázek 3.2: Reálná instalace ORC firmy PolyComp Obrázek 3.3: T-s diagram reálného ORC Obrázek 3.4: Čerpadlo CEHB 3608 AF 2AC 1A 4 U*	ím 24 26 27 28 28
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp Obrázek 3.2: Reálná instalace ORC firmy PolyComp Obrázek 3.3: T-s diagram reálného ORC Obrázek 3.4: Čerpadlo CEHB 3608 AF 2AC 1A 4 U* Obrázek 3.5: Uspořádání trubek v jednotlivých tazích boileru včetně průměrů a roztečí trub	ím 24 26 27 28 28 28 ek
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp Obrázek 3.2: Reálná instalace ORC firmy PolyComp Obrázek 3.3: T-s diagram reálného ORC Obrázek 3.4: Čerpadlo CEHB 3608 AF 2AC 1A 4 U* Obrázek 3.5: Uspořádání trubek v jednotlivých tazích boileru včetně průměrů a roztečí trub	ím 24 26 27 28 28 ek 29
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp Obrázek 3.2: Reálná instalace ORC firmy PolyComp Obrázek 3.3: T-s diagram reálného ORC Obrázek 3.4: Čerpadlo CEHB 3608 AF 2AC 1A 4 U* Obrázek 3.5: Uspořádání trubek v jednotlivých tazích boileru včetně průměrů a roztečí trub Obrázek 3.6: Detail uspořádání trubek v boileru	ím 24 26 27 28 28 ek 29 29
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp Obrázek 3.2: Reálná instalace ORC firmy PolyComp Obrázek 3.3: T-s diagram reálného ORC Obrázek 3.4: Čerpadlo CEHB 3608 AF 2AC 1A 4 U* Obrázek 3.5: Uspořádání trubek v jednotlivých tazích boileru včetně průměrů a roztečí trub Obrázek 3.6: Detail uspořádání trubek v boileru Obrázek 3.7: Schema chladicí věže	 ím 24 26 27 28 28 ek 29 29 30
Obrázek 2.12: Přibližné energetické toky v malém pístovém parním motoru s jedn šoupátkem Obrázek 3.1 Schema reálného ORC firmy PolyComp Obrázek 3.2: Reálná instalace ORC firmy PolyComp Obrázek 3.3: T-s diagram reálného ORC Obrázek 3.4: Čerpadlo CEHB 3608 AF 2AC 1A 4 U* Obrázek 3.5: Uspořádání trubek v jednotlivých tazích boileru včetně průměrů a roztečí trub Obrázek 3.6: Detail uspořádání trubek v boileru Obrázek 3.7: Schema chladicí věže Obrázek 3.8: Chladicí věž	 ím 24 26 27 28 28 ek 29 29 30 30

Obrázek 3.10: Model parního motoru	. 31
Obrázek 3.11: Protiproudý výměník	. 32
Obrázek 3.12: Wieshaupt WL 10/2 - C	. 33
Obrázek 3.13: Speciální radiální spalinový ventilátor CBM/4-270/270 T-3/4 (550W)	. 33
Obrázek 3.14: R134a	. 35
Obrázek 4.1: T-s diagram chladiva R134a	. 37
Obrázek 4.2: Trubky vystřídaně	.45
Obrázek 4.3: Náčtek chladicí věže (na levo) s řezem trubkami a žebry výměníku (na pravo)) 53
Obrázek 5.1: Tepelná účinnost ORC bez rekuperace a přehřátí v závislosti na teplosmě	nné
ploše boileru	. 59
Obrázek 5.2: Teplo dodané do ORC v závislosti na maximálním tlaku v motoru	. 59
Obrázek 5.3:T-s diagram se zakreslením stavové změny chladiva R134a	. 60
Obrázek 5.4: Tepelná účinnost ORC v závislosti na požadované teplosměnné pl	loše
kondenzátoru	. 60
Obrázek 5.5: Teplo odvedené z ORC v závislosti na maximálním tlaku v kondenzátoru	. 61
Obrázek 5.6: Maximální tepelná účinnost boileru a kondenzátoru v závislosti na teplosmě	nné
ploše	. 61
Obrázek 5.7: Práce motoru v závislosti na maximálním tlaku v motoru bez přehřátí	. 62
Obrázek 5.8:Porovnání vypočteného průběhu elektrického výkonu s elektrickým výkor	nem
z referenčních dat společnosti PolyComp	. 63
Obrázek 5.9: Porovnání vypočteného průběhu tepelné účinnosti s průběhem tepelné účinn	osti
z referenčních dat společnosti PolyComp	. 64
Obrázek 5.10: Tepelná účinnost ORC v závislosti na teplosměnné ploše boileru s konstant	ním
tlakem v kondenzátoru 0,4MPa	. 65
Obrázek 5.11:T-s diagram se změnou tlaku a teploty přehřátí chladiva	. 66
Obrázek 5.12: Tepelná účinnost ORC v závislosti na teplosměnné ploše boileru s konstant	ním
tlakem v kondenzátoru 1MPa	. 66
Obrázek 5.13: Maximální tepelná účinnost ORC v závislosti na teplosměnné ploše boileru	. 67
Obrázek 5.14: Dostupný tepelný výkon rekuperace chladiva v závislosti na tlaku par chlad	liva
na vstupu do motoru	. 68
Obrázek 5.15: Teplosměnná plocha boileru v závislosti na tlaku v motoru	. 68
Obrázek 5.16:T-s diagram chladiva R134a pro tlak chladiva 1,3MPa a 3,2MPa	. 70
Obrázek 5.17: Rekuperace při různých tlacích v kondenzátoru	. 70
Obrázek 5.18: Požadovaný tepelný výkon výparníku v závislosti na tlaku v motoru	.71
Obrázek 5.19: Požadovaný tepelný výkon ohříváku v závislosti na tlaku v motoru	.71
Obrázek 5.20: Požadovaný tepelný výkon přehříváku v závislosti na tlaku v motoru	.72
Obrázek 5.21:Požadovaný tepelný výkon boileru v závislosti na tlaku par chladiva v mot	toru
	.72
Obrázek 5.22: Práce motoru v závislosti na tlaku v motoru s přehřátím	.73
Obrázek 5.23:Tepelná účinnost v závislosti na tlaku v motoru	.74

Seznam tabulek

Tabulka 3.1: Parametry CEHB 3608 AF 2AC 1A 4 U*	28
Tabulka 3.2: Technické parametry žebrového kondenzátoru	30
Tabulka 3.3: Technické parametry parního motoru PM-VS	31
Tabulka 3.5: Počáteční podmínky návrhu protiproudého výměníku	32
Tabulka 3.6: Parametry navrženého protiproudého výměníku	32
Tabulka 3.4: Technické parametry protiproudého výměníku	32
Tabulka 3.7: Navržený protiproudý výměník	33
Tabulka 3.8: Komponenty hořáku Wieshaupt WL 30Z-C	33
Tabulka 3.9: Rozměr ventilátoru CBM/4-270/270 T-3/4	34
Tabulka 3.10: Parametry ventilátoru CBM/4-270/270 T-3/4	34
Tabulka 3.11: Množství vlhkého vzduchu pro jednotlivé zdroje tepla	34
Tabulka 3.12: Vlastnosti R134a	35
Tabulka 3.13: Porovnání druhů organických chladiv	35
Tabulka 4.1: Rozsahy počátečních podmínek výpočtu stavových a procesních veličin ORC	C 36
Tabulka 4.2: Fyzikální veličiny kapalného chladiva na vstupu do čerpadla	37
Tabulka 4.3: Fyzikální veličiny kapalného chladiva na výstupu z čerpadla	38
Tabulka 4.4: Fyzikální veličiny syté kapaliny chladiva na začátku vypařování	38
Tabulka 4.5: Fyzikální veličiny syté páry chladiva na konci vypařování	38
Tabulka 4.6: Fyzikální veličiny páry chladiva na vstupu do motoru	38
Tabulka 4.7: Fyzikální veličiny páry chladiva na konci expanze v motoru a na zač	tátku
rekuperace	39
Tabulka 4.8: Fyzikální veličiny páry chladiva na konci rekuperace	39
Tabulka 4.9: Fyzikální veličiny páry chladiva na vstupu do kondenzátoru	40
Tabulka 4.10: Tolerance stavových veličin ORC	40
Tabulka 4.11: Zastoupení prvků v lehkém topném oleji	41
Tabulka 4.12: Měrná entalpie některých složek spalin h _i [kJ/Nm3] v závislosti na teplotě	43
Tabulka 4.13: Výsledné hodnoty stechiometrického výpočtu spalin	44
Tabulka 4.14: Konstrukční parametry pro výpočet teplosměnných ploch	45
Tabulka 4.15: Hodnoty vypočtených roztečí	46
Tabulka 4.16: Podmínky pro výpočet korekčního součinitele C _s	46
Tabulka 4.17: Parametry kondenzátoru	52
Tabulka 4.18: Parametry vzduchu a chladiva	54
Tabulka 5.1: Investiční výdaje projektu bez přehřátí chladiva	77
Tabulka 5.2: Výsledky ročního ekonomického vyhodnocení bez přehřátí chladiva	77
Tabulka 5.3: Investiční výdaje projektu s přehřátím chladiva a tlakem kondenzátoru 0,4	MPa 70
Tabulka 5 A: Wieledky ročního ekonomického vyhodnoconí a přebřátím chladiva a tla	19 Irom
kondenzátoru 0.4MPa	79
Tabulka 5.5: Investiční výdaje projektu s přehřátím chladiva tlakem v kondenzátoru 1MPa	
Tabulka 5.6:Výsledky ročního ekonomického vyhodnocení s přehřátím chladiva a tla	ikem
kondenzátoru 1MPa.	81

1 ÚVOD

Rostoucí požadavky na množství vyrobené energie stále více zdůrazňují nutnost jejího efektivního využívání. V současné době existuje značné množství zdrojů tepla, které nelze efektivně využít. Mezi tyto zdroje patří například energie slunečního záření,geotermální energie a odpadní teplo z průmyslových provozů. Jedním ze způsobů, jak je možné tyto zdroje využít, je nasazení Organického Rankine – Clausiova cyklu (ORC), tj. parního oběhu využívajícího organické chladivo. Právě výběr organického chladiva umožňuje přizpůsobit cyklus variabilně různým teplotám zdroje tepla.

Předmětem této diplomové práce je vytvoření virtuálního (referenčního) modelu Organického Rankine – Clausiova cyklu (ORC) na základě provozních a konstrukčních parametrů reálného existujícího cyklu. Virtuální model obsahuje identické komponenty jako reálný cyklus a jeho cílem je pomoci optimalizovat jak konstrukční tak provozní parametry existujícího cyklu, tak napomoci definovat tyto parametry pro výrobu cyklu ve zvětšeném nebo zmenšeném měřítku. Validace virtuálního modelu je provedena s dostupnými referenčními daty, získanými z existujícího cyklu.

Pro simulaci virtuálního modelu ORC byl vytvořen program v prostředí MatLab. Program představuje komplexní popis výpočtu ORC cyklu. Zahrnuje jak termodynamický výpočet vlastního cyklu, tak také tepelné výpočty teplosměnných ploch jednotlivých komponent. Program obsahuje termodynamické vlastnosti chladiva R134a, které je využito i ve skutečném ORC cyklu. Na základě zadaných mezí teplot a tlaku umožňuje aplikace stanovit závislosti vstupních a výstupních parametrů cyklu. Tím je možné najít optimální hodnoty nastavení vstupních parametrů cyklu a to nejen v závislosti na účinnosti, ale také v závislosti na velikosti teplosměnných ploch a tím i ceně zařízení.

Cílem této práce je tedy optimalizace provozních parametrů s ohledem na tepelnou účinnost cyklu a investiční náklady cyklu. K dosažení tohoto cíle byly realizovány následující body:

- Popis současného stavu technologií ORC výhody a nevýhody ORC, způsoby navyšování tepelné účinnosti cyklu, seznámení se s zařízením, použitým v ORC
- 2. Příprava výpočetního nástroje pro výpočet cyklu vytvoření výpočetního programu v prostředí MatLab
- 3. Implementace optimalizace do výpočetního modelu–zjištění závislostí tepelné účinnosti a teplosměnných ploch tepelných výměníků na stavových veličinách cyklu a nalezení optimálních provozních parametrů
- 4. Srovnání s reálným ORC cyklem–porovnání průběhů veličin vypočtených programem se skutečnými průběhy, získanými měřením na zařízení firmy PolyComp

2 SOUČASNÝ STAV PROBLEMATIKY ORGANICKÝ RANKIN - CLAUSIŮV CYKLUS (ORC)

2.1 ORC cyklus – princip a použití

Organický Rankine – Clausiův cyklu je uzavřený termodynamický cyklus, využívající organické chladivo místo vody, která se využívá jako chladivo u klasického Rankine – Clausiova cyklu. Výhodou organického chladiva je například možnost jeho nasazení pro využití nízkoteplotních zdrojů odpadního tepla z průmyslových procesů. Schéma ORC cyklu a jeho pracovní diagram pro chladivo R11 jsou uvedeny na obrázku 2.1. a obrázku 2.2.

Chladivo v kapalném stavu 1 o nízkém tlaku vstupuje do čerpadla, ve kterém se ohřeje a stlačí na požadované hodnoty teploty a tlaku, které odpovídají stavu 2 na vstupu do ohříváku. Z ohříváku chladivo o vysokém tlaku vstupuje do výparníku (stav 3) a následně do přehříváku (stav 4). Ohřívák, výparník a přehřívák tvoří společně "generátor páry". Po přehřátí páry chladiva na požadovanou teplotu ve stavu 5 dochází k jeho expanzi v parním motoru, při které je část kinetické energie přehřáté páry chladiva převedena na mechanickou energii pohybem pístu ve válci parního motoru. Po ukončení expanze (stavu 6) je přehřátá pára chladiva o nízkém tlaku dopravena do kondenzátoru. S ohledem na tvar mezních křivek probíhá v kondenzátoru nejprve ochlazení přehřátých par chladiva (proces mezi stavy 6 -7) na teplotu kondenzace a následně vlastní kondenzace (proces mezi stavy 7 -1).

Obrázek 2.2 Schéma zapojení ORC[2]

Obrázek 2.1: Schema ideálního ORC pro chladivo R11 [2]

Při průmyslovém využití spalin pomocí ORC se jejich teplota liší dle zdroje a běžně přesahuje 80 °C. Teplota chladiva se pohybuje v rozmezí 80 až 300 °C[14]. Mezi používané druhy chladiv pro ORC jednotky patří například R245fa, R123, R134a, n-pentan.

Komerční ORC jednotky nabízejí například společnost Electrotherm(elektrický výkon 35 až 110 kWel) a společnost PolyComp (elektrický výkon do 120 kWel).

2.2 Porovnání Organického Rankine–Clausiova cyklu (ORC) s Rankine-Clausiovým (RC) cyklem

Rankine – Clausiův (RC) cyklus je nejběžnějším termodynamickým cyklem pro přeměnu tepelné energie na mechanickou práci, a dále na elektrickou energii. Od ORC cyklu se odlišuje zejména druhem použitého chladiva, kterým je voda. Druh chladiva určuje tvar křivek fázových přeměn, a tím i minimální požadovanou teplotu zdroje tepla. Zatímco u ORC má zdroj tepla teplotu v rozmezí 50 až 350°C, u RC tato teplota běžně přesahuje 560 °C. Tvary mezních křivek chladiva R134a jsou uvedeny na obrázku 2.3 a na obrázku 2.4.

Obrázek 2.3: T-s diagram voda – vodní pára [6]

Obrázek 2.4: T-s diagram chladiva R134a použitého v ORC [6]

Zásadní výhodou ORC cyklu je,dle použitého chladiva, nízká teplota varu a tím i možnost použití nízkoteplotních zdrojů tepla. Nižší teplota chladiva a tím i nižšími tlaky zvyšují životnost zařízení. Vyšší hmotnostní průtok chladiva R134a v porovnání s vodou umožňuje vyšší účinnost parního motoru.Organické chladivo nezpůsobuje korozi zařízení. Nevýhodami použití ORC cyklu jsou například vyšší teplotní a tlakové ztráty chladiva v potrubí a tepelných výměnících a rozkládání organických chladiv za vysokých teplot, limitující maximální teplotu zdroje tepla.

2.3 Porovnání parního motoru s parní turbínou

Obrázek 2.6: Parní motor firmy PolyComp, a.s. (1 – vstup přehřáté páry do motoru, 2 – výstup

přehřáté páry z motoru [13] [14])

Obrázek 2.5: Parní turbína. (1 – statorové lopatky, 2 – rotorové lopatky, 3 – směr proudění páry, 4 – směr rotace lopatek [15])

Na obrázku 2.5 a obrázku 2.6 je vidět parní motor s parní turbínou. V ORC se zvolilo použití pístového parního motoru místo parní turbíny z těchto důvodů:

Výhoda parního motoru oproti parní turbíně spočívá v provozu s menším hmotnostním průtokem přehřáté páry, která je o vyšším tlaku a v provozu s větším tlakovým spádem. Při menších výkonech a dopravovaném množství přehřáté páry mají parní motory větší termodynamickou účinnost než parní turbíny. Další výhodou jsou nižší investiční náklady. V případě parní turbíny je nutné dopravovat větší množství páry. S tím souvisí pořízení rozměrnějších zařízení za vyšší cenu. [13] [14]

2.4 Ztráty ORC

Skutečný ORC cyklus se od ideálního cyklu liší nevratnými změnami v jeho jednotlivých částech, jejich zdroji jsou zejména tření tekutiny a tepelné ztráty do okolí. Tření chladiva způsobuje tlakovou ztrátu v generátoru páry i v přípojném potrubí mezi generátorem páry a vstupem do motoru. Tlak páry na vstupu do parního motoru je tak o něco nižší. K tlakovým ztrátám vlivem tření tekutiny dochází i v chladicí věži. K tepelným ztrátám dochází při proudění chladiva se třením o stěny potrubí a o stěny při průchodu čerpadlem, boilerem, parním motorem a kondenzátorem. Dochází i ke tření v samotném chladivu. Část kinetické energie chladiva se při tření mění v teplo, které je propouštěno přes stěny zařízení cyklu do chladnějšího okolí. Tlakové ztráty v potrubí a připojených zařízeních jsou pokrývány čerpadlem, pracujícím mezi stavy 1 a 2. Je tedy nutné, aby čerpalo kapalné chladivo na vyšší tlak, než je tlak chladiva ideálního cyklu. V generátoru páry mezi stavy 2 a 3 klesá tlak vlivem tření chladiva při jeho průchodu hadovitým potrubím v jednotlivých částech kotle. V tomto místě se musí chladivu dodat větší množství tepla pro pokrytí tepelných ztrát cyklu. Mezi stavy 3 a 4 pára chladiva expanduje v parním motoru. Dochází k tření par chladiva o styčné plochy lopatek turbíny a vzniklé teplo uniká do okolí. Může dojít i ke kondenzaci expandující páry na stěnách válce motoru, při které část tepla unikne z chladiva při jeho změně skupenství. V chladicí věži mezi stavy 4 a 1 vznikají tlakové ztráty vlivem tření podobně jako u přívodního potrubí a generátoru páry. Mezi další ztráty se mohou řadit vnikání vzduchu do kondenzátoru, tření v ložiscích, provoz pomocných zařízení – spalinových ventilátorů apod [1].

Rozdíl mezi ideálním a skutečným cyklem je znázorněn na obrázku 2.7.

Obrázek 2.7: Ideální a skutečný parní cyklus [1]

2.5 Zvyšování účinnosti ORC

2.5.1 Změna tlaku a teploty chladiva

Mezi základní způsoby zvyšování termické účinnosti ORC cyklu patří zvyšování tlaku ohříváku, snižování tlaku kondenzátoru a zvyšování teploty páry při jejím přehřívání na vstupu do parního motoru. Jednotlivé případy jsou znázorněny na obrázku 2.8. Světle vybarvená plocha odpovídá nárůstu získané práce z ORC cyklu a zároveň i nárůstu termické účinnosti. Tmavě vybarvená plocha odpovídá poklesu této získané práce s nárůstem vlhkosti páry po její expanzi v parním motoru.

Obrázek 2.8 Zvyšování účinnosti ORC cyklu [1]

2.5.2 Rekuperace

Kromě změny tlaku a teploty chladiva lze pro zvýšení termické účinnosti použít i rekuperaci (obrázek 2.9), při které se část odváděné páry z parního motoru mezi stavy 5 a 6 používá pro ohřev chladiva na výstupu z napájecího čerpadla mezi stavy 2 a 3 po jeho předchozí kondenzaci v kondenzátoru.

Obrázek 2.9 Rekuperace pro chladivo R134a [9]

K tomuto účelu se většinou používá rekuperačních, regeneračních nebo směšovacích výměníků různých konstrukčních uspořádání. Směšovací výměníky využívají společný okruh

chladiva ve formě páry a kapaliny. Výhodou jejich použití je lepší přestup tepla, jednoduchost a nižší cena. Nevýhodou je nutnost čerpadla pro každý protiproudý výměník zvlášť. Při použití protiproudých výměníků bez směšování páry s chladivem je tomu naopak. Vlivem oddělených okruhů páry a chladiva se přestup tepla zhoršuje. Při použití více protiproudých výměníků najednou můžeme k čerpání chladiva využít jediné čerpadlo. [1]

2.6 Základní komponenty

V kapitole je zahrnut stručný popis komponent cyklu

2.6.1 Chladicí věže

Chladicí věž je zařízení, v kterém dochází k přestupu tepla mezi okolním prostředím (většinou vzduch nebo voda z řeky, moře) a teplonosnou látkou (voda, průmyslové chladivo). Teplonosná látka v chladicí věži kondenzuje a odvádí své teplo do okolí . Na obrázku 2.2 je v ORC cyklu chladicí věž umístěna mezi stavy 1 a 7.

Provedení chladicích věží se liší dle typu okruhu teplonosné látky, který může být otevřený nebo uzavřený, tj. oddělený od okolního prostředí [10]. Základní schéma chladicí věže s uzavřeným okruhem teplosměnné látky je uvedeno na obrázku 2.10. Podrobnější informace o chladicích věžích lze nalézt v [10].

Výstup kondenzátu

Obrázek 2.10: Schéma chladicí věže [11]

2.6.2 Parní motor [12]

Pístový parní motor je zařízení, kterým se v zapojení s ostatními komponenty realizuje parní oběh a redukuje se tlak páry. Pohybem pístu ve válci motoru je vykonána práce, která je využita k roztočení hřídele. Hřídel spojuje motor s generátorem, ve kterém se vykonaná práce převádí na elektrickou energii. Často se používá z toho důvodu, že je při malých výkonech v řádech desítek i stovek kW s pístovým motorem na rozdíl od parních turbín možné dosáhnout vysoké termodynamické účinnosti. Pístovým parním motorem je teplo do oběhu přiváděno v parním kotli či parogenerátoru a odváděno v kondenzátoru nebo expanzí páry do okolí motoru.

Pístový parní motor obsahuje píst s pístní tyčí, který je usazený ve válci a rozvod páry, jenž zajišťuje přívod a odvod páry z válce. Tlak páry vyvolává sílu, uvádějící píst do pohybu. Tato síla při samotném pohybu koná práci, která může být odváděna pomocí klikového mechanismu ve formě krouticího momentu.

Jeden pracovní cyklus pístového parního motoru lze dle obrázku 2.12 a p-v indikátorovém diagramu na obrázku 2.11 rozdělit na tyto čtyři části:

a) Plnění mezi stavy I a II

Pára o vysokém tlaku proudí rozvodem do válce dle obrázku 2.12a (vstup páry do válce (2) je otevřen, výstup páry (3) z rozvodu je uzavřen).

Obrázek 2.12: Pracovní cyklus pístového parního motoru [12] (R-rozvod páry; V-válec; P-píst s pístní tyčí, 1 vstup páry do rozvodu; 2 vstup páry z rozvodu do válce; **3** výstup páry z rozvodu. (a) plnění; (b) expanze;(c) výfuk; (d) komprese.)

Obrázek 2.11: Indikátorový p–V diagram parního motoru [12]. (**p** [Pa] tlak páry; **V** [m³] objem válce, V_{vmax} [m³] zdvihový objem válce; V_{pr} [m³] pracovní objem válce, A_{i1} [J] vnitřní práce motoru připadající na jeden zdvihový objem; V_0 škodný objem)

Velké římské číslice označují rozvodové okamžiky: I rozvod páry je otevřen pro vstup páry do válce motoru; II rozvod páry je uzavřen; III rozvod páry je otevřen pro výstup páry z válce motoru; IV rozvod páry je uzavřen. HÚ píst se nachází v horní úvrati; DÚ píst se nachází v dolní úvrati; A_{id} ideální práce pístu pro dané množství páry proteklé válcem během jednoho cyklu označena červeně a parametry páry; p_i tlak vstupní páry (před rozvodem páry); p_e tlak výstupní páry (na výstupu z rozvodů páry); V_{id} ideální zdvihový objem válce.

b) Expanze mezi stavy II a III:

Pára expanduje ve válci (tlak páry se snižuje a zároveň se zvyšuje její objem), obrázku 2.12b (vstup páry (2) do válce je uzavřen).

c) Výfuk mezi stavy III a IV:

Pára o nízkém tlaku je odváděna z válce do výfuku dle obrázku 2.12c (vstup páry do rozvodu (1) je uzavřen).

d) Komprese mezi stavy IV a I:

Pára ve válci je stlačována dle obrázku 2.12d (výstup páry z válce (2) je uzavřen).

Pístové parní motory se dělí na stejnosměrné a dvojčinné. Jejich sání a výfuk se nejčastěji realizuje šoupátkovými a ventilovými rozvody [12].

Pracovní objem motoru V_{pr} je objem mezi horní a dolní úvratí pístu motoru. Zdvihový objem V_{Vmax} je objem, který se nachází mezi pístem v dolní úvrati a uzavřeným vstupem páry do válce motoru. Škodný objem V_0 je rozdílem zdvihového a pracovního objemu. U ventilových rozvodů je zpravidla menší než u pístových šoupátek.

Ztráty parního motoru:

Ztráty parního motoru jsou uvedeny na obrázku 2.13.

Obrázek 2.13: Přibližné energetické toky v malém pístovém parním motoru s jedním šoupátkem [12] (Δi_{iz} [%] představuje rozdíl entalpií páry mezi začátkem a koncem izoentropické expanze. Z_{vlh} [%] je ztráta kondenzací páry na vnitřních částech stroje a únikem páry netěsnostmi. a_k [%] je kompresní práce. Z_{td} [%] jsou vnitřní termodynamické ztráty (rozdíl mezi plochou ideálního a indikátorového p-V diagramu). Z_m [%] jsou mechanické ztráty. a_i [%] je vnitřní práce motoru (indikovaná práce v p-V diagramu). a_m [%] je indikovaná práce na hřídeli.)

Ztráty parního motoru jsou nejčastěji vyjádřeny pomocí vnitřní termodynamické účinnosti η_i dle vztahu (1.1).

$$\eta_i = \frac{a_i}{a_{id}} \tag{1.1}$$

kde je,

a _i	měrná indikovaná (změ)	řená) práce motoru [[J/kg]
a _{id}	měrná vnitřní ideální pra	áce motoru [[J/kg]

Vnitřní ideální práce motoru odpovídá červeně zvýrazněné ploše ideálního diagramu na obrázku 2.11. Při jejím konání nedochází k žádným ztrátám energie. U indikované práce je situace odlišná. Při pohybu pístu ve válci parního motoru dochází k tepelným a tlakovým ztrátám. Tyto tlakové ztráty jsou při chodu motoru zpravidla zaznamenány do skutečného (indikátorového) vyšrafovaného p-V diagramu na obrázku 2.11.

2.6.3 Boiler

Boiler je zařízení, které se používá k dodání tepla kapalnému chladivu z externího zdroje. V teplosměnných plochách boileru dochází k ohřevu, vypaření a přehřátí organického chladiva. K tomuto účelu se používají trubkové, deskové, spirálové, žebrované, aj. typy tepelných výměníků. Další informace o tepelných výměnících jsou uvedeny v [28].

3 ORC S PARNÍM MOTOREM A JEHO KOMPONENTY

3.1 Popis reálného ORC cyklu

Schéma ORC na obrázku 3.1 odpovídá reálné instalaci, realizované ve společnosti PolyComp a.s. Cyklus se skládá z čerpadla LPA 860 a boileru s výparníkem a přehřívákem. Jako zdroj tepla je použit olejový hořák Wieshaupt WL 10, jehož plamenem a vzniklými spalinami je ohříváno organické chladivo R134a, protékající potrubím uvnitř boileru. Hořákem je nahrazen zdroj odpadního tepla. Cyklus je dovybaven speciálním radiálním spalinovým ventilátorem CBM/4-270/270 T-3/4pro regulaci teploty uvnitř boileru nasátím studeného vzduchu do prostoru hoření. Dalšími komponentami jsou parní motor PM-VS, nahrazující běžně užívanou parní turbínu a kondenzátor ve formě chladicí věže. Pro zvýšení účinnosti cyklu je použit protiproudý rekuperační výměník s teplotním spádem t_{dr} 10°C mezi vstupem kondenzátu chladiva do protiproudého výměníku a výstupem přehřáté páry chladiva z výměníku. Regulační ventil je umístěn v obtoku mezi boilerem a parním motorem. Reguluje se jím hmotnostní průtok par chladiva, vstupujících do parního motoru. Jednotlivá zařízení uvnitř cyklu jsou podrobněji popsána v následujících kapitolách.

Obrázek 3.1 Schema reálného ORC firmy PolyComp

Na obrázku 3.2 je znázorněna reálná instalace ORC firmy PolyComp. Celé zařízení je realizováno v mobilním kontejneru, aby jej bylo možno transportovat ke zdroji odpadního tepla. Uvnitř skříně se nachází elektroskříň, čerpadlo, boiler, parní motor a generátor. Chladící věž je vzhledem k rozměrům umístěna mimo kontejner.

Obrázek 3.2: Reálná instalace ORC firmy PolyComp [13]

T-s diagram reálného ORC je uveden na obrázku 3.3.

Obrázek 3.3: T-s diagram reálného ORC

1 – vstup kapalného chladiva do čerpadla, 2 – vstup kapalného chladiva do regeneračního výměníku, 3 – vstup kapalného chladiva do ohříváku, 4 – vstup kapalného chladiva do výparníku, 5 – vstup páry chladiva do přehříváku, 6 – vstup páry chladiva do parního motoru, 7 – konec expanze páry chladiva v motoru, 8 – vstup páry chladiva do regeneračního výměníku, 9 – vstup páry do kondenzátoru, t_{dr} – teplotní rozdíl mezi vstupem kapalného chladiva do regeneračního výměníku a výstupem páry chladiva z regeneračního výměníku, q_{dod} – dodané teplo, q_{odv} – odvedené teplo, q_r – regenerované teplo

3.2 Čerpadlo

Čerpadlem CEHB 3608 AF 2AC 1A 4 U* se čerpá organické chladivo R134a na tlak, který je vyšší pro kompenzaci tlakových ztrát uvnitř ORC. Každé čerpadlo je určené pro jiné druhy chladiv [16].

Obrázek 3.4: Čerpadlo CEHB 3608 AF 2AC 1A 4 U*[16]

Tabulka 3.1: Parametry CEHB 3608 AF 2AC 1A 4 U* [16]

Maximální průtok [m ³ /h]	35
Maximální otáčky [1/min]	1800
Maximální teplota [C]	180
Maximální tlak [MPa]	4
Dopravní výška [m]	354

Boilerem se v ORC postupně ohřívá, vypařuje a přehřívá organické chladivo R134a v jednotlivých tazích boileru, oddělených od sebe přepážkami na obrázku 3.5, které z něj vstupují do pístového parního motoru. Boiler se smí provozovat jen při proudění chladiva v potrubím boileru. Návrhová teplota trubek $250 \,^{\circ}$ C je stanovena pro stěnu trubky v místě kontaktu s 1000 $^{\circ}$ horkými spalinami. Spalinovod se předpokládá z žáruvzdorného materiálu pro teplotu spalin 1000 $^{\circ}$. Průřez spalinového kanálu je 131 x 1000 mm. Další technologická a konstrukční data jsou připojena v příloze P13.

Obrázek 3.5: Uspořádání trubek v jednotlivých tazích boileru včetně průměrů a roztečí trubek [13]

Obrázek 3.6: Detail uspořádání trubek v boileru

3.4 Chladicí věž

Chladicí věž na obrázku 3.7 se používá k odvedení tepla z chladiva při kondenzaci (mezi stavy 1 a 9 dle obrázku 3.3).Skládá se z nosné konstrukce, na které jsou umístěny tepelné výměníky spolu s ventilátorem. Pára dle obrázku 3.8 vstupuje shora do žebrovaných trubek tepelných výměníků, chlazených vzduchem, kondenzuje v nich a je následně odváděna ve stavu kondenzátu ve spodní části konstrukce. Velikost teplosměnných ploch a provoz ventilátoru se liší dle roční doby a lokality, ve které je věž provozována.[7] Technické parametry chladicí věže jsou v tabulce 3.2.

Obrázek 3.7: Schema chladicí věže [13]

rabulka 3.2. reennieke paramen y zebroveno kondenzatoru [15]				
Parametr	Rozměr	Jednotka		
Šířka	4,5	m		
Výška	2,28	m		
Hloubka	0,156	m		
Vnější průměr trubky	0,012	m		
Vnitřní průměr trubky	0,011	m		
Materiál	hliník	-		

Tabulka 3.2: Technické parametry žebrového kondenzátoru [13]

3.5 Parní motor

Parní motor, znázorněný na obrázku 3.9 a obrázku 3.10 slouží k získání práce, vykonané pohybem pístu při expanzi chladiva ve válci parního motoru. Na obrázcích je vidět 4-válcový parní motor. Technické parametry motoru jsou v tabulce 3.3.

Obrázek 3.9: Parní motor PM-VS [13]

Obrázek 3.10: Model parního motoru [13]

Tabulka 3.3: Technické parametry parního motoru PM-VS [13] [17
--	----

Max. vstupní teplota	C	120
Max. vstupní tlak	MPa	3,5
Max. otáčky motoru	1/min	750
Max. elektrický výkon	kW	60
Max. spotřeba páry	kg/h	2800
Max. tlakový spád	MPa	2,0

3.6 Protiproudý rekuperační výměník B120THx70/1P-SC-M 2x42U(27)+2x1

Protiproudý výměník řady B120 od firmy Swep je použit k ohřevu kapalného chladiva R134a po jeho načerpání čerpadlem LPA 860 pomocí horkých par téhož chladiva při jejich expanzi v parním motoru. Dochází tedy k regeneraci a zvýšení termodynamické účinnosti ORC cyklu.

Tabulka 3.4: Technické parametry protiproudého výměníku [18]

Pracovní podmínky	Vnitřní okruh	Vnější okruh
Max pracovní tlak při 155°C	3,1MPa	3,1MPa
Max pracovní tlak při 225℃	2,7MPa	2,7MPa
Minimální teplota	-196 °C	
Maximální teplota	225 °C	
Maximální počet desek	250	

Obrázek 3.11: Protiproudý výměník [20]

Ukázka návrhu protiproudého výměníku firmy Swep byla provedena užitím kalkulačního softwaru SSP: [19]

	Jednotka	Strana kapalného chladiva	Strana par chladiva
Tepelná zátěž	kW	36,7	12
Teplota na vstupu	°C	41	77,9
Teplota na výstupu	C	60,47	48,92
Hmotnostní průtok	kg/s	1,2	2
Největší tlaková ztráta	kPa	10	50

Tabulka 3.5: Počáteční podmínky návrhu protiproudého výměníku

Tabulka 3.6: Parametry navrženého protiproudého výměníku [19]

	Jednotka	Strana kapalného chladiva Strana par chladiva		
Celková teplosměnná plocha	m ²	4,96		
Tepelný tok	kW/ m ²	7,4		
Střední teplotní rozdíl	К	12,26		
Celková tlaková ztráta	kPa	1,54 37,5		
Počet kanálů		40 41		
Počet desek		82		
Reynoldsovo číslo	1	1906 19610		
Rychlost proudění	m/s	1,21 31,9		

Тур	Teplosměnná plocha [m ²]	Tlaková ztráta na straně kapalného chladiva [kPa]	Tlaková ztráta na straně par chladiva [kPa]
2 B10Tx82	4,96	1,54	37,5

Tabulka 3.7: Navržený protiproudý výměník

3.7 Olejový hořák Wieshaupt WL 10

Olejový hořák Wieshaupt WL10 na obrázku 3.12 slouží k simulaci libovolného zdroje tepla pro ORC. Vzniklými horkými spalinami je ohříváno chladivo R134a uvnitř trubek výparníku a přehříváku. Je tedy zapojen pouze zkušebně. Je řízen řídicí jednotkou se servomotorem a s krokovým motorem, napojeným na tepelné čidlo. Spalován je lehký topný olej, k jehož zapálení dojde elektricky pomocí jednotky W-ZG 01. Komponenty hořáku jsou v tabulce 3.8.

Obrázek 3.12: Wieshaupt WL 10/2 - C [20]

Tabulka 3.8: Komponenty hořáku Wieshaupt WL 30Z-C

Druh komponentu	Označení
Řídicí jednotka	W-FM 05
Motor	ECK 03/F – 2
Krokový motor	W-St 02/2
Spalovací jednotka	W-ZG 01
Olejové čerpadlo	AL 30 C
Tepelné čidlo	QRB1B
Typ hlavy hořáku	W 30/2
Výkon	72 až 330 kW
Spotřeba paliva	6,1 až 27,9 kg/s

3.8 Radiální spalinový ventilátor CBM/4-270/270 T-3/4 (550W)

Radiální ventilátor řady CBM/4-270/270 T se používá pro regulaci teploty spalování v prostoru hoření kotle dopravením vlhkého vzduchu z okolí.

Obrázek 3.13: Speciální radiální spalinový ventilátor CBM/4-270/270 T-3/4 (550W) [21]

Tabulka 3.9: Rozměr ventilátoru CBM/4-270/270 T-3/4 [21]

Тур	А	В	С	D	Е	F
CBM-270/270	379	334	440	421	202	288

Tabulka 3.10: Parametry ventilátoru CBM/4-270/270 T-3/4 [21]

Otáčky	Průtok	Příkon	Napětí	Proud	Max teplota	Hmotnost
[1/min]	[m3/h]	[W]	[V]	[A]	[°C]	[kg]
1400	3540	552	230	6.2	40	23

Následující výpočet slouží k stanovení hmotnostního průtoku vlhkého vzduchu \dot{m}_{VV} o teplotě t_{VV} 30 °C, měrné tepelné kapacitě c_{pVV} 1100 J/kg·K a hustotě 1,285 kg/m³, dodávaným ventilátorem pro zajištění konstantní teploty směsi vlhkého vzduchu a vlhkých spalin t_{VVS} 1000 °C na vstupu do ohříváku. Měrná tepelná kapacita vlhkých spalin c_{SV} je 1155 J/kg·K.

Hmotnostní průtok vlhkého vzduchu byl počítán z tepelné bilance (3.1), ve které je tepelný výkon směsi vlhkého vzduchu a vlhkých spalin P_{VVS} [W] roven součtu tepelných výkonů vlhkého vzduchu P_{VV} [W] a vlhkých spalin P_{VS} [W].

$$P_{VVS} = P_{VV} + P_{SV} \tag{3.1}$$

Z tepelné bilance (3.1) byl odvozen vztah (3.2) pro výpočet množství vlhkého vzduchu, uvedeného v tabulce 3.11.

$$\dot{m}_{VV} = \dot{m}_{SV} \cdot \frac{c_{pSV} \cdot t_{mh}}{\frac{c_{pVV} + c_{SV}}{2} \cdot t_{VVS} - c_{pVV} \cdot t_{VV}}$$
(3.2)

kde je,

$\dot{m}_{\scriptscriptstyle SV}$ hmotnostní průtok vlhkých spalin	[kg/s]
$c_{\rm pSV}$ měrná tepelná kapacita vlhkých spalin	[J/kg·K]
$c_{\rm pVV}$ měrná tepelná kapacita vlhkého vzduchu	[J/kg·K]
<i>t</i> _{mh} teplota spalin v místě hoření	[°C]
<i>t</i> _{VV} teplota okolního vlhkého vzduchu	[°C]
$t_{\rm VVS}$ výsledná teplota směsi vlhkého vzduchu a vlhkých spalin	[°C]

Tabulka 3.11: Množství vlhkého vzduchu pro jednotlivé zdroje tepla

Zdroj tepla	Odpadní teplo
Teplota zdroje tepla [℃]	1000
Množství vlhkého vzduchu [kg/s]	0,1

Teplota spalin na výstupu z ohniště dosahuje dle [23] 1100 °C až 1300 °C. Pro výpočet na vstupu do ohříváku byla zvolena teplota 1000 °C.
3.9 Použité chladivo a jeho výběr

Výběr chladiva je jednou z prvních a nejdůležitějších částí návrhu celého ORC. Chladivo svými vlastnostmi silně ovlivňuje termodynamickou účinnost cyklu a zároveň je také jednou z jeho nejdražších součástí. Navíc je nutné zohlednit i jeho vliv na životní prostředí.

Výběr chladiva byl proveden z hlediska bezpečnosti a dalších parametrů, poté z hlediska ceny. Ze všech uvažovaných chladiv v tabulce 3.13 bylo vybráno chladivo R134a (obrázek 3.14) z důvodu nízké ceny, nehořlavosti a mísitelnosti s olejem.

Obrázek 3.14: R134a

Chemický vzorec	CH_2FCF_3
Vzhled	bezbarvý
Hustota	0.00425 g/cm ³
Bod tání	169.8 K
Bod varu	246.8 K
Bod vznícení	523 K
Molární hmotnost	102.03 g/mol

Tabulka 3.12: Vlastnosti R134a

Organické chladivo, použité v reálném ORC se liší svými fyzikálními vlastnostmi od chladiva virtuálního modelu. Je to způsobené tím, že v existujícím ORC je realizováno mazání pístového parního motoru směšováním organického chladiva s olejem. Tím se zároveň mění i výparné vlastnosti chladiva a jeho hmotnostní průtok.

Chladiva	Nejnižší cena [Kč/kg]	Počet dodavatelů v ČR	Hořlavost	Toxicita	Kritická teplota [C]	Kritický tlak [bar]
R125	390	2	NE	NE	66,18	36,3
R134a	165	4	NE	NE	101,06	40,6
R227ea	760	2	NE	NE	102,8	29,8
R245fa	780	2	NE	NE	154,1	36,4
R290	222	3	EXTREM	NE	96,7	42,9

Tabulka 3.13: Porovnání druhů organických chladiv [13]

4 FYZIKÁLNÍ MODEL SKUTEČNÉHO ORC

Dle konstrukčních a provozních parametrů realizovaného ORC společnosti PolyComp byl navržen fyzikální model referenčního ORC cyklu. Komponenty referenčního ORC jsou popsány v předchozí kapitole. Referenční ORC cyklus byl sestaven v prostředí MatLab a slouží k nalezení optimálních hodnot termodynamických parametrů (teplota, tlak) pro zjištění maximální účinnosti a minimalizaci investičních nákladů.

Program dopočítává stavové a procesní veličiny v jednotlivých částech cyklu (obrázek 3.3) s využitím databáze termodynamických vlastností chladiva R134a, vytvořené v prostředí Microsoft Office Excel [6]. Jednotlivé veličiny dále slouží k výpočtu teplosměnných ploch tepelných výměníků, výpočtu tepelné účinnosti a technické práce ORC s jejich závislostí na stavových veličinách a účinnosti parního motoru.

4.1 Mezní podmínky výpočtu veličin ORC

Mezní podmínky pro výpočet stavových a procesních veličin ORC byly nastaveny v rozsazích, uvedených v tabulce 4.1. Tyto parametry jsou nastaveny s ohledem na reálný ORC cyklus technické limity použitých materiálů a komponent. Například maximální teplota chladiva na vstupu do motoru je limitována použitým těsněním válců motoru. Vzhledem k zanedbatelnému vlivu čerpadla na účinnost celého cyklu dle článku Parametric optimization and performance analysis of regenerative ORC [22] se počítá s jeho 100 % účinností. Teplotní rozdíl Δt_r v tabulce 4.1 zůstává konstantní, a tím i teplota, při které dochází k rekuperaci.

p_1 [MPa]	Tlak chladiva na vstupu do čerpadla	0,4 až 1
<i>p</i> ₂ [MPa]	Tlak chladiva v parním motoru	1,3 až 3,2
ηč [%]	Účinnost čerpadla	100
η _m [%]	Účinnost parního motoru	80
<i>t</i> ₆ [°C]	Teplota chladiva na vstupu do motoru	90 až 130
$\Delta p_{\rm max}$ [MPa]	Největší tlakový rozdíl p_1 a p_2	2
$\Delta t_{\rm r} [^{\circ} {\rm C}]$	Teplotní rozdíl chladiva při rekuperaci tepla	10

Tabulka 4.1: Rozsahy počátečních podmínek výpočtu stavových a procesních veličin ORC

4.2 Výpočet stavových veličin, tepelné účinnosti a práce ORC

Výpočet stavových a procesních veličin, technické práce a tepelné účinnosti ORC probíhá ve vzájemně vnořených cyklech, závislých na nastavených mezních podmínkách. Takto je umožněn výpočet pro všechny kombinace mezních podmínek v rozmezí, uvedeném v tabulce 4.1.

Při inicializaci programu jsou načteny fixní konstrukční parametry sloužící k návrhu teplosměnných ploch výměníků. Následně proběhne cyklus v jehož rámci jsou vypočteny stavové (entalpie, entropie) a procesní (práce, teplo) veličiny v závislosti na změně termodynamických parametrů (tlak v motoru, tlak v kondenzátoru). V dalším kroku je proveden výpočet účinnosti a teplosměnných ploch. Tyto výpočty včetně příslušných mezních podmínek budou uvedeny v následujících kapitolách. Vývojový diagram je uveden v příloze P13.

Následuje ukázkový příklad výpočtu tepelné účinnosti a práce ORC s rekuperací (obrázek 4.1), jak je realizován ve výpočtovém programu v rámci jednoho cyklu. Termodynamické parametry jsou následující: tlak v motoru p_2 3,2 MPa, tlak v kondenzátoru p_1 0,4 MPa, maximální teplota přehřátí t_6 130°C, teplotní spád mezi vstupem kapalného chladiva do regeneračního výměníku a výstupem páry chladiva z regeneračního výměníku t_{dr} 10°C účinnost motoru η_m 80% a chladivo R134a:

Obrázek 4.1: T-s diagram chladiva R134a (*t*_{dr} – teplotní spád mezi vstupem kapalného chladiva do regeneračního výměníku a výstupem páry chladiva z regeneračního výměníku)

Následující parametry chladiva na vstupu do čerpadla, uvedené v tabulce 4.2 byly vyhledány pro tlak v kondenzátoru p_1 za předpokladu, že chladivo je ve formě syté kapaliny (dolní mezní křivka)

Měrná veličina chladiva R134a	Označení	Jednotka	Hodnota
Měrný objem	<i>v</i> ₁	m ³ /kg	$7,9 \cdot 10^{-4}$
Teplota	t_1	°C	8,93
Vnitřní energie	<i>u</i> ₁	kJ/kg	211,79
Entalpie	h_1	kJ/kg	212,11
Entropie	<i>s</i> ₁	kJ/kg∙K	1,04

Tabulka 4.2: Fyzikální veličiny kapalného chladiva na vstupu do čerpadla

Práce čerpadla mezi stavy 1 a 2 je spočtena pro izoentropický ohřev nestlačitelného chladiva. Výpočet je proveden pomocí měrného objemu chladiva na vstupu do čerpadla v_1 , tlaku v motoru a tlaku v kondenzátoru dle vztahu (4.1)

$$a_{\check{c}} = -v_1 \cdot (p_2 - p_1) \tag{4.1}$$

Měrné veličiny chladiva ve stavu 2 (obrázek 4.1) jsou stanoveny pro tlak v motoru p_2 a entalpii chladiva na výstupu z čerpadla. Tato entalpie je vypočtena z měrné ideální práce čerpadla $a_{\check{c}}$ dle vztahu (4.2). Veličiny jsou uvedeny v tabulce 4.3.

$$h_2 = h_1 - a_{\check{C}} \tag{4.2}$$

Tabulka 4.3: Fyzikální veličiny kapalného chladiva na výstupu z čerpadla

Měrná veličina chladiva R134a	Označení	Jednotka	Hodnota
Měrný objem	<i>V</i> ₂	m ³ /kg	7,9.10-4
Teplota	t_2	c	11
Vnitřní energie	<i>u</i> ₂	kJ/kg	212,93
Entalpie	h_2	kJ/kg	215,45
Entropie	<i>s</i> ₂	kJ/kg∙K	1,04

Následující parametry chladiva byly vyhledány pro tlak v motoru p_2 a chladivo ve formě syté kapaliny (dolní mezní křivka) ve stavu 4 na obrázku 4.1 a jsou uvedeny v tabulce 4.4:

Tabulka 4.4: Fyzikální veličiny syté kapaliny chladiva na začátku vypařování

Měrná veličina chladiva R134a	Označení	Jednotka	Hodnota
Měrný objem	<i>v</i> ₄	m ³ /kg	7,9·10 ⁻⁴
Teplota	<i>t</i> ₄	$^{ m C}$	89,33
Vnitřní energie	u_4	kJ/kg	211,79
Entalpie	h_4	kJ/kg	212,11
Entropie	<i>S</i> ₄	kJ/kg∙K	1,04

Následující parametry chladiva ve stavu 5 na obrázku 4.1, uvedené v tabulce 4.5 byly vyhledány pro tlak v motoru p_2 za předpokladu, že chladivo je ve formě syté páry (horní mezní křivka).

Tabulka 4.5: Fyzikální veličiny syté páry chladiva na konci vypařování

Měrná veličina chladiva R134a	Označení	Jednotka	Hodnota
Měrný objem	<i>V</i> ₅	m ³ /kg	$7,9 \cdot 10^{-4}$
Teplota	t_5	°C	8,93
Vnitřní energie	u_5	kJ/kg	211,79
Entalpie	h_5	kJ/kg	212,11
Entropie	<i>S</i> ₅	kJ/kg∙K	1,04

Následující parametry chladiva byly vyhledány pro tlak v motoru p_2 3,2 MPa a maximální teplotu přehřátí t_6 130 °C ve stavu 6 na obrázku 4.1 a jsou uvedeny v tabulce 4.6:

Tabulka 4.6: Fyzikální veličiny páry chladiva na vstupu do motoru

Měrná veličina chladiva R134a	Označení	Jednotka	Hodnota
Měrný objem	<i>v</i> ₆	m ³ /kg	$7,7\cdot 10^{-3}$
Vnitřní energie	<i>u</i> ₆	kJ/kg	467
Entalpie	h_6	kJ/kg	491,8
Entropie	<i>s</i> ₆	kJ/kg·K	1,84

Ideální měrná práce motoru při izoentropické expanzi páry chladiva v motoru byla spočtena z entalpie páry chladiva na vstupu do motoru h_6 a entalpie páry chladiva po izoentropické expanzi páry chladiva h_{7_id} 439,88 kJ/kg na tlak v kondenzátoru p_1 0,4 MPa při konstantní entropii s_6 1,84 J/kg·K dle vztahu (4.3)

$$a_{ts_M} = h_6 - h_{7_{id}} \tag{4.3}$$

Skutečná měrná práce motoru, vykonaná při expanzi v motoru a účinnosti motoru η_m 80% byla spočtena z ideální měrné práce dle vztahu (4.4)

$$a_t = a_{ts_M} \cdot \eta_m \tag{4.4}$$

Entalpie chladiva po skutečné expanzi v motoru h_7 se byla spočtena z entalpie chladiva v motoru a skutečné měrné práce motoru dle vztahu (4.5)

$$h_7 = h_6 - a_t \tag{4.5}$$

Měrné veličiny chladiva ve stavu 7 na obrázku 4.1 jsou stanoveny pro tlak v kondenzátoru p_1 a entalpii chladiva na výstupu z čerpadla h_7 . Měrné veličiny ve stavu 7 a měrné práce jsou uvedeny v tabulce 4.7.

Tabulka 4.7: Fyzikální veličiny páry chladiva na konci expanze v motoru a na začátku rekuperace

Měrná veličina chladiva R134a	Označení	Jednotka	Hodnota
Měrný objem	<i>V</i> ₇	m³/kg	63,8·10 ⁻³
Teplota	<i>t</i> ₇	°C	59
Vnitřní energie	<i>u</i> ₇	kJ/kg	424,74
Entalpie	h_7	kJ/kg	450,27
Entropie	<i>S</i> ₇	kJ/kg∙K	1,87
Ideální práce motoru	a_{ts_M}	kJ/kg	51,920
Skutečná práce motoru	a_{t}	kJ/kg	41,537

Následující parametry páry chladiva byly stanoveny pro tlak v kondenzátoru p_1 a teplotní spád t_{dr} mezi vstupem kapalného chladiva do rekuperačního výměníku a výstupem páry chladiva z rekuperačního výměníku 10°C, udržovaný nad teplotou kapalného chladiva na výstupu z čerpadla ve stavu 8 (obrázek 4.1). Jsou uvedeny v tabulce 4.8:

Tabulka 4.8: Fyzikální veličiny páry chladiva na konci rekuperace

Měrná veličina chladiva R134a	Označení	Jednotka	Hodnota
Měrný objem	<i>v</i> ₈	m ³ /kg	54.5·10 ⁻³
Teplota	t_8	°C	21
Vnitřní energie	u_8	kJ/kg	393,13
Entalpie	h_8	kJ/kg	414,93
Entropie	<i>S</i> ₈	kJ/kg∙K	1,76

Parametry chladiva na vstupu do kondenzátoru ve formě syté páry (horní mezní křivka) ve stavu 9 byly vyhledány pro tlak v kondenzátoru p_1 (tabulka 4.9).

Tabulka 4.9: Fyzikální veličiny páry chladiva na vstupu do kondenzátoru

Měrná veličina chladiva R134a	Označení	Jednotka	Hodnota
Měrný objem	<i>V</i> 9	m ³ /kg	5,12.10-4
Teplota	<i>t</i> 9	C	8,93
Vnitřní energie	<i>U</i> 9	kJ/kg	383,24
Entalpie	h_9	kJ/kg	403,72
Entropie	S 9	kJ/kg∙K	1,72

Entalpie kapalného chladiva na konci rekuperace byla spočtena z entalpie páry po expanzi v motoru h_7 , entalpie páry chladiva na konci rekuperace h_8 a z entalpie kapalného chladiva na výstupu z čerpadla h_2 dle vztahu (4.6)

$$h_3 = h_7 - h_8 + h_2 \tag{4.6}$$

Měrné dodané teplo boilerem do ORC q_{dod} je vypočteno z entalpie páry chladiva na vstupu do motoru h_6 a entalpie kapalného chladiva na konci rekuperace h_3 dle vztahu (4.7)

$$q_{dod} = h_6 - h_3 \tag{4.7}$$

Měrné odvedené teplo z ORC kondenzátorem q_{odv} bylo spočteno z entalpie páry chladiva na konci rekuperace h_8 a entalpie kapalného chladiva na vstupu do čerpadla h_1 dle vztahu (4.8)

$$q_{odv} = h_8 - h_1 \tag{4.8}$$

Tepelná účinnost cyklu η [%] je definována vzorcem (4.9)

$$\eta = \frac{q_{dod} - q_{odv}}{q_{dod}} \tag{4.9}$$

kde je,

$q_{ m dod}$	množství celkového tepla, dodaného do ORC.	[kJ/kg]
<i>q</i> _{odv}	množství celkového tepla, odvedeného z ORC	[kJ/kg]

4.3 Přesnost výpočtu

Pro vyhledávání stavových veličin v externí databázi byly využity vyhledávací funkce prostředí MatLab. Tyto funkce pracují s nastavenou tolerancí přesnosti hodnot veličin, které je nutné v této databázi dohledat. Jednotlivé tolerance jsou uvedeny v následující tabulce:

<i>t</i> ₆ [°C]	± 0.5
$t_{\rm r}$ [°C]	± 0.5
$t_{s1} [^{\circ}C]$	± 0.5
h_2 [kJ/kg]	± 10
h_3 [kJ/kg]	± 12
h_7 [kJ/kg]	± 10
$s_7 [kJ/kg \cdot K]$	± 0,05

Tabulka 4.10: Tolerance stavových veličin ORC

4.4 Stechiometrie spalin olejového hořáku referenčního ORC

Stechiometrickými výpočty referenčního ORC se zjišťují objemové koncentrace jednotlivých složek spalin, které se později uplatní při výpočtu entalpií spalin a následně i skutečných vstupních tepelných výkonů na vstupu do ohříváku boileru. Dále jsou uvedeny i fyzikální vlastnosti těchto složek, pomocí kterých se vypočítají fyzikální vlastnosti spalin. Zdrojem tepla referenčního ORC je olejový hořák. Všechny objemy složek spalin jsou počítány pro normální stav. Jednotkovým množstvím je 1Nm³ (Nm³ je normální metr krychlový pro teplotu 273K a tlak 101,325kPa). Vodík, uhlovodíky, dusík a ostatní hořlavé složky paliva jsou zde uvedeny jako objemové koncentrace.

Prvek	Označení	Složení paliva [%]	Hmotnostní podíl
Uhlík	С	84,5	0,854
Vodík	Н	13	0,13
Oxid	0	0,4	0,004
Dusík	Ν	0	0
Síra	S	0,7	0,007
Voda	H2O	0,5	0,005

Tabulka 4.11: Zastoupení prvků v lehkém topném oleji

Minimální objem kyslíku $o_{\text{o2min,N}}$ [Nm³/kg] pro dokonalé spálení 1 kg paliva je určen ze zastoupení uhlíku, vodíku, síry a kyslíku v lehkém topném oleji dle vztahu (4.10)

$$o_{o2\min,N} = 22,39 \cdot \left(\frac{C}{12,01} + \frac{H}{4,032} + \frac{S}{32,06} - \frac{O}{32}\right)$$
(4.10)

Minimální objem suchého vzduchu $o_{VSmin,N}$ [Nm³/kg] pro dokonalé spálení 1 kg paliva je určen z minimálního objemu kyslíku dle vztahu (4.11)

$$o_{VS\min,N} = \frac{o_{o2\min,N}}{0,21}$$
(4.11)

Minimální objem vlhkého vzduchu $o_{VVmin,N}$ [Nm³/kg] pro dokonalé spálení 1 kg paliva je určen z minimálního objemu suchého vzduchu dle vztahu (4.12)

$$o_{VV\min,N} = 1,016 \cdot o_{VS\min,N} \tag{4.12}$$

Objem vodní páry v minimálním objemu vlhkého vzduchu $o^{V}_{H2O,N}$ [Nm³/kg] je vypočten z rozdílu minimálního objemu vlhkého vzduchu a minimálního objemu suchého vzduchu ze vzorce (4.13)

$$o^{V}_{H2O,N} = o_{VV\min,N} - o_{VS\min,N}$$
(4.13)

Objem CO₂ ve spalinách $o_{CO2,N}$ [Nm³/kg] je vypočten ze zastoupení uhlíku *C* ve vlhkých spalinách a minimálního objemu vlhkého vzduchu dle rovnice (4.14)

$$o_{CO2,N} = \frac{22,26}{12,01} \cdot C + 0,0003 \cdot o_{VS\min,N}$$
(4.14)

Objem SO₂ ve spalinách $o_{S02,N}$ [Nm³/kg] je vypočten ze zastoupení síry S ve vlhkých spalinách dle vztahu (4.15)

$$o_{SO2,N} = \frac{21,89}{32,06} \cdot S \tag{4.15}$$

Objem N₂ ve spalinách $o_{N2,N}$ [Nm³/kg] je vypočten ze zastoupení dusíku *N* ve vlhkých spalinách a minimálního objemu suchého vzduchu dle vztahu (4.16)

$$o_{N2,N} = \frac{22,4}{28,016} \cdot N + 0,7805 \cdot o_{VS\min,N}$$
(4.16)

Objem argonu ve spalinách $o_{Ar,N}$ [Nm³/kg] je vypočten z minimálního objemu vlhkého vzduchu ze vztahu (4.17)

$$o_{Ar,N} = 0,0092 \cdot o_{VS\min,N} \tag{4.17}$$

Minimální objem suchých spalin $o_{\text{SSmin,N}}$ [Nm³/kg] pro dokonalé spálení 1 kg paliva s $o_{\text{VVmin,N}}$ je určen ze součtu plynných složek CO₂, SO₂, N₂ a Ar, vzniklých při spalování ze vztahu (4.18)

$$o_{SS\,\min,N} = o_{CO2,N} + o_{SO2,N} + o_{N2,N} + o_{Ar,N} \tag{4.18}$$

Objem vodní páry v minimálním objemu vlhkých spalin $o^{S}_{H2O,N}$ [Nm³/kg] je tvořen vodní parou ze spalování vodíku H, odpařenou vlhkostí paliva a vlhkostí vzduchu. Počítá se dle vzorce (4.19)

$$o_{H2O,N}^{S} = \frac{44.8}{4.032} \cdot H + \frac{22.4}{18.016} \cdot W + o_{H2O,N}^{V}$$
(4.19)

Minimální objem vlhkých spalin $o_{SVmin,N}$ [Nm³/kg] je dán součtem minimálního objemu suchých spalin a objemu vodní páry dle vztahu (4.20)

$$o_{SV\min,N} = o_{SS\min,N} + o_{H2O,N}^{S}$$
(4.20)

Objem vlhkých spalin $o_{SV,N}$ [Nm³/kg] s přebytkem vzduchu $\alpha > 1$ [-] je vypočten ze součtu minimálního objemu vlhkých spalin a minimálního objemu vlhkého vzduchu s přebytkem spalovacího vzduchu ze vztahu (4.21)

$$o_{SV,N} = o_{SV\min,N} + (\alpha - 1) \cdot o_{VV\min,N}$$
 (4.21)

Výkon olejového hořáku P_{OH} [W] byl určen výpočetním programem ORC cyklu pro následující parametry chladiva: tlak na vstupu do čerpadla $p_1 = 0,4$ MPa, tlak na výstupu z čerpadla a zároveň maximální tlak na vstupu do parního motoru $p_6 = 3,2$ MPa, maximální teplotu na vstupu do parního motoru $t_6 = 130$ °C a hmotnostní průtok $m_{chl} = 1,1$ kg/s dle vzorce (4.22)

$$P_{OH} = (h_6 - h_3) \cdot m_{chl}$$
 (4.22)

kde je,

<i>h</i> ₆	entalpie chladiva na vstupu do parního motoru	[J/kg]
<i>h</i> ₃	entalpie kapalného chladiva po regeneraci	[J/kg]
<i>m</i> _{chl}	hmotnostní průtok chladiva	[kg/s]

Požadované hmotnostní množství paliva \dot{m}_{pal} [kg/s] pro výhřevnost oleje $q_i = 42,7 \cdot 10^6$ J/kg a požadovaný výkon olejového hořáku P_{OH} [W] je vypočteno ze vzorce (4.23)

$$\dot{m}_{pal} = \frac{P_{OH}}{q_i} \tag{4.23}$$

Měrné entalpie jednotlivých složek spalin jsou uvedeny v tabulce 4.12.

Teplota [°C]	CO2	SO2	N2	Ar	H2O	suchý vzduch
0	0	0	0	0	0	0
25	41,62	46,81	32,53	23,32	39,1	32,57
100	170	191,2	129,5	93,07	150,6	132,3
200	367,5	394,1	259,9	186	304,5	266,2
300	558,8	610,4	392,1	278,8	462,8	402,5
400	771,9	836,5	526,7	371,7	625,9	541,7
500	994,4	1070	664	464,7	749,5	684,1
600	1225	1310	804,3	557,3	968,8	829,6
700	1462	1554	947,3	650,2	1149	978,1
800	1705	1801	1093	743,1	1335	1129
900	1952	2052	1241	835,7	1526	1283
1000	2203	2304	1392	928,2	1723	1439

Tabulka 4.12: Měrná entalpie některých složek spalin h_i [kJ/Nm3] v závislosti na teplotě [23]

Entalpie minimálního množství vzduchu h_{Vmin} je měrná entalpie v jednotkách kJ/kg, která je spočítána z objemů a jednotlivých složek spalin v jednotkách, vztažených na normální metr krychlový v tabulce 4.12 za normálních podmínek ze vztahu (4.24).

$$h_{V\min} = o_{VS\min,N} \cdot h_{VS,N} + o^{V}_{H2O,N} \cdot h_{H2O,N}$$
(4.24)

Entalpie stechiometrických spalin h_{smin} [kJ/kg] pro přebytek spalovacího vzduchu $\alpha = 1$ je určena z měrných entalpií složek spalin a objemů těchto spalin za normálních podmínek dle vztahu (4.25)

$$h_{S\min} = o_{CO2,N} \cdot h_{CO2,N} + o_{SO2,N} \cdot h_{SO2,N} + o_{N2,N} \cdot h_{N2,N} + o_{Ar,N} \cdot h_{Ar,N} + o_{H2O,N} \cdot h_{H2O,N}$$
(4.25)

Měrná entalpie vlhkých spalin h_s [kJ/kg] je určena z minimálních entalpií stechiometrických spalin a minimálního množství vzduchu s minimálním přebytkem spalovacího vzduchu $\alpha = 1,1$ dle vztahu (4.26)

$$h_s = h_{s\min} + (\alpha - 1) \cdot h_{v\min} \tag{4.26}$$

Výkon na vstupu do ohříváku P_3 [W] je vypočten z entalpie vlhkého vzduchu, vlhkých spalin a hmotnostního průtoku spalin dle vzorce (4.27)

$$P_{3} = (1, 2 \cdot h_{V\min} + h_{S}) \cdot m_{pal}$$
(4.27)

Výsledné hodnoty stechiometrických výpočtů jsou uvedeny v tabulce 4.13.

Označení	Popis	Jednotka	Hodnota
$O_{ m o2min}$	Minimální objem kyslíku	Nm ³ /kg	2,316
$O_{ m VSmin}$	Minimální objem suchého vzduchu	Nm ³ /kg	11,029
$O_{ m VVmin}$	Minimální objem vlhkého vzduchu	Nm ³ /kg	11,205
$O^{\rm V}_{\rm H2O}$	Objem vodní páry v minimálním objemu vlhkého vzduchu	Nm ³ /kg	0,176
$O_{\rm CO2}$	Objem CO ₂ ve spalinách	Nm ³ /kg	1,586
O_{SO2}	Objem SO ₂ ve spalinách	Nm ³ /kg	0,005
$O_{ m N2}$	Objem NO ₂ ve spalinách	Nm ³ /kg	8,608
$O_{ m Ar}$	Objem Ar ve spalinách	Nm ³ /kg	0,101
$O_{ m SSmin}$	Minimální objem suchých spalin	Nm ³ /kg	10,301
$O^{\rm S}_{\rm H2O}$	Objem vodní páry v minimálním objemu vlhkých spalin	Nm ³ /kg	1,604
$O_{ m SVmin}$	Minimální objem vlhkých spalin	Nm ³ /kg	11,321
O _{SV}	Objem vlhkých spalin	Nm ³ /kg	13,025
Рон	Výkon olejového hořáku	kW	250
m _{pal}	Požadované hmotnostní množství paliva	kg/s	0,006
$m_{\rm chl}$	Hmotnostní průtok chladiva	kg/s	1,1

Tabulka 4.13: Výsledné hodnoty stechiometrického výpočtu spalin

Tabulky výsledných entalpií spalin, vstupních výkonů, středních měrných tepelných kapacit, kinematických viskozit a tepelných vodivostí základních složek spalin včetně jejich závislostí jsou uvedeny v příloze 6, 8 a 10.

4.5 Konstrukční parametry pro výpočet teplosměnných ploch boileru

Hodnoty dopočtených výkonů jsou použity ke stanovení velikosti teplosměnných ploch. Konstrukční parametry pro výpočty teplosměnných ploch jsou uvedeny v tabulce 4.14 a na obrázku 4.2. Základná parametry dle tabulky 4.14 jsou pevně dány a dopočítává se teplosměnná plocha trubek, resp. jejich délka v jednotlivých částech boileru. Parametry byly voleny dle již existujícího boileru firmy PolyComp, uvedeného v předchozí kapitole. Uložení trubek v jednotlivých tazích je znázorněno na obrázku 3.5. Trubky uvnitř boileru jsou uloženy vystřídaně. Ve výpočtu je uvažováno zmenšení průtočného průřezu spalin v důsledku přilehlých přepážek a přítomnosti trubek. Tím je zvýšena rychlost spalin ve spalinových tazích a součinitel přestupu tepla.

Boiler se skládá z ohříváku, výparníku a přehříváku. Protože výměník je tvořen svazkem trubek, nejsou tyto jednotlivé části jednoznačně odděleny.

Parametr	Popis	Hodnota	Jednotka
<i>S</i> ₁	Podélná rozteč trubek	0,078	m
<i>s</i> ₂	Příčná rozteč trubek	0,02	m
d_{i}	Vnitřní průměr potrubí	0,012	m
d_0	Vnější průměr potrubí	0,016	m
n	Počet roztečí v podélném směru	7	-
1	Délka trubky	0,99	m
S _{cel}	Čelní průřez tahu v ohříváku a výparníku	0,0581	m ²
S _{cel2}	Čelní průřez tahu v přehříváku	0,0363	m ²

Tabulka 4.14: Konstrukční parametry pro výpočet teplosměnných ploch [13]

Obrázek 4.2: Trubky vystřídaně [23]. s₁ – příčná rozteč, s₂ – podélná rozteč, øD – průměr trubky, w – vektor rychlosti proudu spalin

V první fázi je třeba stanovit součinitel přestupu tepla na straně spalin a na vnitřní straně trubek. Teplosměnná plocha se následně vypočte z rekuperovaného tepelného výkonu, součinitele přestupu tepla a logaritmického teplotního spádu ze známého vztahu 4.51 (viz dále)

Střední logaritmický teplotní spád, použitý při výpočtu je definován teplotami chladiva na vstupu a na výstupu z boileru a teplotou spalin na vstupu do boileru a na výstupu z boileru. Jednotlivé kroky výpočtu odpovídají výpočetnímu postupu, uvedenému ve skriptech Výpočty kotlů a spalinových výměníků [23]. Jsou využity k výpočtu korekčních součinitelů, které se uplatní při určení součinitele přestupu tepla na straně spalin.

Příčná poměrná rozteč σ_1 je vypočtena z poměru podélné rozteče a vnějšího průměru trubky dle vztahu (4.28)

$$\sigma_1 = \frac{s_1}{d_0} \tag{4.28}$$

Podélná poměrná rozteč σ_2 je vypočtena z poměru příčné rozteče a vnějšího průměru ze vztahu (4.29)

$$\sigma_2 = \frac{s_2}{d_0} \tag{4.29}$$

Úhlopříčná poměrná rozteč σ_{21} , která je příčnou vzdáleností mezi trubkami je vypočtena ze vztahu (4.30)

$$\sigma_{21} = \sqrt{0,25 \cdot \sigma_1^2 + \sigma_2^2} \tag{4.30}$$

Parametr pro výpočet korekčního součinitele φ_{σ} je vypočten z poměru příčné a úhlopříčné rozteče trubek ze vzorce (4.31) Používá se ke korekci příčných a úhlopříčných vzdáleností mezi trubkami výměníku.

$$\varphi_{\sigma} = \frac{\sigma_1 - 1}{\sigma_{21} - 1} \tag{4.31}$$

Rozteč	Hodnota	Jednotka
σ_1	4,875	1
σ_2	1,25	1
σ_{21}	2,74	1
$arphi_{\sigma}$	2,23	1

Tabulka 4.15: Hodnoty vypočtených roztečí

Korekcí C_z se zpřesní vliv počtu řad svazku v podélném směru proudu z_2 . Při $z_2 \ge 10$ je $C_z = 1$. Korekční součinitel C_s [-] na uspořádání svazku byl vypočten dle vztahu pro poměrnou podélnou rozteč $\sigma_2 \ge 3$ v tabulce 4.16.

Tabulka 4.16: Podmínky pro výpočet korekčního součinitele C_s [23]

Podmínka pro korekční součinitel	Podmínka pro rozteč	Uvedený vztah
$0,1 < \varphi_{\sigma} \le 1,7$		$C_{\rm s}=0,34\bullet\varphi_{\sigma}^{0,1}$
$1,7 < \varphi_{\sigma} \le 4,5$	$\sigma_1 < 3$	$C_{\rm s}=0,275\bullet\varphi_{\sigma}^{0,5}$
$1,7 < \varphi_{\sigma} \le 4,5$	$\sigma_2 \ge 3$	$C_{\rm s}=0,34\bullet\varphi_{\rm \sigma}^{0,1}$

Vypočtená hodnota korekčního součinitele na uspořádání svazku C_s reálné konstrukce je 0,41.

4.6 Výpočet teplosměnné plochy ohříváku

Při výpočtu teplosměnných ploch se výpočetním programem nejprve určí jejich výstupní tepelný výkon z entalpií a hmotnostního průtoku chladiva v referenčním ORC, teploty spalin na vstupu a výstupu tepelného výměníku, odpovídající teplotní rozdíly mezi chladivem a spalinami a logaritmické teplotní spády. Poté se určí bezrozměrná čísla s použitím fyzikálních vlastností spalin ze stechiometrie. Následuje výpočet součinitelů přestupu tepla ze strany chladiva a spalin, z kterých se určí součinitel prostupu tepla. Výpočet je zakončen stanovením potřebné teplosměnné plochy pomocí požadovaného tepelného výkonu, součinitele prostupu tepla a logaritmického teplotního spádu.

Výpočet výstupního výkonu z ohříváku $P_{3_{II}}$, tj. výkonu, potřebného pro pokrytí požadavků z hlediska dostatečného tepelného výkonu u výparníku a přehříváku se provede z rozdílu vstupního výkonu ze zdroje tepla (ohřátých spalin) $P_{S3_{II}}$ a požadovaného tepelného výkonu ohříváku P_{poz3} ze vzorce (4.32)

$$P_{3_{II}} = P_{S3_{I}} - P_{poz3}$$
(4.32)

Vstupní teplota spalin na vstupu spalin do ohříváku t_{S3_I} se předpokládá 1000 °C, výstupní teplota spalin $t_{S3_{II}}$ je dána předchozími stechiometrickými výpočty a je vypočtena z polynomické funkce v závislosti na výstupním výkonu v příloze P6.

Rozdíl teploty spalin, vstupujících do ohříváku a teploty chladiva na výstupu chladiva z ohříváku $\Delta t_{S3_{-}I}$ [°C] je vypočten dle (4.33)

$$\Delta t_{S_3} = t_{S_3} - t_4 \tag{4.33}$$

Rozdíl teploty spalin, vystupujících z ohříváku a teploty chladiva na vstupu chladiva do ohříváku $\Delta t_{S3_{II}}$ [°C] je vypočten dle (4.34)

$$\Delta t_{S3} = t_{S3} - t_3 \tag{4.34}$$

Logaritmický teplotní spád $LMTD_1$ je vypočten z předchozích teplotních rozdílů chladiva a spalin v ohříváku dle vztahu (4.35).

$$LMTD_{1} = \frac{\Delta t_{S3_{I}} - \Delta t_{S3_{I}}}{\ln \frac{\Delta t_{S3_{I}}}{\Delta t_{S3_{I}}}}$$
(4.35)

Průměrná teplota spalin t_{Ss3} [°C] je vypočtena z teploty spalin na vstupu a výstupu spalin z ohříváku dle (4.36)

$$t_{Ss1} = \frac{t_{S3_I} + t_{S3_II}}{2} \tag{4.36}$$

Z následujících vzorců se počítají fyzikální vlastnosti vlhkých spalin:

Hustota vlhkých spalin ρ_{SV3} [kg/m³] při teplotě spalování je odvozena ze stavové rovnice pro hustotu vlhkých spalin v ohříváku při normálních podmínkách $\rho_{SV3,N} = 1,29$ kg/Nm³, termodynamickou teplotu v normálních podmínkách $T_N = 273$ K, tlak v normálních podmínkách $p_N = 101325$ Pa a tlak vlhkých spalin p_{SV3} , který se předpokládá 101325Pa na vstupu do ohříváku dle (4.37)

$$\rho_{SV3} = \rho_{SV3,N} \cdot \frac{T_N}{T_N + t_{Ss1}} \cdot \frac{p_{SV3}}{p_N}$$
(4.37)

Hustota suchého vzduchu ρ_{VS3} [kg/m³] při teplotě spalování je odvozena ze stavové rovnice pro hustotu vlhkých spalin v ohříváku při normálních podmínkách $\rho_{VS3,N} = 1,285$ kg/Nm³, termodynamickou teplotu $T_N = 273$ K, tlak p_N v normálních podmínkách 101325Pa a tlak suchého vzduchu p_{VS3} , který se předpokládá 101325Pa na vstupu do ohříváku dle (4.38)

$$\rho_{VS3} = \rho_{VS3,N} \cdot \frac{T_N}{T_N + t_{Ss3}} \cdot \frac{p_{VS3}}{p_N}$$
(4.38)

Kinematická viskozita v_{VS1} je určena z polynomické funkce v závislosti na průměrné teplotě spalin, uvedené v příloze P7, tepelná vodivost z polynomické funkce v příloze P9 a měrná tepelná kapacita z polynomické funkce v příloze P11.

Přibližný minimální objem vlhkých spalin o_{SVmin} [Nm³/kg] je vypočten z empiricky určeného vztahu Rosina-Freslinga pro kapalná paliva, konstantu K₃=1,11 [Nm³/kg], konstantu K₄ = 0 [Nm³/kg] a výhřevnost paliva $Q_i = 42,7 \cdot 10^6$ [J/ Nm³] (4.39)

$$o_{SV\min} = K_3 \cdot \frac{Q_i}{4186,7} + K_4 \tag{4.39}$$

Hmotnostní průtok spalin \dot{m}_{s3} je počítán z přibližného minimálního objemu vlhkých spalin, hmotnostního průtoku paliva a hustoty vlhkých spalin v normálních podmínkách dle (4.40)

$$\dot{m}_{S3} = o_{SV\min} \cdot \dot{m}_{pal} \cdot \rho_{SV,N} \tag{4.40}$$

Objemový průtok spalin při teplotě spalování \dot{V}_{s3} [m³·s⁻¹] je dán podílem hmotnostního průtoku spalin při teplotě spalování a hustotou vlhkých spalin ve vztahu (4.41)

$$\dot{V}_{S1} = \frac{\dot{m}_{S3}}{\rho_{SV3}} \tag{4.41}$$

Maximální rychlost spalin v minimálním průřezu je vypočtena z podílu objemového průtoku spalin a čelního průřezu dle (4.42)

$$w_{\max 3} = \frac{\dot{V}_{S3}}{S_{cel}}$$
(4.42)

Prandtlovo číslo Pr [-] je dáno hustotou, tepelnou kapacitou, kinematickou viskozitou vlhkých spalin a tepelnou vodivostí vlhkých spalin dle vztahu (4.43)

$$\Pr_{3} = \frac{\rho_{SV3} \cdot c_{p_{SV3}} \cdot \nu_{SV3}}{\lambda_{SV3}}$$
(4.43)

Reynoldsovo číslo vlhkých spalin Re_S je vypočteno z maximální rychlosti spalin v minimálním průřezu $w_{\text{max}3}$, vnějšího průměru trubky d_0 a kinematické viskozity vlhkých spalin v_{SV3} dle vztahu (4.44)

$$\operatorname{Re}_{S3} = \frac{w_{\max 3} \cdot d_0}{v_{SV3}}$$
(4.44)

Součinitel přestupu tepla vlhkých spalin α_{SV3} [W/m²·K] je odvozen ze vztahu pro výpočet Nusseltova čísla pro rozsah Reynoldsova čísla od 1500 do 10⁵ dle [23] s využitím korekčních součinitelů Cs a Cz, uvedených v kapitole konstrukčních parametrů a fyzikálních vlastností vlhkých spalin. Je dán tepelnou vodivostí vlhkých spalin λ_{SV3} , vnitřním průměrem trubky, korekčními součiniteli, Reynoldsovým a Prandtlovým číslem podle vztahu (4.45)

$$\alpha_{SV3} = C_z \cdot C_s \cdot \frac{\lambda_{SV3}}{d_0} \cdot \operatorname{Re}_{s3}^{0.6} \cdot \operatorname{Pr}^{0.33}$$
(4.45)

Výpočet rychlosti proudění chladiva w_{chl3} je odvozen z výpočtu hmotnostního průtoku chladiva \dot{m}_{chl} a je dán hmotnostním průtokem chladiva, průtočným průřezem chladiva s vnitřním průměrem trubky d_i a střední hodnotou hustoty chladiva při ohřevu ρ_{s3} dle (4.46)

$$w_{chl3} = \frac{\dot{m}_{chl}}{\frac{\pi \cdot d_i^4}{4} \cdot \rho_{s3}}$$
(4.46)

Prandtlovo číslo chladiva je určeno střední hodnotou dynamické viskozity μ_s , tepelné kapacity chladiva c_{p_s3} a střední hodnotou tepelné vodivosti chladiva λ_{s3} dle rovnice (4.47)

$$\Pr_{chl3} = \frac{\mu_{s3} \cdot c_{p_{-}s3}}{\lambda_{31}}$$
(4.47)

Reynoldsovo číslo chladiva je vypočteno z maximální rychlosti chladiva w_{chl3} , vnějšího průměru trubky d_{0} , střední hodnoty dynamické viskozity μ_{S3} a hustoty chladiva ρ_{S3} dle vztahu (4.48)

$$\operatorname{Re}_{chl3} = \frac{w_{chl3} \cdot d_0}{\frac{\mu_{s3}}{\rho_{s3}}}$$
(4.48)

Nusseltovo číslo chladiva je vypočteno z Prandtlova čísla Pr_{chl3} v rozmezí od 0,7 do 120 a Reynoldsova čísla Re_{chl3} v rozmezí od 10⁴ do 10⁵ dle vztahu (4.49)

$$Nu_{chl3} = 0,023 \cdot \left(\text{Re}_{chl3}\right)^{0.8} \cdot \text{Pr}_{chl3}^{0.4}$$
(4.49)

Součinitel přestupu tepla chladiva α_{chl3} je vypočten z Nusseltova čísla (uvedeno v seznamu bezrozměrných čísel) ze střední hodnoty tepelné vodivosti λ_{s3} a z vnějšího průměru trubky $d_{0.}$

Součinitel prostupu tepla k_3 je vypočten z vnějšího průměru trubky d_0 , součinitele přestupu tepla vlhkých spalin α_{SV3} , tepelné vodivosti oceli λ_{oc} , vnitřního průměru trubky d_i a součinitele přestupu chladiva α_{chl3} dle vztahu (4.50)

$$k_{3} = \frac{1}{\left(\frac{1}{d_{0} \cdot \boldsymbol{\alpha}_{SV3}} + \frac{1}{\lambda_{oc}} \cdot \ln \frac{d_{0}}{d_{i}} + \frac{1}{d_{i} \cdot \boldsymbol{\alpha}_{chl3}}\right)}$$
(4.50)

Výpočet potřebné teplosměnné plochy ohříváku je odvozen ze vztahu pro výpočet požadovaného tepelného výkonu ohříváku P_{poz3} s použitím logaritmického teplotního spádu *LMTD*₃ a součinitele přestupu tepla k_3 dle (4.51)

$$S_{i3} = \frac{P_{poz3}}{LMTD_3 \cdot k_3} \tag{4.51}$$

Potřebná délka trubky je vypočtena z podílu potřebné teplosměnné plochy a součinu vnějšího průměru trubky s číslem pí dle (4.52)

$$l_3 = \frac{S_{t3}}{d_0 \cdot \pi}$$
(4.52)

4.7 Výpočet teplosměnné plochy výparníku

Postup výpočtu teplosměnné plochy výparníku je obdobný výpočtu v předchozí kapitole. Výpočet výstupního výkonu z výparníku $P_{4_{II}}$ je proveden z rozdílu výstupního výkonu z ohříváku $P_{3_{II}}$ a požadovaného tepelného výkonu P_{poz4} při vypařování chladiva dle (4.53)

$$P_{4_II} = P_{3_II} - P_{poz4} \tag{4.53}$$

Vstupní teplota spalin t_{S4_I} je rovna výstupní teplotě spalin z ohříváku t_{S3_II} . Výstupní teplota spalin z výparníku je vypočtena z polynomické funkce v příloze P6.

Rozdíl teploty spalin na vstupu spalin do výparníku t_{S4_I} a teploty chladiva po vypařování t_5 je vypočten dle (4.54)

$$\Delta t_{S4} = t_{S4} = t_{54} = t_{5} \tag{4.54}$$

Rozdíl teploty spalin na výstupu spalin z výparníku $t_{S4_{II}}$ a teploty chladiva na počátku vypařování t_4 je vypočten ze vztahu (4.55)

$$\Delta t_{S4_II} = t_{S4_II} - t_4 \tag{4.55}$$

Logaritmický teplotní spád *LMTD*₄, průměrná teplota spalin t_{Ss4} , hustota vlhkých spalin ρ_{SV4} , hustota suchého vzduchu ρ_{VS4} , dynamická viskozita vlhkých spalin μ_{SV4} , tepelná vodivost vlhkých spalin λ_{SV4} , tepelná kapacita vlhkých spalin $c_{\rho SV4}$, objemový průtok spalin při teplotě spalování \dot{V}_{S4} , maximální rychlost spalin v minimálním průřezu výparníku w_{max4} , Prandtlovo číslo Pr_4 , součinitel přestupu tepla vlhkých spalin α_{SV4} jsou vypočteny stejně, jako v předchozí kapitole.

Součinitel přestupu tepla chladiva byl určen pro 2-fázové proudění v průběhu vypařování dle vztahů (4.56) až (4.62).

Nejprve bylo vypočteno Prandtlovo číslo chladiva pro výparník Pr_{chl4} jako v předchozí kapitole. Reynoldsovo číslo chladiva ve výparníku Re_{chl4} bylo vypočteno z hmotnostního průtoku chladiva \dot{m}_{chl} , vnějšího průměru potrubí d_0 , vnitřního průměru trubky d_i , dynamické viskozity chladiva na počátku varu μ_{z4} ze vztahu (4.56)

$$\operatorname{Re}_{chl4} = \frac{\dot{m}_{chl} \cdot d_0}{\frac{\pi \cdot d_i^2}{4} \cdot \mu_{z4}}$$
(4.56)

Výparné teplo chladiva je dáno rozdílem entalpií na začátku a konci varu dle vztahu (4.57)

$$q_2 = h_5 - h_4 \tag{4.57}$$

Hmotnostní průtok pro páru chladiva je určen z hmotnostního průtoku chladiva m_{chl} , a hustot chladiva na začátku varu ρ_{z4} a na konci varu ρ_{k4} dle vztahu (4.58)

$$\dot{m}_{chl_{k4}} = \dot{m}_{chl} \cdot \left(\frac{\rho_{z4}}{\rho_{k4}}\right)^{0.5}$$
(4.58)

Hmotnostní průtok pro chladivo na začátku varu \dot{m}_{chl_z4} je roven hmotnostnímu průtoku chladiva \dot{m}_{chl} .

Ekvivalentní hmotnostní průtok chladiva v oblasti vypařování $m_{chl_{eq}}$ je určen z hmotnostního průtoku páry chladiva a hmotnostního průtoku chladiva na začátku varu dle vztahu (4.59)

$$\dot{m}_{chl_eq} = \frac{\dot{m}_{chl_k4} + \dot{m}_{chl_z4}}{2}$$
(4.59)

Ekvivalentní Reynoldsovo číslo Re_{eq} je vypočteno z ekvivalentního hmotnostního průtoku chladiva, vnějšího průměru trubky, vnitřního průměru trubky a dynamické viskozity chladiva dle (4.60)

$$\operatorname{Re}_{eq} = \frac{\dot{m}_{chl_eq} \cdot d_0}{\frac{\pi \cdot d_i^2}{4} \cdot \mu_{z4}}$$
(4.60)

Ekvivalentní Boiling number (podobnostní číslo blánového varu) Bo_{eq} je dáno podílem požadovaného tepelného výkonu a tepelného výkonu při vypařování chladiva a je spočteno dle vztahu (4.61)

$$Bo_{eq} = \frac{m_{chl} \cdot q_{poz_4}}{\dot{m}_{chl} \quad e_q \cdot h_4} \tag{4.61}$$

Nusseltovo číslo 2-fázového proudění chladiva R134a je vypočteno z Reynoldova čísla Re v rozmezí od 10^3 do 10^5 , ekvivalentního Reynoldsova čísla Re_{eq} ; Prandtlova čísla Pr v rozmezí 0,7 až 200 a z ekvivalentního podobnostního čísla varu Bo_{eq} podle vztahu (4.62)

$$Nu_{chl4} = 1,926 \cdot \operatorname{Re}_{eq} \cdot \frac{\operatorname{Pr}_{4}^{0,33}}{\sqrt{\operatorname{Re}_{4}}} \cdot Bo_{eq}$$
(4.62)

Součinitel přestupu tepla chladiva α_{chl4} 2-fázového proudění chladiva je vypočten z Nusseltova čísla (uvedeno v seznamu bezrozměrných čísel), z tepelné vodivosti chladiva na začátku varu λ_{z4} a z vnějšího průměru trubky $d_{0.}$

Součinitel prostupu tepla, teplosměnná plocha a potřebná délka trubky se počítá stejně, jako v předchozí kapitole.

4.8 Výpočet teplosměnné plochy přehříváku

Výpočet teplosměnné plochy přehříváku je obdobný, jako výpočet teplosměnné plochy ohříváku. Výpočet výstupního výkonu z přehříváku $P_{5_{II}}$ je proveden z rozdílu výstupního výkonu z výparníku a požadovaného tepelného výkonu při přehřívání chladiva dle (4.63)

$$P_{5_II} = P_{4_II} - P_{poz5} \tag{4.63}$$

Vstupní teplota spalin t_{S5_I} je rovna výstupní teplotě spalin z výparníku $t_{S4_{II}}$ Výstupní teplota spalin z přehříváku je vypočtena z polynomické funkce, uvedené v příloze P6.

Rozdíl teploty spalin na vstupu spalin do přehříváku t_{S5_I} a teploty chladiva po přehřátí t_6 je vypočten dle (4.64)

$$\Delta t_{S5-I} = t_{S5-I} - t_6 \tag{4.64}$$

Rozdíl teploty chladiva na počátku přehřívání t_5 a teploty spalin na výstupu spalin z přehříváku $t_{S5_{II}}$ je vypočten ze vztahu (4.65)

$$\Delta t_{S5_{-II}} = t_{S5_{-II}} - t_5 \tag{4.65}$$

Logaritmický teplotní spád *LMTD*₅, průměrná teplota spalin t_{Ss5} , hustota vlhkých spalin ρ_{SV5} , hustota suchého vzduchu ρ_{VS5} , dynamická viskozita vlhkých spalin μ_{SV5} , tepelná vodivost vlhkých spalin λ_{SV5} , tepelná kapacita vlhkých spalin c_{p_SV5} , objemový průtok spalin při teplotě spalování V_{S5} , maximální rychlost spalin v minimálním průřezu výparníku v_{max5} , Prandtlovo číslo Pr_5 , součinitel přestupu tepla vlhkých spalin α_{SV5} , rychlost proudění chladiva v_{chl} , Prandtlovo číslo chladiva Pr_{chl} , součinitel přestupu α_{chl5} a prostupu tepla chladiva k_5 se počítá stejně, jako při výpočtu teplosměnné plochy ohříváku.

4.9 Výpočet teplosměnné plochy kondenzátoru

Při výpočtu teplosměnné plochy kondenzátoru se postupuje podobně jako v předešlých případech s tím rozdílem, že je nejprve určena skutečná teplosměnná plocha již navrženého výměníku firmy PolyComp z jeho konstrukčních parametrů. Tato plocha musí být větší než následně spočítaná požadovaná teplosměnná plocha kondenzátoru v druhé části výpočtu.

Následující výpočty tepelných výkonů se předpokládají pro expanzi chladiva v oblasti přehřáté páry. V případě expanze chladiva v oblasti mokré páry se tepelný výkon přehřáté páry nepočítá.

Tepelný výkon přehřáté páry v kondenzátoru P_{PP} [W] je vypočten z rozdílu entalpií páry chladiva na výstupu regeneračního výměníku a entalpie chladiva na vstupu do kondenzátoru v součinu s hmotnostním průtokem chladiva dle vztahu (4.66)

$$P_{PP} = \dot{m}_{chl} \cdot \left(h_r - h_9\right) \tag{4.66}$$

Tepelný výkon mokré páry v kondenzátoru $P_{\rm MP}$ [W] je vypočten z rozdílu entalpie chladiva na vstupu do kondenzátoru a entalpie chladiva na výstupu z kondenzátoru v součinu s hmotnostním průtokem chladiva dle vztahu (4.67)

$$P_{MP} = \dot{m}_{chl} \cdot \left(h_9 - h_1\right) \tag{4.67}$$

Celkový tepelný výkon je dán součtem tepelného výkonu přehřáté páry a mokré páry v kondenzátoru dle vztahu (4.68)

$$P_{MP_{P}} = P_{MP} + P_{PP} \tag{4.68}$$

Konstrukční parametry kondenzátoru, zvolené dle kondenzátoru firmy PolyComp jsou uvedeny v tabulce 4.17.

Parametr	Popis	Hodnota	Jednotka
h_{ν}	Výška kondenzátoru	2.28	m
···ĸ		_,	
Sk	Sířka kondenzátoru	4,5	m
$d_{ m k}$	Hloubka kondenzátoru	0,156	m
d_{ik}	Vnitřní průměr trubky kondenzátoru	0,011	m
d _{0k}	Vnější průměr trubky kondenzátoru	0,012	m
d_{x}	Rozteč trubek na hloubku kondenzátoru	0,03	m
d_{y}	Rozteč trubek na výšku kondenzátoru	0,03	m
tz	Tloušťka žebra	0,0005	m
<i>S</i> _{pk}	Rozteč žeber	0,003	m
ηz	Účinnost odvodu tepla žebrem kondenzátoru	0,85	-

Tabulka 4.17: Parametry kondenzátoru [13]

Obrázek 4.3: Náčtek chladicí věže (na levo) s řezem trubkami a žebry výměníku (na pravo) [13]

Čelní plocha kondenzátoru S_{kcel} je vypočtena ze součinu výšky h_k a šířky s_k kondenzátoru dle vzorce (4.69)

$$S_{kcel} = h_k \cdot s_k \tag{4.69}$$

Počet roztečí trubek na výšku n_h je vypočten z výšky kondenzátoru h_k , vnějšího průměru trubky d_{0k} a rozteče trubek na výšce kondenzátoru d_y dle vztahu (4.70)

$$n_{h} = \frac{h_{k} - 2 \cdot d_{0k}}{d_{v}} \tag{4.70}$$

Počet roztečí trubek na hloubku n_d je vypočtena z hloubky kondenzátoru d_k , vnějšího průměru trubky d_{0k} , a z rozteče trubek na hloubku kondenzátoru dle vztahu (4.71)

$$n_d = \frac{d_k - 2 \cdot d_{0k}}{d_x}$$
(4.71)

Počet roztečí na šířku n_s je vypočten ze šířky kondenzátoru s_k , rozteče žeber s_{pk} a tloušťky žebra t_z dle vztahu (4.72)

$$n_s = \frac{S_k}{S_{pk} + t_z} \tag{4.72}$$

Počet žeber n_z je vypočten z poměru šířky kondenzátoru s_k a rozteče žeber s_{pk} dle vztahu (4.73)

$$n_z = \frac{s_k}{s_{pk}} - 2 \tag{4.73}$$

Čelní plocha žeber S_{cel_z} je vypočtena ze součinu počtu žeber n_z , tloušťky žebra t_z a výšky kondenzátoru h_k dle vzorce (4.74)

$$S_{cel_z} = n_z \cdot t_z \cdot h_k \tag{4.74}$$

Čelní plocha trubky S_{1tr} mezi dvěma žebry je vypočtena ze součinu vnějšího průměru trubky d_{0k} a rozteče žeber s_{pk} dle vztahu (4.75)

$$S_{1tr} = d_{0k} \cdot s_{pk} \tag{4.75}$$

Celková čelní plocha trubky v kondenzátoru $S_{cel_{tr}}$ je dána součinem čelní plochy trubky S_{1tr} , počtu roztečí na šířku n_s a počtu roztečí na výšku n_h dle vztahu (4.76)

$$S_{cel_tr} = S_{1tr} \cdot n_s \cdot n_h \tag{4.76}$$

Součet celkové čelní plochy trubky S_{cel_tr} a celkové plochy žeber S_{cel_z} je určena ze vztahu (4.77)

$$S_{celk} = S_{cel_z} + S_{cel_tr}$$

$$(4.77)$$

Plocha pro průchod vzduchu, zúžená o celkovou plochu trubky a žeber S_{zuz} je dána rozdílem čelní plochy kondenzátoru a čelní plochy trubek včetně žeber ve vztahu (4.78)

$$S_{zuz} = S_{kcel} - S_{celk} \tag{4.78}$$

Poměrné zúžení Z je vypočteno z poměru součtu celkové plochy trubek a žeber S_{celk} a zúžené plochy S_{zuz} dle vztahu (4.79)

$$Z = \frac{S_{celk}}{S_{zuz}} \tag{4.79}$$

Plocha kondenzátoru je vypočtena ze součinu výšky kondenzátoru h_k , hloubky kondenzátoru d_k a počtu žeber n_z ze vzorce (4.80)

$$S_{kond} = h_k \cdot d_k \cdot n_z \tag{4.80}$$

φ	Relativní vlhkost vzduchu	70	%
$p_{ m b}$	Barometrický tlak	101400	Pa
C _{p_chl}	Měrná tepelná kapacita páry chladiva	1840	J/kg∙K
l_0	Výparné teplo chladiva	2500	kJ/kg
<i>t</i> _{vzd_vst}	Teplota vzduchu na vstupu do kondenzátoru	-1 až 30	C
$ ho_{ m vzd}$	Hustota vzduchu	1,2	kg/m ³

Tabulka 4.18: Parametry vzduchu a chladiva [13]

Parciální tlak sytých par vzduchu na vstupu vzduchu do kondenzátoru je určen dle regresní rovnice pro teplotu vzduchu na vstupu vzduchu do kondenzátoru $t_{vzd_{I}}$ (4.81) Pro teploty -20 až 0°C je chyba menší než 1‰. [9]

$$p_{P_{vzd_{-}I}}^{"} = e^{\frac{23,58-\frac{4044,2}{235,6+t_{vzd_{-}I}}}{235,6+t_{vzd_{-}I}}}$$
(4.81)

Měrná vlhkost vzduchu na vstupu vzduchu do kondenzátoru je vypočtena z měrné plynové konstanty suchého vzduchu $r_{\rm VS}$ 287 [J/kg·K], měrné plynové konstanty páry $r_{\rm P}$ 461,5 [J/kg·K], relativní vlhkosti vzduchu φ , barometrického tlaku $p_{\rm b}$ a parciálního tlaku par vzduchu na vstupu vzduchu do kondenzátoru $p_{\rm p_vzd_l}$ pomocí vztahu (4.82)

$$x = \frac{r_{VS}}{r_p} \cdot \frac{\varphi \cdot p_{p_vzd_I}}{p_b - \varphi \cdot p_{p_vzd_I}}$$
(4.82)

Měrná tepelná kapacita $c_{p_vzd_I}$, dynamická viskozita μ_{vzd_I} a tepelná vodivost λ_{vzd_I} vzduchu na vstupu vzduchu do kondenzátoru je určena z polynomických funkcí, popisujících závislost zmíněných fyzikálních veličin na teplotě vzduchu, který vstupuje do kondenzátoru.

Entalpie vzduchu na vstupu vzduchu do kondenzátoru je vypočtena z měrné tepelné kapacity vzduchu $c_{p_vzd_I}$, teploty vzduchu t_{vzd_I} , měrné vlhkosti vzduchu x a výparného tepla l_0 dle vztahu (4.83)

$$h_{vzd_{I}} = c_{p_{vzd_{I}}} \cdot t_{vzd_{I}} + x \cdot (l_0 + c_{p_{vzd_{I}}} \cdot t_{vzd_{I}})$$
(4.83)

Teplota vzduchu na trubce v kondenzátoru t_{vzd_tr} se předpokládá shodná s teplotou chladiva při kondenzaci, tj. s teplotou chladiva na vstupu do čerpadla $t_{\check{c}}$.

Měrná tepelná kapacita $c_{p_vzd_tr}$, dynamická viskozita μ_{vzd_tr} a tepelná vodivost λ_{vzd_tr} vzduchu na trubce v kondenzátoru je určena z polynomických funkcí, popisujících závislost zmíněných fyzikálních veličin na teplotě vzduchu, vstupujícího do kondenzátoru.

Parciální tlak par vzduchu $p_{p_vzd_tr}$ a entalpie vzduchu h_{vzd_tr} na trubce v kondenzátoru pro teplotu t_{vzd_tr} je vypočtena analogicky s předchozím výpočtem parametrů vzduchu na vstupu vzduchu do kondenzátoru.

Teplota vzduchu na výstupu vzduchu z kondenzátoru $t_{vzd_{II}}$ je zvolena o 3°C nižší, než je teplota chladiva v kondenzátoru.

Měrná tepelná kapacita $c_{p_vzd_II}$, dynamická viskozita μ_{vzd_II} a tepelná vodivost λ_{vzd_II} vzduchu na výstupu vzduchu z kondenzátoru je určena z polynomických funkcí, popisujících závislost zmíněných fyzikálních veličin na teplotě vzduchu na výstupu vzduchu z kondenzátoru t_{vzd_II}

Parciální tlak par vzduchu $p_{p_vzd_II}$ a entalpie vzduchu h_{vzd_II} na výstupu vzduchu z kondenzátoru pro teplotu t_{vzd_II} je vypočten analogicky s předchozím výpočtem parametrů vzduchu na vstupu vzduchu do kondenzátoru.

Rozdíl entalpií Δh_1 mezi vstupem a výstupem vzduchu z kondenzátoru je vypočten z rozdílu entalpií vzduchu na vstupu a výstupu vzduchu z kondenzátoru dle rovnice (4.84)

$$\Delta h_1 = h_{vzd_II} - h_{vzd_I} \tag{4.84}$$

Rozdíl entalpií Δh_2 mezi vstupem vzduchu do kondenzátoru a trubkou v kondenzátoru je vypočten dle rovnice (4.85)

$$\Delta h_2 = h_{vzd_tr} - h_{vzd_I} \tag{4.85}$$

Hmotnostní průtok vzduchu v kondenzátoru \dot{m}_{vzd} je vypočten z podílu tepelného výkonu mokré a přehřáté páry v kondenzátoru $P_{\rm MP \ PP}$ a rozdílu entalpií Δh_1 dle rovnice (4.86)

$$\dot{m}_{vzd} = \frac{P_{MP_{-}PP}}{\Delta h_1} \tag{4.86}$$

Objemový průtok vzduchu \dot{V}_{vzd} je vypočten z podílu hmotnostního průtoku vzduchu \dot{m}_{vzd} a hustoty vzduchu ρ_{vzd} dle rovnice (4.87)

$$\dot{V}_{vzd} = \frac{\dot{m}_{vzd}}{\rho_{vzd}}$$
 (4.87)

Rychlost proudění vzduchu w_{vzd} je vypočtena z podílu objemového průtoku vzduchu \dot{V}_{vzd} a celkové čelní plochy kondenzátoru S_{kcelk} dle rovnice (4.88)

$$w_{vzd} = \frac{\dot{V}_{vzd}}{S_{kcelk}}$$
(4.88)

Maximální rychlost proudění vzduchu w_{vzd_max} je vypočtena ze součinu rychlosti vzduchu w_{vzd} a zúžení Z ze vzorce (4.89)

$$w_{vzd_max} = w_{vzd} \cdot Z \tag{4.89}$$

Bezrozměrné Reynoldsovo číslo vzduchu v kondenzátoru Re_{kond} je vypočteno z hustoty vzduchu $\rho_{vzd_{I}}$ a z dynamické viskozity vzduchu $\mu_{vzd_{I}}$ na vstupu vzduchu do kondenzátoru, maximální rychlosti vzduchu $w_{vzd_{max}}$ a vnitřního průměru trubky d_i dle vztahu (4.90)

$$\operatorname{Re}_{kond} = \frac{\rho_{vzd_{-}I} \cdot w_{vzd_{-}\max} \cdot d_{i}}{\mu_{vzd_{-}I}}$$
(4.90)

Bezrozměrné Prandtlovo číslo na vstupu vzduchu do kondenzátoru Pr_{vzd_I} je vypočteno z měrné tepelné kapacity $c_{p_vzd_I}$, kinematické viskozity v_{vzd_I} , hustoty ρ_{vzd_I} , tepelné vodivosti λ_{vzd_I} vzduchu na vstupu vzduchu do kondenzátoru dle rovnice (4.91)

$$\Pr_{vzd_{I}} = \frac{c_{p_{vzd_{I}}} \cdot v_{vzd_{I}} \cdot \rho_{vzd_{I}}}{\lambda_{vzd_{I}}}$$
(4.91)

Bezrozměrné Prandtlovo číslo na výstupu vzduchu z kondenzátoru $Pr_{vzd_{II}}$ je vypočteno z měrné tepelné kapacity $c_{p_vzd_{II}}$, kinematické viskozity $v_{vzd_{II}}$, hustoty $\rho_{vzd_{II}}$, tepelné vodivosti $\lambda_{vzd_{II}}$ vzduchu na výstupu vzduchu z kondenzátoru dle rovnice (4.92)

$$\operatorname{Pr}_{vzd_II} = \frac{c_{p_vzd_II} \cdot \mathcal{V}_{vzd_II}}{\lambda_{vzd_II}}$$
(4.92)

Bezrozměrné Nusseltovo číslo Nu_{vzd} je vypočteno z Reynoldsova čísla vzduchu v kondenzátoru Re_{kond} a Prandtlových čísel na vstupu a výstupu vzduchu z kondenzátoru dle rovnice (4.93)

$$Nu_{vzd} = 0.4 \cdot \operatorname{Re}_{kond}^{0.6} \cdot \operatorname{Pr}_{vzd_{I}}^{0.36} \cdot \left(\frac{\operatorname{Pr}_{vzd_{I}}}{\operatorname{Pr}_{vzd_{I}}}\right)^{0.25}$$
(4.93)

Součinitel přestupu tepla kondenzátoru α_{vzd} je odvozen z definice Nusseltova čísla. V rovnici (4.94) vystupuje tepelná vodivost λ_{vzd_I} vzduchu na vstupu vzduchu do kondenzátoru, vnitřní průměr trubky d_i a Nusseltovo číslo Nu_{vzd} .

$$\alpha_{vzd} = \frac{Nu_{vzd} \cdot \lambda_{vzd_{I}}}{d_{i}}$$
(4.94)

Teplotní spád $\Delta t_{vzd_{II}}$ mezi teplotou vzduchu na trubce kondenzátoru $t_{vzd_{tr}}$ a výstupu vzduchu z kondenzátoru $t_{vzd_{II}}$ je určen vztahem (4.95)

$$\Delta t_{vzd_II} = t_{vzd_tr} - t_{vzd_II}$$
(4.95)

Teplotní spád Δt_{vzd_I} mezi teplotou vzduchu na trubce kondenzátoru t_{vzd_tr} a teplotou na vstupu vzduchu do kondenzátoru t_{vzd_I} je určen vztahem (4.96)

$$\Delta t_{vzd_I} = t_{vzd_I} - t_{vzd_I} \tag{4.96}$$

Logaritmický teplotní spád $LMTD_{kond}$ kondenzátoru je vypočten z teplotního spádu mezi teplotou na trubce v kondenzátoru a na vstupu vzduchu do kondenzátoru Δt_{vzd_I} a z teplotního spádu mezi teplotou vzduchu na trubce v kondenzátoru a výstupu vzduchu z kondenzátoru $\Delta t_{vzd_{II}}$ dle rovnice (4.97)

$$LMTD_{kond} = \frac{\Delta t_{vzd_{-}I} - \Delta t_{vzd_{-}II}}{\ln \frac{\Delta t_{vzd_{-}I}}{\Delta t_{vzd_{-}II}}}$$
(4.97)

Požadovaná teplosměnná plocha kondenzátoru S_{kond} je vypočtena ze sděleného tepla přestupem tepla v kondenzátoru na straně vzduchu pomocí logaritmického teplotního spádu $LMTD_{kond}$, součinitele přestupu tepla vzduchu α_{vzd} a z účinnosti odvodu tepla žebrem kondenzátoru η_z ze vzorce (4.98)

$$S_{kond_pož} = \frac{P_{MP_pP}}{LMTD_{kond} \cdot \alpha_{vzd} \cdot \frac{1}{\eta_z}}$$
(4.98)

 η_z představuje účinnost žebra, tj. poměr ideálního a aktuálního tepelného toku žebrem kondenzátoru. Její dopočítání v průběhu běhu výpočtu by značně zvýšilo výpočetní čas, a proto byla v této práci zvolena konstantní hodnota 0,85 [27].

Požadovaná délka trubek kondenzátoru $l_{\text{kond}_{pož}}$ je dána součinem počtu roztečí na výšku n_h a na hloubku n_d a počtu žeber n_z dle vzorce (4.99)

$$l_{kond_pož} = n_h \cdot n_d \cdot n_z \tag{4.99}$$

5 APLIKACE VÝPOČETNÍHO MODELU

V následující kapitole jsou uvedeny výsledky aplikace výpočetního modelu na stanovení velikosti teplosměnných ploch a tepelných účinností referenčního ORC cyklu. Výsledky byly analyzovány pro dva případy nastavení ORC:

- a) Nastavení bez rekuperace a přehřátí organického chladiva
- b) Nastavení s rekuperací a přehřátím organického chladiva

Reálný cyklus umožňuje obě nastavení otevíráním a zavíráním kulových ventilů. Tepelný příkon je zvolen u obou nastavení konstantní při uvážení stálého zdroje odpadního tepla, konstantní teploty směsi vlhkých spalin a spalovacího vzduchu na vstupu do přehříváku a jedné hodnoty hmotnostního průtoku chladiva. Rychlost proudění vzduchu v chladicí věži je uvažována konstantní pro jedno nastavení chladicí věže s konstantním hmotnostním průtokem chladiva. Konstantní rychlost proudění vzduchu byla zvolena z důvodu snížení počtu parametrů pro výpočet teplosměnné plochy kondenzátoru.

5.1 ORC bez rekuperace a bez přehřátí

V následující kapitole je proveden výpočet teplosměnnných ploch v závislosti na účinnosti cyklu pro různé hodnoty tlaku v kondenzátoru a tlaku v parním motoru. Tato část nezahrnuje přehřívání chladiva a vstup do motoru začíná vždy na mezní křivce syté páry.

Na obrázku 5.1 je znázorněna závislost celkové teplosměnné plochy boileru na tepelné účinnosti. Závislost je vykreslena pro tlak v kondenzátoru od 0,4 do 1 MPa. Pro každý tlak kondenzátoru se měnil tlak v motoru od 1,3 do 3,2 MPa a spolu s ním se měnila i teplota při vypařování chladiva v rozsahu od 50 °C do 90 °C. Na obrázku je vidět 7 křivek pro různé tlaky kondenzátoru. Černá křivka, spojuje maxima jejich tepelných účinností.

Z obrázku je zřejmé, že s rostoucím tlakem v motoru pro konstantní tlak v kondenzátoru se zvyšuje tepelná účinnost ORC. Roste tak i požadovaná teplosměnná plocha boileru. Je to způsobeno tím, že se při vyšších tlacích v motoru zvyšuje celkové množství dodávaného tepla boilerem, které je větší než teplo odváděné kondenzátorem. Množství dodaného tepla se začne mírně snižovat s rostoucím tlakem v motoru od tlaku v motoru 2,8MPa. Tento pokles se projeví zmenšením potřebné teplosměnné plochy boileru. Rozdíl mezi teplem dodaným a odvedeným z ORC neustále roste. Zvyšuje se tak i tepelná účinnost cyklu. Jednotlivé průběhy jsou na obrázku ukončeny při maximálních provozních parametrech cyklu.

Na obrázku 5.2 je součet tepel, dodaných organickému chladivu při jeho ohřevu a vypařování. Z obrázku vyplývá, že celkové teplo dodané do ORC vzrůstá s rostoucím tlakem v motoru až do tlaku v motoru 2,4MPa. Poté se celkové teplo začne snižovat. Je to způsobeno snížením potřebného tepla pro vypaření organického chladiva R134a. Množství potřebného tepla pro vypaření chladiva odpovídá rozdílu entalpií mezi mezními křivkami v T-s diagramu, které se k sobě s rostoucím tlakem v motoru přibližují. Grafické znázornění je na obrázku 5.3.

Na obrázku 5.4 je znázorněna závislost tepelné účinnosti ORC na teplosměnné ploše kondenzátoru. Černá křivka spojuje nejvyšší tepelné účinnosti s nejnižší požadovanou plochou kondenzátoru pro konstantní tlak v kondenzátoru 0,4MPa a tlak v boileru od 1,3MPa do 3,2MPa. Další účinnosti (směrem vpravo) jsou pro konstantní tlak v kondenzátoru s přírůstkem o 0,1MPa až do 1MPa. Z obrázku vyplývá, že se v případě kondenzátoru s nárůstem jeho teplosměnné plochy snižuje tepelná účinnost ORC. Množství odváděného tepla, které je úměrné této teplosměnné ploše, se zvyšuje s nárůstem tlaku v kondenzátoru dle obrázku 5.5. Na množství odváděného tepla má vliv i tlak v motoru dle obrázku 5.3. Při nižším tlaku v motoru (označen červeně) dochází k jeho následné expanzi v motoru na vyšší hodnotu entalpie v oblasti mokré páry, než by tomu bylo v případě expanze z vyšsího tlaku v motoru (označen černě). S vyšší hodnotou entalpie par chladiva po jejich expanzi se zároveň zvětšuje i množství odvedeného tepla kondenzátorem. Z definice tepelné účinnosti ve vztahu

12 11 tlak v kondenzatoru 0,4MPa 10,65 tlak v kondenzatoru 0,5MPa tlak v kondenzatoru 0,6MPa 10 tlak v kondenzatoru 0,7MPa tlak kondenzatoru 0,8MPa Teplosmenna plocha boileru [m2] tlak v kondenzatoru 0,9MPa 9 tlak v kondenzatoru 1MPa 8 7 6 5 4,27 Δ 3∟ 2 4 6 8 8,47 10 12 13,15 14 Tepelna ucinnost cyklu [%]

(4.9) je patrné, že s nárůstem odváděného tepla se snižuje rozdíl dodaného a odvedeného tepla ORC; tím se snižuje i tepelná účinnost cyklu.

Obrázek 5.1: Tepelná účinnost ORC bez rekuperace a přehřátí v závislosti na teplosměnné ploše boileru

Obrázek 5.2: Teplo dodané do ORC v závislosti na maximálním tlaku v motoru

Obrázek 5.3:T-s diagram se zakreslením stavové změny chladiva R134a

Obrázek 5.4: Tepelná účinnost ORC v závislosti na požadované teplosměnné ploše kondenzátoru (pkond – tlak chladiva v kondenzátoru)

Obrázek 5.5:Teplo odvedené z ORC v závislosti na maximálním tlaku v kondenzátoru

Obrázek 5.6:Maximální tepelná účinnost boileru a kondenzátoru v závislosti na teplosměnné ploše

Obrázek 5.7: Práce motoru v závislosti na maximálním tlaku v motoru bez přehřátí

Na obrázku 5.6 je znázorněna závislost maximální tepelné účinnosti boileru a kondenzátoru z předchozích obrázků vyznačená černě v závislosti na teplosměnné ploše. Zatímco se v případě boileru tepelná účinnost s rostoucí teplosměnnou plochou zvyšuje, v případě kondenzátoru je tomu naopak. Obě závislosti jsou využity k volbě optimálních provozních parametrů (tlaků a teplot) referenčního ORC s ohledem na velikost teplosměnných ploch a tepelnou účinnost cyklu. Volba velikosti teplosměnné plochy boileru a kondenzátoru závisí na jejich ceně, tj. na investičních nákladech. Z toho vyplývá, že se bude usilovat o co nejmenší teplosměnnú plocha boileru a naopak. Teplosměnná plocha se volí pro odpovídající tepelnou účinnost cyklu. Čím je tato tepelná účinnost vyšší, tím je vyšší i návratnost vložených investic do celého zařízení. Roste s ní i potřebná velikost teplosměnné plochy boileru, zvyšující celkové investiční náklady. Snížení těchto nákladů se dosahuje provozem ORC při nižší tepelné účinnosti cyklu.

Na obrázku 5.7 je vidět závislost práce motoru na tlaku chladiva v motoru pro tyto parametry: tlak chladiva v motoru 1,3MPa až 3,2MPa, tlak chladiva v kondenzátoru 0,4MPa až 1MPa. Tato závislost je rostoucí. S rostoucím tlakem chladiva v motoru se při konstantním tlaku chladiva v kondenzátoru zvětšuje tlakový rozdíl a získává se více práce při expanzi chladiva v parním motoru.

5.1.1 Porovnání výsledků výpočtu s referenčními daty získanými na reálném modelu

V následující kapitole je porovnání tepelné účinnosti cyklu a elektrického výkonu v závislosti na tlakovém spádu s referenčními daty firmy PolyComp při konstantním tlaku kondenzátoru 0,4MPa bez přehřátí a rekuperace

Na následujících obrázcích jsou uvedeny průběhy elektrických výkonů pro konstantní tlak v kondenzátoru 0,4MPa a potřebný teplotní spád 10°C mezi teplotou kapalného chladiva v kondenzátoru a teplotou -1°C venkovního vzduchu, získaných teoretickým výpočtem v prostředí MatLab a z poskytnutých referenčních dat od společnosti PolyComp.

Obrázek 5.8:Porovnání vypočteného průběhu elektrického výkonu s elektrickým výkonem z referenčních dat společnosti PolyComp [13]

Vypočtený průběh elektrického výkonu na tlakovém spádu z programu MatLab na obrázku 5.8 je vykreslen v mezích referenčních dat elektrického výkonu společnosti PolyComp na témže obrázku. Oba průběhy vykazují rostoucí tendenci. Důvodem je, že se zvětšujícím se tlakovým spádem roste úměrně i entalpie chladiva v oblasti syté páry chladiva na vstupu do parního motoru a s ní spojená práce motoru. Důvody odchylky obou průběhů mohou být zdůvodněny zanedbáním tlakových ztrát chladiva v potrubí a připojených zařízeních. Účinnost motoru a elektromotoru při výpočtu jsou uvažovány konstantní. Účinnost parního motoru se v závislosti na průtoku může měnit v rozsahu od 60% do 85%. Navíc v realitě docházelo ke změně vlastností použitého organického chladiva při jeho mísení s olejem pro zajištění dostatečného mazání při pohybu pístu ve válci parního motoru. Měnil se tak hmotnostní průtok chladiva a také se měnily jeho výparné vlastnosti. Tyto úbytky se mohou projevit "propady" v průběhu elektrického výkonu na obrázku 5.8.

Na obrázku 5.9 je uveden průběh tepelné účinnosti pro konstantní tlak kondenzátoru 0,4MPa a potřebný teplotní spád 10°C mezi teplotou chladiva v kondenzátoru a teplotou -1°C venkovního vzduchu na vstupu do kondenzátoru, získaných teoretickým výpočtem v prostředí MatLab a z referenčních dat společnosti PolyComp.

Obrázek 5.9:Porovnání vypočteného průběhu tepelné účinnosti s průběhem tepelné účinnosti z referenčních dat společnosti PolyComp [13]

Trend průběhu tepelné účinnosti odpovídá trendu průběhu elektrického výkonu, což je dáno tím, že se rozdíl dodaného a odvedeného celkového tepla ORC rovná rozdílu získané práce motoru a vložené práce pro pohon čerpadla. Práce čerpadla je však mnohem menší, než je získaná práce motoru při expanzi. Proto se tento tepelný rozdíl se zanedbáním práce čerpadla rovná především získané práci motoru a elektrickému výkonu při expanzi. S rostoucím rozdílem dodaného tepla při vyšším tlaku a teplotě chladiva a odvedeného tepla z chladiva kondenzátorem úměrně narůstá tepelná účinnost a spolu s ní i získaný elektrický výkon.

Odlišnost průběhů tepelných účinností získaných programem a z referenčních dat společnosti PolyComp je způsobena ze stejných důvodů, jako v předchozím případě.

5.2 ORC s rekuperací a přehřátím

V této kapitole je proveden výpočet účinnosti cyklu v závislosti na teplosměnné ploše boileru pro různé hodnoty tlaku v motoru a teploty přehřátí s konstantním tlakem v kondenzátoru. Součástí výpočtu je rekuperace, při které se vrací část externě získaného tepla zpět do cyklu.

Na obrázku 5.10 je znázorněna závislost tepelné účinnosti na teplosměnné ploše boileru. Tato závislost je vykreslena pro konstantní tlak v kondenzátoru 0,4MPa pří stálém teplotním rozdílu 10 °C mezi teplotou chladiva v kondenzátoru a vstupní teplotou venkovního vzduchu, která byla -1 °C. Každá z křivek odpovídá jinému tlaku v boileru, který se mění od 2,1MPa do 2,8MPa. Na těchto průbězích se s konstantním tlakem boileru mění teplota přehřátí chladiva na vstupu do motoru od 90 °C do 130 °C dle obrázku 5.11. Při konstantním tlaku v kondenzátoru se tedy mění dva parametry: tlak chladiva v boileru a teplota jeho přehřátí před expanzí v parním motoru.

Na obrázku 5.12 je ukázána závislost tepelné účinnosti cyklu na teplosměnné ploše boileru při konstantním tlaku chladiva v kondenzátoru 1MPa.

Obrázek 5.10:Tepelná účinnost ORC v závislosti na teplosměnné ploše boileru s konstantním tlakem v kondenzátoru 0,4MPa (*t*_m – teplota par chladiva na vstupu do motoru)

Z obrázku 5.10 a obrázku 5.12 je patrné, že při zvyšující se potřebné teplosměnné ploše boileru se zároveň zvyšuje i tepelná účinnost cyklu. Požadovaná teplosměnná plocha boileru je úměrná množství tepla, které je potřeba dodat boilerem. Se zvětšujícím se množstvím tepla dodaného do boileru při konstantním tlaku v kondenzátoru se neustále zvyšuje celkové množství tepla dodaného do cyklu. Z obou obrázků je také vidět, že s vyšším tlakem chladiva v kondenzátoru se snižuje tepelná účinnost cyklu.

Obrázek 5.11:T-s diagram se změnou tlaku a teploty přehřátí chladiva

Obrázek 5.12: Tepelná účinnost ORC v závislosti na teplosměnné ploše boileru s konstantním tlakem v kondenzátoru 1MPa (*t*_m – teplota par chladiva na vstupu do motoru)

Obrázek 5.13: Maximální tepelná účinnost ORC v závislosti na teplosměnné ploše boileru $(t_m - \text{teplota par chladiva na vstupu do motoru})$

Na obrázku 5.13 je vidět, že maximální tepelná účinnost cyklu s rekuperací je při tlaku v kondenzátoru 0,4MPa o několik procent vyšší, než maximální tepelná účinnost s tlakem v kondenzátoru 1MPa. Teplosměnná plocha boileru bez rekuperace je vyšší, než s rekuperací a klesá se zvyšujícím se tlakem v motoru.

U uvedených křivek s rekuperací si můžeme všimnout drobné změny v jejich průběhu, přesouvající se s poklesem tlaku chladiva v kondenzátoru směrem doleva.

Na obrázku 5.15 je vykreslen průběh požadované celkové teplosměnné plochy boileru v závislosti na rostoucím tlaku par chladiva na vstupu do motoru z 1,3MPa do 3,2MPa pro konstantní tlak kapalného chladiva v kondenzátoru 0,4MPa a 1MPa a maximální teplotu přehřátí par chladiva 130 °C na vstupu do motoru. Potřebná celková teplosměnná plocha boileru se s rostoucím tlakem par chladiva na vstupu do motoru zvětšuje. Je to dané tím, že se zároveň zvětšuje i požadovaný tepelný výkon boileru. Tento požadovaný tepelný výkon je větší u ORC s konstantním tlakem v kondenzátoru 0,4MPa než u ORC s konstantním tlakem v kondenzátoru 1MPa.

Obrázek 5.15: Teplosměnná plocha boileru v závislosti na tlaku v motoru (t_m – teplota par chladiva na vstupu do motoru)

Na obrázku 5.14 je zobrazen průběh množství zpětně získaného tepelného výkonu z rekuperace v závislosti na tlaku chladiva v motoru. Využitím rekuperace lze částečně snížit teplosměnnou plochu ohříváku, případně výparníku, protože jí lze do určité míry pokrýt jejich požadovaný tepelný výkon. Teplota přehřátí chladiva před vstupem do motoru je v tomto případě vždy rovna 130 $^{\circ}$ C.

Klesající charakter křivky je způsoben nutností použít konstantní teplotní spád $t_{dr} = 10$ °C na vstupu do rekuperačního výměníku. Teplotní spád je udržován nad teplotou chladiva na výstupu z čerpadla na obrázku 5.16. Dostupné teplo pro rekuperaci je dáno rozdílem entalpie páry chladiva na výstupu z motoru a entalpie, která je určena tlakem v kondenzátoru a teplotou na výstupu z čerpadla, zvýšenou o t_{dr} , přičemž entalpie páry na výstupu z motoru se zvyšujícím se tlakem v motoru a konstantním tlakem v kondenzátoru klesá. Je třeba si uvědomit, že množství rekuperovaného tepla je v tomto konkrétním případě omezeno maximálním výkonem rekuperačního výměníku a jeho dalšími limity.

V případě snižování tlaku v kondenzátoru při fixním hodnotě entalpie na výstupu z motoru dochází naopak ke snižování teploty par chladiva na vstupu do rekuperačního výměníku. Vzájemná blízkost křivek v obrázku 5.14 je způsobena tím, že se snižováním tlaku v kondenzátoru se příliš nemění rozdíl entlapií mezi vstupem do motoru a vstupem do rekuperačního výměníku (obrázek 5.17).

Následující průběhy potřebných výkonů jsou vykresleny pro ohřívák, výparník a přehřívák. Na obrázku 5.19 je vykreslena závislost požadovaného tepelného výkonu ohříváku, který je třeba dodat externím zdrojem, na tlaku v motoru při konstantních tlacích v kondenzátoru 0,4MPa a 1MPa. Se vzrůstajícím tlakem par chladiva v motoru z 1,3MPa do 3,2MPa při konstantním tlaku v kondenzátoru a maximální teplotě přehřátí chladiva na vstupu do motoru roste i požadovaný tepelný výkon. Nárůst požadovaného tepelného výkonu je dán vyšší teplotou a tlakem, při kterém dochází k vypaření chladiva. Tento požadovaný výkon je až do tlaku v motoru 1,5MPa zcela pokryt zpětně získaným tepelným výkonem z rekuperace. Požadovaný výkon ohříváku tedy narůstá až od tlaku chladiva v parním motoru 1,5MPa a je dodáván prostřednictvím olejového hořáku. Obdobná situace je i při tlaku v kondenzátoru 1MPa s tím, že požadovaný výkon je pokryt rekuperací až do tlaku v motoru 2,2MPa.

Na obrázku 5.18 je srovnání průběhu požadovaného tepelného výkonu výparníku bez rekuperace pro tlak v kondenzátoru 0,4MPa a 1MPa (označený modře) a požadovaného tepelného výkonu výparníku s rekuperací pro tlak v kondenzátoru 0,4MPa (označený zeleně) a 1MPa (označený červeně) v závislosti na rostoucím tlaku v motoru. Požadovaný tepelný výkon výparníku je při nižších tlacích v motoru do 1,5MPa a tlaku v kondenzátoru 0,4MPa a při tlaku chladiva v motoru 2,3MPa a tlaku v kondenzátoru 1MPa částečně pokryt zpětně získaným tepelným výkonem z rekuperace. Pokrytí požadovaného tepelného výkonu tepelným výkonem z rekuperace končí při tlaku v kondenzátoru 0,4MPa dříve, než u rekuperace při tlaku v kondenzátoru 1MPa. Zbývající potřebný tepelný výkon výparníku je dodán z externího zdroje.

Na obrázku 5.20 je znázorněn průběh požadovaného tepelného výkonu přehříváku v závislosti na rostoucím tlaku v motoru z 1,3MPa na 3,2MPa při konstantním tlaku kondenzátoru 0,4MPa a 1MPa a teplotě přehřátí chladiva na 130 °C na vstupu do motoru. Uvedený průběh nezahrnuje rekuperaci. V T-s diagramu na obrázku 5.16 pro konstantní maximální teplotu přehřátí chladiva na vstupu do motoru je vidět, že při přehřívání chladiva z nižšího tlaku a teploty je nutné chladivu dodat více tepla pro přehřátí, než by tomu bylo u chladiva o vyšším tlaku a teplotě na vstupu do přehříváku. Charakter křivky je tedy s rostoucím tlakem chladiva na vstupu do motoru klesající. Důvodem stejných průběhů požadovaných tepelných výkonů přehříváku při obou tlacích v kondenzátoru je jejich nezávislost na tlaku v kondenzátoru při přehřívání.

Obrázek 5.16:T-s diagram chladiva R134a pro tlak chladiva 1,3MPa a 3,2MPa (Červenou barvou je znázorněn oběh chladiva pro tlak v boileru 1,3MPa, černou barvou je znázorněn oběh chladiva pro tlak v motoru 3,2MPa, tdr – konstantní teplotní spád mezi počátkem a koncem rekuperace chladiva)

Obrázek 5.17: Rekuperace při různých tlacích v kondenzátoru (t_{dr} – konstantní teplotní spád mezi počátkem a koncem rekuperace chladiva)

)

Obrázek 5.18: Požadovaný tepelný výkon výparníku v závislosti na tlaku v motoru $(t_{\rm m}$ – teplota par chladiva na vstupu do motoru)

Obrázek 5.19: Požadovaný tepelný výkon ohříváku v závislosti na tlaku v motoru $(t_m - \text{teplota par chladiva na vstupu do motoru})$

Obrázek 5.20: Požadovaný tepelný výkon přehříváku v závislosti na tlaku v motoru (*t*_m – teplota par chladiva na vstupu do motoru)

Obrázek 5.21: Požadovaný tepelný výkon boileru v závislosti na tlaku par chladiva v motoru $(t_m - \text{teplota par chladiva na vstupu do motoru})$

Na obrázku 5.21 je vykreslena závislost celkového požadovaného tepelného výkonu boileru s rekuperací a bez rekuperace na tlaku v motoru pro maximální teplotu par chladiva 130°C a

tlak v kondenzátoru 0,4MPa a 1MPa. Celkový požadovaný tepelný výkon boileru je součtem dílčích tepelných výkonů, potřebných při ohřátí, vypaření a přehřátí organického chladiva a zahrnuje rekuperaci. Z předchozích závislostí bylo zjištěno, že s konstantním tlakem chladiva v kondenzátoru a narůstajícím tlakem v motoru s rekuperací rostou požadavky na množství dodaného tepla při ohřevu kapalného chladiva. Klesají při jeho vypařování a následném přehřívání. Z vzájemného srovnání průběhů požadovaných tepelných výkonů při obou tlacích v kondenzátoru vyplývá, že je do ORC při tlaku 0,4MPa v kondenzátoru nutné dodat větší množství tepla, než při tlaku v kondenzátoru 1MPa. Požadovaný tepelný výkon boileru bez rekuperace na rozdíl od provozu s rekuperací s rostoucím tlakem v motoru klesá. Je to dané tím, že se snižuje entalpie na vstupu do motoru a tím i celkové externě dodané teplo.

Odvedený tepelný výkon kondenzátorem je konstantní pro konstantní hodnoty tlaků v kondenzátoru 0,4MPa a 1MPa, maximální teplotu přehřátí chladiva na vstupu do motoru 130°C a stálý teplotní rozdíl t_{dr} se změnou tlaku par chladiva v motoru. Mezi začátkem a koncem rekuperace chladiva je udržován stálý teplotní rozdíl. Začátek rekuperace kapalného chladiva je na výstupu z čerpadla. Vzhledem k nízké práci, vykonané čerpadlem je možné tento začátek rekuperace považovat za konstantní a při uvážení stálého teplotního spádu i konec rekuperace chladiva ve formě páry. Entalpie páry chladiva na konci rekuperace a entalpie syté páry chladiva na začátku kondenzace tak také zůstává konstantní. V případě tlaku 0,4MPa v kondenzátoru je nutné odvést více tepla než při tlaku 1MPa. Toto množství tepla je dané tvarem levé a pravé mezní křivky T-s diagramu na obrázku 5.3, které se směrem k nižším tlakům rozšiřují.

Na obrázku 5.22 je vidět závislost práce motoru na tlaku v motoru pro tyto parametry: tlak v motoru 1,3MPa až 3,2MPa, tlak v kondenzátoru je konstantních 0,4MPa a 1MPa, konstantní teplota přehřátí t_m 130°C. S rostoucím tlakem v motoru se při konstantním tlaku v kondenzátoru zvětšuje tlakový rozdíl a získává se více práce při expanzi par chladiva v parním motoru. Expanzí páry chladiva na tlak v kondenzátoru 0,4MPa je získáno více práce v parním motoru, než expanzí na tlak 1MPa.

Obrázek 5.22: Práce motoru v závislosti na tlaku v motoru s přehřátím

Obrázek 5.23:Tepelná účinnost v závislosti na tlaku v motoru (*t*_m – teplota par chladiva na vstupu do motoru)

Na obrázku 5.23 je vidět závislost tepelné účinnosti na tlaku v motoru s rekuperací a bez rekuperace pro tyto hodnoty: tlak v kondenzátoru 0,4MPa a 1MPa, tlak v motoru od 1,3MPa do 3,2MPa a teplotu par chladiva na vstupu do motoru $t_m = 130$ °C. Z uvedených závislostí vyplývá, že tepelná účinnost s rostoucím tlakem v motoru narůstá. Tepelná účinnost s rekuperací je vždy vyšší, než bez rekuperace, což je zřejmé ze zpětného využití tepla.

5.3 Ekonomické vyhodnocení [24]

Ekonomické vyhodnocení slouží k posouzení vhodnosti provozních a konstrukčních parametrů referenčního ORC z hlediska návratnosti vložených investic a zisku z provozu zařízení. Je zpracováno pro ORC bez rekuperace a přehřátí organického chladiva pro dva požadavky na provoz zařízení:

- a) s minimální teplosměnnou plochou boileru pro snížení investičních nákladů
- b) s maximální tepelnou účinností pro nejrychlejší návratnost investice

Ekonomické vyhodnocení je zde uvedeno jako modelový příklad, který nemusí odpovídat realitě. Vyhodnocení je zpracováno dle následujících vztahů:

Prostá doba návratnosti T_s [r] je dána podílem investičních výdajů projektu IN [Kč] a ročních peněžních toků z přínosu projektu CF [Kč] dle vztahu (5.1)

$$T_s = \frac{IN}{CF} \tag{5.1}$$

Reálná doba návratnosti vypočtena z podmínky (5.2) je doba splacení investice při uvažování diskontní sazby $T_{sd}4\%$.

$$\sum_{t=1}^{T_{sd}} CF_t \cdot (1+r)^{-t} - IN = 0(roky)$$
(5.2)

kde,

 CF_troční přínosy projektu (změna peněžních toků po realizaci projektu)[Kč]r...... diskont (cena ušlé příležitosti)[Kč]

 $(1+r)^{-t}$ odúročitel, tj. údaj, který uvádí, kolikrát menší je současná hodnota budoucích peněz za určité období při dané úrokové míře [%]

Čistá současná hodnota NPV [tis.Kč/r] je vypočtena ze součtu ročních přínosů projektu CF_t , odúročitele $(1+r)^{-t}$ a investičních nákladů *IN* dle vztahu (5.3)

$$NPV = \sum_{t=1}^{T_{z}} CF_{t} \cdot (1+r)^{-t} - IN$$
(5.3)

Vnitřní výnosové procento *IRR* [%], představující trvalý roční výnos investice je vypočten ze součtu ročních přínosů projektu CF_{t} , investičních nákladů *IN* z podmínky (5.4)

$$\sum_{t=1}^{T_{z}} CF_{t} \cdot (1 + IRR)^{-t} - IN = 0$$
(5.4)

Výpočet ročního výnosu z pořizovaného zařízení pro minimální teplosměnnou plochu boileru:

Dle obrázku 5.6 maximálních účinností boileru a kondenzátoru je minimální teplosměnná plocha boileru při tlaku chladiva v boileru 3,2MPa a maximálním tlaku chladiva v kondenzátoru 1MPa. Tato plocha je rovna 4,27 m². Plocha kondenzátoru je však maximální a odpovídá hodnotě 136,58 m². Na obrázku 5.7 je vidět průběh práce motoru, získané při expanzi chladiva v závislosti na tlaku chladiva v boileru. Při uvedených tlacích chladiva je tato práce W_t rovna 14,27 kJ/kg. Tepelná účinnost je 8.47%.

Roční výnos investice RVI [Kč] je vypočten ze vztahu (5.5)

$$RVI = \dot{m}_{chl} \cdot w_m \cdot \tau_p \cdot c = 1,1 \cdot 4,21 \cdot 8000 \cdot 3 = 376728 \text{Kč}$$
 (5.5)

kde je,

\dot{m}_{chl} hmotnostní průtok chladiva	[kg/s]
$\tau_{\rm p}$ roční doba provozu zařízení 8000 h	[h/r]
ccena elektrické energie 3 Kč za 1 kWh	[Kč/kWh]
<i>w</i> _m měrná práce motoru	[kJ/kg]

Výpočet ročního výnosu z pořizovaného zařízení s maximální tepelnou účinností:

Dle obrázku 5.6 je maximální tepelná účinnost ORC při maximálním tlaku chladiva v boileru 3,2MPa a minimálním tlaku chladiva v kondenzátoru 0,4MPa. Při uvedených tlacích chladiva je tato práce w_t na obrázku 5.7 rovna 30,03 kJ/kg. Teplosměnná plocha boileru je 11,78 m², teplosměnná plocha kondenzátoru je 134,16 m². Tepelná účinnost je 13,15%.

Roční výnos investice *RVI* [Kč] pro stejné parametry hmotnostního průtoku chladiva, roční doby provozu zařízení a ceny elektrické energie za 1 kWh jako v předchozím případě je 792792 Kč.

Výpočet ceny celkové teplosměnné plochy tepelných výměníků:

Cena teplosměnné plochy c_{1m} tepelného výměníku na 1 m² byla stanovena z [25] na 11249 Kč/m². Tato cena je uvažována stejná pro teplosměnnou plochu boileru i kondenzátoru. Cena celkové teplosměnné plochy boileru a kondenzátoru je dána vztahem (5.6)

$$c_{tp} = c_{1m} \cdot \left(S_{boil} + S_{kond} \right) \tag{5.6}$$

kde je,

 S_{boil}teplosměnná plocha boileru $[m^2]$ S_{kond}teplosměnná plocha kondenzátoru $[m^2]$ Tento výpočet byl proveden pro dva případvi

Tento výpočet byl proveden pro dva případy:

a) Pro minimální teplosměnnou plochu boileru:

Cena celkové teplosměnné plochy výměníku $c_{\rm tp}$ je 1 584 422 Kč

b) Pro maximální tepelnou účinnost ORC:

Cena celkové teplosměnné plochy výměníku c_{tp} je 1 629 305Kč

Náklady za energie c_{en} jsou vypočteny ze součinu hmotnostního průtoku chladiva \dot{m}_{chl} , měrné práce čerpadla w_{c} , roční doby provozu zařízení τ_{p} a ceny elektrické energie za 1 kWh c dle vztahu (5.7)

$$c_{en} = \dot{m}_{chl} \cdot w_p \cdot \tau_p \cdot c \tag{5.7}$$

Výpočet byl proveden pro případ:

- a) Práce čerpadla w_p je 1,91 kJ/kg a náklady za energie c_{en} jsou 50424 Kč/rok
- b) Práce čerpadla w_p je 2,21 kJ/kg a náklady za energie c_{en} jsou 58344 Kč/rok

Náklady za mzdy c_m jsou počítány pro 4h pracovní dobu a mzdu c_{mz} 120 Kč/h dle vztahu (5.8)

$$c_m = t_{pr} \cdot c_{mz} \tag{5.8}$$

kde je,

*t*_{pr}..... celková odpracovaná doba za rok 960h [h]

Přínosy projektu celkem za rok Z [Kč/rok] jsou počítány pro čistý zisk v každém roce z rozdílu ročního výnosu investice RVI a součtu nákladů za energie a mzdy N dle vztahu (5.9)

$$Z = RVI - N \tag{5.9}$$

Investiční výdaje pro oba případy bez přehřátí chladiva jsou uvedeny v tabulce 5.1. Uvedené hodnoty jsou odhadnuty na základě konzultace s firmou PolyComp.

Výsledky ročního ekonomického vyhodnocení bez přehřátí chladiva jsou uvedeny v tabulce 5.2.

Položka	Pořizovací náklady [Kč] varianta a)	Pořizovací náklady [Kč] varianta b)
čerpadlo	310 000	310 000
armatury	390 000	390 000
Měření a regulace	45 000	45 000
Rozvaděč s řídícím systémem	440 000	440 000
generátor	80 000	80 000
přepravní konstrukce	155 000	155 000
spojení generátoru s parním motorem	25 000	25 000
parní motor	875 000	875 000
potrubní propojení	250 000	250 000
chladivo	90 000	90 000
boiler a kondenzátor	1 584 422	1 629 305
elektrorozvody	100 000	100 000
certifikace , dozor	55 000	55 000
výkresová dokumentace	85 000	85 000
celkem	4 474 422	4 519 305

Tabulka 5.1: Investiční výdaje projektu bez přehřátí chladiva

Tabulka 5.2:Výsledky ročního ekonomického vyhodnocení bez přehřátí chladiva

Parametr	Jednotka	Varianta a)	Varianta b)
Investiční výdaje projektu	Kč	4 474 422	4 519 305
Změna nákladů na energie	Kč	50 424	58 344
změna osobních nákladů (mzdy, pojistné)	Kč	115 200	115 200
změna nákladů na emise a odpady	Kč	0	0
Změna tržeb (za teplo, elektřinu, využité odpady)	Kč	0	0
Přínosy projektu celkem	Kč	211 104	619 248
Doba hodnocení	roky	20	20
Roční růst cen energie	%	3	3
Diskont	%	4	4
Ts - prostá doba návratnosti	roky	17	7
Tsd - reálná doby návratnosti	roky	25	8
NPV -čistá současná hodnota	Kč	55 632	6 361 775
IRR - vnitřní výnosové procento	%	4	15

Výsledky byly zpracovány finančním kalkulátorem pro hodnocení ekonomické efektivnosti investic [26]

Ekonomické vyhodnocení je zpracováno pro ORC s rekuperací a přehřátím organického chladiva při tlaku v kondenzátoru 0,4MPa pro dva požadavky na provoz zařízení:

- a) s minimální teplosměnnou plochou boileru pro snížení investičních nákladů
- b) s maximální tepelnou účinností pro nejrychlejší návratnost investice

V tomto vyhodnocení jsou veškeré výpočty shodné s předchozí částí. Liší se pouze použitými parametry.

Výpočet ročního výnosu z pořizovaného zařízení pro minimální teplosměnnou plochu boileru:

Dle obrázku 5.13 maximálních účinností boileru a kondenzátoru je minimální teplosměnná plocha boileru při tlaku chladiva v boileru 1,3MPa a konstantním tlaku chladiva v kondenzátoru 0,4MPa. Tato plocha je rovna 5,96 m². Plocha kondenzátoru je však maximální a odpovídá hodnotě 532,8 m². Na obrázku 5.22 je vidět průběh práce motoru, získané při expanzi chladiva v závislosti na tlaku chladiva v boileru. Při uvedených tlacích chladiva je tato práce w_t rovna 27,11 kJ/kg. Tepelná účinnost je 11.57%.

Roční výnos investice *RVI* [Kč] pro stejné parametry hmotnostního průtoku chladiva, roční doby provozu zařízení a ceny elektrické energie za 1 kWh jako v předchozí části je 715704 Kč

Výpočet ročního výnosu z pořizovaného zařízení s maximální tepelnou účinností:

Dle obrázku 5.13 je maximální tepelná účinnost ORC při maximálním tlaku chladiva v boileru 3,2MPa a minimálním tlaku chladiva v kondenzátoru 0,4MPa. Při uvedených tlacích chladiva je tato práce w_t na obrázku 5.22 rovna 41,54 kJ/kg. Teplosměnná plocha boileru je 13,27 m², teplosměnná plocha kondenzátoru je 532,8 m². Tepelná účinnost je 16,24%.

Roční výnos investice *RVI* [Kč] pro stejné parametry hmotnostního průtoku chladiva, roční doby provozu zařízení a ceny elektrické energie za 1 kWh jako v předchozí části je 1096656 Kč

Výpočet ceny teplosměnné plochy tepelného výměníku byl proveden pro dva případy:

a) Pro minimální teplosměnnou plochu boileru

Cena celkové teplosměnné plochy výměníku *c*_{tp} je 6 060 511 Kč

b) Pro maximální tepelnou účinnost ORC

Cena celkové teplosměnné plochy výměníku c_{tp} je 6 142 741 Kč

Výpočet nákladů za energie byl proveden pro případ:

- a) Práce čerpadla w_p je 0,71 kJ/kg a náklady za energie c_{en} jsou 18744 Kč/rok
- b) Práce čerpadla w_p je 2,21 kJ/kg a náklady za energie c_{en} jsou 58344 Kč/rok

Náklady na mzdy zůstávají stejné, jako v předchozím případě.

Investiční výdaje pro oba případy s přehřátím chladiva a tlakem v kondenzátoru 0,4MPa jsou uvedeny v tabulce 5.3.

Výsledky ročního ekonomického vyhodnocení bez přehřátí chladiva jsou uvedeny v tabulce 5.4.

Tabulka 5.3: Investiční výdaje projektu s přehřátím chladiva a tlakem kondenzátoru 0,4MPa

	Pořizovací	Pořizovací
Položka	náklady [Kč]	náklady [Kč]
	varianta a)	varianta b)
čerpadlo	310 000	310 000
armatury	390 000	390 000
Měření a regulace	45 000	45 000
Rozvaděč s řídícím systémem	440 000	440 000
generátor	80 000	80 000
přepravní konstrukce	155 000	155 000
spojení generátoru s parním motorem	25 000	25 000
parní motor	875 000	875 000
potrubní propojení	250 000	250 000
chladivo	90 000	90 000
boiler a kondenzátor	6 060 511	6 142 741
elektrorozvody	100 000	100 000
certifikace , dozor	55 000	55 000
výkresová dokumentace	85 000	85 000
celkem	8 919 464	9 032 741

Tabulka 5.4:Výsledky ročního ekonomického vyhodnocení s přehřátím chladiva a tlakem kondenzátoru 0,4MPa

Parametr	Jednotka	Varianta a)	Varianta b)
Investiční výdaje projektu	Kč	8 919 464	9 032 741
Změna nákladů na energie	Kč	18 744	58 344
změna osobních nákladů (mzdy, pojistné)	Kč	115 200	115 200
změna nákladů na emise a odpady	Kč	0	0
Změna tržeb (za teplo, elektřinu, využité odpady)	Kč	0	0
Přínosy projektu celkem	Kč	581 760	923 112
Doba hodnocení	roky	20	20
Roční růst cen energie	%	3	3
Diskont	%	4	4
Ts - prostá doba návratnosti	roky	13	9
Tsd - reálná doby návratnosti	roky	18	11
NPV -čistá současná hodnota	Kč	1 302 897	7 187 667
IRR - vnitřní výnosové procento	%	5	11

Výsledky byly zpracovány finančním kalkulátorem pro hodnocení ekonomické efektivnosti investic [26]

Ekonomické vyhodnocení je zpracováno pro ORC s rekuperací a přehřátím organického chladiva při tlaku v kondenzátoru 1MPa pro dva požadavky na provoz zařízení:

- a) s minimální teplosměnnou plochou boileru pro snížení investičních nákladů
- b) s maximální tepelnou účinností pro nejrychlejší návratnost investice

Výpočet ročního výnosu z pořizovaného zařízení pro minimální teplosměnnou plochu boileru:

Dle obrázku 5.13 maximálních účinností boileru a kondenzátoru je minimální teplosměnná plocha boileru při tlaku chladiva v boileru 1,3MPa a konstantním tlaku chladiva v kondenzátoru 1MPa. Tato plocha je rovna 5,1 m². Plocha kondenzátoru je však maximální a odpovídá hodnotě 365,15 m². Na obrázku 5.22 je vidět průběh práce motoru, získané při expanzi chladiva v závislosti na tlaku chladiva v boileru. Při uvedených tlacích chladiva je tato práce w_t rovna 5,9 kJ/kg. Tepelná účinnost je 3,1%.

Roční výnos investice *RVI* [Kč] pro stejné parametry hmotnostního průtoku chladiva, roční doby provozu zařízení a ceny elektrické energie za 1 kWh jako v předchozích částech je 155760 Kč

Výpočet ročního výnosu z pořizovaného zařízení s maximální tepelnou účinností:

Dle obrázku 5.13 je maximální tepelná účinnost ORC při maximálním tlaku chladiva v boileru 3,2MPa a minimálním tlaku chladiva v kondenzátoru 1MPa. Při uvedených tlacích chladiva je tato práce w_t na obrázku 5.22 rovna 23,2 kJ/kg. Teplosměnná plocha boileru je 13,82 m², teplosměnná plocha kondenzátoru je 366,95 m². Tepelná účinnost je 10,7%.

Roční výnos investice *RVI* [Kč] pro stejné parametry hmotnostního průtoku chladiva, roční doby provozu zařízení a ceny elektrické energie za 1 kWh jako v předchozí části je 612480 Kč

Výpočet ceny teplosměnné plochy tepelného výměníku byl proveden pro dva případy:

a) Pro minimální teplosměnnou plochu boileru

Cena celkové teplosměnné plochy výměníku *c*_{tp} je 4 164 942 Kč

b) Pro maximální tepelnou účinnost ORC

Cena celkové teplosměnné plochy výměníku *c*_{tp} je 4 283 281 Kč

Výpočet nákladů za energie byl proveden pro případ:

- a) Práce čerpadla w_p je 0,26 kJ/kg a náklady za energie c_{en} jsou 6864 Kč/rok
- b) Práce čerpadla w_p je 1,91 kJ/kg a náklady za energie c_{en} jsou 50424 Kč/rok

Náklady na mzdy zůstávají stejné, jako v předchozím případě.

Investiční výdaje pro oba případy s přehřátím chladiva a tlakem kapalného chladiva v kondenzátoru 1MPa jsou uvedeny v tabulce 5.5.

Výsledky ročního ekonomického vyhodnocení s přehřátím chladiva a tlakem kapalného chladiva v kondenzátoru 1MPa jsou uvedeny v tabulce 5.6.

Tabulka 5.5:Investiční výdaje projektu s přehřátím chladiva,tlakem v kondenzátoru 1MPa

Položka	Pořizovací náklady [Kč] varianta a)	Pořizovací náklady [Kč] varianta b)
čerpadlo	310 000	310 000
armatury	390 000	390 000
Měření a regulace	45 000	45 000
Rozvaděč s řídícím systémem	440 000	440 000
generátor	80 000	80 000
přepravní konstrukce	155 000	155 000
spojení generátoru s parním motorem	25 000	25 000
parní motor	875 000	875 000
potrubní propojení	250 000	250 000
chladivo	90 000	90 000
boiler a kondenzátor	4 164 942	4 283 281
elektrorozvody	100 000	100 000
certifikace , dozor	55 000	55 000
výkresová dokumentace	85 000	85 000
celkem	7 054 942	7 173 281

Tabulka 5.6:Výsledky ročního ekonomického vyhodnocení s přehřátím chladiva a tlakem kondenzátoru 1MPa

Parametr	Jednotka	Varianta a)	Varianta b)
Investiční výdaje projektu	Kč	7 054 942	7 173 281
Změna nákladů na energie	Kč	6864	50 424
změna osobních nákladů (mzdy, pojistné)	Kč	115 200	115 200
změna ostatních provozních nákladů	Kč	0	0
změna nákladů na emise a odpady	Kč	0	0
Změna tržeb (za teplo, elektřinu, využité odpady)	Kč	0	0
Přínosy projektu celkem	Kč	33 696	446 856
Doba hodnocení	roky	20	20
Roční růst cen energie	%	3	3
Diskont	%	4	4
Ts - prostá doba návratnosti	roky	53	14
Tsd - reálná doby návratnosti	roky	128	18
NPV -čistá současná hodnota	Kč	28 549 621	728 623
IRR - vnitřní výnosové procento	%	4	5

6 ZÁVĚR, SUMARIZACE A KOMPARACE VÝSLEDKŮ

Diplomová práce se zabývá optimalizací parametrů ORC firmy PolyComp. V úvodní kapitole je představena základní problematika ORC cyklu. Jsou zde uvedeny důvody pro volbu organického chladiva a představeny způsoby zvyšování tepelné účinnosti cyklu. Dále jsou v úvodu popsány fyzikální principy a parametry jednotlivých komponent ORC cyklu.

Další kapitola popisuje reálný ORC cyklus, sestavený ve společnosti PolyComp. Jsou zde uvedeny jejich provozní parametry a základní charakteristiky.

Stěžejní kapitola práce obsahuje popis termodynamického výpočtu ORC cyklu a jeho implementaci v prostředí MatLab. Použité parametry výpočtu odpovídají skutečným parametrům reálného ORC, realizovaného ve společnosti PolyComp. Účelem programu je zjištění citlivosti tepelné účinnosti cyklu a velikosti teplosměnných ploch tepelných výměníku v závislosti na zvolených parametrech a jejich rozsazích Výpočetní program pracuje s vlastnostmi organického chladiva R134a. V rámci programu je možné zvolit libovolný rozsah teplot pro přehřátí chladiva a libovolný rozsah tlaků chladiva v kondenzátoru a parním motoru pro získání průběhů tepelných účinností, tepelných výkonů, získané práce parního motoru a teplosměnných ploch tepelných výměníků. Tepelná účinnost je vypočtena ze stavových a procesních veličin ORC. Základní konstrukční parametry teplosměnných ploch odpovídají reálným konstrukčním parametrům boileru a kondenzátoru ORC cyklu společnosti PolyComp. Vybrané charakteristiky jsou porovnány s vybranými charakteristikami, z referenčních dat společnosti PolyComp.

Na základě vypočtených průběhů jsou následně analyzovány optimální provozní parametry ORC firmy PolyComp s následným ekonomickým zhodnocením návratnosti vložených investic. Ekonomické zhodnocení ukazuje souvislost mezi investičními náklady a tepelnou účinností. Počáteční investiční náklady pro provoz při nejvyšší tepelné účinnosti mohou být tak vysoké, že se provoz zařízení nemusí vyplatit. Provozní parametry se tedy volí nejen z hlediska vysoké tepelné účinnosti, ale i dostatečné návratnosti investic.

Optimalizaci parametrů, kterou se tato práce zabývá je možné nadále doplnit například úpravou výpočetního programu v oblasti rekuperace přehřátého chladiva pro změnu tlaku chladiva v kondenzátoru, která v případě výpočtu zůstává konstantní. Další možností je zahrnutí tlakových ztrát v tepelných výměnících a změny účinnosti motoru v závislosti na průtoku chladiva.

Optimalizace provozních parametrů ORC bez přehřívání organického chladiva R134a byla provedena v rozmezí tlaku par chladiva na vstupu do parního motoru 1,3MPa až 3,2MPa. Tlak kapalného chladiva v kondenzátoru se měnil v rozmezí 0,4MPa až 1MPa. Výsledky ukazují, že maximální dosažitelná tepelná účinnost je 13,2%. Tato účinnost je dosažena při maximálním tlaku par chladiva na vstupu do motoru a minimálním tlaku v kondenzátoru. Potřebná velikost teplosměnných ploch je mimo jiné úměrná potřebnému množství dodaného či odvedeného tepla. V ideálním případě tedy maximální účinnost cyklu odpovídá minimální teplosměnné ploše kondenzátoru a maximální teplosměnné ploše kondenzátoru a maximální teplosměnné ploše kondenzátoru a maximální teplosměnné ploše bojleru tj. maximálnímu množství dodaného tepla a minimálnímu množství odvedeného tepla. Z hlediska investice do zařízení je proto vhodné srovnávat množství vyrobené energie s ohledem na cenu 1 m² teplosměnné plochy, která bude výrazně vyšší pro bojler (teplosměnná plocha bojleru je řádově nižší než teplosměnná plocha kondenzátoru).

Ekonomické hodnocení nám ukazuje stálé režimy, v nichž je výhodné cyklus provozovat. Výsledek ukazuje, že při provozu s maximální tepelnou účinností a předpokládanou dobou životnosti 20 let se zařízení splatí již za polovinu doby životnosti.

Další optimalizace provozních parametrů ORC proběhla s přehříváním a rekuperací organického chladiva R134a. Tlak par chladiva na vstupu do parního motoru se měnil z 1,3MPa na 3,2MPa. Byly uvažovány pouze dvě hodnoty tlaku v kondenzátoru a to 0,4MPa a 1MPa. Teplota přehřátí chladiva se měnila od 90 °C do 130 °C. Maximální tepelná účinnost je 16,24% a je tady vyšší, než bez přehřívání a rekuperace. Tato účinnost odpovídá maximálnímu tlaku par chladiva na vstupu do motoru, minimálnímu tlaku kapalného chladiva

v kondenzátoru a maximální teplotě přehřátí. Maximální tepelná účinnost cyklu odpovídá maximální teplosměnné ploše boileru a minimální teplosměnné ploše kondenzátoru. Množství rekuperovaného tepla par chladiva se s nárůstem tlaku v motoru snižovalo. Množství požadovaného tepla při ohřevu tak bylo při tlaku v kondenzátoru 1MPa zcela pokryto teplem z rekuperace do tlaku v motoru 2,2MPa. V případě provozu s tlakem v kondenzátoru 0,4MPa bylo požadované teplo zcela pokryto teplem z rekuperace do tlaku v motoru 1,4MPa. Od těchto tlaků v motoru bylo požadované teplo pokryto rekuperovaným teplem a teplem dodaným externě olejovým hořákem.

Ekonomické vyhodnocení nám ukazuje, že při provozu s maximální tepelnou účinností a předpokládanou dobou provozu 20 let se zařízení splatí za 8 let s vysokou návratností vložených investic. Zařízení se nevyplatí provozovat při maximálním tlaku v kondenzátoru a minimálním tlaku v boileru s maximální teplotou přehřátí.

Při provozu s maximální tepelnou účinností s přehřátím a rekuperací jsou investiční náklady dvojnásobné oproti provozu bez přehřátí a rekuperace, avšak provozní výnosy z provozu zařízení bez rekuperace jsou o třetinu větší. Vložená investice se splatí dříve u provozu bez přehřátí s menším celkovým ziskem.

Dále byl porovnán provoz bez rekuperace s provozem s rekuperací při stejných provozních podmínkách, jako v předchozím případě, ale se zvýšením tlaku v kondenzátoru na 1MPa u provozu s rekuperací. Bylo zjištěno, že je vhodnější dát přednost provozu bez přehřátí a rekuperace. Investiční náklady pro provoz zařízení bez rekuperace jsou nižší o 36,7% a výnosy z provozu zařízení jsou vyšší o 38%. Celková investice do zařízení se bez rekuperace a přehřátí oproti provozu ORC s přehřátím při zvolených parametrech splatí o 10 let dříve.

Z porovnání provozu s rekuperací a bez rekuperace se zjistilo, že při rekuperaci se dosahuje vyšších tepelných účinností. Tepelná účinnost s rekuperací při tlaku v kondenzátoru 0,4MPa a tlaku v motoru 3,2MPa je o 2% vyšší, než bez rekuperace. Teplosměnná plocha boileru s rekuperací na rozdíl od provozu bez rekuperace narůstá se zvýšením tlaku v motoru a je menší. Z uvedených výsledků je možné usuzovat na snížení teplosměnné plochy při provozu s rekuperací a tím snížení investičních nákladů.

Veškeré náklady v uvedeném ekonomickém zhodnocení podléhají aktuálním cenám elektřiny, cenám teplosměnných ploch a komponent výrobce. Velikost teplosměnné plochy závisí na zvolených provozních parametrech.

Porovnání výsledků výpočtu s výsledky z referenčních dat společnosti Polycomp ukazuje poměrně dobrou shodu a ukazují, že parametry nastavení modelu (například účinnost motoru), byly zvoleny korektně.

- UNUS A. ÇENGEL, Yunus A.Michael A. *Thermodynamics: An engineering approach with student resources DVD*. 5th ed. Boston, Mass. [etc.]: McGraw-Hill. ISBN 9780073107684.
- [2] Internetové stránky Converting low-grade heat into electrical power
 [online].[1.9.2015]. URL:
 http://www.eng.usf.edu/~hchen4/Organic%20Rankine%20Cycle.htm
- [3] Internetové stránky Promitech [online].[1.9.2015] URL: http://orbi.ulg.ac.be/bitstream/2268/14609/1/ECEMEI_PaperULg_SQVL090916.pdf
- [4] Internetové stránky Electratherm [online].[1.9.2015] URL: <www.electratherm.com>
- [5] *Internetové stránky TransPacific Energy* [online].[1.9.2015] URL: http://www.transpacenergy.com/
- [6] Internetové stránky National Institute of Standards and Technology [online].[1.9.2015] URL: http://webbook.nist.gov
- [7] *Internetové stránky Turboden* [online].[1.9.2015] URL: http://www.turboden.eu/en/home/index.php
- [8] Quoilin S. and Lemort V., Technological and Economical Survey of Organic Rankine Cycle Systéme, University of Liege, 2009.
- [9] CHYSKÝ, Jaroslav a Karel HEMZAL. Větrání a klimatizace. 3., zcela přeprac. vyd. Brno: Bolit-B press, 1993, 490 s. Česká matice technická (Bolit-B press). ISBN 80-901574-0-8.]
- [10] KRÖGER, Detlev G. Air-cooled heat exchangers and cooling towers. Tulsa, Okl.: Penwell Corp., 2004, 2 v. ISBN 15937001992. [9] Internetové stránky GBH Enterprises, Ltd. [online].[1.9.2015] URL: <www.GBHEnterprises.com>
- [11] FRANA, Karel a Milos MULLER. A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat. *International Journal of Mechanical, Industrial Science and Engineering*. 2014, roč. 8, č. 3.
- [12] *Internetové stránky Transformacni technologie* [online].[1.9.2015] URL: http://www.transformacni-technologie.cz/pistovy-parni-motor-parni-stroj.html
- [13] Internetové stránky PolyComp [online].[1.9.2015] URL: <www.polycomp.cz
- [14] *Internetové stránky Transformační technologie* [online].[1.9.2015] URL: http://www.transformacni-technologie.cz/pistovy-parni-motor-parni-stroj.html
- [15] *Internetové stránky TurbineGenerator* [online].[1.9.2015]. URL: http://turbinegenerator.org/steam/types-steam-turbines/reaction
- [16] *Internetové stránky Promitech* [online].[1.9.2015] URL: http://www.promhimtech.com
- [17] *Internetové stránky TZB-info* [online].[1.9.2015] URL: http://www.tzb-info.cz/833-parni-motor-sance-pro-vyrobu-elektriny-z-biomasy
- [18] Internetové stránky Swep [online].[1.9.2015] URL: http://www.swep.net/en/products_solutions/productfinder/Pages/B120T.aspx>
- [19] Internetové stránky Swep [online].[4.9.2015] URL: http://www.ssponline.swep.net>
- [20] *Internetové stránky Promitech* [online].[1.9.2015] URL: <www.weishauptcorp.com/local/documentBase/2031-CA-02-03.pdf>

- [21] *Internetové stránky Elektrodesign* [online].[1.9.2015] URL: http://www.elektrodesign.cz
- [22] ROY, J. P., M. K. MISHRA a Ashok MISRA. Parametric Optimization and Performance Analysis of a Regenerative Organic Rankine Cycle Using Low–Grade Waste Heat for Power Generation. *International Journal of Green Energy*. 2011, 8(2): 173-196. DOI: 10.1080/15435075.2010.550017. ISSN 1543-5075. Dostupné také z: http://www.tandfonline.com/doi/abs/10.1080/15435075.2010.550017
- [23] DLOUHÝ, Tomáš. *Výpočty kotlů a spalinových výměníků*. Vyd. 3. V Praze: Nakladatelství ČVUT, 2007,c1999, 212 s. ISBN 978-80-01-03757-7.
- [24] Zákon č. 480/2012 Sb., o energetickém auditu a o energetickém posudku. In: *Sbírka zákonů*. 1. 1. 2013. ISSN 1211-1244.
- [25] Internetové stránky Brilon [online].[5.10.2015] <URL: www.Brilon.cz>
- [26] Tomáš CHADIM. Finanční kalkulátor pro hodnocení ekonomické efektivnosti investic [online].[4.10.2015] ČVUT. Dostupné z: http://stavba.tzb-info.cz/tabulky-avypocty/110-financni-kalkulator-pro-hodnoceni-ekonomicke-efektivnosti-investic.
- [27] BY M. THIRUMALESHWAR. Fundamentals of heat and mass transfer. New Delhi: Pearson, 2006. ISBN 8177585193
- [28] KUPPAN, T. *Heat exchanger design handbook*. New York: Marcel Dekker, 2000, x, 1119 p. Mechanical engineering (Marcel Dekker, Inc.). ISBN 0824797876.

- Příloha P1 Průtoková charakteristika ventilátoru CBM/4 270/270 T 3/4 [21]
- Příloha P2 Výkonová charakteristika hořáku WEISHAUPT WL 30Z C
- Příloha P3 Charakteristika čerpadla CEHB 3600
- Příloha P4 Tabulka výsledných entalpií spalin a vstupních výkonů
- Příloha P5 Závislost výkonu na teplotě spalin
- Příloha P6 Tabulka středních měrných tepelných kapacit základních složek spalin [22]
- Příloha P7 Závislost kapacity spalin na teplotě
- Příloha P8 Tabulka kinematických viskozit základních složek spalin
- Příloha P9 Závislost kinematické viskozity spalin na teplotě
- Příloha P10 Tepelná vodivost základních složek spalin
- Příloha P11 Závislost tepelné vodivosti spalin na teplotě
- Příloha P12 Datový list boileru
- Příloha P13 Vývojový diagram a legenda výpočetního programu referenčního ORC

Příloha P2 - Výkonová charakteristika hořáku WEISHAUPT WL 30Z-C

SIH

SCHMACHTL CZ, spol. s r.o.

Vestec 185 CZ-25242 Jesenice Czech Republic p. Jan Vranovsky Phone: +420 244 001 500 Fax: +420 244 910 700

Project :

Quote No	o. :	AT-7051-2	211					Da	ate: 8. Nove	mber 2013		
Pump Mc Pump Op Material S Item :	odel: o. Spee Spec. G	d: iroup: 1	CEHB 1490 R [0A] : N	3600 8 Stag PM Main parts ir	jes n GG, impelle	er in bra	ass	Market	: Side C	hannel		
Your Ref.	.:								FLOW (m ³ /h)	HEAD (bar)	POWER (kW)	NPSH (m)
Fluid: R1	134a			V	ap. Press.: 82 Viscosity: 0.	20 kF	Pa m²/s	Required :	4	25		
Temperat	ture: 40	°C			Density: 11	150 kg	g/m ³	Obtained :	4,02	25,22	9,2	0,18/1
Performa	ance cui	ve according	to ISO 9	906 Grade 3	В							
	N2-	1800 RPM,	N1-900 F	RPM								
ar 4	0						/					
- 3I	0			-	-							
Insse	0				4		>					
⁹ 1	0										N	2
							N1					
Е	1			-	-							
- HS	-											
dN 0,	5											
							-					
	F					/			Ī			
∧ 1: Y	5											
- Ju	0						_					
Po	5											
%									<u> </u>			
- fou	0											
4 Licier	0						2					
Ę	0		- 2	,		1			6		1 1	
						F	low -	- <mark>m³⁄h</mark>				

Å

Sterling Fluid Systems (IP) bv - RAPID v8.0 - 28th November 2008.

Teplota [°C]	<i>H</i> _{Vmin} [kJ/kg]	H _{Smin} [kJ/kg]	$H_{\rm V}$ [kJ/kg]	$P_{\rm vst}$ [kW]
0	0	0	0	0
25	366,1134218	411,3407553	447,9520974	5,194896
100	1485,708726	1636,30421	1784,875083	20,88832
200	2989,646142	3329,309733	3628,274347	42,24736
300	4520,829535	5035,083732	5487,166685	63,88854
400	6084,84398	6803,851242	7412,33564	86,14841
500	7677,180831	8547,461614	9315,179697	108,4766
600	9320,595068	10483,22893	11415,28844	132,3185
700	10990,1965	12389,72624	13488,74589	156,1884
800	12687,29096	14338,29944	15607,02853	180,5139
900	14419,45756	16321,02416	17762,96992	205,3063
1000	16174,74089	18345,53597	19963,01006	230,5193

Příloha P4 - Tabulka výsledných jednotkových entalpií vlhkých spalin a vstupních příkonů

Příloha P5 - Závislost teploty spalin na vstupním příkonu

	Měrná tepelná kapacita [kJ/kg·K]							
Teplota [°C]	CO2	N2	H2O	Vlhky vzduch	Kapacita směsi vlhkého vzduchu a CO2, N2, H2O			
226,85	1,014	1,056	1,954	1,1	1,11035			
276,85	1,046	1,065	1,984	1,1	1,117343			
326,85	1,075	1,075	2,015	1,1	1,124419			
376,85	1,102	1,086	2,047	1,1	1,131672			
426,85	1,126	1,098	2,08	1,1	1,139008			
476,85	1,148	1,11	2,113	1,1	1,14616			
526,85	1,168	1,122	2,147	1,1	1,153165			
576,85	1,187	1,134	2,182	1,1	1,160116			
626,85	1,204	1,146	2,217	1,1	1,166883			
676,85	1,22	1,157	2,252	1,1	1,173235			
726,85	1,234	1,167	2,288	1,1	1,179118			
776,85	1,247	1,177	2,323	1,1	1,184871			
826,85	1,259	1,187	2,358	1,1	1,190532			
876,85	1,27	1,196	2,392	1,1	1,19574			
926,85	1,28	1,204	2,425	1,1	1,200495			
976,85	1,29	1,212	2,458	1,1	1,205251			
1026,85	1,298	1,219	2,49	1,1	1,209462			

Příloha P6 – Tabulka středních měrných tepelných kapacit základních složek spalin [22]

Příloha P7 - Závislost měrné tepelné kapacity spalin na teplotě

	Viskozita [m ² /s]									
Teplota [°C]	CO2	N2	Н2О	Vlhky vzduch	Viskozita směsi vlhkého vzduchu a CO2,N2, H2O					
840	9,40E-05	0,000147	0,000215	0,000142624	0,000142					
850	9,55E-05	0,00015	0,000219	0,000144649	0,000145					
860	9,69E-05	0,000152	0,000223	0,000146692	0,000147					
870	9,84E-05	0,000154	0,000227	0,000148755	0,000149					
880	1,00E-04	0,000156	0,000231	0,00015084	0,000151					
890	1,01E-04	0,000158	0,000235	0,000152948	0,000153					
900	1,03E-04	0,000161	0,000239	1,55E-04	0,000155					
910	1,05E-04	0,000163	0,000243	0,000157237	0,000157					
920	1,06E-04	0,000165	0,000247	0,000159422	0,00016					
930	1,08E-04	0,000167	0,000251	0,000161635	0,000162					
940	1,09E-04	0,00017	0,000255	0,000163876	0,000164					
950	1,11E-04	0,000172	0,000259	0,000166149	0,000166					
960	1,12E-04	0,000174	0,000263	0,000168452	0,000169					
970	1,14E-04	0,000177	0,000267	0,000170788	0,000171					
980	1,16E-04	0,000179	0,000272	0,000173156	0,000174					
990	1,17E-04	0,000181	0,000276	0,000175558	0,000176					
1000	1,19E-04	0,000184	0,00028	1,78E-04	0,000178					

Příloha P8 – Tabulka kinematických viskozit základních složek spalin

Příloha P9 - Závislost kinematické viskozity spalin na teplotě

	Tepelná vodivost [W/m·K]								
Teplota [°C]	CO2	N2	Н2О	Vlhky vzduch	Směs vlhkého vzduchu, CO2, N2, H2O				
840	7,79E-02	0,071828	0,11303	0,07363534	0,074945				
850	7,85E-02	0,072334	0,11446	0,074088691	0,075468				
860	7,92E-02	0,072839	0,1159	0,074539971	0,075991				
870	7,98E-02	0,073342	0,11733	0,074989197	0,076511				
880	8,04E-02	0,073843	0,11878	0,075436416	0,077029				
890	8,10E-02	0,074344	0,12022	0,075881713	0,077546				
900	8,16E-02	0,074842	0,12167	7,63E-02	0,078047				
910	8,23E-02	0,075339	0,12313	0,076767092	0,078575				
920	8,29E-02	0,075835	0,12458	0,077207572	0,079087				
930	8,35E-02	0,076329	0,12604	0,077646933	0,079598				
940	8,41E-02	0,076821	0,1275	0,078085518	0,080108				
950	8,47E-02	0,077312	0,12897	0,078523734	0,080617				
960	8,53E-02	0,077802	0,13043	0,078962064	0,081125				
970	8,59E-02	0,07829	0,1319	0,079401066	0,081634				
980	8,64E-02	0,078777	0,13338	0,079841384	0,082142				
990	8,70E-02	0,079262	0,13485	0,080283752	0,082651				
1000	8,76E-02	0,079746	0,13633	8,07E-02	0,083145				

Příloha P10 - Tepelná vodivost základních složek spalin

Příloha P11 - Závislost tepelné vodivosti spalin na teplotě

Datový list

Tepel. v. [kW]= 215 Výhř. plocha [m ²]= 9,8 Souč. pr. tepla [W/m ³ /K]= 77 Δ ₀ T [K]= 286 Technologická data: R-134a (trubky) Průtok: [kg/h] 3 840 Spaliny (plášť) Prolitok: [kg/h] 3 840 Spaliny (plášť) 745 Teplota vstup/výstup: [*C] 1000 / 110 Průtok: [kg/h] 745 Vstupní tlak: [kPag] 2 600 Teplota vstup/výstup: [*C] 1000 / 110 Hydrodynamický odpor: [kPag] 2 600 Teplota vstup/výstup: [*C] 1000 / 110 Hydrodynamický odpor: [kPag] 0.03 Vstupní tlak: [kPag] 0,23 / 0,99 kapalina/pára: [M/kg] 108 Střední rychlost v pl.: [m/s] 0,23 / 0,99 kapalina/pára: [M/kg] 108 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Střední rychlost v pl.: [m/s] 6,4 Střední data: [%]/m] 1,30 Střední rychlost v m] [%] 100 <	Základní data:						
Technologická data: R-134a (trubky) R-134a (trubky) Průtok: [kg/h] 3 840 Spaliny (plášť) Teplota vstup/výstup: [°C] 1000 / 110 Průtok: [kg/h] 745 Vstupní tlak: [kPag] 2 600 Teplota vstup/výstup: [°C] 1000 / 110 Hydrodynamický odpor: [kPag] 0,3 105 Hydrodynamický odpor: [kPa] 0,26 Střední tepel. kapacita H/kg/K] 1 821 / 1581 Střední tepel. kapacita: [J/kg/K] 1 190 výparné teplo: [kJ/kg] 108 Střední typlinst v pl.: [m/s] 6,4 Střední spalina / pára: [m/s] 0,4 / 3,0 Střední typlinst v pl.: [m/s] 6,4 Střední typlinst [kg/m ¹] 1,30 Střední typlinst v pl.: [m/s] 6,4 Strojní data: [m/s] 0,4 / 3,0 Střední typlinst v pl.: [kg]= 195 plášť Výška [mm]= 21,3x2 [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 plášť Vjška [mm]=1 354 x 1 008 T.pl. [mm]=4 M [kg]= 90 spalinová komora plášť Délka [mm]=1 352	Tepel. v. [kW]= 215	Výhř. plocha [m ²]= 9,8 Souč. p	r. tepla [W/m²/K]=	77 Δ _{ls} 1	[K]= 286	
<i>R</i> -134 <i>a</i> (<i>trubky</i>) Průtok: [kg/h] 3 840 <i>Spaliny</i> (<i>plášť</i>) Teplota vstup/výstup: [°C] 54 / 110 Průtok: [kg/h] 745 Vstupní tlak: [kPag] 2 600 Teplota vstup/výstup: [°C] 1000 / 110 Hydrodynamický odpor: [kPa] 80 V stupní tlak: [kPag] 0,3 Hydrodynamický odpor: [kPa] 0,26 Střední tepel. kapacita Hustota vstup/výstup: [kg/m ³] 0,23 / 0,99 kapalina/pára: [<i>l</i> /kg/K] 1 821 / 1581 Střední tepel. kapacita: [<i>l</i> /kg/K] 1190 výparné teplo: [kJ/kg] 108 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 <i>Složení spalin:</i> [% <i>j</i>] ob <i>j.</i> N ₁ (66,09); O ₂ (8,60); H ₂ O (12,31); CO ₂ (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm ³] 1,30 <i>Strojni data:</i> <i>Trubkový svazek</i> Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 <i>Plášť</i> Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl. [mm]=4 M [kg]= 90 <i>Spalinov komora</i> Délka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 <i>Hrdia</i> Spaliny vsup/výstup: 142 x 1 000 mm Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 <i>Rozměry:</i> Celková šiřka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 <i>Návrhové hodnoty:</i> Ps (plášt) [KPag] = 40 Ps (trubky) [KPag] = 3 300 Ts (plášt) [KPag] = 40 Ps (trubky) [KPag] = 3 300	Technologická data:						
Průtok: [kg/h] 3 840 Spaliny (plášť) Teplota vstup/výstup: [*C] 54 / 110 Průtok: [kg/h] 745 Vstupní tlak: [kPag] 2 600 Teplota vstup/výstup: [*C] 1000 / 110 Hydrodynamický odpor: [kPa] 80 Vstupni tlak: [kPag] 0,3 Hustota vstup/výstup: [kg/m³] 1 083 / 105 Hydrodynamický odpor: [kPa] 0,26 Střední tepel. kapacita [Vkg/K] 1 821 / 1581 Střední tepel. kapacita: [J/kg/K] 190 výparné teplo: [kJ/kg] 108 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Složení spalín: [%] obj. N ₂ (66,09); O ₂ (8,60); H ₂ O (12,31); CO ₂ (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm³] 1,30 Strojní data: Trubkový svazek Počet trubek 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora Delka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Núvrhové hodnoty: Ps (plášť) [KPag] = 40 Ps (trubky) [KPag] = 3 300 Ts (plášť) [KPag] = 40 Ps (trubky) [KPag] = 3 300 Ts (plášť) [KPag] = 40 Ps (trubky) [KP2] = 250	R-134a (trubky)						
Teplota vstup/výstup: [*C] 54 / 110 Průtok: [kg/h] 745 Vstupní tlak: [kPag] 2 600 Teplota vstup/výstup: [*C] 1000 / 110 Hydrodynamický odpor: [kPa] 80 Vstupní tlak: [kPag] 0,3 Hustota vstup/výstup: [kg/m] 1 083 / 105 Hydrodynamický odpor: [kPa] 0,26 Střední tepel. kapacita Hustota vstup/výstup: [kg/m] 0,23 / 0,99 kapalina/pára: [/kg/K] 1 821 / 1581 Střední tepel. kapacita: [/kg/K] 1 190 výparné teplo: [kl/kg] 108 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 1,30 Střední rychlost v pl.: [m/s] 6,4 Strojní data: Trubkový svazek Počet přepážek = 9 Rozměr (mm]=1 354 x 1 008 Tl.pl. [mm]=4 [kg]= 160 Počet přepážek = 9	Průtok:	[kg/h]	3 840	Spaliny (plás	iť)		
Vstupní tlák: [kPag] 2 600 Teplota vstup/výstup: [*C] 1000 / 110 Hydrodynamický odpor: [kPag] 0,3 0,3 Hustota vstup/výstup: [kg/m³] 1 083 / 105 Hydrodynamický odpor: [kPag] 0,3 Střední tepel. kapacita Hustota vstup/výstup: [kg/m³] 0,23 / 0,99 kapalina/pára: [l/kg/K] 1 821 / 1581 Střední tepel. kapacita: [l/kg/K] 1 190 výparné teplo: [kl/kg] 108 Střední repel. kapacita: [l/kg/K] 1 190 výparné teplo: [kl/kg] 108 Střední repl. kapacita: [l/kg/K] 1 190 výparné teplo: [kl/kg] 0,4 / 3,0 Střední repl. kapacita: [l/kg/K] 1 190 Slóžení spalin: [%] obj. N2 (66,09); 02 (8,60); H_2O (12,31); CO2 (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm³] 1,30 Stroiní data: Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 TI.př. [mm]=4 M [kg]= 69 Hrdla Spalinvá komora Délka [m]= 1,42 x 1 000 TI. [mm]=4 <td< td=""><td>Teplota vstup/výstup:</td><td>[°C]</td><td>54/110</td><td>Průtok:</td><td></td><td>[kg/h]</td><td>745</td></td<>	Teplota vstup/výstup:	[°C]	54/110	Průtok:		[kg/h]	745
Hydrodynamický odpor: [kPa] 80 Vstupní tlak: [kPag] 0,3 Hustota vstup/výstup: [kg/m ³] 1083 / 105 Hydrodynamický odpor: [kPa] 0,26 Střední tepel. kapacita: [J/kg/K] 1821 / 1581 Střední tepel. kapacita: [J/kg/K] 1190 vjparné teplo: [kJ/kg] 108 Střední rychlost v pl.: [J/kg/K] 1190 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Složení spalin: [%] obj. N ₂ (66,09); 0 ₂ (8,60); H ₂ O (12,31); CO ₂ (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm ³] 1,30 <u>Strojní data:</u> Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 <i>Spalinová komora</i> Dělka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 <u>Rozměrz:</u> Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 <u>Návrhové hodnoty:</u> Ps (plášť) [Kga] = 40 Ps (trubky) [KPag] = 3 300 Ts (plášť) [C] = 1050 Ts (trubky) [C] = 250	Vstupní tlak:	[kPag]	2 600	Teplota vstu	p/výstup:	[°C]	1000/110
Hustota vstup/výstup: [kg/m³] 1 083 / 105 Hydrodynamický odpor: [kPa] 0,26 Střední tepel. kapacita Hustota vstup/výstup: [kg/m³] 0,23 / 0,99 kapalina/pára: [J/kg/K] 1 821 / 1581 Střední tepel. kapacita: [J/kg/K] 1 190 výparné teplo: [kJ/kg] 108 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Složení spalin: [%] obj. N ₂ (66,09); O ₂ (8,60); H ₂ O (12,31); CO ₂ (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm³] 1,30 <u>Strojní data:</u> Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora Délka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 <u>Rozměrv:</u> Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 <u>Návrhové hodnoty:</u> Ps (plášt] [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (plášt) [k°c] = 1050 Ts (trubky) [°C] = 250	Hydrodynamický odpor:	[kPa]	80	Vstupní tlak:		[kPag]	0,3
Střední tepel. kapacita kapalina/pára: Hustota vstup/výstup: [kg/m ³] 0,23 / 0,99 výparné teplo: [k/kg/k] 1 821 / 1581 Střední tepel. kapacita: [J/kg/k] 1 190 výparné teplo: [k/kg] 108 Střední rychlost v tr. 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Složení spalin: [%] obj. 6,4 N2 (66,09); O2 (8,60); H ₂ O (12,31); CO ₂ (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm ³] 1,30 Strojní data: Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 90 Spalinová komora Bočet trubek= 12 D [mm]= 12,3x2 L 1000 Tl. [mm]=4 M [kg]= 69 Plášť Výška [mm]= 1,55 Průřez [mm]= 120 x 1 000 Tl. [mm]=4 M [kg]= 69 Plálka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spalinová vsup/výstup: 142 x 1 000 mm Chladivo vsup: DN25, PN40 výska [m]= 0,59 Kozněříka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,55	Hustota vstup/výstup:	[kg/m ³]	1 083 / 105	Hydrodynam	nický odpor:	[kPa]	0,26
kapalina/pára: [J/kg/K] 1 821 / 1581 Střední tepel. kapacita: [J/kg/K] 1 190 výparné teplo: [kJ/kg] 108 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 6,4 Složení spalin: [%] obj. 0,4 / 3,0 5 6,6 Složení spalin: [%] obj. 0,4 / 3,0 5 5 Složení spalin: [%] obj. 0,4 / 3,0 5 5 Složení spalin: [%] obj. 0,4 / 3,0 5 5 Složení spalin: [%] obj. 0,4 / 3,0 5 5 Složení spalin [%] obj. 0,4 / 3,0 5 5 Složení spalin [%] obj. 0,4 / 3,0 5 5 Střední motost: [kg/Nm³] 1,30 5 <td>Střední tepel. kapacita</td> <td></td> <td></td> <td>Hustota vstu</td> <td>p/výstup:</td> <td>[kg/m³]</td> <td>0,23 / 0,99</td>	Střední tepel. kapacita			Hustota vstu	p/výstup:	[kg/m ³]	0,23 / 0,99
výparné teplo: [kJ/kg] 108 Střední rychlost v pl.: [m/s] 6,4 Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Složení spalin: [%] obj. N ₂ (66,09); O ₂ (8,60); H ₂ O (12,31); CO ₂ (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm ³] 1,30 <u>Strojní data:</u> Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora Délka [mm]= 1556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 <u>Rozměry:</u> Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 <u>Návrhové hodnoty:</u> Ps (plášt) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Tš (plášt) [rC] = 1050 Tš (trubky) [rC] = 250	kapalina/pára:	[J/kg/K]	1821/1581	Střední tepe	I. kapacita:	[J/kg/K]	1 190
Střední rychlost v tr. kapalina/pára: [m/s] 0,4 / 3,0 Složení spalín: [%] obj. N2 (66,09); O2 (8,60); H2O (12,31); CO2 (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm³] 1,30 Strojni data: Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora Délka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm M [kg]= 69 Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 Rozměry: Celková šířka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Mávnové hodnoty: Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (trubky) [f°C] = 250	výparné teplo:	[kJ/kg]	108	Střední rychl	ost v pl.:	[m/s]	6,4
kapalina/pára: [m/s] 0,4 / 3,0 Složení spalin: [%] obj. N2 (66,09); O2 (8,60); H2O (12,31); CO2 (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm³] 1,30 Strojní data:	Střední rychlost v tr.						
Složeni spalin: [%] obj. N2 (66,09); O2 (8,60); H2O (12,31); CO2 (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm³] 1,30 Strojní data:	kapalina/pára:	[m/s]	0,4 / 3,0				
N ₂ (66,09); O ₂ (8,60); H ₂ O (12,31); CO ₂ (12,18); Ar (0,82) Měrná hmotnost: [kg/Nm ³] 1,30 <u>Strojní data:</u> Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 <i>Plášť</i> Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 <i>Spalinová komora</i> Délka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 <i>Hrdla</i> Spaliny vsup/výstup: 142 x 1 000 mm Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 <u>Rozměry:</u> Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 <u>Návrhové hodnoty:</u> Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (plášť) [*C] = 1050 Ts (trubky) [*C] = 250	Složení spalin: [%]	obi.					
Měrná hmotnost: [kg/Nm³] 1,30 Strojní data: Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora Délka [mm]= 1556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spalinov ú svup/výstup: 142 x 1 000 mm Chladivo vsup/výstup: 142 x 1 000 mm N15, PN2,5 Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Návrhové hodnoty: Ps (trubky) [kPag] = 3 300 Ts (trubky) [kPag] = 3 300 Ts (trubky) [°C] = 250	N, (66,09); O, (8,60); H,O	(12,31); CO, (12,	18); Ar (0,82)				
Strojni data: Trubkový svazek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora Délka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm M [kg]= 69 M15, PN2,5 Rozměry: Delka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Mávrhové hodnoty: Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (trubky) [*C] = 250	Měrná hmotnost:	[kg/Nm ³]	1,30				
Průbkový svažek Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rozteč [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora D D Tl.př. [mm]=4 M [kg]= 69 Hrdla Spalinová vstup: Pvýštup: 142 x 1 000 mm M [kg]= 69 Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční (t]= 0,55 Mávrhové hodnoty: Ps (plášť, [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (trubky) [*C] = 250	<u>Strojní data:</u>						
Počet trubek= 12 D [mm]= 21,3x2 L [mm]= 17 121 Rožteć [mm]=45x M [kg]= 195 Plášť Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 TI.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 TI.př. [mm]=4 M [kg]= 90 Spalinová komora Délka [mm]= 1556 Průřez [mm]= 142 x 1 000 TI. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm M [kg]= 69 Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Mávrhové hodnoty: Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (trubky) [°C] = 250	Trubkovy svazek						
Výška [mm]= 428 Podstava [mm]= 1 354 x 1 008 Tl.pl. [mm]=4 M [kg]= 160 Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora Délka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm M [kg]= 69 Chladivo vsup/výstup: 142 x 1 000 mm M [kg]= 69 Odkalení pláště DN15, PN2,5 DN15, PN2,5 Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Mávrhové hodnoty: Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (trubky) [°C] = 250	Pocet trubek= 12 Plášť	D [mm]= 21,3x2	L [mm]= 17 121	Roztec [mm]=45)	K MI	kg]= 195	
Počet přepážek = 9 Rozměr [mm]=320 x 1 000 Tl.př. [mm]=4 M [kg]= 90 Spalinová komora Délka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm M [kg]= 69 Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Návrhové hodnoty: Ps (trubky) [kPag] = 3 300 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Výška [mm]= 428	Podstava [mm]=	1 354 x 1 008	Tl.pl. [mm]=4	M [kg]= 160)	
Délka [mm]= 1 556 Průřez [mm]= 142 x 1 000 Tl. [mm]=4 M [kg]= 69 Hrdla Spaliny vsup/výstup: 142 x 1 000 mm Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 <u>Rozměry:</u> Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 <u>Návrhové hodnoty:</u> Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Počet přepážek = 9 Spalinová komora	Rozměr [mm]=3	20 x 1 000	Tl.př. (mm]=4	M [kg]= 90		
Spaliny vsup/výstup: 142 x 1 000 mm Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Návrhové hodnoty: Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Délka [mm]= 1 556 Hrdla	Průřez (mm]= 14	2 x 1 000	Tl. [mm]=4	M [kg]= 69		
Chladivo vstup: DN25, PN40 výstup: DN40, PN40 Odkalení pláště DN15, PN2,5 Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Návrhové hodnoty: Ps (trubky) [kPag] = 3 300 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Spaliny vsup/vi	stup: 142 x 1 000	mm				
Odkalení pláště DN15, PN2,5 <u>Rozměry:</u> Celková šířka [m]= 1,048 Délka [m]= 1,56 Hmotnost konstrukční [t]= 0,55 <u>Návrhové hodnoty:</u> Ps (plášť) [kPag] = 40 Ps (plášť) [sPag] = 40 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Chladivo vstup: [N25 PN40	wistup: DN40 PI	N40			
Rozměry: Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Návrhové hodnoty: Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Odkalení pláště	DN15, PN2,5	1,500,01140,11				
Celková šířka [m]= 1,048 Délka [m]= 1,56 Výška [m]= 0,59 Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 Návrhové hodnoty: Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Rozměrv:						
Hmotnost konstrukční [t]= 0,55 Hmotnost provozní [t]= 0,55 <u>Návrhové hodnoty:</u> Ps (plášť) [kPag] = 40 Ps (plášť) [sC] = 1050 Ts (trubky) [sC] = 250	Celková šířka [m]= 1.048	Délka (r	n]= 1.56 Výška (r	m]= 0.59			
<u>Návrhové hodnoty:</u> Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Hmotnost konstrukční [t]	= 0,55 Hmotno	ost provozní [t]= 0	,55			
Ps (plášť) [kPag] = 40 Ps (trubky) [kPag] = 3 300 Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Návrhové hodnoty:						
Ts (plášť) [°C] = 1050 Ts (trubky) [°C] = 250	Ps (plášť) [kPag] = 40	Ps (trub	ky) [kPag] = 3 300)			
	Ts (plášť) [°C] = 1050	Ts (trub	Ts (trubky) [°C] = 250				

Legenda vývojového diagramu:

<i>a</i> _o měrná technická práce ORC	[J/kg]
<i>a</i> mskutečná měrná technická práce motoru	[J/kg]
a_{ts_C} ideální měrná technická práce čerpadla	[J/kg]
a_{ts_M} ideální měrná technická práce motoru	[J/kg]
$\Delta t_{\rm r}$ teplotní rozdíl chladiva při regeneraci tepla	[°C]
v ₁ měrný objem chladiva na vstupu do čerpadla	[m ³ /kg]
h_1 entalpie chladiva na vstupu do čerpadla	[J/kg]
h_2 entalpie kapalného chladiva na počátku rekuperace	e [J/kg]
h_3 entalpie chladiva na počátku ohřevu	[J/kg]
h_4 entalpie chladiva na počátku varu	[J/kg]
h ₅ entalpie chladiva na konci varu	[J/kg]
h_6 entalpie chladiva na vstupu do motoru	[J/kg]
h_7 entalpie chladiva po skutečné expanzi v motoru	[J/kg]
$h_{7_{id}}$ entalpie chladiva po ideální expanzi v motoru	[J/kg]
<i>m</i> _{chl} hmotnostní průtok chladiva	[kg/s]
<i>P</i> poz1požadovaný tepelný výkon ohříváku	[W]
Ppoz2požadovaný tepelný výkon výparníku	[W]
Ppoz3požadovaný tepelný výkon přehříváku	[W]
p_1 tlak chladiva na vstupu do čerpadla	[MPa]
<i>p</i> ₂ koncový tlak čerpaného chladiva	[MPa]
$q_{ m dod}$ měrné teplo dodané do ORC	[J/kg]
$q_{\rm odv}$ měrné teplo odvedené z ORC	[J/kg]
s_6 entropie chladiva na vstupu do motoru	[J/kg⋅K]
<i>s</i> ₇ entropie chladiva po expanzi na tlak čerpadla	[J/kg⋅K]
St ₁ teplosměnná plocha ohříváku	[m ²]
St ₂ teplosměnná plocha výparníku	[m ²]
St ₃ teplosměnná plocha přehříváku	[m ²]
St _{cond} teplosměnná plocha kondenzátoru	[m ²]
St _{boiler} teplosměnná plocha boileru	[m ²]
t ₃ teplota chladiva na počátku ohřevu	[°C]
t ₄ teplota chladiva na počátku varu	[°C]
t ₅ teplota chladiva na konci varu	[°C]
<i>t</i> ₆ teplota chladiva na vstupu do motoru	[°C]

t7teplota přehřátého chladiva na počátku rekuperace	[°C]
t_{s1} střední teplota oblasti ohřívání chladiva	[°C]
t_{s2} střední teplota oblasti přehřívání chladiva	[°C]
η tepelná účinnost cyklu	[%]
$\eta_{\rm m}$ účinnost parního motoru	[%]

