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Abstrakt
Tato práce analyzuje hrozby pro protokoly využívající bezkontaktní čipové karty
a představuje metodu pro poloautomatické hledání zranitelností v takových pro-
tokolech pomocí model checkingu. Návrh a implementace bezpečných aplikací jsou
obtížné úkoly, i když je použit bezpečný hardware. Specifikace na vysoké úrovni
abstrakce může vést k různým implementacím. Je důležité používat čipovou kartu
správně, nevhodná implementace protokolu může přinést zranitelnosti, i když je pro-
tokol sám o sobě bezpečný. Cílem této práce je poskytnout metodu, která může
být využita vývojáři protokolů k vytvoření modelu libovolné čipové karty, se za-
měřením na bezkontaktní čipové karty, k vytvoření modelu protokolu a k použití
model checkingu pro nalezení útoků v tomto modelu. Útok může být následně prove-
den a pokud není úspěšný, model je upraven pro další běh model checkingu. Pro
formální verifikaci byla použita platforma AVANTSSAR, modely jsou psány v jazyce
ASLan++. Jsou poskytnuty příklady pro demonstraci použitelnosti navrhované
metody. Tato metoda byla použita k nalezení slabiny bezkontaktní čipové karty Mi-
fare DESFire. Tato práce se dále zabývá hrozbami, které není možné pokrýt navrho-
vanou metodou, jako jsou útoky relay.

Abstract
This thesis analyses contactless smart card protocol threats and presents a method of
semi-automated vulnerability finding in such protocols using model checking. Design-
ing and implementing secure applications is difficult even when secure hardware is
used. High level application specifications may lead to different implementations. It
is important to use the smart card correctly, inappropriate protocol implementation
may introduce a vulnerability, even if the protocol is secure by itself. The goal of
this thesis is to provide a method that can be used by protocol developers to create
a model of arbitrary smart card, with focus on contactless smart cards, to create a
model of the protocol, and to use model checking to find attacks in this model. The
attack can be then executed and if not successful, the model is refined for another
model checker run. The AVANTSSAR platform was used for the formal verification,
models are written in the ASLan++ language. Examples are provided to demonstrate
usability of the proposed method. This method was used to find a weakness of Mifare
DESFire contactless smart card. This thesis also deals with threats not possible to
cover by the proposed method, such as relay attacks.
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Chapter 1

Introduction

1.1 Motivation

Contactless smart cards and devices equipped with near-field communication (NFC)
technology are used in many modern applications worldwide. Most of these applica-
tions require high level of security. Typical contactless technology applications are in
the fields of payment systems [1][2][3][4], electronic tickets and vouchers [5][6][7][8],
loyalty programs [9], access control systems [10][11], passports [12][13] and ID cards
[14]. There are hundreds of projects worldwide [15], which use NFC devices for small
payments, and the number is growing. Contactless cards are more convenient for the
user to perform transactions than contact cards; however, they yield new vulnerabili-
ties due to the radio interface. Proper use of these technologies provides high level of
security; however, some applications, especially for access control, may be developed
by developers that are not security experts, so they can contain vulnerabilities.

Development of secure hardware is very expensive and very slow compared to
development of software. Protocols used in security sensitive systems are usually very
secure and sometimes even formally verified. The software implementation is usually
developed faster than hardware and is usually not formally verified, which makes
it the weakest link. The software implementation is as important as other parts of
the system. The protocol must be carefully implemented using secure hardware in
proper way, which is very difficult, thus there is space for potential mistakes leading
to vulnerabilities. People writing such applications have to be perfectly aware of all
weaknesses of the particular card type in order to implement the system properly.
An automated tool for vulnerability search in contactless communication applications
would help them to verify their implementation on particular device.

When designing and verifying security protocols using informal techniques, some
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security errors may remain undetected. Formal verification methods provide a sys-
tematic way of finding protocol flaws. The protocol is specified in a formal way and
the correctness of security properties is proved or disproved using formal methods
and mathematics.

The motivation for this work is a massive spreading of new contactless technologies
and development of many applications sometimes by developers that are not security
experts. Due to the high number of systems using contactless technology worldwide
and the possibility of gaining high financial profit from compromising such a system,
there are efforts to find vulnerabilities in these systems on both sides, attackers are
trying to compromise a system, while developers are trying to fix vulnerabilities and
improve security.

1.2 Goals

The high level goal of this thesis is to investigate security of contactless smart card
protocols and to find methods of improving security of these protocols.

This thesis is concerned with contactless smart card protocols, which are protocols,
such as payment protocols, that use contactless smart cards to store some data, values,
cryptographic keys, and to perform cryptographic operations. End users usually use
these personalized cards for payments, access control, loyalty programs, etc. The focus
here is on contactless smart cards which differ from smart cards with contact interface
mainly in two aspects. Firstly, the contactless smart cards are usually simpler due to
the power limitations, so they can be modeled more easily. Secondly, the contactless
interface introduces threats due to the fact that all communication is wireless. These
threats, which are not applicable for smart cards with contact interface, must also be
considered when investigating security of contactless smart card protocols.

If we try to understand what security issues can occur in such a protocol, we have
to look not only at one level of the communication, such as the RF link, or the high
level protocol definition. We have to investigate possible vulnerabilities at all levels.

The focus in this thesis is on the high level attacks on the protocol level. Possibility
of these attacks will be analysed and a method of semi-automated vulnerability finding
using formal methods will be proposed.

The formal model can be created from the protocol definition or extracted from
the eavesdropped communication. Unwanted states that constitute an attacks must
also be specified. After analysing the protocol and creating the model including the
attack states, the formal analysis methods, such as model checking, can be used.

7



However, not all kinds of attacks are covered by the proposed method, such as
attacks specific to the contactless interface. One of the attack types that are not
covered by the method, the relay attack, is investigated separately. A minor part
of this thesis is therefore dedicated to relay attack investigation and countermeasure
proposal.

Relay attack is one of the most dangerous attacks against contactless devices,
because there is no practical countermeasure to it. There are so called distance
bounding protocols; however, they are implemented only in some devices, keeping
the rest of devices unprotected. In this thesis the relay attacks will be investigated
and if possible, a countermeasure to relay attacks performed over network will be
proposed.

1.3 Contribution

The contribution of this thesis is twofold. Two areas of contactless smart card security
were researched:

∙ finding high level attacks on the protocol level

∙ countermeasure to relay attacks

Chapter 2 provides introduction to contactless technologies and smart cards, and
analyses threats for smart cards, which are physical attacks, logical attacks, side-
channel attacks, and most importantly, threats specific to contactless communication,
such as relay attack. This chapter also provides introduction to security API and
protocols, and formal methods that can be used for security protocol analysis.

Chapter 3 shows the state of the art in contactless smart card security and
overviews the attacks and techniques used to find new types of attacks and the verifi-
cation processes of protocols. Besides published attacks on Mifare Classic and Mifare
DESFire, the focus is on security API attacks and protocol attacks, which provide an
insight to methods that can be used to find vulnerabilities, such as formal methods.

Main focus in this thesis is on proposing a method of finding high level attacks
on the protocol level. Chapter 4 is dedicated to the description of the proposed
semi-automated method of finding vulnerabilities in contactless smart card protocols
using formal verification methods. The focus is on contactless smart cards, because
they are simpler than smart cards with contact interface, often only memory cards
providing encrypted communication.
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Chapter 5 provides a formal model and describes a method to create models
in ASLan++ language, which is an input format for various model checkers. The
ASLan++ model contains smart card, protocol, and attack definitions, which are
sufficient for a model checker to be able to find vulnerabilities.

Results of experiments with three sample verifications are shown in chapter 6 to
demonstrate the usability of the method. By using this method, the developer can
iteratively fix the vulnerabilities found by the model checker and secure the appli-
cation. The proposed method was also used to reveal a not yet published weakness
of the Mifare DESFire smart card. Although the experiments are based on Mifare
DESFire types of cards, the method can be used on other smart cards as well, even
on more complex cards with operating system.

Although formal verification methods are useful for finding vulnerabilities on the
protocol level, the usability of this technique on other attacks on contactless smart
cards is limited. Chapter 7 provides investigation of relay attacks and, in particular,
relay attacks performed over network. A method is proposed to prevent real-world
attacks that induce delays significantly longer than the delay caused by the time
travelling longer distance. A possible countermeasure to the overclocking attacks is
also proposed, and results from tests on real hardware are provided.
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Chapter 2

Background

2.1 Contactless Technologies

There are two main types of contactless devices involved in security sensitive systems,
contactless smart cards and near-field communication (NFC) devices. Both use the
same communication interface, similar to the interface used in Radio Frequency Iden-
tification (RFID) tags. This thesis is focused on contactless smart cards, but many
things discussed in this work can also be applied to the NFC technology.

The contactless communication is based on mutual inductance of two coils. The
active device (reader) creates the alternating electromagnetic field, which provides
the passive device (card) with energy due to the electromagnetic inductance. Data
are transferred from the reader to the card by amplitude modulation of the carrier
(which also provides the energy to the card). The modified Miller coding with 100 %
modulation or Manchester coding with 10 % modulation are used. The data transfer
in the direction from reader to card is based on load modulation. The card sends
the information by changing its power consumption. These changes can be detected
on the reader and the data can be extracted. The Manchester coding with 10 %
modulation is used in this direction. The contactless devices work at a frequency
of 13.56 MHz and the maximal operational distance is about 10 cm, but may dif-
fer for individual card types and NFC devices. The data transfer rate ranges from
106 kbps to 424 kbps. The speed of 106 kbps is the minimum that every contactless
card must support and at which every communication begins. All details about the
communication can be found in [16].

NFC is the standard designed for handheld devices such as cell phones or PDAs.
This technology provides such devices with the capability of contactless smart cards.
Such equipped device can be used as a smart card in ticketing, banking, or other
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application, or as a contactless smart card reader to communicate with a real card, or
it can establish a communication channel with any other NFC enabled device. The
working frequency of NFC is also 13.56 MHz. The device may run third party software
which uses the NFC interface. The possibility of running arbitrary and potentially
malicious code implies the emphasis on security. Security threats are similar to threats
of contactless smart cards. Except for the essential communication interface, the NFC
device employs the secure element (SE), which is a hardware security chip similar to
the smart card. The SE is used for storing sensitive data, such as keys. It can be
part of the cell phone, part of the SIM card or it can be in form of a removable secure
memory card. There are attacks on NFC devices that exploit vulnerabilities in the
NFC architecture and implementation, there is even a possibility to infect the NFC
device with the malicious code wirelessly [17].

2.2 Smart Cards

Smart cards are plastic cards equipped with an integrated circuit. Contact cards are
compliant with ISO/IEC 7816 [18], which describes the physical parameters of these
cards and their contacts and the communication protocols. Contactless smart cards
are compliant with ISO/IEC 14443 [19]. The simplest type of card is a memory card
which contains just a non-volatile memory. More complex cards are microprocessor
cards equipped with the arithmetic logic unit (ALU), which enables them to perform
more complex operations. Cryptographic smart cards have in addition a crypto-
graphic coprocessor, which can be used for encryption/decryption, key generation,
and pseudo-random number generation. Cryptographic smart cards communicate
with the environment via security API, which is designed to not reveal any sensitive
data to a potential attacker. Cryptographic smart cards are used for many purposes
which require storing of sensitive data, such as cryptographic keys. Asymmetric key
pairs can be loaded into the card or can be generated directly on the card and the
public key can be consequently extracted. Cards are designed in the way that private
keys never leave the card. So if the user generates the key pair on the card, he can
be sure that no one had access to the private key in past and will never have in the
future. However, there are some attacks that can reveal some information about the
secret key. The threats will be briefly outlined in 2.3.

Contactless smart cards have been developed from contact smart cards by adding
the contactless interface similar to the interface used in RFID tags. Contactless cards
are more convenient for the user to perform transactions than contact cards; however,
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they yield new vulnerabilities due to the radio link interface.
There are various RFID standards for communication on various frequencies and

designed for communication on various distances. RFID tags are read-only cards with
limited memory typically communicating at 125 kHz. Another type is the Gen 2 UHF
Card that operates at 860 MHz to 960 MHz.

This thesis is focused on cryptographic contactless smart cards with read and write
protected memory. These cards are compliant with the ISO/IEC 14443 standard and
use the frequency of 13.56 MHz. Most contactless smart cards provide data transfer
encryption, which is essential for many applications. Some contactless smart cards
also provide other cryptographic operations such as on-card key generation.

The contactless smart card is often called the Proximity Integrated Circuit Card,
abbreviated PICC. Its communication counterpart, the terminal, is usually called the
Proximity Coupling Device, abbreviated PCD.

In terms of smart card operating system, there are two categories of cards [20]:
smart cards with fixed file structure and smart cards with dynamic application system.
The selection of a smart card operating system depends on the application that the
card is intended for.

Smart cards with fixed file structure are usually used as a secure computing
and storage devices. Files and permissions are defined in advance by the issuer, which
is sufficient in applications that do not change frequently. The benefit of this card
type is that they are cheap compared to the cards with more sophisticated operating
systems. These types of microprocessor cards are the most common smart cards
globally. One of the most widespread contactless smart cards are cards from the
Mifare family, such as Mifare Classic, which is a memory card with data encryption,
or its successor Mifare DESFire. Both Mifare Classic and Mifare DESFire MF3ICD40
has some security vulnerabilities, which will be described later.

Smart cards with dynamic application operating system are more complex
and enable developers to build, test, and deploy applications that will run on a
card. The two main operating system standards for smart cards are JavaCard and
MULTOS. Both support the Java language, in both cases a Java compiler translates
the source to Java classes. For JavaCard the classes are converted to JavaCard
bytecode, for MULTOS, the classes are converted to MULTOS Executable Language
(MEL) bytecode. The bytecode can be executed by the virtual machine on the card.
Another type of programmable smart card is BasicCard, which can be programmed
using Basic programming language and which is much simpler and cheaper than Java
and MULTOS cards. Each type is suitable for different type of application.
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2.2.1 Mifare Classic

Mifare Classic cards are contactless smart cards equipped with more powerful chips
than classical RFID tags, these cards provide the unique identification number and
cryptographically protected memory, which allows such cards to be used in access
control, ticketing, and payment systems. The Mifare Classic card is compliant with
ISO/IEC 14443A up to part 3. Part 4 of this standard (high-level protocol) differs
from the Mifare implementation, the Mifare uses its own proprietary stream cipher
CRYPTO1 to secure the communication layer [21]. The CRYPTO1 algorithm is
used for data encryption and for the mutual authentication between the card and the
reader. The card is designed by the NXP Semiconductors and the implementation
details were kept secret.

The security features of Mifare Classic card are UID, pseudorandom number gen-
erator (PRNG) and proprietary encryption algorithm CRYPTO1. The UID is set in
the factory and cannot be altered. It is used in the anti-collision procedure and for
identification purposes. The PRNG is used for authentication and the CRYPTO1 for
encrypting the communication after successful authentication.

Before reading any data from the card, the reader has to be authenticated for the
particular sector of memory. The Mifare Classic uses a mutual three pass authenti-
cation protocol. After this protocol both parties are authenticated and both believe
that they share the same secret key. Each sector has two access keys, one of these
secret keys has to be used for authentication. Different privileges can be set for these
keys.

The set of commands that Mifare Classic supports is small, the commands that
are supported are 𝑅𝑒𝑎𝑑, 𝑊𝑟𝑖𝑡𝑒, 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝐷𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑅𝑒𝑠𝑡𝑜𝑟𝑒, 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟.

Mifare Classic was very popular because of its low price until series of attacks were
performed [22][23][24][25][26], revealing serious vulnerabilities in proprietary encryp-
tion algorithm CRYPTO1 and the PRNG, diminishing security of this card. The card
is now obsolete, superseded by the more advanced smart card, the Mifare DESFire.

2.2.2 Mifare DESFire

Mifare DESFire is a successor of the cryptographically weak Mifare Classic. The most
significant improvement is that the proprietary encryption algorithm CRYPTO1 was
replaced with standard 3DES and AES encryption algorithms. From the mathe-
matical perspective, the 3DES and AES algorithms are sufficiently secure. However,
even the strong mathematically secure algorithms can be attacked using side-channel
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analysis or there might be vulnerabilities on the protocol level.
Mifare DESFire is used in several large payment and public transport systems

around the world, such as the Czech railway in-karta [5], the Australian myki card
[6], or the Oyster card used in London [7]. Other applications of this smart card
include mobile payment and access control systems.

Although the concept presented in this thesis does not depend on any particular
hardware, for demonstration purposes we have chosen Mifare DESFire card.

Mifare DESFire MF3ICD40 [27] is the oldest type of DESFire, using the 3DES
algorithm. The next version, Mifare DESFire EV1 [28], supports 128-bit AES and
random ID and is Common Criteria certified at level EAL 4+. The newest version,
Mifare DESFire EV2 [29] is the most advanced Mifare smart card, employing ad-
ditional security functions, such as proximity check against relay attacks. Mifare
DESFire EV2 chip can hold as many different applications as the memory size sup-
ports and new applications can be loaded after the card has been deployed into the
market.

The Mifare DESFire MF3ICD40 [27] is equipped with two, four, or eight kilobytes
of memory, which is organized using a flexible file system. This file system allows
a maximum of 28 different applications on one Mifare DESFire. Each application
provides up to 32 files. Every application is represented by its 3 bytes Application
IDentifier (AID). The card is protected against cloning with the fixed 7 byte UID,
programmed into each device during production. The UID cannot be altered and
ensures the uniqueness of each device.

The communication starts with a mutual three pass authentication between Mi-
fare DESFire and PCD depending on the configuration employing either 56-bit DES
(single DES, DES), 112-bit 3DES (triple DES, 2K3DES), 168-bit 3DES (3 key triple
DES, 3K3DES) or AES. The level of security of all further commands is set during
the authentication. The following options are supported for data transfer during the
session on Mifare DESFire EV1:

∙ Plain data transfer

∙ Plain data transfer with cryptographic checksum (MAC): backwards-compatible
mode: 4 byte MAC, DES/3DES/AES based mode: 8 byte CMAC

∙ Encrypted data transfer (secured by CRC before encryption): authentication
with backwards-compatible mode: A 16-bit CRC is calculated over the stream
and attached. The resulting stream is encrypted using the chosen cryptographic
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method. All other authentications based DES/3DES/AES: A 32-bit CRC is
calculated over the stream and attached. The resulting stream is encrypted
using the chosen cryptographic method. [28]

2.2.3 Java Card

Java Card [30] is a technology that allows Java Card applets (small Java applications)
to be run securely on smart cards. Billions of Java Cards are used as SIM cards,
payment cards, ID cards, e-Passports, and more.

Java Card applets are small programs, that can communicate with the terminal
and with each other. The applet is a state machine which reads incoming commands,
processes them, and responds back by sending data and/or status. Java Card tech-
nology enables multiple applications to be deployed securely on a single smart card.
Applets can be either pre-loaded on the card, or loaded into a smart card once it has
been issued.

Java Card run-time environment performs bytecode verification as part of the
applet loading procedure. The applet is first run and verified before it is loaded to
the card. The verified applet is signed and installed on the card. Java Card only
performs lightweight bytecode verification on the card. Once the applet is verified
and signed, it cannot be changed. New verification would have to be performed in
case of application change.

Java Card technology was designed to store sensitive information securely on the
card. Java cards offer hardware acceleration of symmetric cryptography (DES, Triple
DES, AES), asymmetric cryptography (RSA, DSA, ECC), and other functions. Java
Card technology relies on the inherent security of the Java programming language to
provide a secure execution environment. Data is stored within the application, and
Java Card applications are executed in the Java Card virtual machine, which is an
isolated environment separate from the underlying operating system and hardware.
Java Card virtual machine usually manages several applications, different applications
are separated from each other by an applet firewall which restricts and checks access
of data elements of one applet to another.

2.2.4 MULTOS

MULTOS [31] is a multi-application smart card operating system, which enables mul-
tiple applications on a single smart card. Millions of MULTOS smart cards are being
issued by banks and governments, they are used in applications such as contactless
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payment, Internet authentication, loyalty programs, national secure ID cards, bio-
metric e-Passports, and access control. Both contact and contactless MULTOS cards
exist.

A MULTOS cards support application loading and deleting at any point in the
card’s life cycle.

Two technologies are used to ensure the secure environment. The first one is
the on-card virtual machine that provides secure application run-time environment,
memory management, and application loading and deleting. The second one is the
Secure Trusted Environment Provisioning (STEP), which is a technology for securing
the smart card, application code and application data.

Applications for MULTOS cards can be written in high-level languages (such as
Java), which are then compiled to MEL bytecode. MEL bytecode can be executed
by the virtual machine.

Each application has own application memory space, which consists of the ap-
plication code and data. The application has full access rights to its own code and
data, but can not directly access to memory of another application. The virtual ma-
chine checks the bytecode instructions to ensure they are valid and they do not access
memory areas outside the application. If an application attempts to access an area
out of its space, the instruction is rejected by the virtual machine and the application
execution is terminated.

2.2.5 BasicCard

ZeitControl’s BasicCard [32] is the smart card programmable in Basic. Basic was
originally developed when computers had very limited resources. The same problem
is today with smart cards, which makes Basic a suitable programming language for
smart cards. BasicCards can be used in applications like electronic purse, ID card,
medical card, Internet security, drivers license network access, software key, access
control, gift and loyalty programs. It is focused on shortening the design and imple-
mentation time of a custom smart card application.

ZeitControl offers two versions of BasicCard with contactless interface – Contact-
less BasicCard ZC7.5 RFID and Dual Interface BasicCard ZC7.5 Combi. The latter
one is a dual interface card combining both contact and contactless interfaces.

Both smart cards provide symmetric and asymmetric cryptography algorithms,
random number generator and cryptographic hash algorithms SHA-1 and SHA-256.
Supported symmetric cryptography algorithms are AES with key length 128, 192

16



or 256 bits, DES and Triple DES with key length 56, 112 or 168 bits. Supported
public key cryptography algorithms include RSA encryption and signature algorithms
with up to 4096-bit key length, with on-card key generation, and Elliptic Curve
Cryptography (ECC) over finite fields of type GF(p), with up to 512-bit key length,
also with on-card key generation.

2.3 Threats

There are many ways of attacking a smart card. The attacks on smart cards are
typically divided into three main categories – physical attacks, logical attacks, and
side-channel attacks. These attacks are summarized for instance in [33]. There are
also threats common to all contactless devices, analysed for example in [34]. Both
contactless smart cards and NFC devices face the threats specific to contactless com-
munication, such as eavesdropping, interruption of operation from distance, covert
communication, and the most dangerous – relay attack.

The smart card must have secure API and the protocols that are used to com-
municate with the smart card must also be secure. An inappropriate protocol im-
plementation can yield new vulnerabilities even if the protocol itself is secure and
the communication with the hardware is considered secure too. There can also occur
a situation when an insecure protocol is proven to be secure by the formal reason-
ing. This can happen when the protocol does not consider all possibilities of the real
world, or when the protocol is not implemented properly. There can be situations not
defined by the protocol but possible in the real world. Since the focus in this thesis
is on security verification on the protocol level, a separate section 2.4 is dedicated to
security API and protocols.

2.3.1 Physical Attacks

Physical attacks on smart cards, also known as invasive attacks, or hardware attacks,
are pervasive attacks and require advanced equipment. These attacks are performed
by highly motivated attackers with high knowledge and assets, who manage to obtain
physical access to the smart card. Physical attacks involve physical dismantling of
the chip and usually many chips have to be destroyed before an attack is successful.

Physical attacks include scanning the chip structure with microscope, reverse
engineering, reading the contents of card’s EEPROM memory using powerful electron
microscopes, probing the integrated circuit (IC) with a microprobe, re-activating
burned fuses, and circuit modification. Although physical attacks on smart cards
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typically require sophisticated and expensive equipment, there are also attacks that
can be performed with only low cost equipment.

Smart card manufacturers constantly improve their smart card chip designs in
order to make these attacks more difficult. Physical attack countermeasures that can
be implemented in the IC are: [35]:

∙ Flexible and user-defined memory encryption of user memory, RAM, and ROM

∙ Use of a memory management unit to prohibit one application from accessing
the code of another application

∙ Active shielding that renders the IC inactive when triggered

∙ Small IC geometry (0.22 𝜇𝑚 as a maximum feature size) to deter microprobing

∙ Bus confusion and encryption of data travelling on the bus

∙ Continuous checking of the random characteristics of the IC

∙ Proprietary timing and IC layout

This type of attacks is out of scope of this thesis.

2.3.2 Logical Attacks

Logical attacks, also known as fault attacks, are non-pervasive and typically attempt
to find and exploit any vulnerabilities or weaknesses in the design of the smart card
application or of the whole smart card operating system. These attacks are relatively
cheap and simple compared to other smart card attack types. Thanks to these facts
much more potential attackers exist. However, these attacks are also easier to prevent,
rigorous design and development process of the smart card can help to eliminate
logical attack vulnerabilities.

Logical attacks include presenting the card with invalid commands, formats, or
field lengths in order to induce an error in the operation of the IC, or buffer overflow.
Erroneous operation may reveal sensitive information.

Besides the rigorous design and development process, the logical attack counter-
measures are for instance sensors that check the correct IC operation, or redundant
logical operations. If the IC is forced to operate outside the established sensor pa-
rameters, the IC goes into alarm mode or prevents operation completely. [35]

Examples of logical attacks on security API are provided in chapter 3.2.
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2.3.3 Side-channel Attacks

Side-channel attacks are based on information gained from the physical implemen-
tation of a cryptosystem on the smart card. Side-channel attacks are non-pervasive,
utilizing a side-channel that leak some information, which can be analysed and used
to compromise the system and for example extract secret information such as keys
stored on the card. Side-channel attacks are based for example on timing information,
power consumption, fault analysis, or electromagnetic radiation.

Typical side-channel attack for contactless smart cards is the RF analysis attack.
Although many side-channel attacks require considerable technical knowledge of

the internal operation of the smart card, side-channel attacks are probably the most
popular attacks on smart cards, because they are relatively powerful and the required
equipment is not so expensive as the equipment required for the physical attacks.

Side-channel attack countermeasures that can be implemented in the IC are: [35]:

∙ Random wait state insertion

∙ Bus confusion and memory encryption

∙ Continuous check of random characteristics

∙ Current scrambling/stabilizing

∙ Voltage regulation

∙ Dual bus rails, where the transmission of data is passed from one rail of the bus
to the other to confuse the attacker

Example of side-channel attack on Mifare DESFire contactless smart card is pro-
vided in chapter 3.1.2.

2.3.4 Threats specific to Contactless Communication

This section provides an analysis of threats specific to contactless technology. These
threats are inherent to the wireless communication.

Eavesdropping. The major difference between contact and contactless smart
cards is the communication medium. Contactless cards use electromagnetic waves so
the attacker can easily intercept and alter data being transmitted over the air, which is
a big drawback when compared with contact smart cards. Eavesdropping the wireless
communication is possible from a long distance. The eavesdropping and viewing data
being exchanged is possible at a low cost. Not only that the eavesdropping is very
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easy with appropriate equipment, it can also be executed from distance without being
noticed by the user and without trace. There is also a possibility to perform a man-
in-the-middle attack. The countermeasure against eavesdropping is the encryption of
data being transmitted. In some cases only sensitive data are encrypted, commands
and other data are left in the plain text, sometimes weak ciphers or pseudo-random
number generators (PRNG) are used, all leading to other possible attacks.

Man-in-the-middle. An effective man-in-the-middle attack is practically impos-
sible because of the short communication distance of contactless smart cards. The
attacker would have to establish communication with both card and terminal without
being spotted, and without the card and terminal hearing each other. The attacker
cannot establish such an attack from distance, the only possibility is to be physically
present between the card and the terminal. The user would spot such situation very
likely, so the MITM is not considered a big threat. However, there is a possibility to
perform a relay attack, described later, to establish a man-in-the-middle attack. One
attacker establishes communication with a genuine smart card, the second attacker
with a genuine reader, and they relay the communication over their own channel.
This yields a possibility to modify the data being exchanged. The man-in-the-middle
attack can be prevented by the mutual authentication.

Interruption of Operation. Communication between a card and a reader may
be interrupted by transmitting random noise or some other signal at the same fre-
quency. This can interrupt the proceeding transaction at any time and without being
noticed. The application needs to know whether the transaction was performed cor-
rectly or there was an error. There should be a backup mechanism and backtracking
which make sure that the transaction has ended in a regular state. The permanent
jamming of the communication can also be classified as denial of service (DoS) attack.

Covert Communication. Contactless smart cards have one big disadvantage
from the security point of view. Unlike contact smart cards they can communicate
with the reader without user’s notice. The contact card must be put into the reader,
so the user is always aware of the communication (if the card is in his possession
and is not stolen). However, in case of contactless cards, the fraudulent reader can
remotely communicate with the card without notice even if the card is in the user’s
possession. The possible countermeasure is the strong mutual authentication.

Denial of Service (DoS). There can also be a DoS attack performed without
the user’s notice, for example on the prepaid card. The service the user has prepaid
can be denied for example by debiting all monetary units from the card from a
distance. The attacker has to understand the communication protocol between the
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card and reader in order to send desired commands to the card. Much easier attack is
emptying or destroying the smart card by inappropriate electromagnetic waves. The
only countermeasure is the Faraday cage.

Communication Link and Dual Modes. This threat refers to smart cards
with dual interface, both contact and contactless [36]. These cards usually share an
underlying chip. The attacker chooses the less secure interface to attack the chip or
he can also switch between these two interfaces during the communication. In order
to avoid this attack cards should use only one interface at a time during the whole
transaction.

Radio Frequency Analysis. This is a side-channel attack developed from power
analysis and electromagnetic analysis [36]. It is base on the fact that the electromag-
netic field surrounding the card depends on the actual power consumption of the
card, because the card is powered by this field. This attack requires the card to be
in possession of the attacker. The attacker can then learn some sensitive data from
the card.

Relay Attack. The concept of contactless communication is based on the fact
that devices participating in the communication are in the proximity of each other.
The security of many applications relies on this fact. An access control system, for
instance, grants access to a person who authenticates themselves with the smart card,
because it is supposed that this person has the card in their possession at the moment.
But what if the genuine smart card is far away rather than in the person’s pocket and
the communication between the terminal and the card is forwarded? The verbatim
communication can be relayed without getting noticed by any of the two genuine
parties. The first propose of this kind of attack dates back to 1976, when the chess
grandmaster problem was published [37].

The relay attack involves two attackers forwarding verbatim communication be-
tween genuine PCD and PICC over their own communication link, using fake PICC
and fake PCD. One attacker establishes communication with the the genuine PICC,
the second attacker with the genuine PCD, and they transmit the communication
over their own channel. The communication parties can be far away from each other
and the genuine user has little chance to find out that his card is being attacked. The
relay attack is very hard to be prevented, which makes it dangerous.

The attackers do not have to understand the communication to perform successful
transactions, because they forward the verbatim communication. If the attackers
understand the communication, they can alter data being transmitted and perform
a man-in-the-middle attack. An example of device constellation for a relay attack is
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Figure 2.1: Relay attack device constellation

shown in figure 2.1. The maximal response time is limited, so the communication
should not be delayed much by the attacker; however, the time limit is usually not
restricting enough to prevent this attack. The ISO/IEC 14443 standard restricts the
maximal response time, which is negotiated by the card and reader at the beginning
of each communication, to 4.949 s.

Relay attacks cannot be prevented on the application level, the only possible
defense is provided by the distance bounding protocols, which are based on restricting
the round-trip time to some limit. An attacker trying to execute a relay attack causes
a delay in the communication, therefore the round-trip time limit will prevent him
from succeeding. The maximal time is computed from the speed of light and the
maximal allowed distance.

The first distance bounding protocol was introduced in 1993 by Brands and
Chaum [38]. It is based on a single bit round-trip delay measurement in a rapid
challenge-response exchange. The reader sends out one bit and starts the timer, wait-
ing for the response. The tag responds with one bit, the reader stops the timer after
receiving the response. The reader performs n of these rounds and decides, whether
the tag is or is not in the limited distance by comparing measured round-trip times
with expected times.

The round-trip time is affected not only by the signal travelling from one point
to another, but also by the delay induced by the tag processing the command. The
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processing time must be very short and invariant in order to get relevant measure-
ments. If the distance bounding protocol is performed at the ordinary communication
frequency, which is typically 13.56 MHz, the resolution of one bit corresponds to more
than 22 m. In order to increase the precision of distance bounding protocols, different
communication methods are used for challenge-response exchanges.

Since Brands and Chaum presented the first distance bounding protocol in 1993,
other protocols have been proposed. These protocols were based on technologies such
as RF, Received Signal Strength, Ultrasound, Ultra Wide Band and Side-channels.

2.4 Security API and Protocols

Contactless smart cards have limited computational resources, which results in re-
strictions on cryptographic algorithms and cryptographic primitives that can be im-
plemented on them. Despite the resource limitations, smart card manufacturers try
to equip smart cards with the strongest cryptographic algorithms possible, many
current cryptographic contactless smart cards employ state-of-the-art encryption and
authentication algorithms. However, using a strong cryptographic algorithm does not
necessarily mean that the smart card is secure. The smart card must have secure API
and the protocols that are used to communicate with the smart card must also be
secure. How to achieve these goals will be discussed in the following sections.

2.4.1 Security API

Applications that handle sensitive data, such as payment systems, have to be able
to protect these data from a potential attack according to their security policies.
The sensitive data often has to be stored in a device which faces a hostile environ-
ment. There has been developed a special hardware for storing sensitive data and
for performing cryptographic operations, called secure hardware. Examples of such a
hardware are smart cards and Hardware Security Modules (HSM). In terms of physi-
cal security, this hardware is usually tamper resistant, so the data stored in it cannot
be easily extracted even if the attacker is highly motivated and has high assets. This
hardware has to communicate, but cannot leak any sensitive information. For this
purpose there is a security API, which serves as an interface between the secure hard-
ware and the environment. The security API is designed to be able to communicate
with the attacker without any sensitive data leak.

Although method of finding vulnerabilities in protocol implementations presented
in this thesis cannot be considered an security API attack, it is closely related to
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security API attacks since it finds vulnerabilities in the way the smart card is used
by the protocol rather than in the protocol itself.

2.4.2 Security Protocols

Security protocols are communication protocols that aim to reach some goals despite
the fact that the communication is transferred over a channel possibly controlled
by an attacker, who can interfere with the protocol and perform malicious activity.
Typical goals are confidentiality of sensitive data, protecting the integrity of messages,
or giving one actor assurance about the identity of another actor with which it is
communicating. These goals are typically achieved using cryptography.

Security protocols are usually used to protect something valuable, which means
that high assurance about their correctness is required.

Security protocols are quite simple, but it may be a difficult task to make them
really secure. The difficulties are not related only to the strength of the cryptographic
algorithms used, it is also necessary to take into consideration all possible behaviors
of hypothetical attackers, including violations of the protocol rules, and any possible
forgery of messages. An attacker can alter any message and can forge and insert
any number of new messages at each protocol step, which results in an unbounded
number of malicious behaviors. This fact increases the complexity of the already
complex communication protocol between concurrently interacting parties. Manual
design of new security protocol is a very error-prone task, even with the existence of
best practices and recommendations [39].

Nice example illustrating the difficulty of defining security protocols correctly is
the Needham-Schroeder public-key protocol [40]. This protocol was believed to be
secure for 17 years, until Lowe discovered a flaw in this protocol [41] by applying
formal methods [42]. Another example can be the discovery of a logical flaw in the
renegotiation feature of the widely used TLS protocol 13 years after the first version
of the protocol was published.

Due to the complexity of security protocols, the development requires mathemat-
ically based methods for reasoning about their correctness. There are two main lines
of research dealing with the rigorous methods for reasoning about security protocols.
One is based on quite abstract, symbolic modeling, which was originally published
by Dolev and Yao [43], and was developed mainly in the formal methods commu-
nity. The other one was originally published by Goldwasser and Micali [44] and by
Yao [45], and is based on more detailed computational models, involving complexity
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and probability theories. Researchers tried to define a relation between these two
approaches, either by proving computational soundness for the symbolic model, or
by applying reasoning techniques that proved successful in the symbolic model to the
computational model. The recent progress in this direction can be found in [46].

The symbolic approach is more abstract, enables better automation in developing
proofs, but gives results that are more complex to relate to real world security goals.
On the other hand, the computational approach is closer to reality, gives more realistic
security assurance at the expense of increased difficulty in proof automation [47].

An example of formal verification of a cryptographic protocol of secure system
based on contactless technology is [48].

2.5 Formal Methods

Formal methods are mathematically based languages for specifying a representative
model of a system. They are used for checking when a property is satisfied by the
model.

Formal methods can be used for proving security properties of protocols such as
confidentiality, integrity, authentication, and anonymity. They can be used not only
to find out whether the protocol meets these properties or not, but they can also be
used to find the counterexample. These counterexamples can be considered possible
attacks. Formal methods therefore provide us with the automated way of finding
attacks and can also be used for proving that some attacks are not possible. For
protocol modelling, the Dolev-Yao [43] model is usually used. Formal methods can
be classified into theorem proving, formal logic, and model checking.

∙ Theorem proving uses higher-order logic to reason about possible protocol ex-
ecutions by constituting a compelling proof that a particular property always
holds. These logics are not subject to finite bounds, and provide mechanized
proofs, including automated tools and proof checking, which can assist in parts
of proofs and prevent errors in reasoning. [49] The theorem proving methods
are based on various proof search strategies such as the basic resolution strat-
egy [50]. Some inductive theorem provers such as the NRL Protocol Analyzer
[51] are very time-consuming because they involve interactive theorem proving
by experts. Other security protocol analyzer is Isabelle [52] which also has the
specialization for higher-order logic.

∙ Formal logic focuses on the study of inference with a set of rules for making
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deductions that are made explicit. It formalizes such deductions with precise
rules to decide if an argument is valid. This can be achieved by representing
objects and relationships symbolically including the quantifiers and logical con-
nectives. [49] Formal logic includes many logical systems, such as predicate logic
or modal logic. The important logic from the security protocol analysis point of
view is the logic of Burrows, Abadi and Needham (BAN) [53]. This logic is able
to represent belief, freshness and some other properties, that are fundamental
for analyzing security protocols. The BAN logic was used to analyze common
protocols and successfully detected some minor bugs [54].

∙ Model checking is a method to formally verify a finite-state concurrent system.
The specification of the system is often written as temporal logic formulas, and
efficient symbolic algorithms are used to traverse the model defined by the sys-
tem. The verification is achieved by checking if the formal specification can be
satisfied by the model. [49] Model checking uses usually either CTL (Computa-
tion Tree Logic) or LTL (Linear Temporal Logic) for temporal logic formulas.
Model checking provides an automated way of proving formulas or finding coun-
terexamples, however faces the state explosion problem. This problem can be
reduced by symbolic algorithms, partial order reduction, abstraction or by on-
the-fly model checking. There are many tools used for security protocol analysis,
using a general-purpose or a special-purpose model checker. One of the most
protocol analyzers based on model checking is AVANTSSAR [55], which is used
in this thesis.

The first two approaches focus on proving the correctness of the protocol according
to the properties. Model checking, on the other hand, focuses on searching incorrect
traces.

There are many cases where formal methods have detected attacks on protocols
that were previously considered secure. Until formal methods were incorporated into
the development process, security solutions were verified manually by people. Some
traces were often not considered in the analysis. As a consequence, not all errors were
detected.

Formal methods can be applied in an early phase of development, before the
implementation is available. The designer can verify the protocol from an initial
specification and the system requirement. In the case of model checking, if the model
does not satisfy the properties, the tool gives a counterexample as output. This
counterexample can be utilized in the system design.
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A model is only an abstraction of the system, so formal verification cannot reveal
implementation errors. Furthermore, if the specification is not correct or the require-
ments are not properly expressed, the analysis can not guarantee the security of the
protocol.

2.5.1 History

Formal methods were initially used to the analysis of hardware systems, software
systems and communication protocols in general. Since the 1980s, these methods
have been also used for analysis of cryptographic protocols.

The first symbolic approach to cryptographic protocol analysis that was the start-
ing point for model checking tools was that of Dolev and Yao [43]. They introduced
the paradigm now known as the Dolev-Yao model.

The first tools that detected attacks on protocols were based on Dolev-Yao ap-
proach and model checking techniques. Most of them were specific purposed model
checking tools. The first tool which exhaustively searched the state space was Inter-
rogator [56], followed by the Longley-Rigby search tool [57] and the NRL Protocol
Analyzer (NPA) [51].

The application of formal methods was considered unreliable for a long time, until
the introduction of BAN logic [53]. This logic has a set of simple and intuitive rules
and is the most popular example of belief logics. Belief logics have many advantages
such as completed automation and faster execution. Their models are more abstract
than model checking ones, so the research moved to the model checking techniques.

The fact that Lowe, using the FDR model checker, was able to successfully find a
problem in the Needham-Schroeder public key protocol [42], that since then had been
unnoticed for seventeen years, alerted people and many researchers started focusing
on model checking techniques.

After two years, a new model checking tool concerned with the analysis of security
protocols was developed. This tool was named Casper [58]. Other researchers started
using their own model checkers for security protocol analysis, such as using of the
Murphi model checker to analyze variations on the TLS protocol [59]. Later a special
purpose model checkers were developed, such as Brutus [60].

Many tools have been used in the analysis of standards, sometimes detecting
problems that would remained unnoticed otherwise. For example, the NPA was used
to verify a number of protocols and protocol standards, including the Internet Key
Exchange Protocol [61], the Group Domain of Interpretation (GDOI) Protocol [62],
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and the Simmons Selective Broadcast Protocol [63]. The AVISPA tool was applied to
a suite of protocol standards. ProVerif was used in the production of formally verified
implementations of TLS [64] and the smart card protocol InfoCard [65]. Scyther was
used for the analysis of the MQV family of protocols [66], for the analysis of the
entity authentication protocols in the ISO/IEC 9798 standard [67], and the IKE key
exchange protocols in the IPsec standard [68].

It is expected that model checking will ultimately become a standard tool for
cryptographic protocol design, as it has become in hardware design. Although model
checking has proved useful in the analysis and many protocol designers use it to prove
correctness of a new protocol, it has not yet become a standard tool. [69]

2.5.2 Dolev-Yao Model

Dolev and Yao model [43] is based on state machines. A protocol is modeled as a
machine consisting of an arbitrary number of honest agents executing the protocol.
In this model, there are several concurrent runs of a protocol with the presence of an
intruder, who can read, modify or delete the messages transmitted in the network.
The intruder can also impersonate any honest agent. The model also formalizes an
abstraction of cryptography where messages are represented by terms rather than bit
strings, so cryptographic operators do not leak information, e. g., the only way for an
adversary to decrypt an encrypted message is to have the corresponding decryption
key.

All cryptographic protocol model checking applications are based on the Dolev-
Yao model. However, the current approach is different that the original one. Active
research is going on to make the Dolev-Yao model more precise and expressive.

An approach similar to the one of Dolev-Yao is based on using algebras for reason
about the knowledge of the participants. This approach was first presented by Merrit
[70]. The protocol is modelled as an algebraic system. The algebra is used to express
the state of the participants, including the intruder, in terms of its knowledge about
the protocol.
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Chapter 3

Related Work

This chapter presents related work in the field of contactless smart card security and
overviews the attacks and the techniques used to find new types of attacks and the
verification processes of protocols. This thesis is focused on cryptographic memory
cards with fixed file structure, so one section is dedicated to examples of published
attacks on this type of contactless smart cards, namely Mifare Classic and Mifare
DESFire smart cards. Another section is dedicated to attacks on security API, which
in particular shows a method of automatic vulnerability finding in PKCS#11 cryp-
tographic tokens, which was one of the inspirations for the method proposed in this
thesis. The last section is dedicated to protocol attacks, which shows attacks on
various protocols. The AVANTSSAR tool, which is used in this thesis, was used for
finding vulnerabilities in the OAuth protocol.

The section titles contain the word ”attacks”, but the purpose of studying attacks
is not to make any harm, but to be able to design better devices and better protocols
that are not vulnerable to similar attacks. Especially the methods that can be used to
find attacks are worth to be studied because they can be used and adapted to find new
vulnerabilities in new devices and new protocols. Such methods can provide designers
and developers with valuable information about the security of their products.

3.1 Mifare Classic and DESFire Attacks

3.1.1 Mifare Classic Attacks

The Mifare Classic is a suitable example to show some attacks on contactless smart
cards. The security of Mifare Classic was build on the weak proprietary algorithm
CRYPTO1. As soon as the algorithm is reverse engineered, the card can be easily
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compromised. This corresponds with the well-known principle ”Security by obscu-
rity”, which should be always avoided [71]. Although some studies [72] advise how to
retain some security with the same hardware, it is better to use more secure hardware.
The successor of the Mifare Classic card is the Mifare DESFire card, which is much
more secure. It utilises strong ciphers 3DES and AES rather than some proprietary
algorithm.

Keystream Recovery Attack

Gans, Hoepman and Garcia [26] have shown an attack that exploits the PRNG weak-
ness to recover the keystream used in CRYPTO1 from the eavesdropped communi-
cation without knowing the encryption key. This paper also shows how to read all
memory blocks from the first sector of the card without knowing the key. Addition-
ally there is always a possibility to read the first 6 bytes of each block from the sector
from which the communication has been eavesdropped. The plain text obtained in
this attack can also be used in a brute force attack proposed by Nohl and Ploetz.

The weakness of the pseudo-random generator has been independently discovered
by Nohl and Ploetz [22] and Gans, Hoepman and Garcia [26]. In the latter paper
authors claim that a ”random” nonce used in authentication repeats a few times per
hour. Nohl and Ploetz discovered that the nonce is generated by an linear feedback
shift register (LFSR) which shifts every 9.44𝜇𝑠, which is exactly one bit period in the
communication. Hence there is a possibility to get the same nonce after 0.618s if the
communication with the card is established at the exact time.

The attacker has full control over the reader and performs communication with
the card. This attack utilises the fact that the ciphertext 𝐶1 is obtained by bitwise
XOR-ing the plaintext 𝑃1 with the keystream 𝐾. When we have two ciphertexts that
are encrypted with the same part of keystream and we know one of the plaintexts, we
can reveal the second plaintext. We can also reveal the relevant bits of the keystream.

𝑃1 ⊕𝐾 = 𝐶1

𝑃2 ⊕𝐾 = 𝐶2

⎫⎬⎭ 𝐶1 ⊕ 𝐶2 ⇒ 𝑃1 ⊕ 𝑃2 ⊕𝐾 ⊕𝐾 ⇒ 𝑃1 ⊕ 𝑃2

There are some parts in the memory, that have the same value in all cards, or
that have the value which can be easily discovered. Known data are for example the
UID in the first block of the first sector (UID can be obtained in the anti-collision
procedure), manufacturer data stored in the same same block or access keys stored in
last blocks of all sectors. The attacker changes commands in order to read the known
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parts of memory. The attack goes as follows:

1. The attacker eavesdrops and records some real communication between genuine
reader and the card.

2. Now he can exploit the weakness of the PRNG. The card repeats the nonce as
described. The attacker has full control over the fake reader so he is able to
start the communication at the right time. When the same nonce is generated,
the same keystream is used.

3. The attacker changes commands under the keystream by modifying the com-
munication in order to receive blocks containing some known data.

4. The keystream can be revealed for all parts where the plaintext is known.

5. By shifting commands he can recover more keystream.

Authentication Replay
To communicate with the card the attacker has to authenticate first. He can replay
the previously recorded authentication. For a successful replay of the authentication
he must start the communication at the right time so the nonce is the same as was
used in the recording. The authentication replay has following steps:

1. The attacker eavesdrops and records some real communication between genuine
reader and the card.

2. The authentication requests are repeatedly sent to the card until the nonce
generated by the card is equal to the one in the recorded authentication.

3. Now the attacker can send the recorded response to this nonce. This response
is correct because the current and recorded nonces are equal. Except for the
correct answer to the card’s nonce this response contains its own challenge to
the card.

4. The attacker gets the card’s response to the reader’s challenge.

5. Now he can resend same or modified commands to perform the above attack.

Wireless attacks

Garcia, Rossum, Verdult and Schreur [25] have shown that an attacker can retrieve
all cryptographic keys of a card by communicating wirelessly with it. The legitimate
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reader is not involved which is great advantage compared to the previously mentioned
attack. They found and exploit the following vulnerability: After the successfull
authentication for one sector the attacker can try to authenticate for another sector
without knowing the key. In this case another authentication scheme is used which
leaks 32 bits of information about the secret key of that sector.

Mifare Classic sends a parity bit for each byte. The parity bits are not computed
from the actual data sent over the air, but they are computed from the plaintext.
After the parity bit is computed, whole byte is encrypted. The parity bit is encrypted
with the same bit of the keystream that is used for the first bit of the following byte.
If the reader sends wrong parity bits, the communication is immediately aborted.
When correct parity bits are sent, but wrong authentication data, the card doesn’t
cancel the communication, but sends the encrypted error code. This vulnerability
was used for a brute-force attack [25].

3.1.2 Side-channel Analysis Attacks on Mifare DESFire

This section describes a non invasive side-channel attacks [73] [74] on the Mifare
DESFire MF3ICD40, which is the older version using 3DES.

The side-channel analysis brings a new threat to the mathematically secure ci-
phers. It can help attackers to break modern ciphers, for which no efficient analytical
or brute force attacks exist. Side-channel analysis of a white-box implementation
of AES on a self-made RFID device with unprotected microcontroller was presented
in [75][76], showing the vulnerability of RFID devices to side-channel attacks. The
practical attack was shown by breaking the proprietary KeeLoq system [77]. The
black-box analysis of a contactless smart card and the results were described in [78],
proposing a leakage model for RFIDs that is the basis for analyses in [73] [74], which
will be discussed in this section.

In [73], the first full key-recovery attack on the Mifare DESFire MF3ICD40 smart
card was presented. This paper points out problems and obstacles that occur when
performing side-channel analysis in practice, which are often neglected in academic
papers. It shows first application of template attacks to break cryptographic RFIDs,
allowing for potentially very fast determination of the secret key. Due to the lack of
contacts to measure the power consumption directly, the electro-magnetic emanation
of the RFID card was captured with near-field probes and then digitized with a
Picoscope 5204 1GHz oscilloscope. The acquired measurements were evaluated on a
personal computer. Despite the secure 3DES cipher and RFID obstacles, the authors

32



were able to extract all 112-bit keys and hence could gain full access to any Mifare
DESFire MF3ICD40 card.

The measurement setup used in [73] is an extension of the setup described in [79],
where the application of analog demodulation for side-channel analysis of RFIDs was
presented.

DES works by dividing the key into subkeys, each of which is used in a different
round of the cipher. Parts of these subkeys are combined with bits of input, which
can be supplied by the attacker, and sent to a series of S-boxes. Because only a few
bits go into each S-box, there is a relatively small set of possible input values, each
of which results in a slightly different power consumption profile.

By conducting many experiments and observing the power consumed when cal-
culating these S-boxes on different inputs for known and unknown keys, the attacker
can correlate these traces to figure out the bits that come from an unknown key.
The full key recovery attack needs approximately 250000 traces, which takes about
7 hours to collect.

The authors had not known the exact implementation of 3DES, they must have
reverse-engineered it by examining power traces. During this reverse-engineering
process, a countermeasure to side-channel analysis was found in Mifare DESFire
MF3ICD40 – adding random dummy DES rounds. However, this protection was not
sufficient to prevent the attacks.

Result of these attacks is a full recovery of the 3DES key of the Mifare DES-
Fire MF3ICD40, employing standard equipment that can be built for approximately
3000$. The attacks can be executed within a few hours and hence pose a signifi-
cant threat to the security of DESFire-based real-world systems. The newer version
of DESFire, the Mifare DESFire EV1, uses AES and includes side-channel analysis
countermeasures that circumvent the presented attacks.

3.2 Security API Attacks

Although security API is designed to be able to communicate with an attacker without
any sensitive data leak, there exist some attacks aimed at security APIs, which can
help an attacker to learn some sensitive information from a secure hardware.

One of the first academic papers dealing with API attacks was paper by Long-
ley and Rigby [57] in 1992, presenting analysis of a key management interface of a
cryptographic device using the logic programming language Prolog. Another paper
dealing with secure hardware failures was the paper [80] by Ross Anderson in 1993.
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This paper was focused on the ATMs and procedural and technical failures in the
use of hardware security modules (HSM). This paper only showed failures but did
not proposed any real security API attack. Later, the same author in [81] showed
the first real attack exploiting one dangerous command in the security API. These
works inspired others to study security APIs of secure hardware, such as HSMs or
cryptographic tokens and smart cards.

The first API attacks were found manually, but it did not take long and automated
methods using formal analysis came out. First formal approach to this problem was
made with the first order predicate calculus theorem prover Otter [82].

3.2.1 HSM Security API Attacks

In this subsection some attacks on Hardware Security Modules (HSM) are described.
HSMs are a kind of secure hardware as well as smart cards. HSMs are used in PCs
or other devices for storing sensitive data. All examples presented in this subsection
are concerned with ATMs (Automated Teller Machines). There are HSMs in each
ATM that serve as a secure key storages and for performing cryptographic operations.
Data in the ATM must be encrypted in all cables connecting HSMs in order to avoid
eavesdropping or man-in-the-middle attacks.

Anderson published the first real attack [81] exploiting one dangerous command in
the security API. At that time many banks computed customer’s PIN from his PAN
(Primary Account Number) by encrypting this number with a secret key. The result
was then converted to the four digit number. When the customer wanted to change
his password, then the bank computed the offset between the customer’s old and new
PIN and saved it into the database. One bank wished to change the PAN structure,
but it would change all PINs the customers had. Therefore the bank established the
new API transaction for converting the old offset to the new offset. The transaction
was following: ”given an initial account number of 𝑋 and offset of 𝑌 , calculate an
offset which will enable this PIN to be used on account number 𝑍”.

Originally the transaction was meant to be just a temporal solution and to be run
once in a batch, however it was forgotten and left in the security API. The attack
on this single transaction was found about a year later. If the attacker sent his own
PAN as 𝑍 and his own offset as 𝑌 , the command would return the offset between
any customer’s issued PIN and the attacker’s PIN, which is a great security issue.
Note that this attack involved just one single dangerous transaction. In [83] Anderson
suggested that the possible attack doesn’t depend on one transaction, but that there
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can be a chain of multiple transactions which could leak a sensitive information such
as a key.

Another security API attack is the so called ”Decimalisation Table Attack” [84].
This attack exploits the way how HSMs from IBM computed PINs from PANs. The
PAN is first encrypted with the PIN derivation key and then shortened to four bytes.
The PIN is now represented by the 64-bit binary block that should be converted to
four decimal digits. It is done by the lookup table, so called decimalisation table. The
decimalisation table was originally fixed, however it later become a parameter of the
PIN generation command. The user could therefore specify arbitrary decimalisation
table as the input for the command.

Decimalisation table:
01234567890ABCDEF

01234567890123456

Shortened encrypted account number:
90AB

Decimalised PIN:
9001

In a normal PIN verification process, if the PIN is incorrect, the HSM answers that
it was incorrect and no other information can be learned. When the attacker enters a
trial PIN of 0000 with the decimalisation table of all zeroes with just single 1 in let’s
say seventh position, then if the verification process succeeds, the attacker knows,
that the correct PIN doesn’t contain any digit 7.

Only two examples are presented, but there are many other possible attacks, some
of them are analyzed in [85] together with formal verification of security APIs.

3.2.2 Attacks on PKCS#11

This subsection is dedicated to automated vulnerability finding in devices compliant
with the RSA Public Key Cryptography Standards number eleven (PKCS#11). The
Tookan tool presented here was one of the inspirations for the method proposed in
this thesis.

PKCS#11 specifies the Cryptoki API for performing cryptographic operations
such as encryption and signature using cryptographic hardware such as cryptographic
token. Sensitive cryptographic keys are stored inside the token and any cryptographic
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operation is performed by the token without revealing the key. Compromising a key
would allow an attacker to clone the token and to perform the same operations as
the legitimate user.

Most current commercial cryptographic tokens and smart cards comply with this
standard even if other interfaces are offered in addition. Attacks on this almost
ubiquitous standard were found using formal analysis [86]. This is a nice example of
finding vulnerabilities in an automated way.

Bortolozzo, Centenaro, Focardi and Steel show in their paper [86] how to extract
sensitive cryptographic keys from a variety of commercially available tamper resis-
tant cryptographic security tokens, exploiting vulnerabilities in their RSA PKCS#11
based APIs. They developed an automated tool that reverse engineers the partic-
ular functionality offered by a token, constructs a formal model of the API, calls a
SATMC model checker to search for possible attacks, and executes any attack trace
found directly on the token. This tool is called Tookan (TOOl for cryptoKi ANalysis).

Figure 3.1 shows a high level overview of how the Tookan tool works. The analysis
consists basically of four steps:

1. Tookan uses reverse engineering to extract the capabilities of the token, results
of this task are written in a meta-language for PKCS#11 models

2. Tookan uses information from the previous step to generate a model, which is
given as input to the SATMC model checker.

3. Model checker output is sent to Tookan.

4. Tookan uses results from the model checker for testing on the token.

SATMC Tookan Device

12

3 4

Figure 3.1: Tookan system diagram

Keys and certificates in the PKCS#11 token are objects and access to these objects
is controlled. Objects are referenced using handles, which are pointers that does not
reveal any information about the value of the object.
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Objects have attributes, which may be bitstrings representing the value, or boolean
properties of the object, such as whether the key may be used for encryption, or for
encrypting other keys. New objects can be created by calling a key generation com-
mand, or by ”unwrapping” an encrypted key. The token checks that the attributes
of the object allow it to be used for every called function.

A session with a PKCS#11 token is initiated by supplying a PIN. The PIN may
be intercepted for example by a keylogger, which allows an attacker to establish
his own sessions with the device. The PKCS#11 API should protect its sensitive
cryptographic keys even when communicating with an attacker.

To protect a key from being revealed, the attribute 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 must be set to true.
Once it is set to true, it cannot be reset to false. This should ensure that even if the
attacker manages to get the PIN, he will not be able to reveal the keys marked as
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, because such keys are not readable and will always remain 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒.

A sensitive key can be exported from the device if it is encrypted by another
key, but only if its 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒 attribute is set to true. An object with an 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒

attribute set to false may not be read by the API, and once set to false, the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒
attribute cannot be set to true. Protection of the keys depends on the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 and
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒 attributes.

Tookan was used to test 17 commercially available tokens. The results showed
that 9 of these tokens that offered the functionality necessary to import and export
sensitive keys in an encrypted form were vulnerable to attack, because they allowed
the key value to be recovered after a few calls to the API. The other 8 tokens not
vulnerable to these attacks had very restricted functionality (e.g. just asymmetric
keypair generation and signing). Attacks reported by the Tookan tool are described
in the following text.

The notation introduced in [86] for PKCS#11 based APIs, is following: ℎ(𝑛1, 𝑘1)

is a predicate stating that there is a handle 𝑛1 for a key 𝑘1 stored on the device. The
symmetric encryption of 𝑘1 under key 𝑘2 is represented by {|𝑘1|}𝑘2 .

In the first attack the attacker uses key 𝑘2 with attributes 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 to
attack a sensitive key 𝑘1. This attack uses a key with the attributes set for decryption
of ciphertexts, and for wrapping, which means encryption of other keys for secure
transport. The attacker can simply wrap the sensitive key 𝑘1 using 𝑘2 and then
decrypt it using 𝑘2, which reveals the sensitive key 𝑘1. This attack is shown in figure
3.2.

The second attack, shown in figure 3.3, is similar to the previous one, only the
wrapping key is a public key 𝑝𝑢𝑏(𝑧) and the decryption key is the corresponding
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Wrap: ℎ(𝑛2, 𝑘2), ℎ(𝑛1, 𝑘1) → {|𝑘1|}𝑘2
SDecrypt: ℎ(𝑛2, 𝑘2), {|𝑘1|}𝑘2 → 𝑘1

Figure 3.2: PKCS#11 attack 1

Wrap: ℎ(𝑛2, 𝑝𝑢𝑏(𝑧)), ℎ(𝑛1, 𝑘1) → {𝑘1}𝑝𝑢𝑏(𝑧)
ADecrypt: ℎ(𝑛2, 𝑝𝑟𝑖𝑣(𝑧)), {𝑘1}𝑘2 → 𝑘1

Figure 3.3: PKCS#11 attack 2

private key 𝑝𝑟𝑖𝑣(𝑧). The sensitive key is wrapped and then the attacker can decrypt
the obtained ciphertext using the private key.

The third attack is a flaw in the PKCS#11 implementation. Some of the analysed
devices, when asked for the value of a sensitive key, returned the plaintext value of
the key instead of error code, ignoring basic policy that explicitly requires that the
value of sensitive keys should never leave the token.

The fourth attack is a flaw in the PKCS#11 implementation similar to the third
attack, unextractable keys were found to be readable. PKCS#11 requires that keys
which are declared as unextractable should not be readable, even if they are nonsen-
sitive.

The fifth attack is changing sensitive keys into nonsensitive and unextractable keys
into extractable, which was allowed by two types of analyzed tokens. Given that the
previously mentioned third and fourth attacks are already possible and sensitive or
unextractable keys are already accessible, the fifth attack does not pose an additional
flaw of such devices.

3.3 Protocol Attacks

Formal verification seems to be a reliable way of proving security properties of some
system. However, there can occur a situation when an insecure protocol is proven
to be secure by the formal reasoning. This can happen when the protocol does not
consider all possibilities of the real world, or when the protocol is not implemented
properly. There can be situations not defined by the protocol but possible in the real
world.
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Example of such a problem was presented in [87]. There is a very simple appli-
cation defined, a copy card with just five different messages. Even on such a small
system there can be differences in the security claimed by the formal verifier and the
reality.

The application copy card is used for paying small amounts of money. There is
some prepaid amount of monetary units that can be spent. There is also a possibility
to recharge the points on the card any time. Points can be loaded at dedicated
vending machines by inserting real money. If the card is stolen, there is no possibility
for the user to get the money back, but this is not a serious security problem, because
there is just a few points on the card. We will focus on the security of the application
provider, who doesn’t want to be cheated. Here the cardholder is a possible cheater.
He would like to get money on the card without paying the real money for it. Here
we can distinguish two security requirements: 1) nobody except the genuine vending
machine can store points on the copy card, 2) only points from a genuine card can
be accepted by the terminal (merchant).

We will now focus on the protocol for loading points, on which the following
attack is performed. The loading protocol uses a challenge-response protocol for
authenticating the terminal. The card authentication is not required in the loading
protocol, only in the paying protocol. The loading works as follows:

1. Authenticate() – at the beginning of the protocol the terminal sends the Au-
thenticate command to indicate that it wants to authenticate itself to the card.

2. ResAuthenticate(challenge) – card challenge to the terminal.

3. Load(value, hash(create AuthData(LOAD, passphrase, challenge, value))) – the
terminal issues the 𝐿𝑜𝑎𝑑 command that allows the card to increment its bal-
ance. It has two parts: 𝑣𝑎𝑙𝑢𝑒 (number of points to be loaded) and hash value
that contains the tag 𝐿𝑂𝐴𝐷, a passphrase 𝑝𝑎𝑠𝑠𝑝ℎ𝑟𝑎𝑠𝑒, the challenge from the
previous message, and the 𝑣𝑎𝑙𝑢𝑒

The attack on the protocol is following:

1. The attacker glues wires on the smart card’s contacts and connects them to his
laptop so that he can eavesdrop and modify the communication between the
card and the terminal. (this is possible in the Dolev-Yao attacker model)

2. The attacker inserts money to the vending machine and loads points on the
card in the usual way.
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3. While the card is still present in the terminal, the attacker sends an Authen-
ticate message from the laptop to the card. The card answers with a new
ResAuthenticate message, this message is passed to the terminal.

4. The terminal receives the message and behaves as specified in the protocol –
creates a new Load message with the new challenge and passes it to the card.

5. The nonce is correct, hence the card accepts the value and increases the balance.

The attacker has paid once but the points on the card were loaded twice. The real
implementation of the terminal should never accept a ResAuthenticate after sending
a Load message, however the protocol specified and formally verified in [87] allows
this attack.

3.3.1 EMV Attacks

EMV [1] stands for Europay, MasterCard and VISA and it is the most widespread
protocol for smart card payments in the world. It is also known as ”Chip and PIN”.
EMV standards support cards with ISO/IEC 7816 [18] contact and ISO/IEC 14443
[19] contactless interface. EMV is something like the protocol framework from which
proprietary protocols can be build. An issuer (typically a bank) selects a subset of
the EMV protocols to be used (digital signature methods, MAC algorithms) and
chooses many customisable options regarding authentication and risk management.
Each bank can have its own solution, therefore there can be attacks that work for
some issuer’s smart cards and doesn’t work for other’s. Banks can support online or
offline PIN verification, authentication by signature or combination of these methods.
There are two types of cards considering the authentication. The difference is in using
the RSA digital signature. Data stored on the card have to be digitally signed in
order to avoid the counterfeit. First type of EMV compliant card is so called SDA
(static data authentication), which can not perform the RSA signature itself. The
signature made by the issuer is stored in the card and can be exposed to the reader for
verification. This type is vulnerable to cloning because the signature can be copied to
a counterfeit card. These counterfeit cards usually doesn’t need to be provided with
the correct PIN, they always answer that the PIN was correct. This type of attack
can be avoided by online authentication; however, not all merchants are connected
to the network. The other possibility of avoiding this attack, even offline, is to use
the second type of EMV card – DDA (dynamic data authentication). This card is
capable of performing the RSA, so the challenge-response protocol can be used for
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authentication. However, both types of cards can be successfully attacked with the
attack presented in [88] which will be described in more detail.

The EMV protocol has three main phases – card authentication, cardholder veri-
fication, and transaction authorization.

1. Card authentication. In this phase the card is authenticated to the reader.
The card provides the information which bank issued the card and proves the
integrity of this data (data stored on the card are digitally signed). The termi-
nal first requests a list of supported applications (file 1PAY.SYS.DDF01) and
chooses one of them. Then the cardholder information is read and the digital
signature is verified.

2. Cardholder verification. In this phase the terminal verifies the user’s iden-
tity. There are three possible cardholder verification methods – PIN verification,
signature verification and no verification. Terminal with the card negotiate the
method they will use. Some terminals doesn’t support some of the verification
methods, PIN verification is preferred by merchants because then they have no
liability for the fraud. The user has to know the correct PIN for the submitted
card to proceed to the next phase. In the offline PIN verification process the
PIN entered to the terminal is sent to the card and there verified. If success-
fully, the card returns OK (0x9000), otherwise an error (0x63Cx, where x is
the number of remaining attempts). The card’s response was not authenticated
at the time of publishing the paper describing this attack. In the online PIN
verification process the PIN is encrypted by the ATM and sent to the issuer
over network for verification.

3. Transaction authorization. In this phase the terminal is ensured that the
bank which issued the card authorizes the transaction.

The attack presented in [88] is based on the fact that the card response after
the offline PIN verification process is not explicitly authenticated. It is a man-in-the-
middle attack. The attacker’s device is connected both to the card and the terminal to
intercept and modify the communication. In the PIN verification process the device
sends 0x9000 as the answer from the card, so the terminal believes that the PIN is
correct. The attacker makes the card believe that the terminal doesn’t support PIN
verification and that the user is verified by the signature. Because no PIN is sent
to the card, the attempt counter is not changed. The terminal only recognizes the
situation when the PIN verification is performed and fails. In the scenario of this
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attack the terminal believes that the PIN is OK and the following communication
with the card continues without change.

The attack was successfully executed with a cheap off-the-shelf hardware. The fake
card was connected to a general-purpose FPGA board which served as the interface
between the card and PC. The PC was connected to the reader that can communicate
with the stolen card. The communication was altered in the PC by simple Python
program:
if VERIFY_PRE and command[0:4] == ”0020”:

debug(”Spoofing VERIFY response”)

return binascii.a2b_hex(”9000”)

The remaining communication was left unmodified.

3.3.2 OAuth Verification

This subsection shows examples of applying formal verification on a protocol in order
to find vulnerabilities. It is focused on OAuth (Open Authorization) protocol, which
is a standard being adopted by a growing number of sites such as Facebook, Google,
Twitter, and several other social networking sites.

Multiple papers on the formalization and verification of the OAuth protocol have
been published. In [89] the authors presented modeling of OAuth protocol using
AVANTSSAR platform. This section shows results of this paper. The protocol was
formalized with ASLan++ language and several security properties were proposed
and specified using extended Linear Temporal Logic (LTL).

OAuth is an open authorization protocol defined by the Internet Engineering Task
Force (IETF), that provides a general framework to let a resource owner authorize one
third-party application to access the owner’s resource on the resource server without
revealing the owner’s credentials to the third-party application. The resource server
is usually same as the authorization server. OAuth 2.0 uses SSL/TLS for communi-
cation between the authorization server and the third-party applications. There are
four authorization flows defined in the OAuth: Authorization code, Implicit grant,
Resource owner password credentials, and Client credentials. Only the Authorization
code flow was analyzed in [89].

The authorization code flow is used for server-side web applications. There are
four roles in this flow: Resource Owner, User-Agent, Client and Authorization Server.
The resource owner is the end user, which uses the user-agent, which is a browser, to
connect to the client, which is a third-party web application, and the authentication
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server, which is in most cases the server of a social network with large number of
users. The resource owner has access to his resources on the authorization server and
can grant clients access to these resources. Figure 3.4 shows a sequence diagram of the
authorization code flow with some simplifications as modeled in [89]. The resource
owner and user-agent are combined into a single role called Browser.

Browser

Browser

Client

Client

Auth_Server

Auth_Server

req

cid.re_uri.scope.state

cid.re_uri.scope.state

re_uri.state.code

state.code

re_uri.cid.csec.code

access_token

access_token

resource

Figure 3.4: OAuth authorization code

1. Browser sends a login request 𝑟𝑒𝑞 to the client (user clicks on the login button
on the client’s website).

2. Client initializes the authorization code flow by sending its client ID 𝑐𝑖𝑑 (unique
identifier issued by authorization server in advance), an optional redirection URI
𝑟𝑒_𝑢𝑟𝑖 (authorization server can respond to client via browser by the redirection
URI), a scope of the access request 𝑠𝑐𝑜𝑝𝑒, and a recommended secret value for
preventing cross-site request forgery 𝑠𝑡𝑎𝑡𝑒.

3. Browser sends these client parameters to the authorization server.

4. Authorization server generates the authorization code 𝑐𝑜𝑑𝑒, which is bound to
the client ID, and sends the authorization code with the redirection URI back
to the browser.

5. Browser redirects the authorization code to the original client based on the
redirection URI.
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1 body{
2 Actor -Ch_B2C_1-> C : Req;
3 C -Ch_C2B-> Actor : ?A.?CID.?Re_Uri.?Scope.? State;
4 Actor -Ch_B2A-> A : CID.Re_Uri.Scope.State;
5 A -Ch_A2B-> Actor : ?Re_Uri.?State.?Code;
6 Actor -Ch_B2C_2-> C : State.Code;
7 }

Figure 3.5: Statement part of the Browser role definition

6. When the client receives the authorization code successfully, it then sends its
credentials client ID 𝑐𝑖𝑑 and client secret 𝑐𝑠𝑒𝑐 to the authorization server di-
rectly, not via the browser.

7. Authorization server verifies the client’s credentials and the authorization code
and if successfully authenticated, the authorization server generates an access
token 𝑎𝑐𝑐𝑒𝑠𝑠_𝑡𝑜𝑘𝑒𝑛 and sends it back to the client.

8. When the client receives the 𝑎𝑐𝑐𝑒𝑠𝑠_𝑡𝑜𝑘𝑒𝑛, he can access user’s resources stored
in the authorization server with this token.

9. Authorization server authenticates the token 𝑎𝑐𝑐𝑒𝑠𝑠_𝑡𝑜𝑘𝑒𝑛, if the access token
is valid it sends the resource back to the client.

ASLan++ was used to formalize the OAuth model with three agents. The names
of agents were abbreviated in the model, so instead of authorization server, browser,
and client, the ASLan++ model definition contains letters A, B, and C. Figure 3.5
shows the message flow between browser and other participants as defined in the
statement part of the browser role definition of the ASLan++ model.

In ASLan++ role definition, Actor is used to refer to current entity, in this case
it is referring to the browser entity. There are five channels in the authorization code
flow model. The first is a browser to client channel Ch_B2C_1, the second is a client
to browser channel Ch_C2B, the third is a browser to authorization server channel
Ch_B2A, the fourth is a authorization server to browser channel Ch_A2B, and the fifth
is another browser to client channel Ch_B2C_2.

Line 2 corresponds with step 1 of the authorization code flow described earlier,
line 3 with step 2, line 4 with step 3, line 5 with step 4, and line 6 with step 5.

Other agents – client and authorization server – have similarly defined roles de-
scribing their behavior in the protocol.
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Four security aspects of OAuth were analyzed – confidentiality, authentication,
authorization, and consistency. These four security goals were defined in ASLan++
together with the agent definitions. SATMC model checker was used and three at-
tacks were found. These attacks violate the properties of confidentiality of state,
confidentiality of authorization code, and consistency. Attacks found by the SATMC
are described in the following text. Authors refer to these attacks as Attack of Secret
State, Attack of Secret Code, and Attack of Consistency.

In the first attack, shown in figure 3.6 and referred to as Attack of Secret State,
an intruder, in the diagram represented by i, intercepts the request from the browser
and sends it to the client. Client generates a state and sends its information back to
the intruder. The intruder gets the response and decomposes the state parameter.

Browser

Browser

i

i

Client

Client

req

req

cid.re_uri.scope.state

Figure 3.6: Attack of secret state

The second attack, shown in figure 3.7 and referred to as Attack of Secret Code,
begins in the exactly same way as the first attack. After receiving the response from
client, the intruder modifies the redirection URI and sends the modified response to
browser. The browser sends the information about the client to the authorization
server and receives the response containing the authorization code. Then the browser
redirects the response to the modified URI and the intruder decomposes the response
to get the authorization code.

The third attack, shown in figure 3.8 and referred to as Attack of Consistency, is
similar to the second attack. The difference is that the intruder modifies the client
ID instead of the redirection URI. The result is that users who intend to authorize
honest client to access their resources, might authorize other dishonest clients.

We can see that insecure implementation and wrong deployment can cause vul-
nerabilities in the protocol. Verification and encryption mechanisms can be used to
avoid these vulnerabilities.
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Figure 3.7: Attack of secret code
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Figure 3.8: Attack of consistency
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Chapter 4

Vulnerability Finding Method

This chapter introduces a method of semi-automated vulnerability finding in contact-
less smart card protocols.

The concept puts together a man-in-the-middle (MITM) attack with verification
methods to find vulnerabilities in a semi-automated way. Figure 4.1 shows the scheme
of the proposed system. The process consists of a cycle of several steps that can be
performed several times to make the protocol secure.

∙ The first step is a MITM attack that can be used to analyze the protocol. The
MITM hardware will communicate with both PCD and PICC, and eavesdrop
on the communication to extract the protocol. It can be also used to fuzz test
the protocol by altering commands and data in an unanticipated way.

∙ The next step is the formal model creation. Results from the analysis can be
used together with the protocol and smart card specifications to create a formal
model. The MITM at the beginning of the process can be theoretically used
to create a formal model when analyzing a third party protocol even without
the precise protocol specification, the protocol specification can be extracted
by eavesdropping on real communication. The developer of a protocol can skip
the first step and create the model only from the protocol and smart card
specifications.

∙ The model will be verified by the model checker. In this phase the potential
vulnerabilities can be found.

∙ The attack vectors found by the model checker will be used to execute the attack
on the device, using the MITM. If the attack is successful, the vulnerability is
reported, otherwise the model is refined.
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∙ The hardware for performing MITM is useful for trying to execute an attack
and to figure out how the formal model should be refined after each run of the
model checker.

Figure 4.1: Scheme of semi-automated vulnerability search system

This cycle will be repeated multiple times until a vulnerability is found or the
model checker concludes that there is no attack on this model. When an attack is
found by a model checker and is not confirmed using MITM on the real devices, the
model is refined and model checker is executed again. When a vulnerability is found
and confirmed by MITM, the protocol should be improved to fix this vulnerability.
The model should be updated and model checker should be executed again. Although
the process is not yet fully automated, the model checking can find a vulnerability
in the model automatically. The following sections discuss hardware for the MITM,
protocol analysis, and formal verification.

4.1 Hardware

In this section the hardware used to perform a man-in-the-middle (MITM) attack is
discussed. In real environment, MITM can be done using relay attack. Our device
will act as the MITM between two legitimate parties of the protocol. As mentioned
earlier, there are two contactless devices needed for relay attack – a fake PCD and a
fake PICC. We have connected both devices to one PC, which is the main hardware
part of the system.
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We have established a real relay attack using Proxmark 3, which is an open hard-
ware platform for RFID research purposes. This device was developed by Jonathan
Westhues for performing sniffing, reading and cloning of RFID tags. Proxmark 3
incorporates the FPGA unit, used for low level signal processing, and the ARM pro-
cessor, that implements the transport layer. It can be used as a sniffer, as a reader or
as a card, using various protocols. Proxmark 3 supports both low frequency (125 kHz
– 134 kHz) and high frequency (13.56 MHz) signal processing.

The Proxmark 3 is connected to the PC via USB; however, the software developed
by the community does not support realtime communication over USB, so we had
to add it. With the original software the PC sends a command to Proxmark, which
returns the result after processing it. We needed a realtime communication with
the device, because each data packet received by the device requires its immediate
transmission to the computer in order to get the response from the genuine PICC.
In order to establish communication with just one party – PCD or PICC – we have
implemented the anti-collision procedure.

Figure 4.2 shows the constellation of devices used for the relay attack. Proxmark 3
acts as a fake PICC, communicates with the genuine PCD and forwards data blocks
to the PC. It also transmits data blocks in the opposite direction. ACR122 acts as
a fake PCD, doing the similar task with the genuine PICC. The PC controls both
devices and relays data blocks between them. Data can be saved or altered in the
PC.

In our implementation the communication is initialized separately with the gen-
uine PCD and genuine PICC and the anti-collision is not forwarded. The anti-collision
procedure is executed separately for both parties. The communication with the PICC
must be established first in order to get the information needed to establish communi-
cation with the PCD, such as UID, ATQA and ATS [19]. No information is transferred
during anti-collision procedure, because the responses must be fast. Then we can for-
ward data blocks from PCD to PICC and vice versa. To keep the communication
alive, it is important to maintain correct block numbering and to compute checksums
separately for both parties, because every communication error on either of the sides,
which would be recovered in normal communication, would break it in forwarded
communication during relay attack. When block numbering and checksums are han-
dled separately, the error on one side does not affect the opposite party and after
error recovery the communication can continue.

In order to minimize the response time, we have implemented extending of frame
waiting time (FWT) and waiting time extension (WTX) (both defined in [19]) directly
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Figure 4.2: Constellation of devices

in Proxmark device, so the response time is minimal. We can increase the FWT up
to its maximal possible value (4.949 s) by changing the ATS during the anti-collision.
The other option is to send WTX after each command in order to get more time.
These features are required for systems where the maximal response time provided
by the genuine PCD is very short. We do not have to use these features in systems
where the maximal response time is long enough. Providing the ability of extending
the response time limit on the lowest level without any delay makes this platform
useful even in systems with strict time limits.

4.2 Protocol Analysis

The goal of this part is to create a formal model of the implementation of the protocol.
Smart card application issuers mostly don’t publish their algorithms for any scientific
feedback, hence there could be bugs that might remain hidden for a long time of using
such a system. Furthermore, thanks to NFC, there are many more new applications
being developed, and there is a great potential for the future. These applications
also handle sensitive data and use contactless communication as well as smart cards.
In order to be able to find any vulnerabilities in these closed source protocols, the
wireless communication can be eavesdropped and the protocol can be extracted by
analysing the data being exchanged. With the knowledge of the protocol, the formal
model can be created. Limited knowledge of the protocol should therefore not entail
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a problem, the data needed for creating the protocol formal model can be extracted
from the eavesdropped communication.

The eavesdropping of the protocol can be used to extract the protocol from real
communication and the MITM also allows us to alter arbitrary data, change command
order, communicate with just one of the legitimate parties and try various commands
even with wrong parameters. In theory, the model creation and refinement could be
done automatically from data gained by eavesdropping and fuzz testing, which would
make the whole process of vulnerability finding fully automatic. Learning techniques
allow automatic inference of behaviour of a system as a finite state machine. For
example in [90] the authors showed that a Mealy machine representing a model of
EMV smart card can be successfully extracted using protocol fuzzing. However, we
did not try to make automatic protocol fuzzing, so the process of vulnerability finding
is only semi-automatic. Automatic Mealy machine creation using protocol fuzzing was
left for future work.

It is very beneficial to have the protocol and smart card description when creating
the formal model of the system and not to rely only on data from MITM eavesdrop-
ping. The protocol can be described for example as a sequence diagram and the
smart card as a Mealy machine. The information gained using MITM together with
the protocol and smart card specification gives us an overall image of the system being
observed. The creation of formal model from the protocol and smart card description
is explained in chapter 5.

4.3 Verification

The formal model of the protocol can be used to automatically find vulnerabilities
using formal verification methods. These methods are used for proving security prop-
erties of protocols such as authentication, integrity, confidentiality and anonymity.
Not only they tell us whether the protocol meets these properties but they can also
find the counterexample. These counterexamples can be considered possible attacks.
Formal methods therefore provide us with the automated way of finding attacks and
can also be used for proving that some attacks are not possible. In this part a model
checker will search for possible attacks, which will later be evaluated on the hardware.

4.3.1 Model checking tools

Many tools for verification of protocols are available. Although general purpose formal
verification tools can be used to verify security protocols, it is better and more intu-
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itive to use one of the tools designed specifically for verification of security protocols.
General purpose model checking tools have been adapted to model security protocols,

such as Murphi [91], Spin [92], or UPPAAL [93].
Murphi [91] is a finite-state machine verification tool. It has its own input lan-

guage, also called Murphi, which is based on a collection of guard → action commands.
These commands are repeatedly executed in an infinite loop. In [94] a methodology
for the analysis of cryptographic and security-related protocol using Murphi has been
proposed.

Spin [92] is a generic verification tool supporting the correctness verification of
asynchronous process systems in a rigorous and mostly automated way. Spin models
are focused on proving the correctness of process interactions. Systems to be verified
are specified in the language Promela (PROcess MEta LAnguage), and properties
to be verified are specified using Linear Temporal Logic (LTL) formulas. In [95]
Spin/Promela was adapted for verification of security protocol.

Uppaal [93] is a tool for modeling, validation and verification of real-time systems.
System model in Uppaal is a parallel composition of timed automata extended with
data types.

Tools dedicated to the verification of security protocols are for instance Casper/FDR3
toolbox [58], NRL protocol analyzer [51], Cryptyc [96], Scyther [97], LySA [98], and
Choreographer [99]. There are also tools targeting on wide use and applicability to
practical problems, such as ProVerif tool [100], AVISPA tool suite [101][102], and
AVANTSSAR [55].

The Cryptyc [96] is a cryptographic protocol type checker that allows to check for
violations of security policies. LySa [98] is a process calculus for security protocols.
It applies static analysis technology to develop an automatic validation procedure for
protocols. LySatool is an implementation of the analysis. Choreographer [99] is an
integrated tool for security and performance analysis of UML models, which uses the
LySatool as an analysis back-end.

Casper

Casper [58] is a program that will take a description of a security protocol in a
simple, abstract language, and produce a CSP (Communication Sequential Process)
description of the same protocol, suitable for checking using FDR3 (Failure Divergence
Refinement).
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NRL Protocol Analyzer

NRL protocol analyzer (NPA) [51] is a special-purpose verification tool for analysing
security protocols, written in Prolog. NPA was one of the earliest tools for verifying
the security of cryptographic protocols. It was not originally designed as a model
checker, but later many of the model checker features were added, including the
ability to check properties expressed in a temporal logic language, NPATRL [62].

Scyther

Scyther [97] verifies bounded and unbounded number of runs, using a symbolic anal-
ysis with a backward search based on partially ordered patterns. Scyther does not
require the input of scenarios. Scyther implements model checking with respect to
the unbounded model by performing a backward-style search. For this method, the
model is extended with adversary events for encrypting, decrypting, hashing, and
knowing messages. Infinite sets of states are represented by trace patterns, which are
partially ordered sets of events that must occur in the traces, and whose messages
may contain variables. The events in patterns must satisfy a number of criteria based
on the semantics.

ProVerif

ProVerif tool [103] is an automatic cryptographic protocol verifier based on a repre-
sentation of the protocol by Horn clauses. It can deal with an unbounded number
of sessions of a protocol and an unbounded message space. It uses abstractions to
obtain an efficient analysis method, such as: individual fresh values are abstracted
into sets of fresh values, and each action of a thread can be executed multiple times.

AVISPA

AVISPA (Automated Validation of Internet Security Protocols and Applications)
[101] is a tool funded by the European Union, which provides a push-button, industrial-
strength technology for the analysis of large-scale Internet security-sensitive protocols
and applications. AVISPA uses several different model-checking approaches. Proto-
col models are written in the High Level Protocol Specification Language (HLPSL)
[104]. Protocols are specified in HLPSL in terms of their roles, using control flow pat-
terns, data structures, alternative adversary models, as well as different cryptographic
primitives and their algebraic properties. HLPSL specifications have a declarative se-
mantics based on Lamport’s Temporal Logic of Actions [105] and an operational
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semantics defined in terms of a rewrite-based formalism called the intermediate for-
mat (IF). Once the model of the system is specified in HLPSL, AVISPA translates it
into the IF, which is an input format for AVISPA back-end model checkers. AVISPA
utilizes four back-end tools for validation of security protocols: On-the-fly Model-
Checker (OFMC), Constraint-Logic-based Attack Searcher (CL-AtSe), SAT-based
Model-Checker (SATMC), and Tree Automata based on Automatic Approximations
for the Analysis of Security Protocols (TA4SP). The advantage of having multiple
back-ends is that only one model can be specified and it can be analysed with four
different tools. AVISPA is a popular tool and it was used for verification of security
protocols that use smart cards multiple times.

AVANTSSAR

AVANTSSAR (Automated VAlidatioN of Trust and Security of Service-oriented AR-
chitectures) is a follow-up project of AVISPA, introducing new languages for de-
scribing models, the AVANTSSAR Specification Languages ASLan++ and ASLan.
ASLan++ [106] is a high level formal language similar to the HLPSL, used for specify-
ing security-sensitive service-oriented architectures, their associated security policies,
and their trust and security properties. The semantics of ASLan++ is formally de-
fined by translation to ASLan, the low-level specification language that is the input
language for the back-ends of the AVANTSSAR Platform – OFMC, CL-AtSe, and
SATMC.

OFMC [107] combines a number of techniques to enable the efficient analysis of
security protocols. First, OFMC uses lazy data types as a simple way of building
efficient on-the-fly model checkers for protocols with very large, or even infinite, state
spaces. A lazy data type is one where data constructors build data without evaluating
their arguments. Second, OFMC models the adversary in a lazy fashion, where ad-
versary communication is represented symbolically and solved during search. Third,
while OFMC performs verification for a bounded number of sessions, it works with
symbolic session generation, which avoids enumerating all possible ways of instanti-
ating possible sessions. Fourth, OFMC exploits a state-space reduction technique,
inspired by partial-order reduction, called constraint differentiation [108]. Constraint
differentiation works by eliminating certain kinds of redundancies that arise in the
search space when using constraints to represent and manipulate the messages that
may be sent by the adversary. Finally, OFMC also provides some limited support for
handling different equationally specified operators on messages [109]. [69]
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Cl-Atse [110] represents protocol states symbolically as a collections of non-
ground facts, which record the states of different threads, the messages sent to the
network, and the adversary knowledge. In particular, constraints are used to describe
what the different agents know and a constraint calculus is used to solve for what
they can know, from messages previously exchanged, i. e., the calculus is used to
solve a variant of the non-ground intruder deduction problem. CL-Atse was designed
to allow the easy integration of new deduction rules and operator properties. [69]

SATMC [111] is an open platform for model checking of security services. SATMC
reduces the problem of checking whether a protocol is vulnerable to attacks of bounded
length to the satisfiability of a propositional formula which is then solved by a state-
of-the-art SAT solver. This is done by combining a reduction technique of protocol
insecurity problems to planning problems and SAT-reduction techniques developed
for planning and LTL that allows for leveraging state-of-the-art SAT solvers. SATMC
provides a number of distinguishing features, including the ability to check the proto-
col against complex temporal properties (e.g. fair exchange); analyze protocols (e.g.
browser-based protocols) that assume messages are carried over secure channels (e.g.
SSL/TLS channels). [112]

4.3.2 Tool Selection

There are many papers describing and comparing various formal verification tools,
such as NRL and FDR comparison [113], Casper/FDR, ProVerif, Scyther and Avispa
comparison [114], or OFMC, Cl-Atse and ProVerif comparison [115]. Various tools
have been studied and tested for the purpose of this thesis to find out which one is
the best for security verification of protocols using contactless smart cards. During
the process of selecting the right tool, various aspects of the tool had to be consid-
ered, such as performance, how difficult it would be to model desired features in the
particular modeling language, and published results with the tools.

The AVANTSSAR tool was chosen for the security verification, mainly because
the fact that the high level ASLan++ language can be easily used to model the
desired features and because three different back-end model checkers can be used to
verify the model. Also there are published papers suggesting that this tool and its
back-end model checkers have good results in the field of security protocol verification.
The performance seems to be good and for example performance comparison [115]
of ProVerif with AVANTSSAR back-end model checkers Cl-Atse and OFMC shows
better results of AVANTSSAR back-end model checkers; however, the difference is
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not significant. AVANTSSAR developed from AVISPA and both tools seem to be
proved and used by the community.
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Chapter 5

Formal Model

This chapter provides a description of the proposed method that can be used to create
a model of a contactless smart card and a terminal and to define states representing
attacks. This model can be then used in model checking to find attack traces in the
protocol. The model takes into account the implementation details of a particular
smart card which could be possibly avoided in a high level protocol verification. These
details are important because wrong use of smart card commands may introduce a
vulnerability even if the high level definition of the protocol is secure. The ASLan++
language was chosen for protocol modeling, it can be used as an input for multiple
back-end model checkers of the AVANTSSAR Platform.

A model of protocol in ASLan++ is defined by roles that can be played either by
a legitimate party or by an adversary called intruder. We establish two main roles in
the model description to represent the implementation – the first role represents the
smart card with its functionality and settings, the second role represents the protocol.
The protocol is executed by the terminal, the smart card only responds to commands
from the terminal. The protocol can be therefore identified with the terminal in our
model. The intruder model that is used is the well-known Dolev-Yao intruder model
[43]. All communication is synchronous with the intruder, the intruder intercepts the
messages from the legitimate user and each legitimate user receives messages only
from the intruder. The intruder can be therefore identified with the network. Figure
5.1 shows the configuration of subjects in the model. The PCD executes the protocol
and communicates with the PICC via the intruder, who is a man-in-the-middle. The
goal of our vulnerability finding method is to find out if the intruder would be able
to perform some attack in this configuration and find an attack trace.

The state explosion problem has to be addressed. If we create precise model of
the smart card and the terminal functionality, the model will be too complex for the
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Figure 5.1: Intruder model

model checker, the number of states will be so high that the model checking execution
time will be unacceptable. The goal of this thesis is to create modeling method that
will create models which can be computed using model checking in acceptable time
and which describe the functionality sufficiently. We create simplified models that are
weaker than the precise model would be, so more attacks can be found. Attacks that
are found by the model checker can be tested and in case of false positive the model
can be adjusted to be more precise and not contain the particular false vulnerability.
The resulting model will be a trade-off between precision and model checker execution
time.

Since smart cards are usually used in applications where high level of security
is required, confidentiality, integrity and authentication should be provided by the
protocol to protect data that are being transferred between the smart card and the
terminal. Confidentiality of data is achieved by encrypting the data using any of the
state-of-the-art ciphers, which are strong enough to be relied on. In this thesis the
strength of the cipher is supposed to be sufficient to resist attacks focused merely on
breaking the cipher rather than finding vulnerabilities in the protocol. We therefore
consider all ciphers unbreakable for purposes of this thesis so that we can focus on
vulnerabilities in the protocol.

Integrity of messages exchanged between smart card and terminal can be ensured
in multiple ways, such as computing the cyclic redundancy check (CRC) of plaintext
and encrypting it together with data, or by using message authentication code (MAC),
which is a cryptographic hash. MAC can be used to cryptographically secure the
integrity of data even if these data are not encrypted.

Contactless smart cards usually require terminal authentication which ensures
that the data will not be revealed to unauthorized entities. Each file in the smart
card has usually access permissions that are used to authorize operations on these
files. The access rights are determined according to the symmetric key that was used
for authentication.
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5.1 Modeling Tool

ASLan++ is the specification language used in AVANTSSAR. It is a high-level formal
language for specifying security-sensitive service-oriented architectures. It is easy for
system designers to use, because it is close to the way in which they think about
systems. It can be used also by users who are not experts on formal specification
language. The AVANTSSAR platform provides conversion from high-level ASLan++
to ASLan, which is a low-level specification language used by back-end model checkers
to perform verification of security properties.

ASLan++ document consists of four parts: Entities, Declarations, Statements,
and Goals. General schematic architecture of ASLan++ is shown in figure 5.2. An
ASLan++ model is a hierarchical structure of entities. The top-level entity is called
Environment, its sub-entity is called Session. Sub-entities of Session are used to de-
scribe characteristics of different agents or roles. The entity contains a collection of
declarations, starting with keyword 𝑠𝑦𝑚𝑏𝑜𝑙𝑠, and a series of statements, starting with
keyword 𝑏𝑜𝑑𝑦. Declarations are used to define types, variables, constants, and func-
tions. They are the static part of the entity, while statements describe the dynamic
part of the entity. Goals are used to formalize the desired security properties. The
most general way to formalize security properties is to use extended Linear Temporal
Logic (LTL) [116] formulas. Validation goals have a name and a LTL formula that
is checked by the validation back-ends. Another way to define a goal is to define an
assertion. Assertions are given as a statement in the body of an entity. They are
expected to hold only at the given point of execution of the current entity instance.

The ASLan++ model can be checked by any of the AVANTSSAR back-ends. The
back-end model checker will then give a counterexamples when an attack is found,
which can be used to deduce the security flaw of the system. When no attack is found,
it doesn’t necessarily mean there is no vulnerability in the protocol. The reason may
be that the model checker explores the search space to the maximal depth which was
previously set in the back-end without finding any attack.

5.2 Smart Card Model

The PICC can be seen as a state machine. The PICC reads commands from PCD,
changes its internal state according to these commands, and responds back. States of
the machine are determined by the internal state of the PICC logic and by the value
of internal variables of the PICC, such as content of files and used cryptographic
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entity Environment{

    symbols Declarations

       entity Session (A, B: agent) {

           symbols Declarations

               entity PCD (Actor, B: agent) {

                   symbols Declarations

                   body { Statements }

                }

               entity PICC (A, Actor: agent) {

                   symbols Declarations

                   body { Statements }

                }

           body {

                Statements

               new PCD(A, B);

               new PICC(A, B);

            }

        }

    body {

        Statements

       new Session(pcd, picc)

    }

}

Figure 5.2: Schematic architecture of ASLan++
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keys. Since the logic must have finite number of states and the files and keys can
only have finite number of values, the number of states of the machine will be finite.
The transition rules of the automaton are defined by the set of commands and pa-
rameters of these commands. Although the set of parameters will be high, it will
be finite, so the number of transition rules will be finite as well. We can therefore
model the PICC behavior using a finite-state automaton or, more specifically, a Mealy
machine, whose output is determined by the current state and the current input. An-
other state machine concepts can be used instead, such as UML state machine, which
is an enhanced realization of the finite-state automaton mathematical concept with
characteristics of Mealy machine. UML state machine diagrams are convenient for
describing contactless smart card behavior, because they support enhanced meth-
ods for simple picturing of complex behavior, such as extended states, hierarchically
nested states, and orthogonal regions.

The automaton should describe behavior of a PICC in the level of detail suitable
for model checking, which means the simpler the better. It should be designed to
be simpler than the real implementation and allow false positives rather than false
negatives. It should be as simple as possible, because the model checking could take
unbearable amount of time due to the state explosion problem, if the number of states
was not kept low. The model can allow false positives because it can be iteratively
refined, but it should not allow false negatives, which would result in false belief that
the system is secure. The automaton can be refined if false positives are found by
the model checker.

Figure 5.3 shows a sample UML state machine diagram describing logic of the
Mifare DESFire MF3ICD40, which is one of the cards later used to demonstrate the
verification method. Mifare DESFire is a memory card, so the logic is quite simple.
The card shown in the figure has three applications, the default application number 0

and two standard applications with numbers 1 and 2, and uses two keys for authen-
tication, so the user can be authenticated using 𝑘𝑒𝑦1, 𝑘𝑒𝑦2, or not authenticated
(𝑛𝑜𝐾𝑒𝑦). Only basic commands needed for a payment protocol are modeled, the au-
thentication command (𝑎𝑢𝑡ℎ), select application command (𝑠𝑒𝑙𝑒𝑐𝑡), read file (𝑟𝑒𝑎𝑑),
and write file (𝑤𝑟𝑖𝑡𝑒). Two actions of 1) putting the card to the proximity of the
reader which starts the communication and 2) taking the card away from the reader
to end the communication are represented by 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 and 𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 transitions
respectively.

The model should represent the behavior of a personalized issued card that is
ready to be used in the protocol, which means that it does not have to support
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all commands which are used for the smart card personalization or commands that
are not enabled after the smart card is issued. This approach results in simpler
models and shorter model checking computation times. The Mifare DESFire smart
card supports more commands than the commands shown in figure 5.3, but these
commands will not be used after the card is personalized in secure environment, so
they are useless in the model. Also the application 0 in the model does not allow
authentication, because it is used only during personalization for operations related
to creating and setting up other applications.

When the contactless smart card is put to the proximity of the reader, it is ac-
tivated and an anti-collision procedure is performed. The anti-collision procedure is
used to allow multiple cards to communicate with the terminal without interference.
After the anti-collision procedure, the terminal communicates only with one smart
card at a time, the order of smart cards is negotiated during the anti-collision proce-
dure. There is no reason for modelling the anti-collision procedure, so in the model
the card gets immediately into the 𝑎𝑐𝑡𝑖𝑣𝑒 state. When the card is taken away from
the reader, the communication is terminated and the card is deactivated.

The diagram in figure 5.3 uses features of UML state machine diagrams to simply
picture complex behavior. The diagram uses nested states. If a system is in the
nested state (called substate), it is implicitly also in the surrounding state (called
superstate). The state machine will attempt to handle any event in the context of
the substate, but if the substate does not prescribe how to handle the event, the event
is automatically handled at the higher level context of the superstate.

The figure describes an extended state machine which uses extended states to
describe memory of the card. The extended state is a combination of the state and
the extended state variables. This feature is very useful, because state machines
without extended states need large number of states to implement variables. The
machine from figure 5.3 can be pictured without extended states using orthogonal
region implementing memory, as shown in figure 5.4. Each state can contain two or
more orthogonal regions and being in such a state means being in all its orthogonal
regions simultaneously. The number of states in the memory region is very large,
so only a couple of states are depicted to show the notion. We could define the
state machine without orthogonal regions, such machine would have states from the
cartesian product of states in the current orthogonal regions.

The memory cards will result in very simple diagrams, while smart cards with
more complex logic like Java Cards or BasicCards, which allow execution of arbitrary
code, will result in more complex diagrams. Examples in this thesis are based on
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Figure 5.3: UML state machine describing basic Mifare DESFire behavior
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Figure 5.4: Mifare DESFire UML state machine with memory states
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Mifare DESFire, but models of other card types can be also created.
Although UML state machines are very useful for depicting behavior of contactless

smart cards, the behavior can also be described using simple finite-state automatons
and Mealy machines. Such description is more formal and can provide more detailed
insight.

We can create the Mealy machine representing the PICC by combining an automa-
ton describing the PICC logic and an automaton representing the state of memory
(the two machines that were combined using orthogonal regions in figure 5.4). The
formal definition of the PICC Mealy machine will be provided later. We can analyse
the logic and memory automatons separately.

The PICC logic automaton should describe behavior of PICC as a response to the
commands sent by PCD. Let 𝑀𝑙𝑜𝑔𝑖𝑐 be a deterministic finite automaton defined as a
quintuple (𝑄𝑙𝑜𝑔𝑖𝑐,Σ𝑙𝑜𝑔𝑖𝑐, 𝜎𝑙𝑜𝑔𝑖𝑐, 𝑞𝑙𝑜𝑔𝑖𝑐0, 𝐹𝑙𝑜𝑔𝑖𝑐), consisting of:

∙ a finite set of states 𝑄𝑙𝑜𝑔𝑖𝑐

∙ a finite set of input symbols Σ𝑙𝑜𝑔𝑖𝑐

∙ a transition function 𝜎𝑙𝑜𝑔𝑖𝑐 : 𝑄𝑙𝑜𝑔𝑖𝑐 × Σ𝑙𝑜𝑔𝑖𝑐 → 𝑄𝑙𝑜𝑔𝑖𝑐

∙ a start state 𝑞𝑙𝑜𝑔𝑖𝑐0 ∈ 𝑄

∙ a set of accept states 𝐹𝑙𝑜𝑔𝑖𝑐 = 𝑄𝑙𝑜𝑔𝑖𝑐 (PICC may end in all states)

Figure 5.5 shows an example of 𝑀𝑙𝑜𝑔𝑖𝑐 automaton describing logic of the Mifare
DESFire based on 5.3.

In this example the card has three applications and uses two keys for authenti-
cation. The states are denoted by a pair of application number and authenticated
key respectively. The initial state is the state where default application number 0

is selected and no authentication was performed – authenticated key 0. Only basic
commands needed for a payment protocol are modeled, the select application com-
mand (𝑠𝑒𝑙𝑒𝑐𝑡), the authentication command (𝑎𝑢𝑡ℎ), the read file command (𝑟𝑒𝑎𝑑),
and the write file command(𝑤𝑟𝑖𝑡𝑒). Read and write commands do not change state
of the automaton, for these operation the memory automaton will be needed. The
diagram does not contain description of all transitions, which are same as in 5.3, and
does not show final states. All states are potentially final, since the communication
with the card can be ended or interrupted in arbitrary state.

The automaton describing the state of the PICC memory has states determined
by the content of files, values of cryptographic keys, and values of all other variables
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Figure 5.5: FSM describing smart card behavior for some basic commands

that are persistent in the PICC memory and that can be changed during the life of
the card. It can be defined similarly as the 𝑀𝑙𝑜𝑔𝑖𝑐. Let 𝐴 = 𝑎1, 𝑎2, ...𝑎𝑛 denote all
memory blocks (files, keys, etc.), 𝑛 is the number of memory blocks. Let 𝐷 be a set
of all possible data that can be stored in a block. Let 𝐶𝑤𝑟𝑖𝑡𝑒 = 𝐴×𝐷 be a set of all
write command parameters, which consist of memory address and data to be written
and let 𝐶𝑟𝑒𝑎𝑑 = 𝐴 be a set of read command parameters consisting of memory address
and let 𝑐𝑛𝑜𝑜𝑝 be a command for no operation. Let 𝑀𝑚𝑒𝑚𝑜𝑟𝑦 be a deterministic finite
automaton defined as a quintuple, (𝑄𝑚𝑒𝑚𝑜𝑟𝑦,Σ𝑚𝑒𝑚𝑜𝑟𝑦, 𝜎𝑚𝑒𝑚𝑜𝑟𝑦, 𝑞𝑚𝑒𝑚𝑜𝑟𝑦0, 𝐹𝑚𝑒𝑚𝑜𝑟𝑦),
consisting of:

∙ a finite set of states 𝑄𝑚𝑒𝑚𝑜𝑟𝑦 = 𝐷1 ×𝐷2 × ... ×𝐷𝑛, where n is the number of
memory blocks

∙ a finite set of input symbols Σ𝑚𝑒𝑚𝑜𝑟𝑦 = 𝐶𝑤𝑟𝑖𝑡𝑒
⋃︀
𝐶𝑟𝑒𝑎𝑑

⋃︀
{ 𝑐𝑛𝑜𝑜𝑝 }

∙ a transition function 𝜎𝑚𝑒𝑚𝑜𝑟𝑦 : 𝑄𝑚𝑒𝑚𝑜𝑟𝑦 × Σ𝑚𝑒𝑚𝑜𝑟𝑦 → 𝑄𝑚𝑒𝑚𝑜𝑟𝑦 (commands for
writing data 𝐶𝑤𝑟𝑖𝑡𝑒 change state appropriately, 𝐶𝑟𝑒𝑎𝑑 and 𝑐𝑛𝑜𝑜𝑝 do not change
state)

∙ a start state 𝑞𝑚𝑒𝑚𝑜𝑟𝑦0 ∈ 𝑄 (initial content of memory)

∙ a set of accept states 𝐹𝑚𝑒𝑚𝑜𝑟𝑦 = 𝑄𝑚𝑒𝑚𝑜𝑟𝑦 (PICC may end in all states)
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The automaton describing the PICC is the combination of the automaton describ-
ing the PICC logic and the automaton representing the state of memory.

Let 𝑀 be a Mealy machine defined by a 6-tuple (𝑄,𝑄0,Σ,Λ, 𝑇,𝐺) consisting of
the following:

∙ a finite set of states 𝑄 = 𝑄𝑙𝑜𝑔𝑖𝑐 ×𝑄𝑚𝑒𝑚𝑜𝑟𝑦

∙ a start state 𝑄0 = (𝑞𝑙𝑜𝑔𝑖𝑐0, 𝑞𝑚𝑒𝑚𝑜𝑟𝑦0), which is an element of 𝑄

∙ a finite set of input symbols Σ ⊆ Σ𝑙𝑜𝑔𝑖𝑐 × Σ𝑚𝑒𝑚𝑜𝑟𝑦; input alphabet will contain
only meaningful commands:
(𝑤𝑟𝑖𝑡𝑒, 𝑐𝑖), where 𝑤𝑟𝑖𝑡𝑒 ∈ Σ𝑙𝑜𝑔𝑖𝑐, 𝑐𝑖 ∈ 𝐶𝑤𝑟𝑖𝑡𝑒

(𝑟𝑒𝑎𝑑, 𝑐𝑖), where 𝑟𝑒𝑎𝑑 ∈ Σ𝑙𝑜𝑔𝑖𝑐, 𝑐𝑖 ∈ 𝐶𝑟𝑒𝑎𝑑

(𝑐𝑖, 𝑐𝑛𝑜𝑜𝑝), where 𝑐𝑖 ∈ Σ𝑙𝑜𝑔𝑖𝑐∖ {𝑤𝑟𝑖𝑡𝑒, 𝑟𝑒𝑎𝑑}, 𝑐𝑛𝑜𝑜𝑝 ∈ Σ𝑚𝑒𝑚𝑜𝑟𝑦

∙ a finite set called the output alphabet Λ = 𝐷
⋃︀
𝑅, where R is a set of PICC

status responses and D will be used for read command responses

∙ a transition function 𝑇 : 𝑄 × Σ → 𝑄 mapping pairs of a state and an input
symbol to the corresponding next state

∙ an output function 𝐺 : 𝑄×Σ → Λ mapping pairs of a state and an input symbol
to the corresponding output symbol

An intuitive interpretation of a Mealy machine is following. At any point in time,
the machine is in some state 𝑞 ∈ 𝑄. It is possible to give inputs to the machine
by supplying an input symbol 𝑖 ∈ Σ. The machine then responds by producing an
output symbol 𝐺(𝑞, 𝑖) and transforming itself to a new state 𝑇 (𝑞, 𝑖).

The read and write commands will be processed only after correct authentica-
tion, which is determined by the state of the logic automaton. The read command
will return the file content based on the state of the memory automaton, and write
command will change the state of the memory automaton. All other transitions will
return only status of the command execution.

5.2.1 States reduction

The model checking execution time strongly depends on the total number of states. In
order to keep the model checking time short, the number of states of the state machine
that simulates the smart card should be as low as possible, so some optimization
should be performed. To reduce the number of states in the state machine we can
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reduce the number of states used for logic (𝑀𝑙𝑜𝑔𝑖𝑐), or for memory (𝑀𝑚𝑒𝑚𝑜𝑟𝑦), or
both.

To reduce the number of states that describe logic of the smart card, we can
keep only states that has any side effect, for instance send data to the reader (read
command) or make persistent changes in the memory (write command), and join
them with the supporting states that represent the chain of commands. We can
create optimized commands that are combination of multiple real commands. Each
combined command has a side effect. We simulate commands for data transfer – 𝑟𝑒𝑎𝑑

and 𝑤𝑟𝑖𝑡𝑒. This approach reduces execution time of the model checker. Figure 5.6
shows the state machine from figure 5.3 with reduced number of states. There are
only two commands:

∙ read: this command is a combination of select application, authenticate, and
read command

∙ write: this command is a combination of select application, authenticate, and
write command

This reduction is possible and has no impact on attack finding results, because the
supporting commands for selecting application and authentication can be performed
multiple times and only the last performed command has impact on the following read
or write command. The internal state is determined by the last select and authenticate
commands, the previous commands are forgotten. The read and write commands will
contain parameters for selected application number, which will be consequently part
of the memory address, and other parameter for authentication and determining the
authentication key. The figure contains the authentication token 𝑎𝑢𝑡ℎ, which will be
described later together with the authentication mechanism.

To reduce the number of states in the 𝑀𝑚𝑒𝑚𝑜𝑟𝑦, we have to reduce the number
of memory blocks that can be written to, and/or reduce the number of possible data
that can be stored. If the card supports addressing of data blocks by application,
file ID, offset and length, the number of possible write locations can be tremendous.
Better approach is to have only memory locations that the application is supposed
to write to or read from and one undesired location for each file that will be used
to simulate writing or reading to bad location that will corrupt the result. Using
this approach the total number of states will be reduced dramatically, which will also
reduce the model checker execution time.
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Figure 5.6: Reduced number of states

5.2.2 PICC Entity

When the PICC behavior is known and modeled for example using UML state dia-
gram, the PICC role in ASLan++ can be created. The ASLan++ general schematic
was shown in figure 5.2, the PICC behavior is defined in the 𝑒𝑛𝑡𝑖𝑡𝑦𝑃𝐼𝐶𝐶, which
contains 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 declarations and 𝑏𝑜𝑑𝑦. The 𝑏𝑜𝑑𝑦 of the PICC role can be created
based on the UML state diagram. The basic PICC functionality that is created in
the 𝑏𝑜𝑑𝑦 is an infinite loop that reads commands from PCD, processes them, and
sends responses back to the PCD, as shown in figure 5.7. The states of the PICC (as
defined in the UML state diagram) are determined by values of state variables, that
are defined in the 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 declarations part.

States can be defined in several ways. There can be one PICC state variable or
there can be multiple state variables. In the latter case the PICC state is determined
by values of all state variables together. The state variables may represent for instance
the selected application and authenticated key.

PICC response is based on the current state and the received command. Both
state and command variables are declared in the 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 part of the PICC entity.
ASLan++ allows new type definition, so the state variable may be of type 𝑠𝑡𝑎𝑡𝑒 and
the command variable may be of type 𝑐𝑜𝑚𝑚𝑎𝑛𝑑. These types can be declared in the
𝑠𝑦𝑚𝑏𝑜𝑙𝑠 part of the 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡. These types should be declared as subtypes of
the basic type 𝑡𝑒𝑥𝑡. Variables could also be declared as 𝑡𝑒𝑥𝑡 without creating new
types.

For creating a model of Mifare DESFire with reduced set of commands as shown
in 5.6 no states are necessary, because the model has only one state. The PICC
responses are then based only on the received commands.
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entity PICC (A, Actor: agent) {

symbols
State: state;
Command: command;
...

body {
...

while(true) {

% read command
A -> Actor: ?Command;

select {
on(State = state1): {

select {
on(Command = command1): {

...
}
on(Command = command2): {

...
}
...

}
}
on(State = state2): {

select {
on(Command = command1): {

...
}
on(Command = command2): {

...
}
...

}
}
...

}
% send response
Actor -> A: ok;

}
}

}

Figure 5.7: PICC role in ASLan++
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This section is dealing only with the logic automaton and shows only the basic
structure of the PICC role. The PICC behavior is more complex when the memory
automaton is taken into account. The memory automaton is not created in the same
way by modeling its states, it is created in a more natural and straightforward way
by introducing variables that represent the memory of the PICC and the state of the
memory automaton is determined by the values of these variables. In other words, the
state of the memory automaton is determined by the content of the PICC memory.
The PICC will also have other variables for example for authentication purposes as
described later, and we will consider it as part of the memory automaton.

The 𝑏𝑜𝑑𝑦 part of the PICC entity can access the memory for read and write, so
the resulting model will be the combination of the logic and memory automatons.

5.2.3 Basic Concepts

There are some basic concepts that can be put together to form a smart card model.
These concepts are general and can be used to create a model of arbitrary smart card
with pre-defined set of commands. We describe modeling of the following concepts:

∙ Applications

∙ Authentication

∙ Encryption

∙ Files and Permissions

∙ Personalization

∙ Integrity

The following sections describe the method of creating a PICC role in the ASLan++
for these concepts, how to implement basic commands (commands of the PICC au-
tomaton) and also how to implement the simplified commands (commands of the
PICC automaton with reduced number of states).

Applications

Multi-application contactless smart cards support multiple applications even from
different vendors on a single card. The application on cryptographic memory card
is not an executable program, it is rather a set of resources dedicated to application
outside the card. The application on the card can consist of files used to store data
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and symmetric keys used for authentication and data encryption. The application
outside the card can securely store data in the card and read them back later. This
can be used for instance for payment applications or loyalty program applications,
where some credit is stored on the card.

To simulate the application selection in the PICC role, we can use a state variable
which is set by the PCD using a select command. The value of selected application is
then used for file access. If we use the automaton with reduced number of states, the
application selection is part of another command, such as the read or write command.

Authentication

The authentication process between smart card and terminal is usually mutual, both
parties must prove possession of a common secret. In case of Mifare DESFire con-
tactless smart card, the three-pass authentication is executed and the common secret
is the DES/3DES key. When creating a model of a smart card, the authentication
does not have to have precisely three message exchanges, it can be simplified in order
to keep the number of states low. The simple way of simulating the mutual authenti-
cation process and modeling in ASLan++ is a fresh session key generation performed
by one of the parties and sending it encrypted using the authentication key to the
other party. The other party must check that the session key is fresh and was never
used before during the protocol run. This approach uses a trick based on the fact that
we can be certain of things that we cannot in the real environment. We can have a
secret key shared only by legitimate entities and we can be sure that the intruder does
not know the key. So if something is encrypted using this secret key, such as the fresh
random session key, the receiving party can be sure that the message was encrypted
by the legitimate counterpart, and also the sending party can be sure that only the
legitimate counterpart can decrypt the message. The sending party generates the
fresh session key to simulate new session key generation performed during the three-
pass authentication, the receiving party must check that the key is really fresh and
was never used before during the protocol run. The fresh session key generation and
checking by the other party will prevent replay attack on the authentication. Figure
5.8 shows example of a three-pass authentication. {𝐴.𝐵}𝐾 means concatenation of
𝐴 and 𝐵 encrypted using encryption key 𝐾.

Thanks to the fact that in the model we can be certain of things that we cannot in
the real environment and that the PICC can remember all previously used session keys
and check that the new session key is really fresh, we can simulate the authentication
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PCD

PCD

PICC

PICC

Authenticate using key K

{nonceB}K

{nonceA.nonceB}K

{nonceA}K

Figure 5.8: Three-pass authentication example

PCD

PCD

PICC

PICC

PICC and PCD share secret key K

Generate fresh session key S

{S}K

Check if S is fresh

Authenticated with key K

Figure 5.9: Simplified authentication used in model

using only one message exchange, as shown in figure 5.9.
After the one-pass authentication, PCD and PICC share the common session key,

which could not be eavesdropped by the attacker, because it was encrypted with key
not known by the attacker. The PICC knows which authentication key was used and
can grant access to files accordingly. The authentication needs to be implemented in
both PCD and PICC roles. The PCD always starts the communication and sends
commands, so it will also generate a random session key.

In case of the automaton with reduced number of commands, the authentica-
tion can be part of another message. Figure 5.10 shows possible ASLan++ source
of one-pass authentication, where the authentication token is part of the 𝑟𝑒𝑎𝑑𝐹 𝑖𝑙𝑒

command. The PCD generates fresh 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦 and sends it in the 𝑎𝑢𝑡ℎ token with
authentication key 𝑘𝑒𝑦1, which is not known by the intruder. PICC checks that the
session key was never used before (authentication resulting in fresh session key) or
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entity PCD (Actor, B: agent) {
...
body {

% fresh session key generation
SessionKey := fresh();
% read name
Actor -> B: readFile(addressName, auth(key1, SessionKey));
B -> Actor: enc(SessionKey, ?Data);}

}
}
entity PICC (A, Actor: agent) {
...
body {

while(true) {

% read command
A -> Actor: ?Command;

select {
on(Command = readFile(?DataAddress, auth(?AuthenticatedKey,

?SessionKeyTemp))): {
% authentication
select {

on(!UsedSessionKeys->contains(SessionKeyTemp) |
SessionKey = SessionKeyTemp): {

% store current session key
UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

% authenticated
...

}
}

}
}

}
}

}

Figure 5.10: One-pass authentication in ASLan++
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that it is the current session key, in which case the protocol continues with the old
session key (no new authentication). The current session key is stored in variable
𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦 and the set of all used session keys is 𝑈𝑠𝑒𝑑𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦𝑠. In case of
successful authentication, the current session key is stored in 𝑈𝑠𝑒𝑑𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦𝑠 set
for later use.

Encryption

The high level language ASLan++ already supports modeling of communication
encryption, but it does not consider various modes of encryption algorithms. In
ASLan++ any data can be encrypted using symmetric or asymmetric cipher. These
ciphers are considered unbreakable for purposes of protocol modeling, therefore the
intruder cannot learn the plaintext of the encrypted data unless he knows the corre-
sponding key. The complexity of breaking the encryption algorithm is out of scope
of this thesis. But there are different modes of encryption that must be taken into
account when creating a model even if the cipher algorithm itself is considered un-
breakable. Symmetric ciphers are used in the following modes:

∙ ECB – Electronic Codebook

∙ CBC – Cipher Block Chaining

∙ CFB – Cipher Feedback

∙ OFB – Output Feedback

∙ CTR – Counter

The ECB mode encrypts each block of data in the same way independently on the
other blocks. The initialization vector is same for each block. The other modes are
more secure, because each block encryption depends on the previous blocks, which
makes the cryptanalysis more difficult. The initialization vector of the cipher is
changed after each block encryption, so each block is encrypted using different ini-
tialization vector. Mifare DESFire MF3ICD40 specification states that DESFire uses
CBC mode. Although each block of data is encrypted in CBC mode, same initializa-
tion vector is used for each block, which means that for short data blocks the data is
encrypted using ECB and we will consider it as ECB mode for purposes of this thesis.
This mode is prone to replay attacks, because each data block is encrypted using the
same initialization vector and the same key. In ASLan++ each block is encrypted
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% ECB mode
encryptedECB := enc(SessionKey, Data);

% CBC mode
encryptedCBC := enc(SessionKey, nextIV(lastIV), Data);

Figure 5.11: ECB and CBC encryption modes in ASLan++

using same key and there are no initialization vectors, so we can consider it the ECB
mode.

From the protocol modeling perspective, the CBC, CFB, OFB, and CTR modes
do not differ. They use the initialization vector which is different for each block. The
strength of these modes is out of scope of this thesis. We can model these modes by
adding fresh number (not used before and not known by the intruder) to the data
being encrypted, simulating the changing initialization vector. This approach will
provide resistance to replay attacks.

Encryption in ECB mode can be written in ASLan++ as 𝑒𝑛𝑐(𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦,𝐷𝑎𝑡𝑎),
a non-invertible function representing 𝐷𝑎𝑡𝑎 encrypted using key 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦. Non-
invertible means that although it may be overheard by the intruder, the intruder is
not able to invert the function to get the 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦 or 𝐷𝑎𝑡𝑎.

In case of CBC, we can use initialization vectors that are chained using custom
function 𝑛𝑒𝑥𝑡𝐼𝑉 () so that fresh initialization vector is used each time. The first
initialization vector is custom vector 𝑧𝑒𝑟𝑜𝐼𝑉 , the next one is 𝑛𝑒𝑥𝑡𝐼𝑉 (𝑧𝑒𝑟𝑜𝐼𝑉 ), the
next one is 𝑛𝑒𝑥𝑡𝐼𝑉 (𝑛𝑒𝑥𝑡𝐼𝑉 (𝑧𝑒𝑟𝑜𝐼𝑉 )), etc. The encryption in the CBC mode can
then look like this: 𝑒𝑛𝑐(𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦, 𝑛𝑒𝑥𝑡𝐼𝑉 (𝑙𝑎𝑠𝑡𝐼𝑉 ), 𝐷𝑎𝑡𝑎), where 𝑙𝑎𝑠𝑡𝐼𝑉 is the
last initialization vector. Other encryption modes can be modeled along the same
lines.

Figure 5.11 shows encryption in ECB and CBC modes.

Files and Permissions

Smart cards provide file system with permissions that can control access to each file
based on the key that was used for authentication. We can model files and permissions
in ASLan++ either as variables or as facts. If the structure of files is static and will
not change during the life of the smart card, it is possible to model files using variables
in PICC role. Each file would be a variable and file permissions would be variables as
well. Better approach is to use ASLan++ facts. Facts are global and more flexible,
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so when using facts it is possible to check content of PICC files even from the PCD
role, and it is possible to add new facts and retract existing facts, which can be used
to simulate flexible file system where files can be created and deleted. Figure 5.12
shows how the file system can be declared in ASLan++ as fact fileSystem with four
parameters for data address, authentication keys to get read and write permission,
and data itself.

fileSystem(text, symmetric_key, symmetric_key, message): fact;

Figure 5.12: PICC file system in ASLan++

The first parameter of the fact represents the address of the file and is of type
text, which is the most simple type in ASLan++. The second parameter represents
authentication key that must be used to obtain read permission to this file and is of
type symmetric_key, which is an ASLan++ type for symmetric keys. Analogously,
the third parameter is the authentication key for write permission. The fourth pa-
rameter represents data stored in the file and is of type message, which is a compound
type that can store any combination of data of any other type.

Although address has a simple type, it represents a number of values that consti-
tute the address on a real card, such as selected application number, file ID, offset,
and length of data. We decided to have a separate fact for each data block that can
be addressed instead of one fact per file, which results in more than one fact per
file. Blocks of different lengths and offsets may overlap, so not all blocks will contain
meaningful data. Such blocks will contain the message corrupted to easily recognize
unwanted data.

Long files will contain many fact definitions, but for modeling purposes we can
reduce the number of possible file addresses by defining only the desired addresses
and one invalid address instead of all possible invalid addresses. Reading from this
invalid address will return 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 and writing to this location will save 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑.

Personalization

Behavior of each smart card type can be modeled using basic principles of applica-
tions, authentication, encryption, files, and permissions. All cards of one type has the
same behavior. For using in a protocol, such as payment protocol or loyalty program,
the smart card must be personalized. Personalization is a process when the smart
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card is initially populated with data of an intended smart card user, such as the name
or the account number. Consequently, each smart card will contain different data in
files. This process should be taken into consideration when modeling the smart card
protocol. The personalization process does not have to be modeled, since it usually
takes place in a trusted environment. The smart card can be used in the modeled
protocol only after the personalization, so we can create the model of a card which is
already personalized. To create the model of a personalized smart card, all files must
be created and populated as they would be during the personalization process.

Integrity

Integrity of data exchanged between the PCD and the PICC is important, but it
is not always possible for the PCD or the PICC to check the integrity. The attack
definitions described later will cover these attacks so that any attack on integrity will
be reported by the model checker.

There are situations in which the PCD or the PICC can check the integrity of data
to avoid an attack, such as if some mechanism providing integrity assurance is used
or if the integrity of data is protected by itself. The integrity protecting mechanisms
can be for example message authentication code (MAC) or encryption in CBC mode.
The data with its own protection mechanism are for example certificates, which are
digitally signed. For data with this property we can implement integrity check in
the ASLan++ source so that the PCD or PICC can find out that the data has been
altered and perform a response to such attack. Otherwise the PCD or the PICC
cannot distinguish between genuine data and forged data, so the integrity assurance
depends on the inability of attacker to send forged data. The model checker may find
an attack on integrity, in such case some integrity mechanism should be implemented.

5.3 Application Logic Model

There are two interacting roles in the ASLan++ model, the PICC, representing the
card, and the PCD, representing the terminal. The PICC is only executing commands
sent to it from the PCD, so we model the application logic of the protocol in the PCD
role. The PCD role contains the application logic of the terminal and of the back-end
systems. It issues commands to the PICC and decides what to do next when the
response from PICC is received. The PCD represents the protocol run.

During the development, the developer can use the sequence diagram of the proto-
col or the flow diagram of the application as the basis for the PCD model. The PCD
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PCD
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Authenticate using key1

(3-pass authentication)

Select application 1

Status

Read name (FileID: 1, Offset: 0, Length: 16)

Encrypted name

Read old balance (FileID: 2, Offset: 0, Length: 4)

Encrypted old balance

Subtract price from old balance

Write (encrypted) new balance (FileID: 2, Offset: 0, Length: 4)

Save new balance

Status

Figure 5.13: Sample payment protocol

role should contain the logic (or simplified logic) of the application. The intruder can
also play the PCD role, but he does not have to follow the logic in the role definition,
he can perform arbitrary actions. The role definition is good only for the legitimate
entity behavior.

Figure 5.13 shows the diagram of a sample payment protocol that will be used to
demonstrate the protocol logic modeling. The diagram shows only the communication
between two legitimate parties where no error occurs. A flow diagram can be used to
better describe the logic of the PCD. The PCD role in ASLan++ should reflect the
PCD logic shown in the diagram.

The previously described states reduction of the PICC role will reduce the number
of commands by making them more complex. So for example the three-pass authenti-
cation followed by the 𝑠𝑒𝑙𝑒𝑐𝑡 command for selecting application and then by the 𝑟𝑒𝑎𝑑

command will result in only one command combining them together. This fact must
be taken into account when translating the model checker results into the applicable
attack paths.
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Figure 5.14 shows how the PICC role implementation of the protocol may look
like when the number of Mifare DESFire commands is reduced only to 𝑟𝑒𝑎𝑑 and
𝑤𝑟𝑖𝑡𝑒 in order to reduce model checking execution time. First two parameters of
both commands are same. The first parameter is in both cases the address of data to
be read or written. Mifare DESFire uses application number, file ID, offset of data
in file, and length to address particular data block, so the address will represent the
combination of these values. For modeling purposes, each of these combinations will
be named according to the variable it will store. So for example the cardholder’s
name will be stored in application number 1, in file with file ID 1, with offset 0 and
length 20; this particular data block address will be named 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑁𝑎𝑚𝑒 to indicate
that this address is used to store the name. Other addresses will be named in the
same manner. Addresses not intended to store data will also have some name.

The second parameter 𝑎𝑢𝑡ℎ(𝑘𝑒𝑦1, 𝑆) is an authentication token. It is a session
key 𝑆 encrypted using private key 𝑘𝑒𝑦1 (𝑘𝑒𝑦1 is shared between legitimate entities
and not known by the intruder). The PICC checks whether 𝑆 is the current session
key (no new authentication) or 𝑆 is a fresh session key (authentication using 𝑘𝑒𝑦1).
Every old session key (invoked by replay attack) is rejected by the PICC.

The third parameter in the 𝑤𝑟𝑖𝑡𝑒 command is the data to be written encrypted
using the session key from the second parameter. The response of the 𝑟𝑒𝑎𝑑 command
is the data encrypted using the session key from the second parameter, the response
of the 𝑤𝑟𝑖𝑡𝑒 command is only a status message. Symmetric encryption of 𝑜𝑙𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒

using key 𝑆 is denoted {𝑜𝑙𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒}𝑆 .

5.4 Attack Definition

In the previous sections the model creation was described. The model is written in
ASLan++ language, which can be automatically translated to the ASLan language,
which is an input format for the back-end model checkers. The attack definition must
be provided for the model checker to find any attack traces. The attack is defined as
a condition that should never happen in normal protocol run and that means that the
intruder learned something that he should not have learned (confidentiality), or that
he changed something that he should not have changed (authentication, integrity).
These conditions are defined in the ASLan++ model and then translated to states
that mean an attack. If the model checker finds a path to one of the attack states,
a possible attack is reported. The attack trace should be evaluated and in case of
false positive, refinements should be made to the model. The model checker should
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Figure 5.14: Payment protocol with reduced set of commands

be run again and this process should be repeated until real attack is found or the
model checker concludes that there is no attack.

Although there are means for defining security goals of confidentiality and authen-
tication in ASLan++, these do not fit well for the purposes of our attack definitions.
We will use assertions that will always hold unless an attack is under way. We can
easily set goals that the protocol should achieve, covering all desired security goals,
by defining assertions in the PCD role that can contain information from PICC which
would not be available in real environment, such as content of files (because files are
modeled as global facts). Example in figure 5.15 shows an assertion that can be used
at some point in the PCD or PICC role to check content of some file on the card.

assert ok: fileSystem(addressBalance,key1,key1,newBalance)

Figure 5.15: Attack definition in ASLan++

We can interpret this assertion as follows: if the file at address addressBalance
contains the value newBalance, it is ok, otherwise the model checker will stop and an
attack will be reported.
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Chapter 6

Experimental Results

To demonstrate how the model creation process works and how the security attributes
of a protocol can be verified, three examples are provided in this chapter.

The first example introduces a simple payment system that uses a Mifare DESFire
like contactless smart card to store some value. The model of communication protocol
between the terminal and the card will be created and used as an input for the model
checker. The first example uses Mifare DESFire MF3ICD40, the second example uses
theoretically improved version of the same card, and the third example uses Mifare
DESFire EV1.

Let us suppose that we need to develop a new payment protocol which uses
contactless smart cards. The card will be issued to the cardholder personalized with
his name and the initial balance. The cardholder will be able to pay for goods with
this card. After he pays using the card, the price will be subtracted from the current
balance. The balance can be increased by the authorized entity. From these basic
requirements we can decide how the payment system should be implemented and
create a sequence or flow diagram of the application. The developer should first create
the sequence or flow diagram of the protocol and create and optimize the automaton
representing the smart card, then he can create the PCD and PICC models, define
conditions that represent attacks and verify using model checking. Finally, he can
implement the protocol in the target programming language.

Let us create an intuitive protocol that will fulfil the stated requirements. The
cardholder’s name and balance will be stored on the contactless smart card in files.
We decided to use Mifare DESFire as one of the most widespread contactless smart
cards. When the cardholder puts the contactless smart card to the proximity of the
contactless smart card reader at the point of sale (POS) terminal, the anti-collision
procedure is performed and the payment protocol can be executed. The mutual
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authentication should be performed at the beginning of the transaction and the data
that are then transmitted should be encrypted in both directions. The terminal first
reads the cardholder’s name and then the balance. If the balance is higher than the
price for the goods, the price is subtracted from the balance by the POS terminal
and the resulting balance is written to the smart card.

The model of the protocol consists of the PICC role, the PCD role, and the
attack definitions, as described earlier. We have combined the concepts of multi-
application card, authentication using pre-shared key, encryption in ECB mode, and
file system with permissions to create a model of Mifare DESFire contactless smart
card, supporting all basic commands required by the protocol. In case of Mifare
DESFire MF3ICD40 we have to distinguish between data encrypted using encryption
mode of DES and decryption mode of DES, because this type of smart card uses only
encryption, while the terminal must use only decryption. Plain data 𝑜𝑙𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒

encrypted using session key S is denoted 𝑒𝑛𝑐(𝑆, 𝑜𝑙𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒), while the same plain
data 𝑜𝑙𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 decrypted using session key S is denoted 𝑑𝑒𝑐(𝑆, 𝑜𝑙𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒). The
PCD role was modeled to reflect the sequence diagram of the protocol, which was
shown in figure 5.14.

The attack definition consists of integrity and confidentiality checks implemented
using assert. There is one assert at the end of the PCD role stating that the balance
on the card is equal to the 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒 value. In other words, when the protocol
is executed successfully and the PCD checks the written balance and comes to a
point where it believes that the balance on the card is set to 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒, the actual
value on the card is really 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒. This assert can be realized thanks to mod-
eling of files as facts, which are visible globally. Other asserts can be used to check
intermediate states of the protocol.

The ASLan++ model was translated to the ASLan format and used as an input
for the Cl-Atse model checker. Several model checker runs and protocol adjustments
revealed some possible attacks, which are discussed in the following sections. The out-
put of the Cl-Atse model checker is the ATK file containing the sequence of messages
leading to a successful attack. These attack traces are also provided together with the
corresponding sequence diagrams, which are more illustrative. The attack descrip-
tions are accompanied with informal description for better understanding of how it
works. When an attack was found, it was tested on a real card using man-in-the-
middle (MITM) hardware described in chapter 4. When the attack was successful,
a countermeasure was added to the protocol in order to fix the vulnerability, and
another round of model checking was performed. When the attack was not successful
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in the real environment, the model was refined and another round of model checking
was performed as well. The steps that were performed are described at each sample
verification in the following sections.

Source code of the sample verification models in ASLan++ language are provided
for reference in the Appendix of this thesis.

6.1 Sample Verification 1 – Mifare DESFire MF3ICD40

The first example uses Mifare DESFire MF3ICD40 contactless smart card with no
modifications. Using a straightforward approach to designing a protocol without
thinking much about security, the resulting protocol contains some vulnerabilities,
which were found using the model checker. The model checker reports an attack
that it has found. When the attack was found, we have proposed and implemented
a countermeasure and repeated the model checking. All subsequent attacks and
countermeasures for the first example are mentioned in the following text. The Cl-
Atse model checker with parameters –short –opt –nb 5 was used in this example.

6.1.1 Attack 1

The first attack that was found was caused by the fact that the address of data blocks
on the card is not cryptographically protected. The first model checker run revealed
the attack trace shown in figure 6.1. Entities picc and pcd are legitimate, entities
<picc> and <pcd> belong to the intruder.

pcd -><picc> : readFile(addressName,auth(key1,n119(SessionKey)))
<pcd> -> picc : readFile(addressBalance,auth(key1,n119(SessionKey)))
picc -><pcd> : enc(n119(SessionKey),oldBalance)

<picc>-> pcd : enc(n119(SessionKey),oldBalance)

Figure 6.1: Attack 1 – model checker output

The first line of the attack trace means that the legitimate PCD sends to intruder’s
PICC the command 𝑟𝑒𝑎𝑑𝐹 𝑖𝑙𝑒 with address parameter 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑁𝑎𝑚𝑒 and authenti-
cation token 𝑎𝑢𝑡ℎ(𝑘𝑒𝑦1, 𝑛119(𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦)). It means that in real environment the
PCD would first authenticate using 𝑘𝑒𝑦1 and select application which contains the
𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑁𝑎𝑚𝑒, and then send 𝑟𝑒𝑎𝑑𝐹 𝑖𝑙𝑒 command with file ID, length, and offset cor-
responding to 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑁𝑎𝑚𝑒. The 𝑛119(𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐾𝑒𝑦) in the attack trace represents
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session key that was freshly generated. The second line means that the intruder’s
PCD forwards the 𝑟𝑒𝑎𝑑𝐹 𝑖𝑙𝑒 command to the legitimate PICC with the same authen-
tication token, but with changed address. The address 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑎𝑙𝑎𝑛𝑐𝑒 is different
from the address in the first command. When using real commands, the difference
would be in application number, file ID, length, or offset. Since only two files are
defined in this protocol, the attacker would probably be able to change only the file
ID to perform the attack successfully. The result of this change is that PICC returns
different data than demanded (on the third line), which are then forwarded to the
PCD (on the fourth line). The PCD expects name, which is for instance in file with
ID 1, but gets balance, which is in file with ID 2. The PCD does not implement
any validity check, so it would carry on without any suspicion. At this point, the
model contains assert condition to check that PCD gets correct data. In this case
this assertion was not satisfied, therefore the model checker stopped and reported the
attack. We can also decide that the name is not important and put the assert only
after reading balance, which is more important for the protocol. The result would
be same, the attacker would change the address. In the real environment the length
of the name and balance would be different, so these attacks might not always work
as suggested by the model checker. However, the attacker can change more than
one parameter in the real command, so he can for instance change the file ID and
also the length of data. If the attacker wants to forge balance, which is for example
4 Bytes long, he can set the file ID and offset to some part of name (which is for
example 16 Bytes long), and set the length to 4 Bytes, so the length of data read will
be 4 Bytes. If these 4 Bytes represent some balance value, the PCD has no means
to find out that this data block is not genuine balance and that it is forged by the
intruder.

This attack trace is the exact output of the model checker that was saved in the
ATK file. To better understand the result, it is good to create a sequence diagram,
which is more illustrative. Figure 6.2 shows the output of the model checker translated
into the sequence diagram. Intruder’s actions causing an attack are shown in bold in
all following figures.

The output of the model checker is quite concise due to the reduction of the PICC
model and can be translated to the real environment commands and responses. The
attack trace which uses data address as one value is then translated to more than one
attacks that use separate values for application number, file ID, length, and offset.
Figure 6.3 shows an attack based on forged file ID. There are also notes showing
where an intruder can change application number, offset, and length.
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Intruder changes address
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Figure 6.2: Attack 1 based on changing address
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Read balance (FileID: 2, Offset: 0, Length: 16)

Encrypted balance

PCD expects encrypted name

Figure 6.3: Attack 1 – real commands
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These attacks are caused by the fact that the address of data blocks on the card
are not cryptographically protected. The attacker changes the data address, which
consists of the application number, file ID, length, and offset. This results in the
PICC returning wrong data block or writing into wrong address. These attacks were
described by the author of this thesis in [117].

6.1.2 Testing Attack 1 on a Real Device

To find out whether the found attack trace represents real vulnerability or it is only
a false positive, we had to try it in a real environment. We used the MITM hardware
to execute the protocol several times and alter parameters of the commands to force
PICC to use different application number, file ID, offset, and length. Figure 6.4 shows
the native Mifare DESFire MF3ICD40 Application Protocol Data Units (APDU)
exchanged between legitimate PCD and PICC. Remarks in the figure describe what
command or response is being sent and with what parameters. It also includes the
length of each parameter of the command or response. Each APDU is preceded with
the direction, either from PCD to PICC or vice versa. Where the intruder acting
as a MITM makes any changes to the commands or responses, the direction ends or
starts in the entity Intruder and Intruder’s action is described in a remark.

As we can see, the attack was successful and the protocol should be improved
to fix this vulnerability. The protocol model does not consider the length of data
being sent, so we can argue that in some situations the proposed attack would not be
possible, because the PCD expects data of some particular length and the intruder is
only able to send data of a different length. It could also be the case in this example.
On the real card both files have same length – 32 Bytes – and the values are stored
at the beginning of the file. The balance in this example has 4 Bytes. To keep the
examples short, we only read 8 Bytes of the name. Thanks to the fact that the
balance file is not 4 Bytes long but 32 Bytes long, we can read the same number of
Bytes from balance as we would read from name. There is therefore no limitation
on length. Let us suppose that the length of balance file is only 4 Bytes. Is such a
case this attack would not be possible. However, it would still be possible to make
the attack the other way round – to change the address so that the PCD would read
4 Bytes from name instead of demanded 4 Bytes from balance. We can extend the
model by introducing lengths of data in 𝑒𝑛𝑐 and 𝑑𝑒𝑐. The length will be the part of
the encrypted data, so the attacker will not be able to alter it and it will be possible
for both PCD and PICC to check the length so that they will accept only data with
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# Select application 1 (Command: 1B, Application number: 3B)
PCD -> PICC: 5a 01 00 00
# OK (Status: 1B)
PICC -> PCD: 00

# Authenticate with key 1 (Command: 1B, Key number: 1B)
PCD -> PICC: 0a 01
# Three-phase authentication
PICC -> PCD: af 5a bd 19 c7 50 5c fb e1
PCD -> PICC: af 49 1e 89 0d e9 ac e9 32 db b9 a6 42 d6 cc d8 4d
PICC -> PCD: 00 b7 d1 da 7c e0 dd 98 6b
# Session key (DES): 00 01 02 03 fe b6 d9 ec

# Read name (Command: 1B, File ID: 1B, Offset: 3B, Length: 3B)
PCD -> Intruder: bd 01 00 00 00 08 00 00
# Intruder changes the address
Intruder -> PICC: bd 02 00 00 00 08 00 00
# Encrypted data (Status: 1B, Data: 16B)
PICC -> PCD: 00 f3 d2 1b d4 09 2b 53 6a 5f 37 51 69 da 09 18 b8
# Decrypted data (Data 8B, CRC: 2B, Padding: 6B)
# 00 00 10 00 00 00 00 00 8a 17 00 00 00 00 00 00

Figure 6.4: Attack 1 – APDUs

the expected length.
Figure 6.5 shows the output of the model checker when the data lengths are used.

As we can see, the attacker could not change the address of the name because the only
way to get long enough block of data is to read from the file containing the name. The
file containing the balance is too short (4 Bytes). The attack is based on changing
the address of balance in the 𝑟𝑒𝑎𝑑𝐹 𝑖𝑙𝑒 command to 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑁𝑎𝑚𝑒𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑, which
is an imaginary address of some part of file containing name, starting at arbitrary
offset in this file and having the length of balance. The lengths of data blocks are
defined in the fact definition part of the ASLan++ source file. If the balance is coded
for example as unsigned integer, the real world usability of this attack is obvious –
the attacker will replace the cardholder’s balance with name, which will probably
represent much bigger number than the real balance.

As we can see, introducing data block lengths to help PCD to distinguish between
legitimate and forged data is not very useful and we cannot consider it as a practical
countermeasure. The next subsection describes a countermeasure that can be used
to avoid these attacks.
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pcd -><picc> : readFile(addressName,auth(key1,n114(SessionKey)))
<pcd> -> picc : readFile(addressName,auth(key1,n114(SessionKey)))
picc -><pcd> : enc(n114(SessionKey),name,lengthName)

<picc>-> pcd : enc(n114(SessionKey),name,lengthName)
<pcd> -> picc : readFile(addressNameCorrupted,

auth(key1,n114(SessionKey)))
pcd -><picc> : readFile(addressBalance,auth(key1,n114(SessionKey)))
picc -><pcd> : enc(n114(SessionKey),corrupted,lengthBalance)

<picc>-> pcd : enc(n114(SessionKey),corrupted,lengthBalance)

Figure 6.5: Attack 1 – with data length

6.1.3 Countermeasure to Attack 1

A countermeasure to the previous attacks can be some integrity checking on the
application layer of the payment system. For purposes of integrity checking, CRC
or cryptographic signature can be used. CRC would be enough, because all data
transmitted between PCD and PICC are encrypted, so the intruder cannot change
data nor CRC, which is part of the encrypted data, without corrupting whole data
block. If there is for example only one file containing the CRC protected data, the
PCD can easily distinguish this valid data block from another data block from another
application, file, offset, or with different length. So let us add such integrity checking
to the protocol model in the PCD role, which will help PCD to distinguish valid
balance from another corrupted data. In the PCD role we will add a validity check
after each line in the code where some data are received from PICC. For example a
validity check for 𝑛𝑎𝑚𝑒 will look like this:

select {

on(Data = name): {

The parentheses must be closed at the end of the PCD role. Thanks to this
validity checking in the model the PCD role will continue in the protocol only when
it receives data that are not corrupted, which is exactly what would be achieved using
some integrity checking method in the real environment. Such validity checking can
also be simpler and use the term 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 to ensure that the data received is correct,
but it would not distinguish between data types:
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select {

on(Data != corrupted): {

This validity check will not distinguish between valid name and valid balance, it
will only ensure that the data block is built correctly, for example with valid CRC or
cryptographic signature.

6.1.4 Attack 2

After implementing the proposed countermeasure, the model checker revealed the
attack shown in figure 6.6.

pcd -><picc> : readFile(addressName,auth(key1,n122(SessionKey)))
<pcd> -> picc : readFile(addressName,auth(key1,n122(SessionKey)))
picc -><pcd> : enc(n122(SessionKey),name)

<picc>-> pcd : enc(n122(SessionKey),name)
<pcd> -> picc : readFile(addressBalance,auth(key1,n122(SessionKey)))
pcd -><picc> : readFile(addressBalance,auth(key1,n122(SessionKey)))
picc -><pcd> : enc(n122(SessionKey),oldBalance)

<picc>-> pcd : enc(n122(SessionKey),oldBalance)
pcd -><picc> : writeFile(addressBalance,auth(key1,n122(SessionKey)),

dec(n122(SessionKey),newBalance))
<picc>-> pcd : ok

Figure 6.6: Attack 2 – model checker output

This attack is based on discarding the 𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒 command by the intruder. The
beginning of the communication is the standard protocol execution where the in-
truder only forwards messages between legitimate PCD and legitimate PICC. At
line number 9, the legitimate PCD sends the 𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒 command in order to store
the 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒 in the smart card; however, the intruder never forwards this mes-
sage to PICC. This results in situation where PCD assumes that 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒 has
been written, but PICC have not received the command, so the balance on PICC
remains unchanged. At this point, PCD thinks that the current balance on card is
𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒, which is not true.

The model contains assert condition to check that PCD gets correct data. In this
case this assertion was not satisfied, so the model checker reported an attack.
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Figure 6.7 shows a sequence diagram of an attack on the improved protocol that
was found and that is based on discarding 𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒 command by the intruder.

PCD

PCD

Intruder

Intruder

PICC

PICC

Generate fresh session key S

readFile(addressName, auth(key1, S))

enc(S, name)

readFile(addressBalance, auth(key1, S))

enc(S, oldBalance)

newBalance = oldBalance - price

writeFile(addressBalance, auth(key1,S), dec(S, newBalance))

Intruder discards command

ok

addressBalance contains oldBalance

Figure 6.7: Attack 2 based on discarding write command

6.1.5 Testing Attack 2 on a Real Device

To find out whether the found attack trace represents a real vulnerability or it is only
a false positive, we had to try it in real environment. We used the MITM hardware
to execute the protocol and to discard the 𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒 command and at the end of the
protocol. Figure 6.8 shows the APDU commands exchanged between legitimate PCD
and PICC. As in the previous example, remarks in the figure describe what command
or response is being sent, its parameters and lengths of these parameters. Each APDU
is preceded with the direction, either from PCD to PICC, or vice versa. Where the
intruder acting as a MITM makes any changes to the commands or responses, the
direction ends or starts in the entity Intruder and Intruder’s action is described in a
remark.

As we can see, the attack was successful and the protocol should be improved to
fix this vulnerability. The next subsection describes a countermeasure that can be
used to avoid this attack.
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# Select application 1 (Command: 1B, Application number: 3B)
PCD -> PICC: 5a 01 00 00
# OK (Status: 1B)
PICC -> PCD: 00

# Authenticate with key 1 (Command: 1 Byte, Key number: 1 Byte)
PCD -> PICC: 0a 01
# Three-phase authentication
PICC -> PCD: af a7 1a 16 94 54 67 21 3c
PCD -> PICC: af 49 1e 89 0d e9 ac e9 32 fe 7b 0d b3 15 0d 29 6b
PICC -> PCD: 00 b7 d1 da 7c e0 dd 98 6b
# Session key (DES): 00 01 02 03 39 db cd 10

# Read name (Command: 1B, File ID: 1B, Offset: 3B, Length: 3B)
PCD -> PICC: bd 01 00 00 00 08 00 00
# Encrypted data (Status: 1B, Data: 16B)
PICC -> PCD: 00 67 2a ec 93 bb 3d da b5 82 5b de d8 a4 38 e3 ff
# Decrypted data (Data 8B, CRC: 2B, Padding: 6B)
# 4a 6f 68 6e 00 00 00 00 8b cd 00 00 00 00 00 00

# Read balance (Command: 1B, File ID: 1B, Offset: 3B, Length: 3B)
PCD -> PICC: bd 02 00 00 00 04 00 00
# Encrypted data (Status: 1B, Data: 8B)
PICC -> PCD: 00 9d 43 54 11 cf 6f cc 9a
# Decrypted data (Data 4B, CRC: 2B, Padding: 2B)
# 00 00 10 00 91 c3 00 00

# Write new balance (Command: 1B, File ID: 1B, Offset: 3B, Length: 3B,
# Encrypted data: 8B)
PCD -> Intruder: 3d 02 00 00 00 04 00 00 96 be 10 1c 43 b3 a6 5a
# Intruder discards the write command
# OK (Status: 1B)
Intruder -> PCD: 00

Figure 6.8: Attack 2 – APDUs

6.1.6 Countermeasure to Attack 2

A countermeasure to this attack can be reading the balance once again at the end of
the protocol to check the written value. If the read balance is correct, the protocol
ends and the cardholder can take the goods. Figure 6.9 shows a sequence diagram of
the proposed countermeasure.

Thanks to the fact that the Mifare DESFire MF3ICD40 only encrypts using DES
or 3DES and the PCD only decrypts, this countermeasure is sufficient. If the data
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enc(S, name)
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write(addressBalance, auth(key1, S), dec(S, newBalance))

ok

read(addressBalance, auth(key1, S))

enc(S, newBalance)

Check written balance

Figure 6.9: Countermeasure to attack 2

transmitted by both PCD and PICC were encrypted and the receiving device always
decrypted the data, this proposed countermeasure would not be enough. The intruder
would be able to learn the encrypted 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒 from the 𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒 command and
then replay this data as the response to the last 𝑟𝑒𝑎𝑑𝐹 𝑖𝑙𝑒 command, so the PCD
would be mislead by the attacker. The balance check would successfully pass, but the
actual balance on the card would not be changed. The intruder would discard the
𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒 command so the balance on the card would be 𝑜𝑙𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 and the replay
attack would ensure that the PCD does not find it out. If we change the model in the
way that all transmitted data are encrypted, the model checker finds the described
attack, which is shown in figure 6.10.

The countermeasure to this attack would be a re-authentication after data writing,
which means that data that are read after re-authentication are encrypted using new
session key, so the intruder cannot replay the previously eavesdropped encrypted
balance. Figure 6.11 shows a sequence diagram of the proposed countermeasure. The
re-authentication is simulated by generating fresh session key, which is used in the
following communication. This re-authentication is emphasized in boldface in the
figure.
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Intruder discards command

readFile(addressBalance, auth(key1,S))

{newBalance}S

addressBalance contains oldBalance

and remembers {newBalance}Sok

Figure 6.10: Hypothetical attack

Note that in case of Mifare DESFire MF3ICD40 we do not have to consider this
attack and we can use the first proposed countermeasure.

6.1.7 Attack 3

After implementing the proposed countermeasure, the model checker revealed the
attack in the improved protocol, which is shown in figure 6.12.

This attack is based on changing the address in the 𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒 command to an-
other valid file or another offset in the same file. The 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒 will be saved to
another address and then read from this address for checking. The check in PCD
will successfully pass; however, the balance file on the card will contain 𝑜𝑙𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒

instead of 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒. The assert in the PCD role used to check that PICC has
𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒 at the correct address will not be satisfied, therefore the model checker
will stop and report the attack.

Figure 6.13 shows a sequence diagram of this attack, intruder’s actions are em-
phasized in boldface.
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Figure 6.11: Hypothetical attack countermeasure

6.1.8 Testing Attack 3 on a Real Device

To find out whether the found attack trace represents a real vulnerability or it is
only a false positive, we had to try it in a real environment. We used the MITM
hardware to execute the protocol and to change the 𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒 command parameters
to save 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒 to a different address. Then we changed the 𝑟𝑒𝑎𝑑𝐹 𝑖𝑙𝑒 command
parameters so that the PICC would read 𝑛𝑒𝑤𝐵𝑎𝑙𝑎𝑛𝑐𝑒 instead of the actual value at
the balance address. Figure 6.14 shows the APDU commands exchanged between
legitimate PCD and PICC. As in previous examples, remarks describe commands
with their parameters and responses.

As we can see, the attack was successful and the protocol should be improved to
fix this vulnerability. The next subsection describes a countermeasure that can be
used to avoid this attack.
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pcd -><picc> : readFile(addressName,auth(key1,n120(SessionKey)))
<pcd> -> picc : readFile(addressBalance,auth(key1,n120(SessionKey)))
picc -><pcd> : enc(n120(SessionKey),actualBalance)

<pcd> -> picc : readFile(addressNameCorrupted,
auth(key1,n120(SessionKey)))

picc -><pcd> : enc(n120(SessionKey),corrupted)
<pcd> -> picc : readFile(addressName,auth(key1,n120(SessionKey)))
picc -><pcd> : enc(n120(SessionKey),name)

<picc>-> pcd : enc(n120(SessionKey),name)
pcd -><picc> : readFile(addressBalance,auth(key1,n120(SessionKey)))

<picc>-> pcd : enc(n120(SessionKey),actualBalance)
pcd -><picc> : writeFile(addressBalance,auth(key1,n120(SessionKey)),

dec(n120(SessionKey),newBalance))
<pcd> -> picc : writeFile(addressBalanceCorrupted,

auth(key1,n120(SessionKey)),
dec(n120(SessionKey),newBalance))

picc -><pcd> : ok
<pcd> -> picc : readFile(addressBalanceCorrupted,

auth(key1,n120(SessionKey)))
picc -><pcd> : enc(n120(SessionKey),newBalance)

<picc>-> pcd : ok
pcd -><picc> : readFile(addressBalance,auth(key1,n120(SessionKey)))

<picc>-> pcd : enc(n120(SessionKey),newBalance)

Figure 6.12: Attack 3 – model checker output

6.1.9 Countermeasure to Attack 3

A countermeasure to this attack can be allowing writing to only one file and restricting
writing to all other files. This is very strong restriction and will affect the usability of
the protocol. However, after executing the model checker on the improved protocol,
no more attack was found.

6.1.10 Conclusion

The cause of all these attacks is the weakness of Mifare DESFire MF3ICD40 contact-
less smart card – not encrypting or signing commands, application number, file ID,
length, and offset.

Note that the size of files and data being transferred between PCD and PICC is
ignored in the basic model, so the model checker will sometimes find an attack which
is not feasible in real environment due to the size limitations. These false positives
can be avoided by also including size of files and data in the model as shown in the
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PCD

PCD

Intruder

Intruder

PICC

PICC

Generate fresh session key S

readFile(addressName, auth(key1, S))

enc(name)

readFile(addressBalance, auth(key1, S))

enc(oldBalance)

newBalance = oldBalance - price

writeFile(addressBalance, auth(key1,S), dec(newBalance))

Intruder changes address

writeFile(addressName, auth(key1,S), dec(newBalance))

readFile(addressBalance, auth(key1,S))

Intruder changes address

readFile(addressName, auth(key1,S))

enc(newBalance)

addressBalance contains oldBalance

Figure 6.13: Attack 3 based on writing to another file

first attack in this example.
This example contains several countermeasures and model adjustments, so several

source codes were used as input for model checking. The source code provided in the
Appendix is a sample implementation which shows the proposed countermeasures in
comments. The intention was to provide one source code for each example; however,
not everything described in this example is included due to the complexity of the
combined source code.

6.2 Sample Verification 2 – Improved smart card

The second example of attack finding using formal verification methods is based on
a protocol, which is similar to the protocol in the previous example, but which is
using an improved contactless smart card. The contactless smart card used is a
hypothetical card similar to Mifare DESFire with the difference that everything in
the communication is encrypted (after successful authentication), not only data. This
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improvement will prevent attacks from the previous example. Another small change
is that anyone can change the name on the smart card; this field is only informative,
so there is no need to protect it. This will be modeled using 𝑘𝑒𝑦2, which will be
known to the intruder and which will be required for granting write permission. The
balance field will be protected in the same way as in the previous example, using
𝑘𝑒𝑦1, which is not known by the intruder. Figure 6.15 shows a sequence diagram
of the protocol used in this example. The command modeling is different from the
previous example, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑 is a tuple containing the authentication token
𝑎𝑢𝑡ℎ(𝑘𝑒𝑦1, 𝑆) and the command encrypted using the symmetric session key, such as
{𝑟𝑒𝑎𝑑𝐹 𝑖𝑙𝑒(𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑁𝑎𝑚𝑒)}𝑆 . Everyone, including the intruder, can learn these two
components from the 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑. The authentication does not depend on
the content of the encrypted part of the 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑. This model represents
encryption of whole commands using ECB mode, so commands can be replayed by the
intruder. However, the intruder is not able to find out the content of the encrypted
part, he cannot find out which command it is.

The Cl-Atse model checker with parameters –short –opt –nb 3 was used in this
example. The model checker found an attack, which is shown in 6.16.

We call this a ”command injection” attack. An attacker authenticates using
the publicly known 𝑘𝑒𝑦2 and writes the forged command to the field at address
𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑁𝑎𝑚𝑒. Then, during the protocol run initiated by the legitimate PCD, when
the PCD reads the name field at address 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑁𝑎𝑚𝑒, an attacker (man-in-the-
middle) eavesdrops the forged command encrypted using current session key (not
known be the attacker). He can then send the encrypted forged command to the
PICC and the PICC cannot find out that it was not sent by the legitimate PCD,
because it is encrypted using the current session key that was established during the
authentication using 𝑘𝑒𝑦1, which is known only to the legitimate PCD. This is a
kind of replay attack, because the intruder overhears the command in the form of
encrypted data from PICC and replays the same encrypted data to the PICC as new
command.

Despite the fact that commands and their parameters are encrypted, the intruder
can execute arbitrary command, he only has to prepare it in advance. Figure 6.17
shows a sequence diagram of the command injection attack found by the model
checker with the imaginary command 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝐶𝑜𝑚𝑚𝑎𝑛𝑑, which is used to empha-
size the fact that arbitrary malicious command can be injected, not only the command
suggested by the model checker, which is 𝑤𝑟𝑖𝑡𝑒𝐹 𝑖𝑙𝑒(𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝐵𝑎𝑙𝑎𝑛𝑐𝑒, 𝑓𝑎𝑙𝑠𝑒𝐵𝑎𝑙𝑎𝑛𝑐𝑒).
Figure 6.18 shows the same attack using real world commands. Intruder’s actions are
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stressed in bold in both diagrams.
This attack could not be tested in real environment, because the smart card is

only a hypothetical improvement of Mifare DESfire. However, we can suppose that
this attack would work.

The countermeasure to this attack can be any replay attack protection which will
ensure the freshness of the messages. Any encryption mode different from the default
ECB mode would prevent this attack. We did not implement this countermeasure as
part of this example, because the next example focuses on a smart card which uses
CBC encryption mode and we can see there that the CBC mode prevents any replay
attacks.

6.3 Sample Verification 3 – Mifare DESFire EV1

In this example the protocol uses Mifare DESFire EV1, which is an improved version
of Mifare DESFire MF3ICD40. There are many improvements implemented in this
card, the most important from the protocol modeling perspective is the encryption
in CBC mode. The older Mifare DESFire MF3ICD40 also used CBC mode, but only
inside one command, the initialization vector (IV) was set to zero after each command
and response. Mifare DESFire EV1, on the other hand, uses real CBC mode and the
IV is set to zero only at the beginning of the communication and then never again.
This approach helps to prevent any kind of replay attack. The encrypted part of the
message always includes CRC32 of the whole command, so nothing can be altered by
the intruder, which is also a huge improvement compared to the older version.

The CBC encryption mode of the Mifare DESFire EV1 is modeled by adding an
IV to the encrypted part of the tuple 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑, which was used in the pre-
vious example. The tuple 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑 will contain the authentication token
𝑎𝑢𝑡ℎ(𝑘𝑒𝑦1, 𝑆) and the command together with IV encrypted using symmetric session
key. The zero IV is denoted 𝑧𝑒𝑟𝑜𝐼𝑉 , the following IVs are denoted 𝑛𝑒𝑥𝑡𝐼𝑉 (𝑧𝑒𝑟𝑜𝐼𝑉 ),
𝑛𝑒𝑥𝑡𝐼𝑉 (𝑛𝑒𝑥𝑡𝐼𝑉 (𝑧𝑒𝑟𝑜𝐼𝑉 )), etc. For the sake of simplicity of the PICC role imple-
mentation in ASLan++, the first IV which is used is 𝑛𝑒𝑥𝑡𝐼𝑉 (𝑧𝑒𝑟𝑜𝐼𝑉 ), not 𝑧𝑒𝑟𝑜𝐼𝑉 ,
but this is only a small detail. The encrypted data will be different each time, which
will prevent replay attacks.

Figure 6.19 shows a sequence diagram of the protocol being verified in this exam-
ple. It is simpler than the protocol from the previous examples, the balance is read,
updated, and written back to the smart card.

The Cl-Atse model checker with parameters –short –opt –nb 3 was used in this
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example. The model checker found an attack, which is shown in figure 6.20.
The attack found in the first model checker round is based on discarding the write

command. It relies on the fact that the PCD does not wait for the authenticated
answer from the PICC. The intruder gets the write command from PCD but does
not forward it to the PICC. The balance on the PICC does not get updated, while
PCD expects that new balance is stored on the card.

When this attack is executed in the real environment, it is found that it does not
work, because PCD backtracks the transaction when it does not get any response
from PICC in some time. The model is therefore refined by adding the following line
to the PCD role, which will make PCD wait until it gets a response from PICC:

B -> Actor: ?;

The attack shown in figure 6.21 was found by the model checker in the refined
model.

This attack is based on the fact that the intruder sends some dummy response. It
was found that this attack is again not feasible in the real environment, because PCD
checks that the response was 𝑜𝑘, not arbitrary data. The model is refined accordingly:

B -> Actor: enc(?, ?, ok);

The attack shown in figure 6.22 was found by the model checker in the refined
model.

The correct status 𝑜𝑘 is sent as a response to the PCD in this attack. However,
it is not encrypted using correct session key. The real Mifare DESFire EV1 smart
card sends the status in plaintext with CRC32 of the whole message encrypted using
session key. It is therefore possible to change status so that it looks correctly, but
after decrypting and verifying CRC32 one can find out that it is not legitimate. This
is the case in our example, testing the attack on real hardware shows that the PCD
verifies the CRC32 of the message, therefore another refinement must be performed,
which reflects the fact that the intruder must know the session key in order to build
correct response:

B -> Actor: enc(SessionKey, next(nextIV(nextIV(nextIV(zeroIV)))),

After this refinement the model checker did not find any other attack.
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# Select application 1 (Command: 1B, Application number: 3B)
PCD -> PICC: 5a 01 00 00
# OK (Status: 1B)
PICC -> PCD: 00

# Authenticate with key 1 (Command: 1 Byte, Key number: 1 Byte)
PCD -> PICC: 0a 01
# Three-phase authentication
PICC -> PCD: af ed d4 96 60 88 1a 4d 97
PCD -> PICC: af 49 1e 89 0d e9 ac e9 32 36 60 a6 0e bf a2 d3 be
PICC -> PCD: 00 b7 d1 da 7c e0 dd 98 6b
# Session key (DES): 00 01 02 03 05 7f d8 33

# Read name (Command: 1B, File ID: 1B, Offset: 3B, Length: 3B)
PCD -> PICC: bd 01 00 00 00 08 00 00
# Encrypted data (Status: 1B, Data: 16B)
PICC -> PCD: 00 9f e5 60 b4 e4 59 01 76 67 54 05 ab 93 92 24 39
# Decrypted data (Data 8B, CRC: 2B, Padding: 6B)
# 4a 6f 68 6e 00 00 00 00 8b cd 00 00 00 00 00 00

# Read balance (Command: 1B, File ID: 1B, Offset: 3B, Length: 3B)
PCD -> PICC: bd 02 00 00 00 04 00 00
# Encrypted data (Status: 1B, Data: 8B)
PICC -> PCD: 00 ca c2 72 78 64 90 5a fd
# Decrypted data (Data 4B, CRC: 2B, Padding: 2B)
# 00 00 10 00 91 c3 00 00

# Write new balance (Command: 1B, File ID: 1B, Offset: 3B, Length: 3B,
# Encrypted data: 8B)
PCD -> Intruder: 3d 02 00 00 00 04 00 00 dc 87 f5 e0 77 78 25 70
# Intruder changes the address
Intruder -> PICC: 3d 01 10 00 00 04 00 00 dc 87 f5 e0 77 78 25 70
# Decrypted data (Data 4B, CRC: 2B, Padding: 2B)
# 00 00 08 00 c0 98 00 00
# OK (Status: 1B)
PICC -> PCD: 00

# Read balance to check
# (Command: 1B, File ID: 1B, Offset: 3B, Length: 3B)
PCD -> Intruder: bd 02 00 00 00 04 00 00
# Intruder changes the address
Intruder -> PICC: bd 01 10 00 00 04 00 00
PICC -> PCD: 00 07 e5 a0 95 61 1c ba 14
# Decrypted data (Data 4B, CRC: 2B, Padding: 2B)
# 00 00 08 00 c0 98 00 00

Figure 6.14: Attack 3 – APDUs
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PCD

PCD

PICC

PICC

Generate fresh session key S

encryptedCommand(auth(key1, S), {readFile(addressName)}S)

{name}S

encryptedCommand(auth(key1, S), {readFile(addressBalance)}S)

{oldBalance}S

newBalance = oldBalance - price

encryptedCommand(auth(key1, S), {writeFile(addressBalance, newBalance)}S)

{ok}S

encryptedCommand(auth(key1, S), {readFile(addressBalance)}S)

{newBalance}S

Check written balance

Figure 6.15: Protocol

pcd -> <picc> : encryptedCommand(auth(key1,n119(SessionKey)),
enc(n119(SessionKey),readFile(addressName)))

<pcd> -> picc : encryptedCommand(auth(key2,SessionKey(161)),
enc(SessionKey(161),writeFile(addressName,
writeFile(addressBalance,falseBalance))))

<picc> -> pcd : enc(n119(SessionKey),readFile(addressName))
picc -> <pcd> : enc(SessionKey(161),0)

<pcd> -> picc : encryptedCommand(auth(key1,n119(SessionKey)),
enc(n119(SessionKey),readFile(addressName)))

picc -> <pcd> : enc(n119(SessionKey),writeFile(addressBalance,
falseBalance))

<pcd> -> picc : encryptedCommand(auth(key1,n119(SessionKey)),
enc(n119(SessionKey),writeFile(addressBalance,
falseBalance)))

Figure 6.16: Model checker output
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PCD in the proximity of PICC

new session key T

encryptedCommand(auth(key1,S), {readFile(addressName)}T)

{maliciousCommand}T

Intruder gets malicious command encrypted using current session key

Intruder executes malicious command

encryptedCommand(auth(key1,S), {maliciousCommand}T)

Figure 6.17: Command injection attack
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Figure 6.18: Command injection attack – real commands
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PCD

PCD

PICC

PICC

Generate fresh session key S

encryptedCommand(auth(key1, S),

{nextIV(nextIV(zeroIV)), oldBalance}S

newBalance = oldBalance - price

encryptedCommand(auth(key1, S),

{nextIV(zeroIV), readFile(addressBalance)}S)

{nextIV(nextIV(nextIV(zeroIV))), 

writeFile(addressBalance, newBalance)}S)

Figure 6.19: Protocol

pcd -><picc> : encryptedCommand(auth(key1,n111(SessionKey)),
enc(n111(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

<pcd> -> picc : encryptedCommand(auth(key1,n111(SessionKey)),
enc(n111(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

picc -><pcd> : enc(n111(SessionKey),nextIV(nextIV(zeroIV)),
oldBalance)

<picc>-> pcd : enc(n111(SessionKey),nextIV(nextIV(zeroIV)),
oldBalance)

pcd -><picc> : encryptedCommand(auth(key1,n111(SessionKey)),
enc(n111(SessionKey),nextIV(nextIV(nextIV(zeroIV))),
writeFile(addressBalance,newBalance)))

Figure 6.20: Model checker output 1
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pcd -><picc> : encryptedCommand(auth(key1,n112(SessionKey)),
enc(n112(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

<pcd> -> picc : encryptedCommand(auth(key1,n112(SessionKey)),
enc(n112(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

picc -><pcd> : enc(n112(SessionKey),nextIV(nextIV(zeroIV)),
oldBalance)

<picc>-> pcd : enc(n112(SessionKey),nextIV(nextIV(zeroIV)),
oldBalance)

pcd -><picc> : encryptedCommand(auth(key1,n112(SessionKey)),
enc(n112(SessionKey),nextIV(nextIV(nextIV(zeroIV))),
writeFile(addressBalance,newBalance)))

<picc>-> pcd : Dummy(118)

Figure 6.21: Model checker output 2

pcd -><picc> : encryptedCommand(auth(key1,n115(SessionKey)),
enc(n115(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

<pcd> -> picc : encryptedCommand(auth(key1,n115(SessionKey)),
enc(n115(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

picc -><pcd> : enc(n115(SessionKey),nextIV(nextIV(zeroIV)),
actualBalance)

<picc>-> pcd : enc(n115(SessionKey),nextIV(nextIV(zeroIV)),
actualBalance)

pcd -><picc> : encryptedCommand(auth(key1,n115(SessionKey)),
enc(n115(SessionKey),nextIV(nextIV(nextIV(zeroIV))),
writeFile(addressBalance,newBalance)))

<picc>-> pcd : enc(Dummy(121),Dummy_1(121),ok)

Figure 6.22: Model checker output 3
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Chapter 7

Protocol Modeling Limitations

7.1 Attacks not Covered

Although formal verification methods are useful for finding vulnerabilities on the
protocol level, the usability of this technique on other attacks on contactless smart
cards is limited. Other attacks, such as physical attacks, side-channel attacks, and
attacks specific for contactless communication are out of scope of this method, since
this method is not suitable for them and there is no way how to model properties
that would be necessary to find such attacks.

In this chapter another method that can increase the security of contactless smart
cards is proposed. This method is focused on possible attack that is not covered in
the protocol modeling method and cannot be found using formal verification, because
it is an attack on low level communication, where timing is of importance.

This chapter is dedicated to preventing relay attacks, which is a type of attack
that cannot be prevented on the application level. Relay attacks are possible due to
the contactless communication link and were described in section 2.3.4. Two coun-
termeasures are proposed in this chapter. These methods can be used to prevent
real attacks that induce delays significantly longer than the delay caused by the time
travelling longer distance. They can be used against most likely attacks, which are
not expensive and can be easily performed by attackers with moderate skills, which
makes them very dangerous.
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7.2 Relay Attack

7.2.1 How to Perform a Relay Attack

This section discusses relay attacks from the perspective of attackers in order to get
better idea what possibilities the attackers have in terms of used hardware, what
are the time restrictions that they must not exceed, and what tricks they can use to
shorten the delay caused by the relay attack.

Hardware

The attackers can use either off-the-shelf equipment, or build their own. They can buy
standard contactless smart card readers or any NFC enabled device, such as smart-
phone. As speed is the most important requirement on relaying the communication,
the right hardware choice is crucial.

The first possibility is to use off-the-shelf smart card readers. The example of
software which can be used is libnfc [118] – a library providing users with the possi-
bility of using two standard contactless readers for a relay attack. The advantage of
this approach is obvious, the attacker can use cheap off-the-shelf hardware and only
write the software or use some existing. However, this approach can be very tricky,
since the attacker has no control over the physical layer. Most readers cannot be used
for relay attack due to timing issues induced by PC/SC interface. The off-the-shelf
readers are connected to the PC via RS232 or USB, this communication link induce
significant delays.

Another possibility is to use NFC enabled smartphones. This is currently popular
topic due to the fact that smartphones are light and affordable for most people and
can easily establish communication link between each other via bluetooth, Wi-Fi,
GSM, etc. Relay attack using NFC devices can be potentially great threat because,
unlike self-built hardware and PC connected readers, these devices are hard to be
spotted. NFC enabled smartphones were used for relay attack for example in [119]
and [120]. The former paper presents the attack which can be used only to forward
communication between two other NFC smartphones in peer-to-peer mode. The
latter paper goes further and presents relay attack applicable also to communication
between active and passive devices, so the communication between reader and card
can be forwarded. This was the first time something like this was successful; however,
the attacker does not fully control the physical layer, so it cannot be used in some
scenarios. They were not able to set arbitrary UID to the fake passive target, which
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would be required in systems where the UID is validated. There are two types of UIDs
– unique and random (used to ensure untraceability). Random UIDs always start with
0x08. NFC devices can use both types, but they cannot change the unique UID at
the moment. Because the communication between two NFC devices is over network
where the communication is buffered, there are also significant delays induced.

Adversaries can also build their own equipment. In [121], a practical relay attack
with self-built hardware was demonstrated. The communication was relayed up to a
distance of 50 m. There were many other successful implementations, since in past
this was the only way to perform a relay attack. The advantage of this approach
is that the attacker has full control over the physical layer of the communication.
The greatest disadvantage is the complexity of this approach, building such hardware
requires appropriate knowledge and equipment. The fact that each attacker has to
build own hardware rather than using already existing one prevents the spreading of
this type of attack. But the full hardware control is unexceptionable advantage. This
is currently the only possibility to make the relay attack fast enough to compete with
distance bounding protocols.

There is also a possibility to use a special hardware designed for research purposes,
such as [122] or [123], which can be purchased assembled and ready to use. These
devices are open hardware designs and the attacker has full control over the physical
layer. These devices lack full software support, since they are used for experiments
rather than for commercial purposes.

Round-trip Time Restrictions

ISO/IEC 14443 defines the Frame Waiting Time (FWT), which is the maximal time
the reader waits for the card’s response. When this time is exceeded, the error is
detected and the reader tries to recover. After a few attempts the card is rejected.
The forwarded communication must be therefore fast enough to not exceed this limit.
The FWT is negotiated at the beginning of the communication. It is computed from
the Frame Waiting Integer (FWI), which is part of the Answer to Select (ATS) set
by the card.

𝐹𝑊𝑇 = (256 × 16/𝑓𝑐) × 2𝐹𝑊𝐼

In the formula above, 𝑓𝑐 is the carrier frequency 13.56 MHz. Typical FWT value
for DESFire card is 77.33 ms (FWI = 8). The FWT can be set up to 4.949 s according
to the standard (FWI = 14). However, the FWT does not affect the anti-collision
procedure.
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The time for the card’s response can be extended by the Frame Waiting Time
Extension (WTX), which is an S-block defined in ISO/IEC 14443-4. The card uses
WTX instead of the answer when it needs more time than the defined FWT to process
the received block. The reader then extends the waiting time by the time defined in
the WTX. The upper limit of this extension is same as for FWT. WTX can be used
repeatedly. If the standard time is not sufficient in the particular situation and we
cannot or do not want to negotiate longer FWT for some reason, we can extend the
time with WTX.

The Frame Waiting Time can be very relaxed so the attackers can meet the time
requirements even if the communication is relayed over network.

Another time restriction can be caused by some distance bounding protocol. Dis-
tance bounding protocols were described in section 2.3.4. The time limit in distance
bounding protocol would be much shorter and the attackers would not be able to
relay the communication, unless they used some trick to reduce the response time,
such as one of the methods described in the following subsection.

Reducing Response Time

The attacker can reduce the response time in the relay attack by overclocking the
forged reader in order to get the response from the smart card faster than the legiti-
mate reader would get it. It is possible due to the fact that the smart card’s processor
is clocked by the signal generated by the reader. This would give the attacker a chance
to reduce the round-trip time and not exceed the time limit defined in the distance
bounding protocol or Frame Waiting Time.

Another possibility how to decrease the response time during relay attack is the
Late-commit attack [124] based on the fact that receivers integrate the signal ampli-
tude over whole bit period. During the initial 𝑚−1

𝑚 of the time interval the attacker
sends no energy and for the final 1

𝑚 of the interval sends m-times stronger signal. The
result of the integration will be same as in normal one bit transmission. However, the
attacker can delay deciding which value to send by 𝑚−1

𝑚 of the bit period. Using this
method, the attacker can slightly mitigate the effect of delays caused by relay attack.

7.2.2 Delays in Relay Attacks Over Buffered Connection

This subsection discusses delays in relay attacks that use a buffered connection, such
as a network, for communication between attackers. These delays are much longer
and could be detected even when no distance bounding protocol is used. Real attacks
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are not perfect and induce additional delay to the delay caused by the signal travelling
longer distance, which is the delay the distance bounding protocols are used to detect.
This delay is caused by hardware components processing the signal and sending it to
a different location. If the communication is relayed over a distance exceeding the
range of one transmitter, it is likely that some buffering will be used. If the data are
sent over network using TCP/IP, the induced delay will be significant.

The attacker can reduce the response time in the relay attack by overclocking
the forged reader in order to get the response from the smart card faster than the
legitimate reader would get it. This would give the attacker a chance to reduce
the round-trip time and not exceed the time limit defined in the distance bounding
protocol.

Delays that occur when performing a relay attack are caused by three main factors:

∙ Speed of light is not infinite, therefore an additional delay is induced, corre-
sponding to the time needed for the signal to travel between attackers’ devices.

∙ The hardware used as a fake reader and a fake card needs non-zero time for
execution of the required operations.

∙ The communication between attackers’ devices over long distance will likely
require buffering, which inherently delays the communication.

The state-of-the-art distance bounding protocols aim at the delay caused by the
speed of light. The signal needs more time to travel between legitimate devices when
the relay attack is performed than it would in normal situation. Distance bounding
protocols therefore try to prevent all theoretical attacks, because nothing can travel
faster than light. The speed of light is approximately 3 × 108 𝑚/𝑠, so the signal
passes the distance of a kilometer in the order of microseconds. As we will see, the
limitation by speed of light, which is the main target of state-of-the-art distance
bounding protocols, is negligible compared to the other delays.

Relay attacks are dangerous when they are executed over longer distances, so
that the legitimate user can not find out something is happening. These distances
will likely exceed the range of one transmitter, so the attackers’ devices have to
be connected via multiple intermediate re-transmitters or over network. Data in
networks are transported in packets, which requires buffering. Latency in computer
networks based on TCP/IP is measured in order of milliseconds, which is much higher
than delays due to the signal travelling the distance at speed of light. It would be
possible to construct re-transmitters that would not buffer any data, and modulate
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the incoming signal directly to the outgoing signal. The real implementation of such
re-transmitter would also induce delay on electronic components, but it would be
significantly lower than delays in buffered communication.

Experimental Relay Attack

We have established a real relay attack using Proxmark 3, which is an open hardware
platform for RFID research purposes. Description of the hardware platform was
provided in section 4.1. This experimental relay attack was performed for purposes
of the protocol analysis described in previous chapters, so there was no effort to make
it as fast as possible. The measurement was also not precise. However, it showed
that the relay attack delay can be in order of milliseconds. The average measured
delay induced by a relay attack was about 27 ms. Proxmark responded fast enough,
the communication was delayed mostly by the USB link between Proxmark and PC.
Other relay attack implementations can be faster, but communication over USB or
network slows it down significantly.
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7.3 Relay Attack Mitigation

We propose a method to prevent real-world attacks that induce delays significantly
longer than the delay caused by the time travelling longer distance. This method is
described in the first subsection. In the second subsection we show a method that is
a countermeasure to the overclocking attacks. The method is based on overclocking
the legitimate reader to the limit the communicating card can still reliably operate,
which reduces to minimum the time the attacker can gain by overclocking the forged
reader. We have implemented the overclocking method in the reader and show the
results. The signal was analysed on the oscilloscope. The communication time was
reduced while the card was still able to reliably operate.

7.3.1 Passive Detection

The reader can monitor the communication and detect anomalies. It does not make
any changes to the transmitted signal or data being sent, so we call it passive detec-
tion. Alternatively, the reader monitoring can be provided by an external device such
as Proxmark 3, which can be used to eavesdrop on the communication and which
provides precise timing data.

This method can be used against relay attacks where significant delays are induced
for instance by buffered communication link between attackers’ devices. The passive
detection is based on precise measuring the responses of all commands. Initially, the
fingerprint of each type of smart card is made, all response times are measured and
saved for later use. During the communication, all response times are continuously
measured and compared to the times saved in the smart card’s fingerprint. In case
of any anomaly, the possible attack is reported.

Additionally, the reader should have much shorter delay restrictions. The Frame
Waiting Time should be restricted to minimal values for which the smart card can
operate reliably, and the Frame Waiting Time Extension should be disabled by default
and allowed only in reasonable situations.

The relay attack over short distance performed with custom made hardware would
not be detected by passive detection. However, attacks over computer network or
attacks using off-the-shelf USB readers could be detected, because they induce much
bigger delays, as discussed in the previous section. These attacks are not expensive
and can be easily performed by attackers with moderate skills, which makes them very
dangerous. This countermeasure is quite easy to implement compared to distance
bounding protocols. It can be worth implementing such countermeasure even if it
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does not protect against all theoretical attacks, because it protects against the most
likely attacks.

7.3.2 Overclocking

As mentioned earlier, attackers can reduce the round-trip time by overclocking the
communication with the legitimate smart card, while communicating on the normal
frequency of 13.56 MHz with the legitimate reader. The result is that they get the
response from the card faster that the legitimate reader would get it, so they can send
the response back sooner than the reader expects and reduce the delay caused by the
relay attack. The distance bounding protocol could therefore be circumvented.

The proposed method is based on overclocking the legitimate reader to frequency
as high as possible, where the smart card is still reliably operating, which reduces
chances for the attackers to perform successful relay attack. The timing is shown in
figure 7.1. The first row depicts the time the ordinary communication takes. This is
the time the attacker must not exceed in order to keep the relay attack undetected
by the round-trip time measurements. The second line shows the relay attack time,
which consists of the delay caused by the relay attack, which is the time of flight of the
signal and delays on intermediate devices, and time needed by the attacker to execute
the command, which is equal to the time needed in the standard communication.
In this case the total time exceeds the time of the standard communication. The
third line is the case of overclocking attack, which reduces the time of the command
execution by the attacker. In this situation the total time is same as the time of
the standard communication, which will likely make the relay attack successful. The
last line shows the proposed method of overclocking the legitimate reader, which will
result in reducing the time of the standard communication, establishing new time
limit. So even if the attacker is overclocking the communication with the legitimate
card as well, he will exceed the new time limit.

Implementation with Proxmark

We have implemented the reader that communicates with the smart card on the
frequency 16 MHz using Proxmark 3. Figure 7.2 compares the response times between
standard communication at 13.56 MHz and communication of our overclocked reader
running at 16 MHz. Mifare DESFire smart card was used and the depicted command
is the polling command, which is periodically sent by the reader. By increasing the
frequency, approximately 53𝜇𝑠 was spared on this basic command. The response is
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Figure 7.1: Time consumption

not clearly visible in the signal, because it is modulated on a subcarrier 848 kHz, so
all parts of the communication are marked in the graph.

Figure 7.2: Response times comparison
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Chapter 8

Conclusions

This thesis analyses contactless smart card protocol threats and presents a method
of semi-automated vulnerability finding in contactless smart card protocols using
model checking. The high level goal of this thesis was to investigate security of
contactless smart card protocols and to find methods of improving security of these
protocols. The contribution of this thesis is twofold: 1) the method of semi-automated
vulnerability finding using formal methods, which can be used for finding high level
attacks on the protocol level, and 2) the countermeasures to relay attacks performed
over a network, which were created after relay attacks investigation.

The focus in this thesis is on the high level attacks on the protocol level. Possibility
of these attacks was analysed and a method of semi-automated vulnerability finding
using formal methods was proposed. The formal model can be created from the
protocol definition or extracted from the eavesdropped communication. Unwanted
states that pose an attacks are specified. After analysing the protocol and creating
the model including the attack states, model checking can be used to automatically
find vulnerabilities.

AVANTSSAR platform is used for the formal verification, the models are written
in the ASLan++ language. Examples demonstrate the usability of the proposed
method.

This thesis deals mainly with simple smart cards with fixed file structure and
pre-defined set of commands. These smart cards provide authentication based on
symmetric keys, multiple applications and file system with access permissions. Access
control is based on keys that are used for authentication, data may be encrypted using
some symmetric cipher. One of the most popular and widespread contactless smart
cards that uses this scheme is Mifare DESFire, which was used in examples in this
thesis. Other smart cards have more sophisticated operating system and can execute
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applications on their chip, such as Java Cards, MULTOS cards or BasicCards. Their
application logic can be modeled as well, but this thesis is focused mainly on smart
cards with fixed file structure and pre-defined set of commands.

The method presented in this thesis was used to find a previously unpublished
weakness of the Mifare DESFire MF3ICD40 contactless smart card. Some features
of the Mifare DESFire MF3ICD40 were found to be very dangerous and it may
be very difficult to implement protocol using this card in a secure way. Although
these features are not considered vulnerabilities of the smart card itself, they help to
introduce vulnerabilities into the implementation.

We have shown how the inappropriate protocol implementation can yield new
vulnerabilities even if the protocol itself is secure and the communication with the
hardware is considered secure too. We have demonstrated a sample attack on fictional
payment protocol implementation on Mifare DESFire smart card. There is a potential
for adversaries to perform similar attacks on real systems. We have introduced a
concept of automated vulnerability search using formal verification methods to find
complex attack traces which are not likely to be found manually. There is a possibility
to use the source code to get an overall image of the protocol and to create the model
which is as close to reality as possible, or a man-in-the-middle attack can be used to
get information about the protocol from the implementation.

Not all kinds of attacks are covered by the proposed method, so one type of the
remaining attack types – the relay attack – was investigated separately. A minor
part of this thesis was dedicated to relay attack investigation and countermeasure
proposal.

We have proposed a method based on passive detection to prevent real attacks that
induce delays significantly longer than the delay caused by the time travelling longer
distance. It can be used against most likely attacks, which are not expensive and
can be easily performed by attackers with moderate skills, which makes them very
dangerous. This countermeasure is quite easy to implement compared to distance
bounding protocols. It can be worth implementing such countermeasure even if it
does not protect against all theoretical attacks.

We have shown a possible countermeasure to the overclocking attacks. The
method is based on overclocking the legitimate reader to the maximal limit where
the communicating card can still reliably operate. This method reduces to minimum
the chances of the attacker to gain time by overclocking the communication with the
legitimate card and hence to circumvent the time limit. We have implemented the
reader that communicates with a smart card on the frequency 16 MHz and tested it
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with a real card.
Further research may be focused on finding more automatic methods of creating

formal model from the analysed protocol. Learning techniques allow automatic in-
ference of behaviour of a system as a finite state machine and can be used to extract
such formal models from software on smart cards or to extract the protocol. Such
automated reverse-engineering takes little effort and is fast. The finite state machine
models obtained can be used in the method presented in this thesis. This approach
would improve this method by making it more automatic.

The results presented in this thesis were published in journal [125] with impact
factor and international conferences [126], [117], and [127].
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Appendix A

ASLan++ Source of Example 1

specification example
channel_model CCM

entity Environment {

types
command < text;
dataAddress < text;
encrypted < text;
authenticate < text;

symbols
pcd,picc: agent;
readFile(dataAddress, authenticate): command;
writeFile(dataAddress, authenticate, encrypted): command;
noninvertible enc(symmetric_key, message): encrypted;
noninvertible dec(symmetric_key, message): encrypted;
noninvertible auth(symmetric_key, symmetric_key): authenticate;
corrupted: text;
addressName: dataAddress;
addressBalance: dataAddress;
addressNameCorrupted: dataAddress;
addressBalanceCorrupted: dataAddress;
nonpublic key1: symmetric_key;
nonpublic key2: symmetric_key;
nonpublic none: symmetric_key;
nonpublic oldBalance: text;
nonpublic newBalance: text;
nonpublic name: text;
ok: text;

entity Session (A, B: agent) {

symbols
fileSystem(dataAddress, dataAddress, symmetric_key, symmetric_key,

message): fact;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PCD
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
entity PCD (Actor, B: agent) {

symbols
Data: message;
SessionKey: symmetric_key;
DataAddress: dataAddress;

body {

% fresh session key generation
SessionKey := fresh();

% read name
Actor -> B: readFile(addressName, auth(key1, SessionKey));
B -> Actor: enc(SessionKey, ?Data);

% countermeasure 1:
%% select {
%% on(Data = name): {
% end of countermeasure 1

% PCD should have read "name"
%% assert name: Data = name;

% read balance
Actor -> B: readFile(addressBalance, auth(key1, SessionKey));
B -> Actor: enc(SessionKey, ?Data);

% countermeasure 1:
%% select {
%% on(Data = oldBalance): {
% end of countermeasure 1

% PCD should have read "oldBalance"
assert oldBalance: Data = oldBalance;

% 1. check whether there is enough money
% 2. subtract the value of the goods
% 3. write new balance
Actor -> B: writeFile(addressBalance, auth(key1,

SessionKey), dec(SessionKey, newBalance));
B -> Actor: ok;

% countermeasure 2:
%% % check written balance
%% Actor -> B: readFile(addressBalance, auth(key1, SessionKey));
%% B -> Actor: enc(SessionKey, ?Data);
%%
%% % check whether new data were written
%% select {
%% on(Data = newBalance): {
% end of countermeasure 2
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% PICC should have "newBalance" at address "addressBalance"
assert trueBalance: fileSystem(addressBalance, ?, key1,

key1, newBalance);

% end of protocol

% countermeasure 2:
%% }
%% }
% end of countermeasure 2
% countermeasure 1:
%% }
%% }
%% }
%% }
% end of countermeasure 1

}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PICC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

entity PICC (A, Actor: agent) {

symbols
Data: message;
OldData: message;
SessionKey: symmetric_key;
SessionKeyTemp: symmetric_key;
KeyRead: symmetric_key;
AuthenticatedKey: symmetric_key;
Command: command;
DataAddress, DataAddressCorrupted: dataAddress;
Encrypted: encrypted;
UsedSessionKeys: symmetric_key set;

body {

% initialization
AuthenticatedKey := none;
SessionKey := none;

% main loop
while(true) {

% read command
A -> Actor: ?Command;

select {

%%%%%%%%%%%%%%
%% readFile %%
%%%%%%%%%%%%%%
on(Command = readFile(?DataAddress, auth(?AuthenticatedKey,
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?SessionKeyTemp))): {

% authentication
select {

on(!UsedSessionKeys->contains(SessionKeyTemp) |
SessionKey = SessionKeyTemp): {

UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

% read file
select {

on(fileSystem(DataAddress, ?, AuthenticatedKey,
?, ?Data)): {

% send response
Actor -> A: enc(SessionKey, Data);

}
}

}
}

}

%%%%%%%%%%%%%%%
%% writeFile %%
%%%%%%%%%%%%%%%
on(Command = writeFile(?DataAddress, auth(?AuthenticatedKey,

?SessionKeyTemp), ?Encrypted)): {

% authentication
select {

on((!UsedSessionKeys->contains(SessionKeyTemp) |
SessionKey = SessionKeyTemp) &
Encrypted = dec(SessionKeyTemp, ?Data)): {

UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

% write file
select {

on(fileSystem(DataAddress, ?DataAddressCorrupted,
?KeyRead, AuthenticatedKey, ?OldData)): {

retract(fileSystem(DataAddress, DataAddressCorrupted,
KeyRead, AuthenticatedKey, OldData));

fileSystem(DataAddress, DataAddressCorrupted, KeyRead,
AuthenticatedKey, Data);

% corrupt the rest of the same file
select {

on(fileSystem(DataAddressCorrupted, DataAddress,
?KeyRead, ?AuthenticatedKey, ?OldData)): {

retract(fileSystem(DataAddressCorrupted,
DataAddress, KeyRead, AuthenticatedKey,
OldData));

fileSystem(DataAddressCorrupted, DataAddress,
KeyRead, AuthenticatedKey, corrupted);
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}
}

}
}

% send response
Actor -> A: ok;

}
}

}
}

}
}

}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Session
body {

% all possible data locations
fileSystem(addressName, addressNameCorrupted, key1, key1, name);
fileSystem(addressBalance, addressBalanceCorrupted, key1, key1,

oldBalance);
fileSystem(addressNameCorrupted, addressName, key1, key1, corrupted);
fileSystem(addressBalanceCorrupted, addressBalance, key1, key1,

corrupted);

% new roles
new PCD(A, B);
new PICC(A, B);

}
}

% Environment
body {

% new session
new Session(pcd, picc);

}
}
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Appendix B

ASLan++ Source of Example 2

specification example
channel_model CCM

entity Environment {

types
encCommand < text;
command < text;
dataAddress < text;
encrypted < text;
authenticate < text;

symbols
pcd,picc: agent;
encryptedCommand(authenticate,encrypted): encCommand;
falseBalance: text;
readFile(dataAddress): command;
writeFile(dataAddress, message): command;
noninvertible enc(symmetric_key, message): encrypted;
noninvertible auth(symmetric_key, symmetric_key): authenticate;
corrupted: text;
addressName: dataAddress;
addressBalance: dataAddress;
addressNameCorrupted: dataAddress;
addressBalanceCorrupted: dataAddress;
nonpublic key1: symmetric_key;
key2: symmetric_key;
nonpublic none: symmetric_key;
nonpublic oldBalance: text;
nonpublic newBalance: text;
nonpublic name: text;
ok: text;

entity Session (A, B: agent) {

symbols
fileSystem(dataAddress, dataAddress, symmetric_key, symmetric_key,

message): fact;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PCD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

entity PCD (Actor, B: agent) {

symbols
Data: message;
SessionKey: symmetric_key;
DataAddress: dataAddress;

body {

% fresh session key generation
SessionKey := fresh();

% read name
Actor -> B: encryptedCommand(auth(key1, SessionKey), enc(SessionKey,

readFile(addressName)));
B -> Actor: enc(SessionKey, ?Data);

% PICC should not have "falseBalance" at address "addressBalance"
assert trueBalance: !fileSystem(addressBalance, ?, key1, key1,

falseBalance);

% read balance
Actor -> B: encryptedCommand(auth(key1, SessionKey), enc(SessionKey,

readFile(addressBalance)));
B -> Actor: enc(SessionKey, ?Data);

% PICC should not have "falseBalance" at address "addressBalance"
assert trueBalance: !fileSystem(addressBalance, ?, key1, key1,

falseBalance);

% 1. check whether there is enough money
% 2. subtract the value of the goods
% 3. write new balance
Actor -> B: encryptedCommand(auth(key1, SessionKey), enc(SessionKey,

writeFile(addressBalance, newBalance)));
B -> Actor: enc(SessionKey, ok);

% PICC should not have "falseBalance" at address "addressBalance"
assert trueBalance: !fileSystem(addressBalance, ?, key1, key1,

falseBalance);

% check written balance
Actor -> B: encryptedCommand(auth(key1, SessionKey), enc(SessionKey,

readFile(addressBalance)));
B -> Actor: enc(SessionKey, ?Data);

% PICC should not have "falseBalance" at address "addressBalance"
assert trueBalance: !fileSystem(addressBalance, ?, key1, key1,

falseBalance);

% check whether new data were written
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select {
on(Data = newBalance): {

% PICC should have "newBalance" at address "addressBalance"
assert trueBalance: fileSystem(addressBalance, ?, key1, key1,

newBalance);

% end of protocol
}

}
}

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PICC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

entity PICC (A, Actor: agent) {

symbols
Data: message;
OldData: message;
SessionKey: symmetric_key;
SessionKeyTemp: symmetric_key;
KeyRead: symmetric_key;
AuthenticatedKey: symmetric_key;
EncryptedCommand: encCommand;
Command: command;
DataAddress, DataAddressCorrupted: dataAddress;
Encrypted: encrypted;
UsedSessionKeys: symmetric_key set;

body {

% initialization
AuthenticatedKey := none;
SessionKey := none;

% main loop
while(true) {

% read command
A -> Actor: ?EncryptedCommand;

select {
on(EncryptedCommand = encryptedCommand(auth(?AuthenticatedKey,

?SessionKeyTemp), ?Encrypted)): {
select {

%%%%%%%%%%%%%%
%% readFile %%
%%%%%%%%%%%%%%
% authentication
on((!UsedSessionKeys->contains(SessionKeyTemp) |

SessionKey = SessionKeyTemp) & Encrypted =
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enc(SessionKeyTemp, readFile(?DataAddress))): {
UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

% read file
select {

on(fileSystem(DataAddress,?,AuthenticatedKey,?,?Data)): {
Actor -> A: enc(SessionKey, Data);

}
}

}

%%%%%%%%%%%%%%%
%% writeFile %%
%%%%%%%%%%%%%%%
% authentication
on((!UsedSessionKeys->contains(SessionKey) | SessionKey =

SessionKeyTemp) & Encrypted = enc(SessionKeyTemp,
writeFile(?DataAddress, ?Data))): {

UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

% write file
select {

on(fileSystem(DataAddress, ?DataAddressCorrupted,
?KeyRead, AuthenticatedKey, ?OldData)): {

retract(fileSystem(DataAddress, DataAddressCorrupted,
KeyRead, AuthenticatedKey, OldData));

fileSystem(DataAddress, DataAddressCorrupted, KeyRead,
AuthenticatedKey, Data);

% corrupt the rest of the same file
select {

on(fileSystem(DataAddressCorrupted, DataAddress,
?KeyRead, ?AuthenticatedKey, ?OldData)): {

retract(fileSystem(DataAddressCorrupted,
DataAddress, KeyRead, AuthenticatedKey,
OldData));

fileSystem(DataAddressCorrupted, DataAddress,
KeyRead, AuthenticatedKey, corrupted);

}
}

}
}

% send response
Actor -> A: enc(SessionKey, 0);

}
}

}
}

}
}

}
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Session
body {

% all possible data locations
fileSystem(addressName, addressNameCorrupted, key1, key2, name);
fileSystem(addressBalance, addressBalanceCorrupted, key1, key1,

oldBalance);
fileSystem(addressNameCorrupted, addressName, key1, key2, corrupted);
fileSystem(addressBalanceCorrupted, addressBalance, key1, key1,

corrupted);

% new roles
new PCD(A,B);
new PICC(A,B);

}
}

% Environment
body {

% new session
new Session(pcd,picc);

}
}
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Appendix C

ASLan++ Source of Example 3

specification example
channel_model CCM

entity Environment {

types
encCommand < text;
command < text;
dataAddress < text;
encrypted < text;
authenticate < text;
initializationVector < text;

symbols
pcd,picc: agent;
encryptedCommand(authenticate,encrypted): encCommand;
readFile(dataAddress): command;
writeFile(dataAddress, message): command;
noninvertible enc(symmetric_key, initializationVector, message): encrypted;
noninvertible auth(symmetric_key, symmetric_key): authenticate;
nextIV(initializationVector): initializationVector;
zeroIV: initializationVector;
corrupted: text;
addressName: dataAddress;
addressBalance: dataAddress;
addressNameCorrupted: dataAddress;
addressBalanceCorrupted: dataAddress;
nonpublic key1: symmetric_key;
key2: symmetric_key;
nonpublic none: symmetric_key;
nonpublic oldBalance: text;
nonpublic newBalance: text;
nonpublic name: text;
ok: text;

entity Session (A, B: agent) {

symbols
fileSystem(dataAddress, dataAddress, symmetric_key, symmetric_key,
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message): fact;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PCD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

entity PCD (Actor, B: agent) {

symbols
Data: message;
SessionKey: symmetric_key;
DataAddress: dataAddress;
IV: initializationVector;

body {

% fresh session key generation
SessionKey := fresh();

% read balance
Actor -> B: encryptedCommand(auth(key1, SessionKey), enc(SessionKey,

nextIV(zeroIV), readFile(addressBalance)));
B -> Actor: enc(SessionKey, next(nextIV(zeroIV)), ?Data);

% 1. check whether there is enough money
% 2. subtract the value of the goods
% 3. write new balance
Actor -> B: encryptedCommand(auth(key1, SessionKey), enc(SessionKey,

next(nextIV(nextIV(zeroIV))),
writeFile(addressBalance, newBalance)));

% refinement 1:
%% B -> Actor: ?;
% OR refinement 2:
%% B -> Actor: enc(?, ?, ok);
% OR refinement 3:
%% B -> Actor: enc(SessionKey, next(nextIV(nextIV(nextIV(zeroIV)))),
%% ok);
% end of refinement

% PICC should have "newBalance" at address "addressBalance"
assert trueBalance: fileSystem(addressBalance, ?, key1, key1,

newBalance);

% end of protocol
}

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PICC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

entity PICC (A, Actor: agent) {

symbols
Data: message;
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OldData: message;
SessionKey: symmetric_key;
SessionKeyTemp: symmetric_key;
KeyRead: symmetric_key;
AuthenticatedKey: symmetric_key;
EncryptedCommand: encCommand;
Command: command;
DataAddress, DataAddressCorrupted: dataAddress;
Encrypted: encrypted;
UsedSessionKeys: symmetric_key set;
LastIV: initializationVector;
IV: initializationVector;

body {

% initialization
AuthenticatedKey := none;
SessionKey := none;

% main loop
while(true) {

% read command
A -> Actor: ?EncryptedCommand;

select {
on(EncryptedCommand = encryptedCommand(auth(?AuthenticatedKey,

?SessionKeyTemp), ?Encrypted)): {
select {

%%%%%%%%%%%%%%
%% readFile %%
%%%%%%%%%%%%%%
% authentication
on((!UsedSessionKeys->contains(SessionKeyTemp) & Encrypted =

enc(SessionKeyTemp, nextIV(zeroIV),
readFile(?DataAddress))) | (SessionKey =
SessionKeyTemp & Encrypted = enc(SessionKeyTemp,
nextIV(lastIV), readFile(?DataAddress)))): {

if(SessionKey = SessionKeyTemp): {
lastIV := next(nextIV(lastIV));

} else {
lastIV := next(nextIV(zeroIV));

}
UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

% read file
select {

on(fileSystem(DataAddress, ?, AuthenticatedKey, ?,
?Data)): {

Actor -> A: enc(SessionKey, lastIV, Data);
}

}
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}

%%%%%%%%%%%%%%%
%% writeFile %%
%%%%%%%%%%%%%%%
% authentication
on((!UsedSessionKeys->contains(SessionKeyTemp) & Encrypted =

enc(SessionKeyTemp, nextIV(zeroIV),
writeFile(?DataAddress, ?Data))) | (SessionKey =
SessionKeyTemp & Encrypted = enc(SessionKeyTemp,
nextIV(lastIV), writeFile(?DataAddress, ?Data)))): {

if(SessionKey = SessionKeyTemp): {
lastIV := next(nextIV(lastIV));

} else {
lastIV := next(nextIV(zeroIV));

}
UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

% write file
select {

on(fileSystem(DataAddress, ?DataAddressCorrupted,
?KeyRead, AuthenticatedKey, ?OldData)): {

retract(fileSystem(DataAddress, DataAddressCorrupted,
KeyRead, AuthenticatedKey, OldData));

fileSystem(DataAddress, DataAddressCorrupted, KeyRead,
AuthenticatedKey, Data);

% corrupt the rest of the same file
select {

on(fileSystem(DataAddressCorrupted, DataAddress,
?KeyRead, ?AuthenticatedKey, ?OldData)): {

retract(fileSystem(DataAddressCorrupted,
DataAddress, KeyRead, AuthenticatedKey,
OldData));

fileSystem(DataAddressCorrupted, DataAddress,
KeyRead, AuthenticatedKey, corrupted);

}
}

}
}

% send response
Actor -> A: enc(SessionKey, lastIV, ok);

}
}

}
}

}
}

}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Session
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body {

% all possible data locations
fileSystem(addressName, addressNameCorrupted, key1, key2, name);
fileSystem(addressBalance, addressBalanceCorrupted, key1, key1,

oldBalance);
fileSystem(addressNameCorrupted, addressName, key1, key2, corrupted);
fileSystem(addressBalanceCorrupted, addressBalance, key1, key1,

corrupted);

% new roles
new PCD(A,B);
new PICC(A,B);

}
}

% Environment
body {

% new session
new Session(pcd,picc);

}
}
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