
r VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INTELLIGENT SYSTEMS

BEZPEČNOST PROTOKOLŮ BEZKONTAKTNÍCH
ČIPOVÝCH KARET
S E C U R I T Y O F C O N T A C T L E S S S M A R T C A R D P R O T O C O L S

DISERTAČNÍ PRÁCE

PHD T H E S I S

A U T O R PRÁCE Ing. Mgr. M A R T I N H E N Z L

A U T H O R

ŠKOLITEL doc. Dr. Ing. P E T R HANÁČEK

S U P E R V I S O R

BRNO 2016

Abstrakt
Tato p r á c e analyzuje hrozby pro protokoly využívaj ící b e z k o n t a k t n í č ipové karty

a p ř e d s t a v u j e metodu pro p o l o a u t o m a t i c k é h l e d á n í z ran i t e lnos t í v t a k o v ý c h pro­

tokolech p o m o c í model checkingu. N á v r h a implementace bezpečných ap l ikac í jsou

ob t í žné úkoly, i když je p o u ž i t b e z p e č n ý hardware. Specifikace na vysoké ú rovn i

abstrakce m ů ž e vést k r ů z n ý m i m p l e m e n t a c í m . Je dů lež i t é použ íva t č ipovou kar tu

sp rávně , n e v h o d n á implementace protokolu m ů ž e p ř inés t zranitelnosti , i když je pro­

tokol s á m o sobě bezpečný . Cí lem t é t o p r á c e je poskytnout metodu, k t e r á m ů ž e

bý t v y u ž i t a vývojář i p ro toko lů k vy tvo řen í modelu l ibovolné č ipové karty, se za­

m ě ř e n í m na b e z k o n t a k t n í č ipové karty, k v y t v o ř e n í modelu protokolu a k použ i t í

model checkingu pro na lezení ú t o k ů v tomto modelu. Ú t o k m ů ž e bý t ná s l edně prove­

den a pokud nen í úspěšný, model je upraven pro dalš í b ě h model checkingu. P r o

formální verifikaci byla p o u ž i t a platforma A V A N T S S A R , modely jsou p s á n y v jazyce

A S L a n + + . Jsou poskytnuty p ř ík l ady pro demonstraci použ i t e lnos t i n a v r h o v a n é

metody. Tato metoda byla p o u ž i t a k na lezen í slabiny b e z k o n t a k t n í č ipové karty M i -

fare D E S F i r e . Tato p r á c e se dá le zabývá hrozbami, k t e r é nen í m o ž n é p o k r ý t navrho­

vanou metodou, jako jsou ú t o k y relay.

Abstract
This thesis analyses contactless smart card protocol threats and presents a method of

semi-automated vulnerabi l i ty finding i n such protocols using model checking. Design­

ing and implementing secure applications is difficult even when secure hardware is

used. H i g h level appl icat ion specifications may lead to different implementations. It

is important to use the smart card correctly, inappropriate protocol implementat ion

may introduce a vulnerabili ty, even i f the protocol is secure by itself. The goal of

this thesis is to provide a method that can be used by protocol developers to create

a model of arbi trary smart card, w i th focus on contactless smart cards, to create a

model of the protocol, and to use model checking to find attacks in this model . The

attack can be then executed and if not successful, the model is refined for another

model checker run. The A V A N T S S A R platform was used for the formal verification,

models are wri t ten i n the A S L a n + + language. Examples are provided to demonstrate

usabili ty of the proposed method. This method was used to find a weakness of Mifare

D E S F i r e contactless smart card. This thesis also deals w i t h threats not possible to

cover by the proposed method, such as relay attacks.

Klíčová slova
Bezpečnos t , Č ipová K a r t a , B e z k o n t a k t n í Komunikace , M o d e l Checking, A S L a n + + ,

F o r m á l n í Verifikace, Pro tokol

Keywords
Security, Smart C a r d , Contactless Communica t ion , M o d e l Checking, A S L a n + + , For­

ma l Verification, P ro toco l

Citace
M a r t i n Henzl : Security of Contactless Smart C a r d Protocols, d i s e r t ačn í p ráce , Brno ,

F I T V U T v B r n ě , 2016

3

Security of Contactless Smart Card Protocols

Prohlášení
Proh lašu j i , že jsem tuto d i se r t ačn í p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana

doc. D r . Ing. Pe t ra H a n á c k á . Uved l jsem všechny l i t e rá rn í prameny a publikace, ze

k t e rých jsem čerpal .

M a r t i n Henz l

A p r i l 14, 2016

Poděkování
C h t ě l bych poděkova t svému školiteli doc. D r . Ing. Pe t ru Hanáčkov i za o d b o r n é

veden í a spo lup rác i př i v ý z k u m u . Dá le děkuj i všem, k t e ř í m i poskyt l i c enné p o d n ě t y

a rady. Děkuj i své r o d i n ě a p ř í t e lkyn i za t rpě l ivos t a podporu.

© M a r t i n Henzl , 2016.

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení

oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 6

1.1 Mot iva t ion 6

1.2 Goals 7

1.3 Cont r ibu t ion 8

2 Background 10

2.1 Contactless Technologies 10

2.2 Smart Cards 11

2.2.1 Mifare Classic 13

2.2.2 Mifare D E S F i r e 13

2.2.3 Java C a r d 15

2.2.4 M U L T O S 15

2.2.5 Bas i cCa rd 16

2.3 Threats 17

2.3.1 Phys ica l At tacks 17

2.3.2 Logica l At tacks 18

2.3.3 Side-channel At tacks 19

2.3.4 Threats specific to Contactless Communica t ion 19

2.4 Security A P I and Protocols 23

2.4.1 Security A P I 23

2.4.2 Security Protocols 24

2.5 Formal Methods 25

2.5.1 His tory 27

2.5.2 Dolev-Yao M o d e l 28

3 Related W o r k 29

3.1 Mifare Classic and D E S F i r e At tacks 29

3.1.1 Mifare Classic At tacks 29

1

3.1.2 Side-channel Analys is At tacks on Mifare D E S F i r e 32

3.2 Security A P I At tacks 33

3.2.1 H S M Security A P I At tacks 34

3.2.2 At tacks on P K C S # 11 35

3.3 Pro toco l At tacks 38

3.3.1 E M V At tacks 40

3.3.2 O A u t h Verification 42

4 Vulnerabil i ty F ind ing M e t h o d 47

4.1 Hardware 48

4.2 Pro toco l Analys is 50

4.3 Verification 51

4.3.1 M o d e l checking tools 51

4.3.2 Too l Selection 55

5 Formal M o d e l 57

5.1 Mode l ing Too l 59

5.2 Smart C a r d M o d e l 59

5.2.1 States reduction 67

5.2.2 P I C C En t i t y 69

5.2.3 Basic Concepts 71

5.3 App l i ca t ion Logic M o d e l 78

5.4 At tack Defini t ion 80

6 Experimental Results 82

6.1 Sample Verification 1 - Mifare D E S F i r e M F 3 I C D 4 0 84

6.1.1 At t ack 1 84

6.1.2 Testing At tack 1 on a Rea l Device 87

6.1.3 Countermeasure to At tack 1 89

6.1.4 At t ack 2 90

6.1.5 Testing At tack 2 on a Rea l Device 91

6.1.6 Countermeasure to At tack 2 92

6.1.7 At t ack 3 94

6.1.8 Testing At tack 3 on a Rea l Device 95

6.1.9 Countermeasure to At tack 3 96

6.1.10 Conclusion 96

6.2 Sample Verification 2 - Improved smart card 97

2

6.3 Sample Verification 3 - Mifare D E S F i r e E V 1 99

7 Protocol Mode l ing Limitations 107

7.1 At tacks not Covered 107

7.2 Relay At tack 108

7.2.1 How to Perform a Relay At tack 108

7.2.2 Delays i n Relay At tacks Over Buffered Connect ion 110

7.3 Relay At tack Mi t iga t ion 113

7.3.1 Passive Detect ion 113

7.3.2 Overclocking 114

8 Conclusions 116

Bibl iography 119

Appendices 132

Lis t of Appendices 133

A A S L a n + + Source of Example 1 134

B A S L a n + + Source of Example 2 139

C A S L a n + + Source of Example 3 144

3

List of Figures

2.1 Relay attack device constellation 22

3.1 Tookan system diagram 36

3.2 P K C S # 1 1 attack 1 38

3.3 P K C S # 1 1 attack 2 38

3.4 O A u t h authorizat ion code 43

3.5 Statement part of the Browser role definition 44

3.6 At t ack of secret state 45

3.7 At t ack of secret code 46

3.8 At tack of consistency 46

4.1 Scheme of semi-automated vulnerabi l i ty search system 48

4.2 Constel lat ion of devices 50

5.1 Intruder model 58

5.2 Schematic architecture of A S L a n + + 60

5.3 U M L state machine describing basic Mifare D E S F i r e behavior 63

5.4 Mifare D E S F i r e U M L state machine wi th memory states 64

5.5 F S M describing smart card behavior for some basic commands 66

5.6 Reduced number of states 69

5.7 P I C C role i n A S L a n + + 70

5.8 Three-pass authentication example 73

5.9 Simplified authentication used i n model 73

5.10 One-pass authentication i n ASLan+-1- 74

5.11 E C B and C B C encryption modes i n ASLan+-1- 76

5.12 P I C C file system in A S L a n + + 77

5.13 Sample payment protocol 79

5.14 Payment protocol w i th reduced set of commands 81

5.15 At t ack definition in A S L a n + + 81

4

6.1 At t ack 1 - model checker output 84

6.2 At tack 1 based on changing address 86

6.3 At t ack 1 - real commands 86

6.4 At t ack 1 - A P D U s 88

6.5 At tack 1 - w i t h data length 89

6.6 At t ack 2 - model checker output 90

6.7 At t ack 2 based on discarding write command 91

6.8 At tack 2 - A P D U s 92

6.9 Countermeasure to attack 2 93

6.10 Hypothe t ica l attack 94

6.11 Hypothet ica l attack countermeasure 95

6.12 At t ack 3 - model checker output 96

6.13 At t ack 3 based on wr i t ing to another file 97

6.14 At tack 3 - A P D U s 101

6.15 Pro toco l 102

6.16 M o d e l checker output 102

6.17 C o m m a n d injection attack 103

6.18 C o m m a n d injection attack - real commands 104

6.19 Pro toco l 105

6.20 M o d e l checker output 1 105

6.21 M o d e l checker output 2 106

6.22 M o d e l checker output 3 106

7.1 T i m e consumption 115

7.2 Response times comparison 115

5

Chapter 1

Introduction

1.1 Motivat ion

Contactless smart cards and devices equipped wi th near-field communicat ion (N F C)

technology are used i n many modern applications worldwide. Mos t of these applica­

tions require high level of security. T y p i c a l contactless technology applications are in

the fields of payment systems [1] [2] [3] [4], electronic tickets and vouchers [5] [6] [7] [8],

loyalty programs [9], access control systems [10] [11], passports [12] [13] and I D cards

[14]. There are hundreds of projects worldwide [15], which use N F C devices for small

payments, and the number is growing. Contactless cards are more convenient for the

user to perform transactions than contact cards; however, they yield new vulnerabil i ­

ties due to the radio interface. Proper use of these technologies provides high level of

security; however, some applications, especially for access control, may be developed

by developers that are not security experts, so they can contain vulnerabilities.

Development of secure hardware is very expensive and very slow compared to

development of software. Protocols used i n security sensitive systems are usually very

secure and sometimes even formally verified. The software implementat ion is usually

developed faster than hardware and is usually not formally verified, which makes

it the weakest l ink. The software implementat ion is as important as other parts of

the system. The protocol must be carefully implemented using secure hardware in

proper way, which is very difficult, thus there is space for potential mistakes leading

to vulnerabilit ies. People wr i t ing such applications have to be perfectly aware of a l l

weaknesses of the part icular card type in order to implement the system properly.

A n automated tool for vulnerabi l i ty search i n contactless communicat ion applications

would help them to verify their implementat ion on part icular device.

W h e n designing and verifying security protocols using informal techniques, some

G

security errors may remain undetected. Formal verification methods provide a sys­

tematic way of finding protocol flaws. The protocol is specified i n a formal way and

the correctness of security properties is proved or disproved using formal methods

and mathematics.

The motivat ion for this work is a massive spreading of new contactless technologies

and development of many applications sometimes by developers that are not security

experts. Due to the high number of systems using contactless technology worldwide

and the possibil i ty of gaining high financial profit from compromising such a system,

there are efforts to find vulnerabili t ies in these systems on both sides, attackers are

t ry ing to compromise a system, while developers are t ry ing to fix vulnerabilit ies and

improve security.

1.2 Goals

The high level goal of this thesis is to investigate security of contactless smart card

protocols and to find methods of improving security of these protocols.

This thesis is concerned wi th contactless smart card protocols, which are protocols,

such as payment protocols, that use contactless smart cards to store some data, values,

cryptographic keys, and to perform cryptographic operations. E n d users usually use

these personalized cards for payments, access control, loyalty programs, etc. The focus

here is on contactless smart cards which differ from smart cards wi th contact interface

mainly in two aspects. F i rs t ly , the contactless smart cards are usually simpler due to

the power l imitat ions, so they can be modeled more easily. Secondly, the contactless

interface introduces threats due to the fact that a l l communicat ion is wireless. These

threats, which are not applicable for smart cards wi th contact interface, must also be

considered when investigating security of contactless smart card protocols.

If we t ry to understand what security issues can occur in such a protocol, we have

to look not only at one level of the communication, such as the R F link, or the high

level protocol definition. We have to investigate possible vulnerabilit ies at a l l levels.

The focus i n this thesis is on the high level attacks on the protocol level. Possibi l i ty

of these attacks w i l l be analysed and a method of semi-automated vulnerabi l i ty finding

using formal methods w i l l be proposed.

The formal model can be created from the protocol definition or extracted from

the eavesdropped communicat ion. Unwanted states that constitute an attacks must

also be specified. After analysing the protocol and creating the model including the

attack states, the formal analysis methods, such as model checking, can be used.

7

However, not a l l kinds of attacks are covered by the proposed method, such as

attacks specific to the contactless interface. One of the attack types that are not

covered by the method, the relay attack, is investigated separately. A minor part

of this thesis is therefore dedicated to relay attack investigation and countermeasure

proposal.

Relay attack is one of the most dangerous attacks against contactless devices,

because there is no pract ical countermeasure to i t . There are so called distance

bounding protocols; however, they are implemented only in some devices, keeping

the rest of devices unprotected. In this thesis the relay attacks w i l l be investigated

and i f possible, a countermeasure to relay attacks performed over network w i l l be

proposed.

1.3 Contribution

The contr ibution of this thesis is twofold. Two areas of contactless smart card security

were researched:

• finding high level attacks on the protocol level

• countermeasure to relay attacks

Chapter 2 provides introduct ion to contactless technologies and smart cards, and

analyses threats for smart cards, which are physical attacks, logical attacks, side-

channel attacks, and most importantly, threats specific to contactless communicat ion,

such as relay attack. This chapter also provides introduct ion to security A P I and

protocols, and formal methods that can be used for security protocol analysis.

Chapter 3 shows the state of the art i n contactless smart card security and

overviews the attacks and techniques used to find new types of attacks and the verifi­

cation processes of protocols. Besides published attacks on Mifare Classic and Mifare

D E S F i r e , the focus is on security A P I attacks and protocol attacks, which provide an

insight to methods that can be used to find vulnerabili t ies, such as formal methods.

M a i n focus i n this thesis is on proposing a method of finding high level attacks

on the protocol level. Chapter 4 is dedicated to the description of the proposed

semi-automated method of finding vulnerabilit ies i n contactless smart card protocols

using formal verification methods. The focus is on contactless smart cards, because

they are simpler than smart cards wi th contact interface, often only memory cards

providing encrypted communicat ion.

8

Chapter 5 provides a formal model and describes a method to create models

in ASLan+-1- language, which is an input format for various model checkers. The

ASLan+-1- model contains smart card, protocol, and attack definitions, which are

sufficient for a model checker to be able to find vulnerabilities.

Results of experiments w i th three sample verifications are shown i n chapter 6 to

demonstrate the usabil i ty of the method. B y using this method, the developer can

iteratively fix the vulnerabilit ies found by the model checker and secure the appli­

cation. The proposed method was also used to reveal a not yet published weakness

of the Mifare D E S F i r e smart card. A l though the experiments are based on Mifare

D E S F i r e types of cards, the method can be used on other smart cards as well, even

on more complex cards wi th operating system.

Al though formal verification methods are useful for finding vulnerabili t ies on the

protocol level, the usabil i ty of this technique on other attacks on contactless smart

cards is l imi ted . Chapter 7 provides investigation of relay attacks and, i n particular,

relay attacks performed over network. A method is proposed to prevent real-world

attacks that induce delays significantly longer than the delay caused by the time

travelling longer distance. A possible countermeasure to the overclocking attacks is

also proposed, and results from tests on real hardware are provided.

9

Chapter 2

Background

2.1 Contact less Technologies

There are two main types of contactless devices involved i n security sensitive systems,

contactless smart cards and near-field communicat ion (N F C) devices. B o t h use the

same communicat ion interface, similar to the interface used i n Rad io Frequency Iden­

tification (R F I D) tags. This thesis is focused on contactless smart cards, but many

things discussed i n this work can also be applied to the N F C technology.

The contactless communicat ion is based on mutua l inductance of two coils. The

active device (reader) creates the alternating electromagnetic field, which provides

the passive device (card) w i th energy due to the electromagnetic inductance. D a t a

are transferred from the reader to the card by ampli tude modula t ion of the carrier

(which also provides the energy to the card). The modified M i l l e r coding wi th 100 %

modulat ion or Manchester coding wi th 10 % modula t ion are used. The data transfer

in the direction from reader to card is based on load modulat ion. The card sends

the information by changing its power consumption. These changes can be detected

on the reader and the data can be extracted. The Manchester coding wi th 10 %

modulat ion is used i n this direction. The contactless devices work at a frequency

of 13.56 M H z and the max ima l operational distance is about 10 cm, but may dif­

fer for ind iv idua l card types and N F C devices. The data transfer rate ranges from

106 kbps to 424 kbps. The speed of 106 kbps is the m i n i m u m that every contactless

card must support and at which every communicat ion begins. A l l details about the

communicat ion can be found i n [16].

N F C is the standard designed for handheld devices such as cell phones or P D A s .

Th is technology provides such devices wi th the capabil i ty of contactless smart cards.

Such equipped device can be used as a smart card i n t icketing, banking, or other

10

application, or as a contactless smart card reader to communicate w i th a real card, or

it can establish a communicat ion channel w i t h any other N F C enabled device. The

working frequency of N F C is also 13.56 M H z . The device may run th i rd party software

which uses the N F C interface. The possibil i ty of running arbi t rary and potential ly

malicious code implies the emphasis on security. Security threats are similar to threats

of contactless smart cards. Except for the essential communicat ion interface, the N F C

device employs the secure element (SE) , which is a hardware security chip similar to

the smart card. The S E is used for storing sensitive data, such as keys. It can be

part of the cell phone, part of the S I M card or it can be in form of a removable secure

memory card. There are attacks on N F C devices that exploit vulnerabilit ies i n the

N F C architecture and implementation, there is even a possibil i ty to infect the N F C

device wi th the malicious code wirelessly [17].

2.2 Smart Cards

Smart cards are plastic cards equipped wi th an integrated circuit . Contact cards are

compliant w i th I S O / I E C 7816 [18], which describes the physical parameters of these

cards and their contacts and the communicat ion protocols. Contactless smart cards

are compliant w i th I S O / I E C 14443 [19]. The simplest type of card is a memory card

which contains just a non-volatile memory. More complex cards are microprocessor

cards equipped wi th the ari thmetic logic unit (A L U) , which enables them to perform

more complex operations. Cryptographic smart cards have i n addi t ion a crypto­

graphic coprocessor, which can be used for encrypt ion/decrypt ion, key generation,

and pseudo-random number generation. Cryptographic smart cards communicate

wi th the environment v i a security A P I , which is designed to not reveal any sensitive

data to a potential attacker. Cryptographic smart cards are used for many purposes

which require storing of sensitive data, such as cryptographic keys. Asymmet r i c key

pairs can be loaded into the card or can be generated direct ly on the card and the

public key can be consequently extracted. Cards are designed i n the way that private

keys never leave the card. So if the user generates the key pair on the card, he can

be sure that no one had access to the private key i n past and w i l l never have in the

future. However, there are some attacks that can reveal some information about the

secret key. The threats w i l l be briefly outl ined i n 2.3.

Contactless smart cards have been developed from contact smart cards by adding

the contactless interface similar to the interface used i n R F I D tags. Contactless cards

are more convenient for the user to perform transactions than contact cards; however,

11

they yie ld new vulnerabilit ies due to the radio l ink interface.

There are various R F I D standards for communicat ion on various frequencies and

designed for communicat ion on various distances. R F I D tags are read-only cards wi th

l imi ted memory typical ly communicat ing at 125 k H z . Another type is the G e n 2 U H F

C a r d that operates at 860 M H z to 960 M H z .

This thesis is focused on cryptographic contactless smart cards wi th read and write

protected memory. These cards are compliant w i th the I S O / I E C 14443 standard and

use the frequency of 13.56 M H z . Most contactless smart cards provide data transfer

encryption, which is essential for many applications. Some contactless smart cards

also provide other cryptographic operations such as on-card key generation.

The contactless smart card is often called the P r o x i m i t y Integrated Ci rcu i t C a r d ,

abbreviated P I C C . Its communicat ion counterpart, the terminal , is usually called the

P rox imi ty Coupl ing Device, abbreviated P C D .

In terms of smart card operating system, there are two categories of cards [20]:

smart cards w i t h fixed file structure and smart cards wi th dynamic applicat ion system.

The selection of a smart card operating system depends on the applicat ion that the

card is intended for.

Smart cards with fixed file structure are usually used as a secure computing

and storage devices. Files and permissions are defined i n advance by the issuer, which

is sufficient i n applications that do not change frequently. The benefit of this card

type is that they are cheap compared to the cards wi th more sophisticated operating

systems. These types of microprocessor cards are the most common smart cards

globally. One of the most widespread contactless smart cards are cards from the

Mifare family, such as Mifare Classic, which is a memory card wi th data encryption,

or its successor Mifare D E S F i r e . B o t h Mifare Classic and Mifare D E S F i r e M F 3 I C D 4 0

has some security vulnerabili t ies, which w i l l be described later.

Smart cards with dynamic application operating system are more complex

and enable developers to bui ld , test, and deploy applications that w i l l run on a

card. The two main operating system standards for smart cards are JavaCard and

M U L T O S . B o t h support the Java language, i n both Java compiler translates

the source to Java classes. For JavaCard the classes are converted to JavaCard

bytecode, for M U L T O S , the classes are converted to M U L T O S Executable Language

(M E L) bytecode. The bytecode can be executed by the v i r tua l machine on the card.

Another type of programmable smart card is Bas icCard , which can be programmed

using Basic programming language and which is much simpler and cheaper than Java

and M U L T O S cards. E a c h type is suitable for different type of applicat ion.

12

2.2.1 Mifare Classic

Mifare Classic cards are contactless smart cards equipped w i t h more powerful chips

than classical R F I D tags, these cards provide the unique identification number and

cryptographically protected memory, which allows such cards to be used i n access

control, t icketing, and payment systems. The Mifare Classic card is compliant w i t h

I S O / I E C 14443A up to part 3. Par t 4 of this standard (high-level protocol) differs

from the Mifare implementation, the Mifare uses its own proprietary stream cipher

C R Y P T O l to secure the communicat ion layer [21]. The C R Y P T O l a lgori thm is

used for data encryption and for the mutua l authentication between the card and the

reader. The card is designed by the N X P Semiconductors and the implementat ion

details were kept secret.

The security features of Mifare Classic card are U I D , pseudorandom number gen­

erator (P R N G) and proprietary encryption algori thm C R Y P T O l . The U I D is set in

the factory and cannot be altered. It is used i n the anti-collision procedure and for

identification purposes. The P R N G is used for authentication and the C R Y P T O l for

encrypting the communicat ion after successful authentication.

Before reading any data from the card, the reader has to be authenticated for the

part icular sector of memory. The Mifare Classic uses a mutua l three pass authenti­

cation protocol. After this protocol both parties are authenticated and both believe

that they share the same secret key. E a c h sector has two access keys, one of these

secret keys has to be used for authentication. Different privileges can be set for these

keys.

The set of commands that Mifare Classic supports is small , the commands that

are supported are Read, Write, Increment, Decrement, Restore, Transfer.

Mifare Classic was very popular because of its low price un t i l series of attacks were

performed [22] [23] [24] [25] [26], revealing serious vulnerabili t ies i n proprietary encryp­

t ion a lgori thm C R Y P T O l and the P R N G , diminishing security of this card. The card

is now obsolete, superseded by the more advanced smart card, the Mifare D E S F i r e .

2.2.2 Mifare D E S F i r e

Mifare D E S F i r e is a successor of the cryptographical ly weak Mifare Classic. The most

significant improvement is that the proprietary encryption a lgor i thm C R Y P T O l was

replaced wi th standard 3 D E S and A E S encryption algorithms. F r o m the mathe­

mat ical perspective, the 3 D E S and A E S algorithms are sufficiently secure. However,

even the strong mathematical ly secure algorithms can be attacked using side-channel

13

analysis or there might be vulnerabilit ies on the protocol level.

Mifare D E S F i r e is used in several large payment and public transport systems

around the world, such as the Czech railway in-karta [5], the Aus t ra l i an m y k i card

[6], or the Oyster card used in London [7]. Other applications of this smart card

include mobile payment and access control systems.

Al though the concept presented i n this thesis does not depend on any part icular

hardware, for demonstration purposes we have chosen Mifare D E S F i r e card.

Mifare D E S F i r e M F 3 I C D 4 0 [27] is the oldest type of D E S F i r e , using the 3 D E S

algori thm. The next version, Mifare D E S F i r e E V 1 [28], supports 128-bit A E S and

random I D and is C o m m o n Cr i t e r i a certified at level E A L 4+. The newest version,

Mifare D E S F i r e E V 2 [29] is the most advanced Mifare smart card, employing ad­

di t ional security functions, such as proximi ty check against relay attacks. Mifare

D E S F i r e E V 2 chip can hold as many different applications as the memory size sup­

ports and new applications can be loaded after the card has been deployed into the

market.

The Mifare D E S F i r e M F 3 I C D 4 0 [27] is equipped w i t h two, four, or eight kilobytes

of memory, which is organized using a flexible file system. This file system allows

a m a x i m u m of 28 different applications on one Mifare D E S F i r e . Each applicat ion

provides up to 32 files. Every applicat ion is represented by its 3 bytes App l i ca t i on

IDentifier (A I D) . The card is protected against cloning wi th the fixed 7 byte U I D ,

programmed into each device during product ion. The U I D cannot be altered and

ensures the uniqueness of each device.

The communicat ion starts w i th a mutua l three pass authentication between M i ­

fare D E S F i r e and P C D depending on the configuration employing either 56-bit D E S

(single D E S , D E S) , 112-bit 3 D E S (triple D E S , 2 K 3 D E S) , 168-bit 3 D E S (3 key triple

D E S , 3 K 3 D E S) or A E S . The level of security of a l l further commands is set during

the authentication. The following options are supported for data transfer dur ing the

session on Mifare D E S F i r e E V 1 :

• P l a i n data transfer

• P l a i n data transfer w i th cryptographic checksum (M A C) : backwards-compatible

mode: 4 byte M A C , D E S / 3 D E S / A E S based mode: 8 byte C M A C

• Encryp ted data transfer (secured by C R C before encryption): authentication

wi th backwards-compatible mode: A 16-bit C R C is calculated over the stream

and attached. The resulting stream is encrypted using the chosen cryptographic

14

method. A l l other authentications based D E S / 3 D E S / A E S : A 32-bit C R C is

calculated over the stream and attached. The resulting stream is encrypted

using the chosen cryptographic method. [28]

2.2.3 Java C a r d

Java C a r d [30] is a technology that allows Java C a r d applets (small Java applications)

to be run securely on smart cards. Bi l l ions of Java Cards are used as S I M cards,

payment cards, I D cards, e-Passports, and more.

Java C a r d applets are smal l programs, that can communicate w i th the terminal

and w i t h each other. The applet is a state machine which reads incoming commands,

processes them, and responds back by sending data and /or status. Java C a r d tech­

nology enables mult iple applications to be deployed securely on a single smart card.

Apple ts can be either pre-loaded on the card, or loaded into a smart card once it has

been issued.

Java C a r d run-time environment performs bytecode verification as part of the

applet loading procedure. The applet is first run and verified before it is loaded to

the card. The verified applet is signed and installed on the card. Java C a r d only

performs lightweight bytecode verification on the card. Once the applet is verified

and signed, it cannot be changed. New verification would have to be performed in

case of applicat ion change.

Java C a r d technology was designed to store sensitive information securely on the

card. Java cards offer hardware acceleration of symmetric cryptography (D E S , Triple

D E S , A E S) , asymmetric cryptography (R S A , D S A , E C C) , and other functions. Java

C a r d technology relies on the inherent security of the Java programming language to

provide a secure execution environment. D a t a is stored wi th in the application, and

Java C a r d applications are executed i n the Java C a r d v i r tua l machine, which is an

isolated environment separate from the underlying operating system and hardware.

Java C a r d v i r tua l machine usually manages several applications, different applications

are separated from each other by an applet firewall which restricts and checks access

of data elements of one applet to another.

2.2.4 M U L T O S

M U L T O S [31] is a mult i -appl icat ion smart card operating system, which enables mul­

tiple applications on a single smart card. Mi l l i ons of M U L T O S smart cards are being

issued by banks and governments, they are used i n applications such as contactless

15

payment, Internet authentication, loyalty programs, nat ional secure I D cards, bio-

metric e-Passports, and access control. B o t h contact and contactless M U L T O S cards

exist.

A M U L T O S cards support appl icat ion loading and deleting at any point i n the

card's life cycle.

Two technologies are used to ensure the secure environment. The first one is

the on-card v i r tua l machine that provides secure applicat ion run-time environment,

memory management, and applicat ion loading and deleting. The second one is the

Secure Trusted Environment Provis ioning (S T E P) , which is a technology for securing

the smart card, appl icat ion code and applicat ion data.

Appl ica t ions for M U L T O S cards can be wri t ten in high-level languages (such as

Java), which are then compiled to M E L bytecode. M E L bytecode can be executed

by the v i r tua l machine.

Each applicat ion has own applicat ion memory space, which consists of the ap­

pl icat ion code and data. The applicat ion has full access rights to its own code and

data, but can not directly access to memory of another applicat ion. The v i r tua l ma­

chine checks the bytecode instructions to ensure they are val id and they do not access

memory areas outside the applicat ion. If an applicat ion attempts to access an area

out of its space, the instruct ion is rejected by the v i r tua l machine and the applicat ion

execution is terminated.

2.2.5 BasicCard

ZeitControl ' s Bas i cCa rd [32] is the smart card programmable in Basic . Basic was

originally developed when computers had very l imi ted resources. The same problem

is today wi th smart cards, which makes Basic a suitable programming language for

smart cards. BasicCards can be used i n applications like electronic purse, I D card,

medical card, Internet security, drivers license network access, software key, access

control, gift and loyalty programs. It is focused on shortening the design and imple­

mentation t ime of a custom smart card applicat ion.

Ze i tCont ro l offers two versions of Bas i cCa rd wi th contactless interface - Contact-

less Bas i cCa rd ZC7 .5 R F I D and D u a l Interface Bas i cCa rd ZC7 .5 C o m b i . The latter

one is a dual interface card combining both contact and contactless interfaces.

B o t h smart cards provide symmetric and asymmetric cryptography algorithms,

random number generator and cryptographic hash algorithms S H A - 1 and SHA-256 .

Supported symmetric cryptography algorithms are A E S wi th key length 128, 192

16

or 256 bits, D E S and Triple D E S wi th key length 56, 112 or 168 bits. Supported

public key cryptography algorithms include R S A encryption and signature algorithms

w i t h up to 4096-bit key length, w i th on-card key generation, and E l l i p t i c Curve

Cryptography (E C C) over finite fields of type G F (p) , w i th up to 512-bit key length,

also wi th on-card key generation.

2.3 Threats

There are many ways of at tacking a smart card. The attacks on smart cards are

typical ly divided into three main categories - physical attacks, logical attacks, and

side-channel attacks. These attacks are summarized for instance in [33]. There are

also threats common to a l l contactless devices, analysed for example i n [34]. B o t h

contactless smart cards and N F C devices face the threats specific to contactless com­

munication, such as eavesdropping, interruption of operation from distance, covert

communication, and the most dangerous - relay attack.

The smart card must have secure A P I and the protocols that are used to com­

municate w i th the smart card must also be secure. A n inappropriate protocol im­

plementation can yie ld new vulnerabilit ies even if the protocol itself is secure and

the communicat ion wi th the hardware is considered secure too. There can also occur

a si tuation when an insecure protocol is proven to be secure by the formal reason­

ing. Th i s can happen when the protocol does not consider a l l possibilities of the real

world, or when the protocol is not implemented properly. There can be situations not

defined by the protocol but possible i n the real world. Since the focus i n this thesis

is on security verification on the protocol level, a separate section 2.4 is dedicated to

security A P I and protocols.

2.3.1 Physical Attacks

Phys ica l attacks on smart cards, also known as invasive attacks, or hardware attacks,

are pervasive attacks and require advanced equipment. These attacks are performed

by highly motivated attackers w i th high knowledge and assets, who manage to obtain

physical access to the smart card. Phys ica l attacks involve physical dismantl ing of

the chip and usually many chips have to be destroyed before an attack is successful.

Phys ica l attacks include scanning the chip structure wi th microscope, reverse

engineering, reading the contents of card's E E P R O M memory using powerful electron

microscopes, probing the integrated circuit (IC) wi th a microprobe, re-activating

burned fuses, and circuit modification. A l though physical attacks on smart cards

17

typical ly require sophisticated and expensive equipment, there are also attacks that

can be performed wi th only low cost equipment.

Smart card manufacturers constantly improve their smart card chip designs in

order to make these attacks more difficult. Phys ica l attack countermeasures that can

be implemented in the IC are: [35]:

• F lexible and user-defined memory encryption of user memory, R A M , and R O M

• Use of a memory management unit to prohibit one applicat ion from accessing

the code of another applicat ion

• Ac t ive shielding that renders the IC inactive when triggered

• Smal l I C geometry (0.22 fim as a m a x i m u m feature size) to deter microprobing

• Bus confusion and encryption of data travelling on the bus

• Continuous checking of the random characteristics of the IC

• Propr ie tary t iming and I C layout

This type of attacks is out of scope of this thesis.

2.3.2 Logical Attacks

Logica l attacks, also known as fault attacks, are non-pervasive and typical ly attempt

to find and exploit any vulnerabili t ies or weaknesses i n the design of the smart card

applicat ion or of the whole smart card operating system. These attacks are relatively

cheap and simple compared to other smart card attack types. Thanks to these facts

much more potential attackers exist. However, these attacks are also easier to prevent,

rigorous design and development process of the smart card can help to eliminate

logical attack vulnerabilit ies.

Logica l attacks include presenting the card wi th inval id commands, formats, or

field lengths i n order to induce an error i n the operation of the I C , or buffer overflow.

Erroneous operation may reveal sensitive information.

Besides the rigorous design and development process, the logical attack counter-

measures are for instance sensors that check the correct I C operation, or redundant

logical operations. If the I C is forced to operate outside the established sensor pa­

rameters, the I C goes into a larm mode or prevents operation completely. [35]

Examples of logical attacks on security A P I are provided i n chapter 3.2.

18

2.3.3 Side-channel Attacks

Side-channel attacks are based on information gained from the physical implemen­

ta t ion of a cryptosystem on the smart card. Side-channel attacks are non-pervasive,

u t i l iz ing a side-channel that leak some information, which can be analysed and used

to compromise the system and for example extract secret information such as keys

stored on the card. Side-channel attacks are based for example on t iming information,

power consumption, fault analysis, or electromagnetic radiat ion.

T y p i c a l side-channel attack for contactless smart cards is the R F analysis attack.

A l though many side-channel attacks require considerable technical knowledge of

the internal operation of the smart card, side-channel attacks are probably the most

popular attacks on smart cards, because they are relatively powerful and the required

equipment is not so expensive as the equipment required for the physical attacks.

Side-channel attack countermeasures that can be implemented i n the IC are: [35]:

• R a n d o m wait state insertion

• Bus confusion and memory encryption

• Continuous check of random characteristics

• Current scrambling/s tabi l iz ing

• Voltage regulation

• D u a l bus rails, where the transmission of data is passed from one ra i l of the bus

to the other to confuse the attacker

Example of side-channel attack on Mifare D E S F i r e contactless smart card is pro­

vided in chapter 3.1.2.

2.3.4 Threats specific to Contactless Communication

This section provides an analysis of threats specific to contactless technology. These

threats are inherent to the wireless communicat ion.

Eavesdropping. The major difference between contact and contactless smart

cards is the communicat ion medium. Contactless cards use electromagnetic waves so

the attacker can easily intercept and alter data being t ransmit ted over the air, which is

a big drawback when compared wi th contact smart cards. Eavesdropping the wireless

communicat ion is possible from a long distance. The eavesdropping and viewing data

being exchanged is possible at a low cost. Not only that the eavesdropping is very

19

easy w i t h appropriate equipment, it can also be executed from distance without being

noticed by the user and without trace. There is also a possibil i ty to perform a man-

in-the-middle attack. The countermeasure against eavesdropping is the encryption of

data being transmitted. In some cases only sensitive data are encrypted, commands

and other data are left i n the pla in text, sometimes weak ciphers or pseudo-random

number generators (P R N G) are used, a l l leading to other possible attacks.

Man-in-the-middle . A n effective man-in-the-middle attack is pract ical ly impos­

sible because of the short communicat ion distance of contactless smart cards. The

attacker would have to establish communicat ion wi th both card and terminal without

being spotted, and without the card and terminal hearing each other. The attacker

cannot establish such an attack from distance, the only possibil i ty is to be physically

present between the card and the terminal . The user would spot such si tuation very

likely, so the M I T M is not considered a big threat. However, there is a possibil i ty to

perform a relay attack, described later, to establish a man-in-the-middle attack. One

attacker establishes communicat ion wi th a genuine smart card, the second attacker

wi th a genuine reader, and they relay the communicat ion over their own channel.

Th is yields a possibil i ty to modify the data being exchanged. The man-in-the-middle

attack can be prevented by the mutual authentication.

Interruption of Operat ion. Communica t ion between a card and a reader may

be interrupted by t ransmit t ing random noise or some other signal at the same fre­

quency. This can interrupt the proceeding transaction at any t ime and without being

noticed. The applicat ion needs to know whether the transaction was performed cor­

rectly or there was an error. There should be a backup mechanism and backtracking

which make sure that the transaction has ended i n a regular state. The permanent

j amming of the communicat ion can also be classified as denial of service (DoS) attack.

Covert Communicat ion . Contactless smart cards have one big disadvantage

from the security point of view. Unl ike contact smart cards they can communicate

wi th the reader without user's notice. The contact card must be put into the reader,

so the user is always aware of the communicat ion (if the card is in his possession

and is not stolen). However, i n case of contactless cards, the fraudulent reader can

remotely communicate w i th the card without notice even i f the card is in the user's

possession. The possible countermeasure is the strong mutual authentication.

Denial of Service (DoS). There can also be a DoS attack performed without

the user's notice, for example on the prepaid card. The service the user has prepaid

can be denied for example by debit ing a l l monetary units from the card from a

distance. The attacker has to understand the communicat ion protocol between the

20

card and reader in order to send desired commands to the card. M u c h easier attack is

emptying or destroying the smart card by inappropriate electromagnetic waves. The

only countermeasure is the Faraday cage.

Communicat ion L i n k and D u a l Modes . This threat refers to smart cards

wi th dual interface, bo th contact and contactless [36]. These cards usually share an

underlying chip. The attacker chooses the less secure interface to attack the chip or

he can also switch between these two interfaces during the communicat ion. In order

to avoid this attack cards should use only one interface at a t ime during the whole

transaction.

Radio Frequency Analysis . Th is is a side-channel attack developed from power

analysis and electromagnetic analysis [36]. It is base on the fact that the electromag­

netic field surrounding the card depends on the actual power consumption of the

card, because the card is powered by this field. Th is attack requires the card to be

in possession of the attacker. The attacker can then learn some sensitive data from

the card.

Relay Attack. The concept of contactless communicat ion is based on the fact

that devices par t ic ipat ing i n the communicat ion are in the proximi ty of each other.

The security of many applications relies on this fact. A n access control system, for

instance, grants access to a person who authenticates themselves wi th the smart card,

because it is supposed that this person has the card i n their possession at the moment.

B u t what i f the genuine smart card is far away rather than in the person's pocket and

the communicat ion between the terminal and the card is forwarded? The verbat im

communicat ion can be relayed without getting noticed by any of the two genuine

parties. The first propose of this k ind of attack dates back to 1976, when the chess

grandmaster problem was published [37].

The relay attack involves two attackers forwarding verbat im communicat ion be­

tween genuine P C D and P I C C over their own communicat ion l ink, using fake P I C C

and fake P C D . One attacker establishes communicat ion wi th the the genuine P I C C ,

the second attacker w i th the genuine P C D , and they transmit the communicat ion

over their own channel. The communicat ion parties can be far away from each other

and the genuine user has l i t t le chance to find out that his card is being attacked. The

relay attack is very hard to be prevented, which makes it dangerous.

The attackers do not have to understand the communicat ion to perform successful

transactions, because they forward the verbat im communicat ion. If the attackers

understand the communicat ion, they can alter data being transmit ted and perform

a man-in-the-middle attack. A n example of device constellation for a relay attack is

21

Figure 2.1: Relay attack device constellation

shown in figure 2.1. The max ima l response t ime is l imi ted , so the communicat ion

should not be delayed much by the attacker; however, the t ime l imi t is usually not

restricting enough to prevent this attack. The I S O / I E C 14443 standard restricts the

max ima l response time, which is negotiated by the card and reader at the beginning

of each communicat ion, to 4.949 s.

Relay attacks cannot be prevented on the applicat ion level, the only possible

defense is provided by the distance bounding protocols, which are based on restricting

the round-trip t ime to some l imi t . A n attacker t ry ing to execute a relay attack causes

a delay i n the communicat ion, therefore the round-tr ip t ime l imi t w i l l prevent h i m

from succeeding. The max ima l t ime is computed from the speed of light and the

max ima l allowed distance.

The first distance bounding protocol was introduced in 1993 by Brands and

C h a u m [38]. It is based on a single bit round-tr ip delay measurement i n a rapid

challenge-response exchange. The reader sends out one bit and starts the timer, wait­

ing for the response. The tag responds wi th one bit , the reader stops the t imer after

receiving the response. The reader performs n of these rounds and decides, whether

the tag is or is not i n the l imi ted distance by comparing measured round-tr ip times

wi th expected times.

The round-tr ip t ime is affected not only by the signal travelling from one point

to another, but also by the delay induced by the tag processing the command. The

22

processing t ime must be very short and invariant i n order to get relevant measure­

ments. If the distance bounding protocol is performed at the ordinary communicat ion

frequency, which is typical ly 13.56 M H z , the resolution of one bit corresponds to more

than 22 m . In order to increase the precision of distance bounding protocols, different

communicat ion methods are used for challenge-response exchanges.

Since Brands and C h a u m presented the first distance bounding protocol i n 1993,

other protocols have been proposed. These protocols were based on technologies such

as R F , Received Signal Strength, Ul t rasound, U l t r a W i d e B a n d and Side-channels.

2.4 Security A P I and Protocols

Contactless smart cards have l imi ted computat ional resources, which results i n re­

strictions on cryptographic algorithms and cryptographic primitives that can be im­

plemented on them. Despite the resource l imitat ions, smart card manufacturers t ry

to equip smart cards w i t h the strongest cryptographic algorithms possible, many

current cryptographic contactless smart cards employ state-of-the-art encryption and

authentication algorithms. However, using a strong cryptographic a lgori thm does not

necessarily mean that the smart card is secure. The smart card must have secure A P I

and the protocols that are used to communicate w i th the smart card must also be

secure. How to achieve these goals w i l l be discussed in the following sections.

2.4.1 Security A P I

Appl icat ions that handle sensitive data, such as payment systems, have to be able

to protect these data from a potential attack according to their security policies.

The sensitive data often has to be stored in a device which faces a hostile environ­

ment. There has been developed a special hardware for storing sensitive data and

for performing cryptographic operations, called secure hardware. Examples of such a

hardware are smart cards and Hardware Security Modules (H S M) . In terms of physi­

cal security, this hardware is usually tamper resistant, so the data stored i n it cannot

be easily extracted even i f the attacker is highly motivated and has high assets. This

hardware has to communicate, but cannot leak any sensitive information. For this

purpose there is a security A P I , which serves as an interface between the secure hard­

ware and the environment. The security A P I is designed to be able to communicate

wi th the attacker without any sensitive data leak.

A l though method of finding vulnerabilit ies i n protocol implementations presented

in this thesis cannot be considered an security A P I attack, it is closely related to

23

security A P I attacks since it finds vulnerabili t ies in the way the smart card is used

by the protocol rather than i n the protocol itself.

2.4.2 Security Protocols

Security protocols are communicat ion protocols that a i m to reach some goals despite

the fact that the communicat ion is transferred over a channel possibly controlled

by an attacker, who can interfere w i th the protocol and perform malicious activity.

T y p i c a l goals are confidentiality of sensitive data, protecting the integrity of messages,

or giving one actor assurance about the identity of another actor w i t h which it is

communicat ing. These goals are typical ly achieved using cryptography.

Security protocols are usually used to protect something valuable, which means

that high assurance about their correctness is required.

Security protocols are quite simple, but it may be a difficult task to make them

really secure. The difficulties are not related only to the strength of the cryptographic

algorithms used, it is also necessary to take into consideration a l l possible behaviors

of hypothet ical attackers, including violations of the protocol rules, and any possible

forgery of messages. A n attacker can alter any message and can forge and insert

any number of new messages at each protocol step, which results in an unbounded

number of malicious behaviors. This fact increases the complexity of the already

complex communicat ion protocol between concurrently interacting parties. M a n u a l

design of new security protocol is a very error-prone task, even wi th the existence of

best practices and recommendations [39].

Nice example i l lustrat ing the difficulty of defining security protocols correctly is

the Needham-Schroeder public-key protocol [40]. This protocol was believed to be

secure for 17 years, un t i l Lowe discovered a flaw i n this protocol [41] by applying

formal methods [42]. Another example can be the discovery of a logical flaw in the

renegotiation feature of the widely used T L S protocol 13 years after the first version

of the protocol was published.

Due to the complexity of security protocols, the development requires mathemat­

ically based methods for reasoning about their correctness. There are two main lines

of research dealing wi th the rigorous methods for reasoning about security protocols.

One is based on quite abstract, symbolic modeling, which was originally published

by Dolev and Yao [43], and was developed mainly i n the formal methods commu­

nity. The other one was originally published by Goldwasser and M i c a l i [44] and by

Yao [45], and is based on more detailed computat ional models, involving complexity

24

and probabil i ty theories. Researchers t r ied to define a relation between these two

approaches, either by proving computat ional soundness for the symbolic model , or

by applying reasoning techniques that proved successful in the symbolic model to the

computat ional model . The recent progress i n this direction can be found in [46].

The symbolic approach is more abstract, enables better automation i n developing

proofs, but gives results that are more complex to relate to real wor ld security goals.

O n the other hand, the computat ional approach is closer to reality, gives more realistic

security assurance at the expense of increased difficulty i n proof automation [47].

A n example of formal verification of a cryptographic protocol of secure system

based on contactless technology is [48].

2.5 Formal Methods

Formal methods are mathematical ly based languages for specifying a representative

model of a system. They are used for checking when a property is satisfied by the

model.

Formal methods can be used for proving security properties of protocols such as

confidentiality, integrity, authentication, and anonymity. They can be used not only

to find out whether the protocol meets these properties or not, but they can also be

used to find the counterexample. These counterexamples can be considered possible

attacks. Formal methods therefore provide us wi th the automated way of finding

attacks and can also be used for proving that some attacks are not possible. For

protocol modell ing, the Dolev-Yao [43] model is usually used. Formal methods can

be classified into theorem proving, formal logic, and model checking.

• Theorem proving uses higher-order logic to reason about possible protocol ex­

ecutions by constituting a compelling proof that a particular property always

holds. These logics are not subject to finite bounds, and provide mechanized

proofs, including automated tools and proof checking, which can assist in parts

of proofs and prevent errors in reasoning. [49] The theorem proving methods

are based on various proof search strategies such as the basic resolution strat­

egy [50]. Some inductive theorem provers such as the N R L Pro toco l Analyzer

[51] are very t ime-consuming because they involve interactive theorem proving

by experts. Other security protocol analyzer is Isabelle [52] which also has the

specialization for higher-order logic.

• Formal logic focuses on the study of inference with a set of rules for making

25

deductions that are made explicit. It formalizes such deductions with precise

rules to decide if an argument is valid. This can be achieved by representing

objects and relationships symbolically including the quantifiers and logical con­

nectives. [49] Formal logic includes many logical systems, such as predicate logic

or moda l logic. The important logic from the security protocol analysis point of

view is the logic of Burrows, A b a d i and Needham (B A N) [53]. Th is logic is able

to represent belief, freshness and some other properties, that are fundamental

for analyzing security protocols. The B A N logic was used to analyze common

protocols and successfully detected some minor bugs [54].

• Model checking is a method to formally verify a finite-state concurrent system.

The specification of the system is often written as temporal logic formulas, and

efficient symbolic algorithms are used to traverse the model defined by the sys­

tem. The verification is achieved by checking if the formal specification can be

satisfied by the model. [49] M o d e l checking uses usually either C T L (Computa­

t ion Tree Logic) or L T L (Linear Temporal Logic) for temporal logic formulas.

M o d e l checking provides an automated way of proving formulas or finding coun­

terexamples, however faces the state explosion problem. This problem can be

reduced by symbolic algorithms, par t ia l order reduction, abstraction or by on-

the-fly model checking. There are many tools used for security protocol analysis,

using a general-purpose or a special-purpose model checker. One of the most

protocol analyzers based on model checking is A V A N T S S A R [55], which is used

in this thesis.

The first two approaches focus on proving the correctness of the protocol according

to the properties. M o d e l checking, on the other hand, focuses on searching incorrect

traces.

There are many cases where formal methods have detected attacks on protocols

that were previously considered secure. U n t i l formal methods were incorporated into

the development process, security solutions were verified manually by people. Some

traces were often not considered i n the analysis. A s a consequence, not a l l errors were

detected.

Formal methods can be applied in an early phase of development, before the

implementation is available. The designer can verify the protocol from an in i t i a l

specification and the system requirement. In the case of model checking, i f the model

does not satisfy the properties, the tool gives a counterexample as output. This

counterexample can be ut i l ized i n the system design.

26

A model is only an abstraction of the system, so formal verification cannot reveal

implementation errors. Furthermore, i f the specification is not correct or the require­

ments are not properly expressed, the analysis can not guarantee the security of the

protocol.

2.5.1 History

Formal methods were in i t ia l ly used to the analysis of hardware systems, software

systems and communicat ion protocols in general. Since the 1980s, these methods

have been also used for analysis of cryptographic protocols.

The first symbolic approach to cryptographic protocol analysis that was the start­

ing point for model checking tools was that of Dolev and Yao [43]. They introduced

the paradigm now known as the Dolev-Yao model.

The first tools that detected attacks on protocols were based on Dolev-Yao ap­

proach and model checking techniques. Mos t of them were specific purposed model

checking tools. The first too l which exhaustively searched the state space was Inter­

rogator [56], followed by the Longley-Rigby search tool [57] and the N R L Pro toco l

Analyzer (N P A) [51].

The applicat ion of formal methods was considered unreliable for a long time, un t i l

the introduct ion of B A N logic [53]. Th is logic has a set of simple and intuit ive rules

and is the most popular example of belief logics. Belief logics have many advantages

such as completed automation and faster execution. The i r models are more abstract

than model checking ones, so the research moved to the model checking techniques.

The fact that Lowe, using the F D R model checker, was able to successfully find a

problem i n the Needham-Schroeder public key protocol [42], that since then had been

unnoticed for seventeen years, alerted people and many researchers started focusing

on model checking techniques.

After two years, a new model checking tool concerned wi th the analysis of security

protocols was developed. This tool was named Casper [58]. Other researchers started

using their own model checkers for security protocol analysis, such as using of the

M u r p h i model checker to analyze variations on the T L S protocol [59]. Later a special

purpose model checkers were developed, such as Bru tus [60].

M a n y tools have been used i n the analysis of standards, sometimes detecting

problems that would remained unnoticed otherwise. For example, the N P A was used

to verify a number of protocols and protocol standards, including the Internet K e y

Exchange Pro toco l [61], the Group D o m a i n of Interpretation (G D O I) Pro toco l [62],

27

and the Simmons Selective Broadcast P ro toco l [63]. The A V I S P A tool was applied to

a suite of protocol standards. P roVer i f was used i n the product ion of formally verified

implementations of T L S [64] and the smart card protocol InfoCard [65]. Scyther was

used for the analysis of the M Q V family of protocols [66], for the analysis of the

entity authentication protocols i n the I S O / I E C 9798 standard [67], and the I K E key

exchange protocols i n the IPsec standard [68].

It is expected that model checking w i l l u l t imately become a standard tool for

cryptographic protocol design, as it has become i n hardware design. A l t h o u g h model

checking has proved useful in the analysis and many protocol designers use it to prove

correctness of a new protocol, it has not yet become a standard tool . [69]

2.5.2 Dolev-Yao Mode l

Dolev and Yao model [43] is based on state machines. A protocol is modeled as a

machine consisting of an arbi trary number of honest agents executing the protocol.

In this model, there are several concurrent runs of a protocol w i th the presence of an

intruder, who can read, modify or delete the messages t ransmit ted i n the network.

The intruder can also impersonate any honest agent. The model also formalizes an

abstraction of cryptography where messages are represented by terms rather than bit

strings, so cryptographic operators do not leak information, e. g., the only way for an

adversary to decrypt an encrypted message is to have the corresponding decryption

key.

A l l cryptographic protocol model checking applications are based on the Dolev-

Yao model . However, the current approach is different that the original one. Act ive

research is going on to make the Dolev-Yao model more precise and expressive.

A n approach similar to the one of Dolev-Yao is based on using algebras for reason

about the knowledge of the participants. Th is approach was first presented by Merr i t

[70]. The protocol is modelled as an algebraic system. The algebra is used to express

the state of the participants, including the intruder, i n terms of its knowledge about

the protocol.

28

Chapter 3

Related Work

This chapter presents related work in the field of contactless smart card security and

overviews the attacks and the techniques used to find new types of attacks and the

verification processes of protocols. Th is thesis is focused on cryptographic memory

cards wi th fixed file structure, so one section is dedicated to examples of published

attacks on this type of contactless smart cards, namely Mifare Classic and Mifare

D E S F i r e smart cards. Another section is dedicated to attacks on security A P I , which

in part icular shows a method of automatic vulnerabi l i ty finding i n P K C S # 1 1 cryp­

tographic tokens, which was one of the inspirations for the method proposed i n this

thesis. The last section is dedicated to protocol attacks, which shows attacks on

various protocols. The A V A N T S S A R tool , which is used i n this thesis, was used for

finding vulnerabilit ies i n the O A u t h protocol.

The section titles contain the word "attacks", but the purpose of s tudying attacks

is not to make any harm, but to be able to design better devices and better protocols

that are not vulnerable to s imilar attacks. Especial ly the methods that can be used to

find attacks are worth to be studied because they can be used and adapted to find new

vulnerabilit ies i n new devices and new protocols. Such methods can provide designers

and developers w i t h valuable information about the security of their products.

3.1 Mifare Classic and DESFi re Attacks

3.1.1 Mifare Classic Attacks

The Mifare Classic is a suitable example to show some attacks on contactless smart

cards. The security of Mifare Classic was bu i ld on the weak proprietary a lgori thm

C R Y P T O l . A s soon as the a lgori thm is reverse engineered, the card can be easily

29

compromised. This corresponds w i t h the well-known principle "Security by obscu­

ri ty", which should be always avoided [71]. A l though some studies [72] advise how to

retain some security wi th the same hardware, it is better to use more secure hardware.

The successor of the Mifare Classic card is the Mifare D E S F i r e card, which is much

more secure. It utilises strong ciphers 3 D E S and A E S rather than some proprietary

algori thm.

Keystream Recovery Attack

Gans, Hoepman and Garc ia [26] have shown an attack that exploits the P R N G weak­

ness to recover the keystream used i n C R Y P T O 1 from the eavesdropped communi­

cation without knowing the encryption key. This paper also shows how to read a l l

memory blocks from the first sector of the card without knowing the key. Add i t i on ­

ally there is always a possibil i ty to read the first 6 bytes of each block from the sector

from which the communicat ion has been eavesdropped. The p la in text obtained in

this attack can also be used i n a brute force attack proposed by N o h l and Ploetz .

The weakness of the pseudo-random generator has been independently discovered

by N o h l and Ploetz [22] and Gans, Hoepman and Garc i a [26]. In the latter paper

authors c la im that a "random" nonce used in authentication repeats a few times per

hour. N o h l and Ploetz discovered that the nonce is generated by an linear feedback

shift register (L F S R) which shifts every 9.44/xs, which is exactly one bit period i n the

communicat ion. Hence there is a possibil i ty to get the same nonce after 0.618s i f the

communicat ion wi th the card is established at the exact time.

The attacker has full control over the reader and performs communicat ion wi th

the card. This attack utilises the fact that the ciphertext C\ is obtained by bitwise

X O R - i n g the plaintext P i w i th the keystream K. W h e n we have two ciphertexts that

are encrypted wi th the same part of keystream and we know one of the plaintexts, we

can reveal the second plaintext. We can also reveal the relevant bits of the keystream.

P1@K = C1 \

P2®K = C2 J

There are some parts i n the memory, that have the same value i n a l l cards, or

that have the value which can be easily discovered. K n o w n data are for example the

U I D i n the first block of the first sector (U I D can be obtained i n the anti-collision

procedure), manufacturer data stored i n the same same block or access keys stored in

last blocks of a l l sectors. The attacker changes commands i n order to read the known

30

parts of memory. The attack goes as follows:

1. The attacker eavesdrops and records some real communicat ion between genuine

reader and the card.

2. Now he can exploit the weakness of the P R N G . The card repeats the nonce as

described. The attacker has full control over the fake reader so he is able to

start the communicat ion at the right t ime. W h e n the same nonce is generated,

the same keystream is used.

3. The attacker changes commands under the keystream by modifying the com­

municat ion in order to receive blocks containing some known data.

4. The keystream can be revealed for a l l parts where the plaintext is known.

5. B y shifting commands he can recover more keystream.

Authentication Replay

To communicate w i th the card the attacker has to authenticate first. He can replay

the previously recorded authentication. For a successful replay of the authentication

he must start the communicat ion at the right t ime so the nonce is the same as was

used in the recording. The authentication replay has following steps:

1. The attacker eavesdrops and records some real communicat ion between genuine

reader and the card.

2. The authentication requests are repeatedly sent to the card unt i l the nonce

generated by the card is equal to the one in the recorded authentication.

3. Now the attacker can send the recorded response to this nonce. This response

is correct because the current and recorded nonces are equal. Except for the

correct answer to the card's nonce this response contains its own challenge to

the card.

4. The attacker gets the card's response to the reader's challenge.

5. Now he can resend same or modified commands to perform the above attack.

Wireless attacks

Garcia , Rossum, Verdult and Schreur [25] have shown that an attacker can retrieve

al l cryptographic keys of a card by communicat ing wirelessly wi th i t . The legitimate

31

reader is not involved which is great advantage compared to the previously mentioned

attack. They found and exploit the following vulnerabil i ty: After the successfull

authentication for one sector the attacker can t ry to authenticate for another sector

without knowing the key. In this case another authentication scheme is used which

leaks 32 bits of information about the secret key of that sector.

Mifare Classic sends a pari ty bit for each byte. The pari ty bits are not computed

from the actual data sent over the air, but they are computed from the plaintext.

After the pari ty bit is computed, whole byte is encrypted. The pari ty bit is encrypted

wi th the same bit of the keystream that is used for the first bit of the following byte.

If the reader sends wrong pari ty bits, the communicat ion is immediately aborted.

W h e n correct pari ty bits are sent, but wrong authentication data, the card doesn't

cancel the communication, but sends the encrypted error code. This vulnerabi l i ty

was used for a brute-force attack [25].

3.1.2 Side-channel Analysis Attacks on Mifare D E S F i r e

This section describes a non invasive side-channel attacks [73] [74] on the Mifare

D E S F i r e M F 3 I C D 4 0 , which is the older version using 3 D E S .

The side-channel analysis brings a new threat to the mathematical ly secure c i ­

phers. It can help attackers to break modern ciphers, for which no efficient analyt ical

or brute force attacks exist. Side-channel analysis of a white-box implementat ion

of A E S on a self-made R F I D device wi th unprotected microcontroller was presented

in [75] [76], showing the vulnerabi l i ty of R F I D devices to side-channel attacks. The

practical attack was shown by breaking the proprietary K e e L o q system [77]. The

black-box analysis of a contactless smart card and the results were described i n [78],

proposing a leakage model for R F I D s that is the basis for analyses i n [73] [74], which

w i l l be discussed i n this section.

In [73], the first full key-recovery attack on the Mifare D E S F i r e M F 3 I C D 4 0 smart

card was presented. This paper points out problems and obstacles that occur when

performing side-channel analysis i n practice, which are often neglected i n academic

papers. It shows first appl icat ion of template attacks to break cryptographic R F I D s ,

allowing for potential ly very fast determination of the secret key. Due to the lack of

contacts to measure the power consumption directly, the electro-magnetic emanation

of the R F I D card was captured wi th near-field probes and then digit ized w i t h a

Picoscope 5204 1 G H z oscilloscope. The acquired measurements were evaluated on a

personal computer. Despite the secure 3 D E S cipher and R F I D obstacles, the authors

32

were able to extract a l l 112-bit keys and hence could gain full access to any Mifare

D E S F i r e M F 3 I C D 4 0 card.

The measurement setup used i n [73] is an extension of the setup described i n [79],

where the appl icat ion of analog demodulat ion for side-channel analysis of R F I D s was

presented.

D E S works by d iv id ing the key into subkeys, each of which is used i n a different

round of the cipher. Parts of these subkeys are combined wi th bits of input, which

can be supplied by the attacker, and sent to a series of S-boxes. Because only a few

bits go into each S-box, there is a relatively smal l set of possible input values, each

of which results i n a slightly different power consumption profile.

B y conducting many experiments and observing the power consumed when cal­

culating these S-boxes on different inputs for known and unknown keys, the attacker

can correlate these traces to figure out the bits that come from an unknown key.

The full key recovery attack needs approximately 250000 traces, which takes about

7 hours to collect.

The authors had not known the exact implementat ion of 3 D E S , they must have

reverse-engineered it by examining power traces. D u r i n g this reverse-engineering

process, a countermeasure to side-channel analysis was found i n Mifare D E S F i r e

M F 3 I C D 4 0 - adding random dummy D E S rounds. However, this protection was not

sufficient to prevent the attacks.

Result of these attacks is a full recovery of the 3 D E S key of the Mifare D E S ­

Fi re M F 3 I C D 4 0 , employing standard equipment that can be buil t for approximately

3000$. The attacks can be executed wi th in a few hours and hence pose a signifi­

cant threat to the security of DESFi re -based real-world systems. The newer version

of D E S F i r e , the Mifare D E S F i r e E V 1 , uses A E S and includes side-channel analysis

countermeasures that circumvent the presented attacks.

3.2 Security A P I Attacks

Al though security A P I is designed to be able to communicate w i th an attacker without

any sensitive data leak, there exist some attacks aimed at security A P I s , which can

help an attacker to learn some sensitive information from a secure hardware.

One of the first academic papers dealing wi th A P I attacks was paper by Long-

ley and R igby [57] i n 1992, presenting analysis of a key management interface of a

cryptographic device using the logic programming language Prolog. Another paper

dealing wi th secure hardware failures was the paper [80] by Ross Anderson in 1993.

33

This paper was focused on the A T M s and procedural and technical failures in the

use of hardware security modules (H S M) . T h i s paper only showed failures but d id

not proposed any real security A P I attack. Later, the same author i n [81] showed

the first real attack exploi t ing one dangerous command in the security A P I . These

works inspired others to study security A P I s of secure hardware, such as H S M s or

cryptographic tokens and smart cards.

The first A P I attacks were found manually, but it d id not take long and automated

methods using formal analysis came out. F i r s t formal approach to this problem was

made wi th the first order predicate calculus theorem prover Otter [82].

3.2.1 H S M Security A P I Attacks

In this subsection some attacks on Hardware Security Modules (H S M) are described.

H S M s are a k ind of secure hardware as well as smart cards. H S M s are used in P C s

or other devices for storing sensitive data. A l l examples presented in this subsection

are concerned wi th A T M s (Automated Teller Machines) . There are H S M s in each

A T M that serve as a secure key storages and for performing cryptographic operations.

D a t a i n the A T M must be encrypted in a l l cables connecting H S M s in order to avoid

eavesdropping or man-in-the-middle attacks.

Anderson published the first real attack [81] exploi t ing one dangerous command in

the security A P I . A t that t ime many banks computed customer's P I N from his P A N

(Pr imary Account Number) by encrypting this number w i t h a secret key. The result

was then converted to the four digit number. W h e n the customer wanted to change

his password, then the bank computed the offset between the customer's o ld and new

P I N and saved it into the database. One bank wished to change the P A N structure,

but it would change a l l P I N s the customers had. Therefore the bank established the

new A P I transaction for converting the old offset to the new offset. The transaction

was following: "given an in i t i a l account number of X and offset of Y, calculate an

offset which w i l l enable this P I N to be used on account number Z".

Original ly the transaction was meant to be just a temporal solution and to be run

once in a batch, however it was forgotten and left i n the security A P I . The attack

on this single transaction was found about a year later. If the attacker sent his own

P A N as Z and his own offset as Y, the command would return the offset between

any customer's issued P I N and the attacker's P I N , which is a great security issue.

Note that this attack involved just one single dangerous transaction. In [83] Anderson

suggested that the possible attack doesn't depend on one transaction, but that there

34

can be a chain of mult iple transactions which could leak a sensitive information such

as a key.

Another security A P I attack is the so called "Decimalisat ion Table A t t ack" [84].

Th is attack exploits the way how H S M s from I B M computed P I N s from P A N s . The

P A N is first encrypted wi th the P I N derivation key and then shortened to four bytes.

The P I N is now represented by the 64-bit binary block that should be converted to

four decimal digits. It is done by the lookup table, so called decimalisation table. The

decimalisation table was originally fixed, however it later become a parameter of the

P I N generation command. The user could therefore specify arbi trary decimalisation

table as the input for the command.

Decimalisation table:

01234567890ABCDEF
01234567890123456
Shortened encrypted account number:

90AB
Decimalised PIN:

9001

In a normal P I N verification process, if the P I N is incorrect, the H S M answers that

it was incorrect and no other information can be learned. W h e n the attacker enters a

t r i a l P I N of 0000 w i t h the decimalisation table of a l l zeroes w i t h just single 1 i n let's

say seventh posit ion, then i f the verification process succeeds, the attacker knows,

that the correct P I N doesn't contain any digit 7.

On ly two examples are presented, but there are many other possible attacks, some

of them are analyzed in [85] together w i th formal verification of security A P I s .

3.2.2 Attacks on P K C S # 1 1

This subsection is dedicated to automated vulnerabi l i ty finding in devices compliant

w i th the R S A P u b l i c K e y Cryptography Standards number eleven (P K C S # 1 1) . The

Tookan tool presented here was one of the inspirations for the method proposed in

this thesis.

P K C S # 1 1 specifies the Cryptoki A P I for performing cryptographic operations

such as encryption and signature using cryptographic hardware such as cryptographic

token. Sensitive cryptographic keys are stored inside the token and any cryptographic

35

operation is performed by the token without revealing the key. Compromis ing a key

would allow an attacker to clone the token and to perform the same operations as

the legitimate user.

Most current commercial cryptographic tokens and smart cards comply wi th this

standard even i f other interfaces are offered i n addi t ion. At tacks on this almost

ubiquitous standard were found using formal analysis [86]. T h i s is a nice example of

finding vulnerabilit ies i n an automated way.

Bortolozzo, Centenaro, Focardi and Steel show i n their paper [86] how to extract

sensitive cryptographic keys from a variety of commercial ly available tamper resis­

tant cryptographic security tokens, exploi t ing vulnerabilit ies in their R S A P K C S # 1 1

based A P I s . They developed an automated tool that reverse engineers the partic­

ular functionality offered by a token, constructs a formal model of the A P I , calls a

S A T M C model checker to search for possible attacks, and executes any attack trace

found directly on the token. This tool is called Tookan (T O O l for c r y p t o K i ANa lys i s) .

Figure 3.1 shows a high level overview of how the Tookan tool works. The analysis

consists basically of four steps:

1. Tookan uses reverse engineering to extract the capabilities of the token, results

of this task are wri t ten i n a meta-language for P K C S # 1 1 models

2. Tookan uses information from the previous step to generate a model, which is

given as input to the S A T M C model checker.

3. M o d e l checker output is sent to Tookan.

4. Tookan uses results from the model checker for testing on the token.

Tookan SATMC

3

Tookan

4

Device SATMC Tookan Device SATMC

2

Tookan

1

Device Tookan

Figure 3.1: Tookan system diagram

Keys and certificates in the P K C S # 1 1 token are objects and access to these objects

is controlled. Objects are referenced using handles, which are pointers that does not

reveal any information about the value of the object.

36

Objects have attributes, which may be bitstrings representing the value, or boolean

properties of the object, such as whether the key may be used for encryption, or for

encrypting other keys. New objects can be created by cal l ing a key generation com­

mand, or by "unwrapping" an encrypted key. The token checks that the attributes

of the object allow it to be used for every called function.

A session wi th a P K C S # 1 1 token is ini t ia ted by supplying a P I N . The P I N may

be intercepted for example by a keylogger, which allows an attacker to establish

his own sessions wi th the device. The P K C S # 1 1 A P I should protect its sensitive

cryptographic keys even when communicat ing wi th an attacker.

To protect a key from being revealed, the at tr ibute sensitive must be set to true.

Once it is set to true, it cannot be reset to false. Th is should ensure that even if the

attacker manages to get the P I N , he w i l l not be able to reveal the keys marked as

sensitive, because such keys are not readable and w i l l always remain sensitive.

A sensitive key can be exported from the device if it is encrypted by another

key, but only if its extractable at tr ibute is set to true. A n object w i t h an extractable

attribute set to false may not be read by the A P I , and once set to false, the extractable

attribute cannot be set to true. Protect ion of the keys depends on the sensitive and

extractable attributes.

Tookan was used to test 17 commercial ly available tokens. The results showed

that 9 of these tokens that offered the functionality necessary to import and export

sensitive keys i n an encrypted form were vulnerable to attack, because they allowed

the key value to be recovered after a few calls to the A P I . The other 8 tokens not

vulnerable to these attacks had very restricted functionality (e.g. just asymmetric

keypair generation and signing). At tacks reported by the Tookan tool are described

in the following text.

The notat ion introduced i n [86] for P K C S # 1 1 based A P I s , is following: h(n\,k\)

is a predicate stating that there is a handle n\ for a key k\ stored on the device. The

symmetric encryption of k\ under key k<i is represented by {|fci|}fc2-

In the first attack the attacker uses key k<i w i th attributes wrap and decrypt to

attack a sensitive key k\. Th is attack uses a key wi th the attributes set for decryption

of ciphertexts, and for wrapping, which means encryption of other keys for secure

transport. The attacker can s imply wrap the sensitive key k\ using ki and then

decrypt it using ki, which reveals the sensitive key k\. This attack is shown i n figure

3.2.

The second attack, shown i n figure 3.3, is similar to the previous one, only the

wrapping key is a public key pub(z) and the decryption key is the corresponding

37

Wrap: h(n2,k2),h(n1,k1) ->• {|&i|}fc2

SDecrypt: h(n2,k2),{\k1\}k2 -> fa

Figure 3.2: P K C S # 1 1 attack 1

Wrap: h{n2,pub{z)),h{ni,ki) ->• {&i}pu&(z)
A D e c r y p t : h(n2,priv(z)), {ki}k2 —>• fci

Figure 3.3: P K C S # 1 1 attack 2

private key priv(z). The sensitive key is wrapped and then the attacker can decrypt

the obtained ciphertext using the private key.

The th i rd attack is a flaw in the P K C S # 1 1 implementation. Some of the analysed

devices, when asked for the value of a sensitive key, returned the plaintext value of

the key instead of error code, ignoring basic policy that expl ic i t ly requires that the

value of sensitive keys should never leave the token.

The fourth attack is a flaw i n the P K C S # 1 1 implementat ion similar to the th i rd

attack, unextractable keys were found to be readable. P K C S # 1 1 requires that keys

which are declared as unextractable should not be readable, even if they are nonsen-

sitive.

The fifth attack is changing sensitive keys into nonsensitive and unextractable keys

into extractable, which was allowed by two types of analyzed tokens. G iven that the

previously mentioned th i rd and fourth attacks are already possible and sensitive or

unextractable keys are already accessible, the fifth attack does not pose an addi t ional

flaw of such devices.

3.3 Protocol Attacks

Formal verification seems to be a reliable way of proving security properties of some

system. However, there can occur a si tuation when an insecure protocol is proven

to be secure by the formal reasoning. Th is can happen when the protocol does not

consider a l l possibilities of the real world, or when the protocol is not implemented

properly. There can be situations not defined by the protocol but possible in the real

world.

38

Example of such a problem was presented in [87]. There is a very simple appli­

cation defined, a copy card wi th just five different messages. Even on such a small

system there can be differences i n the security claimed by the formal verifier and the

reality.

The applicat ion copy card is used for paying smal l amounts of money. There is

some prepaid amount of monetary units that can be spent. There is also a possibil i ty

to recharge the points on the card any time. Points can be loaded at dedicated

vending machines by inserting real money. If the card is stolen, there is no possibil i ty

for the user to get the money back, but this is not a serious security problem, because

there is just a few points on the card. We w i l l focus on the security of the applicat ion

provider, who doesn't want to be cheated. Here the cardholder is a possible cheater.

He would like to get money on the card without paying the real money for i t . Here

we can distinguish two security requirements: 1) nobody except the genuine vending

machine can store points on the copy card, 2) only points from a genuine card can

be accepted by the terminal (merchant).

We w i l l now focus on the protocol for loading points, on which the following

attack is performed. The loading protocol uses a challenge-response protocol for

authenticating the terminal . The card authentication is not required i n the loading

protocol, only i n the paying protocol. The loading works as follows:

1. Authenticate() - at the beginning of the protocol the terminal sends the Au­

thenticate command to indicate that it wants to authenticate itself to the card.

2. ResAuthenticate(challenge) - card challenge to the terminal .

3. Load(value, hash(create AuthData(LOAD, passphrase, challenge, value))) - the

terminal issues the Load command that allows the card to increment its bal­

ance. It has two parts: value (number of points to be loaded) and hash value

that contains the tag LOAD, a passphrase passphrase, the challenge from the

previous message, and the value

The attack on the protocol is following:

1. The attacker glues wires on the smart card's contacts and connects them to his

laptop so that he can eavesdrop and modify the communicat ion between the

card and the terminal , (this is possible in the Dolev-Yao attacker model)

2. The attacker inserts money to the vending machine and loads points on the

card i n the usual way.

39

3. W h i l e the card is s t i l l present in the terminal , the attacker sends an Authen­

ticate message from the laptop to the card. The card answers wi th a new

Res Authenticate message, this message is passed to the terminal .

4. The terminal receives the message and behaves as specified in the protocol -

creates a new Load message wi th the new challenge and passes it to the card.

5. The nonce is correct, hence the card accepts the value and increases the balance.

The attacker has pa id once but the points on the card were loaded twice. The real

implementation of the terminal should never accept a Res Authenticate after sending

a Load message, however the protocol specified and formally verified i n [87] allows

this attack.

3.3.1 E M V Attacks

E M V [1] stands for Europay, Mas t e rCa rd and V I S A and it is the most widespread

protocol for smart card payments i n the world. It is also known as " C h i p and P I N " .

E M V standards support cards wi th I S O / T E C 7816 [18] contact and I S O / T E C 14443

[19] contactless interface. E M V is something like the protocol framework from which

proprietary protocols can be bu i ld . A n issuer (typically a bank) selects a subset of

the E M V protocols to be used (digital signature methods, M A C algorithms) and

chooses many customisable options regarding authentication and risk management.

E a c h bank can have its own solution, therefore there can be attacks that work for

some issuer's smart cards and doesn't work for other's. Banks can support online or

offline P I N verification, authentication by signature or combination of these methods.

There are two types of cards considering the authentication. The difference is i n using

the R S A digi ta l signature. D a t a stored on the card have to be digi ta l ly signed in

order to avoid the counterfeit. F i r s t type of E M V compliant card is so called S D A

(static data authentication), which can not perform the R S A signature itself. The

signature made by the issuer is stored i n the card and can be exposed to the reader for

verification. This type is vulnerable to cloning because the signature can be copied to

a counterfeit card. These counterfeit cards usually doesn't need to be provided w i t h

the correct P I N , they always answer that the P I N was correct. This type of attack

can be avoided by online authentication; however, not a l l merchants are connected

to the network. The other possibil i ty of avoiding this attack, even offline, is to use

the second type of E M V card - D D A (dynamic data authentication). Th is card is

capable of performing the R S A , so the challenge-response protocol can be used for

40

authentication. However, bo th types of cards can be successfully attacked wi th the

attack presented i n [88] which w i l l be described i n more detail .

The E M V protocol has three main phases - card authentication, cardholder veri­

fication, and transaction authorization.

1. C a r d authentication. In this phase the card is authenticated to the reader.

The card provides the information which bank issued the card and proves the

integrity of this data (data stored on the card are digi ta l ly signed). The termi­

nal first requests a list of supported applications (file 1 P A Y . S Y S . D D F 0 1) and

chooses one of them. T h e n the cardholder information is read and the digi ta l

signature is verified.

2. Cardholder verification. In this phase the terminal verifies the user's iden­

tity. There are three possible cardholder verification methods - P I N verification,

signature verification and no verification. Terminal w i th the card negotiate the

method they w i l l use. Some terminals doesn't support some of the verification

methods, P I N verification is preferred by merchants because then they have no

l iabi l i ty for the fraud. The user has to know the correct P I N for the submitted

card to proceed to the next phase. In the offline P I N verification process the

P I N entered to the terminal is sent to the card and there verified. If success­

fully, the card returns O K (0x9000), otherwise an error (0x63Cx, where x is

the number of remaining attempts). The card's response was not authenticated

at the t ime of publishing the paper describing this attack. In the online P I N

verification process the P I N is encrypted by the A T M and sent to the issuer

over network for verification.

3. Transaction authorization. In this phase the terminal is ensured that the

bank which issued the card authorizes the transaction.

The attack presented i n [88] is based on the fact that the card response after

the offline P I N verification process is not expl ic i t ly authenticated. It is a man-in-the-

middle attack. The attacker's device is connected both to the card and the terminal to

intercept and modify the communicat ion. In the P I N verification process the device

sends 0x9000 as the answer from the card, so the terminal believes that the P I N is

correct. The attacker makes the card believe that the terminal doesn't support P I N

verification and that the user is verified by the signature. Because no P I N is sent

to the card, the attempt counter is not changed. The terminal only recognizes the

situation when the P I N verification is performed and fails. In the scenario of this

41

attack the terminal believes that the P I N is O K and the following communicat ion

wi th the card continues without change.

The attack was successfully executed wi th a cheap off-the-shelf hardware. The fake

card was connected to a general-purpose F P G A board which served as the interface

between the card and P C . The P C was connected to the reader that can communicate

wi th the stolen card. The communicat ion was altered i n the P C by simple P y t h o n

program:

i f VERIFY_PRE and command[0:4] == "0020":
debug("Spoofing VERIFY response")
return binascii.a2b_hex("9000")

The remaining communication was left unmodified.

3.3.2 O A u t h Verification

This subsection shows examples of applying formal verification on a protocol in order

to find vulnerabili t ies. It is focused on O A u t h (Open Author izat ion) protocol, which

is a standard being adopted by a growing number of sites such as Facebook, Google,

Twit ter , and several other social networking sites.

Mul t ip l e papers on the formalization and verification of the O A u t h protocol have

been published. In [89] the authors presented modeling of O A u t h protocol using

A V A N T S S A R platform. This section shows results of this paper. The protocol was

formalized w i t h A S L a n + + language and several security properties were proposed

and specified using extended Linear Temporal Logic (L T L) .

O A u t h is an open authorizat ion protocol defined by the Internet Engineering Task

Force (I E T F) , that provides a general framework to let a resource owner authorize one

third-party applicat ion to access the owner's resource on the resource server without

revealing the owner's credentials to the third-party applicat ion. The resource server

is usually same as the authorizat ion server. O A u t h 2.0 uses S S L / T L S for communi­

cation between the authorizat ion server and the third-party applications. There are

four authorizat ion flows defined in the O A u t h : Author iza t ion code, Implici t grant,

Resource owner password credentials, and Client credentials. O n l y the Author iza t ion

code flow was analyzed in [89].

The authorizat ion code flow is used for server-side web applications. There are

four roles in this flow: Resource Owner, User-Agent, Client and Author iza t ion Server.

The resource owner is the end user, which uses the user-agent, which is a browser, to

connect to the client, which is a third-party web applicat ion, and the authentication

42

server, which is i n most cases the server of a social network wi th large number of

users. The resource owner has access to his resources on the authorizat ion server and

can grant clients access to these resources. Figure 3.4 shows a sequence diagram of the

authorization code flow wi th some simplifications as modeled in [89]. The resource

owner and user-agent are combined into a single role called Browser.

Browser Client Auth Server

req

cid.re_uri.scope.state

cid.re_uri.scope.state

re uri.state.code

state.code

re uri.cid.csec.code

access token

access token

resource

Browser Client Auth Server

Figure 3.4: O A u t h authorization code

1. Browser sends a login request req to the client (user clicks on the login but ton

on the client's website).

2. Client initializes the authorizat ion code flow by sending its client ID cid (unique

identifier issued by authorizat ion server i n advance), an optional redirection U R I

re_uri (authorization server can respond to client v ia browser by the redirection

U R I) , a scope of the access request scope, and a recommended secret value for

preventing cross-site request forgery state.

3. Browser sends these client parameters to the authorizat ion server.

4. Author iza t ion server generates the authorizat ion code code, which is bound to

the client ID , and sends the authorizat ion code wi th the redirection U R I back

to the browser.

5. Browser redirects the authorizat ion code to the original client based on the

redirection U R I .

43

1 body{
2 Actor -Ch. B2C_l-> C : Req;
3 C -Ch. .C2B--> Actor ?A.?CID.?Re_Uri.?Scope.? State;
4 Actor -Ch_ B2A-> A CID.Re_Uri.Scope.State;
5 A -Ch. .A2B--> Actor ?Re_Uri.?State.?Code;
6 Actor -Ch_ B2C_2-> C : State.Code;
7 >

Figure 3.5: Statement part of the Browser role definition

6. W h e n the client receives the authorizat ion code successfully, it then sends its

credentials client ID cid and client secret csec to the authorizat ion server d i ­

rectly, not v ia the browser.

7. Author iza t ion server verifies the client's credentials and the authorizat ion code

and i f successfully authenticated, the authorizat ion server generates an access

token access_token and sends it back to the client.

8. W h e n the client receives the access_token, he can access user's resources stored

in the authorizat ion server w i t h this token.

9. Author iza t ion server authenticates the token access_token, i f the access token

is va l id it sends the resource back to the client.

A S L a n + + was used to formalize the O A u t h model w i th three agents. The names

of agents were abbreviated in the model , so instead of authorizat ion server, browser,

and client, the A S L a n + + model definition contains letters A , B , and C . Figure 3.5

shows the message flow between browser and other participants as defined i n the

statement part of the browser role definition of the A S L a n + + model.

In A S L a n + + role definition, Actor is used to refer to current entity, i n this case

it is referring to the browser entity. There are five channels in the authorizat ion code

flow model . The first is a browser to client channel Ch_B2C_l, the second is a client

to browser channel Ch_C2B, the th i rd is a browser to authorizat ion server channel

Ch_B2A, the fourth is a authorizat ion server to browser channel Ch_A2B, and the fifth

is another browser to client channel Ch_B2C_2.
Line 2 corresponds wi th step 1 of the authorizat ion code flow described earlier,

line 3 w i t h step 2, line 4 wi th step 3, line 5 wi th step 4, and line 6 wi th step 5.

Other agents - client and authorizat ion server - have s imilar ly defined roles de­

scribing their behavior i n the protocol.

44

Four security aspects of O A u t h were analyzed - confidentiality, authentication,

authorization, and consistency. These four security goals were defined i n A S L a n + +

together w i th the agent definitions. S A T M C model checker was used and three at­

tacks were found. These attacks violate the properties of confidentiality of state,

confidentiality of authorizat ion code, and consistency. At tacks found by the S A T M C

are described in the following text. Authors refer to these attacks as A t t ack of Secret

State, A t t ack of Secret Code, and At t ack of Consistency.

In the first attack, shown in figure 3.6 and referred to as A t t ack of Secret State,

an intruder, in the diagram represented by i, intercepts the request from the browser

and sends it to the client. Cl ient generates a state and sends its information back to

the intruder. The intruder gets the response and decomposes the state parameter.

Browser [] Client

req

req

^ cid.re_uri.scope.state

Browser [] Client

Figure 3.6: A t t ack of secret state

The second attack, shown i n figure 3.7 and referred to as At tack of Secret Code,

begins i n the exactly same way as the first attack. After receiving the response from

client, the intruder modifies the redirection U R I and sends the modified response to

browser. The browser sends the information about the client to the authorizat ion

server and receives the response containing the authorization code. Then the browser

redirects the response to the modified U R I and the intruder decomposes the response

to get the authorizat ion code.

The th i rd attack, shown i n figure 3.8 and referred to as A t t ack of Consistency, is

similar to the second attack. The difference is that the intruder modifies the client

ID instead of the redirection U R I . The result is that users who intend to authorize

honest client to access their resources, might authorize other dishonest clients.

We can see that insecure implementat ion and wrong deployment can cause v u l ­

nerabilities i n the protocol. Verification and encryption mechanisms can be used to

avoid these vulnerabilit ies.

45

Browser 0 Client Auth Server

req

cid.iuri.scope.state

cid. iuri.scope.state

i uri.state.code

state, code

req

cid. reuri.scope.state

Browser 0 Client Auth Server

Figure 3.7: A t t ack of secret code

Browser • Client

req

iid.re_uri.scope.state

iid.re_uri.scope.state

re uri .state.code

state.code

req

cid.re_uri.scope.state

Browser 0 Client

Auth Server

Auth Server

Figure 3.8: A t t ack of consistency

46

Chapter 4

Vulnerability Finding Method

This chapter introduces a method of semi-automated vulnerabi l i ty finding in contact-

less smart card protocols.

The concept puts together a man-in-the-middle (M I T M) attack wi th verification

methods to find vulnerabilit ies in a semi-automated way. Figure 4.1 shows the scheme

of the proposed system. The process consists of a cycle of several steps that can be

performed several times to make the protocol secure.

• The first step is a M I T M attack that can be used to analyze the protocol. The

M I T M hardware w i l l communicate w i th both P C D and P I C C , and eavesdrop

on the communicat ion to extract the protocol. It can be also used to fuzz test

the protocol by altering commands and data i n an unanticipated way.

• The next step is the formal model creation. Results from the analysis can be

used together w i th the protocol and smart card specifications to create a formal

model. The M I T M at the beginning of the process can be theoretically used

to create a formal model when analyzing a th i rd party protocol even without

the precise protocol specification, the protocol specification can be extracted

by eavesdropping on real communicat ion. The developer of a protocol can skip

the first step and create the model only from the protocol and smart card

specifications.

• The model w i l l be verified by the model checker. In this phase the potential

vulnerabilit ies can be found.

• The attack vectors found by the model checker w i l l be used to execute the attack

on the device, using the M I T M . If the attack is successful, the vulnerabi l i ty is

reported, otherwise the model is refined.

47

• The hardware for performing M I T M is useful for t ry ing to execute an attack

and to figure out how the formal model should be refined after each run of the

model checker.

Protocol
Analysis
- M o d e l
Creation

Execution
of the
Attack
Found

Figure 4.1: Scheme of semi-automated vulnerabi l i ty search system

This cycle w i l l be repeated mult iple times un t i l a vulnerabi l i ty is found or the

model checker concludes that there is no attack on this model. W h e n an attack is

found by a model checker and is not confirmed using M I T M on the real devices, the

model is refined and model checker is executed again. W h e n a vulnerabi l i ty is found

and confirmed by M I T M , the protocol should be improved to fix this vulnerabili ty.

The model should be updated and model checker should be executed again. A l though

the process is not yet fully automated, the model checking can find a vulnerabi l i ty

in the model automatically. The following sections discuss hardware for the M I T M ,

protocol analysis, and formal verification.

4.1 Hardware

In this section the hardware used to perform a man-in-the-middle (M I T M) attack is

discussed. In real environment, M I T M can be done using relay attack. O u r device

w i l l act as the M I T M between two legitimate parties of the protocol. A s mentioned

earlier, there are two contactless devices needed for relay attack - a fake P C D and a

fake P I C C . We have connected both devices to one P C , which is the ma in hardware

part of the system.

18

We have established a real relay attack using Proxmark 3, which is an open hard­

ware platform for R F I D research purposes. Th is device was developed by Jonathan

Westhues for performing sniffing, reading and cloning of R F I D tags. P roxmark 3

incorporates the F P G A unit, used for low level signal processing, and the A R M pro­

cessor, that implements the transport layer. It can be used as a sniffer, as a reader or

as a card, using various protocols. P roxmark 3 supports both low frequency (125 k H z

- 134 kHz) and high frequency (13.56 M H z) signal processing.

The Proxmark 3 is connected to the P C v ia U S B ; however, the software developed

by the community does not support realtime communicat ion over U S B , so we had

to add it . W i t h the original software the P C sends a command to Proxmark , which

returns the result after processing i t . We needed a realtime communicat ion wi th

the device, because each data packet received by the device requires its immediate

transmission to the computer i n order to get the response from the genuine P I C C .

In order to establish communicat ion wi th just one party - P C D or P I C C - we have

implemented the anti-collision procedure.

Figure 4.2 shows the constellation of devices used for the relay attack. P roxmark 3

acts as a fake P I C C , communicates w i th the genuine P C D and forwards data blocks

to the P C . It also transmits data blocks i n the opposite direction. A C R 1 2 2 acts as

a fake P C D , doing the similar task w i t h the genuine P I C C . The P C controls both

devices and relays data blocks between them. D a t a can be saved or altered i n the

P C .

In our implementat ion the communicat ion is ini t ia l ized separately wi th the gen­

uine P C D and genuine P I C C and the anti-collision is not forwarded. The anti-collision

procedure is executed separately for both parties. The communicat ion wi th the P I C C

must be established first i n order to get the information needed to establish communi­

cation wi th the P C D , such as U I D , A T Q A and A T S [19]. N o information is transferred

during anti-collision procedure, because the responses must be fast. T h e n we can for­

ward data blocks from P C D to P I C C and vice versa. To keep the communicat ion

alive, it is important to mainta in correct block numbering and to compute checksums

separately for both parties, because every communicat ion error on either of the sides,

which would be recovered i n normal communicat ion, would break it in forwarded

communicat ion dur ing relay attack. W h e n block numbering and checksums are han­

dled separately, the error on one side does not affect the opposite party and after

error recovery the communicat ion can continue.

In order to minimize the response time, we have implemented extending of frame

wai t ing t ime (F W T) and wai t ing t ime extension (W T X) (both defined i n [19]) directly

49

Figure 4.2: Constel la t ion of devices

in P roxmark device, so the response t ime is min imal . We can increase the F W T up

to its max ima l possible value (4.949 s) by changing the A T S during the anti-collision.

The other option is to send W T X after each command i n order to get more t ime.

These features are required for systems where the max ima l response t ime provided

by the genuine P C D is very short. We do not have to use these features in systems

where the max ima l response t ime is long enough. P rov id ing the abi l i ty of extending

the response t ime l imi t on the lowest level without any delay makes this platform

useful even i n systems w i t h strict t ime l imits .

4.2 Protocol Analysis

The goal of this part is to create a formal model of the implementat ion of the protocol.

Smart card applicat ion issuers mostly don't publ ish their algorithms for any scientific

feedback, hence there could be bugs that might remain hidden for a long time of using

such a system. Furthermore, thanks to N F C , there are many more new applications

being developed, and there is a great potential for the future. These applications

also handle sensitive data and use contactless communicat ion as well as smart cards.

In order to be able to find any vulnerabili t ies i n these closed source protocols, the

wireless communicat ion can be eavesdropped and the protocol can be extracted by

analysing the data being exchanged. W i t h the knowledge of the protocol, the formal

model can be created. L i m i t e d knowledge of the protocol should therefore not entail

50

a problem, the data needed for creating the protocol formal model can be extracted

from the eavesdropped communicat ion.

The eavesdropping of the protocol can be used to extract the protocol from real

communicat ion and the M I T M also allows us to alter arbi t rary data, change command

order, communicate w i th just one of the legitimate parties and t ry various commands

even w i t h wrong parameters. In theory, the model creation and refinement could be

done automatical ly from data gained by eavesdropping and fuzz testing, which would

make the whole process of vulnerabi l i ty finding fully automatic. Learning techniques

allow automatic inference of behaviour of a system as a finite state machine. For

example i n [90] the authors showed that a Mea ly machine representing a model of

E M V smart card can be successfully extracted using protocol fuzzing. However, we

did not t ry to make automatic protocol fuzzing, so the process of vulnerabi l i ty finding

is only semi-automatic. Au tomat ic Mea ly machine creation using protocol fuzzing was

left for future work.

It is very beneficial to have the protocol and smart card description when creating

the formal model of the system and not to rely only on data from M I T M eavesdrop­

ping. The protocol can be described for example as a sequence diagram and the

smart card as a Mea ly machine. The information gained using M I T M together w i t h

the protocol and smart card specification gives us an overall image of the system being

observed. The creation of formal model from the protocol and smart card description

is explained i n chapter 5.

4.3 Verification

The formal model of the protocol can be used to automatical ly find vulnerabilit ies

using formal verification methods. These methods are used for proving security prop­

erties of protocols such as authentication, integrity, confidentiality and anonymity.

Not only they tel l us whether the protocol meets these properties but they can also

find the counterexample. These counterexamples can be considered possible attacks.

Formal methods therefore provide us w i th the automated way of finding attacks and

can also be used for proving that some attacks are not possible. In this part a model

checker w i l l search for possible attacks, which w i l l later be evaluated on the hardware.

4.3.1 Mode l checking tools

M a n y tools for verification of protocols are available. A l though general purpose formal

verification tools can be used to verify security protocols, it is better and more intu-

51

itive to use one of the tools designed specifically for verification of security protocols.

General purpose model checking tools have been adapted to model security protocols,

such as M u r p h i [91], Spin [92], or U P P A A L [93].

M u r p h i [91] is a finite-state machine verification tool . It has its own input lan­

guage, also called M u r p h i , which is based on a collection of guard —>• action commands.

These commands are repeatedly executed in an infinite loop. In [94] a methodology

for the analysis of cryptographic and security-related protocol using M u r p h i has been

proposed.

Spin [92] is a generic verification tool support ing the correctness verification of

asynchronous process systems in a rigorous and mostly automated way. Spin models

are focused on proving the correctness of process interactions. Systems to be verified

are specified i n the language Promela (PROcess M E t a LAnguage) , and properties

to be verified are specified using Linear Temporal Logic (L T L) formulas. In [95]

Sp in /P rome la was adapted for verification of security protocol.

Uppaa l [93] is a tool for modeling, val idat ion and verification of real-time systems.

System model i n Uppaa l is a parallel composit ion of t imed automata extended w i t h

data types.

Tools dedicated to the verification of security protocols are for instance C a s p e r / F D R 3

toolbox [58], N R L protocol analyzer [51], C r y p t y c [96], Scyther [97], L y S A [98], and

Choreographer [99]. There are also tools targeting on wide use and appl icabi l i ty to

pract ical problems, such as P roVer i f tool [100], A V I S P A tool suite [101] [102], and

A V A N T S S A R [55].

The Cryp tyc [96] is a cryptographic protocol type checker that allows to check for

violations of security policies. L y S a [98] is a process calculus for security protocols.

It applies static analysis technology to develop an automatic val idat ion procedure for

protocols. L y S a t o o l is an implementat ion of the analysis. Choreographer [99] is an

integrated tool for security and performance analysis of U M L models, which uses the

L y S a t o o l as an analysis back-end.

Casper

Casper [58] is a program that w i l l take a description of a security protocol in a

simple, abstract language, and produce a C S P (Communicat ion Sequential Process)

description of the same protocol, suitable for checking using F D R 3 (Failure Divergence

Refinement).

52

N R L Protocol Analyzer

N R L protocol analyzer (N P A) [51] is a special-purpose verification tool for analysing

security protocols, wri t ten i n Prolog. N P A was one of the earliest tools for verifying

the security of cryptographic protocols. It was not originally designed as a model

checker, but later many of the model checker features were added, including the

abil i ty to check properties expressed i n a temporal logic language, N P A T R L [62].

Scyther

Scyther [97] verifies bounded and unbounded number of runs, using a symbolic anal­

ysis w i t h a backward search based on par t ia l ly ordered patterns. Scyther does not

require the input of scenarios. Scyther implements model checking wi th respect to

the unbounded model by performing a backward-style search. For this method, the

model is extended w i t h adversary events for encrypting, decrypting, hashing, and

knowing messages. Infinite sets of states are represented by trace patterns, which are

part ia l ly ordered sets of events that must occur in the traces, and whose messages

may contain variables. The events in patterns must satisfy a number of cri teria based

on the semantics.

P r o V e r i f

ProVer i f tool [103] is an automatic cryptographic protocol verifier based on a repre­

sentation of the protocol by H o r n clauses. It can deal w i th an unbounded number

of sessions of a protocol and an unbounded message space. It uses abstractions to

obtain an efficient analysis method, such as: ind iv idua l fresh values are abstracted

into sets of fresh values, and each act ion of a thread can be executed mult iple times.

A V I S P A

A V I S P A (Automated Val ida t ion of Internet Security Protocols and Appl icat ions)

[101] is a tool funded by the European Union , which provides a push-button, industr ial-

strength technology for the analysis of large-scale Internet security-sensitive protocols

and applications. A V I S P A uses several different model-checking approaches. Proto­

col models are wri t ten i n the H i g h Level P ro toco l Specification Language (H L P S L)

[104]. Protocols are specified i n H L P S L i n terms of their roles, using control flow pat­

terns, data structures, alternative adversary models, as well as different cryptographic

primitives and their algebraic properties. H L P S L specifications have a declarative se­

mantics based on Lampor t ' s Temporal Logic of Act ions [105] and an operational

53

semantics defined i n terms of a rewrite-based formalism called the intermediate for­

mat (IF) . Once the model of the system is specified i n H L P S L , A V I S P A translates it

into the IF , which is an input format for A V I S P A back-end model checkers. A V I S P A

utilizes four back-end tools for val idat ion of security protocols: On-the-fly Mode l -

Checker (O F M C) , Constraint-Logic-based At t ack Searcher (C L - A t S e) , SAT-based

Model-Checker (S A T M C) , and Tree Au toma ta based on Au tomat i c Approximat ions

for the Analys is of Security Protocols (T A 4 S P) . The advantage of having multiple

back-ends is that only one model can be specified and it can be analysed wi th four

different tools. A V I S P A is a popular tool and it was used for verification of security

protocols that use smart cards mult iple times.

A V A N T S S A R

A V A N T S S A R (Automated V A l i d a t i o N of Trust and Security of Service-oriented A R -

chitectures) is a follow-up project of A V I S P A , introducing new languages for de­

scribing models, the A V A N T S S A R Specification Languages A S L a n + + and A S L a n .

A S L a n + + [106] is a high level formal language similar to the H L P S L , used for specify­

ing security-sensitive service-oriented architectures, their associated security policies,

and their trust and security properties. The semantics of A S L a n + + is formally de­

fined by translat ion to A S L a n , the low-level specification language that is the input

language for the back-ends of the A V A N T S S A R Pla t form - O F M C , C L - A t S e , and

S A T M C .

O F M C [107] combines a number of techniques to enable the efficient analysis of

security protocols. F i r s t , O F M C uses lazy data types as a simple way of bui lding

efficient on-the-fly model checkers for protocols w i th very large, or even infinite, state

spaces. A lazy data type is one where data constructors bu i ld data without evaluating

their arguments. Second, O F M C models the adversary i n a lazy fashion, where ad­

versary communicat ion is represented symbolical ly and solved dur ing search. T h i r d ,

while O F M C performs verification for a bounded number of sessions, it works w i th

symbolic session generation, which avoids enumerating a l l possible ways of instanti­

ating possible sessions. Four th , O F M C exploits a state-space reduction technique,

inspired by partial-order reduction, called constraint differentiation [108]. Constraint

differentiation works by el iminat ing certain kinds of redundancies that arise i n the

search space when using constraints to represent and manipulate the messages that

may be sent by the adversary. F ina l ly , O F M C also provides some l imi ted support for

handling different equationally specified operators on messages [109]. [69]

54

Cl-Atse [110] represents protocol states symbolical ly as a collections of non-

ground facts, which record the states of different threads, the messages sent to the

network, and the adversary knowledge. In particular, constraints are used to describe

what the different agents know and a constraint calculus is used to solve for what

they can know, from messages previously exchanged, i . e., the calculus is used to

solve a variant of the non-ground intruder deduction problem. C L - A t s e was designed

to allow the easy integration of new deduction rules and operator properties. [69]

S A T M C [111] is an open platform for model checking of security services. S A T M C

reduces the problem of checking whether a protocol is vulnerable to attacks of bounded

length to the satisfiability of a proposit ional formula which is then solved by a state-

of-the-art S A T solver. Th is is done by combining a reduction technique of protocol

insecurity problems to planning problems and SAT-reduc t ion techniques developed

for planning and L T L that allows for leveraging state-of-the-art S A T solvers. S A T M C

provides a number of dist inguishing features, including the abi l i ty to check the proto­

col against complex temporal properties (e.g. fair exchange); analyze protocols (e.g.

browser-based protocols) that assume messages are carried over secure channels (e.g.

S S L / T L S channels). [112]

4.3.2 Tool Selection

There are many papers describing and comparing various formal verification tools,

such as N R L and F D R comparison [113], C a s p e r / F D R , ProVerif , Scyther and Avispa

comparison [114], or O F M C , C l -At se and P roVer i f comparison [115]. Various tools

have been studied and tested for the purpose of this thesis to find out which one is

the best for security verification of protocols using contactless smart cards. Dur ing

the process of selecting the right tool , various aspects of the tool had to be consid­

ered, such as performance, how difficult it would be to model desired features i n the

part icular modeling language, and published results w i t h the tools.

The A V A N T S S A R tool was chosen for the security verification, mainly because

the fact that the high level A S L a n + + language can be easily used to model the

desired features and because three different back-end model checkers can be used to

verify the model . A l s o there are published papers suggesting that this tool and its

back-end model checkers have good results in the field of security protocol verification.

The performance seems to be good and for example performance comparison [115]

of P roVer i f w i th A V A N T S S A R back-end model checkers C l -At se and O F M C shows

better results of A V A N T S S A R back-end model checkers; however, the difference is

55

not significant. A V A N T S S A R developed from A V I S P A and both tools seem to be

proved and used by the community.

56

Chapter 5

Formal Mode l

This chapter provides a description of the proposed method that can be used to create

a model of a contactless smart card and a terminal and to define states representing

attacks. This model can be then used i n model checking to find attack traces i n the

protocol. The model takes into account the implementat ion details of a part icular

smart card which could be possibly avoided i n a high level protocol verification. These

details are important because wrong use of smart card commands may introduce a

vulnerabi l i ty even i f the high level definition of the protocol is secure. The A S L a n + +

language was chosen for protocol modeling, it can be used as an input for multiple

back-end model checkers of the A V A N T S S A R Pla t form.

A model of protocol i n A S L a n + + is defined by roles that can be played either by

a legitimate party or by an adversary called intruder. We establish two main roles in

the model description to represent the implementat ion - the first role represents the

smart card wi th its functionality and settings, the second role represents the protocol.

The protocol is executed by the terminal , the smart card only responds to commands

from the terminal . The protocol can be therefore identified wi th the terminal i n our

model. The intruder model that is used is the well-known Dolev-Yao intruder model

[43]. A l l communicat ion is synchronous wi th the intruder, the intruder intercepts the

messages from the legitimate user and each legitimate user receives messages only

from the intruder. The intruder can be therefore identified wi th the network. Figure

5.1 shows the configuration of subjects i n the model . The P C D executes the protocol

and communicates w i th the P I C C v i a the intruder, who is a man-in-the-middle. The

goal of our vulnerabi l i ty finding method is to find out if the intruder would be able

to perform some attack i n this configuration and find an attack trace.

The state explosion problem has to be addressed. If we create precise model of

the smart card and the terminal functionality, the model w i l l be too complex for the

57

P C D
(terminal)

intruder P I C C
(smart card)

P C D
(terminal)

intruder P I C C
(smart card)

Figure 5.1: Intruder model

model checker, the number of states w i l l be so high that the model checking execution

t ime w i l l be unacceptable. The goal of this thesis is to create modeling method that

w i l l create models which can be computed using model checking in acceptable t ime

and which describe the functionality sufficiently. We create simplified models that are

weaker than the precise model would be, so more attacks can be found. At tacks that

are found by the model checker can be tested and in case of false positive the model

can be adjusted to be more precise and not contain the part icular false vulnerabili ty.

The resulting model w i l l be a trade-off between precision and model checker execution

time.

Since smart cards are usually used in applications where high level of security

is required, confidentiality, integrity and authentication should be provided by the

protocol to protect data that are being transferred between the smart card and the

terminal . Confidential i ty of data is achieved by encrypting the data using any of the

state-of-the-art ciphers, which are strong enough to be relied on. In this thesis the

strength of the cipher is supposed to be sufficient to resist attacks focused merely on

breaking the cipher rather than finding vulnerabili t ies i n the protocol. We therefore

consider a l l ciphers unbreakable for purposes of this thesis so that we can focus on

vulnerabilit ies in the protocol.

Integrity of messages exchanged between smart card and terminal can be ensured

i n mult iple ways, such as computing the cyclic redundancy check (C R C) of plaintext

and encrypting it together w i th data, or by using message authentication code (M A C) ,

which is a cryptographic hash. M A C can be used to cryptographical ly secure the

integrity of data even i f these data are not encrypted.

Contactless smart cards usually require terminal authentication which ensures

that the data w i l l not be revealed to unauthorized entities. Each file in the smart

card has usually access permissions that are used to authorize operations on these

files. The access rights are determined according to the symmetric key that was used

for authentication.

58

5.1 Modeling Tool

A S L a n + + is the specification language used in A V A N T S S A R . It is a high-level formal

language for specifying security-sensitive service-oriented architectures. It is easy for

system designers to use, because it is close to the way i n which they think about

systems. It can be used also by users who are not experts on formal specification

language. The A V A N T S S A R platform provides conversion from high-level A S L a n + +

to A S L a n , which is a low-level specification language used by back-end model checkers

to perform verification of security properties.

A S L a n + + document consists of four parts: Enti t ies, Declarations, Statements,

and Goals . General schematic architecture of A S L a n + + is shown i n figure 5.2. A n

A S L a n + + model is a hierarchical structure of entities. The top-level entity is called

Environment , its sub-entity is called Session. Sub-entities of Session are used to de­

scribe characteristics of different agents or roles. The entity contains a collection of

declarations, start ing wi th keyword symbols, and a series of statements, starting w i t h

keyword body. Declarations are used to define types, variables, constants, and func­

tions. They are the static part of the entity, while statements describe the dynamic

part of the entity. Goals are used to formalize the desired security properties. The

most general way to formalize security properties is to use extended Linear Temporal

Logic (L T L) [116] formulas. Val ida t ion goals have a name and a L T L formula that

is checked by the validat ion back-ends. Another way to define a goal is to define an

assertion. Assertions are given as a statement in the body of an entity. They are

expected to hold only at the given point of execution of the current entity instance.

The A S L a n + + model can be checked by any of the A V A N T S S A R back-ends. The

back-end model checker w i l l then give a counterexamples when an attack is found,

which can be used to deduce the security flaw of the system. W h e n no attack is found,

it doesn't necessarily mean there is no vulnerabi l i ty i n the protocol. The reason may

be that the model checker explores the search space to the max ima l depth which was

previously set i n the back-end without finding any attack.

5.2 Smart Card Mode l

The P I C C can be seen as a state machine. The P I C C reads commands from P C D ,

changes its internal state according to these commands, and responds back. States of

the machine are determined by the internal state of the P I C C logic and by the value

of internal variables of the P I C C , such as content of files and used cryptographic

59

entity Environment!

symbols Declarations

entity Session (A, B: agent) {

symbols Declarations

entity PCD (Actor, B: agent) {

symbols Declarations

body{ Statements}

}

entity P\CC (A, Actor: agent) {

symbols Declarations

body{ Statements}

}

}

body{

Statements

new PCD(A, B);

nei/i/PICC(A, B);

}

body{

Statements

nei/i/Session(pcd, pice)

}

}

Figure 5.2: Schematic architecture of A S L a n + +

60

keys. Since the logic must have finite number of states and the files and keys can

only have finite number of values, the number of states of the machine w i l l be finite.

The transi t ion rules of the automaton are defined by the set of commands and pa­

rameters of these commands. A l t h o u g h the set of parameters w i l l be high, it w i l l

be finite, so the number of t ransi t ion rules w i l l be finite as well . We can therefore

model the P I C C behavior using a finite-state automaton or, more specifically, a Mea ly

machine, whose output is determined by the current state and the current input . A n ­

other state machine concepts can be used instead, such as U M L state machine, which

is an enhanced realization of the finite-state automaton mathematical concept w i t h

characteristics of M e a l y machine. U M L state machine diagrams are convenient for

describing contactless smart card behavior, because they support enhanced meth­

ods for simple pic tur ing of complex behavior, such as extended states, hierarchically

nested states, and orthogonal regions.

The automaton should describe behavior of a P I C C i n the level of detail suitable

for model checking, which means the simpler the better. It should be designed to

be simpler than the real implementat ion and allow false positives rather than false

negatives. It should be as simple as possible, because the model checking could take

unbearable amount of t ime due to the state explosion problem, if the number of states

was not kept low. The model can allow false positives because it can be iteratively

refined, but it should not allow false negatives, which would result i n false belief that

the system is secure. The automaton can be refined if false positives are found by

the model checker.

Figure 5.3 shows a sample U M L state machine diagram describing logic of the

Mifare D E S F i r e M F 3 I C D 4 0 , which is one of the cards later used to demonstrate the

verification method. Mifare D E S F i r e is a memory card, so the logic is quite simple.

The card shown i n the figure has three applications, the default appl icat ion number 0

and two standard applications w i t h numbers 1 and 2, and uses two keys for authen­

t icat ion, so the user can be authenticated using keyl, key2, or not authenticated

(noKey). O n l y basic commands needed for a payment protocol are modeled, the au­

thentication command (auth), select appl icat ion command (select), read file (read),

and write file (write). Two actions of 1) put t ing the card to the proximi ty of the

reader which starts the communicat ion and 2) taking the card away from the reader

to end the communicat ion are represented by activate and deactivate transitions

respectively.

The model should represent the behavior of a personalized issued card that is

ready to be used i n the protocol, which means that it does not have to support

61

al l commands which are used for the smart card personalization or commands that

are not enabled after the smart card is issued. This approach results in simpler

models and shorter model checking computat ion times. The Mifare D E S F i r e smart

card supports more commands than the commands shown i n figure 5.3, but these

commands w i l l not be used after the card is personalized i n secure environment, so

they are useless i n the model . A l so the applicat ion 0 i n the model does not allow

authentication, because it is used only during personalization for operations related

to creating and setting up other applications.

W h e n the contactless smart card is put to the proximi ty of the reader, it is ac­

tivated and an anti-collision procedure is performed. The anti-collision procedure is

used to allow mult iple cards to communicate w i th the terminal without interference.

After the anti-collision procedure, the terminal communicates only wi th one smart

card at a t ime, the order of smart cards is negotiated during the anti-collision proce­

dure. There is no reason for model l ing the anti-collision procedure, so in the model

the card gets immediately into the active state. W h e n the card is taken away from

the reader, the communicat ion is terminated and the card is deactivated.

The diagram i n figure 5.3 uses features of U M L state machine diagrams to s imply

picture complex behavior. The diagram uses nested states. If a system is i n the

nested state (called substate), it is impl ic i t ly also in the surrounding state (called

superstate). The state machine w i l l attempt to handle any event in the context of

the substate, but i f the substate does not prescribe how to handle the event, the event

is automatical ly handled at the higher level context of the superstate.

The figure describes an extended state machine which uses extended states to

describe memory of the card. The extended state is a combination of the state and

the extended state variables. Th is feature is very useful, because state machines

without extended states need large number of states to implement variables. The

machine from figure 5.3 can be pictured without extended states using orthogonal

region implementing memory, as shown i n figure 5.4. Each state can contain two or

more orthogonal regions and being in such a state means being i n a l l its orthogonal

regions simultaneously. The number of states i n the memory region is very large,

so only a couple of states are depicted to show the notion. We could define the

state machine without orthogonal regions, such machine would have states from the

cartesian product of states in the current orthogonal regions.

The memory cards w i l l result in very simple diagrams, while smart cards wi th

more complex logic like Java Cards or BasicCards , which allow execution of arbi trary

code, w i l l result i n more complex diagrams. Examples in this thesis are based on

62

activate

ft >

select(O)

se lect (l)

application (

a
select(O)

select(2)

select(O)

application 1

auth(O) [keyO
>\

noKey auth(O)
a u t h (l)

a u t h (l)

k e y l

se lec t (l)
select(2)

application 2

auth(O) keyO

noKey auth(O)
a u t h (l)

a u t h (l)

k e y l

deact ivate
>

[denied]

read(addr) \ / [granted] /

[granted] /
memory [app,addr] = decrypt(data)

[denied]

o write(addr.data)
5end(encrypt(memory[app,addr]))

Figure 5.3: U M L state machine describing basic Mifare D E S F i r e behavior

63

activate

I M

active

select(O)

select) 1)

application 1

auth(O)
f keyO J

noKey | auth(O)
a u t h (l)

a u t h (l) ^ k e y l j

application (

select) 1)

select(O)

select(2)

select(2)

select(O)

application 2

auth(O) keyO r noKey | auth(O)
^ 3 7

a u t h (l)

k e y l

a u t h (l)

wri te(addr,data)

write(addr.data)

write(addr.data)

deactivate
> ®

read(addr)/sendData()

Figure 5.4: Mifare D E S F i r e U M L state machine wi th memory states

64

Mifare D E S F i r e , but models of other card types can be also created.

A l though U M L state machines are very useful for depicting behavior of contactless

smart cards, the behavior can also be described using simple finite-state automatons

and Mea ly machines. Such description is more formal and can provide more detailed

insight.

We can create the M e a l y machine representing the P I C C by combining an automa­

ton describing the P I C C logic and an automaton representing the state of memory

(the two machines that were combined using orthogonal regions i n figure 5.4). The

formal definition of the P I C C M e a l y machine w i l l be provided later. We can analyse

the logic and memory automatons separately.

The P I C C logic automaton should describe behavior of P I C C as a response to the

commands sent by P C D . Let Miogic be a deterministic finite automaton defined as a

quintuple (Qiogic, T,iogic, <7iogic, qiogic0, Flogic), consisting of:

• a finite set of states Qiogic

• a finite set of input symbols T,iogic

• a t ransi t ion function aiogic : Qiogic x T,iogic ->• Qiog%c

• a start state qiogicO £ Q

• a set of accept states Fiogic = Qiogic (P I C C may end i n a l l states)

Figure 5.5 shows an example of Miogic automaton describing logic of the Mifare

D E S F i r e based on 5.3.

In this example the card has three applications and uses two keys for authenti­

cation. The states are denoted by a pair of applicat ion number and authenticated

key respectively. The in i t i a l state is the state where default applicat ion number 0

is selected and no authentication was performed - authenticated key 0. O n l y basic

commands needed for a payment protocol are modeled, the select appl icat ion com­

mand (select), the authentication command (auth), the read file command (read),

and the write file command(t t>r i£e) . Read and write commands do not change state

of the automaton, for these operation the memory automaton w i l l be needed. The

diagram does not contain description of a l l transitions, which are same as in 5.3, and

does not show final states. A l l states are potential ly final, since the communicat ion

wi th the card can be ended or interrupted in arbi trary state.

The automaton describing the state of the P I C C memory has states determined

by the content of files, values of cryptographic keys, and values of a l l other variables

65

read, write

read, write

read, write

read, write

Figure 5.5: F S M describing smart card behavior for some basic commands

that are persistent in the P I C C memory and that can be changed during the life of

the card. It can be defined s imilar ly as the M[ogic. Let A = a\,a,2, --an denote a l l

memory blocks (files, keys, etc.), n is the number of memory blocks. Let D be a set

of a l l possible data that can be stored in a block. Let Cwrite — A x D be a set of a l l

write command parameters, which consist of memory address and data to be wri t ten

and let Creaci = A be a set of read command parameters consisting of memory address

and let cnoop be a command for no operation. Let M m e m o r y be a deterministic finite

automaton defined as a quintuple, (Qmemory, ̂ memory j 0~memoryi QmemoryO: Fmemory) >

consisting of:

• a finite set of states Qmemory = D\ x D2 X ... X Dn, where n is the number of

memory blocks

• a finite set of input symbols T,memory = C w r i t e U Cread U { cnoop }

• a t ransi t ion function 0~memory '• Qmemory * ^memory Qmemory (commands for

wri t ing data Cwrite change state appropriately, Cread and cnoop do not change

state)

• a start state qmemoryO £ Q (ini t ia l content of memory)

• a set of accept states F m e m o r y = Qmemory (P I C C may end i n a l l states)

66

The automaton describing the P I C C is the combinat ion of the automaton describ­

ing the P I C C logic and the automaton representing the state of memory.

Let M be a Mea ly machine defined by a 6-tuple (Q, Qo, E , A , T, G) consisting of

the following:

• a finite Set of States Q == Qlogic ^ Qmcmovy

• a start state Qo = (qiogicOi Qmemoryo), which is an element of Q

• a finite set of input symbols E C E ; O S j c x Tjmemory; input alphabet w i l l contain

only meaningful commands:

(write, Ci), where write G T,iogic,a G Cwrite

(read, Cj), where read G E Z o s i c , a G C r e a d

(ci,cn00p), where a G S ; O S j c \ {write,read}, Cnoop G ^memory

• a finite set called the output alphabet A = D \J R, where R is a set of P I C C

status responses and D w i l l be used for read command responses

• a t ransi t ion function T : Q x E —> Q mapping pairs of a state and an input

symbol to the corresponding next state

• an output function G : Q x E —>• A mapping pairs of a state and an input symbol

to the corresponding output symbol

A n intui t ive interpretation of a Mea ly machine is following. A t any point i n t ime,

the machine is i n some state q G Q. It is possible to give inputs to the machine

by supplying an input symbol i G E . The machine then responds by producing an

output symbol G(q,i) and transforming itself to a new state T(q,i).

The read and write commands w i l l be processed only after correct authentica­

t ion, which is determined by the state of the logic automaton. The read command

w i l l return the file content based on the state of the memory automaton, and write

command w i l l change the state of the memory automaton. A l l other transitions w i l l

return only status of the command execution.

5.2.1 States reduction

The model checking execution t ime strongly depends on the to ta l number of states. In

order to keep the model checking t ime short, the number of states of the state machine

that simulates the smart card should be as low as possible, so some opt imizat ion

should be performed. To reduce the number of states i n the state machine we can

67

reduce the number of states used for logic (Miogic), or for memory {^^^rnernory)5 OI

both.

To reduce the number of states that describe logic of the smart card, we can

keep only states that has any side effect, for instance send data to the reader (read

command) or make persistent changes i n the memory (write command), and jo in

them w i t h the support ing states that represent the chain of commands. We can

create opt imized commands that are combination of mult iple real commands. Each

combined command has a side effect. We simulate commands for data transfer - read

and write. This approach reduces execution t ime of the model checker. Figure 5.6

shows the state machine from figure 5.3 wi th reduced number of states. There are

only two commands:

• read: this command is a combinat ion of select applicat ion, authenticate, and

read command

• write: this command is a combination of select applicat ion, authenticate, and

write command

This reduction is possible and has no impact on attack finding results, because the

supporting commands for selecting applicat ion and authentication can be performed

mult iple times and only the last performed command has impact on the following read

or write command. The internal state is determined by the last select and authenticate

commands, the previous commands are forgotten. The read and write commands w i l l

contain parameters for selected applicat ion number, which w i l l be consequently part

of the memory address, and other parameter for authentication and determining the

authentication key. The figure contains the authentication token auth, which w i l l be

described later together w i th the authentication mechanism.

To reduce the number of states in the M m e m o r y , we have to reduce the number

of memory blocks that can be wri t ten to, and /or reduce the number of possible data

that can be stored. If the card supports addressing of data blocks by applicat ion,

file ID , offset and length, the number of possible write locations can be tremendous.

Better approach is to have only memory locations that the applicat ion is supposed

to write to or read from and one undesired locat ion for each file that w i l l be used

to simulate wr i t ing or reading to bad locat ion that w i l l corrupt the result. Using

this approach the to ta l number of states w i l l be reduced dramatically, which w i l l also

reduce the model checker execution time.

68

read (add r)

o
[de nied] [granted] /

send (encrypt(memory [a pp.addr]))

activate f , ^
active

deactivate

6—1
•<§>

write(addr.data) [de nied]

o
[granted] /
memory[app,addr] = decrypt(data)

Figure 5.6: Reduced number of states

5.2.2 P I C C E n t i t y

W h e n the P I C C behavior is known and modeled for example using U M L state dia­

gram, the P I C C role in A S L a n + + can be created. The A S L a n + + general schematic

was shown i n figure 5.2, the P I C C behavior is defined i n the entityPICC, which

contains symbols declarations and body. The body of the P I C C role can be created

based on the U M L state diagram. The basic P I C C functionality that is created in

the body is an infinite loop that reads commands from P C D , processes them, and

sends responses back to the P C D , as shown i n figure 5.7. The states of the P I C C (as

defined i n the U M L state diagram) are determined by values of state variables, that

are defined i n the symbols declarations part.

States can be defined in several ways. There can be one P I C C state variable or

there can be mult iple state variables. In the latter case the P I C C state is determined

by values of a l l state variables together. The state variables may represent for instance

the selected applicat ion and authenticated key.

P I C C response is based on the current state and the received command. B o t h

state and command variables are declared i n the symbols part of the P I C C entity.

A S L a n + + allows new type definition, so the state variable may be of type state and

the command variable may be of type command. These types can be declared i n the

symbols part of the Environment. These types should be declared as subtypes of

the basic type text. Variables could also be declared as text without creating new

types.

For creating a model of Mifare D E S F i r e w i th reduced set of commands as shown

in 5.6 no states are necessary, because the model has only one state. The P I C C

responses are then based only on the received commands.

69

entity PICC (A, Actor: agent) {

symbols
State: state;
Command: command;

body {

while(true) {

7. read command
A -> Actor: ?Command;

select {
on(State = s t a t e l) : {

select {
on(Command = commandl): {

>

on(Command = command2): {

>

>

>

on(State = state2): {
select {
on(Command = commandl): {

>

on(Command = command2): {

>

>

>

>

7o send response
Actor -> A: ok;

>

>

>

Figure 5.7: P I C C role i n A S L a n + +

70

This section is dealing only wi th the logic automaton and shows only the basic

structure of the P I C C role. The P I C C behavior is more complex when the memory

automaton is taken into account. The memory automaton is not created in the same

way by modeling its states, it is created in a more natural and straightforward way

by introducing variables that represent the memory of the P I C C and the state of the

memory automaton is determined by the values of these variables. In other words, the

state of the memory automaton is determined by the content of the P I C C memory.

The P I C C w i l l also have other variables for example for authentication purposes as

described later, and we w i l l consider it as part of the memory automaton.

The body part of the P I C C entity can access the memory for read and write, so

the resulting model w i l l be the combinat ion of the logic and memory automatons.

5.2.3 Basic Concepts

There are some basic concepts that can be put together to form a smart card model.

These concepts are general and can be used to create a model of arbi trary smart card

w i t h pre-defined set of commands. We describe modeling of the following concepts:

• Appl ica t ions

• Authent ica t ion

• Enc ryp t ion

• Files and Permissions

• Personalization

• Integrity

The following sections describe the method of creating a P I C C role in the A S L a n + +

for these concepts, how to implement basic commands (commands of the P I C C au­

tomaton) and also how to implement the simplified commands (commands of the

P I C C automaton w i t h reduced number of states).

Applications

Mult i -app l ica t ion contactless smart cards support mult iple applications even from

different vendors on a single card. The applicat ion on cryptographic memory card

is not an executable program, it is rather a set of resources dedicated to applicat ion

outside the card. The applicat ion on the card can consist of files used to store data

71

and symmetric keys used for authentication and data encryption. The applicat ion

outside the card can securely store data in the card and read them back later. This

can be used for instance for payment applications or loyalty program applications,

where some credit is stored on the card.

To simulate the appl icat ion selection in the P I C C role, we can use a state variable

which is set by the P C D using a select command. The value of selected applicat ion is

then used for file access. If we use the automaton wi th reduced number of states, the

application selection is part of another command, such as the read or write command.

Authentication

The authentication process between smart card and terminal is usually mutual , bo th

parties must prove possession of a common secret. In case of Mifare D E S F i r e con-

tactless smart card, the three-pass authentication is executed and the common secret

is the D E S / 3 D E S key. W h e n creating a model of a smart card, the authentication

does not have to have precisely three message exchanges, it can be simplified i n order

to keep the number of states low. The simple way of s imulat ing the mutua l authenti­

cation process and modeling in A S L a n + + is a fresh session key generation performed

by one of the parties and sending it encrypted using the authentication key to the

other party. The other party must check that the session key is fresh and was never

used before during the protocol run. This approach uses a tr ick based on the fact that

we can be certain of things that we cannot i n the real environment. We can have a

secret key shared only by legitimate entities and we can be sure that the intruder does

not know the key. So if something is encrypted using this secret key, such as the fresh

random session key, the receiving party can be sure that the message was encrypted

by the legitimate counterpart, and also the sending party can be sure that only the

legitimate counterpart can decrypt the message. The sending party generates the

fresh session key to simulate new session key generation performed during the three-

pass authentication, the receiving party must check that the key is really fresh and

was never used before dur ing the protocol run. The fresh session key generation and

checking by the other party w i l l prevent replay attack on the authentication. Figure

5.8 shows example of a three-pass authentication. {A.B}K means concatenation of

A and B encrypted using encryption key K.

Thanks to the fact that i n the model we can be certain of things that we cannot in

the real environment and that the P I C C can remember a l l previously used session keys

and check that the new session key is really fresh, we can simulate the authentication

72

PCD PICC

Authenticate using key K

{nonceB}K

{nonceA.nonceB}K

{nonceA}K

PCD PICC

Figure 5.8: Three-pass authentication example

PCD PICC

PICC and PCD share secret key K1^

Generate fresh sessio n key S ^

{ S } K

Check if S is fresh 5
Authenticated with key KĴ

PCD PICC

Figure 5.9: Simplified authentication used in model

using only one message exchange, as shown i n figure 5.9.

After the one-pass authentication, P C D and P I C C share the common session key,

which could not be eavesdropped by the attacker, because it was encrypted wi th key

not known by the attacker. The P I C C knows which authentication key was used and

can grant access to files accordingly. The authentication needs to be implemented in

both P C D and P I C C roles. The P C D always starts the communicat ion and sends

commands, so it w i l l also generate a random session key.

In case of the automaton wi th reduced number of commands, the authentica­

t ion can be part of another message. Figure 5.10 shows possible A S L a n + + source

of one-pass authentication, where the authentication token is part of the readFile

command. The P C D generates fresh SessionKey and sends it i n the auth token w i t h

authentication key keyl, which is not known by the intruder. P I C C checks that the

session key was never used before (authentication resulting i n fresh session key) or

73

entity PCD (Actor, B: agent) {

body {
% fresh session key generation
SessionKey := fresh();
% read name
Actor -> B: readFile(addressName, auth(keyl, SessionKey));
B -> Actor: enc(SessionKey, ?Data);}

>

}

entity PICC (A, Actor: agent) {

body {
while(true) {

% read command
A -> Actor: ?Command;

select {
on(Command = readFile(?DataAddress, auth(?AuthenticatedKey,

?SessionKeyTemp))): {
% authentication
select {

on(!UsedSessionKeys->contains(SessionKeyTemp) I
SessionKey = SessionKeyTemp): {

% store current session key
UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

% authenticated

}

>

}

>

>

>
}

Figure 5.10: One-pass authentication i n A S L a n + +

74

that it is the current session key, i n which case the protocol continues wi th the old

session key (no new authentication). The current session key is stored in variable

SessionKey and the set of a l l used session keys is UsedSessionKeys. In case of

successful authentication, the current session key is stored in UsedSessionKeys set

for later use.

Encrypt ion

The high level language A S L a n + + already supports modeling of communicat ion

encryption, but it does not consider various modes of encryption algorithms. In

A S L a n + + any data can be encrypted using symmetric or asymmetric cipher. These

ciphers are considered unbreakable for purposes of protocol modeling, therefore the

intruder cannot learn the plaintext of the encrypted data unless he knows the corre­

sponding key. The complexity of breaking the encryption a lgor i thm is out of scope

of this thesis. B u t there are different modes of encryption that must be taken into

account when creating a model even i f the cipher a lgori thm itself is considered un­

breakable. Symmetr ic ciphers are used i n the following modes:

• E C B - Electronic Codebook

• C B C - Cipher Block Cha in ing

• C F B - Cipher Feedback

• O F B - Output Feedback

• C T R - Counter

The E C B mode encrypts each block of data in the same way independently on the

other blocks. The in i t ia l iza t ion vector is same for each block. The other modes are

more secure, because each block encryption depends on the previous blocks, which

makes the cryptanalysis more difficult. The in i t ia l iza t ion vector of the cipher is

changed after each block encryption, so each block is encrypted using different in i ­

t ia l izat ion vector. Mifare D E S F i r e M F 3 I C D 4 0 specification states that D E S F i r e uses

C B C mode. A l though each block of data is encrypted in C B C mode, same ini t ia l iza­

t ion vector is used for each block, which means that for short data blocks the data is

encrypted using E C B and we w i l l consider it as E C B mode for purposes of this thesis.

Th is mode is prone to replay attacks, because each data block is encrypted using the

same ini t ia l iza t ion vector and the same key. In A S L a n + + each block is encrypted

75

% ECB mode
encryptedECB := enc(SessionKey, Data);

7, CBC mode
encryptedCBC := enc(SessionKey, nextlV(lastlV), Data);

Figure 5.11: E C B and C B C encryption modes i n A S L a n + +

using same key and there are no ini t ia l izat ion vectors, so we can consider it the E C B

mode.

F rom the protocol modeling perspective, the C B C , C F B , O F B , and C T R modes

do not differ. They use the in i t ia l iza t ion vector which is different for each block. The

strength of these modes is out of scope of this thesis. We can model these modes by

adding fresh number (not used before and not known by the intruder) to the data

being encrypted, s imulat ing the changing ini t ia l izat ion vector. Th is approach w i l l

provide resistance to replay attacks.

Encryp t ion in E C B mode can be wri t ten in A S L a n + + as enciSessionKey, Data),

a non-invertible function representing Data encrypted using key SessionKey. Non-

invertible means that al though it may be overheard by the intruder, the intruder is

not able to invert the function to get the SessionKey or Data.

In case of C B C , we can use in i t ia l iza t ion vectors that are chained using custom

function nextlVQ so that fresh ini t ia l izat ion vector is used each time. The first

in i t ia l izat ion vector is custom vector zeroIV, the next one is nextIV(zeroIV), the

next one is nextIV (nextIV(zeroIV)), etc. The encryption i n the C B C mode can

then look like this: enc(SessionKey, nextIV(lastIV), Data), where lastIV is the

last in i t ia l iza t ion vector. Other encryption modes can be modeled along the same

lines.

Figure 5.11 shows encryption i n E C B and C B C modes.

Files and Permissions

Smart cards provide file system wi th permissions that can control access to each file

based on the key that was used for authentication. We can model files and permissions

in A S L a n + + either as variables or as facts. If the structure of files is static and w i l l

not change dur ing the life of the smart card, it is possible to model files using variables

in P I C C role. Each file would be a variable and file permissions would be variables as

well . Better approach is to use A S L a n + + facts. Facts are global and more flexible,

76

so when using facts it is possible to check content of P I C C files even from the P C D

role, and it is possible to add new facts and retract existing facts, which can be used

to simulate flexible file system where files can be created and deleted. Figure 5.12

shows how the file system can be declared in A S L a n + + as fact fileSystem w i th four

parameters for data address, authentication keys to get read and write permission,

and data itself.

fileSystem(text, symmetric_key, symmetric_key, message): fact;

Figure 5.12: P I C C file system i n A S L a n + +

The first parameter of the fact represents the address of the file and is of type

text, which is the most simple type in A S L a n + + . The second parameter represents

authentication key that must be used to obtain read permission to this file and is of

type symmetric_key, which is an A S L a n + + type for symmetric keys. Analogously,

the th i rd parameter is the authentication key for write permission. The fourth pa­

rameter represents data stored i n the file and is of type message, which is a compound

type that can store any combinat ion of data of any other type.

A l though address has a simple type, it represents a number of values that consti­

tute the address on a real card, such as selected applicat ion number, file ID , offset,

and length of data. We decided to have a separate fact for each data block that can

be addressed instead of one fact per file, which results i n more than one fact per

file. Blocks of different lengths and offsets may overlap, so not a l l blocks w i l l contain

meaningful data. Such blocks w i l l contain the message corrupted to easily recognize

unwanted data.

Long files w i l l contain many fact definitions, but for modeling purposes we can

reduce the number of possible file addresses by defining only the desired addresses

and one inval id address instead of a l l possible inval id addresses. Reading from this

invalid address w i l l return corrupted and wr i t ing to this location w i l l save corrupted.

Personalization

Behavior of each smart card type can be modeled using basic principles of applica­

tions, authentication, encryption, files, and permissions. A l l cards of one type has the

same behavior. For using i n a protocol, such as payment protocol or loyalty program,

the smart card must be personalized. Personalization is a process when the smart

77

card is in i t ia l ly populated wi th data of an intended smart card user, such as the name

or the account number. Consequently, each smart card w i l l contain different data in

files. This process should be taken into consideration when modeling the smart card

protocol. The personalization process does not have to be modeled, since it usually

takes place in a trusted environment. The smart card can be used i n the modeled

protocol only after the personalization, so we can create the model of a card which is

already personalized. To create the model of a personalized smart card, a l l files must

be created and populated as they would be during the personalization process.

Integrity

Integrity of data exchanged between the P C D and the P I C C is important , but it

is not always possible for the P C D or the P I C C to check the integrity. The attack

definitions described later w i l l cover these attacks so that any attack on integrity w i l l

be reported by the model checker.

There are situations in which the P C D or the P I C C can check the integrity of data

to avoid an attack, such as i f some mechanism providing integrity assurance is used

or i f the integrity of data is protected by itself. The integrity protecting mechanisms

can be for example message authentication code (M A C) or encryption i n C B C mode.

The data w i th its own protection mechanism are for example certificates, which are

digi tal ly signed. For data w i th this property we can implement integrity check in

the A S L a n + + source so that the P C D or P I C C can find out that the data has been

altered and perform a response to such attack. Otherwise the P C D or the P I C C

cannot dist inguish between genuine data and forged data, so the integrity assurance

depends on the inabi l i ty of attacker to send forged data. The model checker may find

an attack on integrity, in such case some integrity mechanism should be implemented.

5.3 Applicat ion Logic Mode l

There are two interacting roles in the A S L a n + + model, the P I C C , representing the

card, and the P C D , representing the terminal . The P I C C is only executing commands

sent to it from the P C D , so we model the applicat ion logic of the protocol i n the P C D

role. The P C D role contains the appl icat ion logic of the terminal and of the back-end

systems. It issues commands to the P I C C and decides what to do next when the

response from P I C C is received. The P C D represents the protocol run.

Dur ing the development, the developer can use the sequence diagram of the proto­

col or the flow diagram of the applicat ion as the basis for the P C D model . The P C D

78

PCD PICC

Authenticate using keyl

(3-pass authentication)

Select application 1

Status <
Read name (FilelD: 1, Offset: 0, Length: 16)

Encrypted name
^
Read old balance (FilelD: 2, Offset: 0, Length: 4)

- >

Encrypted old balance

Subtract price from old balance1^

Write (encrypted) new balance (FilelD: 2, Offset: 0, Length: 4)

Save new balance 5
Status

<
PCD PICC

Figure 5.13: Sample payment protocol

role should contain the logic (or simplified logic) of the applicat ion. The intruder can

also play the P C D role, but he does not have to follow the logic i n the role definition,

he can perform arbi trary actions. The role definition is good only for the legitimate

entity behavior.

Figure 5.13 shows the diagram of a sample payment protocol that w i l l be used to

demonstrate the protocol logic modeling. The diagram shows only the communicat ion

between two legitimate parties where no error occurs. A flow diagram can be used to

better describe the logic of the P C D . The P C D role i n A S L a n + + should reflect the

P C D logic shown i n the diagram.

The previously described states reduction of the P I C C role w i l l reduce the number

of commands by making them more complex. So for example the three-pass authenti­

cation followed by the select command for selecting applicat ion and then by the read

command w i l l result i n only one command combining them together. Th is fact must

be taken into account when translat ing the model checker results into the applicable

attack paths.

79

Figure 5.14 shows how the P I C C role implementat ion of the protocol may look

like when the number of Mifare D E S F i r e commands is reduced only to read and

write i n order to reduce model checking execution time. F i rs t two parameters of

both commands are same. The first parameter is in both cases the address of data to

be read or wri t ten. Mifare D E S F i r e uses applicat ion number, file ID , offset of data

in file, and length to address part icular data block, so the address w i l l represent the

combination of these values. For modeling purposes, each of these combinations w i l l

be named according to the variable it w i l l store. So for example the cardholder's

name w i l l be stored in appl icat ion number 1, i n file w i th file I D 1, w i th offset 0 and

length 20; this part icular data block address w i l l be named addressName to indicate

that this address is used to store the name. Other addresses w i l l be named i n the

same manner. Addresses not intended to store data w i l l also have some name.

The second parameter auth(keyl, S) is an authentication token. It is a session

key S encrypted using private key keyl (keyl is shared between legitimate entities

and not known by the intruder). The P I C C checks whether S is the current session

key (no new authentication) or S is a fresh session key (authentication using keyl).

Every old session key (invoked by replay attack) is rejected by the P I C C .

The th i rd parameter in the write command is the data to be wri t ten encrypted

using the session key from the second parameter. The response of the read command

is the data encrypted using the session key from the second parameter, the response

of the write command is only a status message. Symmetr ic encryption of oldBalance

using key S is denoted {oldBalance}s-

5.4 Attack Definition

In the previous sections the model creation was described. The model is wri t ten in

A S L a n + + language, which can be automatical ly translated to the A S L a n language,

which is an input format for the back-end model checkers. The attack definition must

be provided for the model checker to find any attack traces. The attack is defined as

a condit ion that should never happen i n normal protocol run and that means that the

intruder learned something that he should not have learned (confidentiality), or that

he changed something that he should not have changed (authentication, integrity).

These conditions are defined in the A S L a n + + model and then translated to states

that mean an attack. If the model checker finds a path to one of the attack states,

a possible attack is reported. The attack trace should be evaluated and i n case of

false positive, refinements should be made to the model . The model checker should

80

PCD PICC

Generate fresh sess on key

readFile(addressName, auth(keyl, S))

{name} s

readFile(addressBalance, auth(keyl, S))

{oldBalance}s

newBalance - oldBalance - pricey

writeFile(addressBalance, auth(keyl, S), {newBalance>s)v

ok

PCD PICC

Figure 5.14: Payment protocol w i th reduced set of commands

be run again and this process should be repeated un t i l real attack is found or the

model checker concludes that there is no attack.

Al though there are means for defining security goals of confidentiality and authen­

t icat ion in A S L a n + + , these do not fit well for the purposes of our attack definitions.

We w i l l use assertions that w i l l always hold unless an attack is under way. We can

easily set goals that the protocol should achieve, covering a l l desired security goals,

by defining assertions i n the P C D role that can contain information from P I C C which

would not be available in real environment, such as content of files (because files are

modeled as global facts). Example i n figure 5.15 shows an assertion that can be used

at some point i n the P C D or P I C C role to check content of some file on the card.

assert ok: fileSystem(addressBalance,keyl,keyl,newBalance)

Figure 5.15: At tack definition in A S L a n + +

We can interpret this assertion as follows: i f the file at address addressBalance

contains the value newBalance, it is ok, otherwise the model checker w i l l stop and an

attack w i l l be reported.

81

Chapter 6

Experimental Results

To demonstrate how the model creation process works and how the security attributes

of a protocol can be verified, three examples are provided i n this chapter.

The first example introduces a simple payment system that uses a Mifare D E S F i r e

like contactless smart card to store some value. The model of communicat ion protocol

between the terminal and the card w i l l be created and used as an input for the model

checker. The first example uses Mifare D E S F i r e M F 3 I C D 4 0 , the second example uses

theoretically improved version of the same card, and the th i rd example uses Mifare

D E S F i r e E V 1 .

Let us suppose that we need to develop a new payment protocol which uses

contactless smart cards. The card w i l l be issued to the cardholder personalized w i t h

his name and the in i t i a l balance. The cardholder w i l l be able to pay for goods wi th

this card. After he pays using the card, the price w i l l be subtracted from the current

balance. The balance can be increased by the authorized entity. F r o m these basic

requirements we can decide how the payment system should be implemented and

create a sequence or flow diagram of the applicat ion. The developer should first create

the sequence or flow diagram of the protocol and create and optimize the automaton

representing the smart card, then he can create the P C D and P I C C models, define

conditions that represent attacks and verify using model checking. F ina l ly , he can

implement the protocol in the target programming language.

Let us create an intuit ive protocol that w i l l fulfil the stated requirements. The

cardholder's name and balance w i l l be stored on the contactless smart card i n files.

We decided to use Mifare D E S F i r e as one of the most widespread contactless smart

cards. W h e n the cardholder puts the contactless smart card to the proximi ty of the

contactless smart card reader at the point of sale (POS) terminal , the anti-collision

procedure is performed and the payment protocol can be executed. The mutual

82

authentication should be performed at the beginning of the transaction and the data

that are then transmit ted should be encrypted i n both directions. The terminal first

reads the cardholder's name and then the balance. If the balance is higher than the

price for the goods, the price is subtracted from the balance by the P O S terminal

and the resulting balance is wri t ten to the smart card.

The model of the protocol consists of the P I C C role, the P C D role, and the

attack definitions, as described earlier. We have combined the concepts of mul t i -

application card, authentication using pre-shared key, encryption i n E C B mode, and

file system w i t h permissions to create a model of Mifare D E S F i r e contactless smart

card, support ing a l l basic commands required by the protocol. In case of Mifare

D E S F i r e M F 3 I C D 4 0 we have to dist inguish between data encrypted using encryption

mode of D E S and decryption mode of D E S , because this type of smart card uses only

encryption, while the terminal must use only decryption. P l a i n data oldBalance

encrypted using session key S is denoted enc(S, oldBalance), while the same pla in

data oldBalance decrypted using session key S is denoted dec(S, oldBalance). The

P C D role was modeled to reflect the sequence diagram of the protocol, which was

shown i n figure 5.14.

The attack definition consists of integrity and confidentiality checks implemented

using assert. There is one assert at the end of the P C D role stating that the balance

on the card is equal to the newBalance value. In other words, when the protocol

is executed successfully and the P C D checks the wri t ten balance and comes to a

point where it believes that the balance on the card is set to newBalance, the actual

value on the card is really newBalance. Th is assert can be realized thanks to mod­

eling of files as facts, which are visible globally. Other asserts can be used to check

intermediate states of the protocol.

The A S L a n + + model was translated to the A S L a n format and used as an input

for the C l -A t se model checker. Several model checker runs and protocol adjustments

revealed some possible attacks, which are discussed i n the following sections. The out­

put of the C l -At se model checker is the A T K file containing the sequence of messages

leading to a successful attack. These attack traces are also provided together w i th the

corresponding sequence diagrams, which are more i l lustrative. The attack descrip­

tions are accompanied wi th informal description for better understanding of how it

works. W h e n an attack was found, it was tested on a real card using man-in-the-

middle (M I T M) hardware described i n chapter 4. W h e n the attack was successful,

a countermeasure was added to the protocol in order to fix the vulnerabili ty, and

another round of model checking was performed. W h e n the attack was not successful

83

in the real environment, the model was refined and another round of model checking

was performed as well . The steps that were performed are described at each sample

verification i n the following sections.

Source code of the sample verification models in A S L a n + + language are provided

for reference i n the Append ix of this thesis.

6.1 Sample Verification 1 - Mifare D E S F i r e M F 3 I C D 4 0

The first example uses Mifare D E S F i r e M F 3 I C D 4 0 contactless smart card wi th no

modifications. Us ing a straightforward approach to designing a protocol without

th ink ing much about security, the resulting protocol contains some vulnerabilit ies,

which were found using the model checker. The model checker reports an attack

that it has found. W h e n the attack was found, we have proposed and implemented

a countermeasure and repeated the model checking. A l l subsequent attacks and

countermeasures for the first example are mentioned i n the following text. The C l -

Atse model checker w i th parameters -short -opt -nb 5 was used i n this example.

6.1.1 A t t a c k 1

The first attack that was found was caused by the fact that the address of data blocks

on the card is not cryptographical ly protected. The first model checker run revealed

the attack trace shown i n figure 6.1. Enti t ies pice and ped are legitimate, entities

<picc> and <pcd> belong to the intruder.

ped -><picc> : readFile(addressName,auth(keyl.nl19(SessionKey)))
<pcd> -> pice : readFile(addressBalan.ee,auth(keyl.nl19(SessionKey)))
pice -><pcd> : enc(nl19(SessionKey),oldBalance)
<picc>-> ped : enc(nl19(SessionKey),oldBalance)

Figure 6.1: A t t ack 1 - model checker output

The first line of the attack trace means that the legitimate P C D sends to intruder's

P I C C the command readFile w i th address parameter addressName and authenti­

cation token auth(keyl,nll9(SessionKey)). It means that i n real environment the

P C D would first authenticate using keyl and select appl icat ion which contains the

addressName, and then send readFile command wi th file ID , length, and offset cor­

responding to addressName. The nll9(SessionKey) in the attack trace represents

81

http://keyl.nl
http://addressBalan.ee
http://keyl.nl

session key that was freshly generated. The second line means that the intruder's

P C D forwards the readFile command to the legitimate P I C C wi th the same authen­

t icat ion token, but w i th changed address. The address address Balance is different

from the address i n the first command. W h e n using real commands, the difference

would be i n applicat ion number, file I D , length, or offset. Since only two files are

defined i n this protocol, the attacker would probably be able to change only the file

ID to perform the attack successfully. The result of this change is that P I C C returns

different data than demanded (on the th i rd line), which are then forwarded to the

P C D (on the fourth line). The P C D expects name, which is for instance i n file w i t h

ID 1, but gets balance, which is in file w i th I D 2. The P C D does not implement

any validi ty check, so it would carry on without any suspicion. A t this point, the

model contains assert condi t ion to check that P C D gets correct data. In this case

this assertion was not satisfied, therefore the model checker stopped and reported the

attack. We can also decide that the name is not important and put the assert only

after reading balance, which is more important for the protocol. The result would

be same, the attacker would change the address. In the real environment the length

of the name and balance would be different, so these attacks might not always work

as suggested by the model checker. However, the attacker can change more than

one parameter i n the real command, so he can for instance change the file ID and

also the length of data. If the attacker wants to forge balance, which is for example

4 Bytes long, he can set the file I D and offset to some part of name (which is for

example 16 Bytes long), and set the length to 4 Bytes, so the length of data read w i l l

be 4 Bytes . If these 4 Bytes represent some balance value, the P C D has no means

to find out that this data block is not genuine balance and that it is forged by the

intruder.

This attack trace is the exact output of the model checker that was saved in the

A T K file. To better understand the result, it is good to create a sequence diagram,

which is more il lustrative. Figure 6.2 shows the output of the model checker translated

into the sequence diagram. Intruder's actions causing an attack are shown i n bo ld in

al l following figures.

The output of the model checker is quite concise due to the reduction of the P I C C

model and can be translated to the real environment commands and responses. The

attack trace which uses data address as one value is then translated to more than one

attacks that use separate values for appl icat ion number, file ID , length, and offset.

Figure 6.3 shows an attack based on forged file I D . There are also notes showing

where an intruder can change applicat ion number, offset, and length.

85

PCD Intruder PICC

Generate fresh session key S 1^

readFile(addressName,auth(keyl,S))

enc(S.oldBalance)

PCD expects name^

PCD

Intruder changes address ^

readFile(addressBalance,auth(keyl,S)),

enc(S,oldBa lance)

Intruder PICC

Figure 6.2: A t t ack 1 based on changing address

PCD Intruder PICC

Authenticate using keyl

(3-pass authentication)

Select application 1

Intruder could change application number ^

Select application 1

Status

Read name (FilelD: 1, Offset: 0, Length: 16^

Intruder changes FilelD ^

Intruder could also change Offset and Length 3
Read balance (FilelD: 2, Offset: 0, Length: 16)

Encrypted balance

PCD expects encrypted nanie^

PCD Intruder PICC

Figure 6.3: A t t ack 1 - real commands

86

These attacks are caused by the fact that the address of data blocks on the card

are not cryptographical ly protected. The attacker changes the data address, which

consists of the appl icat ion number, file ID , length, and offset. Th is results in the

P I C C returning wrong data block or wr i t ing into wrong address. These attacks were

described by the author of this thesis i n [117].

6.1.2 T e s t i n g A t t a c k 1 o n a R e a l D e v i c e

To find out whether the found attack trace represents real vulnerabi l i ty or it is only

a false positive, we had to t ry it i n a real environment. We used the M I T M hardware

to execute the protocol several times and alter parameters of the commands to force

P I C C to use different appl icat ion number, file ID , offset, and length. Figure 6.4 shows

the native Mifare D E S F i r e M F 3 I C D 4 0 App l i ca t i on Pro toco l D a t a Uni t s (A P D U)

exchanged between legitimate P C D and P I C C . Remarks i n the figure describe what

command or response is being sent and wi th what parameters. It also includes the

length of each parameter of the command or response. E a c h A P D U is preceded wi th

the direction, either from P C D to P I C C or vice versa. Where the intruder acting

as a M I T M makes any changes to the commands or responses, the direction ends or

starts i n the entity Intruder and Intruder's action is described i n a remark.

A s we can see, the attack was successful and the protocol should be improved

to fix this vulnerabil i ty. The protocol model does not consider the length of data

being sent, so we can argue that i n some situations the proposed attack would not be

possible, because the P C D expects data of some part icular length and the intruder is

only able to send data of a different length. It could also be the case i n this example.

O n the real card both files have same length - 32 Bytes - and the values are stored

at the beginning of the file. The balance i n this example has 4 Bytes . To keep the

examples short, we only read 8 Bytes of the name. Thanks to the fact that the

balance file is not 4 Bytes long but 32 Bytes long, we can read the same number of

Bytes from balance as we would read from name. There is therefore no l imi ta t ion

on length. Let us suppose that the length of balance file is only 4 Bytes . Is such a

case this attack would not be possible. However, it would s t i l l be possible to make

the attack the other way round - to change the address so that the P C D would read

4 Bytes from name instead of demanded 4 Bytes from balance. We can extend the

model by introducing lengths of data in enc and dec. The length w i l l be the part of

the encrypted data, so the attacker w i l l not be able to alter it and it w i l l be possible

for both P C D and P I C C to check the length so that they w i l l accept only data w i t h

87

Select application 1 (Command: IB, Application number: 3B)
PCD -> PICC: 5a 01 00 00
OK (Status: IB)
PICC -> PCD: 00

Authenticate with key 1 (Command: IB, Key number: IB)
PCD -> PICC: Oa 01
Three-phase authentication
PICC -> PCD: af 5a bd 19 c7 50 5c fb e l
PCD -> PICC: af 49 le 89 Od e9 ac e9 32 db b9 a6 42 d6 cc d8 4d
PICC -> PCD: 00 b7 dl da 7c eO dd 98 6b
Session key (DES): 00 01 02 03 fe b6 d9 ec

Read name (Command: IB, F i l e ID: IB, Offset: 3B, Length: 3B)
PCD -> Intruder: bd 01 00 00 00 08 00 00
Intruder changes the address
Intruder -> PICC: bd 02 00 00 00 08 00 00
Encrypted data (Status: IB, Data: 16B)
PICC -> PCD: 00 f3 d2 lb d4 09 2b 53 6a 5f 37 51 69 da 09 18 b8
Decrypted data (Data 8B, CRC: 2B, Padding: 6B)
00 00 10 00 00 00 00 00 8a 17 00 00 00 00 00 00

Figure 6.4: A t t ack 1 - A P D U s

the expected length.

Figure 6.5 shows the output of the model checker when the data lengths are used.

A s we can see, the attacker could not change the address of the name because the only

way to get long enough block of data is to read from the file containing the name. The

file containing the balance is too short (4 Bytes) . The attack is based on changing

the address of balance i n the readFile command to addressNameCorrupted, which

is an imaginary address of some part of file containing name, start ing at arbi trary

offset i n this file and having the length of balance. The lengths of data blocks are

defined i n the fact definition part of the A S L a n + + source file. If the balance is coded

for example as unsigned integer, the real wor ld usabil i ty of this attack is obvious -

the attacker w i l l replace the cardholder's balance wi th name, which w i l l probably

represent much bigger number than the real balance.

A s we can see, introducing data block lengths to help P C D to distinguish between

legitimate and forged data is not very useful and we cannot consider it as a pract ical

countermeasure. The next subsection describes a countermeasure that can be used

to avoid these attacks.

88

pcd -><picc> readFile(addressName,auth(keyl,nl14(SessionKey)))
<pcd> -> pice readFile(addressName,auth(keyl,nl14(SessionKey)))
pice -><pcd> enc(nl14(SessionKey),name,lengthName)

<picc> -> pcd enc(nl14(SessionKey),name,lengthName)
<pcd> -> pice readFile(addressNameCorrupted,

auth(keyl,nll4(SessionKey)))
pcd -><picc> readFile(addressBalance,auth(keyl,nl14(SessionKey)))
pice -><pcd> enc(nl14(SessionKey),corrupted,lengthBalance)

<picc> -> pcd enc(nl14(SessionKey),corrupted,lengthBalance)

Figure 6.5: A t t ack 1 - w i th data length

6.1.3 Counter-measure to Attack 1

A countermeasure to the previous attacks can be some integrity checking on the

application layer of the payment system. For purposes of integrity checking, C R C

or cryptographic signature can be used. C R C would be enough, because a l l data

t ransmit ted between P C D and P I C C are encrypted, so the intruder cannot change

data nor C R C , which is part of the encrypted data, without corrupting whole data

block. If there is for example only one file containing the C R C protected data, the

P C D can easily distinguish this val id data block from another data block from another

application, file, offset, or w i th different length. So let us add such integrity checking

to the protocol model i n the P C D role, which w i l l help P C D to dist inguish valid

balance from another corrupted data. In the P C D role we w i l l add a val idi ty check

after each line in the code where some data are received from P I C C . For example a

val idi ty check for name w i l l look like this:

select {
on(Data = name): {

The parentheses must be closed at the end of the P C D role. Thanks to this

val idi ty checking i n the model the P C D role w i l l continue in the protocol only when

it receives data that are not corrupted, which is exactly what would be achieved using

some integrity checking method i n the real environment. Such val idi ty checking can

also be simpler and use the term corrupted to ensure that the data received is correct,

but it would not dist inguish between data types:

89

select {
on(Data != corrupted): {

This val idi ty check w i l l not distinguish between val id name and val id balance, it

w i l l only ensure that the data block is buil t correctly, for example wi th val id C R C or

cryptographic signature.

6.1.4 A t t a c k 2

After implementing the proposed countermeasure, the model checker revealed the

attack shown in figure 6.6.

pcd -><picc> readFile(addressName,auth(keyl,nl22(SessionKey)))
<pcd> -> pice readFile(addressName,auth(keyl,nl22(SessionKey)))
pice -><pcd> enc(nl22(SessionKey),name)
<picc> -> pcd enc(nl22(SessionKey),name)
<pcd> -> pice readFile(addressBalance,auth(keyl,nl22(SessionKey)))
pcd -><picc> readFile(addressBalance,auth(keyl,nl22(SessionKey)))
pice -><pcd> enc(nl22(SessionKey),oldBalance)
<picc> -> pcd enc(nl22(SessionKey),oldBalance)
pcd -><picc> writeFile(addressBalance,auth(keyl,nl22(SessionKey)),

dec(nl22(SessionKey),newBalance))
<picc> -> pcd ok

Figure 6.6: A t t ack 2 - model checker output

This attack is based on discarding the writeFile command by the intruder. The

beginning of the communicat ion is the standard protocol execution where the in ­

truder only forwards messages between legitimate P C D and legitimate P I C C . A t

line number 9, the legitimate P C D sends the writeFile command i n order to store

the newBalance i n the smart card; however, the intruder never forwards this mes­

sage to P I C C . This results in si tuation where P C D assumes that newBalance has

been wri t ten, but P I C C have not received the command, so the balance on P I C C

remains unchanged. A t this point, P C D thinks that the current balance on card is

newBalance, which is not true.

The model contains assert condit ion to check that P C D gets correct data. In this

case this assertion was not satisfied, so the model checker reported an attack.

90

Figure

was found

6.7 shows a sequence diagram of an attack on the improved protocol that

and that is based on discarding writeFile command by the intruder.

PCD Intruder PICC

Generate fresh session key

readFile(addressName, auth(keyl, S))

enc(S, name)

readFile(addressBalance, auth(keyl, S))

enc(S, oldBalance)

new/Balance = oldBalance - pricey

writeFile(addressBalance, auth(keyl.S), dec(S, new/Balance)^

Intruder discards command 5
ok

addressBalance contains oldBa lance1^

PCD Intruder PICC

Figure 6.7: A t t ack 2 based on discarding write command

6.1.5 T e s t i n g A t t a c k 2 o n a R e a l D e v i c e

To find out whether the found attack trace represents a real vulnerabi l i ty or it is only

a false positive, we had to t ry it i n real environment. We used the M I T M hardware

to execute the protocol and to discard the writeFile command and at the end of the

protocol. Figure 6.8 shows the A P D U commands exchanged between legitimate P C D

and P I C C . A s i n the previous example, remarks i n the figure describe what command

or response is being sent, its parameters and lengths of these parameters. Each A P D U

is preceded wi th the direction, either from P C D to P I C C , or vice versa. Where the

intruder acting as a M I T M makes any changes to the commands or responses, the

direction ends or starts in the entity Intruder and Intruder's action is described i n a

remark.

A s we can see, the attack was successful and the protocol should be improved to

fix this vulnerabili ty. The next subsection describes a countermeasure that can be

used to avoid this attack.

91

Select application 1 (Command: IB, Application number: 3B)
PCD -> PICC: 5a 01 00 00
OK (Status: IB)
PICC -> PCD: 00

Authenticate with key 1 (Command: 1 Byte, Key number: 1 Byte)
PCD -> PICC: Oa 01
Three-phase authentication
PICC -> PCD: af a7 l a 16 94 54 67 21 3c
PCD -> PICC: af 49 le 89 Od e9 ac e9 32 fe 7b Od b3 15 Od 29 6b
PICC -> PCD: 00 b7 dl da 7c eO dd 98 6b
Session key (DES): 00 01 02 03 39 db cd 10

Read name (Command: IB, F i l e ID: IB, Offset: 3B, Length: 3B)
PCD -> PICC: bd 01 00 00 00 08 00 00
Encrypted data (Status: IB, Data: 16B)
PICC -> PCD: 00 67 2a ec 93 bb 3d da b5 82 5b de d8 a4 38 e3 f f
Decrypted data (Data 8B, CRC: 2B, Padding: 6B)
4a 6f 68 6e 00 00 00 00 8b cd 00 00 00 00 00 00

Read balance (Command: IB, F i l e ID: IB, Offset: 3B, Length: 3B)
PCD -> PICC: bd 02 00 00 00 04 00 00
Encrypted data (Status: IB, Data: 8B)
PICC -> PCD: 00 9d 43 54 11 cf 6f cc 9a
Decrypted data (Data 4B, CRC: 2B, Padding: 2B)
00 00 10 00 91 c3 00 00

Write new balance (Command: IB, F i l e ID: IB, Offset: 3B, Length: 3B
Encrypted data: 8B)
PCD -> Intruder: 3d 02 00 00 00 04 00 00 96 be 10 l c 43 b3 a6 5a
Intruder discards the write command
OK (Status: IB)
Intruder -> PCD: 00

Figure 6.8: A t t ack 2 - A P D U s

6.1.6 Counter-measure to A t t a c k 2

A countermeasure to this attack can be reading the balance once again at the end of

the protocol to check the wri t ten value. If the read balance is correct, the protocol

ends and the cardholder can take the goods. Figure 6.9 shows a sequence diagram of

the proposed countermeasure.

Thanks to the fact that the Mifare D E S F i r e M F 3 I C D 4 0 only encrypts using D E S

or 3 D E S and the P C D only decrypts, this countermeasure is sufficient. If the data

92

PCD PICC

Generate fresh sessio n key S ^

read(addressName, auth(keyl, S))

^ enc(S, name)
*

read(addressBalance, auth(keyl, S))

^ enc(S, oldBalance)

new/Balance = oldBalance - price i
write(addressBalance, auth(keyl, S), dec(S, newBalance)^

^ ok

read(addressBalance, auth(keyl, S))

^ enc(S, new/Balance)

Check written balance^

PCD PICC

Figure 6.9: Countermeasure to attack 2

transmit ted by both P C D and P I C C were encrypted and the receiving device always

decrypted the data, this proposed countermeasure would not be enough. The intruder

would be able to learn the encrypted newBalance from the writeFile command and

then replay this data as the response to the last readFile command, so the P C D

would be mislead by the attacker. The balance check would successfully pass, but the

actual balance on the card would not be changed. The intruder would discard the

writeFile command so the balance on the card would be oldBalance and the replay

attack would ensure that the P C D does not find it out. If we change the model i n the

way that a l l t ransmit ted data are encrypted, the model checker finds the described

attack, which is shown i n figure 6.10.

The countermeasure to this attack would be a re-authentication after data wri t ing ,

which means that data that are read after re-authentication are encrypted using new

session key, so the intruder cannot replay the previously eavesdropped encrypted

balance. Figure 6.11 shows a sequence diagram of the proposed countermeasure. The

re-authentication is simulated by generating fresh session key, which is used i n the

following communicat ion. This re-authentication is emphasized i n boldface i n the

figure.

93

PCD

Generate fresh session key S 1^

readFile(addressName, auth(keyl, S))
i

_ {name} 5 ;
1

readFile(addressBalance, auth(keyl, S))
i

{oldBalance}5

 1

^ 1

Intruder PICC

new/Balance = oldBalance - pricey

writeFile(addressBalance, auth(keyl,S), {newBalance}s)
^-1

ok
Intruder discards command
and remembers {newBalance} s

readFile(addressBalance, auth(keyl.S))

{newBalance} s

addressBalance contains oldBalance

PCD Intruder PICC

Figure 6.10: Hypothe t ica l attack

Note that in case of Mifare D E S F i r e M F 3 I C D 4 0 we do not have to consider this

attack and we can use the first proposed countermeasure.

6.1.7 A t t a c k 3

After implementing the proposed countermeasure, the model checker revealed the

attack i n the improved protocol, which is shown in figure 6.12.

This attack is based on changing the address in the writeFile command to an­

other val id file or another offset i n the same file. The newBalance w i l l be saved to

another address and then read from this address for checking. The check i n P C D

w i l l successfully pass; however, the balance file on the card w i l l contain oldBalance

instead of newBalance. The assert i n the P C D role used to check that P I C C has

newBalance at the correct address w i l l not be satisfied, therefore the model checker

w i l l stop and report the attack.

Figure 6.13 shows a sequence diagram of this attack, intruder's actions are em­

phasized in boldface.

94

PCD PICC

Generate fresh session key

read(addressName, auth(keyl, S))

{name} s

read(addressBalance, auth(keyl, S))

^ {oldBalance}s

new/Balance = oldBalance - pricey

writefaddressBalance, authfkeyl, S), {newBalance}s)^

ok

Generate fresh session key T ^

read(addressBalance, auth(keyl, T))

^ {newBalance}T

Check written balance1^

PCD PICC

Figure 6.11: Hypothe t ica l attack countermeasure

6.1.8 T e s t i n g A t t a c k 3 o n a R e a l D e v i c e

To find out whether the found attack trace represents a real vulnerabi l i ty or it is

only a false positive, we had to t ry it i n a real environment. We used the M I T M

hardware to execute the protocol and to change the writeFile command parameters

to save newBalance to a different address. T h e n we changed the readFile command

parameters so that the P I C C would read newBalance instead of the actual value at

the balance address. Figure 6.14 shows the A P D U commands exchanged between

legitimate P C D and P I C C . A s i n previous examples, remarks describe commands

wi th their parameters and responses.

A s we can see, the attack was successful and the protocol should be improved to

fix this vulnerabili ty. The next subsection describes a countermeasure that can be

used to avoid this attack.

95

pcd -><picc> readFile(addressName,auth(keyl,nl20(SessionKey)))
<pcd> -> pice readFile(addressBalance,auth(keyl,nl20(SessionKey)))
pice -><pcd> enc(nl20(SessionKey),actualBalance)
<pcd> -> pice readFile(addressNameCorrupted,

auth(keyl,nl20(SessionKey)))
pice -><pcd> enc(nl20(SessionKey).corrupted)
<pcd> -> pice readFile(addressName,auth(keyl,nl20(SessionKey)))
pice -><pcd> enc(nl20(SessionKey),name)
<picc> -> pcd enc(nl20(SessionKey),name)
pcd -><picc> readFile(addressBalance,auth(keyl,nl20(SessionKey)))
<picc> -> pcd enc(nl20(SessionKey),actualBalance)
pcd -><picc> writeFile(addressBalance,auth(keyl,nl20(SessionKey)),

dec(nl20(SessionKey),newBalance))
<pcd> -> pice writeFile(addressBalanceCorrupted,

auth(keyl,nl20(SessionKey)),
dec(nl20(SessionKey),newBalance))

pice -><pcd> ok
<pcd> -> pice readFile(addressBalanceCorrupted,

auth(keyl,nl20(SessionKey)))
pice -><pcd> enc(nl20(SessionKey),newBalance)
<picc> -> pcd ok
pcd -><picc> readFile(addressBalance,auth(keyl,nl20(SessionKey)))
<picc> -> pcd enc(nl20(SessionKey),newBalance)

Figure 6.12: A t t ack 3 - model checker output

6.1.9 Counter-measure to A t t a c k 3

A countermeasure to this attack can be al lowing wr i t ing to only one file and restricting

wr i t ing to a l l other files. Th is is very strong restriction and w i l l affect the usabil i ty of

the protocol. However, after executing the model checker on the improved protocol,

no more attack was found.

6.1.10 C o n c l u s i o n

The cause of a l l these attacks is the weakness of Mifare D E S F i r e M F 3 I C D 4 0 contact-

less smart card - not encrypting or signing commands, appl icat ion number, file ID ,

length, and offset.

Note that the size of files and data being transferred between P C D and P I C C is

ignored i n the basic model, so the model checker w i l l sometimes find an attack which

is not feasible i n real environment due to the size l imitat ions. These false positives

can be avoided by also including size of files and data i n the model as shown i n the

96

PCD Intruder PICC

Generate fresh sessio n key

readFile(addressName, auth(keyl, S))

enc(name)

readFile(addressBalance, auth(keyl, S))

enc(oldBalance)

newBalance = oldBalance - pricey

writeFile(addressBalance, auth(keyl.S), d^c(newBalance))

readFilefaddressBalance, auth(keyl,S))

enc(newBalance)

Intruder changes address ^

writeFile(addressName, auth(keyl.S), dec(newBalance))^

Intruder changes address ^

readFile(addressName, auth(keyl.S))

addressBalance contains oldBalance 5
PCD Intruder PICC

Figure 6.13: A t t ack 3 based on wr i t ing to another file

first attack in this example.

This example contains several countermeasures and model adjustments, so several

source codes were used as input for model checking. The source code provided i n the

Append ix is a sample implementat ion which shows the proposed countermeasures in

comments. The intention was to provide one source code for each example; however,

not everything described i n this example is included due to the complexity of the

combined source code.

6.2 Sample Verification 2 — Improved smart card

The second example of attack finding using formal verification methods is based on

a protocol, which is s imilar to the protocol i n the previous example, but which is

using an improved contactless smart card. The contactless smart card used is a

hypothetical card similar to Mifare D E S F i r e w i th the difference that everything in

the communicat ion is encrypted (after successful authentication), not only data. This

97

improvement w i l l prevent attacks from the previous example. Another smal l change

is that anyone can change the name on the smart card; this field is only informative,

so there is no need to protect i t . Th is w i l l be modeled using key2, which w i l l be

known to the intruder and which w i l l be required for granting write permission. The

balance field w i l l be protected i n the same way as i n the previous example, using

keyl, which is not known by the intruder. Figure 6.15 shows a sequence diagram

of the protocol used i n this example. The command modeling is different from the

previous example, encryptedCommand is a tuple containing the authentication token

auth(keyl, S) and the command encrypted using the symmetric session key, such as

{readFile(addressName)}s- Everyone, including the intruder, can learn these two

components from the encryptedC ommand. The authentication does not depend on

the content of the encrypted part of the encryptedC ommand. Th is model represents

encryption of whole commands using E C B mode, so commands can be replayed by the

intruder. However, the intruder is not able to find out the content of the encrypted

part, he cannot find out which command it is.

The C l -A t se model checker w i th parameters -short -opt -nb 3 was used i n this

example. The model checker found an attack, which is shown in 6.16.

We cal l this a "command injection" attack. A n attacker authenticates using

the publ ic ly known key2 and writes the forged command to the field at address

addressName. Then, dur ing the protocol run ini t ia ted by the legitimate P C D , when

the P C D reads the name field at address addressName, an attacker (man-in-the-

middle) eavesdrops the forged command encrypted using current session key (not

known be the attacker). He can then send the encrypted forged command to the

P I C C and the P I C C cannot find out that it was not sent by the legitimate P C D ,

because it is encrypted using the current session key that was established during the

authentication using keyl, which is known only to the legitimate P C D . Th i s is a

k ind of replay attack, because the intruder overhears the command in the form of

encrypted data from P I C C and replays the same encrypted data to the P I C C as new

command.

Despite the fact that commands and their parameters are encrypted, the intruder

can execute arbi trary command, he only has to prepare it in advance. Figure 6.17

shows a sequence diagram of the command injection attack found by the model

checker w i th the imaginary command maliciousCommand, which is used to empha­

size the fact that arbi t rary malicious command can be injected, not only the command

suggested by the model checker, which is writeFile(addressBalance, falseBalance).

Figure 6.18 shows the same attack using real world commands. Intruder's actions are

98

stressed i n bo ld i n both diagrams.

This attack could not be tested i n real environment, because the smart card is

only a hypothetical improvement of Mifare DESf i re . However, we can suppose that

this attack would work.

The countermeasure to this attack can be any replay attack protection which w i l l

ensure the freshness of the messages. A n y encryption mode different from the default

E C B mode would prevent this attack. We d id not implement this countermeasure as

part of this example, because the next example focuses on a smart card which uses

C B C encryption mode and we can see there that the C B C mode prevents any replay

attacks.

6.3 Sample Verification 3 - Mifare D E S F i r e E V 1

In this example the protocol uses Mifare D E S F i r e E V 1 , which is an improved version

of Mifare D E S F i r e M F 3 I C D 4 0 . There are many improvements implemented i n this

card, the most important from the protocol modeling perspective is the encryption

in C B C mode. The older Mifare D E S F i r e M F 3 I C D 4 0 also used C B C mode, but only

inside one command, the in i t ia l iza t ion vector (IV) was set to zero after each command

and response. Mifare D E S F i r e E V 1 , on the other hand, uses real C B C mode and the

I V is set to zero only at the beginning of the communicat ion and then never again.

This approach helps to prevent any k ind of replay attack. The encrypted part of the

message always includes C R C 3 2 of the whole command, so nothing can be altered by

the intruder, which is also a huge improvement compared to the older version.

The C B C encryption mode of the Mifare D E S F i r e E V 1 is modeled by adding an

I V to the encrypted part of the tuple encryptedCommand, which was used in the pre­

vious example. The tuple encryptedCommand w i l l contain the authentication token

auth(keyl, S) and the command together w i th I V encrypted using symmetric session

key. The zero I V is denoted zeroIV, the following IVs are denoted nextIV (zeroIV),

nextIV(nextIV(zeroIV)), etc. For the sake of s implic i ty of the P I C C role imple­

mentation i n A S L a n + + , the first I V which is used is nextIV (zeroIV), not zeroIV,

but this is only a smal l detail . The encrypted data w i l l be different each time, which

w i l l prevent replay attacks.

Figure 6.19 shows a sequence diagram of the protocol being verified in this exam­

ple. It is simpler than the protocol from the previous examples, the balance is read,

updated, and wri t ten back to the smart card.

The C l -A t se model checker w i th parameters -short -opt -nb 3 was used i n this

99

example. The model checker found an attack, which is shown in figure 6.20.

The attack found in the first model checker round is based on discarding the write

command. It relies on the fact that the P C D does not wait for the authenticated

answer from the P I C C . The intruder gets the write command from P C D but does

not forward it to the P I C C . The balance on the P I C C does not get updated, while

P C D expects that new balance is stored on the card.

W h e n this attack is executed i n the real environment, it is found that it does not

work, because P C D backtracks the transaction when it does not get any response

from P I C C in some t ime. The model is therefore refined by adding the following line

to the P C D role, which w i l l make P C D wait un t i l it gets a response from P I C C :

B -> Actor: ?;

The attack shown i n figure 6.21 was found by the model checker in the refined

model.

This attack is based on the fact that the intruder sends some dummy response. It

was found that this attack is again not feasible in the real environment, because P C D

checks that the response was ok, not arbi t rary data. The model is refined accordingly:

B -> Actor: enc(?, ?, ok);

The attack shown i n figure 6.22 was found by the model checker in the refined

model.

The correct status ok is sent as a response to the P C D in this attack. However,

it is not encrypted using correct session key. The real Mifare D E S F i r e E V 1 smart

card sends the status i n plaintext w i th C R C 3 2 of the whole message encrypted using

session key. It is therefore possible to change status so that it looks correctly, but

after decrypting and verifying C R C 3 2 one can find out that it is not legitimate. This

is the case i n our example, testing the attack on real hardware shows that the P C D

verifies the C R C 3 2 of the message, therefore another refinement must be performed,

which reflects the fact that the intruder must know the session key in order to bu i ld

correct response:

B -> Actor: enc(SessionKey, next(nextIV(nextIV(nextIV(zeroIV)))),

After this refinement the model checker d id not find any other attack.

100

Select application 1 (Command: IB, Application number: 3B)
PCD -> PICC: 5a 01 00 00
OK (Status: IB)
PICC -> PCD: 00

Authenticate with key 1 (Command: 1 Byte, Key number: 1 Byte)
PCD -> PICC: Oa 01
Three-phase authentication
PICC -> PCD: af ed d4 96 60 88 l a 4d 97
PCD -> PICC: af 49 le 89 Od e9 ac e9 32 36 60 a6 Oe bf a2 d3 be
PICC -> PCD: 00 b7 dl da 7c eO dd 98 6b
Session key (DES): 00 01 02 03 05 7f d8 33

Read name (Command: IB, F i l e ID: IB, Offset: 3B, Length: 3B)
PCD -> PICC: bd 01 00 00 00 08 00 00
Encrypted data (Status: IB, Data: 16B)
PICC -> PCD: 00 9f e5 60 b4 e4 59 01 76 67 54 05 ab 93 92 24 39
Decrypted data (Data 8B, CRC: 2B, Padding: 6B)
4a 6f 68 6e 00 00 00 00 8b cd 00 00 00 00 00 00

Read balance (Command: IB, F i l e ID: IB, Offset: 3B, Length: 3B)
PCD -> PICC: bd 02 00 00 00 04 00 00
Encrypted data (Status: IB, Data: 8B)
PICC -> PCD: 00 ca c2 72 78 64 90 5a fd
Decrypted data (Data 4B, CRC: 2B, Padding: 2B)
00 00 10 00 91 c3 00 00

Write new balance (Command: IB, F i l e ID: IB, Offset: 3B, Length: 3B
Encrypted data: 8B)
PCD -> Intruder: 3d 02 00 00 00 04 00 00 dc 87 f5 eO 77 78 25 70
Intruder changes the address
Intruder -> PICC: 3d 01 10 00 00 04 00 00 dc 87 f5 eO 77 78 25 70
Decrypted data (Data 4B, CRC: 2B, Padding: 2B)
00 00 08 00 cO 98 00 00
OK (Status: IB)
PICC -> PCD: 00

Read balance to check
(Command: IB, F i l e ID: IB, Offset: 3B, Length: 3B)
PCD -> Intruder: bd 02 00 00 00 04 00 00
Intruder changes the address
Intruder -> PICC: bd 01 10 00 00 04 00 00
PICC -> PCD: 00 07 e5 aO 95 61 lc ba 14
Decrypted data (Data 4B, CRC: 2B, Padding: 2B)
00 00 08 00 cO 98 00 00

Figure 6.14: A t tack 3 - A P D U s

101

PCD PICC

Generate fresh sessiorTkey

encryptedCommand(auth(keyl, S), {readFile(addressName)}s) ^

_ {name} s

encryptedCommand(auth(keyl, S), {readFile(addressBalance)}s)

^ {oldBalance}s

<
new/Balance = oldBalance - price

encryptedCommand(auth(keyl, S), {writeFile(addressBalance, newBalance)}s^

„ { ok } s

encryptedCommand(auth(keyl, S), {readFile(addressBalance)}s)

{newBalance}s ^

Check written balance

PCD PICC

Figure 6.15: Pro toco l

pcd -> <picc> : encryptedCommand(auth(keyl,nll9(SessionKey)),
enc(nll9(SessionKey).readFile(addressName)))

<pcd> -> pice : encryptedCommand(auth(key2.SessionKey(161)),
enc(SessionKey(161),writeFile(addressName,
writeFile(addressBalance,falseBalance))))

<picc> -> pcd : enc(nll9(SessionKey),readFile(addressName))
pice -> <pcd> : enc(SessionKey(161),0)
<pcd> -> pice : encryptedCommand(auth(keyl,nl19(SessionKey)),

enc(nll9(SessionKey).readFile(addressName)))
pice -> <pcd> : enc(nl19(SessionKey),writeFile(addressBalance,

falseBalance))
<pcd> -> pice : encryptedCommand(auth(keyl,nl19(SessionKey)),

enc(nll9(SessionKey),writeFile(addressBalance,
falseBalance)))

Figure 6.16: M o d e l checker output

102

PCD Intruder PICC

PCD not n the proximity of PICC^

Intruder authenticates using key2 ^

Intruder saves malicious command 5
new sessio n key S 1^

encryptedCommand(auth(key2,S), {writeFile(addressName, maliciousCommand)}s)

PCD in the proximity of Piccfr|

new sessio n key

encryptedCommand(auth(keyl,S), {readFile(addressName)}T)

{maliciousCommand}7

Intruder gets malicious command encrypted using current session key |̂

Intruder executes malicious command 5
encryptedCommand(auth(key1 ,S), {maliciousCommand}T)

PCD Intruder PICC

Figure 6.17: C o m m a n d injection attack

103

PCD Intruder PICC

PCD not in the proximity of PICC^

Intruder authenticates using key2 ^

Authenticate using key2

(3-pass authentication)

Intruder saves malicious command 5
1 Select application 1

t e ­
status

Write malicious command (FilelD: 1, Offset: 0, Length: 16)

i Status

PCD in the proximity of PICC^

Authenticate using key2

(3-pass authentication)

Select application 1

Status !

Read narrje (FilelD: 1, Offset: 0, Length: 16)

Malicious command encrypted using current session key

Intruder executes malicious command 5
1 Malicious command

PCD Intruder PICC

Figure 6.18: C o m m a n d injection attack - real commands

104

PCD PICC

Generate fresh session key S 1^

encryptedCommand(auth(keyl, S),
{nextlV(zerolV), readFile(addressBalance)}S)

{nextlV(nextlV(zerolV)), oldBalance}s <

new/Balance = oldBalance - pricey

encryptedCommand(auth(keyl, S),
{nextlV(nextlV(nextlV(zerolV))),
writeFile(addressBalance, newBalance)}S)

PCD

—̂>
PICC

Figure 6.19: Pro toco l

pcd -><picc> encryptedCommand(auth(key1,nlll(SessionKey)),
enc(nlll(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

<pcd> -> pice encryptedCommand(auth(key1,nlll(SessionKey)),
enc(nlll(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

pice -><pcd> enc(nlll(SessionKey),nextIV(nextIV(zeroIV)),
oldBalance)

<picc> -> pcd enc(nlll(SessionKey),nextIV(nextIV(zeroIV)),
oldBalance)

pcd -><picc> encryptedCommand(auth(key1,nlll(SessionKey)),
enc(nlll(SessionKey),nextIV(nextIV(nextIV(zeroIV))),
writeFile(addressBalance,newBalance)))

Figure 6.20: M o d e l checker output 1

105

pcd -><picc> encryptedCommand(auth(keyl,nll2(SessionKey)),
enc(nll2(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

<pcd> -> pice encryptedCommand(auth(keyl,nll2(SessionKey)),
enc(nll2(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

pice -><pcd> enc(nl12(SessionKey),nextIV(nextIV(zeroIV)),
oldBalance)

<picc> -> pcd enc(nl12(SessionKey),nextIV(nextIV(zeroIV)),
oldBalance)

pcd -><picc> encryptedCommand(auth(keyl,nll2(SessionKey)),
enc(nll2(SessionKey),nextIV(nextIV(nextIV(zeroIV))),
writeFile(addressBalance,newBalance)))

<picc> -> pcd Dummy(118)

Figure 6.21: M o d e l checker output 2

pcd -><picc> encryptedCommand(auth(keyl,nll5(SessionKey)),
enc(nll5(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

<pcd> -> pice encryptedCommand(auth(keyl,nll5(SessionKey)),
enc(nll5(SessionKey),nextIV(zeroIV),
readFile(addressBalance)))

pice -><pcd> enc(nl15(SessionKey),nextIV(nextIV(zeroIV)),
actualBalance)

<picc> -> pcd enc(nl15(SessionKey),nextIV(nextIV(zeroIV)),
actualBalance)

pcd -><picc> encryptedCommand(auth(keyl,nll5(SessionKey)),
enc(nll5(SessionKey) 5nextIV(nextIV(nextIV(zeroIV))),
writeFile(addressBalance,newBalance)))

<picc> -> pcd enc(Dummy(121),Dummy_l(121),ok)

Figure 6.22: M o d e l checker output 3

106

Chapter 7

Protocol Model ing Limitations

7.1 Attacks not Covered

Al though formal verification methods are useful for finding vulnerabili t ies on the

protocol level, the usabil i ty of this technique on other attacks on contactless smart

cards is l imi ted . Other attacks, such as physical attacks, side-channel attacks, and

attacks specific for contactless communicat ion are out of scope of this method, since

this method is not suitable for them and there is no way how to model properties

that would be necessary to find such attacks.

In this chapter another method that can increase the security of contactless smart

cards is proposed. T h i s method is focused on possible attack that is not covered in

the protocol modeling method and cannot be found using formal verification, because

it is an attack on low level communication, where t iming is of importance.

This chapter is dedicated to preventing relay attacks, which is a type of attack

that cannot be prevented on the applicat ion level. Relay attacks are possible due to

the contactless communicat ion l ink and were described i n section 2.3.4. Two coun-

termeasures are proposed i n this chapter. These methods can be used to prevent

real attacks that induce delays significantly longer than the delay caused by the time

travelling longer distance. They can be used against most l ikely attacks, which are

not expensive and can be easily performed by attackers w i t h moderate skills, which

makes them very dangerous.

107

7.2 Relay Attack

7.2.1 H o w to P e r f o r m a R e l a y A t t a c k

This section discusses relay attacks from the perspective of attackers i n order to get

better idea what possibilities the attackers have i n terms of used hardware, what

are the t ime restrictions that they must not exceed, and what tricks they can use to

shorten the delay caused by the relay attack.

Hardware

The attackers can use either off-the-shelf equipment, or bu i ld their own. They can buy

standard contactless smart card readers or any N F C enabled device, such as smart-

phone. A s speed is the most important requirement on relaying the communicat ion,

the right hardware choice is crucial .

The first possibil i ty is to use off-the-shelf smart card readers. The example of

software which can be used is libnfc [118] - a l ibrary providing users wi th the possi­

bi l i ty of using two standard contactless readers for a relay attack. The advantage of

this approach is obvious, the attacker can use cheap off-the-shelf hardware and only

write the software or use some existing. However, this approach can be very tricky,

since the attacker has no control over the physical layer. Mos t readers cannot be used

for relay attack due to t iming issues induced by P C / S C interface. The off-the-shelf

readers are connected to the P C v i a RS232 or U S B , this communicat ion l ink induce

significant delays.

Another possibil i ty is to use N F C enabled smartphones. Th is is currently popular

topic due to the fact that smartphones are light and affordable for most people and

can easily establish communicat ion l ink between each other v i a bluetooth, W i - F i ,

G S M , etc. Relay attack using N F C devices can be potential ly great threat because,

unlike self-built hardware and P C connected readers, these devices are hard to be

spotted. N F C enabled smartphones were used for relay attack for example in [119]

and [120]. The former paper presents the attack which can be used only to forward

communicat ion between two other N F C smartphones i n peer-to-peer mode. The

latter paper goes further and presents relay attack applicable also to communicat ion

between active and passive devices, so the communicat ion between reader and card

can be forwarded. This was the first t ime something like this was successful; however,

the attacker does not fully control the physical layer, so it cannot be used i n some

scenarios. They were not able to set arbi trary U I D to the fake passive target, which

108

would be required i n systems where the U I D is validated. There are two types of U I D s

- unique and random (used to ensure untraceabil i ty). R a n d o m U I D s always start w i t h

0x08. N F C devices can use both types, but they cannot change the unique U I D at

the moment. Because the communicat ion between two N F C devices is over network

where the communicat ion is buffered, there are also significant delays induced.

Adversaries can also bu i ld their own equipment. In [121], a pract ical relay attack

wi th self-built hardware was demonstrated. The communicat ion was relayed up to a

distance of 50 m . There were many other successful implementations, since in past

this was the only way to perform a relay attack. The advantage of this approach

is that the attacker has full control over the physical layer of the communicat ion.

The greatest disadvantage is the complexity of this approach, bui ld ing such hardware

requires appropriate knowledge and equipment. The fact that each attacker has to

bu i ld own hardware rather than using already existing one prevents the spreading of

this type of attack. B u t the full hardware control is unexceptionable advantage. This

is currently the only possibil i ty to make the relay attack fast enough to compete w i t h

distance bounding protocols.

There is also a possibil i ty to use a special hardware designed for research purposes,

such as [122] or [123], which can be purchased assembled and ready to use. These

devices are open hardware designs and the attacker has full control over the physical

layer. These devices lack full software support, since they are used for experiments

rather than for commercial purposes.

Round-tr ip T i m e Restrictions

I S O / I E C 14443 defines the Frame Waiting Time (F W T) , which is the max ima l time

the reader waits for the card's response. W h e n this t ime is exceeded, the error is

detected and the reader tries to recover. After a few attempts the card is rejected.

The forwarded communicat ion must be therefore fast enough to not exceed this l imi t .

The F W T is negotiated at the beginning of the communicat ion. It is computed from

the Frame Wai t ing Integer (F W I) , which is part of the Answer to Select (A T S) set

by the card.

FWT = (256 x 16/fc) x 2 F W I

In the formula above, fc is the carrier frequency 13.56 M H z . T y p i c a l F W T value

for D E S F i r e card is 77.33 ms (F W I = 8). The F W T can be set up to 4.949 s according

to the standard (F W I = 14). However, the F W T does not affect the anti-collision

procedure.

109

The time for the card's response can be extended by the Frame Waiting Time

Extension (W T X) , which is an S-block defined i n I S O / I E C 14443-4. The card uses

W T X instead of the answer when it needs more t ime than the defined F W T to process

the received block. The reader then extends the wai t ing t ime by the t ime defined in

the W T X . The upper l imi t of this extension is same as for F W T . W T X can be used

repeatedly. If the standard t ime is not sufficient i n the part icular si tuation and we

cannot or do not want to negotiate longer F W T for some reason, we can extend the

t ime wi th W T X .

The Frame Wai t ing T i m e can be very relaxed so the attackers can meet the time

requirements even i f the communicat ion is relayed over network.

Another t ime restriction can be caused by some distance bounding protocol. Dis­

tance bounding protocols were described i n section 2.3.4. The t ime l imi t in distance

bounding protocol would be much shorter and the attackers would not be able to

relay the communicat ion, unless they used some trick to reduce the response t ime,

such as one of the methods described i n the following subsection.

Reducing Response T i m e

The attacker can reduce the response t ime i n the relay attack by overclocking the

forged reader i n order to get the response from the smart card faster than the legiti­

mate reader would get i t . It is possible due to the fact that the smart card's processor

is clocked by the signal generated by the reader. This would give the attacker a chance

to reduce the round-tr ip t ime and not exceed the t ime l imi t defined i n the distance

bounding protocol or Frame Wai t ing Time.

Another possibil i ty how to decrease the response t ime during relay attack is the

Late-commit attack [124] based on the fact that receivers integrate the signal ampl i ­

tude over whole bit period. Dur ing the in i t i a l ^E^- of the t ime interval the attacker

sends no energy and for the final of the interval sends m-times stronger signal. The

result of the integration w i l l be same as i n normal one bit transmission. However, the

attacker can delay deciding which value to send by of the bit period. Us ing this

method, the attacker can slightly mitigate the effect of delays caused by relay attack.

7.2.2 De lays i n R e l a y A t t a c k s O v e r Buf fered C o n n e c t i o n

This subsection discusses delays i n relay attacks that use a buffered connection, such

as a network, for communicat ion between attackers. These delays are much longer

and could be detected even when no distance bounding protocol is used. Rea l attacks

110

are not perfect and induce addi t ional delay to the delay caused by the signal travelling

longer distance, which is the delay the distance bounding protocols are used to detect.

Th is delay is caused by hardware components processing the signal and sending it to

a different location. If the communicat ion is relayed over a distance exceeding the

range of one transmitter, it is l ikely that some buffering w i l l be used. If the data are

sent over network using T C P / I P , the induced delay w i l l be significant.

The attacker can reduce the response t ime in the relay attack by overclocking

the forged reader i n order to get the response from the smart card faster than the

legitimate reader would get i t . Th is would give the attacker a chance to reduce

the round-trip t ime and not exceed the t ime l imi t defined i n the distance bounding

protocol.

Delays that occur when performing a relay attack are caused by three main factors:

• Speed of light is not infinite, therefore an addi t ional delay is induced, corre­

sponding to the t ime needed for the signal to travel between attackers' devices.

• The hardware used as a fake reader and a fake card needs non-zero t ime for

execution of the required operations.

• The communicat ion between attackers' devices over long distance w i l l l ikely

require buffering, which inherently delays the communicat ion.

The state-of-the-art distance bounding protocols a im at the delay caused by the

speed of light. The signal needs more t ime to travel between legitimate devices when

the relay attack is performed than it would in normal si tuation. Distance bounding

protocols therefore t ry to prevent a l l theoretical attacks, because nothing can travel

faster than light. The speed of light is approximately 3 x 10 8 m/s, so the signal

passes the distance of a kilometer i n the order of microseconds. A s we w i l l see, the

l imi ta t ion by speed of light, which is the main target of state-of-the-art distance

bounding protocols, is negligible compared to the other delays.

Relay attacks are dangerous when they are executed over longer distances, so

that the legitimate user can not find out something is happening. These distances

w i l l l ikely exceed the range of one transmitter, so the attackers' devices have to

be connected v i a mult iple intermediate re-transmitters or over network. D a t a in

networks are transported i n packets, which requires buffering. Latency i n computer

networks based on T C P / I P is measured in order of milliseconds, which is much higher

than delays due to the signal travelling the distance at speed of light. It would be

possible to construct re-transmitters that would not buffer any data, and modulate

111

the incoming signal directly to the outgoing signal. The real implementat ion of such

re-transmitter would also induce delay on electronic components, but it would be

significantly lower than delays i n buffered communication.

Experimental Relay Attack

We have established a real relay attack using P roxmark 3, which is an open hardware

platform for R F I D research purposes. Descr ipt ion of the hardware platform was

provided in section 4.1. Th is experimental relay attack was performed for purposes

of the protocol analysis described i n previous chapters, so there was no effort to make

it as fast as possible. The measurement was also not precise. However, it showed

that the relay attack delay can be i n order of milliseconds. The average measured

delay induced by a relay attack was about 27 ms. P roxmark responded fast enough,

the communicat ion was delayed mostly by the U S B l ink between Proxmark and P C .

Other relay attack implementations can be faster, but communicat ion over U S B or

network slows it down significantly.

112

7.3 Relay Attack Mit igat ion

We propose a method to prevent real-world attacks that induce delays significantly

longer than the delay caused by the t ime travelling longer distance. This method is

described i n the first subsection. In the second subsection we show a method that is

a countermeasure to the overclocking attacks. The method is based on overclocking

the legitimate reader to the l imi t the communicat ing card can s t i l l rel iably operate,

which reduces to m i n i m u m the t ime the attacker can gain by overclocking the forged

reader. We have implemented the overclocking method in the reader and show the

results. The signal was analysed on the oscilloscope. The communicat ion t ime was

reduced while the card was s t i l l able to reliably operate.

7.3.1 Pass ive D e t e c t i o n

The reader can monitor the communicat ion and detect anomalies. It does not make

any changes to the t ransmit ted signal or data being sent, so we cal l it passive detec­

t ion. Alternat ively, the reader monitor ing can be provided by an external device such

as P roxmark 3, which can be used to eavesdrop on the communicat ion and which

provides precise t iming data.

This method can be used against relay attacks where significant delays are induced

for instance by buffered communicat ion l ink between attackers' devices. The passive

detection is based on precise measuring the responses of a l l commands. Init ial ly, the

fingerprint of each type of smart card is made, a l l response times are measured and

saved for later use. D u r i n g the communicat ion, a l l response times are continuously

measured and compared to the times saved in the smart card's fingerprint. In case

of any anomaly, the possible attack is reported.

Addi t ional ly , the reader should have much shorter delay restrictions. The Frame

Wai t ing T i m e should be restricted to min ima l values for which the smart card can

operate reliably, and the Frame Wai t ing T ime Extens ion should be disabled by default

and allowed only in reasonable situations.

The relay attack over short distance performed wi th custom made hardware would

not be detected by passive detection. However, attacks over computer network or

attacks using off-the-shelf U S B readers could be detected, because they induce much

bigger delays, as discussed in the previous section. These attacks are not expensive

and can be easily performed by attackers w i th moderate skills, which makes them very

dangerous. This countermeasure is quite easy to implement compared to distance

bounding protocols. It can be wor th implementing such countermeasure even i f it

113

does not protect against a l l theoretical attacks, because it protects against the most

likely attacks.

7.3.2 O v e r c l o c k i n g

A s mentioned earlier, attackers can reduce the round-tr ip t ime by overclocking the

communicat ion wi th the legitimate smart card, while communicat ing on the normal

frequency of 13.56 M H z wi th the legitimate reader. The result is that they get the

response from the card faster that the legitimate reader would get it , so they can send

the response back sooner than the reader expects and reduce the delay caused by the

relay attack. The distance bounding protocol could therefore be circumvented.

The proposed method is based on overclocking the legitimate reader to frequency

as high as possible, where the smart card is s t i l l reliably operating, which reduces

chances for the attackers to perform successful relay attack. The t iming is shown in

figure 7.1. The first row depicts the t ime the ordinary communicat ion takes. Th is is

the t ime the attacker must not exceed i n order to keep the relay attack undetected

by the round-tr ip t ime measurements. The second line shows the relay attack t ime,

which consists of the delay caused by the relay attack, which is the t ime of flight of the

signal and delays on intermediate devices, and t ime needed by the attacker to execute

the command, which is equal to the t ime needed in the standard communicat ion.

In this case the to ta l t ime exceeds the t ime of the standard communicat ion. The

th i rd line is the case of overclocking attack, which reduces the t ime of the command

execution by the attacker. In this si tuation the to ta l t ime is same as the t ime of

the standard communication, which w i l l l ikely make the relay attack successful. The

last line shows the proposed method of overclocking the legitimate reader, which w i l l

result i n reducing the t ime of the standard communicat ion, establishing new time

l imi t . So even i f the attacker is overclocking the communicat ion wi th the legitimate

card as well, he w i l l exceed the new time l imi t .

Implementation with Proxmark

We have implemented the reader that communicates w i t h the smart card on the

frequency 16 M H z using Proxmark 3. Figure 7.2 compares the response times between

standard communicat ion at 13.56 M H z and communicat ion of our overclocked reader

running at 16 M H z . Mifare D E S F i r e smart card was used and the depicted command

is the pol l ing command, which is periodical ly sent by the reader. B y increasing the

frequency, approximately 53/J.S was spared on this basic command. The response is

114

Standard
Communicat ion

Relay Attack

Relay Attack wi th
Overclocking

Proposed Method
(Reader Overclk.)

A - time needed to execute a command by legitimate reader

B - delay caused by relay attack

C - time needed to execute command by attacker

Figure 7.1: T ime consumption

not clearly visible in the signal, because it is modulated on a subcarrier 848 k H z , so

al l parts of the communicat ion are marked i n the graph.

div 100ns

div lOus

Figure 7.2: Response times comparison

115

Chapter 8

Conclusions

This thesis analyses contactless smart card protocol threats and presents a method

of semi-automated vulnerabi l i ty finding i n contactless smart card protocols using

model checking. The high level goal of this thesis was to investigate security of

contactless smart card protocols and to find methods of improving security of these

protocols. The contr ibut ion of this thesis is twofold: 1) the method of semi-automated

vulnerabi l i ty finding using formal methods, which can be used for finding high level

attacks on the protocol level, and 2) the countermeasures to relay attacks performed

over a network, which were created after relay attacks investigation.

The focus i n this thesis is on the high level attacks on the protocol level. Possibi l i ty

of these attacks was analysed and a method of semi-automated vulnerabi l i ty finding

using formal methods was proposed. The formal model can be created from the

protocol definition or extracted from the eavesdropped communicat ion. Unwanted

states that pose an attacks are specified. After analysing the protocol and creating

the model including the attack states, model checking can be used to automatical ly

find vulnerabilities.

A V A N T S S A R platform is used for the formal verification, the models are wri t ten

i n the A S L a n + + language. Examples demonstrate the usabil i ty of the proposed

method.

This thesis deals mainly wi th simple smart cards wi th fixed file structure and

pre-defined set of commands. These smart cards provide authentication based on

symmetric keys, mult iple applications and file system wi th access permissions. Access

control is based on keys that are used for authentication, data may be encrypted using

some symmetric cipher. One of the most popular and widespread contactless smart

cards that uses this scheme is Mifare D E S F i r e , which was used i n examples i n this

thesis. Other smart cards have more sophisticated operating system and can execute

116

applications on their chip, such as Java Cards, M U L T O S cards or BasicCards . Thei r

application logic can be modeled as well, but this thesis is focused mainly on smart

cards wi th fixed file structure and pre-defined set of commands.

The method presented in this thesis was used to find a previously unpublished

weakness of the Mifare D E S F i r e M F 3 I C D 4 0 contactless smart card. Some features

of the Mifare D E S F i r e M F 3 I C D 4 0 were found to be very dangerous and it may

be very difficult to implement protocol using this card i n a secure way. A l though

these features are not considered vulnerabilit ies of the smart card itself, they help to

introduce vulnerabilit ies into the implementation.

We have shown how the inappropriate protocol implementat ion can yield new

vulnerabilit ies even i f the protocol itself is secure and the communicat ion wi th the

hardware is considered secure too. We have demonstrated a sample attack on fictional

payment protocol implementat ion on Mifare D E S F i r e smart card. There is a potential

for adversaries to perform similar attacks on real systems. We have introduced a

concept of automated vulnerabi l i ty search using formal verification methods to find

complex attack traces which are not l ikely to be found manually. There is a possibil i ty

to use the source code to get an overall image of the protocol and to create the model

which is as close to reality as possible, or a man-in-the-middle attack can be used to

get information about the protocol from the implementation.

Not a l l kinds of attacks are covered by the proposed method, so one type of the

remaining attack types - the relay attack - was investigated separately. A minor

part of this thesis was dedicated to relay attack investigation and countermeasure

proposal.

We have proposed a method based on passive detection to prevent real attacks that

induce delays significantly longer than the delay caused by the t ime travelling longer

distance. It can be used against most l ikely attacks, which are not expensive and

can be easily performed by attackers w i t h moderate skills, which makes them very

dangerous. This countermeasure is quite easy to implement compared to distance

bounding protocols. It can be wor th implementing such countermeasure even i f it

does not protect against a l l theoretical attacks.

We have shown a possible countermeasure to the overclocking attacks. The

method is based on overclocking the legitimate reader to the max ima l l imi t where

the communicat ing card can s t i l l rel iably operate. This method reduces to m i n i m u m

the chances of the attacker to gain t ime by overclocking the communicat ion wi th the

legitimate card and hence to circumvent the t ime l imi t . We have implemented the

reader that communicates w i th a smart card on the frequency 16 M H z and tested it

117

wi th a real card.

Further research may be focused on finding more automatic methods of creating

formal model from the analysed protocol. Learning techniques allow automatic in ­

ference of behaviour of a system as a finite state machine and can be used to extract

such formal models from software on smart cards or to extract the protocol. Such

automated reverse-engineering takes l i t t le effort and is fast. The finite state machine

models obtained can be used i n the method presented i n this thesis. Th is approach

would improve this method by making it more automatic.

The results presented in this thesis were published in journal [125] wi th impact

factor and international conferences [126], [117], and [127].

118

Bibliography

[1] E M V . E m v contactless specifications for payment systems, contactless

communicat ion protocol, version 2.6. [Online] C i t e d 2016-04-12. Available at:

http://www.emvco.com.

[2] Mastercard contactless. [Online] C i t e d 2016-04-12. Available at:

http://www.mastercard.com/contactless/index.html.

[3] V i s a , contactless payments. [Online] C i t ed 2016-04-12. Available at:

https://www.visaeurope.com/receiving-payments/contactless.

[4] Amer i can express contactless payments. [Online] C i t ed 2016-04-12. Available

at: https:
//network.americanexpress.com/en/globalnetwork/contactless/.

[5] Czech Rai lways. Inkarta. [Online] C i t ed 2016-04-12. Available at:

http://www.inkarta.cz/eng-co-j e-inkarta.aspx.

[6] State government victoria , m y k i . [Online] C i t e d 2016-04-12. Available at:

http://ptv.vie.gov.au/tickets/myki/.

[7] Transport for london. oyster card. [Online] C i t e d 2016-04-12. Available at:

https://oyster.tf1.gov.uk.

[8] Octopus cards l imi ted, hong kong. [Online] C i t ed 2016-04-12. Available at:

http://www.octopus.com.hk/.

[9] Nfc world, loyalty. [Online] C i t e d 2016-04-12. Available at:

http://www.nfcworId.com/technology/loyalty/.

[10] Iso/iec 15693. identification cards - contactless integrated circuit cards -

v ic in i ty cards. [Online] C i t e d 2016-04-12. Available at: http://www.iso.org/.

119

http://www.emvco.com
http://www.mastercard.com/contactless/index.html
https://www.visaeurope.com/receiving-payments/contactless
http://www.inkarta.cz/eng-co-j
http://ptv.vie.gov.au/tickets/myki/
https://oyster.tf1.gov.uk
http://www.octopus.com.hk/
http://www.nfcworId.com/technology/loyalty/
http://www.iso.org/

[11] H I D Globa l . Access control solutions. [Online] C i t ed 2016-04-12. Available at:

http://www.hidglobal.com/products/Cards-and-Credentials/iCLASS.

[12] International C i v i l Av ia t ion Organizat ion (I C A O) . Document 9303 Machine

Readable Travel Documents (M R T D) . Par t 1: Machine Readable Passports,

2005.

[13] I S O / I E C 7501. Identification Cards - Machine Readable Travel Documents,

October 2005. [Online] C i t e d 2016-04-12. Available at: http://www.iso.org/.

[14] M y k a d - malaysian identity card. [Online] C i t ed 2016-04-12. Available at:

http://www.jpn.gov.my/.

[15] N F C trials, pilots, tests and live services around the world, 2010. [Online]

C i t ed 2016-04-12. Available at: http://www.nfcworld.com/.

[16] Dominique Paret. RFID and Contactless Smart Card Applications. John

W i l e y & Sons, 2005.

[17] C . Mul l ine r . Vulnerabi l i ty analysis and attacks on nfc-enabled mobile phones.

In Availability, Reliability and Security, 2009. ARES '09. International

Conference on, pages 695 -700, march 2009.

[18] I S O / I E C 7816. Identification cards - integrated circuit(s) cards w i t h contacts,

2004. [Online] C i t e d 2016-04-12. Available at: http://www.iso.org/.

[19] I S O / I E C 14443. Identification cards - contactless integrated circuit cards -

proximity cards, 2010. [Online] C i t ed 2016-04-12. Available at:

http://www.iso.org/.

[20] Smart card basics, types of smart card. [Online] C i t e d 2016-04-12. Available

at: http://www.smartcardbasics.com/smart-card-types.html.

[21] N X P Semiconductors. Mifare classic 4k - mainstream contactless smart card

ic for fast and easy solution development (product data sheet). [Online] C i t ed

2016-04-12. Available at:

http://www.nxp.com/documents/data_sheet/MFlS70YYX.pdf.

[22] Kars ten N o h l , D a v i d Evans, Starbug Starbug, and Henryk P lö t z .

Reverse-engineering a cryptographic rfid tag. In Proceedings of the 17th

conference on Security symposium, pages 185-193, Berkeley, C A , U S A , 2008.

U S E N I X Associat ion.

120

http://www.hidglobal.com/products/Cards-and-Credentials/iCLASS
http://www.iso.org/
http://www.jpn.gov.my/
http://www.nfcworld.com/
http://www.iso.org/
http://www.iso.org/
http://www.smartcardbasics.com/smart-card-types.html
http://www.nxp.com/documents/data_sheet/MFlS70YYX.pdf

[23] F lav io D . Garc ia , Gerhard K o n i n g Gans, Ruben Muijrers , Peter Rossum, R o e l

Verdul t , Ronny Wichers Schreur, and Bar t Jacobs. Dismant l ing mifare classic.

In Proceedings of the 13th European Symposium on Research in Computer

Security: Computer Security, E S O R I C S '08, pages 97-114, Ber l in , Heidelberg,

2008. Springer-Verlag.

[24] Nicolas T . Courtois , Kars ten N o h l , and Sean O ' N e i l . Algebraic attacks on the

crypto-1 stream cipher in mifare classic and oyster cards. Crypto logy ePrint

Archive , Report 2008/166, 2008. http://eprint.iacr.org/.

[25] F lav io D . Garc ia , Peter van Rossum, R o e l Verdul t , and Ronny Wichers

Schreur. Wirelessly pickpocketing a mifare classic card. In Proceedings of the

2009 30th IEEE Symposium on Security and Privacy, pages 3-15,

Washington, D C , U S A , 2009. I E E E Computer Society.

[26] Gerhard K o n i n g Gans, Jaap-Henk Hoepman, and F lav io D . Garc ia . A

practical attack on the mifare classic. In Proceedings of the 8th IFIP WG

8.8/11.2 international conference on Smart Card Research and Advanced

Applications, C A R D I S '08, pages 267-282, Ber l in , Heidelberg, 2008.

Springer-Verlag.

[27] N X P Semiconductors. Mifare desfire mf3icd40 contactless mult i -appl icat ion ic

(short form specification) data sheet. [Online] C i t e d 2016-04-12. Available at:

http://www.nxp.com/documents/short_data_sheet/075532.pdf.

[28] N X P Semiconductors. Mifare desfire e v l contactless mult i -appl icat ion ic,

product short data sheet. [Online] C i t e d 2016-04-12. Available at: http:
//www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf.

[29] N X P Semiconductors. Mifare desfire ev2 contactless mult i -appl icat ion ic

(preliminary short data sheet). [Online] C i t ed 2016-04-12. Available at: http:
//www.nxp.com/documents/short_data_sheet/MF3DX2_MF3DHX2_SDS.pdf.

[30] Oracle. Java card technology. [Online] C i t ed 2016-04-12. Available at:

http://www.oracle.com/technetwork/j ava/embedded/j avacard.

[31] M U L T O S . Mul tos technology). [Online] C i t ed 2016-04-12. Available at:

https://www.multos.com/technology/.

[32] Zei tCont ro l . Basiccard. [Online] C i t e d 2016-04-12. Available at:

http://www.basiccard.com/.

121

http://eprint.iacr.org/
http://www.nxp.com/documents/short_data_sheet/075532.pdf
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://www.nxp.com/documents/short_data_sheet/MF3DX2_MF3DHX2_SDS.pdf
http://www.oracle.com/technetwork/j
https://www.multos.com/technology/
http://www.basiccard.com/

[33] Konstantinos Markantonakis , K e i t h Mayes, Damien Sauveron, and Ioannis G

Askoxylakis . Overview of security threats for smart cards i n the public

transport industry. In IEEE International Conference on e-Business

Engineering, pages 506-513. I E E E , 2008.

[34] M a r t i n Henzl . Security of contactless smart cards. In Proceedings of the 17th

Conference STUDENT EEICT 2011, pages 585-589, Brno , C Z , 2011. V U T v

Brne.

[35] Smart card alliance, what makes a smart card secure?, smart card alliance

payments council white paper, October 2008.

[36] Helena Handshuh. Contactless technology security issues. Information

Security Bul le t in , 2004.

[37] John Hor ton Conway. On Numbers and Games. London Mathemat ica l

Society Monographs. Academic Press, London , 1976.

[38] Stefan Brands and D a v i d C h a u m . Distance-bounding protocols. In Tor

Helleseth, editor, Advances in Cryptology - EUROCRYPT '93, volume 765 of

Lecture Notes in Computer Science, pages 344-359. Springer Be r l i n

Heidelberg, 1994.

[39] M a r t i n A b a d i and Roger Needham. Prudent engineering practice for

cryptographic protocols. IEEE Trans. Softw. Eng., 22(1):6-15, January 1996.

[40] Roger M . Needham and Michae l D . Schroeder. Using encryption for

authentication in large networks of computers. Commun. ACM,

21(12):993-999, December 1978.

[41] G a v i n Lowe. A n attack on the needham-schroeder public-key authentication

protocol. Information processing letters, 56(3):131-133, 1995.

[42] G a v i n Lowe. Breaking and fixing the needham-schroeder public-key protocol

using fdr. In Tools and Algorithms for the Construction and Analysis of

Systems, pages 147-166. Springer, 1996.

[43] Danny Dolev and Andrew C Yao . O n the security of public key protocols.

Information Theory, IEEE Transactions on, 29(2): 198-208, 1983.

[44] Shafi Goldwasser and Si lvio M i c a l i . Probabi l is t ic encryption. Journal of

computer and system sciences, 28(2):270-299, 1984.

122

[45] A n d r e w C Yao . Theory and applicat ion of t rapdoor functions. In Foundations

of Computer Science, 1982. SFCS'08. 23rd Annual Symposium on, pages

80-91. I E E E , 1982.

[46] Veronique Cort ier , Steve Kremer , and Bogdan Warinschi . A survey of

symbolic methods in computat ional analysis of cryptographic systems.

Journal of Automated Reasoning, 46(3-4) :225-259, 2011.

[47] Mat teo Avalle, Alfredo P i ron t i , and Riccardo Sisto. Formal verification of

security protocol implementations: a survey. Formal Aspects of Computing,

26(1):99-123, 2014.

[48] Hyun-Seok K i m , J u n - H y u n O h , Ju-Bae K i m , Yeon-Oh Jeong, and J in -Young

C h o i . Formal verification of cryptographic protocol for secure rfid system. In

Proceedings of the 2008 Fourth International Conference on Networked

Computing and Advanced Information Management - Volume 02, pages

470-477, Washington, D C , U S A , 2008. I E E E Computer Society.

[49] Qingfeng Chen , Chengqi Zhang, and Shichao Zhang. Secure transaction

protocol analysis: models and applications. Springer-Verlag, Ber l in ,

Heidelberg, 2008.

[50] J . A . Robinson. A machine-oriented logic based on the resolution principle. J.

ACM, 12:23-41, January 1965.

[51] Catherine Meadows. The m l protocol analyzer: A n overview. The Journal of

Logic Programming, 26(2):113-131, 1996.

[52] Tobias Nipkow, Markus Wenzel, and Lawrence C . Paulson. Isabelle/HOL: a

proof assistant for higher-order logic. Springer-Verlag, Ber l in , Heidelberg,

2002.

[53] Michae l Burrows, M a r t i n A b a d i , and Roger Needham. A logic of

authentication. ACM Trans. Comput. Syst., 8:18-36, February 1990.

[54] M a r t i n A b a d i and M a r k R . Tutt le . A semantics for a logic of authentication

(extended abstract). In Proceedings of the tenth annual ACM symposium on

Principles of distributed computing, P O D C '91, pages 201-216, New York ,

N Y , U S A , 1991. A C M .

123

[55] A V A N T S S A R . Automated val idat ion of trust and security of service-oriented

architectures. [Online] C i t ed 2016-04-12. Available at:

http://www.avantssar.eu/.

[56] Jonathan K M i l l e n , Sidney C Clark , and Sheryl B Freedman. The

interrogator: P ro toco l secuity analysis. Software Engineering, IEEE

Transactions on, (2):274-288, 1987.

[57] D . Longley and S. Rigby. A n automatic search for security flaws i n key

management schemes. Computers & Security, 11(1):75 - 89, 1992.

[58] G a v i n Lowe. Casper: a compiler for the analysis of security protocols. In

Computer Security Foundations Workshop, 1997. Proceedings., 10th, pages

18-30, Jun 1997.

[59] John C Mi tche l l , M a r k Mi tche l l , and U l r i c h Stern. Automated analysis of

cryptographic protocols using munp. In Security and Privacy, 1997.

Proceedings., 1997 IEEE Symposium on, pages 141-151. I E E E , 1997.

[60] E d m u n d M Clarke, Somesh Jha, and W i l l Marrero. Verifying security

protocols w i th brutus. ACM Transactions on Software Engineering and

Methodology (TOSEM), 9(4):443-487, 2000.

[61] Catherine Meadows. Analys is of the internet key exchange protocol using the

nr l protocol analyzer. In Security and Privacy, 1999. Proceedings of the 1999

IEEE Symposium on, pages 216-231. I E E E , 1999.

[62] Catherine Meadows, P a u l Syverson, and Iliano Cervesato. Formal

specification and analysis of the group domain of interpretation using npatr

and the n r l protocol analyzer. 2004.

[63] Catherine Meadows. A p p l y i n g formal methods to the analysis of a key

management protocol. Journal of Computer Security, l (l) : 5 - 3 6 , 1992.

[64] Kar th ikeyan Bhargavan, Cedric Fournet, Ricardo Cor in , and Eugen Zalinescu.

Cryptographical ly verified implementations for tls. In Proceedings of the 15th

ACM conference on Computer and communications security, pages 459-468.

A C M , 2008.

[65] Kar th ikeyan Bhargavan, Cedric Fournet, A n d r e w D Gordon , and N i k h i l

Swamy. Verified implementations of the information card federated

124

http://www.avantssar.eu/

identity-management protocol. In Proceedings of the 2008 ACM symposium

on Information, computer and communications security, pages 123-135. A C M ,

2008.

[66] D a v i d Bas in and Cas Cremers. Mode l ing and analyzing security in the

presence of compromising adversaries. In Computer Security-ESORICS 2010,

pages 340-356. Springer, 2010.

[67] D a v i d Bas in , Cas Cremers, and Simon Meier . Provably repairing the ISO/IEC

9798 standard for entity authentication. Springer, 2012.

[68] Cas Cremers. Key exchange in IPsec revisited: Formal analysis of IKEvl and

IKEv2. Springer, 2011.

[69] D a v i d Bas in , Cas Cremers, and Catherine Meadows. M o d e l checking security

protocols. Handbook of Model Checking, 2011.

[70] R icha rd A D e M i l l o , Nancy A L y n c h , and Michae l J Mer r i t t . Cryptographic

protocols. In Proceedings of the fourteenth annual ACM symposium on Theory

of computing, pages 383-400. A C M , 1982.

[71] Auguste Kerckhoffs. L a cryptographie mil i ta ire . Journa l des sciences

militaires, 1883.

[72] W . Teepe and K . N o h l . M a k i n g the best of mifare classic, 2008. [Online] C i t ed

2016-04-12. Available at:

www.cs.ru.nl/~wouter/papers/2008-thebest-updated.pdf.

[73] D a v i d Oswald and Chr is tof Paar . Breaking mifare desfire mf3icd40: power

analysis and templates i n the real world. In Cryptographic Hardware and

Embedded Systems-CHES 2011, pages 207-222. Springer, 2011.

[74] T i m o Kasper , D a v i d Oswald, and Chr is tof Paar . Side-channel analysis of

cryptographic rfids w i t h analog demodulation. In RFID. Security and

Privacy, pages 61-77. Springer, 2012.

[75] Michae l Flutter, Stefan Mangard , and M a r t i n Feldhofer. Power and EM

Attacks on Passive 13.56 MHz RFID Devices. Springer, 2007.

[76] Thomas Plos, Michae l Flutter, and M a r t i n Feldhofer. Evalua t ion of

side-channel preprocessing techniques on cryptographic-enabled hf and uhf

rfid-tag prototypes. In Workshop on RFID Security, pages 114-127, 2008.

125

http://www.cs.ru.nl/~wouter/papers/2008-thebest-updated.pdf

[77] Thomas Eisenbarth, T i m o Kasper , A m i r Morad i , Chr is tof Paar, M a h m o u d

Salmasizadeh, and M o h a m m a d T M a n z u r i Shalmani . O n the power of power

analysis i n the real world: A complete break of the keeloq code hopping

scheme. In Advances in Cryptology-CRYPTO 2008, pages 203-220. Springer,

2008.

[78] T i m o Kasper , D a v i d Oswald, and Chr is tof Paar . E m side-channel attacks on

commercial contactless smartcards using low-cost equipment. In Information

Security Applications, pages 79-93. Springer, 2009.

[79] T i m o Kasper , D a v i d Oswald, and Chr is tof Paar . Side-channel analysis of

cryptographic rfids w i t h analog demodulation. In RFID. Security and

Privacy, pages 61-77. Springer, 2012.

[80] Ross Anderson. W h y cryptosystems fail. In Proceedings of the 1st ACM

conference on Computer and communications security, C C S '93, pages

215-227, New York , N Y , U S A , 1993. A C M .

[81] Ross J . Anderson and Markus G . K u h n . L o w cost attacks on tamper resistant

devices. In Proceedings of the 5th International Workshop on Security

Protocols, pages 125-136, London, U K , 1998. Springer-Verlag.

[82] P a u l Youn , Ben A d i d a , M i k e B o n d , Jo lyon Clu low, Jonathan Herzog,

Amerson L i n , R o n a l d L . Rivest , and Ross Anderson. Robb ing the bank wi th a

theorem prover. Technical Report U C A M - C L - T R - 6 4 4 , Universi ty of

Cambridge, Computer Laboratory, aug 2005.

[83] Ross J . Anderson. The correctness of crypto transaction sets. In Revised

Papers from the 8th International Workshop on Security Protocols, pages

125-127, London , U K , 2001. Springer-Verlag.

[84] M i k e Bond , , M i k e Bond , and P i o t r Zie l inski . Decimal isat ion table attacks for

p in cracking. Technical report, 2003.

[85] M i k e B o n d . Understanding Security APIs. P h D thesis, Univers i ty of

Cambridge, Jan 2004.

[86] Mat teo Bortolozzo, Mat teo Centenaro, Riccardo Focardi , and G r a h a m Steel.

A t t ack ing and fixing pkcs# 11 security tokens. In Proceedings of the 17th

ACM conference on Computer and communications security, pages 260-269.

A C M , 2010.

126

[87] N . Moebius , K . Stenzel, and W . Reif. Pi tfal ls in formal reasoning about

security protocols. In Availability, Reliability, and Security, 2010. ARES '10

International Conference on, pages 248-253, Feb 2010.

[88] Steven J . Murdoch , Saar Dr imer , Ross Anderson, and M i k e B o n d . C h i p and

pin is broken. In Proceedings of the 2010 IEEE Symposium on Security and

Privacy, S P '10, pages 433-446, Washington, D C , U S A , 2010. I E E E Computer

Society.

[89] Ha ix ing Y a n , H u i x i n g Fang, Chr i s t i an K u k a , and Huib iao Zhu . Verification

for oauth using as lan++. In High Assurance Systems Engineering (HASE),

2015 IEEE 16th International Symposium on, pages 76-84. I E E E , 2015.

[90] Fides Aar t s , Joeri De Ruiter , and E r i k P o l l . Fo rmal models of bank cards for

free. In Software Testing, Verification and Validation Workshops (ICSTW),

2013 IEEE Sixth International Conference on, pages 461-468. I E E E , 2013.

[91] D a v i d L D i l l , Andreas J Drexler, A l a n J H u , and C H a n Yang . Pro toco l

verification as a hardware design a id . In ICCD, volume 92, pages 522-525.

Citeseer, 1992.

[92] Gerard J Holzmann . The SPIN model checker: Primer and reference manual,

volume 1003. Addison-Wesley Reading, 2004.

[93] K i m G Larsen, P a u l Pettersson, and Wang Y i . Uppaa l i n a nutshell.

International Journal on Software Tools for Technology Transfer (STTT),

1(1):134-152, 1997.

[94] John C Mi tche l l , M a r k Mi tche l l , and U l r i c h Stern. Automated analysis of

cryptographic protocols using munp. In Security and Privacy, 1997.

Proceedings., 1997 IEEE Symposium on, pages 141-151. I E E E , 1997.

[95] Josang A u d u n . Security protocol verification using spin. In Proceedings of the

First SPIN Workshop, INRS-Telecommunications, Montreal, Canada, 1995.

[96] Chr i s t i an Haack and A l a n Jeffrey. T i m e d spi-calculus w i th types for secrecy

and authenticity. In CONCUR 2005-Concurrency Theory, pages 202-216.

Springer, 2005.

[97] Casimier Joseph Franciscus Cremers. Scyther: Semantics and verification of

security protocols. Eindhoven Univers i ty of Technology, 2006.

127

[98] Ch ia r a Bodei , M i k a e l Buchhol tz , Pierpaolo Degano, H Ri i s Nielson, and

H R i i s Nielson. Au tomat i c val idat ion of protocol narration. In Computer

Security Foundations Workshop, 2003. Proceedings. 16th IEEE, pages

126-140. I E E E , 2003.

[99] Stephen Gi lmore , Valent in Haenel, Le i l a K l o u l , and M o n i k a M a i d l .

Choreographing security and performance analysis for web services. In Formal

Techniques for Computer Systems and Business Processes, pages 200-214.

Springer, 2005.

[100] Bruno Blanchet, M a r t i n A b a d i , and Cedr ic Fournet. Automated verification

of selected equivalences for security protocols. In Logic in Computer Science,

2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages

331-340. I E E E , 2005.

[101] Alessandro Armando , D a v i d Bas in , Yohan Boichut , Yannick Chevalier, L u c a

Compagna, Jorge Cuellar , P Hankes Drielsma, P ier re-Cyr i l le Heam, Olga

Kouchnarenko, Jacopo Mantovani , et a l . The avispa tool for the automated

val idat ion of internet security protocols and applications. In Computer Aided

Verification, pages 281-285. Springer, 2005.

[102] L u c a Vigano . Automated security protocol analysis w i th the avispa tool .

Electronic Notes in Theoretical Computer Science, 155:61-86, 2006.

[103] Bruno Blanchet. A n efficient cryptographic protocol verifier based on prolog

rules. In csfw, page 0082. I E E E , 2001.

[104] Y . Chevalier, L . Compagna, J . Cuellar , P . Hankes Drie lsma, J . Mantovani ,

S. Modersheim, and L . Vigneron. A high level protocol specification language

for industr ia l security-sensitive protocols. In AUSTRIAN COMPUTER

SOCIETY, pages 193-205, 2004.

[105] Leslie Lampor t . The temporal logic of actions. ACM Trans. Program. Lang.

Syst, 16(3):872-923, M a y 1994.

[106] D a v i d von Oheimb and Sebastian Modersheim. A s l a n + H — a formal security

specification language for distr ibuted systems. In Be rnha rdK. Aichernig ,

FrankS. de Boer, and M a r c e l l o M . Bonsangue, editors, Formal Methods for

Components and Objects, volume 6957 of Lecture Notes in Computer Science,

pages 1-22. Springer Ber l in Heidelberg, 2012.

128

[107] D a v i d Bas in , Sebastian M ó d e r s h e i m , and L u c a V iganó . Ofmc: A symbolic

model checker for security protocols. International Journal of Information

Security, 4(3): 181-208, 2004.

[108] Sebastian Móde r she im , L u c a Vigano, and D a v i d Bas in . Constraint

differentiation: Search-space reduction for the constraint-based analysis of

security protocols. Journal of Computer Security, 18(4):575-618, 2010.

[109] D a v i d Bas in , Sebastian M ó d e r s h e i m , and L u c a Vigano . Algebraic intruder

deductions. In Logic for Programming, Artificial Intelligence, and Reasoning,

pages 549-564. Springer, 2005.

[110] Ma th i eu Turuani . The cl-atse protocol analyser. In Term Rewriting and

Applications - Proc. of RTA, volume 4098 of Lecture Notes in Computer

Science, pages 277-286, Seattle, W A , U S A , 2006.

[I l l] Alessandro Armando , Roberto Carbone, and L u c a Compagna. Satmc: a

sat-based model checker for security-crit ical systems. In TACAS'14:

Proceedings of the 20th international Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pages 31-45. Springer, 2014.

[112] S A T M C . A sat-based model-checker for security protocols and

security-sensitive applications. [Online] C i t ed 2016-04-12. Available at:

http://www.ai-lab.it/satmc/.

[113] Catherine A . Meadows. Computer Security — ESORICS 96: 4th European

Symposium on Research in Computer Security Rome, Italy, September 25-27,

1996 Proceedings, chapter A n a l y z i n g the Needham-Schroeder public key

protocol: A comparison of two approaches, pages 351-364. Springer Ber l in

Heidelberg, Ber l in , Heidelberg, 1996.

[114] Cas J . F . Cremers, Pascal Lafourcade, and Ph i l ippe Nadeau. Compar ing state

spaces i n automatic protocol analysis. In Formal to Practical Security, volume

5458/2009 of Lecture Notes in Computer Science, pages 70-94. Springer

Ber l in /Heide lberg , 2009.

[115] Pascal Lafourcade, Vanessa Terrade, and Sylvain Vig ier . Compar ison of

cryptographic verification tools dealing wi th algebraic properties. In Formal

Aspects in Security and Trust, pages 173-185. Springer, 2009.

129

http://www.ai-lab.it/satmc/

[116] A . Armando , R . Carbone, and L . Compagna. L t l model checking for security

protocols. In Computer Security Foundations Symposium, 2007. CSF '07.

20th IEEE, pages 385-396, Ju ly 2007.

[117] M . Henz l and P . Hanacek. Mode l ing of contactless smart card protocols and

automated vulnerabi l i ty finding. In Biometrics and Security Technologies

(ISBAST), 2013 International Symposium on, pages 141-148, Ju ly 2013.

[118] libnfc. Pub l i c platform independent near field communicat ion (nfc) library,

2010. [Online] C i t e d 2016-04-12. Available at: http://nfc-tools.org/.

[119] Lishoy Francis, Gerhard Hancke, K e i t h Mayes, and Konstantinos

Markantonakis . P rac t ica l nfc peer-to-peer relay attack using mobile phones.

In S iddikaBerna Ors Y a l c i n , editor, Radio Frequency Identification: Security

and Privacy Issues, volume 6370 of Lecture Notes in Computer Science, pages

35-49. Springer Ber l in Heidelberg, 2010.

[120] Lishoy Francis, Gerhard Hancke, K e i t h Mayes, and Konstantinos

Markantonakis . P rac t ica l relay attack on contactless transactions by using nfc

mobile phones. Crypto logy ePrint Archive , Report 2011/618, 2011.

[121] Gerhard P Hancke. A pract ical relay attack on iso 14443 proximi ty cards.

Technical report, University of Cambridge Computer Laboratory, 59:382-385,

2005.

[122] Proxmark . A radio frequency identification tool , 2010. [Online] C i t ed

2016-04-12. Available at: www.proxmark.org.

[123] O p e n P C D . Openpcd passive rfid project. [Online] C i t ed 2016-04-12. Available

at: www.openpcd.org.

[124] Gerhard P . Hancke and Markus G . K u h n . At tacks on time-of-flight distance

bounding channels. In Proceedings of the First ACM Conference on Wireless

Network Security, WiSec '08, pages 194-202, New York , N Y , U S A , 2008.

A C M .

[125] M . Henz l and P . Hanacek. A security formal verification method for protocols

using cryptographic contactless smart cards. Radioengineering, 25(1):132-139,

A p r i l 2016.

130

http://nfc-tools.org/
http://www.proxmark.org
http://www.openpcd.org

[126] M . Henzl , P . Hanacek, P . Jurnecka, and M . K a c i c . A concept of automated

vulnerabi l i ty search in contactless communicat ion applications. In Security

Technology (ICCST), 2012 IEEE International Carnahan Conference on,

pages 180-186, Oct 2012.

[127] M . Henzl , P . Hanacek, and M . K a c i c . Preventing real-world relay attacks on

contactless devices. In Security Technology (ICCST), 2014 International

Carnahan Conference on, pages 1-6, Oct 2014.

131

Appendices

132

List of Appendices

A A S L a n + + Source of Example 1 134

B A S L a n + + Source of Example 2 139

C A S L a n + + Source of Example 3 144

133

Appendix A

ASLanH—\- Source of Example 1

s p e c i f i c a t i o n example
channel_model CCM

e n t i t y Environment {

types
command < t e x t ;
dataAddress < t e x t ;
encrypted < t e x t ;
authenticate < t e x t ;

symbols
pcd,picc: agent;
readFile(dataAddress, authenticate): command;
writeFile(dataAddress, authenticate, encrypted): command;
non i n v e r t i b l e enc(symmetric_key, message): encrypted;
no n i n v e r t i b l e dec(symmetric_key, message): encrypted;
no n i n v e r t i b l e auth(symmetric_key, symmetric_key): authenticate;
corrupted: t e x t ;
addressName: dataAddress;
addressBalance: dataAddress;
addressNameCorrupted: dataAddress;
addressBalanceCorrupted: dataAddress;
nonpublic k e y l : symmetric_key;
nonpublic key2: symmetric_key;
nonpublic none: symmetric_key;
nonpublic oldBalance: t e x t ;
nonpublic newBalance: t e x t ;
nonpublic name: t e x t ;

ok: t e x t ;

e n t i t y Session (A, B: agent) {

symbols
fileSystem(dataAddress, dataAddress, symmetric_key, symmetric_key,

message): f a c t ;
y

7. PCD

134

e n t i t y PCD (Actor, B: agent) {

symbols
Data: message;
SessionKey: symmetric_key;
DataAddress: dataAddress;

body {

7. f r e s h session key generation
SessionKey := f r e s h O ;

7. read name
Actor -> B: readFile(addressName, auth(keyl, SessionKey));
B -> Actor: enc(SessionKey, ?Data);

7. countermeasure 1:
'/.'/, s e l e c t {
7.7» on (Data = name) : {
7« end of countermeasure 1

7o PCD should have read "name"
'/,'/, assert name: Data = name;

7o read balance
Actor -> B: readFile(addressBalance, auth(keyl, SessionKey));
B -> Actor: enc(SessionKey, ?Data);

7o countermeasure 1:
7.7. s e l e c t {
7.7. on(Data = oldBalance) : {
7. end of countermeasure 1

7. PCD should have read "oldBalance"
assert oldBalance: Data = oldBalance;

7. 1. check whether there i s enough money
7. 2. subtract the value of the goods
7. 3. write new balance
Actor -> B: writeFile(addressBalance, auth(keyl,

SessionKey), dec(SessionKey, newBalance));
B -> Actor: ok;

7. countermeasure 2:
7.7. 7. check w r i t t e n balance
7.7. Actor -> B: re a d F i l e (addressBalance, auth(keyl, SessionKey));
7.7. B -> Actor: enc(SessionKey, ?Data) ;
7.7.
7.7. 7. check whether new data were w r i t t e n
7.7. s e l e c t {
7.7. on (Data = newBalance) : {
7. end of countermeasure 2

135

7. PICC should have "newBalance" at address "addressBalance 1

assert trueBalance: fileSystem(addressBalance, ?, k e y l ,
k e y l , newBalance);

7« end of pro t o c o l

7o countermeasure 2 :
7.7. }

7.7. }

7. end of countermeasure 2
7. countermeasure 1:
7.7. }

7.7. }

7.7. }

7.7. }

7. end of countermeasure 1
}

}

y

7. PICC
y

e n t i t y PICC (A, Actor: agent) {

symbols
Data: message;
OldData: message;
SessionKey: symmetric_key;
SessionKeyTemp: symmetric_key;
KeyRead: symmetric_key;
AuthenticatedKey: symmetric_key;
Command: command;
DataAddress, DataAddressCorrupted: dataAddress;
Encrypted: encrypted;
UsedSessionKeys: symmetric_key set;

body {

7. i n i t i a l i z a t i o n
AuthenticatedKey := none;
SessionKey := none;

7. main loop
while(true) {

7. read command
A -> Actor: ?Command;

sel e c t {

7.7.7.7.7.7.7.7.7.7.7.7.7.7.

7.7. r e a d F i l e 7.7.
7.7.7.7.7.7.7.7.7.7.7.7.7.7.

on(Command = readFile(?DataAddress, auth(?AuthenticatedKey,

136

?SessionKeyTemp))): {

7» authentication
s e l e c t {

on(!UsedSessionKeys->contains(SessionKeyTemp) I
SessionKey = SessionKeyTemp): {

UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

7. read f i l e
s e l e c t {

on(fileSystem(DataAddress, ?, AuthenticatedKey,
?, ?Data)): {

'/, send response
Actor -> A: enc(SessionKey, Data);

}

}
}

}
}

y y y y y y y y y y y y y y y
7.7. w r i t e F i l e 7.7.
ojtijtijtijtijtijtijtijtijtijtijtijtijtijtij

on(Command = writeFile(?DataAddress, auth(?AuthenticatedKey,
?SessionKeyTemp), ?Encrypted)): {

7. authentication
s e l e c t {

on((!UsedSessionKeys->contains(SessionKeyTemp) I
SessionKey = SessionKeyTemp) &
Encrypted = dec(SessionKeyTemp, ?Data)): {

UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

7. write f i l e
s e l e c t {

on(fileSystem(DataAddress, ?DataAddressCorrupted,
?KeyRead, AuthenticatedKey, ?01dData)): {

retract(fileSystem(DataAddress, DataAddressCorrupted,
KeyRead, AuthenticatedKey, OldData));

fileSystem(DataAddress, DataAddressCorrupted, KeyRead,
AuthenticatedKey, Data);

7. corrupt the r e s t of the same f i l e
s e l e c t {

on(fileSystem(DataAddressCorrupted, DataAddress,
?KeyRead, ?AuthenticatedKey, ?01dData)): {

r e t r a c t (f ileSystem(DataAddressCorrupted,
DataAddress, KeyRead, AuthenticatedKey,
OldData));

fileSystem(DataAddressCorrupted, DataAddress,
KeyRead, AuthenticatedKey, corrupted);

137

}
}

}
}

7« send response
Actor -> A: ok;

}

}
}

}
}

}
}

y

70 Session
body {

70 a l l p ossible data l o c a t i o n s
fileSystem(addressName, addressNameCorrupted, k e y l , k e y l , name);
fileSystem(addressBalance, addressBalanceCorrupted, k e y l , k e y l ,

oldBalance);
fileSystem(addressNameCorrupted, addressName, k e y l , k e y l , corrupted);
fileSystem(addressBalanceCorrupted, addressBalance, k e y l , k e y l ,

corrupted);

7« new r o l e s
new PCD(A, B);
new PICC(A, B);

}

}

7o Environment
body {

7o new session
new Session(pcd, p i c e) ;

}

}

138

Appendix B

ASLanH—\- Source of Example

s p e c i f i c a t i o n example
channel_model CCM

e n t i t y Environment {

types
encCommand < t e x t ;
command < t e x t ;
dataAddress < t e x t ;
encrypted < t e x t ;
authenticate < t e x t ;

symbols
pcd,picc: agent;
encryptedCommand(authenticate,encrypted): encCommand;
falseBalance: t e x t ;
readFile(dataAddress): command;
writeFile(dataAddress, message): command;
non i n v e r t i b l e enc(symmetric_key, message): encrypted;
no n i n v e r t i b l e auth(symmetric_key, symmetric_key): authenticate;
corrupted: t e x t ;
addressName: dataAddress;
addressBalance: dataAddress;
addressNameCorrupted: dataAddress;
addressBalanceCorrupted: dataAddress;
nonpublic k e y l : symmetric_key;
key2: symmetric_key;
nonpublic none: symmetric_key;
nonpublic oldBalance: t e x t ;
nonpublic newBalance: t e x t ;
nonpublic name: t e x t ;

ok: t e x t ;

e n t i t y Session (A, B: agent) {

symbols
fileSystem(dataAddress, dataAddress, symmetric_key, symmetric_key,

message): f a c t ;

139

7. PCD
y <

e n t i t y PCD (Actor, B: agent) {

symbols
Data: message;
SessionKey: symmetric_key;
DataAddress: dataAddress;

body {

7o f r e s h session key generation
SessionKey := f r e s h O ;

7o read name
Actor -> B: encryptedCommand(auth(keyl, SessionKey), enc(SessionKey,

readFile(addressName)));
B -> Actor: enc(SessionKey, ?Data);

7o PICC should not have "falseBalance" at address "addressBalance"
assert trueBalance: !fileSystem(addressBalance, ?, k e y l , k e y l ,

falseBalance);

7o read balance
Actor -> B: encryptedCommand(auth(keyl, SessionKey), enc(SessionKey,

readFile(addressBalance)));
B -> Actor: enc(SessionKey, ?Data);

7o PICC should not have "falseBalance" at address "addressBalance"
assert trueBalance: !fileSystem(addressBalance, ?, k e y l , k e y l ,

falseBalance);

7o 1. check whether there i s enough money
7o 2 . subtract the value of the goods
7o 3. write new balance
Actor -> B: encryptedCommand(auth(keyl, SessionKey), enc(SessionKey,

writeFile(addressBalance, newBalance)));
B -> Actor: enc(SessionKey, ok);

7o PICC should not have "falseBalance" at address "addressBalance"
assert trueBalance: !fileSystem(addressBalance, ?, k e y l , k e y l ,

falseBalance);

7o check w r i t t e n balance
Actor -> B: encryptedCommand(auth(keyl, SessionKey), enc(SessionKey,

readFile(addressBalance)));
B -> Actor: enc(SessionKey, ?Data);

7o PICC should not have "falseBalance" at address "addressBalance"
assert trueBalance: !fileSystem(addressBalance, ?, k e y l , k e y l ,

falseBalance);

7o check whether new data were w r i t t e n

140

s e l e c t {
on(Data = newBalance): {

7» PICC should have "newBalance" at address "addressBalance"
assert trueBalance: fileSystem(addressBalance, ?, k e y l , k e y l ,

newBalance);

7o end of protocol
}

}
}

}

7. PICC

m%%
e n t i t y PICC (A, Actor: agent) {

symbols
Data: message;
OldData: message;
SessionKey: symmetric_key;
SessionKeyTemp: symmetric_key;
KeyRead: symmetric_key;
AuthenticatedKey: symmetric_key;
EncryptedCommand: encCommand;
Command: command;
DataAddress, DataAddressCorrupted: dataAddress;
Encrypted: encrypted;
UsedSessionKeys: symmetric_key set;

body {

7o i n i t i a l i z a t i o n
AuthenticatedKey := none;
SessionKey := none;

7o main loop
while(true) {

7o read command
A -> Actor: ?EncryptedCommand;

se l e c t {
on(EncryptedCommand = encryptedCommand(auth(?AuthenticatedKey,

?SessionKeyTemp), ?Encrypted)): {
sel e c t {

7.7.7.7.7.7.7.7.7.7.7.7.7.7.
7.7. r e a d F i l e 7.7.
ojtijtijtijtijtijtijtijtijtijtijtijtijtij

7. authentication
on((!UsedSessionKeys->contains(SessionKeyTemp) I

SessionKey = SessionKeyTemp) & Encrypted =

141

enc(SessionKeyTemp, readFile(?DataAddress))): {
UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

7. read f i l e
s e l e c t {

on(fileSystem(DataAddress,?,AuthenticatedKey,?,?Data)): {
Actor -> A: enc(SessionKey, Data);

}

}
}

yyyyyyyyyyyyyyy

7.7. w r i t e F i l e 7.7.
ojtijtijtijtijtijtijtijtijtijtijtijtijtijtij

7. authentication
on((!UsedSessionKeys->contains(SessionKey) | SessionKey =

SessionKeyTemp) & Encrypted = enc(SessionKeyTemp,
writeFile(?DataAddress, ?Data))): {

UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

7. write f i l e
s e l e c t {

on(fileSystem(DataAddress, ?DataAddressCorrupted,
?KeyRead, AuthenticatedKey, ?01dData)): {

retract(fileSystem(DataAddress, DataAddressCorrupted,
KeyRead, AuthenticatedKey, OldData));

fileSystem(DataAddress, DataAddressCorrupted, KeyRead,
AuthenticatedKey, Data);

7. corrupt the r e s t of the same f i l e
s e l e c t {

on(fileSystem(DataAddressCorrupted, DataAddress,
?KeyRead, ?AuthenticatedKey, ?01dData)): {

r e t r a c t (f ileSystem(DataAddressCorrupted,
DataAddress, KeyRead, AuthenticatedKey,
OldData));

fileSystem(DataAddressCorrupted, DataAddress,
KeyRead, AuthenticatedKey, corrupted);

}

}
}

}

7. send response
Actor -> A: enc(SessionKey, 0) ;

}

142

nr/.r/.r/.r/.r/.r/.r/.rm̂ ^̂
70 Session
body {

70 a l l possible data l o c a t i o n s
fileSystem(addressName, addressNameCorrupted, k e y l , key2, name);
fileSystem(addressBalance, addressBalanceCorrupted, k e y l , k e y l ,

oldBalance);
fileSystem(addressNameCorrupted, addressName, k e y l , key2, corrupted);
fileSystem(addressBalanceCorrupted, addressBalance, k e y l , k e y l ,

corrupted);

7« new r o l e s
new PCD(A,B);
new PICC(A,B);

}

}

7o Environment
body {

7o new session
new Session(pcd,pice);

}

}

143

Appendix C

ASLanH—\- Source of Example 3

s p e c i f i c a t i o n example
channel_model CCM

e n t i t y Environment {

types
encCommand < t e x t ;
command < t e x t ;
dataAddress < t e x t ;
encrypted < t e x t ;
authenticate < t e x t ;
i n i t i a l i z a t i o n V e c t o r < t e x t ;

symbols
pcd,picc: agent;
encryptedCommand(authenticate,encrypted): encCommand;
readFile(dataAddress): command;
writeFile(dataAddress, message): command;
non i n v e r t i b l e enc(symmetric_key, i n i t i a l i z a t i o n V e c t o r , message): encrypted;
no n i n v e r t i b l e auth(symmetric_key, symmetric_key): authenticate;
n e x t l V (i n i t i a l i z a t i o n V e c t o r) : i n i t i a l i z a t i o n V e c t o r ;
zeroIV: i n i t i a l i z a t i o n V e c t o r ;
corrupted: t e x t ;
addressName: dataAddress;
addressBalance: dataAddress;
addressNameCorrupted: dataAddress;
addressBalanceCorrupted: dataAddress;
nonpublic k e y l : symmetric_key;
key2: symmetric_key;
nonpublic none: symmetric_key;
nonpublic oldBalance: t e x t ;
nonpublic newBalance: t e x t ;
nonpublic name: t e x t ;
ok: t e x t ;

e n t i t y Session (A, B: agent) {

symbols
fileSystem(dataAddress, dataAddress, symmetric_key, symmetric_key,

144

9fl

Í 9 S i 2 s s 9 u i :i2q.i2Q

s j o q u i / i s

} (P.U9S-B : j o q . o y ' y) ^Dld itq.Tq.Ti9

%%X

O D I d '/„

{

{

X o o o q o j d j o pu9 °/o

í (go t r ex i sg r igu

' 'x^ 95[' i ' 9 0 t r e x ' e g s s 9 . i p p i 2) u i 9 q s i £ g 9 x i j : gotrex 'eggr i . iq q J 9 s s i 2

h 9 0 t i B X ' B a s s 9 - ; l : P P ' B h s s 9 j p p i 2 q n „ e D t r e x i s g r i e i i i , 9A'BU; p x t i o q s O O i d °/0

P .U9UI9UTI9J J O p U 9 %

' ((((A I 0 J 9 z) A I P . x 9 t i) A I P - X 9 t i) A i q . x 9 u) q . x 9 u ' i £ 9 > p i o T S S 9 g) o u 9 : j o q . o y < - g °/o°/t

: g q . u 9 u i 9 U T i 9 j yo %

• (^o ' i ' i) o n a : J o q . o y < - g °/o°/o

:S q u a u i a t i T i a j yo %

•i : J o q o y < - a TL

: \ q .U9UI9UTI9J °/o

í (((aotrexisgr iau: ' 9 o t r e x ' B g s s 9 j : p p ' B) 9 X T d 9 P - T : l : í l

' (((A I 0 J 9 Z) A i q . X 9 t i) A i q . X 9 t i) q . X 9 U

' i £ a > p i o T s s a g) o u a ' (i £ a > f a : o T s s a g ' X ^ 9 5 0 t r q ™ 2) p t r e u i u i o g p a q d Á ' J 0 U 9 : g < - j o q o y

9 0 t T B X ' B c l W 9 U 9 P - T J : í l ' £ °/,

s p o o S au;q j o OTIX^A a q q q o n j q q n s • z °/,

Á a u o u i t r S n o u a s T a . iau;q j a u ; q a u ; ŕ i 3 p a t p • x °/0

í (jei^Qi ' ((A I 0 J 9 z) A I P . x 9 t i) q . x 9 u ' i £ a > p i o T s s a g) o u a : j o q . o y < - g

í (((a o t r e x ' e g s s a . i p p T ^ a x i d P ' e a . i ' (A I 0 J : 9 Z) A I P - X 9 u

' i £ a > p i o T s s a g) o u a ' (i £ a > f a : o T s s a g ' X ^ 9 5 0 t r q ™ 2) p t r e u i u i o g p a q d Á ' J D T I 9 : g < - j o q o y

9 0 t T B X ' B c l P129-I °/0

í () u ; s 9 J i =: ÍÍ9>{UOTSS9S

u o x q . ' B j g u g S Áa^ u o x s s a s t r s a j í °/o

> Á p o q

í Joq .ogAt ioxq . 'BZTX'BTq.Tt iT :ai

í s s a j p p y e q u p : s s a j p p y e q u r j

í i Í 9 ^ _ 0 T j q . 9 U I U I i í S : Á 9 > { U 0 T S S 9 S

íaSussaui :i2q.i2Q

s x o q u i / í s

} (quaS i s : g ' j o q o y) a O d A q x q u a

í q o i s i : (9S-BSS9UI

http://itq.Tq.Ti9

OldData: message;
SessionKey: symmetric_key;
SessionKeyTemp: symmetric_key;
KeyRead: symmetric_key;
AuthenticatedKey: symmetric_key;
EncryptedCommand: encCommand;
Command: command;
DataAddress, DataAddressCorrupted: dataAddress;
Encrypted: encrypted;
UsedSessionKeys: symmetric_key set;
LastIV: i n i t i a l i z a t i o n V e c t o r ;
IV: i n i t i a l i z a t i o n V e c t o r ;

body {

7. i n i t i a l i z a t i o n
AuthenticatedKey := none;
SessionKey := none;

7» main loop
while(true) {

7. read command
A -> Actor: ?EncryptedCommand;

se l e c t {
on(EncryptedCommand = encryptedCommand(auth(?AuthenticatedKey,

?SessionKeyTemp), ?Encrypted)): {
sel e c t {

7.7.7.7.7.7.7.7.7.7.7.7.7.7.
7.7. r e a d F i l e 7.7.
ojtijtijtijtijtijtijtijtijtijtijtijtijtij

7. authentication
on((!UsedSessionKeys->contains(SessionKeyTemp) & Encrypted

enc(SessionKeyTemp, nextlV(zeroIV),
readFile(?DataAddress))) I (SessionKey =
SessionKeyTemp & Encrypted = enc(SessionKeyTemp,
n e x t l V (l a s t l V) , readFile(?DataAddress)))): {

if(SessionKey = SessionKeyTemp): {
la s t I V := ne x t (n e x t I V (l a s t I V)) ;

} else {
la s t I V := next(nextIV(zeroIV));

}
UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

7. read f i l e
s e l e c t {

on(fileSystem(DataAddress, ?, AuthenticatedKey, ?,
?Data)): {

Actor -> A: enc(SessionKey, l a s t I V , Data);
}

}

146

}

y y y y y y y y y y y y y y y
7.7. w r i t e F i l e 7.7.
ojtijtijtijtijtijtijtijtijtijtijtijtijtijtij

7. authentication
on((!UsedSessionKeys->contains(SessionKeyTemp) & Encrypted =

enc(SessionKeyTemp, nextlV(zeroIV),
writeFile(?DataAddress, ?Data))) | (SessionKey =
SessionKeyTemp & Encrypted = enc(SessionKeyTemp,
n e x t l V (l a s t l V) , writeFile(?DataAddress, ?Data)))): {

if(SessionKey = SessionKeyTemp): {
la s t I V := n e x t (n e x t I V (l a s t I V)) ;

} else {
la s t I V := next(nextIV(zeroIV));

}
UsedSessionKeys->add(SessionKeyTemp);
SessionKey := SessionKeyTemp;

7. write f i l e
s e l e c t {

on(fileSystem(DataAddress, ?DataAddressCorrupted,
?KeyRead, AuthenticatedKey, ?01dData)): {

retract(fileSystem(DataAddress, DataAddressCorrupted,
KeyRead, AuthenticatedKey, OldData));

fileSystem(DataAddress, DataAddressCorrupted, KeyRead,
AuthenticatedKey, Data);

7. corrupt the r e s t of the same f i l e
s e l e c t {

on(fileSystem(DataAddressCorrupted, DataAddress,
?KeyRead, ?AuthenticatedKey, ?01dData)): {

r e t r a c t (f ileSystem(DataAddressCorrupted,
DataAddress, KeyRead, AuthenticatedKey,
OldData));

fileSystem(DataAddressCorrupted, DataAddress,
KeyRead, AuthenticatedKey, corrupted);

}

}
}

}

7. send response
Actor -> A: enc(SessionKey, l a s t I V , ok);

}

}
}

}
}

}
}

y

7. Session

147

body {

70 a l l possible data l o c a t i o n s
fileSystem(addressName, addressNameCorrupted, k e y l , key2, name);
fileSystem(addressBalance, addressBalanceCorrupted, k e y l , k e y l ,

oldBalance);
fileSystem(addressNameCorrupted, addressName, k e y l , key2, corrupted);
fileSystem(addressBalanceCorrupted, addressBalance, k e y l , k e y l ,

corrupted);

7» new r o l e s
new PCD(A,B);
new PICC(A,B);

}
}

°/0 Environment
body {

'/, new session
new Session(pcd,picc);

>
}

148

