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Abstract

Public-key encryption enables secure communication over an insecure network. In this thesis, we
discuss two public key encryption schemes based on Chebyshev polynomials, which are a class of
polynomials that exhibit chaotic properties suitable for cryptographic applications. We discuss
that the RSA and ElGamal algorithms are secure, practical, and can be used for encryption. We
extend the Chebyshev polynomials over a finite field and demonstrate that the new ElGamal-like
and RSA-like algorithms are as secure as the original ElGamal and RSA algorithms.
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16 1 Introduction

1 Introduction

This section introduces the scope of the thesis: Public-key encryption based on Chebyshev polyno-
mials. A brief history of cryptography and works related to public-key encryption based on chaotic
maps, specifically Chebyshev polynomials are discussed. In section 1.1 the goal of the thesis is
stated, section 1.2 discusses the outline of the thesis, and in section 1.3 algebraic concepts and
theorems related to the study are defined, and stated respectively.

The subject of Cryptography has a long and captivating history, with its complete non-technical
account provided in Kahn’s "The Codebreakers". The book covers cryptography from its earliest
limited use by the Egyptians over 4000 years ago to the 20th century, where it played a crucial
role in both world wars. The predominant practitioners of cryptography were associated with
the military, diplomatic service, and government, and the subject was used as a tool to protect
national secrets and strategies.

Public-key cryptography has contributed significantly to the development of digital signatures,
with the first international standard (ISO/IEC 9796) based on the RSA public-key scheme adopted
in 1991. In 1994, the U.S. Government adopted the Digital Signature Standard, which uses
the ElGamal public-key scheme. The search for new public-key schemes, improvements to ex-
isting mechanisms, and security proofs continues at a rapid pace, with various standards and
infrastructures involving cryptography being put in place to address the security needs of an
information-intensive society.

Cryptography plays a crucial role in computer security as it ensures that data transmitted
through unsecured channels is only readable by the authenticated receiver with the correct key.
This process is used to encrypt various forms of data, including documents, images, and phone
conversations. In addition to privacy, cryptography aims to achieve other goals in communica-
tion security, such as guaranteeing the integrity and authenticity of communications. The field
has evolved to encompass many sophisticated and fascinating goals beyond just privacy. Diffie
and Hellman introduced the concept of public key cryptography in 1976 with their paper "New
Directions in Cryptography" [1]. Later, Rivest, Shamir and Adlemann proposed the well-known
RSA cryptosystem which implemented this idea. Since then, many new cryptosystems have
been proposed and public key cryptography has become a well-established and reliable field of
knowledge [2].

Chaotic maps are mathematical functions that display chaotic behavior and can be parameter-
ized by discrete-time or continuous-time parameters. Discrete maps are usually iterated functions
and exhibit properties similar to those of confusion and diffusion cryptography. Therefore, they
have been used to construct robust and secure cryptosystems that are resistant to statistical attacks
[3].

In recent years, there has been interest in exploring the use of chaotic systems in cryptography
due to their sensitive dependence on initial conditions and similarity to random behavior [4]. A
symmetric key cryptosystem based on chaos theory was presented at a cryptographic conference,
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but it was found to be vulnerable to attacks at the same conference [5, 6]. Another cryptosystem
based on chaotic maps was also broken [7]. Despite these setbacks, chaos theory has found
applications in other communication areas, and researchers continue to explore the potential of
chaotic systems in designing effective cryptographic primitives [8]. Chebyshev polynomials are a
well-known example of one-dimensional chaotic maps used in various applications [4].

Pichler and Scharinger [9] suggested a cryptographic approach that utilizes chaotic permu-
tations which are created by discretizing the two-dimensional bakers map. This method was
expanded by Fridrich [10] to include chaotic permutations on two-dimensional lattices of any size.
Truong et al. [11] introduced an authentication scheme using chaotic Chebyshev polynomials
while Lawnik and Kapczynski [12] investigated the use of modified Chebyshev polynomials in
asymmetric cryptography, and Li et al. [13] proposed an outsourcing scheme for verifiable chaotic
encryptions based on Chebyshev maps.

Kocarev et al. [14] have proposed a public-key encryption algorithm that utilizes Chebyshev
polynomials. Chebyshev polynomials have a commutative property that enables the creation of a
public-key cryptosystem. Despite the chaotic properties of these polynomials being well-suited for
cryptographic purposes, they do not provide sufficient security against attacks [8]. Therefore, a
prime finite field version for Chebyshev polynomials was suggested to prevent attacks and improve
the security of the algorithm [15, 14]. As a result, the algorithm was modified to utilize this
version of the polynomials.

1.1 Goal of the thesis

The purpose of this thesis is to replace the monomial 𝑥𝑛 with the Chebyshev polynomials 𝑇𝑛 (𝑥) in
the Diffie-Hellman and RSA cryptography algorithms and investigate the possibilities of Chebyshev
polynomials in the creation of efficient and secure public key encryption algorithms, as well
as evaluate their performance in terms of security, computational complexity, and practicality.
The thesis will thoroughly review the existing literature on public key encryption, Chebyshev
polynomials, and their cryptographic applications. We will also investigate that the inverse problem
of computing the degree 𝑛, the discrete log problem for 𝑇𝑛 (𝑥) mod 𝑝, is as difficult as that for
𝑥𝑛 mod 𝑝.

1.2 Outline of the thesis

Section 2 covers the two most commonly used public-key schemes, the ElGamal and RSA algo-
rithms. Section 3 briefly discusses chaotic maps and the properties that make them suitable for
cryptosystems, along with an example of a chaotic map in section 3.2. Chebyshev polynomials are
discussed in section 4, including their properties in section 4.1 and theorems supporting the use
of Chebyshev polynomials for cryptosystems in section 4.2. Section 4.3 discusses the importance
of implementing public-key algorithms with integers over real numbers. The core of the thesis is
section 4.4, where we introduce the extended Chebyshev polynomials and two properties critical
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for designing public-key algorithms. In sections 5.1 and 5.2, we discuss the ElGamal and RSA
algorithms on the extended Chebyshev polynomials, respectively, while section 5.3 covers the
security of cryptosystems built on the extended Chebyshev polynomials. Finally, we conclude the
thesis in section 6.

1.3 Algebraic concepts

Although mathematics concepts used in this work are very diverse, attempts to give a universal
definition of mathematical terms and concepts are of interest. In this subsection algebraic terms
and concepts related to the study are defined and important theorems are stated.

Groups

Definition 1.1 (Groups). Let 𝐺 be a non-empty set with an operation ∗ on its element. (𝐺, ∗) is
called a group if
1. it is closed: i.e ∀𝑎, 𝑏 ∈ 𝐺, 𝑎 ∗ 𝑏 ∈ 𝐺.
2. ∃ a neutral element 𝑒, such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎, ∀𝑎 ∈ 𝐺 .
3. it is associative: ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐).
4. every element has an inverse: ∀𝑎 ∈ 𝐺, ∃𝑏 ∈ 𝐺 , such that 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒.
A group that satisfies the commutative property, i.e. 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 ∀𝑎, 𝑏 ∈ 𝐺 , is abelian. Almost all
groups that are studied under cryptography are abelian and the commutative property is what
most cryptosystems are built on.

Definition 1.2 (Cyclic group). An abelian group is cyclic if there is an element 𝑔, from which
every other element can be obtained by repeated application of the group operation on 𝑔 or on
𝑔−1.

Example 1.3. (ℤ, +) is a cyclic group; it has 𝑔 = 1 and its inverse −𝑔 = −1, from which every
positive integer can be obtained by repeated addition on 1 and negative integers are the inverses
of the positive integers.

The order of a group denoted by ord(𝐺) or |𝐺 | is a fundamental concept that can be defined
when a group has a finite number of elements.

Definition 1.4 (Order of group). The order of a finite group is the number of its elements. If a
group is not finite, one says that its order is infinite.

For instance, one could mention the group of integers modulo n, which has order n, and the
group of real numbers under addition, which has infinite order.

Definition 1.5 (Order of an element). The order of an element 𝑎 of a group (also called period) is
the order of the subgroup generated by the element.
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For instance, if the group operation is denoted as multiplication, the order of an element 𝑎
of a group is thus the smallest positive integer𝑚 such that 𝑎𝑚 = 𝑒, where 𝑒 denotes the identity
element of the group. The order of an element 𝑎 is denoted by ord(𝑎) or |𝑎 |.
Theorem 1.6 (Lagrange’s theorem). For any subgroup 𝐻 of a finite group 𝐺 , the order of the
subgroup divides the order of the group. In particular for every 𝑎 ∈ 𝐺 , it holds that

1. ord(𝑎) divides |𝐺 |.
2. 𝑎 |𝐺 | = 1.
Point 1 follows from the definition of order of an element and point 2 follows from the fact that, if
𝑚 = ord(𝑎), then |𝐺 | =𝑚𝑛 for some 𝑛 ∈ 𝑍 from point 1. This implies that 𝑎 |𝐺 | = 𝑎𝑚𝑛 = (𝑎𝑚)𝑛 =
1𝑛 = 1.

Modular arithmetic

Definition 1.7. Let 𝑎, 𝑏, 𝑛 be integers with 𝑛 ≠ 0. We say 𝑎 is congruent to 𝑏 mod 𝑛 denoted as
𝑎 ≡ 𝑏 (mod 𝑛) if 𝑎 and 𝑏 differ by a multiple of 𝑛, thus 𝑎 = 𝑏 +𝑛𝑘 for some integer 𝑘 or 𝑎 −𝑏 is a
multiple of 𝑛. The following properties of modular arithmetic are trivially verified.

Let 𝑎, 𝑏, 𝑐, 𝑛 be integers with 𝑛 ≠ 0.
1. 𝑎 ≡ 0 (mod 𝑛) if and only if 𝑛 | 𝑎.
2. 𝑎 ≡ 𝑎 (mod 𝑛).
3. 𝑎 ≡ 𝑏 (mod 𝑛) if and only if 𝑏 ≡ 𝑎 (mod 𝑛).
4. If 𝑎 ≡ 𝑏 and 𝑏 ≡ 𝑐 (mod 𝑛), then 𝑎 ≡ 𝑐 (mod 𝑛).
Theorem 1.8 (Fermat’s little theorem [16]). If 𝑝 is a prime number, then for any integer 𝑎, the
number 𝑎𝑝 − 𝑎 is an integer multiple of 𝑝. In the notation of modular arithmetic, this is expressed as

𝑎𝑝 ≡ 𝑎 (mod 𝑝) .

If 𝑝 is a prime and p does not divide a, then Fermat’s little theorem is equivalent to

𝑎𝑝−1 ≡ 1 (mod 𝑝).

Chinese Remainder theorem

For the purpose of this study, the Chinese remainder theorem will be focused on two systems
of congruences. The theorem shows that a system of congruences can be replaced by a single
congruence under certain conditions.
Theorem 1.9 (Chinese remainder theorem [16]). Suppose gcd(𝑚,𝑛) = 1. Given integers 𝑎 and 𝑏,
there exists exactly one solution 𝑥 (mod 𝑚𝑛) to the simultaneous congruences

𝑥 ≡ 𝑎 (mod 𝑚),
𝑥 ≡ 𝑏 (mod 𝑛) .
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Fields

A field is a set with two binary operations (𝔽 , ·, +) such that
1. (𝔽 , +) is an abelian group with identity 0.
2. (𝔽 /{0}, ·) is an abelian group.
3. (𝔽 , ·, +) satisfies the distribution law i.e (𝑎 + 𝑏) · 𝑐 = (𝑎𝑐 + 𝑏𝑐).
If 𝐹 is a finite set and is a field then 𝐹 is a finite field, also known as a Galois field. Throughout
this study, the finite field plays a crucial role since the domain of the Chebyshev polynomials is
changed from real numbers to finite fields. The most used examples of finite fields in this study
are integers modulo 𝑁 , where 𝑁 is prime, and quadratic extension fields.

Integer modulo 𝑁

The integers modulo 𝑁 are denoted by GF(𝑁 ), where 𝑁 is a prime. GF(𝑁 ) is made by integer
elements from 0 to 𝑁 − 1 and is a finite field of order 𝑁 . In GF(𝑁 ), addition and multiplication
are performed modulo N. Addition is defined as the operation of taking the remainder of the sum
of two integers when divided by 𝑁 , while multiplication is defined as the operation of taking the
remainder of the product of two integers when divided by 𝑁 .

Quadratic extension fields

Extension fields are finite fields obtained by extending GF(𝑁 ) of order𝑁 by means of an irreducible
polynomial(P) of degree 𝑝, obtaining GF(𝑁 𝑝), where a polynomial is called irreducible if it has no
proper factors other than itself and the constant polynomials [17]. These fields have 𝑁𝑑 elements,
where 𝑑 is the degree of P, a positive integer. For 𝑑 = 2 we have a quadratic extension of GF(𝑁 )
denoted by GF(𝑁 2). GF(𝑁 2) is the field of polynomials of degree at most one with coefficients
in the field GF(𝑁 ) which represent the remainder of all possible polynomials when divided by a
chosen irreducible polynomial of degree 2 in GF(𝑁 ).

Example 1.10. For the finite field GF(22), 𝑥2 + 𝑥 + 1 is the only irreducible polynomial of degree
2, and the elements of 𝐺𝐹 (22) are {0, 1, 𝑥, 1 + 𝑥} with coefficients {0, 1} ∈ GF(2).

Hence the elements of GF(𝑁 2) are of the form 𝑎+𝑏𝑥 , where 𝑎, 𝑏 ∈ GF(𝑁 ) and𝑥 is an indeterminate
variable satisfying the equation 𝑥2 − 𝑐 = 0, where 𝑐 is a non-square element of GF(𝑁 ). This
implies that 𝑥 =

√
𝑐 and the elements in GF(𝑁 2) can be rewritten as 𝑎 + 𝑏√𝑐, hence in quadratic

extension, we consider the set of surds. Moreover, addition, subtraction, and multiplication of
surds lead to results of the same form.

Automorphism of GF(𝑁 2)

In the quadratic extension field automorphism is a one-to-one correspondence that takes elements
of the form 𝑎 + 𝑏

√
𝑐 to other elements of the same form while preserving the field operations.

There are two types of automorphisms of the quadratic extension of GF(𝑁 ):
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1. Identity automorphism: This automorphism leaves every element of the quadratic extension of
GF(𝑁 ) unchanged.

2. Conjugation automorphism: This automorphism takes any element of the quadratic extension
of GF(𝑁 ) to its conjugate. The conjugate of an element 𝑎 +𝑏√𝑐 is 𝑎 −𝑏√𝑐. This automorphism
swaps the two roots of the quadratic polynomial. When 𝑁 = 2 the conjugation automorphism,
which maps the element 𝑎 + 𝑏

√
2 to its conjugate 𝑎 + 𝑏

√
2 corresponds to the identity map on

GF(2).

Discrete logarithm problems

A discrete logarithm problem is a mathematical problem that involves finding an integer 𝑥 , given
a cyclic group 𝐺 generated by an element 𝑔, and ℎ another element in 𝐺 such that 𝑥 satisfies the
equation 𝑔𝑥 = ℎ. Let (𝐺, ·) be a finite abelian group with prime order |𝐺 | = 𝑞, such as a subgroup
of the multiplicative group of a finite field. The discrete logarithm problem in 𝐺 is: given 𝑔, ℎ ∈ 𝐺
find an integer 𝑥 ∈ {1, 2, . . . , 𝑞 − 1} such that

𝑔𝑥 = ℎ.

For some groups this problem is easy to solve: if we consider (ℤ𝑁 , +), then given 𝑔, ℎ ∈ ℤ𝑁 we
find 𝑥 such that

𝑥 · 𝑔 = ℎ.

The discrete logarithm problem is considered difficult to solve in (ℤ∗
𝑝, ·) for large prime values

of 𝑝, and also due to the multiplicative structure of the group. It makes it difficult to apply
linear algebraic techniques based on addition and subtraction to the discrete logarithm problem.
Although a solution exists since the group is cyclic, there are no known efficient algorithms to
find a generator of the group (ℤ∗

𝑝, ·) making it computationally infeasible for large values of
𝑝. Many algorithms are known that address the discrete logarithm problem. Some of them
have subexponential complexity. However, describing them goes beyond the scope of this work.
Discrete logarithm problems are important in cryptography, particularly in public-key cryptography,
where they are used to create secure cryptographic algorithms. Some well-known cryptographic
algorithms that rely on the difficulty of the discrete logarithm problem include the following.
1. Diffie-Hellman key exchange: In this algorithm, two parties agree on a large prime number 𝑝

and a primitive root 𝑔 modulo 𝑝. The parties then choose secret exponents 𝑎 and 𝑏, respectively,
and exchange values of 𝑔𝑎 mod 𝑝 and 𝑔𝑏 mod 𝑝. By computing (𝑔𝑎)𝑏 mod 𝑝 = (𝑔𝑏)𝑎 mod 𝑝,
the two parties can establish a shared secret key that can be used for symmetric-key encryption.
One commonly used algorithm for computing exponentials in a finite group, which is compu-
tationally feasible, is the "square and multiply" algorithm. The exponentiation by squaring
algorithm is an efficient method for computing the power of an element in a group, especially
when the exponent is large.

2. ElGamal encryption: This algorithm is a public-key encryption algorithm that relies on the
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difficulty of the discrete logarithm problem in a cyclic group and uses Diffie-hellman key
exchange for its secret key generation. The algorithm involves generating a public-private key
pair, and using the public key to encrypt messages and the private key to decrypt them.

Jordan normal form

Finding the Jordan normal form of a matrix is an important tool in linear algebra and it simplifies
the matrix in a way that makes its properties more easily understood. It can tell us the matrix’s
eigenvalues, and the algebraic and geometric multiplicities of each eigenvalue. The Jordan normal
form can simplify matrix computations, such as matrix exponentiation and matrix diagonalization.
This concept is useful in proving the periodic property of the Chebyshev polynomials over a finite
field in this study.
Let 𝐴 be a 2 × 2 matrix with integer entries. Then exists an matrix 𝑆 which has a inverse such
that 𝐴 = 𝑆𝐵𝑆−1, where 𝐵 has one of the following forms:

1. 𝐵 =

(
𝜆1 0
0 𝜆2

)
. (diagonal matrix)

2. 𝐵 =

(
𝜆 1
0 𝜆

)
. (upper triangular matrix)

The matrix 𝐵 is called the Jordan normal form of 𝐴, and matrix 𝑆 is formed by the eigenvectors of
the corresponding eigenvalues (𝜆1, 𝜆2).
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2 Public-key encryption

The study of secure transmission in the presence of adversaries is known as cryptography. A key
component of cryptography is encryption, which enables us to safeguard confidential data from
unwanted access. The same key is used for encryption and decryption in conventional symmetric
key cryptography. However, this makes it difficult to safely share keys between two parties without
the key being intercepted by a third party. On the other hand, public key cryptography employs
two distinct keys: a public key for encryption and a private key for decryption. Without a shared
secret key, this enables secure contact.

The concept of public key cryptography was first introduced by Whitfield Diffie and Martin
Hellman in 1976, but the actual implementation of the system was later developed by Ron Rivest,
Adi Shamir, and Leonard Adleman [18, 1, 19]. Public key encryption revolutionized the field
of cryptography by allowing secure communication without the need for a shared secret key
beforehand and has become a critical component of modern internet security, being widely used
in various applications such as SSL/TLS, PGP, and digital signatures.

The RSA scheme is based on another hard mathematical problem, the intractability of factoring
large integers [20]. The 1980s saw major advances in this area but none of which rendered the
RSA system insecure. Another class of powerful and practical public-key schemes was founded by
ElGamal in 1985. These are also based on the discrete logarithm problem [14].

In public-key encryption, let 𝐾 be the key space and𝑀 be the message space, let {𝐸𝑒 : 𝑒 ∈ K}
be a set of encryption transformations and {𝐷𝑑 : 𝑑 ∈ K} be the set of corresponding decryption
transformations [20]. Bob uses the encryption transformation to obtain the cipher text 𝑐 = 𝐸𝑒 (𝑚)
where𝑚 ∈ M and sends it to Alice. Alice then applies the decryption transformation to obtain
the original message𝑚 = 𝐷𝑑 (𝑐).

Definition 2.1. An encryption scheme is a set of encryption and decryption transformations
{𝐸𝑒 : 𝑒 ∈ K} and {𝐷𝑑 : 𝑑 ∈ K}, respectively. The encryption scheme is said to be a public-key
encryption scheme if for each associated encryption/decryption pair (𝑒, 𝑑), one key 𝑒 (the public
key) is made publicly available, while the other 𝑑 (the private key) is kept secret. In a secure
system, knowledge of the public key 𝑒 does not allow computation of the private key 𝑑.

In this section, we will discuss the two mostly used public key schemes, that are the RSA
and ElGamal algorithms. We will also discuss their key generation, encryption, and decryption
processes.

2.1 RSA encryption scheme

RSA is a popular public key cryptography system that operates by utilizing the mathematical
properties of prime numbers to ensure secure data transmission. When using RSA, a user generates
two keys: a public key for encrypting messages and verifying digital signatures and a private
key for decrypting messages and creating digital signatures. RSA is frequently used for secure
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communication and is particularly prevalent in applications such as encrypted email, digital
signatures, and secure web browsing.

RSA key generation

The RSA algorithm involves a set of messages that can be encrypted and decrypted. This set
of messages is called the message space, which is usually depicted as a group of non-negative
whole numbers that are lower than a specific value. The message space is denoted as M =

{0, 1, 2, ..., 𝑘 − 1}, where 𝑘 is a positive integer indicating the size of the message space. The
key space refers to the collection of all possible public and private key pairs for encrypting and
decrypting messages.

In RSA, the keys are originated by two large prime integers, 𝑝, and 𝑞. The private key is made
up of the decryption exponent 𝑑, which is calculated with the help of 𝑝, 𝑞, and the encryption
exponent 𝑒. The public key is denoted by the values (𝑛, 𝑒), where 𝑛 = 𝑝𝑞 is the modulus used in
encryption and decryption processes. Key generation is a crucial step in RSA and care must be
taken to ensure that the primes chosen are sufficiently large and that the keys are kept secure.
Key generation in RSA involves creating the public key and the private key. The following are the
steps involved in generating the keys:
• Generate two large distinct prime numbers 𝑝 and 𝑞.
• compute 𝑛 = 𝑝𝑞 and 𝜑 (𝑛) = (𝑝 − 1) (𝑞 − 1) where 𝜑 is Euler’s function.
• select a public exponent 𝑒, such that 1 < 𝑒 < 𝜑 (𝑛) and gcd(𝑒, 𝜑 (𝑛)) = 1, thus 𝑒 is coprime to
𝜑 (𝑛).

• compute the private exponent 𝑑, 1 < 𝑑 < 𝜑 (𝑛) such that 𝑒𝑑 ≡ 1 mod(𝜑 (𝑛)) by extended
Euclidean algorithm.

• the public key is the pair (𝑛, 𝑒) and the private key is 𝑑.

RSA public - key encryption

RSA encryption and decryption are performed using the public and private keys generated during
the key generation process. To encrypt a message, using the recipient’s public key (𝑛, 𝑒), the
message is represented as an integer 𝑚 in the interval [0, 𝑛 − 1]. We then compute 𝑐 = 𝑚𝑒

(mod 𝑛), which is the encrypted message. The cipher text 𝑐 is sent to the recipient.
To decrypt the cipher text to recover the plaintext 𝑚, the recipient uses the private key 𝑑

and computes 𝑚 = 𝑐𝑑 (mod 𝑛). The decryption is based on Fermat’s theorem. Since 𝑒𝑑 ≡ 1
(mod 𝜑 (𝑛)), there exists an integer 𝑘 such that 𝑒𝑑 = 1 + 𝑘𝜑 (𝑛). Now, if gcd(𝑚, 𝑝) = 1 then by
Fermat’s theorem,𝑚𝑝−1 ≡ 1 (mod 𝑝) . Raising both sides of this congruence to the power 𝑘 (𝑞−1)
and then multiplying both sides by𝑚 yields

𝑚1+𝑘 (𝑝−1) (𝑞−1) ≡𝑚 (mod 𝑝).

On the other hand, if gcd(𝑚, 𝑝) = 𝑝, then this last congruence is again valid since each side is
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congruent to 0 modulo 𝑝. Hence, in all cases𝑚𝑒𝑑 ≡𝑚 (mod 𝑝). By the same argument,𝑚𝑒𝑑 ≡𝑚
(mod 𝑝). Finally, since 𝑝 and 𝑞 are distinct primes, it follows that

𝑚𝑒𝑑 ≡𝑚 (mod 𝑛) .

2.2 ElGamal encryption scheme

The ElGamal algorithm is a public-key cryptosystem that was proposed by Taher ElGamal in 1985
[14]. It is based on the mathematical problems of finding discrete logarithms and computing
modular exponentiation. This scheme can be viewed as a Diffie-Hellman key agreement in key
transfer mode.

ElGamal key generation

Consider a class of functions defined as 𝜙𝑝 (𝑥) = 𝑥𝑝 (mod 𝑛), where 𝑛 is a prime number, 𝑥 ⊆ ℤ∗
𝑛

is a generator and 1 ≤ 𝑝 ≤ 𝑛 − 2. The function commute under composition

𝜙𝑝 (𝜙𝑞 (𝑥)) = 𝜙𝑝𝑞 (𝑥). (2.1)

Figure 2.1: ElGamal Key Exchange

ElGamal public - key encryption

In the ElGamal public-key scheme, Alice generates a large random prime 𝑛 and a generator 𝑥 of
the multiplicative group ℤ∗

𝑛 of integers modulo 𝑛. She also generates a random integer 𝑠 ≤ 𝑛 − 2
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and computes 𝐴 = 𝑥𝑠 (mod 𝑛). Alice’s public and private keys are (𝑥, 𝑛,𝐴) and 𝑠 respectively. To
encrypt a message𝑚, Bob selects a random integer 𝑟 ≤ 𝑛 − 2, computes 𝐵 = 𝑥𝑟 (mod 𝑛) and
𝑋 =𝑚𝐴𝑟 (mod 𝑛), and sends the cipher-text 𝑐 = (𝐵,𝑋 ) to Alice. To recover the message𝑚 from
𝑐, Alice uses the private key 𝑠 to recover𝑚 by computing𝑚 = 𝐵−𝑠𝑋 (mod 𝑛). The decryption
recovers the original message because

𝐵−𝑠𝑚𝐴𝑟 ≡ 𝑥−𝑟𝑠𝑚𝑥𝑟𝑠 ≡𝑚 (mod 𝑛).
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3 Chaotic maps

Chaotic maps are mathematical functions that exhibit chaotic behavior, which means that their
behavior is highly sensitive to initial conditions and small perturbations. Chaotic maps are used in
a variety of fields, including cryptography, engineering, and biology, to model complex systems
and phenomena. They describe how a system evolves over time, based on its current state and a
set of parameters. One important property of chaotic maps is that they can generate randomness,
which is useful in applications such as cryptography and random number generation. In this
section, we will discuss the properties of chaotic maps and how they can be used for cryptographic
purposes such as encryption and key generation. Finally, we will also examine some of the popular
chaotic maps used in cryptography, such as the two-dimensional torus automorphism.

3.1 Chaotic maps in Cryptography

Chaotic maps are used in cryptography because they exhibit several properties that make them
suitable for cryptographic applications. Here are some important properties of chaotic maps in
cryptography.
• Sensitivity to initial conditions: Chaotic maps are highly sensitive to initial conditions, which

means that a small change in the initial conditions can lead to a completely different sequence
of outputs. This property is important in cryptography because it allows for the generation of
unpredictable and random-like sequences of numbers, which can be used as cryptographic keys
or for data encryption.

• Mixing property: Chaotic maps have a mixing property, which means that nearby points in
the input space are mapped to widely separated points in the output space. This property is
important in cryptography because it makes it difficult for an attacker to predict the output
sequence based on the input sequence.

• Non-linear behavior: Chaotic maps exhibit non-linear behavior, which means that the output
sequence is not a simple function of the input sequence. This property is important in cryptog-
raphy because it makes it difficult for an attacker to derive the input sequence from the output
sequence.

• Non-Periodicity: Chaotic maps typically produce output sequences that are non-repeating
and non-periodic, meaning that the same value will not be repeated after a fixed number of
iterations. This property is important for ensuring that the output sequence is sufficiently long
and unpredictable.

Overall, chaotic maps offer a powerful tool for creating secure cryptographic keys and protecting
sensitive data. They are also used as the basis of stream ciphers and the creation of cryptographic
hash functions. While they are not foolproof and can be vulnerable to certain types of attacks,
they remain an important component of modern cryptography.
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Applying chaotic maps in cryptography

Public key encryption relies on the use of mathematical functions that are computationally difficult
to invert. However, there are some variants of public key encryption that use chaotic maps as part
of their encryption process, such as the following:
• Chaotic Maps as Pseudo-Random Number Generators: Chaotic maps can be used as a source of

randomness in the generation of keys for public key encryption schemes. The initial conditions
and parameters of the chaotic map can be used to seed a random number generator, producing
a sequence of pseudo-random numbers that can be used as keys for encryption and decryption.

• Chaos-Based Public Key Cryptography: Some public key encryption schemes use chaotic maps
as part of their encryption and decryption algorithms. These schemes typically involve the use
of a secret chaotic map, known only to the owner of the private key, to generate a public key
that can be used for encryption. The corresponding private key can then be used to decrypt the
ciphertext.

• Key Exchange Using Chaotic Maps: Chaotic maps can be used in key exchange protocols that
allow two parties to agree on a shared secret key for use in symmetric key encryption. In these
protocols, the parties agree on a set of initial conditions for a chaotic map and then use the
output of the map as the shared secret key.

3.2 Torus automorphism

Geometrically, a torus is a closed surface defined as the product of two circles. A torus is a
doughnut-shaped object with a hole in the middle. To represent the transformations of the 2-
dimensional torus, we need to use matrices that preserve its topology, which means that we can’t
stretch or shrink the torus or its holes. Automorphisms are mathematical functions that maintain
an object’s structure. They are useful in many fields of mathematics, including algebra, geometry,
and topology. Automorphisms are used in cryptography to create attack-resistant encryption and
decryption methods. Torus automorphisms have properties such as periodicity, and mixing that
make them suitable for cryptographic purposes.

In this study, we briefly discuss the automorphism of the two-dimensional torus which will be
used in understanding the periodicity of the Chebyshev polynomials when extended from real
number field to finite fields. Torus automorphism provides a link between number theory and
strongly chaotic systems and the 2 × 2 torus matrix will be used to prove the period property of
the Chebyshev polynomials over a finite field.

Definition 3.1. An automorphism of a torus is a bijective function that preserves the algebraic
and topological structure of the torus.

A torus automorphism can be described by a linear transformation implemented by a 2 × 2
transformation matrix

𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
.
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𝑎, 𝑏, 𝑐, 𝑑 are integers to ensures that𝑀 maps torus into itself and |𝑀 | = 1 to guarantee invertibility.
Let 𝑀 be a 2 - torus automorphism, then it can be written as a map from 𝑀 : (𝑥,𝑦) → (𝑥′, 𝑦′) of
the form:

(𝑥′, 𝑦′) = (𝑎𝑥 + 𝑏𝑦, 𝑐𝑥 + 𝑑𝑦) mod (1)(
𝑥′

𝑦′

)
= 𝑀

(
𝑥

𝑦

)
mod (1).

Characteristic polynomial of a 2 × 2 matrix 𝑀 is 𝑓 (𝑧) = det (𝑀 − 𝑧𝐼 ). This implies that

𝑓 (𝑧) = (𝑎 − 𝑧) (𝑑 − 𝑧) − 𝑐𝑏
= 𝑧2 − (𝑎 + 𝑑)𝑧 + 𝑎𝑑 − 𝑐𝑏
= 𝑧2 − 𝑘𝑧 + 1.

Let 𝑘 be the trace of the automorphism 𝑀 and 𝜆 one of its root, then

𝜆 =
𝑘 +

√
𝑘2 − 1
2 .

It is known that for 𝑘 > 2, the automorphism 𝑀 has strong chaotic properties, in particular, it has
a dense set of unstable periodic orbits [14]. A detailed structure of periodic orbits of the 2-torus
automorphism is well structured by [21].

Example 3.2. Consider the matrix 𝑀 =

[
2 1
1 1

]
. The trace of 𝑀 is 𝑘 = 3 which is greater than 2,

hence the eigenvalues or the roots of its characteristic polynomial is

𝜆 =
3 ±

√
9 − 1
2 > 0.

In a system, eigenvalues are used to study the behavior of period orbits whether they are stable or
not. If any eigenvalue has a positive real part, then the periodic orbit is unstable, meaning that
small perturbations in the initial state variables grow over time and the system moves away from
the equilibrium. This implies that the matrix 𝑀 has strong chaotic properties.
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4 Chebyshev polynomials

Polynomials are fundamental mathematical objects that play a significant part in many areas of
cryptography. They are used in a range of cryptographic applications, including error-correcting
codes, hash functions, and symmetric encryption. Chebyshev polynomials are a subclass of
polynomials with unique properties that are used in a variety of cryptographic uses. In this section,
we will look more closely at Chebyshev polynomials since they are the cornerstone on which the
public key cryptosystem in this thesis is built. We will talk about their characteristics, such as
recurrence relations, chaotic property, and semi-group property. We’ll also look at how they’re
used in encryption, their limitations over the real number field, the need to extend the domain to
a finite field, and some mathematically hard problems associated with the polynomial. Finally, we
will discuss the properties of the extended Chebyshev polynomials that play crucial roles to build
the RSA and ElGamal cryptosystem on the Chebyshev polynomials and explore their advantages.

Definition 4.1 (Chebyshev polynomials of the first kind). Let 𝑛 be a non-negative integer. The
Chebyshev polynomial of order 𝑛 is defined as

𝑇𝑛 (cos𝜃 ) = cos(𝑛𝜃 ). (4.1)

The Chebyshev polynomials of the first kind can be alternatively defined as the unique polyno-
mials satisfying the following: Let us define

𝑇𝑛 (𝑥) =


cos(𝑛 arccos𝑥) if |𝑥 | ≤ 1,
cosh(𝑛 arcosh𝑥) if 𝑥 ≥ 1,
(−1)𝑛 cosh(𝑛 arcosh(−𝑥)) if 𝑥 ≤ −1.

Definition 4.2 (Chebyshev polynomials of the first kind). Let 𝑛 ∈ Z+ and 𝑥 ∈ [−1, 1], the
Chebyshev polynomial of order 𝑛, 𝑇𝑛 (𝑥) : [−1, 1] → [−1, 1] is defined as

𝑇𝑛 (𝑥) = cos(𝑛 · arccos(𝑥)) for 𝑥 = cos(𝜃 ). (4.2)

From equation (4.1) and equation (4.2) ;
𝑇0(cos𝜃 ) = cos(0) = 1; 𝑇0(𝑥) = 1
𝑇1(cos𝜃 ) = cos(𝜃 ); 𝑇1(𝑥) = 𝑥
𝑇2(cos𝜃 ) = cos(2𝜃 ) = 2 cos2 𝜃 − 1; 𝑇2(𝑥) = 2𝑥2 − 1 = 2𝑥 ·𝑇1(𝑥) −𝑇0
𝑇3(cos𝜃 ) = cos(3𝜃 ) = 4 cos3 𝜃−3 cos𝜃 ; 𝑇3(𝑥) = 4𝑥3−3𝑥 = 2𝑥 (2𝑥2−1)−𝑥 = 2𝑥 ·𝑇2(𝑥)−𝑇1(𝑥).

From the above relations, the Chebyshev polynomials of order 𝑛, 𝑇𝑛 (𝑥) : [−1, 1] → [−1, 1]
satisfy the recurrence relation

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛 (𝑥) −𝑇𝑛−1(𝑥) (4.3)
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with 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥 . It is easy to see that all the above definitions of Chebyshev
polynomials are equivalent.
Some examples of Chebyshev polynomials are

𝑇0(𝑥) = 1
𝑇1(𝑥) = 𝑥
𝑇2(𝑥) = 2𝑥2 − 1
𝑇3(𝑥) = 4𝑥3 − 3𝑥
𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1
𝑇5(𝑥) = 16𝑥5 − 20𝑥3 + 5𝑥
𝑇6(𝑥) = 32𝑥6 − 48𝑥4 + 18𝑥2 − 1
𝑇7(𝑥) = 64𝑥7 − 112𝑥5 + 56𝑥3 − 7𝑥
𝑇8(𝑥) = 128𝑥8 − 256𝑥6 + 160𝑥4 − 32𝑥2 + 1
𝑇9(𝑥) = 256𝑥9 − 576𝑥7 + 432𝑥5 − 120𝑥3 + 9𝑥 .

Figure 4.1: First 5 Chebyshev polynomials

4.1 Properties of Chebyshev polynomials

The Chebyshev polynomials exhibit the following important properties which are very crucial in
public key encryption.

Property 4.3 (Chaotic property). When the degree 𝑛 > 1, the Chebyshev polynomials map
𝑇𝑛 : 𝑇𝑛 ( [−1, 1]) = [−1, 1] is a chaotic map with the function 𝜇 (𝑥) = 𝑑

𝜋
√
1−𝑥2

as its invariant
measure, and positive Lyapunov exponent 𝜆 = ln |𝑛 | > 0.
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When 𝑛 = 1, 𝑇1(𝑥) = 𝑥 and is not chaotic, but when 𝑛 > 1, the map 𝑇𝑛 (𝑥) exhibits chaotic
behavior. The invariant measure 𝜇 (𝑥) gives the density of points in the limit as the number of
iterations of the map goes to infinity, where 𝑑 is a normalization constant that ensures that the
integral of 𝜇 (𝑥) over the interval [−1, 1] is equal to 1. The Lyapunov exponent 𝜆 measures the
rate at which nearby trajectories diverge or converge. In chaotic systems, the Lyapunov exponent
is positive, which means that nearby trajectories diverge exponentially fast. Since 𝑛 > 1, the
Lyapunov exponent 𝜆 is positive. This means that the Chebyshev polynomials map of degree 𝑛 is
a chaotic map, and nearby trajectories diverge exponentially fast.
Property 4.4 (Even and odd functions). Based on their degrees, the Chebyshev polynomials𝑇𝑛 (𝑥)
admit two possibilities as either even or odd functions. Precisely:
• For 𝑛 even, 𝑇𝑛 (𝑥) are even functions.
• For 𝑛 odd, 𝑇𝑛 (𝑥) are odd functions.
Proof. From the recurrence relation of Chebyshev polynomials, we can prove that 𝑇𝑛 (𝑥) is even
when 𝑛 is even and odd when 𝑛 is odd using mathematical induction.
Base Case:
When 𝑛 = 0, 𝑇0(𝑥) = 1, which is an even function.
When 𝑛 = 1, 𝑇1(𝑥) = 𝑥 , which is an odd function.
Inductive Step:
Assume that 𝑇𝑘 (𝑥) is even when 𝑘 is even and odd when 𝑘 is odd for some 𝑘 ≥ 1. We want to
show that 𝑇𝑘+1(𝑥) is odd when 𝑘 is even and even when 𝑘 is odd.
Case 1: 𝑘 is even.
By the recursive definition of 𝑇𝑛 (𝑥), we have: 𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘 (𝑥) −𝑇𝑘−1(𝑥). Since 𝑇𝑘 (𝑥) is even
and 𝑇𝑘−1(𝑥) is odd (by the inductive hypothesis), then 2𝑥𝑇𝑘 (𝑥) is odd. Therefore, the difference
between two odd functions is an odd function. Hence, 𝑇𝑘+1(𝑥) is odd when 𝑘 is even.
Case 2: 𝑘 is odd.
By the recursive definition of 𝑇𝑛 (𝑥), we have: 𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘 (𝑥) −𝑇𝑘−1(𝑥). Since 𝑇𝑘 (𝑥) is odd
and𝑇𝑘−1(𝑥) is even (by the inductive hypothesis), then 2𝑥𝑇𝑘 (𝑥) is even. Therefore, the difference
between two even functions is an even function. Hence, 𝑇𝑘+1(𝑥) is even when 𝑘 is odd.
Therefore, by mathematical induction, we have shown that 𝑇𝑛 (𝑥) is even when 𝑛 is even and odd
when 𝑛 is odd.

We will now introduce a crucial property of Chebyshev polynomials. The Chebyshev map has
a semi-group property.
Property 4.5 (Semi - group property). For any positive integers 𝑟, 𝑠 and a real number 𝑥 ∈ [−1, 1],
this equation is always true.

𝑇𝑟 (𝑇𝑠 (𝑥)) = 𝑇𝑟𝑠 (𝑥) . (4.4)

An immediate consequence of its semigroup property is Chebyshev polynomials commute under
composition [22]

𝑇𝑟 (𝑇𝑠 (𝑥)) = 𝑇𝑠 (𝑇𝑟 (𝑥)). (4.5)
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Proof. Let us start by proving the relation in equation (4.4)

𝑇𝑟 (𝑥) = cos(𝑟 arccos(𝑥)); for − 1 ≤ 𝑥 ≤ 1
𝑇𝑟 (𝑇𝑠 (𝑥)) = 𝑇𝑟 (cos(𝑠 arccos(𝑥)))

= cos [𝑟 arccos(cos(𝑠 arccos(𝑥)))] ; but arccos(cos𝑥) = 𝑥
= cos [𝑟 · 𝑠 arccos(𝑥)]
= 𝑇𝑟𝑠 (𝑥).

Proof. Let us start by proving the relation in equation (4.5)

𝑇𝑟 (𝑥) = cos(𝑟 arccos(𝑥)); for − 1 ≤ 𝑥 ≤ 1
𝑇𝑟 (𝑇𝑠 (𝑥)) = cos [𝑟 arccos(cos(𝑠 arccos(𝑥)))]

= cos [𝑟 · 𝑠 arccos(𝑥)]
= cos [𝑠 · 𝑟 arccos(𝑥)]
= cos [𝑠 arccos(cos(𝑟 arccos(𝑥)))]
= 𝑇𝑠 (𝑇𝑟 (𝑥)) .

4.2 Cryptosystem based on Chebyshev polynomials

Can polynomials in any class other than the pure monomial 𝑥𝑛 satisfy property (4.5)? In this
section, we answer the above question to explain why this study is focused on Chebyshev poly-
nomials and to justify why public-key cryptosystems like RSA and ElGamal algorithm can be
built on Chebyshev polynomials. In the generalized Diffie - Hellman key agreement, instead of
generalizing the basic rule of exponents (𝑔𝑚)𝑛 = (𝑔𝑛)𝑚 = 𝑔𝑚𝑛 to an arbitrary group, we consider
it as a polynomial identity satisfying the commutative composition (𝑥𝑚)𝑛 = (𝑥𝑛)𝑚 = 𝑥𝑚𝑛. We will
show that the pure monomial 𝑥𝑛 and Chebyshev polynomials are the only class of polynomials
that satisfy the commutative composition.

The characterization of permutable polynomials is complicated and is due to the fact that
algebraic structures have different properties that can affect whether polynomials are permutable.
The degree of the polynomials can also play a role in determining whether they are permutable.

Definition 4.6 (Permutable polynomials). Two polynomials, 𝑝 and 𝑞, are called permutable if
𝑝 (𝑞(𝑥)) = 𝑞(𝑝 (𝑥)) for all 𝑥 . If we adopt the notation 𝑝 · 𝑞 to indicate the composition 𝑝 (𝑞(𝑥)),
then 𝑝 and 𝑞 are permutable if 𝑝 · 𝑞 = 𝑞 · 𝑝.

If 𝑝 and 𝑞 are permutable, we shall also say that 𝑝 commutes with 𝑞 and, of course, 𝑞 commutes
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with 𝑝. Composition satisfies the associative law

𝑝 · (𝑞 · 𝑟 ) = (𝑝 · 𝑞) · 𝑟

From the semi-group property (4.5), we see that any two Chebyshev polynomials are permutable.

Definition 4.7 (Chain polynomials). A chain polynomial is a sequence of polynomials that are
obtained by iterating a given polynomial 𝑝 (𝑥) such that 𝑃 (𝑛+1) (𝑥) = 𝑃

(
𝑃 (𝑛) (𝑥)

)
for 𝑛 ≥ 0. We

shall write 𝑝{𝑛} for the 𝑛-fold composition 𝑝 · 𝑝 · · · 𝑝.

Definition 4.8 (Similar polynomials). The polynomials 𝑝 (𝑥) and 𝑞(𝑥) are said to be similar if
there exists a non-singular linear transformation 𝜆(𝑥) such that 𝑔(𝑥) = 𝜆(𝑓 (𝑥)) for all 𝑥 .

Definition 4.9 (Set of polynomials). Let 𝒫𝑛 be the set of polynomials whose degree does not
exceed 𝑛, i.e., if 𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑘𝑥𝑘 and 𝑘 ⩽ 𝑛, then 𝑝 ∈ 𝒫𝑛 .

The answer to the above question is that the Chebyshev polynomials {𝑇𝑗 } and the pure
monomials {𝜋 𝑗 } are the only possible chain polynomials up to similarities [22, 23]. If two
polynomials commute, they are either both chain polynomials or both similar to either a Chebyshev
polynomial or a pure monomial function, with respect to the same rational function 𝜆(𝑥).

To prove the above statement, our first result is that no polynomials other than Chebyshev
polynomials can commute with a given {𝑇𝑛} if 𝑛 ⩾ 2.

Theorem 4.10 (Bertram). If 𝑛 ⩾ 2 and the polynomial 𝑝 of degree 𝑘 ⩾ 1 commutes with 𝑇𝑛, then
𝑝 = 𝑇𝑘 if 𝑛 is even and 𝑝 = ±𝑇𝑘 if 𝑛 is odd.

Proof. It is possible to prove that ±𝑇𝑚 (𝑥) are the only polynomial solutions of(
1 − 𝑥2

)
(𝑦′)2 =𝑚2 (

1 − 𝑦2
)

(4.6)

for𝑚 > 0. The theorem is proved by showing that, if 𝑝 commutes with 𝑇𝑛, 𝑦 = 𝑝 satisfies (4.6)
with𝑚 = 𝑘. The polynomial

𝑞(𝑥) =
(
1 − 𝑥2

)
(𝑝′(𝑥))2 − 𝑘2

(
1 − 𝑝2(𝑥)

)
is in 𝒫2𝑘−1, since the coefficient of 𝑥2𝑘 is zero, but

𝑛2𝑞 ·𝑇𝑛 = 𝑛2
(
1 −𝑇 2

𝑛

)
(𝑝′ ·𝑇𝑛)2 − 𝑛2𝑘2

(
1 − (𝑝 ·𝑇𝑛)2

)
=

(
1 − 𝑥2

) (
𝑇 ′
𝑛

)2 (𝑝′ ·𝑇𝑛)2 − 𝑘2 (
1 − 𝑝2

) (
𝑇 ′
𝑛𝑝

)2
,

where we have used the permutability of 𝑝 and 𝑇𝑛 and the fact that 𝑇𝑛 satisifies (4.6) with𝑚 = 𝑛.
Now,

(𝑝′ ·𝑇𝑛)𝑇 ′
𝑛 = (𝑝 ·𝑇𝑛)′ = (𝑇𝑛 · 𝑝)′ =

(
𝑇 ′
𝑛 · 𝑝

)
𝑝′
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hence

𝑛2𝑞 ·𝑇𝑛 =
(
1 − 𝑥2

)
(𝑝′)2

(
𝑇 ′
𝑛𝑝

)2 − 𝑘2 (
1 − 𝑝2

) (
𝑇 ′
𝑛 · 𝑝

)2
=

(
𝑇 ′
𝑛 · 𝑝

)2 ( (
1 − 𝑥2

)
(𝑝′)2 − 𝑘2

(
1 − 𝑝2

) )
=

(
𝑇 ′
𝑛𝑝

)2
𝑞. (4.7)

Suppose that 𝑞 ≠ 0 has degree 𝑠 (⩽ 2𝑘 − 1), then (4.7) implies that 𝑠𝑛 = 2(𝑛 − 1)𝑘 + 𝑠 so
that 𝑠 = 2𝑘 > 2𝑘 − 1, a contradiction. Thus 𝑞 is identically zero and 𝑝 = ±𝑇𝑘 . If 𝑛 is even,
𝑇𝑛 · (−𝑇𝑘) = 𝑇𝑛 ·𝑇𝑘 = 𝑇𝑘 ·𝑇𝑛 ≠ −𝑇𝑘 ·𝑇𝑛, hence 𝑝 = 𝑇𝑘 . If 𝑛 is odd, 𝑇𝑛 · (−𝑇𝑘) = −𝑇𝑛 ·𝑇𝑘 = −𝑇𝑘 ·𝑇𝑛,
hence 𝑝 = ±𝑇𝑘 .

A sequence of polynomials, each of positive degrees, containing at least one of each positive
degree and such that every two polynomials are permutable is called a chain. The Chebyshev
polynomials 𝑇1(𝑥), . . . ,𝑇𝑛 (𝑥), . . ., form a chain. So do the powers 𝜋 𝑗 (𝑥) ≡ 𝑥 𝑗 , 𝑗 = 1, 2, . . ., as is
easily verified. We shall see that these are essentially the only chains. Suppose that

𝜆(𝑥) = 𝑎𝑥 + 𝑏, 𝑎 ≠ 0, (4.8)

so that
𝜆−1(𝑥) = 𝑥 − 𝑏

𝑎
.

If 𝑝 and 𝑞 commute, it is clear that 𝜆−1 · 𝑝 · 𝜆 and 𝜆−1 · 𝑞 · 𝜆 also commute. Thus for any 𝜆 of the
form (4.8) the sequences 𝜆−1 ·𝑇𝑗 · 𝜆, 𝑗 = 1, 2, . . ., and 𝜆−1 · 𝜋 𝑗 · 𝜆, 𝑗 = 1, 2, . . ., are also chains, and
this is the reason the word "essentially" was needed above. We shall say that 𝑝 and 𝜆−1 · 𝑝 · 𝜆 are
similar, hence our goal is to show that the sequences

{
𝑇𝑗

}
and

{
𝜋 𝑗

}
are the only chains, up to

similarities. A first step in this direction is a companion piece to Theorem 4.10.
In the next theorem, we show that no polynomials other than pure monomials can commute

with a given {𝜋𝑛} if 𝑛 ⩾ 2.

Theorem 4.11. If 𝑛 ⩾ 2 and the polynomial 𝑝 of degree 𝑘 ⩾ 1 commutes with 𝜋𝑛 (𝑥) (= 𝑥𝑛) then
𝑝 = 𝜋𝑘 if 𝑛 is even and 𝑝 = ±𝜋𝑘 if 𝑛 is odd.

Proof. The polynomial 𝑦 = 𝜋𝑛 (𝑥) satisfies

𝑥𝑦′ = 𝑛𝑦. (4.9)

The polynomial 𝑞(𝑥) = 𝑥𝑝′(𝑥) −𝑘𝑝 (𝑥) is in𝒫𝑘−1, since the coefficient of 𝑥𝑘 is zero. An argument
analogous to that given in the proof of Theorem 4.10 yields

𝑛𝑞 · 𝜋𝑛 = 𝑛𝜋𝑛𝑝′(𝜋𝑛) − 𝑘𝑛𝑝 (𝜋𝑛)
= 𝑛𝜋𝑛𝑝

′ · 𝜋𝑛 − 𝑘𝑛𝜋𝑛 (𝑝)
= 𝑥𝜋 ′𝑛 · 𝑝′𝜋𝑛 − 𝑘𝑝𝜋 ′𝑛 (𝑝)
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= 𝑥𝜋 ′𝑛 (𝑝) · 𝑝′ − 𝑘𝑝𝜋 ′𝑛 (𝑝)
= 𝜋 ′𝑛 (𝑝) [𝑥𝑝′(𝑥) − 𝑘𝑝 (𝑥)]
=

(
𝜋 ′𝑛 · 𝑝

)
𝑞.

𝑛𝑞 · 𝜋𝑛 =
(
𝜋 ′𝑛 · 𝑝

)
𝑞, and if 𝑞 is of degree 𝑠 such that 0 ⩽ 𝑠 ⩽ 𝑘 − 1 then 𝑠𝑛 = 𝑘 (𝑛 − 1) + 𝑠 implies

that 𝑠 = 𝑘 > 𝑘 − 1, a contradiction; 𝑞 must therefore be the zero polynomial. Hence 𝑦 = 𝑝

satisifies (4.9) with 𝑛 replaced by 𝑘, which means that 𝑝 (𝑥) = 𝑐𝑥𝑘 (𝑐 ≠ 0). The requirement that
𝑝 commute with 𝜋𝑛 implies that 𝑐𝑥𝑘𝑛 = 𝑐𝑛𝑥𝑘𝑛, i.e., 𝑐𝑛−1 = 1. Since 𝑐 must be real, 𝑐 = 1 if 𝑛 is
even and 𝑐 = ±1 if 𝑛 is odd.

In this theorem, we aim to show that, a chain contains exactly one polynomial of each positive
degree and that there cannot be two distinct polynomials of degree 𝑘 commuting with a quadratic
function.

Theorem 4.12. There is at most one polynomial of degree 𝑘 ⩾ 1 permutable with a given quadratic,
𝑠 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2, 𝑎2 ≠ 0.

Proof. If we put
𝜆(𝑥) = 𝑥

𝑎2
− 𝑎1

2𝑎2
, (4.10)

𝜆−1(𝑥) = 𝑎2𝑥 + 𝑎12 ,

(𝑠 · 𝜆) (x) = 𝑎0 + 𝑎1
(
𝑥

𝑎2
− 𝑎1

2𝑎2

)
+ 𝑎2

(
𝑥

𝑎2
− 𝑎1

2𝑎2

)2
= 𝑎0 +

𝑎1𝑥
𝑎2

−
𝑎21
2𝑎2

+
(
𝑥2

𝑎2
− 2𝑎1𝑥

2𝑎2
+
𝑎21
4𝑎2

)
.

We obtain

(
𝜆−1 · 𝑠 · 𝜆

)
(x) = 𝑎2

(
𝑎0 +

𝑎1𝑥
𝑎2

−
𝑎21
2𝑎2

+ 𝑥
2

𝑎2
− 2𝑎1𝑥

2𝑎2
+
𝑎21
4𝑎2

)
+ 𝑎12

= 𝑎0𝑎2 + 𝑎1𝑥 −
𝑎21
2 + 𝑥2 − 𝑎1𝑥 +

𝑎21
4 + 𝑎12

= 𝑥2 + 𝑐

where 𝑐 = 𝑎0𝑎2 + (𝑎1/2) −
(
𝑎21/4

)
. Thus to prove the theorem it suffices to show that there

cannot be two distinct polynomials of degree 𝑘 commuting with 𝑥2 + 𝑐, for, if 𝑓 and 𝑔 are distinct
polynomials of degree 𝑘 commuting with 𝑠, there are distinct polynomials of degree 𝑘 similar to 𝑓
and 𝑔 via (4.10) that commute with 𝑥2 + 𝑐. Suppose that 𝑝 and 𝑞 are distinct polynomials that
satisfy
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𝑝
(
𝑥2 + 𝑐

)
= 𝑝2(𝑥) + 𝑐,

𝑞
(
𝑥2 + 𝑐

)
= 𝑞2(𝑥) + 𝑐,

(4.11)

then comparing leading coefficients on both sides of each equality reveals that 𝑝 and 𝑞 both have
leading coefficient 1. Thus 𝑟 = 𝑝 − 𝑞 ∈ 𝒫𝑘−1. Also

𝑟
(
𝑥2 + 𝑐

)
= 𝑝2(𝑥) − 𝑞2(𝑥) = 𝑟 (𝑥) (𝑝 (𝑥) + 𝑞(𝑥)). (4.12)

If the degree of 𝑟 is 𝑡 ≥ 0, then according to (4.12) 2𝑡 = 𝑡 + 𝑘 or 𝑡 = 𝑘 , a contradiction. Therefore
𝑟 is the zero polynomial and 𝑝 = 𝑞. This contradiction establishes the theorem.

An immediate consequence of Theorem 4.12 is that a chain contains exactly one polynomial
of each positive degree; i.e., a chain is a sequence

{
𝑝 𝑗

}
, 𝑗 = 1, 2, . . . where 𝑝 𝑗 is of degree 𝑗 and

each pair of polynomials commutes. Two chains are called similar if there exists a 𝜆(𝑥) satisfying
(4.8) such that each polynomial in one is similar via 𝜆 to the polynomial of the other of the same
degree. We can now prove our main result that, the sequence {𝑇𝑗 } and {𝜋 𝑗 } are the only chains,
up to similarities.

Theorem 4.13. Every chain is either similar to
{
𝑥 𝑗

}
, 𝑗 = 1, 2, . . ., or

{
𝑇𝑗

}
, 𝑗 = 1, 2, . . .

Proof. Let
{
𝑝 𝑗

}
, 𝑗 = 1, 2, . . ., be a chain, with 𝑝2(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2. Let

{
𝑎 𝑗

}
, 𝑗 = 1, 2, . . ., be

the chain similar to
{
𝑝 𝑗

}
with 𝜆 as defined in (4.10). Then 𝑞2(𝑥) = 𝑥2 + 𝑐;𝑞3 commutes with 𝑞2,

hence
𝑞3

(
𝑥2 + 𝑐

)
= 𝑞23(𝑥) + 𝑐. (4.13)

Thus 𝑞32(−𝑥) = 𝑞32(𝑥), and since 𝑞3 is of degree 3 we see that 𝑞3(−𝑥) = −𝑞3(𝑥); i.e., 𝑞3 is an
odd polynomial, say,

𝑞3(𝑥) = 𝑏1𝑥 + 𝑏3𝑥3. (4.14)

If we substitute (4.14) into (4.13), we obtain

𝑞3
(
𝑥2 + 𝑐

)
=

(
𝑏1𝑥 + 𝑏3𝑥3

)2 + 𝑐
= 𝑏21𝑥

2 + 2𝑏1𝑏3𝑥4 + 𝑏23𝑥6 + 𝑐
𝑞3

(
𝑥2 + 𝑐

)
= 𝑏1

(
𝑥2 + 𝑐

)
+ 𝑏3

(
𝑥2 + 𝑐

)3
= 𝑏1𝑥

2 + 𝑏1𝑐 + 𝑏3𝑥6 + 3𝑏3𝑐𝑥4 + 3𝑏3𝑐2𝑥2 + 𝑏3𝑐3.

By equating coefficients of like powers, we obtain 𝑏3 = 1, 𝑏1 =
( 3
2
)
𝑐

𝑏21 = 3𝑏3𝑐2 + 𝑏1 ⇒ 𝑐 (𝑐 + 2) = 0

and
𝑐 = 𝑏1𝑐 + 𝑏3𝑐3, 2𝑐3 + 3𝑐2 − 2𝑐 = 0 ⇒ 𝑐 (2 + 𝑐) (2𝑐 − 1) = 0.
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Therefore the only possible values of 𝑐 are -2 and 0. If 𝑐 = 0, then 𝑞2(𝑥) = 𝑥2 and, according
to Theorem 4.11, 𝑞 𝑗 (𝑥) = 𝑥 𝑗 for 𝑗 = 1, 2, . . ., and

{
𝑝 𝑗

}
is similar to

{
𝑥 𝑗

}
. If 𝑐 = −2 consider the

chain
{
𝜇−1 · 𝑞 𝑗 · 𝜇

}
, where 𝜇 (𝑥) = 2𝑥 ,

𝜇−1(𝑥) = 𝑥/2
𝑞2 · 𝜇 = (2𝑥)2 − 2

= 4𝑥2 − 2
𝜇−1 · 𝑞2 · 𝜇 = 2𝑥2 − 1.

Since (
𝜇−1 · 𝑞2 · 𝜇

)
= 𝑇2,

Theorem 4.10 informs us that

𝜇−1 · 𝑞 𝑗 · 𝜇 = 𝑇𝑗 , 𝑗 = 1, 2, . . .

Thus
{
𝑝 𝑗

}
is similar to

{
𝑇𝑗

}
via the linear transformation 𝜆 · 𝜇.

The proof of the above theorems is in the literature Chebyshev polynomials From Approximation
Theory to Algebra and Number Theory by THEODORE J. RIVLIN [24].

The pure monomial 𝑥𝑛 and the Chebyshev polynomials are the only classes of polynomials that
satisfy the commutative composition (4.5). This commutative property enables us to construct
public-key cryptosystems based on Chebyshev polynomials.

Lemma 4.14. Suppose that 𝜆(𝑥) = 𝑎𝑥 +𝑏, 𝑎 ≠ 0, so that 𝜆−1(𝑥) = (𝑥 −𝑏)/𝑎. If 𝑃 and 𝑄 commute,
then 𝜆−1 ◦ 𝑃 ◦ 𝜆 and 𝜆−1 ◦𝑄 ◦ 𝜆 also commute.

Proof. 𝑃𝑄 = 𝑄𝑃 and 𝜆 = 𝑎𝑥 + 𝑏 a non - constant polynomial.
Let 𝑓 = 𝜆−1 ◦ 𝑃 ◦ 𝜆 and 𝑔 = 𝜆−1 ◦𝑄 ◦ 𝜆 =⇒ 𝑓 (𝑥) = 𝜆−1(𝑃 (𝜆(𝑥))) 𝑔(𝑥) = 𝜆−1(𝑄 (𝜆(𝑥)))
𝑓 𝑔(𝑥) = 𝑓 (𝑔(𝑥)) = 𝜆−1(𝑃 (𝜆(𝜆−1(𝑄 (𝜆(𝑥))))))
𝑔𝑓 (𝑥) = 𝑔(𝑓 (𝑥)) = 𝜆−1(𝑄 (𝜆(𝜆−1(𝑃 (𝜆(𝑥))))))
Since 𝑃 and 𝑄 commute, then 𝑃 (𝜆(𝑥)) and 𝑄 (𝜆(𝑥)) commute
Therefore, 𝜆−1(𝑃 (𝜆(𝑥))) and 𝜆−1(𝑄 (𝜆(𝑥))) also commute. Hence 𝑓 and 𝑔 commute.

4.3 Chebyshev polynomials over the Finite field

A public key cryptosystem based on Chebyshev polynomials has been proposed by [25] and we will
be presenting it in this study shortly. The cryptosystem was broken shortly after its implementation.
The attack was based on the fact that rounding numbers could lead to multiple representations
of the same number [8]. To avoid such an attack, Chebyshev polynomials were extended from
the real number fields to finite fields [14]. In this section, we explain why there is a need to
implement the cryptosystem on a finite field over floating-point numbers.
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First, chaos-based cryptosystems are defined over real numbers, however, due to the finite
representation of real numbers in a computer and the finite precision of operations, it makes it
insecure to implement a secure cryptosystem. Floating-point numbers are approximate and have
limited precision due to the finite number of bits used to store them. Taking any interval of real
numbers, for example, [−1, 1], and mapping it to a range of floating-point numbers, not all the
possible values of the floating-point numbers in that range will be equally likely to be generated
or represented.

Second, due to the finite precision of floating-point arithmetic, there may be multiple represen-
tations of the same number. This means that there are multiple combinations of significands and
exponents that can represent the same number, leading to redundant number representations.
For example, the numbers 0.1 and 0.10000000000000001 are equivalent, but they have different
representations in floating-point arithmetic. This redundancy in number representations can lead
to potential issues in numerical computations, particularly when comparing or rounding numbers
which in turn affects the commutative property of the Chebyshev polynomials. When comparing
two floating-point numbers, it is important to take into account the potential for redundant repre-
sentations and use appropriate tolerance levels to account for the potential differences between
equivalent representations.

Third, it is important to note that Chebyshev polynomials are not invertible in the traditional
sense, meaning that it is not possible to recover the original message from the encrypted message
without additional information. This non-invertibility of Chebyshev polynomials, combined
with their implementation in floating-point arithmetic, can impose a restriction on the length
of the message that can be encrypted using this technique. Specifically, as the length of the
message increases, the errors introduced by the floating-point arithmetic can accumulate and
become significant, potentially leading to decryption errors or security vulnerabilities. In this
case, messages are broken into small blocks that can be encrypted and decrypted separately to
ensure that the length of the message does not exceed the maximum length that can be securely
encrypted using the Chebyshev polynomials-based encryption scheme.

Lastly, chaotic maps are mathematical systems that are difficult to understand and analyze
when implemented using floating-point numbers in computers. The lack of analytical tools
for understanding the periodic structure of the periodic orbits in these implementations is the
most important reason for this difficulty [14]. Using integers instead of floating-point numbers
may provide a possible solution to this problem. This is because a link between number theory
and chaos theory has been exploited to understand the structure of the orbits. An example is
toral automorphisms, which are a type of chaotic map that can be studied using number theory
techniques, as evidence for this possibility.

Limitation of algorithm based on over real number field

Kocarev and Tasev [25], described public key encryption on Chebyshev polynomials using its
recursive relations over real numbers. The algorithm is presented as follows [26]:
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Setup: Alice picks a large integer 𝑠 and a random number 𝑥 ∈ [−1, 1]. Her public key is (𝑥,𝑇𝑠 (𝑥))
and the secret key is 𝑠.
Encryption: Bob represents the message 𝑀 ∈ [−1, 1] and pick a large integer 𝑟 to compute the
ciphertext (𝑐1, 𝑐2) = (𝑇𝑟 (𝑥), 𝑀 ·𝑇𝑟 (𝑇𝑠 (𝑥))).
Decryption: Alice recover the plaintext by computing 𝑀 = 𝑐2/𝑇𝑠 (𝑐1). This really decryptes
ciphertext because 𝑇𝑠 (𝑐1) = 𝑇𝑟 (𝑇𝑠 (𝑥)) = 𝑇𝑠 (𝑇𝑟 (𝑥)).

The algorithm described above is innovative and claimed to be efficient and secure by the
author, but in [8] an attack that enables one to recover the corresponding plaintext from a given
ciphertext is studied. The result is based on the fact that several Chebyshev polynomials pass
through the same point.
Description of attack: Given Alice’s public key (𝑥,𝑇𝑠 (𝑥)) and the ciphertext (𝑇𝑟 (𝑥), 𝑋 ), an
adversary can recover𝑀 by computing an 𝑟 ′ such that𝑇𝑟 ′ (𝑥) = 𝑇𝑟 (𝑥). He then evaluates𝑇𝑟 ′𝑠 (𝑥) =
𝑇𝑟 ′ (𝑇𝑠 (𝑥)) and recovers𝑀 by computing𝑀 = 𝑋

𝑇𝑟 ′, (𝑥) . The attack is always successful because, if 𝑟 ′
is such that 𝑇𝑟 ′ (𝑥) = 𝑇𝑟 (𝑥), then:

𝑇𝑟 ·𝑠 (𝑥) = 𝑇𝑠 ·𝑟 (𝑥)
= 𝑇𝑠 (𝑇𝑟 (𝑥)) = 𝑇𝑠 (𝑇𝑟 ′ (𝑥))
= 𝑇𝑠 ·𝑟 ′ (𝑥) = 𝑇𝑟 ′·𝑠 (𝑥)
= 𝑇𝑟 ′ (𝑇𝑠 (𝑥)) .

To show that such an 𝑟 ′ can be computed, let N be the set of natural numbers and let Z be the
set of integers. Let

P =

{
± arccos (𝑇𝑟 (𝑥)) + 2𝑘𝜋

arccos(𝑥) | 𝑘 ∈ Z
}
,

such that 𝑟 ′ ∈ P ∩ N . They showed that P contains all possible integers 𝑟 ′ such that the
polynomials 𝑇𝑟 ′ (𝑥) passing through 𝑇𝑟 (𝑥) by proving that for each pair (𝑥,𝑇𝑟 (𝑥)), the integer 𝑟 ′
satisfies 𝑇𝑟 ′ (𝑥) = 𝑇𝑟 (𝑥) if and only if 𝑟 ′ ∈ P ∩ N .

Moreover, the above algorithm has a significant flaw that makes it impractical to use. The
algorithm relies on the semi-group property, which is always true for Chebyshev maps in theory.
However, there are two important factors to consider. Firstly, Chebyshev maps are defined over real
numbers and are sensitive to initial conditions. Secondly, computers can only perform approximate
computations rather than precise ones. Hence equality does not strictly hold.

Example 4.15 (Chaotic computation [27]). Consider the Chebyshev map with parameters
𝑟 = 68, 𝑠 = 96 and 𝑥 = 0.39. Then 𝑇𝑟 (𝑥) = −0.513634, 𝑇𝑠 (𝑥) = 0.723788, 𝑇𝑟 (𝑇𝑠 (𝑥)) =

0.0528869, 𝑇𝑠 (𝑇𝑟 (𝑥)) = 0.0524104, 𝑇𝑟𝑠 (𝑥) = 0.0523997. Hence , 𝑇𝑟 (𝑇𝑠 (𝑥)) ≠ 𝑇𝑟𝑠 (𝑥) ≠ 𝑇𝑠 (𝑇𝑟 (𝑥)).
This contradicts the expected outcome based on the theory on which this algorithm is built.
Although it is possible to remove this error, it requires a significant amount of time and memory
resources.
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4.4 Extended Chebyshev polynomials

The semi-group property is very useful to construct a public key cryptosystem based on Chebyshev
polynomials. We have shown that when 𝑥 ∈ [−1, 1], not all members can compute the same keys,
and the explicit expression𝑇𝑛 (𝑥) has a security loophole. To resist this attack on the cryptosystem,
Kocarev et al extended the definition of 𝑇𝑛 (𝑥) to the finite field and improved the public key
cryptosystem [28].
The extended Chebyshev polynomials 𝑇𝑛 (𝑥) is defined as a map 𝑇𝑛 : {0, 1, · · · , 𝑁 − 1} →
{0, 1, · · · , 𝑁 − 1} with

𝑇0(𝑥) = 1 mod 𝑁
𝑇1(𝑥) = 𝑥 mod 𝑁

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛 (𝑥) −𝑇𝑛−1(𝑥) mod 𝑁

where 𝑥 ∈ {0, 1, 2, · · · , 𝑁 − 1} and 𝑁 is a large prime.

Mathematical Hard problems on Chebyshev polynomials

The extended algorithm has its security grounds on the hard discrete algorithm problem. We
introduce some basic mathematical hard problems which form key points to prove the security of
this cryptosystem [28].
1. Chebyshev discrete logarithm problem: Given the element (𝑥,𝑦), find the integer 𝑠 , such that
𝑇𝑠 (𝑥) = 𝑦.

2. Chebyshev Diffie-Hellman problem: Given the element (𝑥,𝑇𝑟 (𝑥),𝑇𝑠 (𝑥)), find 𝑇𝑟𝑠 (𝑥).
Both of the above problems are assumed to be computationally unfeasible and can serve as
assumptions for demonstrating the security of the public key cryptosystem based on Chebyshev
polynomials.

Software Implementation

In this section, we seek to generalize the Chebyshev form of the square and multiply algorithm
which makes the computation of exponentials in a finite group computationally feasible. This
procedure will help us to quickly compute values of the Chebyshev polynomials modulo𝑁 , for large
numbers 𝑛 and 𝑁 . The Chebyshev polynomials in the recurrence relation is𝑇𝑛+1 = 2𝑥𝑇𝑛 (𝑥) −𝑇𝑛−1,
which can be rewritten as a matrix equation as :[

𝑇𝑛

𝑇𝑛+1

]
=

[
0 1
−1 2𝑥

] [
𝑇𝑛−1
𝑇𝑛

]
= 𝐴

[
𝑇𝑛−1
𝑇𝑛

]
(4.15)

where
𝐴 =

[
0 1
−1 2𝑥

]
.
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From 𝑇𝑛 = 2𝑥𝑇𝑛−1(𝑥) −𝑇𝑛−2 we get the matrix equation:[
𝑇𝑛−1
𝑇𝑛

]
=

[
0 1
−1 2𝑥

] [
𝑇𝑛−2
𝑇𝑛−1

]
= 𝐴

[
𝑇𝑛−2
𝑇𝑛−1

]
. (4.16)

Combining the matrix equations (4.16) and (4.15) yields[
𝑇𝑛

𝑇𝑛+1

]
= 𝐴2

[
𝑇𝑛−2
𝑇𝑛−1

]
.

We continue to rewrite the vector on the right side until they are in terms of 𝑇0 and 𝑇1. Following
from the above, it can be deduced that [

𝑇𝑛

𝑇𝑛+1

]
= 𝐴𝑛

[
𝑇0
𝑇1

]
(4.17)

where
𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥 .

To calculate for 𝑇𝑛 (𝑥) mod 𝑁 we need to find 𝐴𝑛 (matrix exponentiation) which can be done
effectively by the square and multiply algorithm.

Properties of extended Chebyshev polynomials

We established the fact that up to a linear transformation, the pure monomial 𝑥𝑛 and the Chebyshev
polynomials are the only classes of polynomials that satisfy the commutative composition (4.5).
The extended Chebyshev polynomials can replace the monomial 𝑥𝑛 in RSA and ElGaml algorithm
if it satisfies the commutative property and we can find the period of their orbits.

Property 4.16 (Semi-group property). The extended Chebyshev map satisfies the semi-group
property:

𝑇𝑟 (𝑇𝑠 (𝑥) mod 𝑁 ) mod 𝑁 = 𝑇𝑟𝑠 (𝑥) mod 𝑁 . (4.18)

Proof. By congruence relation 𝑇𝑞 (𝑥) ≡ cosh(𝑝 cosh−1(𝑥)) mod 𝑁 for 𝑥 > 1
𝑇𝑝 (𝑥) = 2𝑥𝑇𝑝−1(𝑥) −𝑇𝑝−2(𝑥) with 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥 .

𝑇𝑝 (𝑇𝑞 (𝑥) (mod𝑁 )) (mod𝑁 ) = 2(𝑇𝑞 (𝑥) mod 𝑁 )𝑇𝑝−1(𝑇𝑞 (𝑥) mod 𝑁 ) −𝑇𝑝−2(𝑇𝑞 (𝑥) mod 𝑁 ) .
(4.19)

Substitute 𝑇𝑞 (𝑥) ≡ cosh(𝑞 cosh−1(𝑥)) mod 𝑁 into equation (4.19) and the using the identity
cosh−1(cosh𝑥) = 𝑥 , then the right-hand side of the equation becomes:

= 2(cosh(𝑞 cosh−1(𝑥)))𝑇𝑝−1(cosh(𝑞 cosh−1(𝑥))) −𝑇𝑝−2(cosh(𝑞 cosh−1(𝑥)))
= 2(cosh(𝑞 cosh−1(𝑥))) · cosh((𝑝 − 1) cosh−1(cosh(𝑞 cosh−1(𝑥)))) mod 𝑁



4 Chebyshev polynomials 43

− cosh((𝑝 − 2) cosh−1(cosh(𝑞 cosh−1(𝑥)))) mod 𝑁
= 2(cosh(𝑞 cosh−1(𝑥))) · cosh(𝑞(𝑝 − 1) cosh−1(𝑥)) mod 𝑁 − cosh(𝑞(𝑝 − 2) cosh−1(𝑥)) mod 𝑁

but 2 cosh(𝛼) cosh(𝛽) = cosh(𝛼 + 𝛽) + cosh(𝛼 − 𝛽) and cosh(𝛼) = cosh(−𝛼), where

𝛼 = 𝑞 cosh−1(𝑥) and 𝛽 = 𝑞(𝑝 − 1) cosh−1(𝑥)

= cosh(𝑞 cosh−1(𝑥) [1 + 𝑝 − 1]) mod 𝑁 + cosh(𝑞 cosh−1(𝑥) [1 − 𝑝 + 1]) mod 𝑁
− cosh(𝑞(𝑝 − 2) cosh−1(𝑥)) mod 𝑁
= cosh(𝑝𝑞 cosh−1(𝑥)) mod 𝑁 + cosh(𝑞(2 − 𝑝) cosh−1(𝑥)) mod 𝑁 − cosh(𝑞(𝑝 − 2) cosh−1(𝑥)) mod 𝑁
= cosh(𝑝𝑞 cosh−1(𝑥)) mod 𝑁
= 𝑇𝑝𝑞 (𝑥) mod 𝑁 .

Example 4.17 ([27]). Let 𝑥 = 13, 𝑁 = 41, 𝑟 = 4, 𝑠 = 5, by computation 𝑇4(13) = 38,𝑇5(13) =
29,𝑇20(13) = 40 and 𝑇5(38) = 40,𝑇4(29) = 40. It can be observed that, 𝑇4 (𝑇5(13)) =

𝑇5 (𝑇4(13)) = 𝑇20(13).

Property 4.18 (Periodicity of extended Chebyshev map). The extended Chebyshev map does not
have chaotic properties, instead, it is periodic. This is due to the fact that we changed the domain
from real numbers to a finite field. The periodicity of the extended Chebyshev map refers to the
property that the values of the function repeat themselves after a certain period of time 𝜏𝑥 . The
polynomial 𝑇𝑛 (𝑥) is periodic with period 𝜏 = 𝜏𝑥 if for 𝑥 we have

𝑇𝑛+𝑘𝜏 (𝑥) = 𝑇𝑛 (𝑥) (4.20)

where 𝑘 = {1, 2, 3, . . .}. Thus, the smallest positive value of 𝜏 for which equation (4.20) holds is
called the period of the map 𝑇𝑛 (𝑥) mod 𝑁 .

Example 4.19. Let 𝑁 = 7. When 𝑥 = 2, the sequence 𝑇𝑛 (2) mod 7 for 𝑛 = 0, 1, 2, . . . is :

1, 2, 0, 5, 6, 5, 0, 2, 1, 2, 0, 5, 6, 5, 0, 2, . . . .

Indeed for 𝑥 = 2, we have:

𝑇0(𝑥) = 1 𝑇1(𝑥) = 2 𝑇2(𝑥) = 0 𝑇3(𝑥) = 5 𝑇4(𝑥) = 6
𝑇5(𝑥) = 5 𝑇6(𝑥) = 0 𝑇7(𝑥) = 2 𝑇8(𝑥) = 1 · · · .

The periodicity of the sequence𝑇𝑛 (2) is 8. Below is the sequence𝑇𝑛 (𝑥) for each 𝑥 = 0, 1, 2, . . . , 6:
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Table 4.1: Periods of the sequence {𝑇𝑛 (𝑥) (mod 7)}

𝑥 Sequence Period
0 1, 0, 6, 0, 1, 0, 6, 0, . . . 4
1 1, 1, 1, 1, . . . 1
2 1, 2, 0, 5, 6, 5, 0, 2, 1, 2, 0, 5, 6, 5, 0, 2, . . . 8
3 1, 3, 3, 1, 3, 3, . . . , 3
4 1, 4, 3, 6, 3, 4, 1, 4, 3, 6, 3, 4, . . . 6
5 1, 5, 0, 2, 6, 2, 0, 5, 1, 5, 0, 2, 6, 2, 0, 5, . . . 8
6 1, 6, 1, 6, 1, 6, . . . 2

Example 4.20. For 𝑁 = 11, 𝑥 = 0, 1, 2, . . . , 10, 𝑛 = 0, 1, 2, . . ..

Table 4.2: Periods of the sequence {𝑇𝑛 (𝑥) (mod 11)}

𝑥 Sequence Period
0 1, 0, 10, 0, 1, 0, 10, 0, 1, 0, 10, 0, . . . 4
1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . 1
2 1, 2, 7, 4, 9, 10, 9, 4, 7, 2, 1, 2, . . . 10
3 1, 3, 6, 0, 5, 8, 10, 8, 5, 0, 6, 3, . . . 12
4 1, 4, 9, 2, 7, 10, 7, 2, 9, 4, 1, 4, . . . 10
5 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, . . . 3
6 1, 6, 5, 10, 5, 6, 1, 6, 5, 10, 5, 6, . . . 6
7 1, 7, 9, 9, 7, 1, 7, 9, 9, 7, 1, 7, . . . 5
8 1, 8, 6, 0, 5, 3, 10, 3, 5, 0, 6, 8, . . . 12
9 1, 9, 7, 7, 9, 1, 9, 7, 7, 9, 1, 9, . . . 5
10 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, . . . 2

The period of the sequence {𝑇𝑛 (𝑥) (mod 𝑁 )} is at most 𝑁 + 1 for any given input argument
𝑥 = 0, 1, 2, . . . , 𝑁 − 1. Generally, the periodicity satisfies the theorem below.

Theorem 4.21. Let 𝑁 be an odd prime and 𝑥 ∈ ℤ such that 0 ≤ 𝑥 ≤ 𝑁 . Let 𝜏 be the period of the
sequence 𝑇𝑛 (𝑥) mod 𝑁 for 𝑛 = 0, 1, 2, . . . then 𝜏 is a divisor of 𝑁 2 − 1.
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Proof. We will prove the theorem by showing that if we let 𝑀 =

[
0 1
−1 2𝑥

]
, with 𝜆 = 𝑞1, 𝑞2 as the

roots of the characteristic polynomial 𝜆2 − 2𝑥𝜆 + 1, then :
(i) 𝜏 |𝑁 − 1 if the roots are in GF(𝑁 ), otherwise
(ii) 𝜏 |𝑁 + 1 if the roots are in GF(𝑁 2).

From the generalized Chebyshev form of the square and multiply algorithm for software im-
plementation, it is shown that we can compute 𝑇𝑛 (𝑥) (mod 𝑁 ) by computing the nth power of
the recurrence relation matrix 𝑀 , which is a 2 - automorphism, with characteristics polynomial
𝑓 (𝜆) = 𝜆2 − 2𝑥𝜆 + 1. The matrix is non-singular with a determinant of 1. The identity matrix
is the 0th power of the matrix 𝑀 , hence if 𝜏 is the period of the matrix 𝑀 then 𝜏 is the smallest
positive integer such that the 𝜏th power of the matrix is the identity matrix. One way of computing
matrix exponentiation is by finding its Jordan normal form which is either a diagonal matrix with
distinct eigenvalues on the diagonals or an upper triangular matrix with repeated eigenvalues on
the diagonal. These eigenvalues form the roots of the characteristics polynomials [29].

If the characteristic polynomial has repeated roots, then the discriminant is zero. Hence

4𝑥2 − 4 = 0 (mod 𝑁 )
𝑥2 − 1 = 0 (mod 𝑁 )

𝑥 = ±1 (mod 𝑁 ).

If 𝑥 = 1 , then 𝑇𝑛+1(𝑥) = 2𝑇𝑛 (𝑥) − 𝑇𝑛−1(𝑥), 𝑇0 = 1, 𝑇1 = 1, 𝑇2(𝑥) = 1 and 𝑇3(𝑥) = 1.
Hence the sequence is 1, 1, 1, 1, . . . with a period 1.
If 𝑥 = −1 , then 𝑇𝑛+1(𝑥) = −2𝑇𝑛 (𝑥) −𝑇𝑛−1(𝑥), 𝑇0 = 1, hence

𝑇1(𝑥) = −1 (mod 𝑁 ) = 𝑁 − 1
𝑇2(𝑥) = −2(𝑁 − 1) − 1 (mod 𝑁 ) = 1 − 2𝑁 (mod 𝑁 ) = 1
𝑇3(𝑥) = −2(1) − (𝑁 − 1) (mod 𝑁 ) = −1 − 𝑁 (mod 𝑁 ) = 𝑁 − 1.

Hence the sequence is 1, 𝑁 − 1, 1, 𝑁 − 1, . . . with a period 2 which divides 𝑁 − 1 because from
the theorem 𝑁 is odd so 𝑁 − 1 is even.

If the characteristic polynomial has distinct roots in GF(N), we will apply Fermat’s little theorem
𝑎(𝑁−1) = 1 (mod 𝑁 ) for any non-zero 𝑎, in the matrix equation 𝑀 (𝑁−1) = 1 (mod 𝑁 ) where 1
is the identity matrix. From the matrix equation, the (𝑁 − 1)th power of the matrix in the Jordan
normal form gives the identity matrix, hence the sequence has period 𝑁 − 1. From the Lagrange
theorem for order of a subgroup, if we can find a smaller exponent 𝜏 < 𝑁 − 1 such that the 𝜏th
power of matrix 𝑀 in Jordan normal form gives the identity matrix then 𝜏 divides 𝑁 − 1.

It is also possible that the roots exist only in a quadratic extension of GF(N). It may not
be possible to find a complete set of eigenvalues in GF(N), however, if we extend the field to a
larger field such as complex numbers, then we can guarantee the existence of a complete set of
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eigenvectors. This implies that in the quadratic extension field, we extend GF(N) by adding a
square root of a non-square element. We can now find a complete set of eigenvectors for our
matrix and use them to diagonalize the matrix. However, all arithmetic needs to be done in the
quadratic extension field. We then raise the matrix in the Jordan normal form to the power 𝑁 ,
which is known as the 𝑁 th power map, and it is an automorphism in the quadratic extension
field. This is a consequence of Fermat’s Little Theorem, which states that for any prime 𝑁 and
any element 𝑎 in the field, 𝑎𝑁 = 𝑎 mod 𝑁 . In other words, raising an element in the field to the
power 𝑁 yields the same result as raising it to the first power. Now, suppose we have a matrix 𝑀
in Jordan normal form with diagonal entries 𝜎 and 𝜇. Since 𝜎 and 𝜇 are elements in GF(𝑁 2), we
can raise them to the power 𝑁 using the 𝑁 th power map. It follows that:

𝜎𝑝 = 𝜎 (mod 𝑝),
𝜇𝑝 = 𝜇 (mod 𝑝).

Therefore, the matrix 𝑀𝑁 , which is the diagonal matrix with entries 𝜎𝑁 and 𝜇𝑁 , is obtained
by applying the 𝑁 th power map to the diagonal entries of 𝑀 . Since the 𝑁 th power map is an
automorphism of the quadratic extension field, the resulting matrix 𝑀𝑁 is still in the Jordan
canonical form. The quadratic extension field has only one conjugate automorphism, which maps
the square root of the non-square element to its negative. Therefore, applying this automorphism
to the diagonal entries of 𝑀 will swap the two roots of the characteristic polynomial, but leave
the matrix otherwise unchanged. Hence, there is a positional swap of the roots of the quadratic
polynomial on the diagonal, as we have conjugate automorphism in a quadratic extension field. We
then find (𝑁 +1)st power by multiplying the original Jordan normal form to the matrix𝑀 to power
𝑁 . The (𝑁 + 1)st power multiplies two pairs of conjugate roots, and from our characteristics
polynomial the product of the conjugate roots is the coefficient of 𝜆0, which is 1. Hence the
(𝑁 +1)st power is the identity matrix and the period is at most 𝑁 +1. From the Lagrange theorem
for order of a subgroup, if we can find a smaller exponent 𝜏 < 𝑁 + 1 such that the 𝜏th power of
matrix 𝑀 in Jordan normal form gives the identity matrix then 𝜏 divides 𝑁 + 1.

For maximum security, 𝑁 should be a prime number such that 2𝑁 + 1 is also prime and 𝑥
should be chosen such that the period is large.
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5 Cryptosystem on Extended Chebyshev polynomials

From section 4 we have shown that the extended Chebyshev polynomials can replace the monomial
𝑥𝑛 because it satisfies the semi-group property and the periodicity property. In this section, we will
construct an ElGamal-like and RSA-like algorithm based on the extended Chebyshev polynomials.
We will present the Diffie-Hellman key agreement algorithm using the extended Chebyshev
polynomials, the ElGamal-like and RSA-like public key encryption, we will also show why the
Decryption algorithm works in RSA-like and ElGamal-like, and then prove that the security of the
ElGamal-like algorithm is still based on the discrete logarithm problem.

5.1 The Chebyshev polynomials ElGamal-like Algorithm

ElGamal public key cryptosystem consists of an algorithm for key generation and an algorithm
for encryption. Its security is based on the intractability of the discrete logarithm and Diffie -
Hellman problem [16, 20, 17]. The basic ElGamal and generalized ElGamal encryption schemes
are described in section 2 and in [16, 20, 17]. In this section, the ElGamal encryption scheme is
generalized for Chebyshev polynomials.

ElGamal-like (based on Chebyshev polynomials) key generation

In the key generation mode, the scheme can be viewed as a Diffie-Hellman key agreement. In the
key generation Alice and Bob should do the following:
1. Alice generates a positive integers 𝑥 and a large random prime 𝑁 such that 𝑥 < 𝑁 .
2. Alice generates a secret integer 𝑠 such that 0 < 𝑠 < 𝑁 .
3. Alice computes 𝐴 = 𝑇𝑠 (𝑥) mod 𝑁 .
4. Alice’s public key is (𝑥, 𝑁 ,𝐴), and private key is 𝑠.
5. Bob generates a secret integer degree 𝑟 such that 0 < 𝑟 < 𝑁 .
6. Bob computes 𝐵 = 𝑇𝑟 (𝑥) mod 𝑁 .
7. Bob sends 𝐵 to Alice.
8. Alice computes the secret key 𝑘 = 𝑇𝑠 (𝐵) mod 𝑁 .
9. Bob computes the secret key 𝑘 = 𝑇𝑟 (𝐴) mod 𝑁 .
The common secret key is 𝑘 as both Alice and Bod have computed 𝑇𝑟𝑠 (𝑥) mod 𝑁 .

Example 5.1 ([29]). Below is a simple example of the Diffie-Hellman key exchange algorithm
based on the extended Chebyshev polynomials in which𝑚 = 2 and𝑛 = 3 are chosen hence we need
to evaluate the polynomials𝑇2(𝑥) = 2𝑥2−1,𝑇3(𝑥) = 4𝑥3−3𝑥 , and𝑇6(𝑥) = 32𝑥6−48𝑥4+18𝑥2−1.
1. Alice generates 𝑁 = 89 and 𝑥 = 7.
2. Alice generates 𝑠 = 2.
3. Alice computes 𝐴 = 𝑇2(7) = 2

(
72

)
− 1 mod 89 = 97 mod 89 = 8.

4. Alice sends 𝑁 = 89, 𝑥 = 7, and 𝐴 = 8 to Bob.
5. Bob generates 𝑟 = 3.
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6. Bob computes 𝐵 = 𝑇3(7) = 4
(
73

)
− 3(7) mod 89 = 1351 mod 89 = 16.

7. Bob sends 𝐵 = 16 to Alice.
8. Alice computes 𝑘 = 𝑇2(16) = 2

(
162

)
− 1 mod 89 = 511 mod 89 = 66.

9. Bob computes 𝑘 = 𝑇3(8) = 4
(
83

)
− 3(8) mod 89 = 2024 mod 89 = 66.

Both Alice and Bob have generated the same secret key 𝑘 = 66, which is also 𝑇6(7) mod 89 =

3650401 mod 89 = 66.

ElGamal-like (based on Chebyshev polynomials) public-key encryption

Public key encryption consists of encryption and decryption algorithms. Bob obtains Alice’s public
key components, represents the message as an integer, and encrypts the message. He sends the
ciphertext to Alice. Alice then uses her private key to decrypt the ciphertext to obtain the original
message. To encrypt the message𝑚, Bob should do the following:
1. Obtains Alice’s authentic public key (𝑥, 𝑁 ,𝐴).
2. Represent the message as an integer𝑚 mod 𝑁 .
3. Generates a random integer 𝑟 < 𝑁 , computes 𝐵 = 𝑇𝑟 (𝑥) mod 𝑁 and 𝑋 =𝑚𝑇𝑟 (𝐴) mod 𝑁
4. Sends the cipher-text 𝑐 = (𝐵,𝑋 ) to Alice.
For Alice to decrypt the cipher-text 𝑐 to recover the message𝑚, she should do the following:
1. Use her private key 𝑠 to compute 𝐶 = 𝑇𝑠 (𝐵) mod 𝑁 .
2. Recover𝑚 by computing𝑚 = 𝑋𝐶−1 mod 𝑁 .
The decryption process in the ElGamal public key algorithm works because of the properties of
modular arithmetic and from the semi-group property (4.4). It follows from the fact that

𝑇𝑠 (𝐵) = 𝑇𝑠 (𝑇𝑟 (𝑥)) = 𝑇𝑟 (𝑇𝑠 (𝑥)) = 𝑇𝑟 (𝐴) .

Computing 𝐶, is possible because of the properties of modular arithmetic. Specifically, The
correctness of the decryption process relies on the fact that 𝐶 is equal to 𝑇𝑠 (𝑇𝑟 (𝑥)) mod 𝑁 , which
can be computed efficiently. This is essentially the same as computing the shared secret in the
Diffie-Hellman key exchange protocol. Computing 𝑚, works because of the properties of the
modular inverse. Since 𝑇𝑛 (𝑥) is a self-mapping, it has a modular inverse 𝐶−1 in the same group.
This means that we can compute𝑚 by multiplying 𝑋 with the inverse of 𝐶, and then taking the
result modulo 𝑁 . In the next section, we will discuss the correctness of the ElGamal algorithm
which relies on the difficulty of computing discrete logarithms in the field. Without knowledge of
the private key 𝑠, an attacker cannot compute 𝐶 or recover the plaintext𝑚 from the ciphertext
(𝐵,𝑋 ).

5.2 The Chebyshev polynomials RSA-like Algorithm

The RSA-like cryptosystem security is built on the difficulty of factoring big integers . The RSA-like
algorithm involves the use of two large prime numbers, 𝑝 and 𝑞, to generate public and private
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keys for encrypting and decrypting data. In general, the encryption is more secure the bigger
the key size. The most well-known algorithms for factoring huge numbers require exponential
time, so the longer it takes to decrypt data, the bigger the key size. However, if the prime
variables 𝑝 and 𝑞 are discovered, RSA’s security may be jeopardized. In this section, we will
discuss the critical components of the RSA-like algorithm. The RSA-like public key cryptosystem
consists of an algorithm for key generation and an algorithm for encryption. We replace Euler’s
𝜑 (𝑁 ) = (𝑝 − 1) (𝑞 − 1) by Ψ(𝑁 ) = (𝑝2 − 1) (𝑞2 − 1), according to theorem 4.21.

RSA-like (based on Chebyshev polynomials) key generation

For the RSA-like key generation process, Alice should do the following:
1. Generate two distinct prime numbers 𝑝 and 𝑞, each roughly the same size.
2. Compute 𝑁 = 𝑝𝑞 and Ψ(𝑁 ) = (𝑝2 − 1) (𝑞2 − 1).
3. Select a random integer 𝑒, 1 < 𝑒 < Ψ(𝑁 ) such that gcd(𝑒,Ψ(𝑁 )) = 1.
4. Compute the unique integer 𝑑, 1 < 𝑑 < Ψ(𝑁 ) such that 𝑒𝑑 ≡ 1 mod Ψ(𝑁 ).
5. Alice’s public key is (𝑁, 𝑒) and private key is 𝑑.

RSA-like (based on Chebyshev polynomials) public-key encryption

The RSA public key encryption consists of encryption and decryption algorithms. Bob obtains
Alice’s public key components, represents the message as an integer, and encrypts the message.
He sends the ciphertext to Alice. Alice then uses her private key to decrypt the ciphertext to obtain
the original message. To encrypt the message𝑚, Bob should do the following:
1. Obtains Alice’s authentic public key (𝑁, 𝑒).
2. Represent the message as an integer𝑚 mod 𝑁 .
3. Computes 𝑐 = 𝑇𝑒 (𝑚) mod 𝑁 .
4. Sends the ciphertext 𝑐 to Alice.
For Alice to decrypt the ciphertext 𝑐 to recover the message𝑚, she should use her private key 𝑑 to
compute𝑚 = 𝑇𝑑 (𝑐) mod 𝑁 . The decryption recovers the original message𝑚 because if 𝑝 is an
odd prime number and 0 ≤ 𝑥 < 𝑝, then the period of the sequence 𝑇𝑛 (𝑥) mod 𝑝, 𝑛 = 0, 1, 2, . . . is
a divisor of 𝑝2 − 1. We now show that if a ciphertext can be decrypted modulo each of the primes
𝑝 and 𝑞 then the message can be recovered modulo 𝑁 by the Chinese remainder theorem. Since
𝑒𝑑 ≡ 1 mod Ψ(𝑁 ), there exist an integer 𝑘 such that 𝑒𝑑 = 1 + 𝑘Ψ(𝑁 ). Hence for modulo 𝑝,

𝑇𝑑 (𝑐) = 𝑇𝑑 (𝑇𝑒 (𝑚)) = 𝑇𝑒𝑑 (𝑚) = 𝑇1+𝑘Ψ(𝑁 ) (𝑚) = 𝑇1+𝑘 (𝑝2−1) (𝑞2−1) (𝑚) .

Since the period is a divisor of 𝑝2 − 1 and 𝑘 (𝑞2 − 1) ∈ ℤ then from the definition of period of a
sequence

𝑇1+𝑘 (𝑝2−1) (𝑞2−1) (𝑚) = 𝑇1(𝑚) ≡𝑚 mod 𝑝.
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From the same argument for modulo 𝑞,

𝑇𝑑 (𝑐) = 𝑇𝑑 (𝑇𝑒 (𝑚)) = 𝑇𝑒𝑑 (𝑚) = 𝑇1+𝑘Ψ(𝑁 ) (𝑚) = 𝑇1+𝑘 (𝑝2−1) (𝑞2−1) (𝑚) = 𝑇1(𝑚) ≡𝑚 mod 𝑞.

From the two equations, we have two systems of congruence equations
𝑇1(𝑚) ≡𝑚 mod𝑝
𝑇1(𝑚) ≡𝑚 mod𝑞

=


𝑚 ≡ 𝑇1(𝑚) mod𝑝,
𝑚 ≡ 𝑇1(𝑚) mod𝑞.

Finally, since 𝑝 and 𝑞 are distinct primes, it follows from the Chinese remainder theorem that
there exists one solution

𝑇𝑑 (𝑐) ≡ 𝑇𝑑 (𝑇𝑒 (𝑚)) ≡ 𝑇𝑒𝑑 (𝑚) ≡ 𝑇1+𝑘Ψ(𝑁 ) (𝑚) ≡ 𝑇1(𝑚) ≡𝑚 mod 𝑁 .

5.3 Security of cryptosystem based on Chebyshev polynomials

In this section, we will show that an attacker will not compromise the security of the cryptosystems
RSA-like and ElGamal-like algorithms based on the extended Chebyshev. We will show that for
ElGamal-like public key algorithm if an attacker knows 𝑁, 𝑥,𝐴, 𝐵 but not the secret degrees
𝑠and 𝑟 , the ElGamal-like algorithm can be broken by solving 𝐴 = 𝑇𝑠 (𝑋 ) (mod 𝑁 ) which is a hard
Chebyshev discrete logarithm problem.

Theorem 5.2. Let 𝑥 and 𝑦 be integers such that 𝑥 > 1 and 𝑁 a prime. If 𝑦 = 𝑇𝑛 (𝑥) mod 𝑁 , then
𝑛 = log

𝑥+
√
𝑥2−1𝑦 +

√︁
𝑦2 − 1.

Proof. If 𝑥 > 1 the Chebyshev polynomials can be defined as the unique polynomial satisfying

𝑇𝑛 (𝑥) = cosh(𝑛 cosh−1 (𝑥))

then, 𝑦 = cosh(𝑛 cosh−1 (𝑥)) and cosh (𝑡) = 𝑒𝑡+𝑒−𝑡
2 . This implies that,

2𝑦 = 𝑒𝑛 cosh
−1 (𝑥) + 𝑒−𝑛 cosh−1 (𝑥) (5.1)

but cosh−1 (𝑥) = ln (𝑥 +
√
𝑥2 − 1) for 𝑥 > 1.

Let
𝑧 = 𝑒cosh

−1 (𝑥) = 𝑒 ln (𝑥+
√
𝑥2−1) = (𝑥 +

√
𝑥2 − 1) .

Now we substitute 𝑧 into equation (5.1) and solve for 𝑧𝑛

𝑧𝑛 + 𝑧−𝑛 = 2𝑦
𝑧2𝑛 + 1 = 2𝑦𝑧𝑛

𝑧2𝑛 − 2𝑦𝑧𝑛 + 1 = 0.
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Finding the roots of the quadratic equation in terms of 𝑧𝑛 yields

𝑧𝑛 =
2𝑦 +

√︁
4𝑦2 − 4
2

𝑧𝑛 = 𝑦 +
√︃
𝑦2 − 1.

From the logarithm definition

𝑛 = log𝑧 (𝑦 +
√︃
𝑦2 − 1)

𝑛 = log
𝑥+

√
𝑥2−1(𝑦 +

√︃
𝑦2 − 1).

If the two square roots
√
𝑥2 − 1 and

√︁
𝑦2 − 1 can be found in the field𝐺𝐹 (𝑁 ), then the discrete

logarithm problem is a standard one. Otherwise, if at least one square root cannot be found, then
a quadratic extension field 𝐺𝐹 (𝑁 2) is used, leading to a more generalized version of the discrete
logarithm problem. Hence the modified ElGamal algorithm is secure.

In the RSA-like algorithm, if an attacker knows only the public key (𝑁, 𝑒) such that 𝑁 = 𝑝𝑞

and gcd(𝑒, (𝑝2 − 1) (𝑞2 − 1)) = 1, the plaintext𝑚 can be recovered from the corresponding 𝑐 by
finding an integer𝑚 such that 𝑇𝑒 (𝑚) ≡ 𝑐 (mod𝑁 ). This problem is a hard Chebyshev RSA-like
problem and can be reduced to a factor problem. Let’s assume we have an algorithm A which
can factorize 𝑁 = 𝑝𝑞 then we can compute Ψ(𝑁 ) = (𝑝2 − 1) (𝑞2 − 1). From 𝑒 and Ψ(𝑁 ) we
can compute 𝑑 ≡ 𝑒−1 mod Ψ(𝑁 ) since gcd(𝑒,Ψ(𝑁 )) = 1. Once 𝑑 is obtained, the attacker can
decrypt any ciphertext 𝑐 intended for Alice. Hence solving the factoring problem implies solving
the hard Chebyshev RSA-like problem. The security of the RSA-like algorithm is therefore based
on the intractability of the integer factorization problem, similar to what happens with classical
RSA.
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6 Conclusion

In this study, we discuss two public key encryption schemes based on Chebyshev polynomials,
which are a type of polynomials that behave like the pure monomial 𝑥𝑛 which satisfies the semi-
group property. We showed that the RSA and ElGamal algorithms are secure and practical for
encryption. We also extended the Chebyshev polynomials over a finite field and demonstrated
that the new ElGamal-like and RSA-like algorithms are as secure as the original ElGamal and RSA
algorithms. Therefore, in this study, we conclude that Chebyshev polynomials can be used for
secure communication over an insecure network.
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