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Abstract 

Public-key encryption enables secure communication over an insecure network. In this thesis, we 
discuss two public key encryption schemes based on Chebyshev polynomials, which are a class of 
polynomials that exhibit chaotic properties suitable for cryptographic applications. We discuss 
that the RSA and ElGamal algorithms are secure, practical, and can be used for encryption. We 
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and RSA-like algorithms are as secure as the original ElGamal and RSA algorithms. 
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16 1 Introduction 

1 Introduction 
This section introduces the scope of the thesis: Public-key encryption based on Chebyshev polyno
mials. A brief history of cryptography and works related to public-key encryption based on chaotic 
maps, specifically Chebyshev polynomials are discussed. In section 1.1 the goal of the thesis is 
stated, section 1.2 discusses the outline of the thesis, and in section 1.3 algebraic concepts and 
theorems related to the study are defined, and stated respectively. 

The subject of Cryptography has a long and captivating history, with its complete non-technical 
account provided in Kahn's "The Codebreakers". The book covers cryptography from its earliest 
limited use by the Egyptians over 4000 years ago to the 20th century, where it played a crucial 
role in both world wars. The predominant practitioners of cryptography were associated with 
the military, diplomatic service, and government, and the subject was used as a tool to protect 
national secrets and strategies. 

Public-key cryptography has contributed significantly to the development of digital signatures, 
with the first international standard (ISO/IEC 9796) based on the RSA public-key scheme adopted 
in 1991. In 1994, the U.S. Government adopted the Digital Signature Standard, which uses 
the ElGamal public-key scheme. The search for new public-key schemes, improvements to ex
isting mechanisms, and security proofs continues at a rapid pace, with various standards and 
infrastructures involving cryptography being put in place to address the security needs of an 
information-intensive society. 

Cryptography plays a crucial role in computer security as it ensures that data transmitted 
through unsecured channels is only readable by the authenticated receiver with the correct key. 
This process is used to encrypt various forms of data, including documents, images, and phone 
conversations. In addition to privacy, cryptography aims to achieve other goals in communica
tion security, such as guaranteeing the integrity and authenticity of communications. The field 
has evolved to encompass many sophisticated and fascinating goals beyond just privacy. Diffie 
and Hellman introduced the concept of public key cryptography in 1976 with their paper "New 
Directions in Cryptography" [1]. Later, Rivest, Shamir and Adlemann proposed the well-known 
RSA cryptosystem which implemented this idea. Since then, many new cryptosystems have 
been proposed and public key cryptography has become a well-established and reliable field of 
knowledge [2]. 

Chaotic maps are mathematical functions that display chaotic behavior and can be parameter
ized by discrete-time or continuous-time parameters. Discrete maps are usually iterated functions 
and exhibit properties similar to those of confusion and diffusion cryptography. Therefore, they 
have been used to construct robust and secure cryptosystems that are resistant to statistical attacks 
[3]. 

In recent years, there has been interest in exploring the use of chaotic systems in cryptography 
due to their sensitive dependence on initial conditions and similarity to random behavior [4]. A 
symmetric key cryptosystem based on chaos theory was presented at a cryptographic conference, 
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but it was found to be vulnerable to attacks at the same conference [5, 6]. Another cryptosystem 
based on chaotic maps was also broken [7]. Despite these setbacks, chaos theory has found 
applications in other communication areas, and researchers continue to explore the potential of 
chaotic systems in designing effective cryptographic primitives [8]. Chebyshev polynomials are a 
well-known example of one-dimensional chaotic maps used in various applications [4]. 

Pichler and Scharinger [9] suggested a cryptographic approach that utilizes chaotic permu
tations which are created by discretizing the two-dimensional bakers map. This method was 
expanded by Fridrich [10] to include chaotic permutations on two-dimensional lattices of any size. 
Truong et al. [11] introduced an authentication scheme using chaotic Chebyshev polynomials 
while Lawnik and Kapczynski [12] investigated the use of modified Chebyshev polynomials in 
asymmetric cryptography, and Li et al. [13] proposed an outsourcing scheme for verifiable chaotic 
encryptions based on Chebyshev maps. 

Kocarev et al. [14] have proposed a public-key encryption algorithm that utilizes Chebyshev 
polynomials. Chebyshev polynomials have a commutative property that enables the creation of a 
public-key cryptosystem. Despite the chaotic properties of these polynomials being well-suited for 
cryptographic purposes, they do not provide sufficient security against attacks [8]. Therefore, a 
prime finite field version for Chebyshev polynomials was suggested to prevent attacks and improve 
the security of the algorithm [15, 14]. As a result, the algorithm was modified to utilize this 
version of the polynomials. 

1.1 Goal of the thesis 

The purpose of this thesis is to replace the monomial xn with the Chebyshev polynomials Tn(x) in 
the Diffie-Hellman and RSA cryptography algorithms and investigate the possibilities of Chebyshev 
polynomials in the creation of efficient and secure public key encryption algorithms, as well 
as evaluate their performance in terms of security, computational complexity, and practicality. 
The thesis wil l thoroughly review the existing literature on public key encryption, Chebyshev 
polynomials, and their cryptographic applications. We will also investigate that the inverse problem 
of computing the degree n, the discrete log problem for Tn(x) mod p, is as difficult as that for 
xn mod p. 

1.2 Outline of the thesis 

Section 2 covers the two most commonly used public-key schemes, the ElGamal and RSA algo
rithms. Section 3 briefly discusses chaotic maps and the properties that make them suitable for 
cryptosystems, along with an example of a chaotic map in section 3.2. Chebyshev polynomials are 
discussed in section 4, including their properties in section 4.1 and theorems supporting the use 
of Chebyshev polynomials for cryptosystems in section 4.2. Section 4.3 discusses the importance 
of implementing public-key algorithms with integers over real numbers. The core of the thesis is 
section 4.4, where we introduce the extended Chebyshev polynomials and two properties critical 
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for designing public-key algorithms. In sections 5.1 and 5.2, we discuss the ElGamal and RSA 
algorithms on the extended Chebyshev polynomials, respectively, while section 5.3 covers the 
security of cryptosystems built on the extended Chebyshev polynomials. Finally, we conclude the 
thesis in section 6. 

1.3 Algebraic concepts 

Although mathematics concepts used in this work are very diverse, attempts to give a universal 
definition of mathematical terms and concepts are of interest. In this subsection algebraic terms 
and concepts related to the study are defined and important theorems are stated. 

Groups 

Definition 1.1 (Groups). Let G be a non-empty set with an operation * on its element. (G, *) is 

called a group if 

1. it is closed: i.e Va, b e G, a*b e G. 
2. 3 a neutral element e, such that a* e = e * a = a, V a e G. 
3. it is associative: Va,b,c e G (a * b) * c = a * (b * c). 

4. every element has an inverse: V a e G, 3 b e G, such that a*b = b*a = e. 

A group that satisfies the commutative property, i.e. a * b = b * aVa, b e G, is abelian. Almost all 

groups that are studied under cryptography are abelian and the commutative property is what 

most cryptosystems are built on. 

Definition 1.2 (Cyclic group). An abelian group is cyclic if there is an element g, from which 
every other element can be obtained by repeated application of the group operation on g or on 
g~\ 

Example 1.3. (Z, +) is a cyclic group; it has g = 1 and its inverse —g = - 1 , from which every 
positive integer can be obtained by repeated addition on 1 and negative integers are the inverses 
of the positive integers. 

The order of a group denoted by ord(G) or |G | is a fundamental concept that can be defined 
when a group has a finite number of elements. 

Definition 1.4 (Order of group). The order of a finite group is the number of its elements. If a 
group is not finite, one says that its order is infinite. 

For instance, one could mention the group of integers modulo n, which has order n, and the 
group of real numbers under addition, which has infinite order. 

Definition 1.5 (Order of an element). The order of an element a of a group (also called period) is 

the order of the subgroup generated by the element. 
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For instance, if the group operation is denoted as multiplication, the order of an element a 
of a group is thus the smallest positive integer m such that am = e, where e denotes the identity 
element of the group. The order of an element a is denoted by ord(a) or |a|. 

Theorem 1.6 (Lagrange's theorem). For any subgroup H of a finite group G, the order of the 
subgroup divides the order of the group. In particular for every a e G, it holds that 

1. ord(a) divides \G\. 
2. a\°\ = 1. 

Point 1 follows from the definition of order of an element and point 2 follows from the fact that, if 
m = ord(a), then \G\ = mn for some n e Z from point I. This implies that a'G ' = amn = (am)n = 
1" = 1. 

Modular arithmetic 

Definition 1.7. Let a, b, n be integers with n ± 0. We say a is congruent to b mod n denoted as 
a = b (mod n) if a and b differ by a multiple of n, thus a = b + nk for some integer k or a - b is a 
multiple of n. The following properties of modular arithmetic are trivially verified. 

Let a, b, c, n be integers with n + 0. 

1. a = 0 (mod n) if and only if n \ a. 
2. a = a (mod n). 
3. a = b (mod n) if and only if b = a (mod n). 
4. If a = b and b = c (mod n), then a = c (mod n). 

Theorem 1.8 (Fermat's little theorem [16]). If p is a prime number, then for any integer a, the 
number ap - a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as 

a? = a (mod p). 

If p is a prime andp does not divide a, then Fermat's little theorem is equivalent to 

a?'1 = 1 (mod p). 

Chinese Remainder theorem 

For the purpose of this study, the Chinese remainder theorem wil l be focused on two systems 
of congruences. The theorem shows that a system of congruences can be replaced by a single 
congruence under certain conditions. 

Theorem 1.9 (Chinese remainder theorem [16]). Suppose gcd(m, n) = 1. Given integers a and b, 
there exists exactly one solution x (mod mn) to the simultaneous congruences 

x = a (mod m), 

x = b (mod n). 
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Fields 

A field is a set with two binary operations (F, •, +) such that 

1. (F, +) is an abelian group with identity 0. 

2. (F/{0}, •) is an abelian group. 
3. (F, •, +) satisfies the distribution law i.e (a + b) • c = (ac + be). 

If F is a finite set and is a field then F is a finite field, also known as a Galois field. Throughout 
this study, the finite field plays a crucial role since the domain of the Chebyshev polynomials is 
changed from real numbers to finite fields. The most used examples of finite fields in this study 
are integers modulo N, where N is prime, and quadratic extension fields. 

Integer modulo N 

The integers modulo N are denoted by GF(AT), where AT is a prime. GF(AT) is made by integer 
elements from 0 to N - 1 and is a finite field of order N. In GF(AT), addition and multiplication 
are performed modulo N. Addition is defined as the operation of taking the remainder of the sum 
of two integers when divided by N, while multiplication is defined as the operation of taking the 
remainder of the product of two integers when divided by N. 

Quadratic extension fields 

Extension fields are finite fields obtained by extending GF(AT) of order N by means of an irreducible 
polynomial^) of degree p, obtaining GF(AT^), where a polynomial is called irreducible if it has no 
proper factors other than itself and the constant polynomials [17]. These fields have Nd elements, 
where d is the degree of P, a positive integer. For d = 2 we have a quadratic extension of GF(AT) 
denoted by GF(AT 2). GF(AT2) is the field of polynomials of degree at most one with coefficients 
in the field GF(AT) which represent the remainder of all possible polynomials when divided by a 
chosen irreducible polynomial of degree 2 in GF(AT). 

Example 1.10. For the finite field GF(2 2), x2 + x + 1 is the only irreducible polynomial of degree 
2, and the elements of GF(2 2 ) are {0,1, x, 1 + x} with coefficients {0,1} £ GF(2). 

Hence the elements of GF(AT2) are of the form a+bx, where a, b 6 GF(AT) and x is an indeterminate 
variable satisfying the equation x2 - c = 0, where c is a non-square element of GF(AT). This 
implies that x = s/c and the elements in GF(AT2) can be rewritten as a + b^, hence in quadratic 
extension, we consider the set of surds. Moreover, addition, subtraction, and multiplication of 
surds lead to results of the same form. 

Automorphism of GF(N 2) 

In the quadratic extension field automorphism is a one-to-one correspondence that takes elements 
of the form a + b^c to other elements of the same form while preserving the field operations. 
There are two types of automorphisms of the quadratic extension of GF(AT): 
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1. Identity automorphism: This automorphism leaves every element of the quadratic extension of 
GF(AT) unchanged. 

2. Conjugation automorphism: This automorphism takes any element of the quadratic extension 
of GF(AT) to its conjugate. The conjugate of an element a + is a - £>Vc. This automorphism 
swaps the two roots of the quadratic polynomial. When N = 2 the conjugation automorphism, 
which maps the element a + b^2 to its conjugate a + b^2 corresponds to the identity map on 
GF(2). 

Discrete logarithm problems 

A discrete logarithm problem is a mathematical problem that involves finding an integer x, given 
a cyclic group G generated by an element g, and h another element in G such that x satisfies the 
equation gx = h. Let (G, •) be a finite abelian group with prime order |G | = q, such as a subgroup 
of the multiplicative group of a finite field. The discrete logarithm problem in G is: given g,h £ G 
find an integer x e {1,2,...,q - 1} such that 

gx = h. 

For some groups this problem is easy to solve: if we consider (ZJV, +), then given g, h e ZJV we 
find x such that 

x • g = h. 

The discrete logarithm problem is considered difficult to solve in ( Z * , •) for large prime values 
of p, and also due to the multiplicative structure of the group. It makes it difficult to apply 
linear algebraic techniques based on addition and subtraction to the discrete logarithm problem. 
Although a solution exists since the group is cyclic, there are no known efficient algorithms to 
find a generator of the group ( Z * , •) making it computationally infeasible for large values of 
p. Many algorithms are known that address the discrete logarithm problem. Some of them 
have subexponential complexity. However, describing them goes beyond the scope of this work. 
Discrete logarithm problems are important in cryptography, particularly in public-key cryptography, 
where they are used to create secure cryptographic algorithms. Some well-known cryptographic 
algorithms that rely on the difficulty of the discrete logarithm problem include the following. 

1. Diffie-Hellman key exchange: In this algorithm, two parties agree on a large prime number p 
and a primitive root g modulo p. The parties then choose secret exponents a and b, respectively, 
and exchange values of ga mod p and gb mod p. By computing (ga)b mod p = (gb)a mod p, 
the two parties can establish a shared secret key that can be used for symmetric-key encryption. 
One commonly used algorithm for computing exponentials in a finite group, which is compu
tationally feasible, is the "square and multiply" algorithm. The exponentiation by squaring 
algorithm is an efficient method for computing the power of an element in a group, especially 
when the exponent is large. 

2. ElGamal encryption: This algorithm is a public-key encryption algorithm that relies on the 
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difficulty of the discrete logarithm problem in a cyclic group and uses Diffie-hellman key 
exchange for its secret key generation. The algorithm involves generating a public-private key 
pair, and using the public key to encrypt messages and the private key to decrypt them. 

Jordan normal form 

Finding the Jordan normal form of a matrix is an important tool in linear algebra and it simplifies 
the matrix in a way that makes its properties more easily understood. It can tell us the matrix's 
eigenvalues, and the algebraic and geometric multiplicities of each eigenvalue. The Jordan normal 
form can simplify matrix computations, such as matrix exponentiation and matrix diagonalization. 
This concept is useful in proving the periodic property of the Chebyshev polynomials over a finite 
field in this study. 

Let A be a 2 x 2 matrix with integer entries. Then exists an matrix S which has a inverse such 
that A = S B S - 1 , where B has one of the following forms: 

1. B = ( ^ 1 ^ | . (diagonal matrix) 
0 X2 

X 1 

0 X 
The matrix B is called the Jordan normal form of A, and matrix 5 is formed by the eigenvectors of 
the corresponding eigenvalues {X\, X2). 

2. B (upper triangular matrix) 
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2 Public-key encryption 
The study of secure transmission in the presence of adversaries is known as cryptography. A key 
component of cryptography is encryption, which enables us to safeguard confidential data from 
unwanted access. The same key is used for encryption and decryption in conventional symmetric 
key cryptography. However, this makes it difficult to safely share keys between two parties without 
the key being intercepted by a third party. On the other hand, public key cryptography employs 
two distinct keys: a public key for encryption and a private key for decryption. Without a shared 
secret key, this enables secure contact. 

The concept of public key cryptography was first introduced by Whitfield Diffie and Martin 
Hellman in 1976, but the actual implementation of the system was later developed by Ron Rivest, 
Adi Shamir, and Leonard Adleman [18, 1, 19]. Public key encryption revolutionized the field 
of cryptography by allowing secure communication without the need for a shared secret key 
beforehand and has become a critical component of modern internet security, being widely used 
in various applications such as SSL/TLS, PGP, and digital signatures. 

The RSA scheme is based on another hard mathematical problem, the intractability of factoring 
large integers [20]. The 1980s saw major advances in this area but none of which rendered the 
RSA system insecure. Another class of powerful and practical public-key schemes was founded by 
ElGamal in 1985. These are also based on the discrete logarithm problem [14]. 

In public-key encryption, let K be the key space and M be the message space, let {Ee : e e <K} 
be a set of encryption transformations and {Dj : d e <K} be the set of corresponding decryption 
transformations [20]. Bob uses the encryption transformation to obtain the cipher text c = Ee(m) 
where m e M. and sends it to Alice. Alice then applies the decryption transformation to obtain 
the original message m = Dd(c). 

Definition 2.1. An encryption scheme is a set of encryption and decryption transformations 
{Ee : e G <K} and {Dj : d e <K}, respectively. The encryption scheme is said to be a public-key 
encryption scheme if for each associated encryption/decryption pair (e, d), one key e (the public 
key) is made publicly available, while the other d (the private key) is kept secret. In a secure 
system, knowledge of the public key e does not allow computation of the private key d. 

In this section, we wil l discuss the two mostly used public key schemes, that are the RSA 
and ElGamal algorithms. We wil l also discuss their key generation, encryption, and decryption 
processes. 

2.1 RSA encryption scheme 
RSA is a popular public key cryptography system that operates by utilizing the mathematical 
properties of prime numbers to ensure secure data transmission. When using RSA, a user generates 
two keys: a public key for encrypting messages and verifying digital signatures and a private 
key for decrypting messages and creating digital signatures. RSA is frequently used for secure 
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communication and is particularly prevalent in applications such as encrypted email, digital 

signatures, and secure web browsing. 

RSA key generation 

The RSA algorithm involves a set of messages that can be encrypted and decrypted. This set 
of messages is called the message space, which is usually depicted as a group of non-negative 
whole numbers that are lower than a specific value. The message space is denoted as M. = 
{ 0 , 1 , 2 , k - 1}, where k is a positive integer indicating the size of the message space. The 
key space refers to the collection of all possible public and private key pairs for encrypting and 
decrypting messages. 

In RSA, the keys are originated by two large prime integers, p, and q. The private key is made 
up of the decryption exponent d, which is calculated with the help of p, q, and the encryption 
exponent e. The public key is denoted by the values (n, e), where n = pq is the modulus used in 
encryption and decryption processes. Key generation is a crucial step in RSA and care must be 
taken to ensure that the primes chosen are sufficiently large and that the keys are kept secure. 
Key generation in RSA involves creating the public key and the private key. The following are the 
steps involved in generating the keys: 

• Generate two large distinct prime numbers p and q. 
• compute n = pq and <p{n) = (p - l)(q - 1) where <p is Euler's function. 
• select a public exponent e, such that 1 < e < <p{n) and gcd(e, <p{n)) = 1, thus e is coprime to 

(p(n). 
• compute the private exponent d, 1 < d < (p(n) such that ed = 1 mod(<p(n)) by extended 

Euclidean algorithm. 
• the public key is the pair (n, e) and the private key is d. 

RSA public - key encryption 

RSA encryption and decryption are performed using the public and private keys generated during 
the key generation process. To encrypt a message, using the recipient's public key (n, e), the 
message is represented as an integer m in the interval [0, n - 1]. We then compute c = me 

(mod n), which is the encrypted message. The cipher text c is sent to the recipient. 

To decrypt the cipher text to recover the plaintext m, the recipient uses the private key d 
and computes m = cd (mod n). The decryption is based on Fermat's theorem. Since ed = 1 
(mod <p(n)), there exists an integer k such that ed = 1 + k(p{n). Now, if gcd(m,p) = 1 then by 
Fermat's theorem, mP'1 = 1 (mod p). Raising both sides of this congruence to the power k(q- 1) 
and then multiplying both sides by m yields 

ml+k(p-l)(q-l) = m ( m o d py 

On the other hand, if gcd(m,p) = p, then this last congruence is again valid since each side is 
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congruent to 0 modulo p. Hence, in all cases m = m (mod p). By the same argument, m = m 
(mod p). Finally, since p and q are distinct primes, it follows that 

med = m (mod n). 

2.2 EIGamal encryption scheme 
The EIGamal algorithm is a public-key cryptosystem that was proposed by Taher EIGamal in 1985 
[14]. It is based on the mathematical problems of finding discrete logarithms and computing 
modular exponentiation. This scheme can be viewed as a Diffie-Hellman key agreement in key 
transfer mode. 

EIGamal key generation 

Consider a class of functions defined as (pp(x) = xp (mod n), where n is a prime number, x c Z * 
is a generator and 1 < p < n - 2. The function commute under composition 

<f>p(<f>q(x)) = <ppq(x). (2.1) 

Alice Bob 

Choose p £ Z 
q e Z 

Computes y — 
z = 

Key Exchange 

y = * , W 

Secret Key 

Figure 2.1: EIGamal Key Exchange 

EIGamal public - key encryption 

In the EIGamal public-key scheme, Alice generates a large random prime n and a generator x of 
the multiplicative group Z * of integers modulo n. She also generates a random integer s < n - 2 
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and computes A = xs (mod n). Alice's public and private keys are (x, n,A) and s respectively. To 
encrypt a message m, Bob selects a random integer r < n - 2, computes B = xr (mod n) and 
X = mAr (mod n), and sends the cipher-text c = (B,X) to Alice. To recover the message m from 
c, Alice uses the private key s to recover m by computing m = B~SX (mod n). The decryption 
recovers the original message because 

B~smAr = x~rsmxrs = m (mod n). 
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3 Chaotic maps 
Chaotic maps are mathematical functions that exhibit chaotic behavior, which means that their 
behavior is highly sensitive to initial conditions and small perturbations. Chaotic maps are used in 
a variety of fields, including cryptography, engineering, and biology, to model complex systems 
and phenomena. They describe how a system evolves over time, based on its current state and a 
set of parameters. One important property of chaotic maps is that they can generate randomness, 
which is useful in applications such as cryptography and random number generation. In this 
section, we will discuss the properties of chaotic maps and how they can be used for cryptographic 
purposes such as encryption and key generation. Finally, we will also examine some of the popular 
chaotic maps used in cryptography, such as the two-dimensional torus automorphism. 

3.1 Chaotic maps in Cryptography 

Chaotic maps are used in cryptography because they exhibit several properties that make them 
suitable for cryptographic applications. Here are some important properties of chaotic maps in 
cryptography. 

• Sensitivity to initial conditions: Chaotic maps are highly sensitive to initial conditions, which 
means that a small change in the initial conditions can lead to a completely different sequence 
of outputs. This property is important in cryptography because it allows for the generation of 
unpredictable and random-like sequences of numbers, which can be used as cryptographic keys 
or for data encryption. 

• Mixing property: Chaotic maps have a mixing property, which means that nearby points in 
the input space are mapped to widely separated points in the output space. This property is 
important in cryptography because it makes it difficult for an attacker to predict the output 
sequence based on the input sequence. 

• Non-linear behavior: Chaotic maps exhibit non-linear behavior, which means that the output 
sequence is not a simple function of the input sequence. This property is important in cryptog
raphy because it makes it difficult for an attacker to derive the input sequence from the output 
sequence. 

• Non-Periodicity: Chaotic maps typically produce output sequences that are non-repeating 
and non-periodic, meaning that the same value wil l not be repeated after a fixed number of 
iterations. This property is important for ensuring that the output sequence is sufficiently long 
and unpredictable. 

Overall, chaotic maps offer a powerful tool for creating secure cryptographic keys and protecting 
sensitive data. They are also used as the basis of stream ciphers and the creation of cryptographic 
hash functions. While they are not foolproof and can be vulnerable to certain types of attacks, 
they remain an important component of modern cryptography. 
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Applying chaotic maps in cryptography 

Public key encryption relies on the use of mathematical functions that are computationally difficult 
to invert. However, there are some variants of public key encryption that use chaotic maps as part 
of their encryption process, such as the following: 

• Chaotic Maps as Pseudo-Random Number Generators: Chaotic maps can be used as a source of 
randomness in the generation of keys for public key encryption schemes. The initial conditions 
and parameters of the chaotic map can be used to seed a random number generator, producing 
a sequence of pseudo-random numbers that can be used as keys for encryption and decryption. 

• Chaos-Based Public Key Cryptography: Some public key encryption schemes use chaotic maps 
as part of their encryption and decryption algorithms. These schemes typically involve the use 
of a secret chaotic map, known only to the owner of the private key, to generate a public key 
that can be used for encryption. The corresponding private key can then be used to decrypt the 
ciphertext. 

• Key Exchange Using Chaotic Maps: Chaotic maps can be used in key exchange protocols that 
allow two parties to agree on a shared secret key for use in symmetric key encryption. In these 
protocols, the parties agree on a set of initial conditions for a chaotic map and then use the 
output of the map as the shared secret key. 

3.2 Torus automorphism 
Geometrically, a torus is a closed surface defined as the product of two circles. A torus is a 
doughnut-shaped object with a hole in the middle. To represent the transformations of the 2-
dimensional torus, we need to use matrices that preserve its topology, which means that we can't 
stretch or shrink the torus or its holes. Automorphisms are mathematical functions that maintain 
an object's structure. They are useful in many fields of mathematics, including algebra, geometry, 
and topology. Automorphisms are used in cryptography to create attack-resistant encryption and 
decryption methods. Torus automorphisms have properties such as periodicity, and mixing that 
make them suitable for cryptographic purposes. 

In this study, we briefly discuss the automorphism of the two-dimensional torus which will be 
used in understanding the periodicity of the Chebyshev polynomials when extended from real 
number field to finite fields. Torus automorphism provides a link between number theory and 
strongly chaotic systems and the 2 x 2 torus matrix wil l be used to prove the period property of 
the Chebyshev polynomials over a finite field. 

Definition 3.1. An automorphism of a torus is a bijective function that preserves the algebraic 

and topological structure of the torus. 

A torus automorphism can be described by a linear transformation implemented by a 2 x 2 
transformation matrix 
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a, b, c, d are integers to ensures that M maps torus into itself and \M\ = 1 to guarantee invertibility. 
Let M be a 2 - torus automorphism, then it can be written as a map from M : (x, y) —> (x\ y') of 
the form: 

(x,y') = (ax + by,cx + dy) mod (1) 

x \ lx 
= M mod (1). 

Characteristic polynomial of a 2 x 2 matrix M is f(z) = det ( M - zl). This implies that 

f(z) = (a-z)(d-z)-cb 

= z2 - (a + d)z + ad - cb 

= z2-kz + l. 

Let k be the trace of the automorphism M and X one of its root, then 

A 
k + V P - l 

It is known that for k > 2, the automorphism M has strong chaotic properties, in particular, it has 
a dense set of unstable periodic orbits [14]. A detailed structure of periodic orbits of the 2-torus 
automorphism is well structured by [21]. 

Example 3.2. Consider the matrix M 
2 1 
1 1 

. The trace of M is k = 3 which is greater than 2, 

hence the eigenvalues or the roots of its characteristic polynomial is 

A = 
3 ± V9 - 1 

> 0. 

In a system, eigenvalues are used to study the behavior of period orbits whether they are stable or 
not. If any eigenvalue has a positive real part, then the periodic orbit is unstable, meaning that 
small perturbations in the initial state variables grow over time and the system moves away from 
the equilibrium. This implies that the matrix M has strong chaotic properties. 
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4 Chebyshev polynomials 
Polynomials are fundamental mathematical objects that play a significant part in many areas of 
cryptography. They are used in a range of cryptographic applications, including error-correcting 
codes, hash functions, and symmetric encryption. Chebyshev polynomials are a subclass of 
polynomials with unique properties that are used in a variety of cryptographic uses. In this section, 
we will look more closely at Chebyshev polynomials since they are the cornerstone on which the 
public key cryptosystem in this thesis is built. We wil l talk about their characteristics, such as 
recurrence relations, chaotic property, and semi-group property. We'll also look at how they're 
used in encryption, their limitations over the real number field, the need to extend the domain to 
a finite field, and some mathematically hard problems associated with the polynomial. Finally, we 
will discuss the properties of the extended Chebyshev polynomials that play crucial roles to build 
the RSA and ElGamal cryptosystem on the Chebyshev polynomials and explore their advantages. 

Definition 4.1 (Chebyshev polynomials of the first kind). Let n be a non-negative integer. The 
Chebyshev polynomial of order n is defined as 

T n(cos0) = cos(n0). (4.1) 

The Chebyshev polynomials of the first kind can be alternatively defined as the unique polyno
mials satisfying the following: Let us define 

Tn(x) 

cos(narccosx) if |x| < 1, 

cosh(n arcoshx) i f x > 1, 

(-1)" cosh(n arcosh(-x)) if x < - 1 . 

Definition 4.2 (Chebyshev polynomials of the first kind). Let n e Z + and x e [-1,1], the 
Chebyshev polynomial of order n, Tn(x) : [-1,1] —» [-1,1] is defined as 

Tn{x) = cos(n • arccos(x)) for x = cos(0). (4.2) 

From equation (4.1) and equation (4.2) ; 
T0(cos 0) = cos(0) = 1; T0(x) = 1 

Ti(cos 0) = cos(0); Ti(x) = x 
T2(cos 0) = cos(20) = 2 cos2 0 - 1 ; T2(x) = 2x2 - 1 = 2x • 7i (x) - T0 

T 3(cos0) = cos(30) =4cos 3 0-3cos0 ; T3(x) = 4x3-3x = 2x(2x2-l)-x = 2x-T2(x)-T1(x). 

From the above relations, the Chebyshev polynomials of order n, Tn(x) : [-1,1] —> [-1,1] 
satisfy the recurrence relation 

Tn+i(x) = 2xTn(x) - T„-i(x) (4.3) 
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with T 0(x) = 1 and 7i(x) = x. It is easy to see that all the above definitions of Chebyshev 
polynomials are equivalent. 
Some examples of Chebyshev polynomials are 

T0(x) = 1 

TI(X) = X 

T2(x) = 2 x 2 - 1 

T3(x) = 4 x 3 - 3x 

T 4(x) = 8 x 4 - 8x 2 + 1 

Ux) = 16x 5 -- 20x 3 + 5x 

T6(x) = 32x 6 -- 48x 4 + 18x 2 - 1 

T 7(x) = 64x 7 -- 112x 5 + 56x 3 - 7x 

T8(x) = 128x 8 - 256x 6 + 160x 4 - 32x 2 + 1 

T 9(x) = 256x 9 - 576x 7 + 432x 5 - 120x 3 + 9x. 

7b(x) ri (x) r2(x) r3(x) r4(x) 

Figure 4.1: First 5 Chebyshev polynomials 

4.1 Properties of Chebyshev polynomials 
The Chebyshev polynomials exhibit the following important properties which are very crucial in 
public key encryption. 

Property 4.3 (Chaotic property). When the degree n > 1, the Chebyshev polynomials map 
Tn : T „ ( [ - l , 1]) = [-1,1] is a chaotic map with the function p.{x) = 
measure, and positive Lyapunov exponent A = In \n\ > 0. 

as its invariant 
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When n = 1, 7i(x) = x and is not chaotic, but when n > 1, the map T„(x) exhibits chaotic 
behavior. The invariant measure p.(x) gives the density of points in the limit as the number of 
iterations of the map goes to infinity, where d is a normalization constant that ensures that the 
integral of p.(x) over the interval [-1,1] is equal to 1. The Lyapunov exponent X measures the 
rate at which nearby trajectories diverge or converge. In chaotic systems, the Lyapunov exponent 
is positive, which means that nearby trajectories diverge exponentially fast. Since n > 1, the 
Lyapunov exponent X is positive. This means that the Chebyshev polynomials map of degree n is 
a chaotic map, and nearby trajectories diverge exponentially fast. 

Property 4.4 (Even and odd functions). Based on their degrees, the Chebyshev polynomials T„(x) 
admit two possibilities as either even or odd functions. Precisely: 

• For n even, Tn(x) are even functions. 
• For n odd, Tn(x) are odd functions. 

Proof. From the recurrence relation of Chebyshev polynomials, we can prove that Tn(x) is even 
when n is even and odd when n is odd using mathematical induction. 
Base Case: 
When n = 0, TQ(X) = 1, which is an even function. 
When n = 1, 7i(x) = x, which is an odd function. 
Inductive Step: 

Assume that T^(x) is even when k is even and odd when k is odd for some k > 1. We want to 
show that Tfc+1 (x) is odd when k is even and even when k is odd. 
Case 1: k is even. 

By the recursive definition of T„(x), we have: Tfc+i(x) = 2xTfc(x) - Tk-\{x). Since %{x) is even 
and T^i(x) is odd (by the inductive hypothesis), then 2xT^(x) is odd. Therefore, the difference 
between two odd functions is an odd function. Hence, Tk+i (x) is odd when k is even. 
Case 2: A: is odd. 

By the recursive definition of T„(x), we have: T^ + 1(x) = 2xT^(x) - T^iix). Since 7fc(x) is odd 
and Tk-i(x) is even (by the inductive hypothesis), then 2xT^(x) is even. Therefore, the difference 
between two even functions is an even function. Hence, T^ + 1 (x) is even when k is odd. 
Therefore, by mathematical induction, we have shown that Tn(x) is even when n is even and odd 
when n is odd. • 

We will now introduce a crucial property of Chebyshev polynomials. The Chebyshev map has 

a semi-group property. 

Property 4.5 (Semi - group property). For any positive integers r, s and a real number x £ [-1,1], 
this equation is always true. 

An immediate consequence of its semigroup property is Chebyshev polynomials commute under 
composition [22] 

Tr(Ts(x))=Trs(x). (4.4) 

Tr(Ts(x)) = Ts(Tr(x)). (4.5) 
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Proof. Let us start by proving the relation in equation (4.4) 

Tr(x) = cos(r arccos(x)); for - 1 < x < 1 

Tr(Ts(x)) = Tr (cos (s arccos (x))) 

= cos [r arccos(cos(s arccos(x)))]; but arccos(cos x) = x 

= cos [r • s arccos (x)] 

= Trs(x). 

• 

Proof. Let us start by proving the relation in equation (4.5) 

Tr(x) = cos(r arccos(x)); for - 1 < x < 1 

Tr(Ts(x)) = cos [r arccos(cos(s arccos(x)))] 

= cos [r • s arccos (x)] 

= cos [s • r arccos (x)] 

= cos [s arccos(cos(r arccos(x))) ] 

= UTr(x)). 

• 

4.2 Cryptosystem based on Chebyshev polynomials 

Can polynomials in any class other than the pure monomial x" satisfy property (4.5)? In this 
section, we answer the above question to explain why this study is focused on Chebyshev poly
nomials and to justify why public-key cryptosystems like RSA and ElGamal algorithm can be 
built on Chebyshev polynomials. In the generalized Diffie - Hellman key agreement, instead of 
generalizing the basic rule of exponents (gm)n = (gn)m = gmn to an arbitrary group, we consider 
it as a polynomial identity satisfying the commutative composition ( x m ) n = ( x n ) m = xmn. We will 
show that the pure monomial x" and Chebyshev polynomials are the only class of polynomials 
that satisfy the commutative composition. 

The characterization of permutable polynomials is complicated and is due to the fact that 
algebraic structures have different properties that can affect whether polynomials are permutable. 
The degree of the polynomials can also play a role in determining whether they are permutable. 

Definition 4.6 (Permutable polynomials). Two polynomials, p and q, are called permutable if 
p(q(x)) = q{p{x)) for all x. If we adopt the notation p • q to indicate the composition p(q(x)), 
then p and q are permutable if p • q = q • p. 

If p and q are permutable, we shall also say thatp commutes with q and, of course, q commutes 



34 4 Chebyshev polynomials 

with p. Composition satisfies the associative law 

p-(q-r) = (p-q)-r 

From the semi-group property (4.5), we see that any two Chebyshev polynomials are permutable. 

Definition 4.7 (Chain polynomials). A chain polynomial is a sequence of polynomials that are 

obtained by iterating a given polynomial p(x) such that P^n+1\x) = P ̂ P ^ ( x ) j for n > 0. We 

shall write p ^ for the n-fold composition p • p • • • p. 

Definition 4.8 (Similar polynomials). The polynomials p{x) and q(x) are said to be similar if 
there exists a non-singular linear transformation A(x) such that g{x) = \{f{x)) for all x. 

Definition 4.9 (Set of polynomials). Let SPn be the set of polynomials whose degree does not 
exceed n, i.e., if p(x) = ao + a\x + \- akxk and k < n, thenp e Sfin. 

The answer to the above question is that the Chebyshev polynomials {7}} and the pure 
monomials {KJ} are the only possible chain polynomials up to similarities [22, 23]. If two 
polynomials commute, they are either both chain polynomials or both similar to either a Chebyshev 
polynomial or a pure monomial function, with respect to the same rational function \{x). 

To prove the above statement, our first result is that no polynomials other than Chebyshev 
polynomials can commute with a given {Tn} if n > 2. 

Theorem 4.10 (Bertram). Ifn>2 and the polynomial p of degree k > 1 commutes with Tn, then 
p = Tjcifnis even and p = ±T^ if n is odd. 

Proof It is possible to prove that ±Tm(x) are the only polynomial solutions of 

(1 - x 2 ) {y'f = m2 (1 - y2) (4.6) 

for m > 0. The theorem is proved by showing that, if p commutes with Tn, y = p satisfies (4.6) 
with m = k. The polynomial 

q(x) = {l-x2) {p'{x))2-k2 ( l - p 2 ( x ) ) 

is in £p2k-i, since the coefficient of x2k is zero, but 

n2q -Tn = n2{l- T2) (p' • Tn)2 - n2k2 ( l - (p • T n ) 2 ) 

= ( l - x 2 ) ( T , ; ) 2 ( p ' . T n )

2 - ^ ( l - p 2 ) (T n 'p) 2, 

where we have used the permutability of p and Tn and the fact that Tn satisifies (4.6) with m = n. 
Now, 

(p ' -T n )Z = (P-Tny = (Tn-Py = (rn. P) P' 
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hence 

n \ • Tn = (1 - x 2 ) (p>)2 (Jnp)2 - k 2 ( l - p 2 ) (Z • P)2 

= ( ^ - p ) 2 ( ( l - x 2 ) (p ') 2 - k2 (1 - p 2 ) ) 

= (^P) 2 9- (4-7) 

Suppose that q + 0 has degree s(< 2fc - 1), then (4.7) implies that sn = 2(n - l)k + s so 

that s = 2fc > 2k - 1, a contradiction. Thus g is identically zero and p = ±7^. If n is even, 

r„ • (-T f c) = T„ • Tfc = Tfc • T„ * -T f c • T„, hence p = Tfc. If n is odd, Tn • (-Tk) = -Tn • Tk = -Tk • Tn, 
hence p = ±Tk. • 

A sequence of polynomials, each of positive degrees, containing at least one of each positive 

degree and such that every two polynomials are permutable is called a chain. The Chebyshev 

polynomials 7 i (x ) , . . . , Tn(x),..., form a chain. So do the powers 7ij{x) = xJ, j = l,2,..., as is 

easily verified. We shall see that these are essentially the only chains. Suppose that 

A(JC) = ax + b, a±0, (4.8) 

so that 

If p and q commute, it is clear that X • p • X and X • q • X also commute. Thus for any X of the 

form (4.8) the sequences A - 1 • 7) • X, j = 1,2,..., and A - 1 • jtj • X, j = 1,2,..., are also chains, and 

this is the reason the word "essentially" was needed above. We shall say that p and A - 1 • p • A are 

similar, hence our goal is to show that the sequences {7}} and [TTJ] are the only chains, up to 

similarities. A first step in this direction is a companion piece to Theorem 4.10. 

In the next theorem, we show that no polynomials other than pure monomials can commute 
with a given {;rn} if n > 2. 

Theorem 4.11. If n > 2 and the polynomial p of degree k > 1 commutes with nn{x) (= x11) then 

p = nkifnis even and p = +nk if n is odd. 

Proof. The polynomial y = nn{x) satisfies 

xy = ny. (4.9) 

The polynomial q(x) = xp'(x) - kp(x) is in SPk-\, since the coefficient of xk is zero. An argument 

analogous to that given in the proof of Theorem 4.10 yields 

nq-nn = nnnp'(nn) 

= nnnp' • nn 

= XKn • p'Kn 

- knp(7tn) 

- knnn(p) 

- kpKn(p) 
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= xn'n(p) -p' -kpn'n(p) 

= K(P)[XP'(X) - kp(x)] 

= « • p) q-

nq • nn = (n'n • p) q, and if q is of degree s such that 0 < s < k - 1 then sn = k(n - 1) + s implies 
that s = fc > fc - 1, a contradiction; q must therefore be the zero polynomial. Hence y = p 
satisifies (4.9) with n replaced by k, which means thatp(x) = cxk(c + 0). The requirement that 
p commute with nn implies that cxkn = cnxkn, i.e., c n _ 1 = 1. Since c must be real, c = 1 if n is 
even and c = ±1 if n is odd. • 

In this theorem, we aim to show that, a chain contains exactly one polynomial of each positive 
degree and that there cannot be two distinct polynomials of degree k commuting with a quadratic 
function. 

Theorem 4.12. There is at most one polynomial of degree k > 1 permutable with a given quadratic, 
s(x) = ao + a\x + a.2X2, a-i + 0. 

Proof. If we put 
A(x) = — 

a2 2a2 

(4.10) 

A (x) = a2x + 

(s • X) (x) a0 + ai\ — 
\a2 2a2 

= a0 + a\x a l 
a2 2a2 

x 
a2 

2aix a' 
+ — 

2a2 4a2 

We obtain 

(A" 1 • s • X) (x) = a2 a0 + a\x 
a2 

x 
2a2 a2 

2a\x 
2a2 4a2 

2 2 
aoa2 + a\x - — + x - a\x + — + — 

~2 

= X + c 

where c = aoa2 + (fli/2) - (a^/4). Thus to prove the theorem it suffices to show that there 
cannot be two distinct polynomials of degree k commuting with x2 + c, for, if / and g are distinct 
polynomials of degree k commuting with s, there are distinct polynomials of degree k similar to / 
and g via (4.10) that commute with x2 + c. Suppose that p and q are distinct polynomials that 
satisfy 
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p ( ^ + c ) = / W + c , ( 4 n ) 

q (x + c) = q (x) + c, 

then comparing leading coefficients on both sides of each equality reveals that p and q both have 

leading coefficient 1. Thus r = p - q e S^k-i- Also 

r (x 2 + c)= p 2 (x) - g 2(x) = r(x)(p(x) + g(x)). (4.12) 

If the degree of r is t > 0, then according to (4.12) 2£ = t + k or £ = k, a contradiction. Therefore 

r is the zero polynomial and p = q. This contradiction establishes the theorem. • 

An immediate consequence of Theorem 4.12 is that a chain contains exactly one polynomial 

of each positive degree; i.e., a chain is a sequence {pj} ,j = 1,2,... where pj is of degree and 

each pair of polynomials commutes. Two chains are called similar if there exists a X(x) satisfying 

(4.8) such that each polynomial in one is similar via X to the polynomial of the other of the same 

degree. We can now prove our main result that, the sequence {7}} and {KJ} are the only chains, 

up to similarities. 

Theorem 4.13. Every chain is either similar to {x 7} , j = 1,2,..., or {7}} ,j = 1,2,... 

Proof. Let {p^} , j = 1,2,..., be a chain, with p2(x) = arj + a\x + a-ix2. Let {a,-} ,j = 1,2,..., be 

the chain similar to {pj} with X as defined in (4.10). Then q2(x) = x2 + c; q% commutes with q2, 
hence 

q3{x2 + c) =q2(x) + c. (4.13) 

Thus g 3 2 ( -x ) = g3 2(x), and since q3 is of degree 3 we see that q3(-x) = - ^ ( x ) ; i.e., 3̂ is an 

odd polynomial, say, 

q3(x) = b!X + b3x3. (4.14) 

If we substitute (4.14) into (4.13), we obtain 

q3 (x 2 + c) = (pix + b3x3)2 + c 

= b2x2 + 2b1b3x4 + b2x6 + c 

q3 (x 2 + c)=h (x 2 + c)+b3 (x 2 + c) 3 

= bix2 + bic + b3x6 + 3b3cx4 + 3b3c2x2 + b3c3. 

By equating coefficients of like powers, we obtain b3 = 1, b\ = ( |) c 

b\ = 3b3c2 + bi =$ c(c + 2) = 0 

and 

c = bic + b3c3, 2c3 + 3c2-2c = 0=$ c(2 + c)(2c - 1) = 0. 
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Therefore the only possible values of c are -2 and 0. If c = 0, then q2(x) = x2 and, according 
to Theorem 4.11, qj(x) = xj for j = l,2,..., and [pj\ is similar to {xj}. If c = -2 consider the 
chain {/T 1 • qj • p\, where p(x) = 2x, 

/ i _ 1 ( x ) = x /2 

q2-H = (2x)2 - 2 

= 4x2 -2 

pT1 • qi • p = 2x2 - 1. 

Since 

(/T 1 • q2 • p) = T2, 

Theorem 4.10 informs us that 

/ T 1 - qj • p = Tj, j = 1,2,... 

Thus {pj} is similar to {T}} via the linear transformation X • p. • 

The proof of the above theorems is in the literature Chebyshev polynomials From Approximation 
Theory to Algebra and Number Theory by THEODORE J. RIVLIN [24]. 

The pure monomial xn and the Chebyshev polynomials are the only classes of polynomials that 
satisfy the commutative composition (4.5). This commutative property enables us to construct 
public-key cryptosystems based on Chebyshev polynomials. 

Lemma 4.14. Suppose that A(x) = ax + b, a + 0, so that A - 1 (x) = (x-b)/a. IfP and Q commute, 
then A - 1 o P o A and A - 1 o Q o A also commute. 

Proof. PQ = QP and A = ax + b a non - constant polynomial. 
L e t / = A " 1 oPoX and g = A'1 oQo\ => f(x) = A" 1 (^(A(x))) g(x) = A" 1(Q(A(x))) 

fg(x) =f(g(x)) = A- 1 (P(A(A" 1 (Q(A(x)))))) 

9fix) = 9(f(x)) = A- 1 (Q(A(A" 1 (P(A(x)))))) 
Since P and Q commute, then P(A(x)) and Q(A(x)) commute 
Therefore, A _ 1 (P(A(x))) and A _ 1 (Q(A(x))) also commute. Hence / and g commute. • 

4.3 Chebyshev polynomials over the Finite field 
A public key cryptosystem based on Chebyshev polynomials has been proposed by [25] and we will 
be presenting it in this study shortly. The cryptosystem was broken shortly after its implementation. 
The attack was based on the fact that rounding numbers could lead to multiple representations 
of the same number [8]. To avoid such an attack, Chebyshev polynomials were extended from 
the real number fields to finite fields [14]. In this section, we explain why there is a need to 
implement the cryptosystem on a finite field over floating-point numbers. 
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First, chaos-based cryptosystems are defined over real numbers, however, due to the finite 
representation of real numbers in a computer and the finite precision of operations, it makes it 
insecure to implement a secure cryptosystem. Floating-point numbers are approximate and have 
limited precision due to the finite number of bits used to store them. Taking any interval of real 
numbers, for example, [-1,1], and mapping it to a range of floating-point numbers, not all the 
possible values of the floating-point numbers in that range wil l be equally likely to be generated 
or represented. 

Second, due to the finite precision of floating-point arithmetic, there may be multiple represen
tations of the same number. This means that there are multiple combinations of significands and 
exponents that can represent the same number, leading to redundant number representations. 
For example, the numbers 0.1 and 0.10000000000000001 are equivalent, but they have different 
representations in floating-point arithmetic. This redundancy in number representations can lead 
to potential issues in numerical computations, particularly when comparing or rounding numbers 
which in turn affects the commutative property of the Chebyshev polynomials. When comparing 
two floating-point numbers, it is important to take into account the potential for redundant repre
sentations and use appropriate tolerance levels to account for the potential differences between 
equivalent representations. 

Third, it is important to note that Chebyshev polynomials are not invertible in the traditional 
sense, meaning that it is not possible to recover the original message from the encrypted message 
without additional information. This non-invertibility of Chebyshev polynomials, combined 
with their implementation in floating-point arithmetic, can impose a restriction on the length 
of the message that can be encrypted using this technique. Specifically, as the length of the 
message increases, the errors introduced by the floating-point arithmetic can accumulate and 
become significant, potentially leading to decryption errors or security vulnerabilities. In this 
case, messages are broken into small blocks that can be encrypted and decrypted separately to 
ensure that the length of the message does not exceed the maximum length that can be securely 
encrypted using the Chebyshev polynomials-based encryption scheme. 

Lastly, chaotic maps are mathematical systems that are difficult to understand and analyze 
when implemented using floating-point numbers in computers. The lack of analytical tools 
for understanding the periodic structure of the periodic orbits in these implementations is the 
most important reason for this difficulty [14]. Using integers instead of floating-point numbers 
may provide a possible solution to this problem. This is because a link between number theory 
and chaos theory has been exploited to understand the structure of the orbits. An example is 
toral automorphisms, which are a type of chaotic map that can be studied using number theory 
techniques, as evidence for this possibility. 

Limitation of algorithm based on over real number field 

Kocarev and Tasev [25], described public key encryption on Chebyshev polynomials using its 

recursive relations over real numbers. The algorithm is presented as follows [26]: 
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Setup: Alice picks a large integer s and a random number x £ [-1,1]. Her public key is (x, Ts(x)) 
and the secret key is s. 

Encryption: Bob represents the message M £ [-1,1] and pick a large integer r to compute the 
ciphertext (ci ,c 2 ) = (Tr(x),M- Tr(Ts(x))). 
Decryption: Alice recover the plaintext by computing M = C2/Ts(ci). This really decryptes 
ciphertext because Ts(ci) = Tr(Ts(x)) = Ts(Tr(x)). 

The algorithm described above is innovative and claimed to be efficient and secure by the 
author, but in [8] an attack that enables one to recover the corresponding plaintext from a given 
ciphertext is studied. The result is based on the fact that several Chebyshev polynomials pass 
through the same point. 
Description of attack: Given Alice's public key (x,Ts(x)) and the ciphertext (Tr(x),X), an 
adversary can recover M by computing an r' such that Tr>(x) = Tr(x). He then evaluates Tr>s(x) = 
Tr> (Ts(x)) and recovers M by computing M = Y7uj- The attack is always successful because, if r' 

To show that such an r' can be computed, let N be the set of natural numbers and let Z, be the 
set of integers. Let 

such that r' £ P n N. They showed that P contains all possible integers r' such that the 
polynomials Tr>{x) passing through Tr(x) by proving that for each pair (x, T r(x)), the integer r' 
satisfies 7>(x) = Tr(x) if and only if r' £ P n TV. 

Moreover, the above algorithm has a significant flaw that makes it impractical to use. The 
algorithm relies on the semi-group property, which is always true for Chebyshev maps in theory. 
However, there are two important factors to consider. Firstly, Chebyshev maps are defined over real 
numbers and are sensitive to initial conditions. Secondly, computers can only perform approximate 
computations rather than precise ones. Hence equality does not strictly hold. 

Example 4.15 (Chaotic computation [27]). Consider the Chebyshev map with parameters 
r = 68, s = 96 and x = 0.39. Then Tr(x) = -0.513634, Ts(x) = 0.723788, Tr(Ts(x)) = 
0.0528869, Ts(Tr(x)) = 0.0524104, Trs(x) = 0.0523997. Hence , Tr(Ts(x)) ± Trs(x) ± Ts(Tr(x)). 
This contradicts the expected outcome based on the theory on which this algorithm is built. 
Although it is possible to remove this error, it requires a significant amount of time and memory 

is such that Tr>(x) = Tr(x), then: 

Tr.s(x) = Ts.r(x) 

= Ts(Tr(x))=Ts(Tr,(x)) 

= Ts.r>(x) = Tr>.s(x) 

= Tr, (Ts(x)). 

resources. 



4 Chebyshev polynomials 41 

4.4 Extended Chebyshev polynomials 
The semi-group property is very useful to construct a public key cryptosystem based on Chebyshev 
polynomials. We have shown that when x £ [-1,1], not all members can compute the same keys, 
and the explicit expression Tn(x) has a security loophole. To resist this attack on the cryptosystem, 
Kocarev et al extended the definition of Tn(x) to the finite field and improved the public key 
cryptosystem [28]. 

The extended Chebyshev polynomials Tn(x) is defined as a map Tn : {0,1, • • • , N - 1} —> 
{0,1,-•• ,N- 1} with 

T 0(x) = 1 mod N 

Ti (x) = x mod N 

Tn+i(x) = 2xTn(x) - T„_i(x) mod N 

where x £ {0,1,2, • • • , N - 1} and AT is a large prime. 

Mathematical Hard problems on Chebyshev polynomials 

The extended algorithm has its security grounds on the hard discrete algorithm problem. We 
introduce some basic mathematical hard problems which form key points to prove the security of 
this cryptosystem [28]. 

1. Chebyshev discrete logarithm problem: Given the element (x, y), find the integer s , such that 
T s(x) = y. 

2. Chebyshev Diffie-Hellman problem: Given the element (x, T r(x), T s(x)), find Trs(x). 

Both of the above problems are assumed to be computationally unfeasible and can serve as 
assumptions for demonstrating the security of the public key cryptosystem based on Chebyshev 
polynomials. 

Software Implementation 

In this section, we seek to generalize the Chebyshev form of the square and multiply algorithm 
which makes the computation of exponentials in a finite group computationally feasible. This 
procedure will help us to quickly compute values of the Chebyshev polynomials modulo N, for large 
numbers n and N. The Chebyshev polynomials in the recurrence relation is Tn+i = 2xT n(x) - Tn-\, 
which can be rewritten as a matrix equation as : 

0 1 Tn-1 = A Tn-l 
= 

Tn-1 = A Tn-l 

Tn+1 -1 2x Tn 

(4.15) 

where 
[ 0 1 

A = 
-1 2x 
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From Tn = 2xTn-i(x) - T„_2 we get the matrix equation: 

Tn-1 0 1 Tn-2 = A Tn-2 Tn-1 
= 

Tn-2 = A Tn-2 

-1 2x Tn-1 Tn-1 
(4.16) 

Combining the matrix equations (4.16) and (4.15) yields 

Tn = A2 Tn--2 

Tn+i Tn--1 

We continue to rewrite the vector on the right side until they are in terms of T0 and T\. Following 

from the above, it can be deduced that 

Tn = An To 

Tn+i Ti 
(4.17) 

where 

TQ(X) = 1 and 7i(x) = x. 

To calculate for T„(x) mod N we need to find An (matrix exponentiation) which can be done 

effectively by the square and multiply algorithm. 

Properties of extended Chebyshev polynomials 

We established the fact that up to a linear transformation, the pure monomial xn and the Chebyshev 

polynomials are the only classes of polynomials that satisfy the commutative composition (4.5). 

The extended Chebyshev polynomials can replace the monomial xn in RSA and ElGaml algorithm 

if it satisfies the commutative property and we can find the period of their orbits. 

Property 4.16 (Semi-group property). The extended Chebyshev map satisfies the semi-group 
property: 

TR (Ts(x) mod N) mod N = Trs(x) mod N. (4.18) 

Proof. By congruence relation Tq(x) = cosh(p cosh - 1 (x)) mod N for x > 1 

Tp(x) = 2xTp_i(x) - Tp-2(x) with T 0(x) = 1 and 7i(x) = x. 

TP(Tq(x)(modN))(modN) = 2(Tq(x) mod JV)T p_!(T g(x) mod N) - TP-2(Tq(x) mod N). 

(4.19) 

Substitute Tq(x) = cosh(gcosh - 1(x)) mod N into equation (4.19) and the using the identity 

cosh - 1 (cosh x) = x, then the right-hand side of the equation becomes: 

= 2(cosh(g cosh - 1 (x)))Tp_i(cosh(gcosh - 1 (x))) - Tp_ 2(cosh(gcosh - 1(x))) 

= 2(cosh(gcosh - 1(x))) • cosh((p - 1) cosh - 1 (cosh(g cosh - 1 (x)))) mod N 
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- cosh((p - 2) cosh 1(cosh(gcosh 1(x)))) mod N 

= 2(cosh(gcosh - 1(x))) • cosh(g(p - 1) cosh - 1 (x)) mod N - cosh(g(p - 2) cosh - 1 (x)) mod N 

but 2cosh(a) cosh(/?) = cosh(a + /?) + cosh(a - /?) and cosh(a) = cosh(-a), where 

a = q cosh - 1 (x) and /? = q(p - 1) cosh - 1 (x) 

= cosh(gcosh - 1 (x)[l + p - 1]) mod N + cosh(gcosh - 1 (x)[l - p + 1]) mod N 

- cosh(g(p - 2) cosh _ 1(x)) mod N 

= cosh(pg cosh - 1 (x)) mod N + cosh(g(2 - p) cosh - 1 (x)) mod N - cosh(g(p - 2) cosh - 1 (x)) mod N 

= cosh(pgcosh - 1(x)) mod N 

= Tpq(x) mod N. 

• 

Example 4.17 ([27]). Let x = 13, N = 41, r = 4, s = 5, by computation T 4(13) = 38, T 5(13) = 
29,T 2 0(13) = 40 and T 5(38) = 40,T 4(29) = 40. It can be observed that, T 4(T 5(13)) = 
T 5 (T 4 (13) )=T 2 0 (13) . 

Property 4.18 (Periodicity of extended Chebyshev map). The extended Chebyshev map does not 
have chaotic properties, instead, it is periodic. This is due to the fact that we changed the domain 
from real numbers to a finite field. The periodicity of the extended Chebyshev map refers to the 
property that the values of the function repeat themselves after a certain period of time TX. The 
polynomial T„(x) is periodic with period r = TX if for x we have 

Tn+kT(x) = T„(x) (4.20) 

where k = {1,2,3, . . .}. Thus, the smallest positive value of r for which equation (4.20) holds is 
called the period of the map T„(x) mod N. 

Example 4.19. Let N = 7. When x = 2, the sequence T„(2) mod 7 for n = 0 ,1,2, . . . is : 

1, 2, 0, 5, 6, 5, 0, 2,1, 2, 0, 5, 6, 5, 0, 2 , . . . . 

Indeed for x = 2, we have: 

TQ(x) = 1 T1(x) = 2 T 2(x) = 0 T 3(x) = 5 T 4(x) = 6 

T 5(x) = 5 T 6(x) = 0 T 7(x) = 2 T 8(x) = 1 

The periodicity of the sequence T„(2) is 8. Below is the sequence T„(x) for each x = 0,1,2, . . . , 6: 
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Table 4.1: Periods of the sequence {T„(x) (mod 7)} 

X Sequence Period 

0 1,0,6,0,1,0,6,0,.. . 4 

1 1,1,1,1, • • • 1 

2 1, 2, 0, 5, 6, 5, 0, 2,1, 2, 0, 5, 6, 5, 0, 2, . . 8 

3 1,3,3,1,3,3,.. . , 3 

4 1,4,3,6,3,4,1,4,3,6,3,4,.. . 6 

5 1, 5, 0, 2, 6, 2, 0, 5,1, 5, 0, 2, 6, 2, 0, 5,.. 8 

6 1,6,1,6,1,6,... 2 

Example 4.20. For N = 11, x = 0,1,2, . . . , 10, n = 0,1,2,. . . . 

Table 4.2: Periods of the sequence {T„(x) (mod 11)} 

X Sequence Period 

0 1,0,10,0,1,0,10,0,1,0,10,0,... 4 

1 1,1,1,1,1,1,1,1,1,1,1,1,. . . 1 

2 1,2,7,4,9,10,9,4,7,2,1,2,.. . 10 

3 1,3,6,0,5,8,10,8,5,0,6,3,.. . 12 

4 1,4,9,2,7,10,7,2,9,4,1,4,... 10 

5 1,5,5,1,5,5,1,5,5,1,5,5,.. . 3 

6 1,6,5,10,5,6,1,6,5,10,5,6,... 6 

7 1,7,9,9,7,1,7,9,9,7,1,7,.. . 5 

8 1,8,6,0,5,3,10,3,5,0,6,8,... 12 

9 1,9,7,7,9,1,9,7,7,9,1,9,.. . 5 

10 1,10,1,10,1,10,1,10,1,10,1,10,.. 2 

The period of the sequence {T„(x) (mod AT)} is at most N + 1 for any given input argument 
x = 0,1,2, . . . , N - 1. Generally, the periodicity satisfies the theorem below. 

Theorem 4.21. Let N be an odd prime and x e Z such that 0 < x < N. Let r be the period of the 
sequence T„(x) mod N for n = 0 ,1,2, . . . then r is a divisor ofN2 - 1. 
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0 1 
-1 2x 

, with X = qi, qi as the Proof. We will prove the theorem by showing that if we let M 

roots of the characteristic polynomial X2 - 2xX + 1, then : 

(i) r|AT - 1 if the roots are in GF(AT), otherwise 
(ii) r | N + 1 if the roots are in G F ( N 2 ) . 

From the generalized Chebyshev form of the square and multiply algorithm for software im
plementation, it is shown that we can compute Tn(x) (mod N) by computing the nth power of 
the recurrence relation matrix M, which is a 2 - automorphism, with characteristics polynomial 
f(X) = X2 - 2xX + 1. The matrix is non-singular with a determinant of 1. The identity matrix 
is the Oth power of the matrix M, hence if r is the period of the matrix M then r is the smallest 
positive integer such that the rth power of the matrix is the identity matrix. One way of computing 
matrix exponentiation is by finding its Jordan normal form which is either a diagonal matrix with 
distinct eigenvalues on the diagonals or an upper triangular matrix with repeated eigenvalues on 
the diagonal. These eigenvalues form the roots of the characteristics polynomials [29]. 

If the characteristic polynomial has repeated roots, then the discriminant is zero. Hence 

4x 2 - 4 = 0 (mod N) 

x2 -1 = 0 (mod N) 

x = ±1 (mod AT). 

If x = 1 , then T n + 1 (x ) = 2T„(x) - T n _i(x), T0 = 1, 7i = 1, T 2(x) = 1 and T 3(x) = 1. 
Hence the sequence is 1,1,1,1,... with a period 1. 
If x = -1 , then T„ + 1 (x) = -2T„(x) - T n _i(x), T0 = 1, hence 

7i(jc) = - l (mod N) = N -1 

T 2(x) = -2(N- 1) - 1 (mod N) = 1 - 2N (mod N) = 1 

T 3(x) = -2(1) - (N- 1) (mod N) = -1 - N (mod N) = N - 1. 

Hence the sequence is 1, N - 1,1, N - 1,... with a period 2 which divides N - 1 because from 
the theorem N is odd so N - 1 is even. 

If the characteristic polynomial has distinct roots in GF(N), we will apply Fermat's little theorem 

A ( JV - i ) _ j ( m o c i jy) f o r a n y non-zero a, in the matrix equation M^N~^ = 1 (mod N) where 1 
is the identity matrix. From the matrix equation, the (N - l ) th power of the matrix in the Jordan 
normal form gives the identity matrix, hence the sequence has period N - 1. From the Lagrange 
theorem for order of a subgroup, if we can find a smaller exponent r < N - 1 such that the rth 
power of matrix M in Jordan normal form gives the identity matrix then r divides N - 1. 

It is also possible that the roots exist only in a quadratic extension of GF(N). It may not 
be possible to find a complete set of eigenvalues in GF(N), however, if we extend the field to a 
larger field such as complex numbers, then we can guarantee the existence of a complete set of 
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eigenvectors. This implies that in the quadratic extension field, we extend GF(N) by adding a 
square root of a non-square element. We can now find a complete set of eigenvectors for our 
matrix and use them to diagonalize the matrix. However, all arithmetic needs to be done in the 
quadratic extension field. We then raise the matrix in the Jordan normal form to the power N , 
which is known as the Nth power map, and it is an automorphism in the quadratic extension 
field. This is a consequence of Fermat's Little Theorem, which states that for any prime N and 
any element a in the field, aN = a mod N . In other words, raising an element in the field to the 
power N yields the same result as raising it to the first power. Now, suppose we have a matrix M 
in Jordan normal form with diagonal entries a and p. Since a and p are elements in GF(AT2), we 
can raise them to the power N using the Nth power map. It follows that: 

ap = a (mod p), 

pp = p (mod p). 

Therefore, the matrix MN, which is the diagonal matrix with entries aN and pN, is obtained 
by applying the Nth power map to the diagonal entries of M. Since the Nth power map is an 
automorphism of the quadratic extension field, the resulting matrix MN is still in the Jordan 
canonical form. The quadratic extension field has only one conjugate automorphism, which maps 
the square root of the non-square element to its negative. Therefore, applying this automorphism 
to the diagonal entries of M wil l swap the two roots of the characteristic polynomial, but leave 
the matrix otherwise unchanged. Hence, there is a positional swap of the roots of the quadratic 
polynomial on the diagonal, as we have conjugate automorphism in a quadratic extension field. We 
then find (N+l)s t power by multiplying the original Jordan normal form to the matrix M to power 
N . The ( N + l)st power multiplies two pairs of conjugate roots, and from our characteristics 
polynomial the product of the conjugate roots is the coefficient of A 0 , which is 1. Hence the 
( N + l)st power is the identity matrix and the period is at most N + 1 . From the Lagrange theorem 
for order of a subgroup, if we can find a smaller exponent r < N + 1 such that the rth power of 
matrix M in Jordan normal form gives the identity matrix then r divides N + 1. • 

For maximum security, N should be a prime number such that 2 N + 1 is also prime and x 
should be chosen such that the period is large. 
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5 Cryptosystem on Extended Chebyshev polynomials 
From section 4 we have shown that the extended Chebyshev polynomials can replace the monomial 
xn because it satisfies the semi-group property and the periodicity property. In this section, we will 
construct an ElGamal-like and RSA-like algorithm based on the extended Chebyshev polynomials. 
We wil l present the Diffie-Hellman key agreement algorithm using the extended Chebyshev 
polynomials, the ElGamal-like and RSA-like public key encryption, we wil l also show why the 
Decryption algorithm works in RSA-like and ElGamal-like, and then prove that the security of the 
ElGamal-like algorithm is still based on the discrete logarithm problem. 

5.1 The Chebyshev polynomials ElGamal-like Algorithm 
ElGamal public key cryptosystem consists of an algorithm for key generation and an algorithm 
for encryption. Its security is based on the intractability of the discrete logarithm and Diffie -
Hellman problem [16, 20, 17]. The basic ElGamal and generalized ElGamal encryption schemes 
are described in section 2 and in [16, 20, 17]. In this section, the ElGamal encryption scheme is 
generalized for Chebyshev polynomials. 

ElGamal-like (based on Chebyshev polynomials) key generation 

In the key generation mode, the scheme can be viewed as a Diffie-Hellman key agreement. In the 
key generation Alice and Bob should do the following: 

1. Alice generates a positive integers x and a large random prime N such that x < N. 
2. Alice generates a secret integer s such that 0 < s < N. 
3. Alice computes A = Ts(x) mod N. 
4. Alice's public key is (x, N, A), and private key is s. 
5. Bob generates a secret integer degree r such that 0 < r < N. 
6. Bob computes B = Tr(x) mod N. 
7. Bob sends B to Alice. 
8. Alice computes the secret key k = TS(B) mod N. 
9. Bob computes the secret key k = Tr(A) mod N. 

The common secret key is k as both Alice and Bod have computed Trs(x) mod N. 

Example 5.1 ([29]). Below is a simple example of the Diffie-Hellman key exchange algorithm 
based on the extended Chebyshev polynomials in which m = 2 and n = 3 are chosen hence we need 
to evaluate the polynomials T 2(x) = 2 x 2 - l , T 3(x) = 4 x 3 - 3 x , and T 6(x) = 3 2 x 6 - 4 8 x 4 + 1 8 x 2 - l . 

1. Alice generates N = 89 and x = 7. 
2. Alice generates s = 2. 
3. Alice computes A = T2(7) = 2 (72) - 1 mod 89 = 97 mod 89 = 8. 
4. Alice sends N = 89, x = 7, and A = 8 to Bob. 
5. Bob generates r = 3. 
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6. Bob computes B = T3(7) = 4 (73) - 3(7) mod 89 = 1351 mod 89 = 16. 
7. Bob sends B = 16 to Alice. 
8. Alice computes k = T2(16) = 2 (162) - 1 mod 89 = 511 mod 89 = 66. 
9. Bob computes k = T 3(8) = 4 (83) - 3(8) mod 89 = 2024 mod 89 = 66. 

Both Alice and Bob have generated the same secret key k = 66, which is also T(,(7) mod 89 = 
3650401 mod 89 = 66. 

EIGamal-like (based on Chebyshev polynomials) public-key encryption 

Public key encryption consists of encryption and decryption algorithms. Bob obtains Alice's public 
key components, represents the message as an integer, and encrypts the message. He sends the 
ciphertext to Alice. Alice then uses her private key to decrypt the ciphertext to obtain the original 
message. To encrypt the message m, Bob should do the following: 

1. Obtains Alice's authentic public key (x, N,A). 
2. Represent the message as an integer m mod N. 
3. Generates a random integer r < N , computes B = Tr(x) mod N and X = mTr(A) mod N 
4. Sends the cipher-text c = (B,X) to Alice. 

For Alice to decrypt the cipher-text c to recover the message m, she should do the following: 

1. Use her private key s to compute C = TS(B) mod N. 
2. Recover m by computing m = X C - 1 mod N. 

The decryption process in the ElGamal public key algorithm works because of the properties of 
modular arithmetic and from the semi-group property (4.4). It follows from the fact that 

TS(B) = Ts(Tr(x)) = Tr(Ts(x)) = Tr(A). 

Computing C, is possible because of the properties of modular arithmetic. Specifically, The 
correctness of the decryption process relies on the fact that C is equal to Ts(Tr(x)) mod N, which 
can be computed efficiently. This is essentially the same as computing the shared secret in the 
Diffie-Hellman key exchange protocol. Computing m, works because of the properties of the 
modular inverse. Since Tn(x) is a self-mapping, it has a modular inverse C - 1 in the same group. 
This means that we can compute m by multiplying X with the inverse of C, and then taking the 
result modulo N. In the next section, we wil l discuss the correctness of the ElGamal algorithm 
which relies on the difficulty of computing discrete logarithms in the field. Without knowledge of 
the private key s, an attacker cannot compute C or recover the plaintext m from the ciphertext 
(B,X). 

5.2 The Chebyshev polynomials RSA-like Algorithm 

The RSA-like cryptosystem security is built on the difficulty of factoring big integers . The RSA-like 

algorithm involves the use of two large prime numbers, p and q, to generate public and private 
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keys for encrypting and decrypting data. In general, the encryption is more secure the bigger 

the key size. The most well-known algorithms for factoring huge numbers require exponential 

time, so the longer it takes to decrypt data, the bigger the key size. However, if the prime 

variables p and q are discovered, RSA's security may be jeopardized. In this section, we wil l 

discuss the critical components of the RSA-like algorithm. The RSA-like public key cryptosystem 

consists of an algorithm for key generation and an algorithm for encryption. We replace Euler's 

<p(N) = (p-l)(q- 1) by Y ( N ) = (p2 - l)(q2 - 1), according to theorem 4.21. 

RSA-like (based on Chebyshev polynomials) key generation 

For the RSA-like key generation process, Alice should do the following: 

1. Generate two distinct prime numbers p and q, each roughly the same size. 

2. Compute N = pq and Y ( N ) = (p2 - l)(q2 - 1). 

3. Select a random integer e, 1 < e < Y(iV) such that gcd(e, Y(iV)) = 1. 

4. Compute the unique integer d, 1 < d < Y(AT) such that ed = 1 mod Y(AT). 

5. Alice's public key is (AT, e) and private key is d. 

RSA-like (based on Chebyshev polynomials) public-key encryption 

The RSA public key encryption consists of encryption and decryption algorithms. Bob obtains 

Alice's public key components, represents the message as an integer, and encrypts the message. 

He sends the ciphertext to Alice. Alice then uses her private key to decrypt the ciphertext to obtain 

the original message. To encrypt the message m, Bob should do the following: 

1. Obtains Alice's authentic public key (AT, e). 
2. Represent the message as an integer m mod N. 

3. Computes c = Te(m) mod N . 

4. Sends the ciphertext c to Alice. 

For Alice to decrypt the ciphertext c to recover the message m, she should use her private key d to 

compute m = Td(c) mod N. The decryption recovers the original message m because if p is an 

odd prime number and 0 < x < p, then the period of the sequence Tn(x) mod p, n = 0,1,2, . . . is 

a divisor of p2 - 1. We now show that if a ciphertext can be decrypted modulo each of the primes 

p and q then the message can be recovered modulo N by the Chinese remainder theorem. Since 

ed = 1 mod Y(AT), there exist an integer k such that ed = 1 + A:Y(AT). Hence for modulo p, 

Since the period is a divisor of p2 - 1 and k(q2 - 1) 6 Z then from the definition of period of a 

sequence 

Td(c) = Td(Te(m)) = Ted(m) = T 1 + f c T ( J V ) (m) = T l + ^ . ^ ^ O ) . 

i)(q2-i)(m) = Ti(m) = m mod p. 
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From the same argument for modulo q, 

Td(c) = Td(Te(m)) = Ted(m) = T1+ky(N)(m) = T1+kipz_1)^_1)(m) = Ti(m) = m mod q. 

From the two equations, we have two systems of congruence equations 

Ti(m) = m modp 

Ti(m) = m modq 

m = Ti(m) modp, 

m = Ti(m) modg. 

Finally, since p and q are distinct primes, it follows from the Chinese remainder theorem that 

there exists one solution 

Td(c) = Td(Te(m)) = Ted(m) = T1+ky(N)(m) = Ti(m) = m mod N. 

5.3 Security of cryptosystem based on Chebyshev polynomials 

In this section, we will show that an attacker will not compromise the security of the cryptosystems 

RSA-like and ElGamal-like algorithms based on the extended Chebyshev. We wil l show that for 

ElGamal-like public key algorithm if an attacker knows N, x, A, B but not the secret degrees 

sand r, the ElGamal-like algorithm can be broken by solving A = Ts (X) (mod N) which is a hard 

Chebyshev discrete logarithm problem. 

Theorem 5.2. Let x and y be integers such that x > 1 and N a prime. Ify = Tn(x) mod N, then 

n = \ogx+^IZ-1y + ^y 2-l. 

Proof. If x > 1 the Chebyshev polynomials can be defined as the unique polynomial satisfying 

Tn{x) = cosh(ncosh _ 1 (x)) 

then, y = cosh(ncosh _ 1 (x)) and cosh (t) = e < +

2

e *. This implies that, 

2y = encosh~l { x ) + e - n c o s h _ 1 M (5.1) 

but cosh" 1 (x) = In (x + V x 2 - 1) for x > 1. 

Let 
z = ^ o s h " 1 (x) = e l n ( x + V ^ T ) = (x + V x 2 _ iy 

Now we substitute z into equation (5.1) and solve for zn 

zn + z~n = 2y 

z2n + l= 2yzn 

z2n - 2yzn + 1 = 0 . 
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Finding the roots of the quadratic equation in terms of z11 yields 

„ = 2y + V 4 y 2 - 4  
Z 2 

z» = y + fi^l. 

From the logarithm definition 

n = logz(y + ̂ ]y2 - 1) 

n = \ogx+^ZI(y + ^jy2-l). 

• 
If the two square roots V x 2 - 1 and ^jy2 - 1 can be found in the field GF(N), then the discrete 

logarithm problem is a standard one. Otherwise, if at least one square root cannot be found, then 
a quadratic extension field GF(N2) is used, leading to a more generalized version of the discrete 
logarithm problem. Hence the modified ElGamal algorithm is secure. 

In the RSA-like algorithm, if an attacker knows only the public key (N, e) such that N = pq 
and gcd(e, (p2 - V){q2 - 1)) = 1, the plaintext m can be recovered from the corresponding c by 
finding an integer m such that Te(m) = c(modAT). This problem is a hard Chebyshev RSA-like 
problem and can be reduced to a factor problem. Let's assume we have an algorithm 31 which 
can factorize N = pq then we can compute W(N) = (p2 - l)(q2 - 1). From e and W(N) we 
can compute d = e - 1 mod W(N) since gcd(e, Y(AT)) = 1. Once d is obtained, the attacker can 
decrypt any ciphertext c intended for Alice. Hence solving the factoring problem implies solving 
the hard Chebyshev RSA-like problem. The security of the RSA-like algorithm is therefore based 
on the intractability of the integer factorization problem, similar to what happens with classical 
RSA. 
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6 Conclusion 
In this study, we discuss two public key encryption schemes based on Chebyshev polynomials, 
which are a type of polynomials that behave like the pure monomial xn which satisfies the semi
group property. We showed that the RSA and ElGamal algorithms are secure and practical for 
encryption. We also extended the Chebyshev polynomials over a finite field and demonstrated 
that the new ElGamal-like and RSA-like algorithms are as secure as the original ElGamal and RSA 
algorithms. Therefore, in this study, we conclude that Chebyshev polynomials can be used for 
secure communication over an insecure network. 
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