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Abstract
This dissertation aims to propose methods for optimising the ob-
ject detector in an image running on an FPGA. These detectors
use boosted soft cascades of classifiers with local image feature like
weak classifiers. The proposed detectors use sequential evaluation
of weak classifiers. More positions in the image are evaluated in
parallel to increase the detection performance. Also, a new ap-
proach for multiscale object detection is proposed; its advantage
is no need for external memory. The new detectors were experi-
mentally verified on the tasks of detecting faces and license plates.
The results outperform the current state-of-the-art, allow to create
object detectors with higher detection performance, better power
to resources ratio and better detection accuracy.

Abstrakt
Cílem této disertační práce je představit navržené metody opti-
malizace detektoru objektů v obraze běžících na FPGA. Tyto de-
tektory využívají boostovatelné soft kaskády klasifikátorů spolu s
lokálními obrazovými příznaky, které slouží jako slabé klasifiká-
tory. Navržené postupy využívají sekvenční vyhodnocení slabých
klasifikátoru. Pro zvýšení výkonu detekce je vyhodnocováno současně
více pozic v obraze. Je navržen nový přístup pro detekci ob-
jektů různé velikosti nevyžadující externí paměť. Vytvořené de-
tektory byly experimentálně ověřeny na úlohách detekce obličejů
a poznávacích značek automobilů. Dosažená výsledky překoná-
vají současný stav poznání, umožňují vytvořit detektory objektů
s vyšším detekčním výkonem, lepším poměrem výkonu a spotře-
bovaných zdrojů FPGA a s lepší přesností detekce.
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Chapter 1

Introduction

Nowadays, we encounter an increasing number of cameras and
surveillance systems. We can see cameras at toll gates, security
cameras in buildings or police surveillance systems. The amount
of information that these devices produce is enormous, and it is
not in human power to process and interpret it all. The only op-
tion is to use computing power to analyse the huge number of
videos and frame sequences. Modern computer vision algorithms
have passed the point, where it is reasonable to start implement-
ing them widely. Algorithms for object detection and recognition,
for example of human faces, pedestrians, cars, or traffic signs al-
ready outperform human. In general, one of the disadvantages of
advanced vision algorithms is high computational complexity. For
this reason, it is necessary to use powerful computer systems with
high energy consumption and cost. Also, it would be convenient
to process most data locally without the need for remote servers,
so-called edge computing.

One solution can be the hardware acceleration of computer vi-
sion algorithms on FPGA or ASIC chips. The aim is to create
low-cost, low-power devices for real-time video processing. The
deployment of algorithms to FPGA and ASIC circuits is specific
and differs greatly from deployment to conventional computing
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systems. Usually, a direct implementation of computer vision algo-
rithms without their modification is inefficient, slow and resource-
intensive. The acceleration of computer vision algorithms in hard-
ware has long been the goal of many scientific works. This topic is
attractive due to its potential practical application, and a combi-
nation of different research fields: image processing and hardware
acceleration.

This thesis presents my contributions to the state-of-the-art
in the topic of visual object detection in FPGA. Specifically, the
work is focused on fast and powerful object detectors with low
demands on resources. Such detectors could be applied mainly in
transport, industry or security.

My contribution is in proposing methods for optimizing object
detection on FPGAs. The main focus is on detectors using boosted
soft cascades of classifiers with local image features as weak classi-
fiers. Sequential evaluation of weak classifiers has been upgraded
with parallelization by evaluation of several independent image
positions simultaneously. Also, a new approach for multi-scale
object detection has been proposed; its advantage is no need for
external memory. Using these methods to create effective detec-
tor verifies the hypothesis: that it is possible to design an object
detector based on soft cascade deployed in programmable hard-
ware with resulting precision comparable to the state-of-the-art,
with real-time performance, with lower power consumption and
less computing resource demands comparing to existing ones.
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Chapter 2

Goals and Contributions

This thesis focuses on object detection in images on hardware plat-
forms. The scope of the work is to shift the scientific knowledge
and apply it into the practice.

Presumed usage of object detectors developed here is indus-
trial, transport or security applications, i.e. in tasks such as the
detection of faces, pedestrians, products, licence plates. Practi-
cal deployment of such object detectors needs to meet specific
requirements. The resolution of the processed image is an impor-
tant parameter. This resolution depends a) on the resolution of
the input image, b) on the expected size ranges of the searched
objects and c) on the size of the detection window. Thus, the
expected object size ranges significantly affect the required per-
formance of the detector. Traffic and security applications require
approximately 10 to 20 frames per second for suitable object track-
ing. Industrial applications often require even higher processing
speeds. High-speed detectors also allow for processing image data
in the camera without storing them on a fast external memory;
the absence of external memory further reduces the price of the
resulting device.

A typical requirement is that the detectors should achieve the
best accuracy possible. In general, object detectors often balance
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a speed-precision trade-off. Detection of visually diverse, rotated,
or distorted objects will either be less accurate or will require a
complex system with a large number of computational resources.
For example, in the task of licence plates detection in toll gates,
where the approximate size and rotation is known, excellent ac-
curacy can be expected. However, a similar task, licence plates
detection for parking control in residential zones, is more chal-
lenging due to unconstrained conditions (variable position, scale,
rotation, etc.), and therefore lower accuracy can be expected.

The technical goal is to create a powerful universal object de-
tector for FPGA hardware with good accuracy and low resource
consumption. Such detector should process at least FullHD video
at 15 frames per second and should detect small and large objects
with limited variability. The detector should achieve accuracy (re-
call with precision 0.70) of at least 95% for face detection and 99%
for LP detection. Important parameters for the low price of the
device are low power consumption and a small number of FPGA
resources used. The detectors are expected to be utilised in smart
cameras. Such smart camera should perform the maximum num-
ber of operations directly in-site and send out only the results for
further processing. Thanks to this, it would be possible to reduce
the data flow from the camera as expected by edge computing.

2.1 Technical implications

At the beginning of my research work, there were already sev-
eral successful attempts to create an object detector in hardware
[1, 2, 3, 4, 5, 6, 7, 8]. A detailed overview of the individual solu-
tions was given in the previous chapter. In summary, the results
show that the practical use of these detectors is limited. In order
to increase the performance and accuracy of detectors and the res-
olution of the processed image, it is necessary to improve current
detection methods in hardware, modify detection algorithms and
apply hardware-specific features.
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Choice of classifier algorithm

Hardware detectors based on boosted classifiers have the most ad-
vantages for the applications mentioned above. The specifically
targeted ad-hoc detectors have an excellent power-to-resource ra-
tio in some applications. However, the ad-hoc detectors are not
universal, the accuracy of detection is low, and they do not cope
with changing conditions. Creating a detector for a new object
class means a lot of work and an uncertain result. The SVM
based detectors have good performance and relatively low resource
consumption. However, they provide low detection accuracy not
applicable in modern applications.

CNN based detectors provide the best accuracy and excel at
complex detection task. Due to a large number of operations,
they have high demands on logic and memory resources and have
relatively low performance. Besides, the CNN optimisations for
FPGAs means a loss of accuracy down to the level of a modern
boosted classifier. Considered tasks such as face/pedestrian de-
tection and licence plate detection have only a small number of
object classes with a relatively consistent appearance, for which
CNN seems unnecessarily complex. In conclusion, the modern
boosted classifiers provide sufficient accuracy and speed trade-off
considering these tasks with high-throughput and resource-limited
scenarios.

Individual modifications of boosted classifiers, such as soft-
cascade or Waldboost [9, 10, 11], only differ in the training process.
The evaluation step does not vary much; the only difference is
that soft-cascades and Waldboost allow rejecting after each weak
classifier and the original Viola-Jones algorithm [9] allows rejecting
after each stage (a set of several weak classifiers). The planned
detector should evaluate all modifications of boosted classifiers.
The best way to reach high detection accuracy and performance
is training the boosted classifiers with Waldboost algorithm [11]
and with augmentation, as suggested by Bar et al. [12].
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Two approaches for implementation of boosted classifier based
detector were developed — fully pipelined monolithic detector [7,
13] and sequential detector [8, 6, 4]. Fully pipelined detectors
assess all features for one detection window position in parallel
per one clock cycle. In general, the fully pipelined detectors are
high-throughput and easy to implement. However, they have high
demands on FPGA resources and usually evaluate only a limited
number of weak classifiers, which leads to lower accuracy. Sequen-
tial detectors assess the features gradually. The parallelisation
of sequential detectors is possible by processing multiple features
or multiple positions at the same moment. They require fewer
resources and allow for better accuracy, but they are more chal-
lenging to control. I have focused on sequential detectors because
they meet the required parameters better and offer space for fur-
ther development.

Choice of weak classifiers

Many authors [2, 3, 1, 4, 5, 6] use Haar-like features as weak classi-
fiers. High bit depth for storing integral image and complex logic
to access feature values make them resource demanding. There-
fore, it isn’t easy to increase the performance of such detectors.
Other works [8, 7, 13] apply LBP or their modifications (LRD,
LRP) as weak classifiers. Their advantage is in loading only sur-
rounding pixels (block reading) for effective calculation. LBP-like
features are mainly used in combination with fully pipelined detec-
tors [7, 13]. Zemčík and Žádník [8] verified the sequential approach
by developing a suitable object detector. Their detector used LRD
features with a size of 3x3 and subsampling of the original image
in the ratios 1x1, 1x2, 2x1 and 2x2. For direct evaluation of the
feature, it may require loading blocks of up to 6x6 pixels. It seems
unnecessary to read data from the sliding windows (usually created
as a register array with FIFO line buffers), and a better option is to
read it directly from the addressable memory composed of BRAM.
An optimal structure of this BRAM memory allows data reading
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without the use of a complicated multiplexer network. Zemčík and
Žádník reduced the logic resources required for reading such large
blocks by precalculating the subsampled versions of the image into
memory. Reading only 3x3 blocks already precalculated in mem-
ory becomes sufficient for feature evaluation. The disadvantages
are increased memory requirements and the need for storing dif-
ferently sized subsampled versions of the original image. This has
led to a complicated memory structure and high logic and memory
resources demands.

Hereby proposed detectors are inspired by the detector intro-
duced by Zemcik and Zadnik [8]. The main difference is that local
image features of different sizes are not calculated from precalcu-
lated values, but directly from the original image. It saves memory
resources, but on the other hand, it means reading blocks of differ-
ent sizes (3x3, 3x6, 6x3 and 6x6 pixels), which is more complicated
compared to the original constant size of 3x3. For simplicity, a 6x6
block (the worst case) can always be read and then subsampled
as needed. A well-designed memory structure allows reading of
unaligned 6x6 blocks at the same time, thus reducing logic and
memory requirements.

Multiscale-detection

Designing an effective multi-scale detection on FPGA is an un-
resolved issue. Many related works do not address multi-scale
detection at all [14, 2, 8, 13]. Several works [1, 3] suggest storing
the entire image in BRAM memory, but this is not always feasi-
ble, especially at higher resolutions. Other works solve multi-scale
detection by multiple image loading from external memory [5, 6].
Kyrkou et al. [4] reduced the number of loading from external
memory by using more classifiers with different window sizes.

We have proposed a more efficient method of multi-scale detec-
tion. It does not require multiple image readings and uses signifi-
cantly less memory than needed when storing entire images. The
core is that the single scale detection requires only a narrow strip
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of the image memory, with the minimum height as the detection
window. The same principle can be used for smaller versions of
the image in multi-scale detection. Furthermore, it enables gener-
ating these smaller versions from the previous ones with fixed scale
unit on-the-fly. The proposed method allows detecting objects of
different sizes directly from the data coming from the sensor; the
resulting system may not contain external memory at all, which
would reduce the cost of the device. This approach can be further
combined with the use of multiple classifiers with different window
sizes. However, the memory requirements for storing multiple clas-
sifiers using LBP/LRD features are often greater than the mem-
ory consumption when storing stripes of image. But the benefit
always depends on the resolution of the input image, the height of
detection window and the number of down-scaled versions.

Detector optimization

Parallel processing is one way to increase the performance of the
detector on FPGA. Many authors [1, 14, 4] use parallel computa-
tion of more features in one position. Since the average number
of evaluated features in one position is very small, it does not al-
low a high level of parallelization. When using the sliding window
approach, it is necessary to evaluate all weak features and only
then it is possible to move to the next one. In pipeline processing,
premature rejection often results in a penalty meaning a specula-
tive evaluation of other features or insertion of blank operations.
Brousseau and Rose [6] suggested a method of evaluating features
in neighbouring positions. The number of evaluated classifiers in
specific positions is variable, which causes problematic divergence
of the calculation. Besides, this approach combined with sliding
windows leads to an increase of multiplexing network complexity,
and thus an increase in logical resources. The detector introduced
by Zemčík and Žádník [8], which is the basis for the proposed
detectors, did not use any parallel processing.
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We have proposed an approach for evaluating multiple posi-
tions in the pipeline simultaneously. This is possible by reading
the data directly from BRAM memory, where the data for eval-
uating all positions of the entire line are accessed. It enables us
to evaluate a bigger number of independent positions at the same
time at various stages of evaluation. After evaluating the required
features in one position, there is no need to wait for the evaluation
of the surrounding positions; it is possible to move to the next po-
sition in the same line. This eliminates the issue with divergence
and allows the creation of a longer pipeline without penalizing
after the early rejection. The extension of the pipeline has a pos-
itive effect on the increase of the maximum circuit frequency and
consequently, the rise of the detector performance.

We also suggest using more detectors connected in a cascade to
increase performance. Each of these detectors performs detection
in a different part of the image and at a different scale version.
The optimal distribution can be precalculated so that the number
of positions evaluated by each detector is approximately the same.
This modification allows the detector’s performance to be scaled
very well for the needs of a specific application.

2.2 Goal of the thesis

The primary goal of this thesis is to improve the state-of-the-art in
the field of object detection in the image on hardware platforms.
The hypothesis is: It is possible to design an object detector based
on soft cascade deployed in programmable hardware with resulting
precision comparable to the state-of-the-art, with real-time perfor-
mance, with lower power consumption and less computing resource
demands comparing to existing ones.

The method of proof is creating a hardware detector that meets
the required parameters and thus exceeds the state-of-the-art.
Completing this task will require developing new methods and
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performing many experiments. In order to investigate of task the
detector design, I have chosen to pursue the following methods:

∙ using local image features (LBP/LRD) and soft cascade clas-
sifiers in sequential engine with efficient block reading of im-
age values for weak classifier evaluation,

∙ creating a multi-scale on-the-fly detector for high-resolution
image data processing (without the need for external mem-
ory),

∙ using parallelization of weak classifier calculations by pro-
cessing multiple positions at the same time, both at the level
of sequential engine and cascade connection of multiple de-
tectors.

The above proposed methods are being examined with the aim
to confirm the presented hypothesis. The experiments will be per-
formed in the detection of faces, pedestrians and license plates.
Comparisons with other authors will be made on the face detec-
tion task, which is usually presented on other papers. For a fair
comparison of performance due to different resolutions, detection
window size, detection stride, multi-scaling, etc. a conversion to
the number of processed detection windows per clock cycle will be
used.

2.3 Core contributions

This thesis contributes to the state-of-the-art in the field of ob-
ject detection in the image on hardware platforms. Three pa-
pers validating the hypothesis were published. They represent the
experimental proof and demonstrate that it is possible to create
the detector with defined parameters. The papers show that the
proposed hardware detector outperformed the state-of-the-art in
several aspects:
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∙ better detection performance among boosted classifier – multi-
scale face detection on Full HD (1920×1080 pixels) video at
60 fps (for object size 21 pixels and more) versus 640×480
at 30 fps by Hiromoto et al. [3],

∙ better detection performance in processed detection windows
per clock cycle among all hardware detectors – up to 2.33
versus only processing detector with 1.97 by Jin [7] of full
detector with 0.95 by Zemčík and Žádník [8],

∙ better performance/resources ratio – in all resources: LUT,
REG and BRAM; the graphical comparison is in paper [15],

∙ better accuracy in face detection on CMU dataset [9] – recall
97 % with 0.2 false positives per image (FPPI) versus recall
91 % with 0.2 FPPI presented by Hiromoto et al. [3] and
Kyrkou et al. [4],

∙ comparable accuracy in licence plate detection – aligned li-
cence plates recall 99 % with 0.2 FPPI and unconstrained
recall 98 % with 0.2 FPPI on own dataset

The contributions that implement experimental proof of thesis
were presented in the following papers:

∙ High performance FPGA object detector: Hardware proto-
type, FPL1 2013. Paper with introduce an architecture of
an engine for high-performance multi-scale detection of ob-
jects in videos based on WaldBoost training algorithm. The
key properties of the architecture include the processing of
streamed data and low resource consumption. The engine is
implemented in FPGA and that it can process 640×480pixel
video streams at over 160 fps without the need of external
memory.

1International Conference on Field Programmable Logic and Applications
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∙ Cascaded Stripe Memory Engines for Multi-Scale Object De-
tection in FPGA, TCSVT2 2019. Evolution of the previous
paper witch expands performance and usability. FPGA de-
tector can process a stream of image data so that it stores
a narrow stripe of the input image and its scaled versions
and uses a detector unit which is efficiently pipelined across
multiple image positions within the memory. We show how
to process images with up to 4K resolution at high fram-
erates using cascades engine. As a detector algorithm use
boosted soft cascade with simple image features that require
only pixel comparisons and look-up tables; therefore, they
are well suitable for hardware implementation.

∙ Unconstrained License Plate Detection in FPGA, submit-
ted to VEHITS3. This paper shows the practical use of the
previous detector in traffic application on the task of de-
tecting unconstrained License Plate. To detect and localize
license plates is use multiple sliding window detectors based
on simple image features, each tuned to a certain range of
projections. On a large dataset is detection rate 98%.

Results presented in these papers proof the hypothesis of this
thesis.

2.4 Other publications
I am a co-author of some other publications dealing with other
areas of image processing. I focused mainly on the effective im-
plementation of the algorithm on the FPGA and the modification
of the algorithm for stream image processing on the fly, ie with-
out the use of external memory. List of my other publications in
chronological order:

2IEEE Transactions on Circuits and Systems for Video Technology
3International Conference on Vehicle Technology and Intelligent Transport

Systems
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∙ Single-Loop Approach to 2-D Wavelet Lifting with JPEG
2000 Compatibility, SBAC-PADW4 2015 [16]. In this paper
is presented a novel approach to 2-D single-loop wavelet lift-
ing with can be efficiently pipelined in hardware. A newly
developed 2-D core of CDF 5/3 wavelet filter is presented
that, using a new sequence of operations, simplify the de-
sign. Moreover, the proposed approach, that uses one pass
for 2-D transform, directly produces final output and re-
duces significantly the need for storing intermediate results
into memory.

∙ High Dynamic Range Video Concepts, Technologies and Ap-
plications, Real-Time HDR Video Processing and Compres-
sion Using an FPGA, 2016 [17]. The chapter in the book
deals with hardware acceleration of HDR video acquisition
and compression. Individual HDR images are obtained by
composing several differently exposed images obtained with
a standard camera. Description of HDR compression and its
implementation on FPGA.

∙ True HDR camera with bilateral filter based tone mapping,
SCCG5 2017 [18]. In paper is presented a real-time HDR
processing system evaluated on a custom hardware camera
platform. They are proposal modifications of the the State-
of-the-arts algorithms enabling efficient implementation on
FPGA platform and real-time performance. The main focus
of the paper is on acceleration of Durand local tone-mapping
operator involving real-time bilateral filter. The proposed
solution is compared to the existing research results in terms
of speed, resource consumption, and numerical accuracy.

The publications presented above do not directly contribute
to the scientific goal and hypothesis validation of the dissertation.

4International Symposium on Computer Architecture and High Perfor-
mance Computing Workshop

5Spring Conference on Computer Graphics
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However, technologically they add to the options of using object
detection in images. In some applications, for example, in bad light
conditions such as sharp backlight, it is advantageous to combine
object detection with HDR image processing to improve accuracy.
In addition, the platforms created in these publications were used
for experimental work with object detection.
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Chapter 3

Multi-Scale Object
Detection in FPGA

Object detection in embedded systems is an important task that
many applications of computer vision and scene analysis benefit
from. Industrial quality control systems address various markers,
traffic monitoring uses detection of cars and license plates, biomet-
ric systems detect faces and facial features, driver assistance sys-
tems detect cars and pedestrians. The detection is especially im-
portant in applications that directly rely on it, such as recognition
or tracking, and in these applications, the speed, accuracy, power
consumption, and/or robustness of detection matters most. In this
work, we address object detection implemented in embedded hard-
ware. We focus on boosted detectors which analyze sub-windows
of an input image by a classifier composed from weak classifiers
based on simple image features such as Haar [19] or Local Binary
Patterns (LBP) [20]. Multi-scale detection is solved by scaling and
processing of the input image in multiple resolutions – image pyra-
mid. Embedded object detectors are often implemented directly in
software using libraries such as OpenCV [21]. While this approach
is easy and straightforward, it often is quite slow as detection is
computationally demanding task and embedded processors tend
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to be simpler and slower than desktop CPUs. Another approach
is to implement a custom detection algorithm exploiting various
acceleration resources of the target platform – CPU [22], GPU [23]
or Field Programmable Gate Array (FPGA) [1, 20, 24, 25, 5, 4, 13]
units. This is advantageous in many areas where the deployment
of standard PC-based or embedded software solution is not pos-
sible, e.g. because of resource consumption, physical dimensions,
industrial or military conditions, etc.

The object detection in embedded devices typically belongs
to one of the three detection method categories. 1/ AdaBoost-
based detectors – cascades of boosted classifiers [19] or soft cas-
cades [26]. They typically use Haar image features [1, 2, 5, 4], or
LBP [20]. 2/ Support Vector Machines (SVM) with Histograms
of Oriented Gradient features (HOG) [27, 24, 28, 29, 25]; and 3/
Other methods implementing detection with background subtrac-
tion [30], keypoints [31], neural networks [32], or custom detection
algorithms [33]. Most works, including thin one, belong to the
first category, we give the detailed review of them in Section 3.2.

In this work, is proposed a simple and easy to use building
block for FPGA that solves the object detection using state of the
art boosted soft cascade classifier. We focused on implementation
of the detection algorithm in the FPGA that efficiently utilizes the
hardware resources and provides high performance. To produce
classifiers for our hardware we used an existing, previously pub-
lished algorithm [11]. The solution is multi-scale so it can detect
objects of wide range of sizes.

It is suitable for various industrial applications, such as license
plate detection, face detection, etc. The classifiers we use are espe-
cially suitable for hardware implementation since they are based
only on pixel comparisons, look-up tables and integer-only calcu-
lations. Our architecture is extensively configurable, and it offers
high image throughput even with high resolution inputs. In our
main applications, which are detection of faces and license plates,
we use processing of HD images (1280×720 pixels), but we also
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Figure 3.1: Comparison of Haar Cascade detector model (top) and
Soft Cascade (bottom) that we use in our architecture. The main
difference is that Soft Cascade does not contain stages and accu-
mulates the response throughout the classifier. Another difference
is that in Soft Cascade case the evaluation of the response can be
terminated after every weak classifier.

present a configurations for processing images with resolutions up
to 4K (UHD, 3840×2160 pixels). IP Core for face detection and
other resources are available online. Our contributions are specif-
ically:

∙ Advanced memory architecture for image representation in
block RAM (BRAM) which allows for simple and fast data
random access suitable for fast feature extraction.

∙ Cascading of detector blocks which allows for increasing the
input image resolution and the total performance.

∙ Multi-scale object detection directly in FPGA enabled by
cascading od SMEs, without using external components

∙ Re-usable detector block that can be easily incorporated into
other architectures using standard interfaces.

∙ Efficient streaming and pipelining and advanced control that
fully utilizes the engine resources.
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3.1 Detector model
Let us first describe a framework for object detection that sliding
window-based methods have in common [19, 27, 11, 34]. We as-
sume the input image I to be a grayscale raster and a classifier
𝐻(x) a function that accepts or rejects the image patch x and
returns a confidence estimation.

Detection on a single image

The detection function 𝐷(I, 𝐻, 𝑎) classifies every fixed-size patch
of the input image I by the classifier 𝐻. A patch is defined by
its location (𝑚,𝑛). Its size (𝑢, 𝑣) is fixed, defined during classifier
training stage. We use x = I(𝑚,𝑛, 𝑢, 𝑣) for patch extraction from
the location (𝑚,𝑛). The detection function (3.1) returns the set
of locations accepted by the classifier and scaled by factor 𝑎, and
the classification confidence.

𝐷(I, 𝐻, 𝑎) ∈ {([𝑚,𝑛, 𝑢, 𝑣] · 𝑎,𝐻(x))} (3.1)

Multi-scale detection

The detection process is illustrated in Figure 3.2. From the input
image I, a pyramidal structure ℐ (see Equation (3.2)) with 𝑘 scaled
versions is created, such that I𝑗 is I𝑗−1 downscaled by factor 𝑆 < 1.
In our architecture, we use 𝑆 = 5

6 , which results approximately in
a pyramidal representation with 4 scales per octave.

ℐ = {I0, I1, . . . I𝑘−1} (3.2)

The scale of 𝑗-th image in ℐ can be retrieved as 𝑠𝑗 = 𝑆𝑗 ; therefore,
I0 corresponds to the original image. The result of the detection on
ℐ, see Equation (3.3), is simply union of the results on individual
images.

𝐷(ℐ, 𝐻, 𝑆) =
⋃︁
𝑗

𝐷(I𝑗 , 𝐻, 𝑆𝑗) (3.3)
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I0 I𝑘−1I𝑘ℐ
𝐷(ℐ) = 𝐷(I0, 𝑠0) ∪ . . . 𝐷(I𝑘, 𝑠𝑘)

𝐷(I0, 𝑠0)

x
𝑢× 𝑣

Figure 3.2: (top) The detection process on pyramidal image rep-
resentation ℐ. The detection window of size u×v (yellow), is used
for classification of every position 𝑚,𝑛 in image (example in red).
The result of detection on each image is a set of locations 𝐷(I, 𝑠)
accepted by the classifier (green). (bottom) The final detection
result after non-maxima suppression.

The set 𝐷(ℐ, 𝐻, 𝑆) is then processed by a non-maxima suppression
(NMS) algorithm to suppress nearby detections and produce the
final results for the image. We use a simple, overlap-based, NMS
algorithm [34] which finds clusters of overlapping detections and
keeps only the strongest detection from each cluster. However,
other algorithms, such as mean-shift [27], could be used as well.
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The main work in the detection process is done by the classi-
fier 𝐻 which scores the individual image windows. The classifier
cascade introduced by Viola [19] (or sometimes called Haar cas-
cade), is a widely used model, see Figure 3.1. The classifier cascade
analyzes the input image patch x by a sequence of progressively
more complex stages composed from weak classifiers based on sim-
ple image features. After evaluating of a stage, the image patch
can be either rejected (classified as background) or passed to the
subsequent stage. The soft cascade, shown in Figure 3.1, is not
explicitly divided into stages and the rejection decision is made
after evaluating each weak classifier. In this work we use the soft
cascade model based on Local Binary Patterns (LBP) or Local
Rank Differences (LRD) features and we describe this model in
detail in Section 3.4.

3.2 Related work

Current cutting edge object detection algorithms are based on
deep learning and convolutional neural networks (CNN). Gener-
ally, they achieve high detection accuracy in comparison to lin-
ear classifiers (such as Adaboost or SVM) [41, 42]. On the other
hand, the computation of convolutional layers is very demanding;
the number of operations required for evaluation is several orders
of magnitude higher compared to linear classifiers. Furthermore,
the neural networks usually require large amount of intermediate
results, increasing memory requirements during inference. An-
other issue is the number of network parameters which can easily
reach many milions. Furthermore, the memory requirements of
CNN-based detectors are prohibitive for FPGA implementation.
Current state-of-the-art FPGA architectures is that why can pro-
cess only small images [43] and they are very slow [44],or they
must use clusters of very large and expensive FPGAs[45]. For
these reasons, linear classifiers are still favorable for implementa-
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tion in FPGAs and embedded devices in general especially when
processing of large images is required.

Table 3.1 summarizes important works in the field of embed-
ded object detection from last ten years. Here we analyze the
approaches the authors used.

Lai et al. [14] proposed a parallel hardware architecture based
on Haar cascades. They achieved a detection speed up to 143
frames per second (FPS) at VGA resolution. Due to high de-
mands on FPGA resources they limited the cascade to only first
three stages (52 features), which led to low detection accuracy.
Their implementation is therefore suitable as a preprocessing unit
rather than full object detector. Cho et al. [1] implemented a
Haar cascade-based face detection algorithm. They implemented
various versions with one or three parallel classifiers to accelerate
the processing speed. The disadvantage is high memory demand
to perform multiscale detection on a pyramid of integral images.

Huang and Vahid [5] developed a method to generate a Haar
feature-based object detectors. They aimed at automatic genera-
tion of detectors with a required precision for FPGAs of various
sizes. This approach allowed to reduce resource requirements of
integral image memory and hardware complexity against univer-
sal implementation of detector. Brousseau and Rose [6] improved
Haar cascade-based detector in FPGA by preloading of neighbor-
ing pixels, allowing parallel evaluation of classifiers in adjacent
scanning windows. They also proposed a very complex evaluation
control mechanism, allowing to rearrange execution of classifiers
to coalesce the memory accesses.

Zemcik et al. [20], proposed an approach based on WaldBoost
detection algorithm with LBP or LRD features. This approach
implements stripe memory with block readout and image scaling
but it is limited by fixed performace and by small image resolution,
if the multi-scale detection is required.

Several authors proposed detection engines based on massive
parallel execution of large number of features, increasing overall
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performance at the expense of the resource consumption. Jin et
al. [7] proposed a design of fully pipelined classifier for high-speed
face detection with LBP cascades. The features in each stage are
executed in parallel. Kadlcek and Fucik [13] proposed an auto-
matic classifier synthesis for the FPGA. Their method generates a
fast image preprocessing unit with LBP features, processing com-
plete detection window per clock cycle. High expense of FPGA re-
sources allows for implementation of only limited number of weak
classifiers.

Most of the works implement AdaBoost Cascade of classifiers
with Haar features for face detection [1, 14, 5]. But, for example
Kyrkou [24] detected traffic signs and cars. Some authors solve
pedestrian detection with SVM[35, 37, 36, 39].

3.3 Design choices

In this section, we analyze significant works from the point of
efficient hardware implementation and we summarize the outlines
for the design of our architecture.

When it comes to hardware implementation, Haar features are
not a good choice for several reasons. Haar feature is evaluated as
a convolution of image and a mask. Each feature in the detector
can cover a different and potentially large number of pixels, which
means many memory accesses. Without using an integral image,
this cannot be implemented to run in constant time, which is an
important feature for pipelining in hardware. Using of integral im-
age increases memory requirements as each pixel requires higher
bit depth [1, 14, 5, 24]. When using integral image, each feature
can be evaluated by referencing from 6 to 9 pixels, depending on
the shape of the feature [1]. Reading these values from BRAM,
unfortunately, means non-uniform memory access which cannot
be executed in a single clock cycle; therefore, most of the works
implement the sliding window as a register array with FIFO line
buffers stored in BRAM. This allows for parallel access of pix-
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els in the window and evaluation of multiple features in parallel.
However, this also leads into a huge multiplexer network (20×20
search window requires 400:1 multiplexer [1, 14]), that occupies
many resources in FPGA. The resource consumption increases
dramatically with the size of the detection window and thus such
architectures are constrained to use only small and fixed window
sizes to save resources. Huang [5] solves this drawback by limiting
feature positions and simplifying the multiplexers.

Zemcik [20] substitutes Haar features with LBP which replaces
shift registers and delay lines by a set of BRAM memory blocks
with organization that allowed for the multiplexing to be replaced
by a simple block addressing technique. This approach has another
advantage in pipelining of feature evaluation. It allows simultane-
ous processing of multiple image windows in the stream and thus
full utilization of the pipeline, which is not possible with stan-
dard scanning window approach [5, 2]. In general, the hardware
detectors based on LBP features[7, 13, 28] achieves higher perfor-
mance than Haar feature based detectors which is summarized in
section 3.6.

Multi-scale detection is, in most cases, solved by storing the
input image in RAM and scaling by an algorithm or circuitry in-
dependent on the detection unit [5]. Downscaled images are then
passed to the detector from RAM one after another. Brouss [6]
uses resolution so small that the image fits BRAMs in the FPGA.
Kyrkou [24] combines image downscaling to half resolution and
upscaling the detector window. Scaled version of the image is
stored in BRAM. Granat et al. [2] scales the image features in
the classifier and addresses the integral image at its original scale.
Zemcik [20] scales image on the fly and stores only a narrow image
stripe in BRAM. Some works [25, 13, 37] do not solve multi-scale
detection and detects objects of a fixed size; therefore, their ar-
chitectures are more simple and exhibits apparently higher perfor-
mance.
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As a basic building block in our architecture, we use an im-
proved architecture by Zemcik et al. [20]. Specifically we improved
the performance of pipelining, image scaling algorithm, the bit
depth of the image and we extended it with cascading capabilites,
described below. Our architecture differs from the others in several
aspects. We use soft cascade instead of cascade of classifiers(see
in Section 3.1). Soft cascade is usually more efficient in terms of
the number of extracted features [34]. We use features that do not
need integral image and that can be evaluated directly from the
input image – LBP and LRD [46].

In our approach, the sliding window is not stored in FPGA
registers. Instead, Stripe Memory Engine (SME) is used to store a
narrow stripe of the input image in BRAM, see in 3.5. The stripe
must be higher than the of classifier window (we use classifiers
with height up to 24 pixels and stripe height is 32 pixels). In the
classifier window, we limit geometric size of the features to 6×6
pixels which allows uniform reading of a fixed size pixel blocks from
SME in one clock cycle. Juranek et al.[47] shows that limitation
of feature block size does not have adverse effects on detector
accuracy. Image is represented on 8 bits per pixel which saves
resources compared to integral image where even 20 and more
bits per pixel need to be used [24, 14]. The detector size is limited
only by the height of the detection window but not by the width,
which can be of virtually any size. We also do not use RAM to
store the input image; instead, the image is scanned as it comes
from the source and its scaled versions are generated on the fly (see
in 3.5). Many image scales are stored in the same SME. The stripe
memory, due to its organization, allows the evaluation of multiple
scanning windows simultaneously and enables efficient pipelining
and scheduling of the detector evaluation process. Moreover, dual-
port BRAM allows us to implement two pipelines and therefore
up to two features can be extracted in a clock cycle.

Another contribution of this work is that our detection engine
can be cascaded in order to increase the performance and the im-

27



age resolution using Stripe Memory Cascades (see in 3.5). It is
basically a chain of SMEs where one SME sends the image data
to the subsequent one. The number of instances is only limited by
available resources. In practical setup, one instance can hold few
high-resolution image scales and the other the rest low-resolution
scales; therefore, the maximum image resolution is bigger com-
pared to one instance solution. Moreover, both instances run in
parallel and thersefore the performance is also increased. The
number of instances in the cascade is limited only by available
resources.

All of these differences – detector based on simple image fea-
tures, image representation in SME, cascading and efficient pipelin-
ing – contribute to low resource requirements and overall perfor-
mance of the proposed architecture.

3.4 Classifier model
The main part of the detection is the evaluation of the classifier
𝐻(x) on image patches. It consists of the feature extraction and
the classifier response accumulation, which we describe in the fol-
lowing text.

Feature extraction

Given an image patch x, a feature extraction is a function 𝑦 =
𝑓(x, 𝜋), 𝑦 ∈ N which extracts a value from x based on the param-
eters 𝜋. As a feature extraction function, we use Local Binary
Patterns (LBP) with

𝜋 = (𝑥, 𝑦, 𝑤, ℎ)

or Local Rank Differences (LRD) [46] with

𝜋 = (𝑥, 𝑦, 𝑤, ℎ, 𝑎, 𝑏)

where 𝑥,𝑦,𝑤,ℎ define the feature position and the size in the patch
x and 𝑎,𝑏 are indices of two distinct cells in the LRD case.
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The feature response 𝑓(x, 𝜋) is evaluated from values of 3×3
cells whose positions and sizes are defined by the parameters 𝜋.
The cell values c = 𝐶(x, 𝑥, 𝑦, 𝑤, ℎ) are obtained as a sum of pixel
values in the respective cell. The two feature types we use, LBP
and LRD, differ in how the values c are processed.

Local Binary Patterns (LBP)

In general, LBP is based on comparison of pixels from a circular
neighborhood to the central pixel and generating binary code [48],
forming the feature output. Extended versions attempt to reduce
the number of possible output values by rotating the resulting bit
pattern or by restriction of the number of 0-1 and 1-0 transitions
in the code [49].

In this work, we use a simplistic variant of LBP which takes
3×3 cell values and generate 8 bit code form comparison of the
central cell to the border cells. Mathematically, the calculation
can be written as Equation (3.4) where > operator compares all
values of a vector to a scalar value, resulting in binary vector.
Weights w correspond to powers of two

𝑤 = [1, 2, 4, 8, 0, 16, 32, 64, 128],

so the dot product effectively sets the bits in the result. The zero
weight, w5, corresponds to the central cell c5 which is used as
a basis for the comparison. The range of the resulting values of
lbp(c) is [0; 255].

lbp(c) = (c > c5)w
⊤ (3.4)

Equation (3.5) shows how the feature value is calculated, given an
image patch x and parameters 𝜋.

𝑓(x, 𝜋) = lbp(𝐶(x, 𝑥, 𝑦, 𝑤, ℎ)) (3.5)

Local Rank Differences (LRD)

Features based on local ranks proved to be successful in object
detection tasks [46]. LRD uses scheme similar to LBP – processing
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of 9 values in 3×3 cells. It calculates the ranks of two distinct
cells and outputs their difference. Mathematically, the function
can be described as Equation (3.6), where 𝑎 and 𝑏 are indices of
two distinct cells. The resulting value of the lrd(c, 𝑎, 𝑏) values is
in [−8; +8] range.

lrd(c, 𝑎, 𝑏) =
∑︁

c > c𝑎 −
∑︁

c > c𝑏 (3.6)

Equation (3.7) shows how the feature value is calculated, given an
image patch x and parameters 𝜋.

𝑓(x, 𝜋) = lrd(𝐶(x, 𝑥, 𝑦, 𝑤, ℎ), 𝑎, 𝑏) (3.7)

The classifier

A classifier 𝐻 is represented as a sequence of 𝑇 weak classification
functions

ℎ𝑖 = (𝜋𝑖, 𝜃𝑖,a𝑖), 𝑖 ∈ 1, 2, . . . 𝑇 (3.8)

where 𝜋 are parameters for feature extraction, 𝜃 rejection thresh-
old, and a look-up tables with response values. Given an image
patch x, the response of the classifier of length 𝑡, Equation (3.9),
is a sum of predictions produced by the individual weak classifiers.

𝐻𝑡(x) =
𝑡∑︁

𝑖=1

a𝑖(𝑓𝑖(x, 𝜋𝑖)) (3.9)

The sample x can be rejected (classified as background) after eval-
uating 𝑘 < 𝑇 weak classifiers when 𝐻𝑘(x) < 𝜃𝑘. And it is classi-
fied as detected object only if all 𝑇 weak classifiers were evaluated.
𝐻𝑇 (x) is then used as classification confidence. The evaluation is
summarized in Algorithm 1.

The number of features evaluated on a sample is, therefore, not
fixed as each image patch can be rejected by different number of
weak classifiers. The number of weak classifiers varies depending
on the image patch content. We can statistically evaluate the
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Algorithm 1 Evaluation of classifier 𝐻 on the sample x.
1: procedure 𝐻(x)
2: ℎ = 0
3: for 𝑡← 1, 𝑇 do
4: (𝑥, 𝑦, 𝑤, ℎ, 𝑎, 𝑏) = 𝜋𝑡 ◁ Decode parameters
5: c = 𝐶(x, 𝑥, 𝑦, 𝑤, ℎ) ◁ Extract cells
6: 𝑔 = lrd(c, 𝑎, 𝑏) ◁ Or 𝑔 = lbp(c)
7: 𝐻 = 𝐻 + a𝑡(𝑔) ◁ Accum. the confidence
8: if 𝐻 < 𝜃𝑡 then
9: return (′𝑟𝑒𝑗𝑒𝑐𝑡′, 0) ◁ Reject x

10: return (′𝑎𝑐𝑐𝑒𝑝𝑡′, 𝐻) ◁ Accept x

average number of weak classifiers required for classification of
a patch – 𝑡. The value can be viewed as computational effort
required for classifier evaluation. It can be calculated on a dataset
using (3.10) by counting the number of evaluated weak classifiers
𝑊 and classified image patches 𝑃 .

𝑡 =
𝑊

𝑃
(3.10)

The value largely depends on the task and training data. Usual
values values are 2 < 𝑡 < 5 [47]. Lower values means faster detec-
tors. For illustration purposes, later in this paper, we use 𝑡 = 2.5
which is a realistic value e.g. for face detection [47]. The value is
especially important since it directly influences the performance
of the proposed architecture, see Section 3.5.

In practise, the classifier of length 𝑇 with LBP features is rep-
resented by three matrices F, A and T, where 𝐹 is 4× 𝑇 matrix
with feature extraction parameters 𝜋𝑡 = (𝑥, 𝑦, 𝑤, ℎ), A is 256× 𝑇
matrix with lookup tables a𝑡, and T is 1 × 𝑇 matrix with rejec-
tion thresholds 𝜃𝑡 for each weak classifier. The 𝑡-th column of the
matrices correspond to parameters ℎ𝑡. Note that in the case of
LRD features, the size of F is 6 × 𝑇 and the size of A is 17 × 𝑇 ,
since LRD has six parameters 𝜋𝑡 = (𝑥, 𝑦, 𝑤, ℎ, 𝑎, 𝑏) and 17 output
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values for indexing. In Section 3.5 we use matrix F as a part mi-
cro program of the detection engine A and T are stored as lookup
tables.

Classifier training

Detectors in this work are trained by WaldBoost algorithm [11].
But other algorithm producing a sequence of feature parameters
and associates them with the corresponding response values can
be used as well, e.g. [26]. The detailed description of the training
algorithm is out of the scope of this paper since we focus mainly
on the hardware implementation of the detection process. We
kindly refer reader to the original paper [11]. Here we only provide
informal description of the algorithm for reader to understand how
it works.

The input of the algorithm is a pool of feature parameters, tar-
get false negative rate 𝛼, and a large set of training instances. E.g.,
when training a face detector, the training instances are image
patches representing faces. The parameter 𝛼 represents tradeoff
between the final detector speed and its accuracy. Higher values
of 𝛼 (e.g. 𝛼 = 0.2) produces fast detectors with low value of 𝑡,
since they can reject background samples more rapidly. Low val-
ues (e.g. 𝛼 = 0.01) produces slower detectors with higher 𝑡. We
analyze this tradeoff in Section 3.6 on the task of face detection.

The training algorithm works in rounds, training weak classi-
fiers one by one in s greedy manner. On the beginning of a round
𝑡, the algorithm loads background samples from a large set of im-
ages (not containing the target patterns) using the already trained
classifier (i.e. weak classifiers from ℎ1 to ℎ𝑡−1). For each feature
in the pool, weak learner trains confidence values in lookup ta-
bles using AdaBoost [50]. In this step, the values are quantized
to the resolution required by the FPGA. This is better than ex-
post quantization (after the classifier is trained) since it allows
training algorithm to adapt on errors caused by the computation
with reduced precision [20, 8]. Then, the weak classifier minimiz-

32



ing exponential loss function [50, 19] is selected as ℎ𝑡. Based on
the distribution of 𝐻𝑡, for target and background samples, 𝜃𝑡 is
selected so that as much as possible background samples may be
rejected while discarding as few as possible target samples for the
next round and satisfying target false negative rate 𝛼.

For the detector training in this work, we use our custom train-
ing software which produces detectors suitable for hardware, tak-
ing into account all possible quantization effects of the input image
and values in lookup tables.

3.5 The architecture

We propose a hardware architecture that implements the key steps
of sliding window object detection – image scaling, feature extrac-
tion, and classification of image patches. In the following text, we
describe the design of the detector and its interface, and compare
it to the equivalent software implementation in order to validate it.
Figure 3.5 shows the overall schematic description of the detector.

Stripe Memory

The key part of our architecture is a Stripe Memory Engine (SME)
which stores the active part of the input image and its scaled
variants in multiple BRAMs, see Figure 3.5 for an illustration.
When a new line is read from the image source, the data in SME
are updated and scaled on the fly. The number of scales stored in
SME is limited by the total width of SME raster, which is 4 096
pixels in this paper.

The architecture of SME is optimized for reading a block of
pixels in a single clock cycle, so all data required for feature ex-
traction are available in constant time. The data access is done
in two stages. First, a fixed-size block aligned to certain position
is retrieved from BRAMs to registers. Then, from this intermedi-
ate block, a sub-block with any size and alignment is retrieved by
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Figure 3.3: An example of SME in 2×3 organization and 6px
blocks (𝑈 = 2, 𝑉 = 3 and 𝐵 = 6) stored in 6 BRAMS (color
coded). Aligned block 𝐴 of size 12×3 pixels can be retrieved from
the memory in one clock cycle.

RANKDSP 1x2

DSP 2x1

DSP 2x2
RANK

Sub
3x3

6x6
pixels

LBP
Rank a

Rank b

w,h a b type

feature

LRD

Figure 3.4: Circuit for feature extraction. The input is 6×6 pixel
block from which, depending on feature parameters 𝑤, ℎ, 3×3 cells
are extracted. The resulting cells are used to calculate LRD or
LBP features.

simple addressing. We store the image stripe in multiple BRAMs
organized in a way that each BRAM is referenced only once when
reading an aligned, fixed size block of pixels. BRAMs create a
pattern of size U×V, and each BRAM stores B pixel block. This
is illustrated in Figure 3.3 for U=2, V=3 and B=6. This requires
𝑈 · 𝑉 BRAMs to store the image stripe. Such an organization
allows for reading 𝐵 · 𝑈 × 𝑉 pixel blocks (aligned to 𝐵 pixels
horizontally) in a single clock cycle by referencing all BRAMs.

Although SME can be configured almost arbitrarily, it is lim-
ited by the size of BRAM in the target platform. For practical
applications, we use 4096×32 pixel raster, 𝑈 = 4, 𝑉 = 8, 𝐵 = 4
and pixels represented on up to 9 bits. On our target FPGA, the
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Figure 3.5: (Top) Block diagram of detector. The SME unit,
which stores the image and produces downscaled images and two
detection pipelines, driven by microcode program. (Bottom) Il-
lustration of the stripe memory that we use for image represen-
tation and source of data for detector evaluation is shown, too.
Incoming line (blue) is stored as a last line in the buffer. When
possible, 6×6 blocks on the bottom of the buffer are scaled and
stored as 5×5 blocks in subsequent scales. See the text and Figure
3.3 for details on how the data are stored in FPGA BRAMs.

SME takes 32 BRAMs with 36 kbit capacity. This organization
allows us to retrieve 16×8 pixel blocks aligned to 4 pixel position.
The, for feature extraction, we take 6×6 pixel sub-block or 8×8
sub-block for image scaling.

Feature extraction unit

The detection engine implements LBP and LRD image features.
The size of the feature cells is limited to 𝑤 ≤ 2, ℎ ≤ 2, and thus
the feature area is limited to a maximum 6×6 pixels. The position
𝑥, 𝑦 is not limited in any way.

The block diagram of feature extractor is shown in Figure 3.4.
The input is the 6×6 pixel block read from SME according to the
absolute feature position in image (taking into account position
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of analyzed window). DSP blocks extracts all possible variants
of c from the SME. One of the variants is selected for evaluation
according to the feature parameters 𝑤, ℎ from 𝜋. The ranks of
elements 𝑎 and 𝑏 are calculated as the number of positive compar-
isons of an element c𝑎 (resp. c𝑏) to all other elements in c. The
ranks are subtracted to obtain the LRD feature value. Evaluation
of an LBP feature is similar – parallel comparison of the central
element c1,1 to the elements at the boundary. The response of
a weak classifier is obtained from the look-up table a associated
with the extracted feature.

It should be noted that the circuit is designed to extract both
LRD and LBP features simultaneously; however, in case that
only one feature type is used, the circuitry for the other type is
optimized-out during synthesis.

Detector control

The detector implements Algorithm 1. For every position (𝑚,𝑛)
in SME image a sequence of instructions is executed. Each in-
struction reads the 6×6 pixel block from SME, extracts 3×3 cells
c, evaluates the feature function and accumulates the response
value read from table A. Then, the window is rejected or passed
to the next stage based on the threshold value from T. Every-
thing is driven by the parameters from the instruction code. In
case of rejection, new position is scheduled for evaluation. When
all the instructions are finished, the window coordinates and the
confidence value are sent to output.

The detector itself is controlled by a programmable automaton
driven by a 32-bit instruction set. An instruction encode param-
eters for feature extraction – particularly the feature parameters
from matrix F and sequence number identifier 𝑡 for addressing ma-
trices A and T. We use 8 bits to encode each coordinate of feature
position (𝑥, 𝑦), 2 bits for (𝑤, ℎ), and 4 bits for each from (𝑎, 𝑏).
Note, that values 𝑎 and 𝑏 are present in the instruction code even
for LBP-based detectors where they are unused. In the matrix
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A, we store the response values on 9 bits and the thresholds in T
table on 18 bits.

The detector microcode contains a sequence of up to 1 024 in-
structions; it means the length of the classifier is 𝑇 ≤ 1024. The
number of instructions can be decreased or even increased, having
linear impact on the memory requirements. Current implemen-
tation requires 1 BRAM for storing instructions, 1 BRAM for
thresholds and 5 BRAMs for A and T in LRD case (64 BRAMs
in LBP case) 2 BRAMs are occupied by instructions for static
execution scheduler (see 3.5).

The evaluation of the classifier is pipelined. The pipeline is 14
clock cycles long and thus up to 14 positions are evaluated simul-
taneously. Thanks to the memory architecture described above,
the pipeline can be utilized to 100 % which is impossible to achieve
by previous scanning window approaches [5, 2]. We use two-port
BRAM in SME, so we use two pipelines to double the perfor-
mance. However, a small portion of memory accesses from the
second pipeline needs to be reserved for image scaling and for
storing the incoming image lines and the down-scaled data back
to the SME – we leave one out of every 4 clock cycles for the scal-
ing unit to generate the scaled images, and therefore the overall
performance is 𝑝 = 1.75 features extracted per clock cycle.

Image scaling

Besides the original image, SME stores scaled variants of the im-
age. The scaling is done on-the-fly over few last image lines. We
use a block-based approach for scaling with fixed factor 𝑆 = 5

6 ,
where 6×6 pixels blocks from a base scale are transformed to 5×5
pixels blocks in the subsequent scale. We implemented the sep-
arable, integer version of Lanczos [51] scaling algorithm for 8 bit
images.

The process of downscaling and detector execution on individ-
ual SME lines is statically scheduled and driven by the microcode
stored in BRAM. The classifier operations are performed to ev-
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ery line but every scale has a different number of lines to process.
Moreover, the scaling is a block operation which is performed ev-
ery 6-th line. This can cause occasional bursts of detector execu-
tions. The static scheduling allows us to distribute the execution
of detector and scaling to avoid this execution bursts and ensure
regular processing of image stream.

The maximum height of scanning window is given by height of
SME minus size of block produced by scaling unit, which is 27px
(32-5px in our case). This height is sufficient for many of detection
tasks and also standard detectors uses similar dimensions – 21×21
or 24× 24 pixels [19, 11].

Detector interface

From the outside view, the detector is a computational block with
one input, one configuration interface and two outputs. The input
reads a stream of incoming image data of the given resolution.
The configuration interface itself is composed from the detector
definition (instructions and associated look-up tables), input im-
age size, and sizes of scaled versions. The first output is a stream
of the image data from the smallest scale in the SME. This output
is used as an input for another detector instance. The second out-
put contains detection results – coordinates and scale of detected
objects. For both image input and output, we use AXI Stream
Video interface for configuration the AXI-Lite interface and AXI
Stream for detection results. This interfaces simplify integration
of the detector to applications.

Stripe memory cascades

A single detector block is limited by the width of SME (4 096 pixels
in our case) and by the performance of feature extraction, which is
𝑝 = 1.75 features/Hz (i.e. 350 M features/s with 200 MHz clock).
From the performance point of view, it is not efficient to build
the detector with a wider window (buffer) to hold more image
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scales, because the limitation of feature extraction speed would
still remain. Our design allows for a more efficient solution – cas-
caded connection of detector blocks which we call Stripe Memory
Cascade, illustrated in Figure 3.6. In the cascade, one detector
instance generates scaled version of image and passes it to the
subsequent instance. No limitation exists on the number of in-
stances, except for the resources available on the target platform.
All instances operates in simulataneously, effectively increasing
the speed of the feature extraction. Output streams from all the
instances are simply merged to form the output of the cascade.

Table 3.2 shows several configurations of cascaded instances,
their performance, and resources they require. The naming con-
vention we use for the configurations encodes the resolution pro-
cessed and the number of detector block instances, e.g. VGA/1
is configuration for processing of VGA image with one detector
block instance and it is similar to what was proposed by Zemcik
et al. [20]. Versions HD/2, HD/3 and HD/4 are configurations for
HD image with different performance and resource requirements
due to different assignment of image scales to detector instances.
Versions FHD/4 and UHD/7 are for Full HD and 4K images. The
versions for LBP and LRD differs mainly in memory requirements
because LBP requires more BRAMs for classifier definition as de-
scribed earlier in this paper.

Speed analysis

The theoretical maximum throughput (in frames per second) for
one instance of the detector unit can be estimated using Equa-
tion (3.11) where 𝑓 is the operating frequency, 𝑝 the number of
features extracted in one clock cycle, 𝑡 is the average number of
weak classifiers evaluated per window, and 𝑃 represents the num-
ber of positions to evaluate in the image and its scaled versions
assigned to the detector. The numerator of Equation (3.11) rep-
resents the total number of features extracted by the detector,
the denominator is the average number of features that must be
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Figure 3.6: Cascading of detector instances. Each detector takes
scaled input image from the previous one, the output coordinates
and classifier response of detected objects are merged into one
stream. Each detector is configured separately.

extracted on an image. As explained in Section 3.5, in our ar-
chitecture has 𝑝 = 1.75. The value of 𝑡 is the property the par-
ticular classifier, the average number of features that needs to be
extracted from the image in order to decide the class of one an-
alyzed window (see Section 3.4). It reflects the average case and
it can change locally with irregularities in data that are hard to
predict. We use 𝑡 = 2.5 for illustration purposes which is a real-
istic value for face detection. See Section 3.6 with the analysis of
detectors we use.

𝐹 =
𝑓 · 𝑝
𝑃 · 𝑡

(3.11)

The throughput of the whole cascade of detectors is limited
by the slowest unit in the chain and it depends largely on sizes of
images processed by the individual instances. In the Table 3.3, we
show breakdown of HD/* variants from Table 3.2). Each version
processes 20 image scales, the difference is in the manner how the
scales are assigned to the detectors in the chain, and in the length
of the chain.

Let us focus, for example, on the HD/2 version, with two in-
stances of detector. The first instance contains four image levels
(resolutions from 1 280 pixels to 742 pixels of width) and we esti-
mate around 5.4 M features need to be calculated on those four lev-
els on average. Therefore, the speed of the first instance is around
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Table 3.2: Examples of cascade configurations, their predicted
performances, and resource requirements. Valid for detector of
size 21×21 px, 𝑡 = 2.5, and 𝑓 = 200 MHz.

Version Feature Res. [pixels] Scales Insts. BRAM REG LUT FPS

VGA/1 LRD 640×480 18 1 41 7640 9933 160
HD/2 LRD 1280×720 20 2 82 15292 19919 64
HD/3 LRD 1280×720 20 3 123 22944 29905 94
HD/4 LRD 1280×720 20 4 164 30596 39891 159
FHD/4 LRD 1920×1080 22 4 164 30596 39891 60
UHD/7 LRD 3840×2160 26 7 288 53552 69849 17

VGA/1 LBP 640×480 18 1 100 7650 9978 160
HD/2 LBP 1280×720 20 2 200 15312 20009 64
HD/3 LBP 1280×720 20 3 300 22974 30040 94
HD/4 LBP 1280×720 20 4 400 30636 40071 159
FHD/4 LBP 1920×1080 22 4 400 30636 40071 60
UHD/7 LBP 3840×2160 26 7 700 53622 70164 17

64 FPS, calculated using Equation (3.11). The second instance
contains the rest of the image scales (resolutions from 619 pixels
to 42 pixels of width) and its speed is estimated to 233 FPS. The
total speed of the HD/2 is therefore 64 FPS as it is the minimal
framerate from all detectors in the chain.

Validation

During the design phase, we developed a software implementa-
tion of the detection algorithm which uses the same input data as
the hardware implementation (look-up tables, instructions, thresh-
olds, etc), and is based on the same image scaling algorithm. The
architecture was validated by comparison of the results produced
by the software implementation to the results produced by our
architecture on a large set of images. The results were identical;
therefore, we assume that the subtle differences in implementation
in software and hardware are acceptable.
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Table 3.3: Comparison of three different cascade designs, all for
HD resolution. The values are shown for detector of size 21×21
px with average 𝑡 = 2.5 features per position, and 𝑓 = 200 MHz
clock. It can be observed that trade-off between the number of
instances and desired detection performance exists.

Scale Resolution 𝑃 · 𝑡 HD/2 HD/3 HD/4∑︀
𝑃 · 𝑡

∑︀
𝑊 FPS

∑︀
𝑃 · 𝑡

∑︀
𝑊 FPS

∑︀
𝑃 · 𝑡

∑︀
𝑊 FPS

1 1280×720 2200103

5468605 3979 64
3714188 2347 94 2200103 1280 159

2 1067×600 1514085 1514085 1067 231
3 890×500 1040628

3058318 2856 114

1754418 1632 1994 742×417 713790
5 619×348 488865

1497155 3536 233 1497155 3536 233

6 516×290 332887
7 430×242 225972
8 359×202 152945
9 300×169 103230
10 250×141 68700

193255 1312 181111 209×118 45590
... ... ...
20 42×25 210

FPS 64 94 159

3.6 Results and Evaluation

In our applications we use Xilinx Zynq SoC with ARM CPU and
FPGA. This combination allows for simple configuration of the
detector and post processing of the results. However, if required,
everything can be fixed and implemented in FPGA only. The
design was written completely in VHDL with only few platform-
dependent blocks (such as 36 kbit BRAM capacity); thus, it could
be relatively easily adapted to various FPGAs, even from different
vendor.

We built a prototype of a smart camera with HD CMOS image
sensor and Zynq SoC Z-7020 chip. The camera captures image at
60 FPS and passes it through the HD/2 detector. The detection re-
sults are processed on ARM core (non-maxima suppression, filter-
ing) and the image along with the coordinates of detected objects
are streamed through the network. We demonstrate the archi-
tecture on the detection of frontal faces and detection of license
plates. As an example of our technology, we provide an IP Core
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of version VGA/1 and HD/2 detector with built-in face detector1.
This IP Core takes approximately 15 % of Zynq Z-7020 resources.

Detector evaluation

Properties of WaldBoost detectors were experimentally evaluated
many times on various problems [11, 52, 47, 53]. We tested our
architecture in two example scenarios – face detection and license
plate detection. These two applications are important in surveil-
lance tasks. However, the detector can be used for detection of
other rigid objects as well - cars [54], pedestrians [35] etc. We
compare our detectors to the pre-trained detectors from OpenCV
which implement Haar and LBP Cascades used by other state-of-
the-art architectures. We report Receiver operating curve (ROC) –
the tradeoff between false positive rate (the number of false detec-
tions generated per one image) and miss rate (the ratio of missed
objects). Figure 3.9 shows a few images from each of the tasks.

Detection of frontal faces

We trained frontal face detectors on a large dataset of faces and
compared them to OpenCV cascade detectors widely used by other
authors as a baseline [1, 5, 6, 38]. The detector window size (𝑢, 𝑣)
was set to 24×24 pixels and the detector length to 𝑇 = 1024. We
trained four detectors with different target false negative rate 𝛼 ∈
{0.01, 0.05, 0.1, 0.2}, see Section 3.4 for details. From OpenCV, we
used haarcascade_frontalface_alt, as it gives the best results
from the built-in detectors. We tested the detectors on our set
of 102 high resolution images with 1 857 annotated frontal faces
(which is bigger and more challenging than MIT-CMU usually
used for testing of frontal face detectors). The results in Figure 3.7
show that our detector (with 𝛼 = 0.1) gives almost 10× less false
positives compared the detectors from OpenCV at the same recall

1All resources can be downloaded from https://github.com/
RomanJuranek/zynq-detector
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level. The recall of OpenCV detectors is 94 % as reported by
others [1, 20, 24, 25, 5, 4, 13]. Table 3.4 summarizes the speed
and recall tradeoffs of the detectors trained with different value
of 𝛼 and their predicted performance in FPS when executed in
version HD/2 architecture. 60 FPS margin is satisfied by classifiers
with 𝛼 ≤ 0.1.

Detection of license plates

In law enforcement applications, such as speed measurement, de-
tection of licence plates is a crucial step where accuracy and speed
matters very much. We trained a license plate detector on a pro-
prietary database of images taken by speed enforcement cameras.
The dataset contains 30 000 automatically obtained samples of
axis aligned license plates. The test set contains 1 000 images with
manually corrected annotations. The dataset covers a wide range
of conditions – day, night, sun, rain, snow and fog. For our ex-
periments, the detector window size (𝑢, 𝑣) was set to 84×12 pixels
and the detector length was 𝑇 = 1024. Accuracy evaluation in
Figure 3.7 shows that the detection rate of WaldBoost detector is
over 99 % when a false alarm occurs on one out of one hundred
images. Detector speed measured on the test set is 𝑡 = 2.7, cor-
rensponding to 62 FPS in HD/2. This is more than sufficient for
this kind of application. For comparison, we trained Haar and
LBP cascade from OpenCV on the same data using tools installed
with the library. As Figure 3.7 suggests, our detector outperforms
OpenCV detectors by a large margin.
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Figure 3.7: Accuracy evaluation of our detectors (WaldBoost) and
comparison to OpenCV detectors (Haar and LBP cascade) for
frontal face detection (top) and license plate detection (bottom).
WaldBoost gives lower false positives at the same accuracy level.
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Table 3.4: Speed analysis of our face detectors on HD/2. Fast
detectors have slightly lower accuracy. The important value is 𝑡,
which directly influence the performance of our architecture.

𝛼 = 0.01 𝛼 = 0.05 𝛼 = 0.1 𝛼 = 0.2

Recall 0.970 0.969 0.964 0.952
𝑡 7.54 4.43 2.50 1.96

𝐹 [FPS] 21 36 64 82

Table 3.5: Power Consumption comparison. FPGA-based detec-
tor is more power efficient compared to PC and GPU solutions.

platform FPS Power (W) mJ / Frame

PC Intel i7 3770K 22 77 3500
GPU GeForce 1080Ti 915 120 131
SOC Tegra K1 38 4 105

HD/2 Artix7 xc7a75 64 1.52 24
HD/4 Artix7 xc7a200 159 2.95 19
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Power Consumption Comparison

Table 3.5 shows estimation of power consumption of different plat-
forms executing the face detection algorithm with Waldboost clas-
sifier (𝑡 = 2.5, 𝛼 = 0.1) on 1280×720 images. On CPU, GPU,
and Tegra, we used an OpenCL implementation of the detection
algorithm from Herout et al. [23]. The critical steps were im-
plemented in OpenCL and compiled for the target platform, ef-
ficiently exploiting SSE/AVX instructions and multi-thread exe-
cution on CPU and computing cores as well as texturing units
on GPU. For the Intel CPU, we report maximum thermal design
power (TDP). In case of GPU and SoC, the accurate chip power
consumption is available. Power consumption of the FPGA was
estimated using Xilinx Power Estimator, assuming the worst case
with a 100% toggle rate (i.e. when signals flips every clock cy-
cle). For the measurement purposes, we synthesized the HD/2 in
the different FPGA of the same family without the ARM core,
so the results are not influenced by the power consumption of the
ARM which is, in fact, not required during the detection. For
all platforms, we report the metric which expresses energy con-
sumed by the platform per one frame (Joules/Frame). The Table
3.5 shows that the FPGA design requires approximately five-times
less energy than SoC Nvidia Tegra.

Comparison to other architectures

Table 3.1 shows the comparison to other architectures in terms of
the maximum image resolution, detection algorithm and features,
scanning window size, and type of detected object.

Due to our unique stream memory cascades, the detector can
process images at very high resolution (up to 4K) while it is still
capable of detection of very small objects. This property may be
important e.g. when surveillance camera covers a large area. The
most state-of-the-art architectures are capable of processing up to
1Mpix images.
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Figure 3.8: Comparison of classifications per cycle (wpc) and re-
source requirements of the architectures from Table 3.1. Yellow
color encodes proposed architectures from this paper, red color pre-
processing units, blue color the rest of the architectures. Marker
shape encodes feature type used by the architecture (u stands for
HOG, : for Haar features, and n for LBP/LRD features).

The advantage of the proposed architecture, comparing to oth-
ers, is the optional size of the detection window, which is limited
only by the height of SME, while the width remains unlimited
and freely adjustable. In other architectures [5, 2, 1, 6] the chang-
ing of window size means re-synthesizing of the whole design and,
what is worse, larger windows takes more resources for multiplexer
networks required for reading out the pixels. This is completely
avoided in the proposed solution.
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We compare our architecture to other similar ones. However,
they are realized by different FPGA technology, have different in-
put sizes, classifier strides in image and other parameters. To
make comparison possible, we characterize all the architectures
by number of processed scanning windows per clock cycle (wpc)
which gives raw performance measure independent on the used
technology, frame rate and other parameters. Table 3.6 summa-
rizes performance and resource requirements of our architecture
and compares it to the other published works. Plots in Figure 3.8
show the dependency of resource consumption on the wpc classifi-
cation for some architectures. Various proposed configurations of
cascade instances (from Table 3.2) are plotted in each graph. It
can be observed that overall performance increases with number
of cascaded SME instances which proves its benefit.

The resource consumption and performance of configuration
HD/2 is comparable to Kadlcek [13] and Lai [14], anyway, their
design achieves only low detection accuracy caused by very short
detector and limits their possible usage for preprocessing purposes
only. Our architecture, on the other hand, works as fully featured
object detector while providing sufficient performance even at high
image resolutions. In summary, the graphs on Figure 3.8 and Table
3.6 shows the performance superiority of LBP/LRD feature based
detectors to Haar and HOG based detectors.

The solution by Jin [7] and Kyrkou [28] achieves very high
wpc, comparable to our FHD/4 and HD/2 configurations, but they
require multiple-times more resources against our solution, even
for only low image resolution. Comparing to work of Zemcik [20],
the architecture we improved, we achieved higher performance,
wpc, and maximum image resolution due to a cascading nature of
our design.

SVM based classifiers using HOG features presented by Said [37]
and Martelli [25] achieves high framerate mainly due to detection
stride, where they process only every 𝑥-th image row and column,
effectively making the image 𝑥× smaller, which reflects into low
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Figure 3.9: Examples of detected objects on selected images from
testing datasets for face detection (top) and license plate detection
(bottom).

throughput. Moreover, they can only detect objects with fixed size
128×64 pixels as they do not solve multi-scale detection. This is
why their architecture performs so well with so limited resources.
However, to detect smaller objects, they need to upscale the im-
age, and for multi scale detection, pyramidal representation need
to be created, increasing the search space and slowing down the
detection.

The proposed architecture achieves the highest performance
(represented by wpc) compared to the others and also has a rela-
tively low resource consumption as is evident from the Table 3.6
and graphs on the Figure 3.8.
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Chapter 4

Conclusion
The main goal of the research conducted in this thesis was to
deeply investigate methods for optimising the object detector in
images running on FPGA. The newly proposed methods enable
creating an object detector in hardware that outperformed state-
of-the-art in better detection performance, better performance/re-
sources ratio and better accuracy in selected application tasks.
The object detector has been developed using FPGA solely and
tested on the face and license plates detection.

The proposed detectors use boosted soft cascades of classifiers
with local image feature as weak classifiers. The combination of
the unique structure of memory and the local features enabled the
effective sequential evaluation of weak classifiers. Parallel process-
ing of multiple independent positions in the image significantly
increased detection performance. Cascade connection allows to
distribute the calculation among multiple detectors optimally and
thus scale the performance and resources consumption to the spe-
cific application. The newly designed method enables an efficient
multi-scale detection on-the-fly without the use of external mem-
ory and large FPGA memory requirements.

The presented scientific contribution aids to create an object-
in-image hardware detector usable in practice. A significant ben-
efit is the scalability of performance and resource consumption. It
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rends possible to develop a detector, which can process either a
FullHD video at 60 fps on FPGA with a current price of approxi-
mately 100 USD or an HD video at the same speed on a chip with
a third of the price. It also allows to process images in high resolu-
tion; the proposed hardware detector is the first presented solution
for the detection of all-sized objects, even tiny, at 4K resolution.
In terms of accuracy, the proposed detector achieves better results
than other similar detectors. On the comparative face detection
dataset, it achieved 97% accuracy compared to only 91% being
the best result until then.

The proposed detectors are expected to be utilised in smart
cameras in industrial, transport or security applications, i.e. in
tasks such as the detection of faces, pedestrians, products, licence
plates. In this work, the practical use is demonstrated on the
task of license plate detection for parking control in residential
areas. The proposed solution has many advantages over the exist-
ing system, such as lower power consumption leading to decrease
of heating, as well as lower cost and smaller size of the resulting
system.

The use of boosted classifiers for object detection in hardware
still remains a reasonable approach. Neural networks are the state-
of-the-art in non-hardware object detection; however their deploy-
ment on FPGA has enormous resource requirements. In the fu-
ture, I can see a benefit in combining boosted detectors with CNN
to improve the accuracy of detection while maintaining reasonable
demands on computing resources and the cost of devices. Another
possible way to improve accuracy could be the use of multi-channel
features such as ACF.
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