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Abstract 
This dissertation aims to propose methods for optimising the ob­
ject detector in an image running on an F P G A . These detectors 
use boosted soft cascades of classifiers with local image feature like 
weak classifiers. The proposed detectors use sequential evaluation 
of weak classifiers. More positions in the image are evaluated in 
parallel to increase the detection performance. Also, a new ap­
proach for multiscale object detection is proposed; its advantage 
is no need for external memory. The new detectors were experi­
mentally verified on the tasks of detecting faces and license plates. 
The results outperform the current state-of-the-art, allow to create 
object detectors with higher detection performance, better power 
to resources ratio and better detection accuracy. 

Abstrakt 
Cílem této disertační práce je představit navržené metody opti­
malizace detektoru objektů v obraze běžících na F P G A . Tyto de­
tektory využívají boostovatelné soft kaskády klasifikátorů spolu s 
lokálními obrazovými příznaky, které slouží jako slabé klasifiká-
tory. Navržené postupy využívají sekvenční vyhodnocení slabých 
klasifikátorů. Pro zvýšení výkonu detekce je vyhodnocováno současně 
více pozic v obraze. Je navržen nový přístup pro detekci ob­
jektů různé velikosti nevyžadující externí paměť. Vytvořené de­
tektory byly experimentálně ověřeny na úlohách detekce obličejů 
a poznávacích značek automobilů. Dosažená výsledky překoná­
vají současný stav poznání, umožňují vytvořit detektory objektů 
s vyšším detekčním výkonem, lepším poměrem výkonu a spotře­
bovaných zdrojů F P G A a s lepší přesností detekce. 
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Chapter 1 

Introduction 

Nowadays, we encounter an increasing number of cameras and 
surveillance systems. We can see cameras at toll gates, security 
cameras in buildings or police surveillance systems. The amount 
of information that these devices produce is enormous, and it is 
not in human power to process and interpret it all. The only op­
tion is to use computing power to analyse the huge number of 
videos and frame sequences. Modern computer vision algorithms 
have passed the point, where it is reasonable to start implement­
ing them widely. Algorithms for object detection and recognition, 
for example of human faces, pedestrians, cars, or traffic signs al­
ready outperform human. In general, one of the disadvantages of 
advanced vision algorithms is high computational complexity. For 
this reason, it is necessary to use powerful computer systems with 
high energy consumption and cost. Also, it would be convenient 
to process most data locally without the need for remote servers, 
so-called edge computing. 

One solution can be the hardware acceleration of computer vi­
sion algorithms on F P G A or ASIC chips. The aim is to create 
low-cost, low-power devices for real-time video processing. The 
deployment of algorithms to F P G A and ASIC circuits is specific 
and differs greatly from deployment to conventional computing 
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systems. Usually, a direct implementation of computer vision algo­
rithms without their modification is inefficient, slow and resource-
intensive. The acceleration of computer vision algorithms in hard­
ware has long been the goal of many scientific works. This topic is 
attractive due to its potential practical application, and a combi­
nation of different research fields: image processing and hardware 
acceleration. 

This thesis presents my contributions to the state-of-the-art 
in the topic of visual object detection in F P G A . Specifically, the 
work is focused on fast and powerful object detectors with low 
demands on resources. Such detectors could be applied mainly in 
transport, industry or security. 

My contribution is in proposing methods for optimizing object 
detection on FPGAs. The main focus is on detectors using boosted 
soft cascades of classifiers with local image features as weak classi­
fiers. Sequential evaluation of weak classifiers has been upgraded 
with parallelization by evaluation of several independent image 
positions simultaneously. Also, a new approach for multi-scale 
object detection has been proposed; its advantage is no need for 
external memory. Using these methods to create effective detec­
tor verifies the hypothesis: that it is possible to design an object 
detector based on soft cascade deployed in programmable hard­
ware with resulting precision comparable to the state-of-the-art, 
with real-time performance, with lower power consumption and 
less computing resource demands comparing to existing ones. 

4 



Chapter 2 

Goals and Contributions 

This thesis focuses on object detection in images on hardware plat­
forms. The scope of the work is to shift the scientific knowledge 
and apply it into the practice. 

Presumed usage of object detectors developed here is indus­
trial, transport or security applications, i.e. in tasks such as the 
detection of faces, pedestrians, products, licence plates. Practi­
cal deployment of such object detectors needs to meet specific 
requirements. The resolution of the processed image is an impor­
tant parameter. This resolution depends a) on the resolution of 
the input image, b) on the expected size ranges of the searched 
objects and c) on the size of the detection window. Thus, the 
expected object size ranges significantly affect the required per­
formance of the detector. Traffic and security applications require 
approximately 10 to 20 frames per second for suitable object track­
ing. Industrial applications often require even higher processing 
speeds. High-speed detectors also allow for processing image data 
in the camera without storing them on a fast external memory; 
the absence of external memory further reduces the price of the 
resulting device. 

A typical requirement is that the detectors should achieve the 
best accuracy possible. In general, object detectors often balance 
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a speed-precision trade-off. Detection of visually diverse, rotated, 
or distorted objects will either be less accurate or will require a 
complex system with a large number of computational resources. 
For example, in the task of licence plates detection in toll gates, 
where the approximate size and rotation is known, excellent ac­
curacy can be expected. However, a similar task, licence plates 
detection for parking control in residential zones, is more chal­
lenging due to unconstrained conditions (variable position, scale, 
rotation, etc.), and therefore lower accuracy can be expected. 

The technical goal is to create a powerful universal object de­
tector for F P G A hardware with good accuracy and low resource 
consumption. Such detector should process at least FullHD video 
at 15 frames per second and should detect small and large objects 
with limited variability. The detector should achieve accuracy (re­
call with precision 0.70) of at least 95% for face detection and 99% 
for L P detection. Important parameters for the low price of the 
device are low power consumption and a small number of F P G A 
resources used. The detectors are expected to be utilised in smart 
cameras. Such smart camera should perform the maximum num­
ber of operations directly in-site and send out only the results for 
further processing. Thanks to this, it would be possible to reduce 
the data flow from the camera as expected by edge computing. 

2.1 Technical implications 

At the beginning of my research work, there were already sev­
eral successful attempts to create an object detector in hardware 
[1, 2, 3, 4, 5, 6, 7, 8]. A detailed overview of the individual solu­
tions was given in the previous chapter. In summary, the results 
show that the practical use of these detectors is limited. In order 
to increase the performance and accuracy of detectors and the res­
olution of the processed image, it is necessary to improve current 
detection methods in hardware, modify detection algorithms and 
apply hardware-specific features. 
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Choice of classifier a l go r i t hm 

Hardware detectors based on boosted classifiers have the most ad­
vantages for the applications mentioned above. The specifically 
targeted ad-hoc detectors have an excellent power-to-resource ra­
tio in some applications. However, the ad-hoc detectors are not 
universal, the accuracy of detection is low, and they do not cope 
with changing conditions. Creating a detector for a new object 
class means a lot of work and an uncertain result. The S V M 
based detectors have good performance and relatively low resource 
consumption. However, they provide low detection accuracy not 
applicable in modern applications. 

CNN based detectors provide the best accuracy and excel at 
complex detection task. Due to a large number of operations, 
they have high demands on logic and memory resources and have 
relatively low performance. Besides, the CNN optimisations for 
FPGAs means a loss of accuracy down to the level of a modern 
boosted classifier. Considered tasks such as face/pedestrian de­
tection and licence plate detection have only a small number of 
object classes with a relatively consistent appearance, for which 
CNN seems unnecessarily complex. In conclusion, the modern 
boosted classifiers provide sufficient accuracy and speed trade-off 
considering these tasks with high-throughput and resource-limited 
scenarios. 

Individual modifications of boosted classifiers, such as soft-
cascade or Waldboost [9, 10, 11], only differ in the training process. 
The evaluation step does not vary much; the only difference is 
that soft-cascades and Waldboost allow rejecting after each weak 
classifier and the original Viola-Jones algorithm [9] allows rejecting 
after each stage (a set of several weak classifiers). The planned 
detector should evaluate all modifications of boosted classifiers. 
The best way to reach high detection accuracy and performance 
is training the boosted classifiers with Waldboost algorithm [11] 
and with augmentation, as suggested by Bar et al. [12]. 
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Two approaches for implementation of boosted classifier based 
detector were developed - - fully pipelined monolithic detector [7, 
13] and sequential detector [8, 6, 4]. Fully pipelined detectors 
assess all features for one detection window position in parallel 
per one clock cycle. In general, the fully pipelined detectors are 
high-throughput and easy to implement. However, they have high 
demands on F P G A resources and usually evaluate only a limited 
number of weak classifiers, which leads to lower accuracy. Sequen­
tial detectors assess the features gradually. The parallelisation 
of sequential detectors is possible by processing multiple features 
or multiple positions at the same moment. They require fewer 
resources and allow for better accuracy, but they are more chal­
lenging to control. I have focused on sequential detectors because 
they meet the required parameters better and offer space for fur­
ther development. 

Cho ice of weak classifiers 

Many authors [2, 3, 1, 4, 5, 6] use Haar-like features as weak classi­
fiers. High bit depth for storing integral image and complex logic 
to access feature values make them resource demanding. There­
fore, it isn't easy to increase the performance of such detectors. 
Other works [8, 7, 13] apply L B P or their modifications (LRD, 
LRP) as weak classifiers. Their advantage is in loading only sur­
rounding pixels (block reading) for effective calculation. LBP-like 
features are mainly used in combination with fully pipelined detec­
tors [7, 13]. Zemcik and Zadnik [8] verified the sequential approach 
by developing a suitable object detector. Their detector used LRD 
features with a size of 3x3 and subsampling of the original image 
in the ratios l x l , 1x2, 2x1 and 2x2. For direct evaluation of the 
feature, it may require loading blocks of up to 6x6 pixels. It seems 
unnecessary to read data from the sliding windows (usually created 
as a register array with FIFO line buffers), and a better option is to 
read it directly from the addressable memory composed of B R A M . 
An optimal structure of this B R A M memory allows data reading 
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without the use of a complicated multiplexer network. Zemcik and 
Zadnik reduced the logic resources required for reading such large 
blocks by precalculating the subsampled versions of the image into 
memory. Reading only 3x3 blocks already precalculated in mem­
ory becomes sufficient for feature evaluation. The disadvantages 
are increased memory requirements and the need for storing dif­
ferently sized subsampled versions of the original image. This has 
led to a complicated memory structure and high logic and memory 
resources demands. 

Hereby proposed detectors are inspired by the detector intro­
duced by Zemcik and Zadnik [8]. The main difference is that local 
image features of different sizes are not calculated from precalcu­
lated values, but directly from the original image. It saves memory 
resources, but on the other hand, it means reading blocks of differ­
ent sizes (3x3, 3x6, 6x3 and 6x6 pixels), which is more complicated 
compared to the original constant size of 3x3. For simplicity, a 6x6 
block (the worst case) can always be read and then subsampled 
as needed. A well-designed memory structure allows reading of 
unaligned 6x6 blocks at the same time, thus reducing logic and 
memory requirements. 

Mul t i sca l e -de tec t ion 

Designing an effective multi-scale detection on F P G A is an un­
resolved issue. Many related works do not address multi-scale 
detection at all [14, 2, 8, 13]. Several works [1, 3] suggest storing 
the entire image in B R A M memory, but this is not always feasi­
ble, especially at higher resolutions. Other works solve multi-scale 
detection by multiple image loading from external memory [5, 6]. 
Kyrkou et al. [4] reduced the number of loading from external 
memory by using more classifiers with different window sizes. 

We have proposed a more efficient method of multi-scale detec­
tion. It does not require multiple image readings and uses signifi­
cantly less memory than needed when storing entire images. The 
core is that the single scale detection requires only a narrow strip 
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of the image memory, with the minimum height as the detection 
window. The same principle can be used for smaller versions of 
the image in multi-scale detection. Furthermore, it enables gener­
ating these smaller versions from the previous ones with fixed scale 
unit on-the-fly. The proposed method allows detecting objects of 
different sizes directly from the data coming from the sensor; the 
resulting system may not contain external memory at all, which 
would reduce the cost of the device. This approach can be further 
combined with the use of multiple classifiers with different window 
sizes. However, the memory requirements for storing multiple clas­
sifiers using L B P / L R D features are often greater than the mem­
ory consumption when storing stripes of image. But the benefit 
always depends on the resolution of the input image, the height of 
detection window and the number of down-scaled versions. 

De tec to r o p t i m i z a t i o n 

Parallel processing is one way to increase the performance of the 
detector on F P G A . Many authors [1, 14, 4] use parallel computa­
tion of more features in one position. Since the average number 
of evaluated features in one position is very small, it does not al­
low a high level of parallelization. When using the sliding window 
approach, it is necessary to evaluate all weak features and only 
then it is possible to move to the next one. In pipeline processing, 
premature rejection often results in a penalty meaning a specula­
tive evaluation of other features or insertion of blank operations. 
Brousseau and Rose [6] suggested a method of evaluating features 
in neighbouring positions. The number of evaluated classifiers in 
specific positions is variable, which causes problematic divergence 
of the calculation. Besides, this approach combined with sliding 
windows leads to an increase of multiplexing network complexity, 
and thus an increase in logical resources. The detector introduced 
by Zemcik and Zadnik [8], which is the basis for the proposed 
detectors, did not use any parallel processing. 

10 



We have proposed an approach for evaluating multiple posi­
tions in the pipeline simultaneously. This is possible by reading 
the data directly from B R A M memory, where the data for eval­
uating all positions of the entire line are accessed. It enables us 
to evaluate a bigger number of independent positions at the same 
time at various stages of evaluation. After evaluating the required 
features in one position, there is no need to wait for the evaluation 
of the surrounding positions; it is possible to move to the next po­
sition in the same line. This eliminates the issue with divergence 
and allows the creation of a longer pipeline without penalizing 
after the early rejection. The extension of the pipeline has a pos­
itive effect on the increase of the maximum circuit frequency and 
consequently, the rise of the detector performance. 

We also suggest using more detectors connected in a cascade to 
increase performance. Each of these detectors performs detection 
in a different part of the image and at a different scale version. 
The optimal distribution can be precalculated so that the number 
of positions evaluated by each detector is approximately the same. 
This modification allows the detector's performance to be scaled 
very well for the needs of a specific application. 

2.2 Goal of the thesis 

The primary goal of this thesis is to improve the state-of-the-art in 
the field of object detection in the image on hardware platforms. 
The hypothesis is: It is possible to design an object detector based 
on soft cascade deployed in programmable hardware with resulting 
precision comparable to the state-of-the-art, with real-time perfor­
mance, with lower power consumption and less computing resource 
demands comparing to existing ones. 

The method of proof is creating a hardware detector that meets 
the required parameters and thus exceeds the state-of-the-art. 
Completing this task will require developing new methods and 
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performing many experiments. In order to investigate of task the 
detector design, I have chosen to pursue the following methods: 

• using local image features (LBP/LRD) and soft cascade clas­
sifiers in sequential engine with efficient block reading of im­
age values for weak classifier evaluation, 

• creating a multi-scale on-the-fly detector for high-resolution 
image data processing (without the need for external mem­
ory), 

• using parallelization of weak classifier calculations by pro­
cessing multiple positions at the same time, both at the level 
of sequential engine and cascade connection of multiple de­
tectors. 

The above proposed methods are being examined with the aim 
to confirm the presented hypothesis. The experiments will be per­
formed in the detection of faces, pedestrians and license plates. 
Comparisons with other authors will be made on the face detec­
tion task, which is usually presented on other papers. For a fair 
comparison of performance due to different resolutions, detection 
window size, detection stride, multi-scaling, etc. a conversion to 
the number of processed detection windows per clock cycle will be 
used. 

2.3 Core contributions 

This thesis contributes to the state-of-the-art in the field of ob­
ject detection in the image on hardware platforms. Three pa­
pers validating the hypothesis were published. They represent the 
experimental proof and demonstrate that it is possible to create 
the detector with defined parameters. The papers show that the 
proposed hardware detector outperformed the state-of-the-art in 
several aspects: 
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• better detection performance among boosted classifier - multi-
scale face detection on Full HD (1920x1080 pixels) video at 
60 fps (for object size 21 pixels and more) versus 640x480 
at 30 fps by Hiromoto et al. [3], 

• better detection performance in processed detection windows 
per clock cycle among all hardware detectors - up to 2.33 
versus only processing detector with 1.97 by Jin [7] of full 
detector with 0.95 by Zemcik and Zadnik [8], 

• better performance/resources ratio - in all resources: LUT, 
R E G and B R A M ; the graphical comparison is in paper [15], 

• better accuracy in face detection on C M U dataset [9] - recall 
97 % with 0.2 false positives per image (FPPI) versus recall 
91 % with 0.2 FPPI presented by Hiromoto et al. [3] and 
Kyrkou et al. [4], 

• comparable accuracy in licence plate detection - aligned li­
cence plates recall 99 % with 0.2 FPPI and unconstrained 
recall 98 % with 0.2 FPPI on own dataset 

The contributions that implement experimental proof of thesis 
were presented in the following papers: 

• High performance FPGA object detector: Hardware proto­
type, F P L 1 2013. Paper with introduce an architecture of 
an engine for high-performance multi-scale detection of ob­
jects in videos based on WaldBoost training algorithm. The 
key properties of the architecture include the processing of 
streamed data and low resource consumption. The engine is 
implemented in F P G A and that it can process 640x480pixel 
video streams at over 160 fps without the need of external 
memory. 

1 International Conference on Field Programmable Logic and Applications 
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• Cascaded Stripe Memory Engines for Multi-Scale Object De­
tection in FPGA, T C S V T 2 2019. Evolution of the previous 
paper witch expands performance and usability. F P G A de­
tector can process a stream of image data so that it stores 
a narrow stripe of the input image and its scaled versions 
and uses a detector unit which is efficiently pipelined across 
multiple image positions within the memory. We show how 
to process images with up to 4K resolution at high fram-
erates using cascades engine. As a detector algorithm use 
boosted soft cascade with simple image features that require 
only pixel comparisons and look-up tables; therefore, they 
are well suitable for hardware implementation. 

• Unconstrained License Plate Detection in FPGA, submit­
ted to VEHITS 3 . This paper shows the practical use of the 
previous detector in traffic application on the task of de­
tecting unconstrained License Plate. To detect and localize 
license plates is use multiple sliding window detectors based 
on simple image features, each tuned to a certain range of 
projections. On a large dataset is detection rate 98%. 

Results presented in these papers proof the hypothesis of this 
thesis. 

2.4 Other publications 

I am a co-author of some other publications dealing with other 
areas of image processing. I focused mainly on the effective im­
plementation of the algorithm on the F P G A and the modification 
of the algorithm for stream image processing on the fly, ie with­
out the use of external memory. List of my other publications in 
chronological order: 

2 I E E E Transactions on Circuits and Systems for Video Technology 
3International Conference on Vehicle Technology and Intelligent Transport 

Systems 
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• Single-Loop Approach to 2-D Wavelet Lifting with JPEG 
2000 Compatibility, SBAC-PADW 4 2015 [16]. In this paper 
is presented a novel approach to 2-D single-loop wavelet lift­
ing with can be efficiently pipelined in hardware. A newly 
developed 2-D core of CDF 5/3 wavelet filter is presented 
that, using a new sequence of operations, simplify the de­
sign. Moreover, the proposed approach, that uses one pass 
for 2-D transform, directly produces final output and re­
duces significantly the need for storing intermediate results 
into memory. 

• High Dynamic Range Video Concepts, Technologies and Ap­
plications, Real-Time HDR Video Processing and Compres­
sion Using an F P G A , 2016 [17]. The chapter in the book 
deals with hardware acceleration of HDR video acquisition 
and compression. Individual HDR images are obtained by 
composing several differently exposed images obtained with 
a standard camera. Description of HDR compression and its 
implementation on F P G A . 

• True HDR camera with bilateral filter based tone mapping, 
S C C G 5 2017 [18]. In paper is presented a real-time HDR 
processing system evaluated on a custom hardware camera 
platform. They are proposal modifications of the the State-
of-the-arts algorithms enabling efficient implementation on 
F P G A platform and real-time performance. The main focus 
of the paper is on acceleration of Durand local tone-mapping 
operator involving real-time bilateral filter. The proposed 
solution is compared to the existing research results in terms 
of speed, resource consumption, and numerical accuracy. 

The publications presented above do not directly contribute 
to the scientific goal and hypothesis validation of the dissertation. 

4International Symposium on Computer Architecture and High Perfor­
mance Computing Workshop 

5 Spring Conference on Computer Graphics 
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However, technologically they add to the options of using object 
detection in images. In some applications, for example, in bad light 
conditions such as sharp backlight, it is advantageous to combine 
object detection with HDR image processing to improve accuracy. 
In addition, the platforms created in these publications were used 
for experimental work with object detection. 
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Chapter 3 

Multi-Scale Object 
Detection in F P G A 

Object detection in embedded systems is an important task that 
many applications of computer vision and scene analysis benefit 
from. Industrial quality control systems address various markers, 
traffic monitoring uses detection of cars and license plates, biomet-
ric systems detect faces and facial features, driver assistance sys­
tems detect cars and pedestrians. The detection is especially im­
portant in applications that directly rely on it, such as recognition 
or tracking, and in these applications, the speed, accuracy, power 
consumption, and/or robustness of detection matters most. In this 
work, we address object detection implemented in embedded hard­
ware. We focus on boosted detectors which analyze sub-windows 
of an input image by a classifier composed from weak classifiers 
based on simple image features such as Haar [19] or Local Binary 
Patterns (LBP) [20]. Multi-scale detection is solved by scaling and 
processing of the input image in multiple resolutions - image pyra­
mid. Embedded object detectors are often implemented directly in 
software using libraries such as OpenCV [21]. While this approach 
is easy and straightforward, it often is quite slow as detection is 
computationally demanding task and embedded processors tend 
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to be simpler and slower than desktop CPUs. Another approach 
is to implement a custom detection algorithm exploiting various 
acceleration resources of the target platform - C P U [22], G P U [23] 
or Field Programmable Gate Array (FPGA) [1, 20, 24, 25, 5, 4, 13] 
units. This is advantageous in many areas where the deployment 
of standard PC-based or embedded software solution is not pos­
sible, e.g. because of resource consumption, physical dimensions, 
industrial or military conditions, etc. 

The object detection in embedded devices typically belongs 
to one of the three detection method categories. 1/ AdaBoost-
based detectors - cascades of boosted classifiers [19] or soft cas­
cades [26]. They typically use Haar image features [1, 2, 5, 4], or 
L B P [20]. 2/ Support Vector Machines (SVM) with Histograms 
of Oriented Gradient features (HOG) [27, 24, 28, 29, 25]; and 3/ 
Other methods implementing detection with background subtrac­
tion [30], keypoints [31], neural networks [32], or custom detection 
algorithms [33]. Most works, including thin one, belong to the 
first category, we give the detailed review of them in Section 3.2. 

In this work, is proposed a simple and easy to use building 
block for F P G A that solves the object detection using state of the 
art boosted soft cascade classifier. We focused on implementation 
of the detection algorithm in the F P G A that efficiently utilizes the 
hardware resources and provides high performance. To produce 
classifiers for our hardware we used an existing, previously pub­
lished algorithm [11]. The solution is multi-scale so it can detect 
objects of wide range of sizes. 

It is suitable for various industrial applications, such as license 
plate detection, face detection, etc. The classifiers we use are espe­
cially suitable for hardware implementation since they are based 
only on pixel comparisons, look-up tables and integer-only calcu­
lations. Our architecture is extensively configurable, and it offers 
high image throughput even with high resolution inputs. In our 
main applications, which are detection of faces and license plates, 
we use processing of HD images (1280x720 pixels), but we also 
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Figure 3.1: Comparison of Haar Cascade detector model (top) and 
Soft Cascade (bottom) that we use in our architecture. The main 
difference is that Soft Cascade does not contain stages and accu­
mulates the response throughout the classifier. Another difference 
is that in Soft Cascade case the evaluation of the response can be 
terminated after every weak classifier. 

present a configurations for processing images with resolutions up 
to 4K (UHD, 3840x2160 pixels). IP Core for face detection and 
other resources are available online. Our contributions are specif­
ically: 

• Advanced memory architecture for image representation in 
block R A M (BRAM) which allows for simple and fast data 
random access suitable for fast feature extraction. 

• Cascading of detector blocks which allows for increasing the 
input image resolution and the total performance. 

• Multi-scale object detection directly in F P G A enabled by 
cascading od SMEs, without using external components 

• Re-usable detector block that can be easily incorporated into 
other architectures using standard interfaces. 

• Efficient streaming and pipelining and advanced control that 
fully utilizes the engine resources. 
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3.1 Detector model 

Let us first describe a framework for object detection that sliding 
window-based methods have in common [19, 27, 11, 34]. We as­
sume the input image I to be a grayscale raster and a classifier 
H(x) a function that accepts or rejects the image patch x and 
returns a confidence estimation. 

De t ec t i on on a single image 

The detection function D(I,H,a) classifies every fixed-size patch 
of the input image I by the classifier H. A patch is defined by 
its location (m, n). Its size (u, v) is fixed, defined during classifier 
training stage. We use x = I(m, n, u, v) for patch extraction from 
the location (m, n). The detection function (3.1) returns the set 
of locations accepted by the classifier and scaled by factor a, and 
the classification confidence. 

D(I, H, a) e {([m,n, u, v] • a, (x))} (3.1) 

M u l t i - s c a l e detect ion 

The detection process is illustrated in Figure 3.2. From the input 
image I, a pyramidal structure I (see Equation (3.2)) with k scaled 
versions is created, such that Ij is Ij-i downscaled by factor S < 1. 
In our architecture, we use S — | , which results approximately in 
a pyramidal representation with 4 scales per octave. 

I = { I o , I i , . . . I f c - i } (3.2) 

The scale of j - th image in X can be retrieved as Sj = therefore, 
Io corresponds to the original image. The result of the detection on 
I, see Equation (3.3), is simply union of the results on individual 
images. 

D(1,H,S) = [JD(IJ,H,S^ (3.3) 
3 
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Figure 3.2: (top) The detection process on pyramidal image rep­
resentation X. The detection window of size uxv (yellow), is used 
for classification of every position m, n in image (example in red). 
The result of detection on each image is a set of locations D(I, s) 
accepted by the classifier (green), (bottom) The final detection 
result after non-maxima suppression. 

The set D(I, H, S) is then processed by a non-maxima suppression 
(NMS) algorithm to suppress nearby detections and produce the 
final results for the image. We use a simple, overlap-based, NMS 
algorithm [34] which finds clusters of overlapping detections and 
keeps only the strongest detection from each cluster. However, 
other algorithms, such as mean-shift [27], could be used as well. 
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Table 3.1: Overview of state-of-the-art architectures. In Length column we report the number of 
features and number of stages for Cascades in brackets. * (self-organizing map neural network) 

Year Ima^ej size Method Feature type Window size Length Scales Object Description 

Lai [14] 2007 640x480 Cascade Haar 20x20 52 (3) 15 Faces Parallel calculation of feature responses 
Zemcik [8] 2007 640x480 WaldBoost L B P / L R D 31x31 80 - Faces Microprogrammable engine for feature extraction 
Granat [2] 2007 256x256 AdaBoost Haar 24x24 184 - Faces F P G A coprocessor for DSP 
Cho [1] 2008 640x480 Cascade Haar 20x20 2135(22) 18 Faces Up to 3 features per clock cycle 
Hiromoto [3] 2008 640x480 Cascade Haar 24x24 2 913(25) 18 Faces Parallel calculation of feature responses 
Martelli [25] 2011 640x480 S V M Covariance 128x64 - - Peds. Features extracted from 5x5 blocks 
Kyrkou [4] 2011 320x240 Cascade Haar 24x24 2 913 (25) 8 Faces Combination of detector upscale and imag ;e downscale 
Huang [5] 2011 320x240 Cascade Haar 20x20 2135 (22) 12 Faces Scalable performance/resources tradeoff 
Brouss [6] 2012 320x240 Cascade Haar 20x20 2135(22) 15 Faces Evaluation of multiple position in parallel 
Jin [7] 2012 640x480 Cascade L B P 20x20 250 (5) 16 Faces Synthetic classifier 
Kadlcek [13] 2013 1024x1024 WaldBoost L B P 24x24 20 - Faces Synthetic classifier 
Zemcik [20] 2013 640x480 WaldBoost L B P / L R D 24x24 128 4 Faces Programmable engine evaluating multiple positions 
Yazawa [35] 2015 640x480 AdaBoost H O G 40x80 - 5 Peds., Cars Featurtes extracted form blocks 
M a [36] 2015 1620x1200 S V M H O G 64x128 3 708 34 Peds. Featurtes extracted form blocks 
Said [37] 2016 640x480 S V M H O G 64x128 2 205 - Peds. Featurtes extracted form blocks 
Kyrkou [28] 2016 800x640 S V M Cascade L B P 20x20 1062 18 Faces Neural net pre-filter 
X u [38] 2016 320x240 Cascade Haar 20x20 2135 (22) 8 Faces Features in F P G A , detector in A R M 
Bilal [39] 2017 640x480 S V M H O G 64x128 - 8 Peds. Featurtes extracted form blocks 
Yang [40] 2017 256x256 AdaBoost,SOM* L B P 16x24 COO - Faces Heterogeneous parallel processor 

P roposed 2017 up to 4 K W a l d B o o s t L B P / L R D up to 
N x 2 7 

1024 as 
required 

Faces, L P Programmable engine 
with parallel processing of windows 



The main work in the detection process is done by the classi­
fier H which scores the individual image windows. The classifier 
cascade introduced by Viola [19] (or sometimes called Haar cas­
cade), is a widely used model, see Figure 3.1. The classifier cascade 
analyzes the input image patch x by a sequence of progressively 
more complex stages composed from weak classifiers based on sim­
ple image features. After evaluating of a stage, the image patch 
can be either rejected (classified as background) or passed to the 
subsequent stage. The soft cascade, shown in Figure 3.1, is not 
explicitly divided into stages and the rejection decision is made 
after evaluating each weak classifier. In this work we use the soft 
cascade model based on Local Binary Patterns (LBP) or Local 
Rank Differences (LRD) features and we describe this model in 
detail in Section 3.4. 

3.2 Related work 

Current cutting edge object detection algorithms are based on 
deep learning and convolutional neural networks (CNN). Gener­
ally, they achieve high detection accuracy in comparison to lin­
ear classifiers (such as Adaboost or SVM) [41, 42]. On the other 
hand, the computation of convolutional layers is very demanding; 
the number of operations required for evaluation is several orders 
of magnitude higher compared to linear classifiers. Furthermore, 
the neural networks usually require large amount of intermediate 
results, increasing memory requirements during inference. An­
other issue is the number of network parameters which can easily 
reach many milions. Furthermore, the memory requirements of 
CNN-based detectors are prohibitive for F P G A implementation. 
Current state-of-the-art F P G A architectures is that why can pro­
cess only small images [43] and they are very slow [44],or they 
must use clusters of very large and expensive FPGAs[45]. For 
these reasons, linear classifiers are still favorable for implementa-
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tion in FPGAs and embedded devices in general especially when 
processing of large images is required. 

Table 3.1 summarizes important works in the field of embed­
ded object detection from last ten years. Here we analyze the 
approaches the authors used. 

Lai et al. [14] proposed a parallel hardware architecture based 
on Haar cascades. They achieved a detection speed up to 143 
frames per second (FPS) at V G A resolution. Due to high de­
mands on F P G A resources they limited the cascade to only first 
three stages (52 features), which led to low detection accuracy. 
Their implementation is therefore suitable as a preprocessing unit 
rather than full object detector. Cho et al. [1] implemented a 
Haar cascade-based face detection algorithm. They implemented 
various versions with one or three parallel classifiers to accelerate 
the processing speed. The disadvantage is high memory demand 
to perform multiscale detection on a pyramid of integral images. 

Huang and Vahid [5] developed a method to generate a Haar 
feature-based object detectors. They aimed at automatic genera­
tion of detectors with a required precision for FPGAs of various 
sizes. This approach allowed to reduce resource requirements of 
integral image memory and hardware complexity against univer­
sal implementation of detector. Brousseau and Rose [6] improved 
Haar cascade-based detector in F P G A by preloading of neighbor­
ing pixels, allowing parallel evaluation of classifiers in adjacent 
scanning windows. They also proposed a very complex evaluation 
control mechanism, allowing to rearrange execution of classifiers 
to coalesce the memory accesses. 

Zemcik et al. [20], proposed an approach based on WaldBoost 
detection algorithm with L B P or LRD features. This approach 
implements stripe memory with block readout and image scaling 
but it is limited by fixed performace and by small image resolution, 
if the multi-scale detection is required. 

Several authors proposed detection engines based on massive 
parallel execution of large number of features, increasing overall 
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performance at the expense of the resource consumption. Jin et 
al. [7] proposed a design of fully pipelined classifier for high-speed 
face detection with L B P cascades. The features in each stage are 
executed in parallel. Kadlcek and Fucik [13] proposed an auto­
matic classifier synthesis for the F P G A . Their method generates a 
fast image preprocessing unit with L B P features, processing com­
plete detection window per clock cycle. High expense of F P G A re­
sources allows for implementation of only limited number of weak 
classifiers. 

Most of the works implement AdaBoost Cascade of classifiers 
with Haar features for face detection [1, 14, 5]. But, for example 
Kyrkou [24] detected traffic signs and cars. Some authors solve 
pedestrian detection with SVM[35, 37, 36, 39]. 

3.3 Design choices 

In this section, we analyze significant works from the point of 
efficient hardware implementation and we summarize the outlines 
for the design of our architecture. 

When it comes to hardware implementation, Haar features are 
not a good choice for several reasons. Haar feature is evaluated as 
a convolution of image and a mask. Each feature in the detector 
can cover a different and potentially large number of pixels, which 
means many memory accesses. Without using an integral image, 
this cannot be implemented to run in constant time, which is an 
important feature for pipelining in hardware. Using of integral im­
age increases memory requirements as each pixel requires higher 
bit depth [1, 14, 5, 24]. When using integral image, each feature 
can be evaluated by referencing from 6 to 9 pixels, depending on 
the shape of the feature [1]. Reading these values from B R A M , 
unfortunately, means non-uniform memory access which cannot 
be executed in a single clock cycle; therefore, most of the works 
implement the sliding window as a register array with FIFO line 
buffers stored in B R A M . This allows for parallel access of pix-
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els in the window and evaluation of multiple features in parallel. 
However, this also leads into a huge multiplexer network (20x20 
search window requires 400:1 multiplexer [1, 14]), that occupies 
many resources in F P G A . The resource consumption increases 
dramatically with the size of the detection window and thus such 
architectures are constrained to use only small and fixed window 
sizes to save resources. Huang [5] solves this drawback by limiting 
feature positions and simplifying the multiplexers. 

Zemcik [20] substitutes Haar features with L B P which replaces 
shift registers and delay lines by a set of B R A M memory blocks 
with organization that allowed for the multiplexing to be replaced 
by a simple block addressing technique. This approach has another 
advantage in pipelining of feature evaluation. It allows simultane­
ous processing of multiple image windows in the stream and thus 
full utilization of the pipeline, which is not possible with stan­
dard scanning window approach [5, 2]. In general, the hardware 
detectors based on L B P features[7, 13, 28] achieves higher perfor­
mance than Haar feature based detectors which is summarized in 
section 3.6. 

Multi-scale detection is, in most cases, solved by storing the 
input image in R A M and scaling by an algorithm or circuitry in­
dependent on the detection unit [5]. Downscaled images are then 
passed to the detector from R A M one after another. Brouss [6] 
uses resolution so small that the image fits BRAMs in the F P G A . 
Kyrkou [24] combines image downscaling to half resolution and 
upscaling the detector window. Scaled version of the image is 
stored in B R A M . Granat et al. [2] scales the image features in 
the classifier and addresses the integral image at its original scale. 
Zemcik [20] scales image on the fly and stores only a narrow image 
stripe in B R A M . Some works [25, 13, 37] do not solve multi-scale 
detection and detects objects of a fixed size; therefore, their ar­
chitectures are more simple and exhibits apparently higher perfor­
mance. 
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As a basic building block in our architecture, we use an im­
proved architecture by Zemcik et al. [20]. Specifically we improved 
the performance of pipelining, image scaling algorithm, the bit 
depth of the image and we extended it with cascading capabilites, 
described below. Our architecture differs from the others in several 
aspects. We use soft cascade instead of cascade of classifiers (see 
in Section 3.1). Soft cascade is usually more efficient in terms of 
the number of extracted features [34]. We use features that do not 
need integral image and that can be evaluated directly from the 
input image - L B P and LRD [46]. 

In our approach, the sliding window is not stored in F P G A 
registers. Instead, Stripe Memory Engine (SME) is used to store a 
narrow stripe of the input image in B R A M , see in 3.5. The stripe 
must be higher than the of classifier window (we use classifiers 
with height up to 24 pixels and stripe height is 32 pixels). In the 
classifier window, we limit geometric size of the features to 6x6 
pixels which allows uniform reading of a fixed size pixel blocks from 
SME in one clock cycle. Juranek et al.[47] shows that limitation 
of feature block size does not have adverse effects on detector 
accuracy. Image is represented on 8 bits per pixel which saves 
resources compared to integral image where even 20 and more 
bits per pixel need to be used [24, 14]. The detector size is limited 
only by the height of the detection window but not by the width, 
which can be of virtually any size. We also do not use R A M to 
store the input image; instead, the image is scanned as it comes 
from the source and its scaled versions are generated on the fly (see 
in 3.5). Many image scales are stored in the same SME. The stripe 
memory, due to its organization, allows the evaluation of multiple 
scanning windows simultaneously and enables efficient pipelining 
and scheduling of the detector evaluation process. Moreover, dual-
port B R A M allows us to implement two pipelines and therefore 
up to two features can be extracted in a clock cycle. 

Another contribution of this work is that our detection engine 
can be cascaded in order to increase the performance and the im-
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age resolution using Stripe Memory Cascades (see in 3.5). It is 
basically a chain of SMEs where one SME sends the image data 
to the subsequent one. The number of instances is only limited by 
available resources. In practical setup, one instance can hold few 
high-resolution image scales and the other the rest low-resolution 
scales; therefore, the maximum image resolution is bigger com­
pared to one instance solution. Moreover, both instances run in 
parallel and thersefore the performance is also increased. The 
number of instances in the cascade is limited only by available 
resources. 

A l l of these differences - detector based on simple image fea­
tures, image representation in SME, cascading and efficient pipelin­
ing - contribute to low resource requirements and overall perfor­
mance of the proposed architecture. 

3.4 Classifier model 

The main part of the detection is the evaluation of the classifier 
H(x) on image patches. It consists of the feature extraction and 
the classifier response accumulation, which we describe in the fol­
lowing text. 

Feature ex t rac t ion 

Given an image patch x, a feature extraction is a function y = 
/(x, 7r), y G N which extracts a value from x based on the param­
eters 7r. As a feature extraction function, we use Local Binary 
Patterns (LBP) with 

7r = (x, y, w, h) 

or Local Rank Differences (LRD) [46] with 

7r = (x, y, w, h, a, b) 

where x,y,w,h define the feature position and the size in the patch 
x and a,b are indices of two distinct cells in the LRD case. 

28 



The feature response / (x , TT) is evaluated from values of 3x3 
cells whose positions and sizes are defined by the parameters TT. 
The cell values c = C(x, x, y, w, h) are obtained as a sum of pixel 
values in the respective cell. The two feature types we use, L B P 
and LRD, differ in how the values c are processed. 

L o c a l B i n a r y Pa t t e rns ( L B P ) 

In general, L B P is based on comparison of pixels from a circular 
neighborhood to the central pixel and generating binary code [48], 
forming the feature output. Extended versions attempt to reduce 
the number of possible output values by rotating the resulting bit 
pattern or by restriction of the number of 0-1 and 1-0 transitions 
in the code [49]. 

In this work, we use a simplistic variant of L B P which takes 
3x3 cell values and generate 8 bit code form comparison of the 
central cell to the border cells. Mathematically, the calculation 
can be written as Equation (3.4) where > operator compares all 
values of a vector to a scalar value, resulting in binary vector. 
Weights w correspond to powers of two 

w = [1,2,4,8,0,16,32,64,128], 

so the dot product effectively sets the bits in the result. The zero 
weight, W5, corresponds to the central cell C5 which is used as 
a basis for the comparison. The range of the resulting values of 
lbp(c) is [0;255]. 

lbp(c) = (c> c 5 ) w T (3.4) 
Equation (3.5) shows how the feature value is calculated, given an 
image patch x and parameters TT. 

/ (x , 7r) = lbp(C(x, x, y, w, h)) (3.5) 

L o c a l R a n k Differences ( L R D ) 
Features based on local ranks proved to be successful in object 
detection tasks [46]. L R D uses scheme similar to L B P - processing 
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of 9 values in 3x3 cells. It calculates the ranks of two distinct 
cells and outputs their difference. Mathematically, the function 
can be described as Equation (3.6), where a and b are indices of 
two distinct cells. The resulting value of the lrd(c, a, b) values is 
in [—8; +8] range. 

lrd(c, a, b) = ^ c > c a - ^ c > cb (3.6) 

Equation (3.7) shows how the feature value is calculated, given an 
image patch x and parameters TT. 

/(x, 7r) = lrd(C(x, x, y, w, h), a, b) (3.7) 

T h e classifier 

A classifier H is represented as a sequence of T weak classification 
functions 

^ = (7r i ,^,a i), z e l , 2 , . . . T (3.8) 

where 7r are parameters for feature extraction, 9 rejection thresh­
old, and a look-up tables with response values. Given an image 
patch x, the response of the classifier of length t, Equation (3.9), 
is a sum of predictions produced by the individual weak classifiers. 

t 
tft(x) = 5>,(/,(x,7T,)) (3.9) 

i=l 

The sample x can be rejected (classified as background) after eval­
uating k < T weak classifiers when i^fc(x) < &k- And it is classi­
fied as detected object only if all T weak classifiers were evaluated. 
i7r(x) is then used as classification confidence. The evaluation is 
summarized in Algorithm 1. 

The number of features evaluated on a sample is, therefore, not 
fixed as each image patch can be rejected by different number of 
weak classifiers. The number of weak classifiers varies depending 
on the image patch content. We can statistically evaluate the 
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Algorithm 1 Evaluation of classifier H on the sample x. 
1 procedure H(x) 
2 h = 0 

4 

6 

3 

5 

7: 

for t <- 1,T do 
(x, 2/, w, / i , a, 6) = 7Tf 
c = C(x, x, 2/, ty, /i) 
# = lrd(c, a, 6) 
H = H + *t(g) 

> Decode parameters 
> Extract cells 

> Or g = lbp(c) 
> Accum. the confidence 

8 if H < 0t then 
9 return ('reject7,0) > Reject x 

> Accept x 10 return ('accept', H) 

average number of weak classifiers required for classification of 
a patch - t. The value can be viewed as computational effort 
required for classifier evaluation. It can be calculated on a dataset 
using (3.10) by counting the number of evaluated weak classifiers 
W and classified image patches P. 

The value largely depends on the task and training data. Usual 
values values are 2 < t < 5 [47]. Lower values means faster detec­
tors. For illustration purposes, later in this paper, we use t = 2.5 
which is a realistic value e.g. for face detection [47]. The value is 
especially important since it directly influences the performance 
of the proposed architecture, see Section 3.5. 

In practise, the classifier of length T with L B P features is rep­
resented by three matrices F, A and T, where F is 4 x T matrix 
with feature extraction parameters 7r$ = (x, y, w,h), A is 256 x T 
matrix with lookup tables â , and T is 1 x T matrix with rejec­
tion thresholds 6t for each weak classifier. The t-th column of the 
matrices correspond to parameters ht. Note that in the case of 
LRD features, the size of F is 6 x T and the size of A is 17 x T, 
since LRD has six parameters nt = (x, y, w, h, a, b) and 17 output 

(3.10) 
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values for indexing. In Section 3.5 we use matrix F as a part mi­
cro program of the detection engine A and T are stored as lookup 
tables. 

Classif ier t r a i n ing 

Detectors in this work are trained by WaldBoost algorithm [11]. 
But other algorithm producing a sequence of feature parameters 
and associates them with the corresponding response values can 
be used as well, e.g. [26]. The detailed description of the training 
algorithm is out of the scope of this paper since we focus mainly 
on the hardware implementation of the detection process. We 
kindly refer reader to the original paper [11]. Here we only provide 
informal description of the algorithm for reader to understand how 
it works. 

The input of the algorithm is a pool of feature parameters, tar­
get false negative rate a, and a large set of training instances. E.g., 
when training a face detector, the training instances are image 
patches representing faces. The parameter a represents tradeoff 
between the final detector speed and its accuracy. Higher values 
of a (e.g. a = 0.2) produces fast detectors with low value of t, 
since they can reject background samples more rapidly. Low val­
ues (e.g. a = 0.01) produces slower detectors with higher t. We 
analyze this tradeoff in Section 3.6 on the task of face detection. 

The training algorithm works in rounds, training weak classi­
fiers one by one in s greedy manner. On the beginning of a round 
t, the algorithm loads background samples from a large set of im­
ages (not containing the target patterns) using the already trained 
classifier (i.e. weak classifiers from hi to ht-\). For each feature 
in the pool, weak learner trains confidence values in lookup ta­
bles using AdaBoost [50]. In this step, the values are quantized 
to the resolution required by the F P G A . This is better than ex-
post quantization (after the classifier is trained) since it allows 
training algorithm to adapt on errors caused by the computation 
with reduced precision [20, 8]. Then, the weak classifier minimiz-
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ing exponential loss function [50, 19] is selected as ht. Based on 
the distribution of Ht, for target and background samples, 9t is 
selected so that as much as possible background samples may be 
rejected while discarding as few as possible target samples for the 
next round and satisfying target false negative rate a. 

For the detector training in this work, we use our custom train­
ing software which produces detectors suitable for hardware, tak­
ing into account all possible quantization effects of the input image 
and values in lookup tables. 

3.5 The architecture 

We propose a hardware architecture that implements the key steps 
of sliding window object detection - image scaling, feature extrac­
tion, and classification of image patches. In the following text, we 
describe the design of the detector and its interface, and compare 
it to the equivalent software implementation in order to validate it. 
Figure 3.5 shows the overall schematic description of the detector. 

S t r ipe M e m o r y 

The key part of our architecture is a Stripe Memory Engine (SME) 
which stores the active part of the input image and its scaled 
variants in multiple BRAMs, see Figure 3.5 for an illustration. 
When a new line is read from the image source, the data in SME 
are updated and scaled on the fly. The number of scales stored in 
SME is limited by the total width of SME raster, which is 4 096 
pixels in this paper. 

The architecture of SME is optimized for reading a block of 
pixels in a single clock cycle, so all data required for feature ex­
traction are available in constant time. The data access is done 
in two stages. First, a fixed-size block aligned to certain position 
is retrieved from BRAMs to registers. Then, from this intermedi­
ate block, a sub-block with any size and alignment is retrieved by 
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Figure 3.3: An example of SME in 2x3 organization and 6px 
blocks (U = 2, V = 3 and B = 6) stored in 6 B R A M S (color 
coded). Aligned block A of size 12x3 pixels can be retrieved from 
the memory in one clock cycle. 

DSP 1x2 1 

6x6 6x6 
DSP 2x1 pixels DSP 2x1 

DSP 2x2 

3x3 

w,h 

LBP 
RANK Rank a 

RANK 

Sub 

Rank b 

LRD 

type 

feature 

Figure 3.4: Circuit for feature extraction. The input is 6x6 pixel 
block from which, depending on feature parameters w,h, 3x3 cells 
are extracted. The resulting cells are used to calculate L R D or 
L B P features. 

simple addressing. We store the image stripe in multiple BRAMs 
organized in a way that each B R A M is referenced only once when 
reading an aligned, fixed size block of pixels. BRAMs create a 
pattern of size U x V , and each B R A M stores B pixel block. This 
is illustrated in Figure 3.3 for U=2, V=3 and B=6. This requires 
U • V BRAMs to store the image stripe. Such an organization 
allows for reading B • U x V pixel blocks (aligned to B pixels 
horizontally) in a single clock cycle by referencing all BRAMs. 

Although SME can be configured almost arbitrarily, it is lim­
ited by the size of B R A M in the target platform. For practical 
applications, we use 4096x32 pixel raster, [7 = 4, V — 8, B — A 
and pixels represented on up to 9 bits. On our target F P G A , the 
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Figure 3.5: (Top) Block diagram of detector. The SME unit, 
which stores the image and produces downscaled images and two 
detection pipelines, driven by microcode program. (Bottom) Il­
lustration of the stripe memory that we use for image represen­
tation and source of data for detector evaluation is shown, too. 
Incoming line (blue) is stored as a last line in the buffer. When 
possible, 6x6 blocks on the bottom of the buffer are scaled and 
stored as 5x5 blocks in subsequent scales. See the text and Figure 
3.3 for details on how the data are stored in F P G A BRAMs. 

SME takes 32 BRAMs with 36 kbit capacity. This organization 
allows us to retrieve 16x8 pixel blocks aligned to 4 pixel position. 
The, for feature extraction, we take 6x6 pixel sub-block or 8x8 
sub-block for image scaling. 

Feature ex t rac t ion uni t 

The detection engine implements L B P and LRD image features. 
The size of the feature cells is limited to w < 2, h < 2, and thus 
the feature area is limited to a maximum 6x6 pixels. The position 
x, y is not limited in any way. 

The block diagram of feature extractor is shown in Figure 3.4. 
The input is the 6x6 pixel block read from SME according to the 
absolute feature position in image (taking into account position 
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of analyzed window). DSP blocks extracts all possible variants 
of c from the SME. One of the variants is selected for evaluation 
according to the feature parameters w, h from TT. The ranks of 
elements a and b are calculated as the number of positive compar­
isons of an element ca (resp. c&) to all other elements in c. The 
ranks are subtracted to obtain the L R D feature value. Evaluation 
of an L B P feature is similar - parallel comparison of the central 
element c i i to the elements at the boundary. The response of 
a weak classifier is obtained from the look-up table a associated 
with the extracted feature. 

It should be noted that the circuit is designed to extract both 
LRD and L B P features simultaneously; however, in case that 
only one feature type is used, the circuitry for the other type is 
optimized-out during synthesis. 

De tec to r cont ro l 

The detector implements Algorithm 1. For every position (m, n) 
in SME image a sequence of instructions is executed. Each in­
struction reads the 6x6 pixel block from SME, extracts 3x3 cells 
c, evaluates the feature function and accumulates the response 
value read from table A. Then, the window is rejected or passed 
to the next stage based on the threshold value from T. Every­
thing is driven by the parameters from the instruction code. In 
case of rejection, new position is scheduled for evaluation. When 
all the instructions are finished, the window coordinates and the 
confidence value are sent to output. 

The detector itself is controlled by a programmable automaton 
driven by a 32-bit instruction set. An instruction encode param­
eters for feature extraction - particularly the feature parameters 
from matrix F and sequence number identifier t for addressing ma­
trices A and T. We use 8 bits to encode each coordinate of feature 
position (x,y), 2 bits for (w,h), and 4 bits for each from (a, b). 
Note, that values a and b are present in the instruction code even 
for LBP-based detectors where they are unused. In the matrix 
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A, we store the response values on 9 bits and the thresholds in T 
table on 18 bits. 

The detector microcode contains a sequence of up to 1024 in­
structions; it means the length of the classifier is T < 1024. The 
number of instructions can be decreased or even increased, having 
linear impact on the memory requirements. Current implemen­
tation requires 1 B R A M for storing instructions, 1 B R A M for 
thresholds and 5 BRAMs for A and T in L R D case (64 BRAMs 
in L B P case) 2 BRAMs are occupied by instructions for static 
execution scheduler (see 3.5). 

The evaluation of the classifier is pipelined. The pipeline is 14 
clock cycles long and thus up to 14 positions are evaluated simul­
taneously. Thanks to the memory architecture described above, 
the pipeline can be utilized to 100 % which is impossible to achieve 
by previous scanning window approaches [5, 2]. We use two-port 
B R A M in SME, so we use two pipelines to double the perfor­
mance. However, a small portion of memory accesses from the 
second pipeline needs to be reserved for image scaling and for 
storing the incoming image lines and the down-scaled data back 
to the SME - we leave one out of every 4 clock cycles for the scal­
ing unit to generate the scaled images, and therefore the overall 
performance is p = 1.75 features extracted per clock cycle. 

Image scal ing 

Besides the original image, SME stores scaled variants of the im­
age. The scaling is done on-the-fly over few last image lines. We 
use a block-based approach for scaling with fixed factor S — |, 
where 6x6 pixels blocks from a base scale are transformed to 5 x 5 
pixels blocks in the subsequent scale. We implemented the sep­
arable, integer version of Lanczos [51] scaling algorithm for 8 bit 
images. 

The process of downscaling and detector execution on individ­
ual SME lines is statically scheduled and driven by the microcode 
stored in B R A M . The classifier operations are performed to ev-
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ery line but every scale has a different number of lines to process. 
Moreover, the scaling is a block operation which is performed ev­
ery 6-th line. This can cause occasional bursts of detector execu­
tions. The static scheduling allows us to distribute the execution 
of detector and scaling to avoid this execution bursts and ensure 
regular processing of image stream. 

The maximum height of scanning window is given by height of 
SME minus size of block produced by scaling unit, which is 27px 
(32-5px in our case). This height is sufficient for many of detection 
tasks and also standard detectors uses similar dimensions -21x21 
or 24 x 24 pixels [19, 11]. 

De tec to r interface 

From the outside view, the detector is a computational block with 
one input, one configuration interface and two outputs. The input 
reads a stream of incoming image data of the given resolution. 
The configuration interface itself is composed from the detector 
definition (instructions and associated look-up tables), input im­
age size, and sizes of scaled versions. The first output is a stream 
of the image data from the smallest scale in the SME. This output 
is used as an input for another detector instance. The second out­
put contains detection results - coordinates and scale of detected 
objects. For both image input and output, we use A X I Stream 
Video interface for configuration the AXI-Lite interface and A X I 
Stream for detection results. This interfaces simplify integration 
of the detector to applications. 

S t r ipe m e m o r y cascades 

A single detector block is limited by the width of SME (4 096 pixels 
in our case) and by the performance of feature extraction, which is 
p = 1.75 features/Hz (i.e. 350Mfeatures/s with 200MHz clock). 
From the performance point of view, it is not efficient to build 
the detector with a wider window (buffer) to hold more image 
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scales, because the limitation of feature extraction speed would 
still remain. Our design allows for a more efficient solution - cas­
caded connection of detector blocks which we call Stripe Memory 
Cascade, illustrated in Figure 3.6. In the cascade, one detector 
instance generates scaled version of image and passes it to the 
subsequent instance. No limitation exists on the number of in­
stances, except for the resources available on the target platform. 
A l l instances operates in simulataneously, effectively increasing 
the speed of the feature extraction. Output streams from all the 
instances are simply merged to form the output of the cascade. 

Table 3.2 shows several configurations of cascaded instances, 
their performance, and resources they require. The naming con­
vention we use for the configurations encodes the resolution pro­
cessed and the number of detector block instances, e.g. VGA/1 
is configuration for processing of V G A image with one detector 
block instance and it is similar to what was proposed by Zemcik 
et al. [20]. Versions HD /2, HD/3 and HD/4 are configurations for 
HD image with different performance and resource requirements 
due to different assignment of image scales to detector instances. 
Versions FHD /4 and UHD/7 are for Full HD and 4K images. The 
versions for L B P and LRD differs mainly in memory requirements 
because L B P requires more BRAMs for classifier definition as de­
scribed earlier in this paper. 

Speed analysis 

The theoretical maximum throughput (in frames per second) for 
one instance of the detector unit can be estimated using Equa­
tion (3.11) where / is the operating frequency, p the number of 
features extracted in one clock cycle, t is the average number of 
weak classifiers evaluated per window, and P represents the num­
ber of positions to evaluate in the image and its scaled versions 
assigned to the detector. The numerator of Equation (3.11) rep­
resents the total number of features extracted by the detector, 
the denominator is the average number of features that must be 
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Figure 3.6: Cascading of detector instances. Each detector takes 
scaled input image from the previous one, the output coordinates 
and classifier response of detected objects are merged into one 
stream. Each detector is configured separately. 

extracted on an image. As explained in Section 3.5, in our ar­
chitecture has p = 1.75. The value of t is the property the par­
ticular classifier, the average number of features that needs to be 
extracted from the image in order to decide the class of one an­
alyzed window (see Section 3.4). It reflects the average case and 
it can change locally with irregularities in data that are hard to 
predict. We use t = 2.5 for illustration purposes which is a real­
istic value for face detection. See Section 3.6 with the analysis of 
detectors we use. 

F=l—Z (3.11) 
P-t v ' 

The throughput of the whole cascade of detectors is limited 
by the slowest unit in the chain and it depends largely on sizes of 
images processed by the individual instances. In the Table 3.3, we 
show breakdown of HD/* variants from Table 3.2). Each version 
processes 20 image scales, the difference is in the manner how the 
scales are assigned to the detectors in the chain, and in the length 
of the chain. 

Let us focus, for example, on the HD/2 version, with two in­
stances of detector. The first instance contains four image levels 
(resolutions from 1 280 pixels to 742 pixels of width) and we esti­
mate around 5.4 M features need to be calculated on those four lev­
els on average. Therefore, the speed of the first instance is around 
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Table 3.2: Examples of cascade configurations, their predicted 
performances, and resource requirements. Valid for detector of 
size 21x21 px, i = 2.5, and / = 200 MHz. 

Version Feature Res. [pixels] Scales Insts. B R A M R E G L U T FPS 

VGA/1 L R D 640x480 18 1 41 7640 9933 160 
HD/2 L R D 1280x720 20 2 82 15292 19919 64 
HD/3 L R D 1280x720 20 3 123 22944 29905 94 
HD/4 L R D 1280x720 20 4 164 30596 39891 159 
FHD/4 L R D 1920x1080 22 4 164 30596 39891 60 
UHD/7 L R D 3840x2160 26 7 288 53552 69849 17 

VGA/1 L B P 640x480 18 1 100 7650 9978 160 
HD/2 L B P 1280x720 20 2 200 15312 20009 64 
HD/3 L B P 1280x720 20 3 300 22974 30040 94 
HD/4 L B P 1280x720 20 4 400 30636 40071 159 
FHD/4 L B P 1920x1080 22 4 400 30636 40071 60 
UHD/7 L B P 3840x2160 26 7 700 53622 70164 17 

64FPS, calculated using Equation (3.11). The second instance 
contains the rest of the image scales (resolutions from 619 pixels 
to 42 pixels of width) and its speed is estimated to 233 FPS. The 
total speed of the HD/2 is therefore 64 FPS as it is the minimal 
framerate from all detectors in the chain. 

V a l i d a t i o n 

During the design phase, we developed a software implementa­
tion of the detection algorithm which uses the same input data as 
the hardware implementation (look-up tables, instructions, thresh­
olds, etc), and is based on the same image scaling algorithm. The 
architecture was validated by comparison of the results produced 
by the software implementation to the results produced by our 
architecture on a large set of images. The results were identical; 
therefore, we assume that the subtle differences in implementation 
in software and hardware are acceptable. 
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Table 3.3: Comparison of three different cascade designs, all for 
HD resolution. The values are shown for detector of size 21x21 
px with average t = 2.5 features per position, and / = 200 MHz 
clock. It can be observed that trade-off between the number of 
instances and desired detection performance exists. 

Scale Resolution P-t £ P - i 
HD/2 

FPS £ P - i 
HD/3 

FPS £ P - J 
HD/4 

•£W FPS 
1 1280x720 2200103 3714188 2347 94 2200103 1280 159 
2 1067x600 1514085 5468605 3979 64 

3714188 2347 94 1514085 1067 231 
3 
4 

890x500 
742 x 417 

1040628 
713790 

5468605 3979 64 
1754418 1632 199 

5 619x348 488865 
6 516x290 332887 3058318 2856 114 
7 
8 

430x242 
359x202 

225972 
152945 

9 300x169 103230 1497155 3536 233 1497155 3536 233 
10 250x141 68700 
11 209x118 45590 193255 1312 1811 

20 42x25 210 
F P S 64 94 159 

3.6 Results and Evaluation 

In our applications we use Xilinx Zynq SoC with A R M C P U and 
F P G A . This combination allows for simple configuration of the 
detector and post processing of the results. However, if required, 
everything can be fixed and implemented in F P G A only. The 
design was written completely in V H D L with only few platform-
dependent blocks (such as 36 kbit B R A M capacity); thus, it could 
be relatively easily adapted to various FPGAs, even from different 
vendor. 

We built a prototype of a smart camera with HD CMOS image 
sensor and Zynq SoC Z-7020 chip. The camera captures image at 
60 FPS and passes it through the HD/2 detector. The detection re­
sults are processed on A R M core (non-maxima suppression, filter­
ing) and the image along with the coordinates of detected objects 
are streamed through the network. We demonstrate the archi­
tecture on the detection of frontal faces and detection of license 
plates. As an example of our technology, we provide an IP Core 
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of version VGA/1 and HD/2 detector with built-in face detector1. 
This IP Core takes approximately 15% of Zynq Z-7020 resources. 

De tec to r evaluat ion 

Properties of WaldBoost detectors were experimentally evaluated 
many times on various problems [11, 52, 47, 53]. We tested our 
architecture in two example scenarios - face detection and license 
plate detection. These two applications are important in surveil­
lance tasks. However, the detector can be used for detection of 
other rigid objects as well - cars [54], pedestrians [35] etc. We 
compare our detectors to the pre-trained detectors from OpenCV 
which implement Haar and L B P Cascades used by other state-of-
the-art architectures. We report Receiver operating curve (ROC) -
the tradeoff between false positive rate (the number of false detec­
tions generated per one image) and miss rate (the ratio of missed 
objects). Figure 3.9 shows a few images from each of the tasks. 

Detection of frontal faces 

We trained frontal face detectors on a large dataset of faces and 
compared them to OpenCV cascade detectors widely used by other 
authors as a baseline [1, 5, 6, 38]. The detector window size (u,v) 
was set to 24x24 pixels and the detector length to T = 1024. We 
trained four detectors with different target false negative rate a G 
{0.01,0.05,0.1,0.2}, see Section 3.4 for details. From OpenCV, we 
used h a a r c a s c a d e _ f r o n t a l f a c e _ a l t , as it gives the best results 
from the built-in detectors. We tested the detectors on our set 
of 102 high resolution images with 1 857 annotated frontal faces 
(which is bigger and more challenging than M I T - C M U usually 
used for testing of frontal face detectors). The results in Figure 3.7 
show that our detector (with a = 0.1) gives almost 10 x less false 
positives compared the detectors from OpenCV at the same recall 

XA11 resources can be downloaded from https://github.com/ 

RomanJuranek/zynq-detector 
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level. The recall of OpenCV detectors is 94% as reported by 
others [1, 20, 24, 25, 5, 4, 13]. Table 3.4 summarizes the speed 
and recall tradeoffs of the detectors trained with different value 
of a and their predicted performance in FPS when executed in 
version ED/2 architecture. 60 FPS margin is satisfied by classifiers 
with a < 0.1. 

Detection of license plates 

In law enforcement applications, such as speed measurement, de­
tection of licence plates is a crucial step where accuracy and speed 
matters very much. We trained a license plate detector on a pro­
prietary database of images taken by speed enforcement cameras. 
The dataset contains 30000 automatically obtained samples of 
axis aligned license plates. The test set contains 1000 images with 
manually corrected annotations. The dataset covers a wide range 
of conditions - day, night, sun, rain, snow and fog. For our ex­
periments, the detector window size (u,v) was set to 84x12 pixels 
and the detector length was T = 1024. Accuracy evaluation in 
Figure 3.7 shows that the detection rate of WaldBoost detector is 
over 99% when a false alarm occurs on one out of one hundred 
images. Detector speed measured on the test set is i = 2.7, cor­
responding to 62 FPS in ED/2. This is more than sufficient for 
this kind of application. For comparison, we trained Haar and 
L B P cascade from OpenCV on the same data using tools installed 
with the library. As Figure 3.7 suggests, our detector outperforms 
OpenCV detectors by a large margin. 
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Figure 3.7: Accuracy evaluation of our detectors (WaldBoost) and 
comparison to OpenCV detectors (Haar and L B P cascade) for 
frontal face detection (top) and license plate detection (bottom). 
WaldBoost gives lower false positives at the same accuracy level. 
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Table 3.4: Speed analysis of our face detectors on ED/2. Fast 
detectors have slightly lower accuracy. The important value is i, 
which directly influence the performance of our architecture. 

a = 0.01 a = 0.05 a = 0.1 a = 0.2 

Recall 0.970 0.969 0.964 0.952 
t 7.54 4.43 2.50 1.96 

F [FPS] 21 36 64 82 

Table 3.5: Power Consumption comparison. FPGA-based detec­
tor is more power efficient compared to PC and G P U solutions. 

platform FPS Power (W) mj / Frame 

PC Intel i7 3770K 22 77 3500 
G P U GeForce 1080Ti 915 120 131 
SOC Tegra K l 38 4 105 

HD/2 Artix7 xc7a75 64 1.52 24 
HD/4 Artix7 xc7a200 159 2.95 19 
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Table 3.6: Comparison of critical parameters of the published architectures reported by the authors 
to the proposed architecture. Some works do not report all parameters or report slices (SL) or 
logical elements (LE). *Suitable only for preprocessing purposes 

Feature Platform Res. [pixels] F P S Stride wpc / [MHz] B R A M L U T R E G D S P 

L a i * [14] Haar Vir tex2 V P 3 0 640: x480 143 1 0.886 126 44 20 900 7 800 -

Granat [2] Haar Vir tex2 L X 2 5 0 256: x256 < 5 1 0.058 24 100 - - -
Cho [1] Haar Vir texö L X 1 1 0 T 640: x480 7 1 - - 41 66 900 21900 -

Hiromoto [3] Haar Vir tex5 L X 3 3 0 640: x480 30 1 0.173 160 - 63 440 55 515 -

Marte l l i [25] Covariance Vir tex6 L X 2 4 0 T 640: x480 132 8 0.002 154 3 1 553 (SL) - 22 
K y r k o u [4] Haar Vir tex2 V P 3 0 320: x240 64 1 0.083 100 24 25 800 23 800 -
Huang [5] Haar Vir tex5 L X 1 5 5 T 320: x240 100 1 0.268 65 - 80 000 - -

Brouss [6] Haar Stratix4 G X 5 3 0 320: x240 50 1 0.083 125 - - - -

J in [7] L B P Vir tex5 L X 3 3 0 640: x480 300 1 1.974 125 286 128 041 74 997 -
Kadlcek* [13] L B P Vir tex2 L X 2 5 0 1024x 1024 130 1 0.948 137 17 1007 (SL) - -
Zemcik [20] L B P / L R D Spa r t anö L X 4 5 T 640: x480 160 1 0.726 152 31 7 373 1732 -

Yazawa [35] H O G Cyclone III 640: x480 13 5 0.002 70 - 17419 (LE) 11306 -

M a [36] H O G Virtex-6 L X 7 6 0 1620x 1200 10 4 0.045 150 381 46 238 186 531 190 
Said [37] H O G Vir tex6 L X 2 4 0 T 640: x480 292 4 0.017 222 8 1 357 (SL) - 46 
K y r k o u [28] L B P SpartanÖ L X 1 5 0 T 800: x600 40 1 0.827 70 256 32 532 20153 59 
B i l a l [39] H O G Cyclone I V 640: x480 25 4 0.015 50 3 751 496 0 

Ours L R D (HD/2) L R D Zynq Z-7020 1280> (720 64 1 0.930 200 82 19 919 15 292 0 
Ours L B P (HD/2) L B P Zynq Z-7045 1280> (720 64 1 0.930 200 200 20 009 15 312 0 
Ours L R D (UHD/7) L R D Zynq Z-7045 3840x2160 17 1 2.334 200 288 69 849 53 552 0 



Power C o n s u m p t i o n C o m p a r i s o n 

Table 3.5 shows estimation of power consumption of different plat­
forms executing the face detection algorithm with Waldboost clas­
sifier {t = 2.5, a = 0.1) on 1280x720 images. On CPU, GPU, 
and Tegra, we used an OpenCL implementation of the detection 
algorithm from Herout et al. [23]. The critical steps were im­
plemented in OpenCL and compiled for the target platform, ef­
ficiently exploiting S S E / A V X instructions and multi-thread exe­
cution on C P U and computing cores as well as texturing units 
on GPU. For the Intel CPU, we report maximum thermal design 
power (TDP). In case of G P U and SoC, the accurate chip power 
consumption is available. Power consumption of the F P G A was 
estimated using Xilinx Power Estimator, assuming the worst case 
with a 100% toggle rate (i.e. when signals flips every clock cy­
cle). For the measurement purposes, we synthesized the ED/2 in 
the different F P G A of the same family without the A R M core, 
so the results are not influenced by the power consumption of the 
A R M which is, in fact, not required during the detection. For 
all platforms, we report the metric which expresses energy con­
sumed by the platform per one frame (Joules/Frame). The Table 
3.5 shows that the F P G A design requires approximately five-times 
less energy than SoC Nvidia Tegra. 

C o m p a r i s o n to other archi tectures 

Table 3.1 shows the comparison to other architectures in terms of 
the maximum image resolution, detection algorithm and features, 
scanning window size, and type of detected object. 

Due to our unique stream memory cascades, the detector can 
process images at very high resolution (up to 4K) while it is still 
capable of detection of very small objects. This property may be 
important e.g. when surveillance camera covers a large area. The 
most state-of-the-art architectures are capable of processing up to 
IMpix images. 
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Figure 3.8: Comparison of classifications per cycle (wpc) and re­
source requirements of the architectures from Table 3.1. Yellow 
color encodes proposed architectures from this paper, red color pre­
processing units, blue color the rest of the architectures. Marker 
shape encodes feature type used by the architecture ( • stands for 
HOG, + for Haar features, and • for L B P / L R D features). 

The advantage of the proposed architecture, comparing to oth­
ers, is the optional size of the detection window, which is limited 
only by the height of SME, while the width remains unlimited 
and freely adjustable. In other architectures [5, 2, 1, 6] the chang­
ing of window size means re-synthesizing of the whole design and, 
what is worse, larger windows takes more resources for multiplexer 
networks required for reading out the pixels. This is completely 
avoided in the proposed solution. 
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We compare our architecture to other similar ones. However, 
they are realized by different F P G A technology, have different in­
put sizes, classifier strides in image and other parameters. To 
make comparison possible, we characterize all the architectures 
by number of processed scanning windows per clock cycle (wpc) 
which gives raw performance measure independent on the used 
technology, frame rate and other parameters. Table 3.6 summa­
rizes performance and resource requirements of our architecture 
and compares it to the other published works. Plots in Figure 3.8 
show the dependency of resource consumption on the wpc classifi­
cation for some architectures. Various proposed configurations of 
cascade instances (from Table 3.2) are plotted in each graph. It 
can be observed that overall performance increases with number 
of cascaded SME instances which proves its benefit. 

The resource consumption and performance of configuration 
HD/2 is comparable to Kadlcek [13] and Lai [14], anyway, their 
design achieves only low detection accuracy caused by very short 
detector and limits their possible usage for preprocessing purposes 
only. Our architecture, on the other hand, works as fully featured 
object detector while providing sufficient performance even at high 
image resolutions. In summary, the graphs on Figure 3.8 and Table 
3.6 shows the performance superiority of L B P / L R D feature based 
detectors to Haar and HOG based detectors. 

The solution by Jin [7] and Kyrkou [28] achieves very high 
wpc, comparable to our FHD/4 and HD/2 configurations, but they 
require multiple-times more resources against our solution, even 
for only low image resolution. Comparing to work of Zemcik [20], 
the architecture we improved, we achieved higher performance, 
wpc, and maximum image resolution due to a cascading nature of 
our design. 

S V M based classifiers using HOG features presented by Said [37] 
and Martelli [25] achieves high framerate mainly due to detection 
stride, where they process only every x-th image row and column, 
effectively making the image xx smaller, which reflects into low 
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Figure 3.9: Examples of detected objects on selected images from 
testing datasets for face detection (top) and license plate detection 
(bottom). 

throughput. Moreover, they can only detect objects with fixed size 
128x64 pixels as they do not solve multi-scale detection. This is 
why their architecture performs so well with so limited resources. 
However, to detect smaller objects, they need to upscale the im­
age, and for multi scale detection, pyramidal representation need 
to be created, increasing the search space and slowing down the 
detection. 

The proposed architecture achieves the highest performance 
(represented by wpc) compared to the others and also has a rela­
tively low resource consumption as is evident from the Table 3.6 
and graphs on the Figure 3.8. 
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Chapter 4 

Conclusion 
The main goal of the research conducted in this thesis was to 
deeply investigate methods for optimising the object detector in 
images running on F P G A . The newly proposed methods enable 
creating an object detector in hardware that outperformed state-
of-the-art in better detection performance, better performance/re­
sources ratio and better accuracy in selected application tasks. 
The object detector has been developed using F P G A solely and 
tested on the face and license plates detection. 

The proposed detectors use boosted soft cascades of classifiers 
with local image feature as weak classifiers. The combination of 
the unique structure of memory and the local features enabled the 
effective sequential evaluation of weak classifiers. Parallel process­
ing of multiple independent positions in the image significantly 
increased detection performance. Cascade connection allows to 
distribute the calculation among multiple detectors optimally and 
thus scale the performance and resources consumption to the spe­
cific application. The newly designed method enables an efficient 
multi-scale detection on-the-fly without the use of external mem­
ory and large F P G A memory requirements. 

The presented scientific contribution aids to create an object-
in-image hardware detector usable in practice. A significant ben­
efit is the scalability of performance and resource consumption. It 
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rends possible to develop a detector, which can process either a 
FullHD video at 60 fps on F P G A with a current price of approxi­
mately 100 USD or an HD video at the same speed on a chip with 
a third of the price. It also allows to process images in high resolu­
tion; the proposed hardware detector is the first presented solution 
for the detection of all-sized objects, even tiny, at 4K resolution. 
In terms of accuracy, the proposed detector achieves better results 
than other similar detectors. On the comparative face detection 
dataset, it achieved 97% accuracy compared to only 91% being 
the best result until then. 

The proposed detectors are expected to be utilised in smart 
cameras in industrial, transport or security applications, i.e. in 
tasks such as the detection of faces, pedestrians, products, licence 
plates. In this work, the practical use is demonstrated on the 
task of license plate detection for parking control in residential 
areas. The proposed solution has many advantages over the exist­
ing system, such as lower power consumption leading to decrease 
of heating, as well as lower cost and smaller size of the resulting 
system. 

The use of boosted classifiers for object detection in hardware 
still remains a reasonable approach. Neural networks are the state-
of-the-art in non-hardware object detection; however their deploy­
ment on F P G A has enormous resource requirements. In the fu­
ture, I can see a benefit in combining boosted detectors with CNN 
to improve the accuracy of detection while maintaining reasonable 
demands on computing resources and the cost of devices. Another 
possible way to improve accuracy could be the use of multi-channel 
features such as ACF . 

53 



Curriculum Vitae 

P E T R MUSIL 
Petr Musil received the M.Sc. degree from the Brno University of 
Technology. He is currently a member of the Graph@FIT Group, 
Department of Computer Graphics and Multimedia, Faculty of 
Information Technology, Brno University of Technology. His in­
terests include image processing and computer vision algorithms 
and their acceleration on programmable hardware and embedded 
devices. 

Education 

• 2010- 2012: Brno University of Technology, Faculty of Infor­
mation Technology, Master of Computer Graphics and 
Multimedia 

• 2007 - 2010: Brno University of Technology, Faculty of In­
formation Technology, Bachelor of Information Tech­
nology 

Publications 

High Performance Architecture for Object Detection in 
Streamed Videos, conference paper 
Pavel Zemcik, Roman Juranek, Martin Musil, Petr Musil and 

54 



Michal Hradis, Proceedings of F P L 2013, ISBN 978-1-4799-0004-
6, DOI: 10.1109/FPL.2013.6645559 Author participation: 30% 

High performance F P G A object detector: Hardware pro­
totype, conference demo 
Pavel Zemcik, Roman Juranek, Martin Musil, Petr Musil and 
Michal Hradis, Proceedings of F P L 2013, ISBN 978-1-4799-0004-
6, DOI: 10.1109/FPL.2013.6645622 Author participation: 30% 

High performance architecture for object detection 
in streamed video (abstract only), poster 
Pavel Zemcik, Roman Juranek, Petr Musil, Martin Musil and 
Michal Hradis, Proceedings of the A C M / S I G D A international sym­
posium on Field programmable gate arrays, 2013 
DOI: 10.1145/2435264.2435319 Author participation: 20% 

Single-Loop Approach to 2-D Wavelet Lifting with J P E G 
2000 Compatibility, conference paper 
David Bafina, Martin Musil, Petr Musil and Pavel Zemcik, IEEE 
27th International Symposium on Computer Architecture and High 
Performance Computing Workshops, ISBN 978-1-4673-8621-0, 
DOI: 10.1109/SBAC-PADW.2015.10 Author participation: 30% 

High Dynamic Range Video; Concepts, Technologies and 
Applications, book chapter 
Pavel Zemcik, Petr Musil and Martin Musil, Elsevier Science 2016, 
ISBN 978-0-12-809477-8 Author participation: 33% 

Real-Time H D R Video Processing and Compression Us­
ing an F P G A , book chapter 
Martin Musil, Petr Musil and Pavel Zemcik; Elsevier Science 2016, 
ISBN 978-0-08-101038-9, DOI: 10.1016/B978-0-12-809477-8.00007-
8 Author participation: 35% 

55 



True H D R camera with bilateral filter based tone map­
ping, conference paper 
Svetozár Nosko, Martin Musil, Petr Musil and Pavel Zemčík, SCCG 
'17: Spring Conference on Computer Graphics 2017, ISBN 978-1-
4503-5107-2, DOI: 10.1145/3154353.3154367 Author participa­
tion: 20% 

Cascaded Stripe Memory Engines for Multi-Scale Object 
Detection in F P G A , journal article in Scopus 
Petr Musil, Roman Juránek, Martin Musil and Pavel Zemčík, 
IEEE Transactions on Circuits and Systems for Video Technol­
ogy 2020; vol. 30, no. 1, pp. 267-280, Jan. 2020, 
doi: 10.1109/TCSVT.2018.2886476. Author participation: 30% 

Unconstrained License Plate Detec-tion in Hardware, con­
ference paper 
Petr Musil, Roman Juránek and Pavel Zemčík, International Con­
ference on Vehicle Technology and Intelligent TransportSystems 
(VEHITS) 2021. Author participation: 40%, Under review 

Projects 

• Moderní metody zpracování, analýzy a zobrazování 
multimediálních a 3D dat, 2020-2022 

• Zpracování, zobrazování a analýza multimediálních 
a 3D dat, 2017-2019 

• Zpracování, rozpoznávání a zobrazování multimediál­
ních a 3D dat, 2014-2016 

• Java platform for high PErformance and Real-time 
large scale data management (JUNIPER), 2013-2015 

56 



• 7H12006, ConstRaint and Application driven Frame­
work for Tailoring Embedded Real-time Systems, 2012-
2015 

• TE01020415, Centrum kompetence ve zpracování vizuál­
ních informací, 2012-2019 

• LD12027, Pořizování a zpracování H D R obrazů, 2012-
2015 

Creative Activities 
• AdaBoost in VHDL; Image detection using AdaBoost in 

VHDL; software; MUSIL, P.; MUSIL, M . ; ZEMČÍK, P.; JU-
RÁNEK, R. 

• Zynq Profiler; Zynq Profiler; software; MUSIL, P.; MUSIL, 
M . ; ZEMČÍK, P. 

• AdvHDRVideoCam; Funkční vzorek zlepšené kamery pro 
snímání HDR videa; functional specimen; MUSIL, M . ; MUSIL, 
P.; S E E M A N , M . ; ZEMČÍK, P. 

• HDRVPS; HDR Video Processing Software; software; MUSIL, 
P.; MUSIL, M . ; S E E M A N , M . ; ZEMČÍK, P. 

• ForegroundDetDemo; Embedded detektor popředí v obraze; 
functional specimen; MUSIL, M . ; MUSIL, P.; KOPLÍK, K.; 
ZEMČÍK, P. 

• fpga-dwt; F P G A Cores for Discrete Wavelet Transform; soft­
ware; MUSIL, P.; MUSIL, M . ; BAŘINA, D.; ZEMČÍK, P 

• WaldBoostFPGA; Funkční vzorek Zařízení pro detekci v obraze 
pomocí WaldBoost v F P G A ; functional specimen; MUSIL, 
P.; MUSIL, M . ; ZEMČÍK, P. 

57 



• DetectorCore; V H D L object detector - IP core; functional 
specimen; MUSIL, P.; MUSIL, M . ; ZEMČÍK, P.; JURÁNEK, 
R. 

• ZynqHDRVideoCam; HDR kamera; functional specimen; 
NOSKO, S.; MUSIL, M . ; MUSIL, P. 

• HDR merger SW; Software pro skládání a zpracování HDR 
snímků; software; MUSIL, M . ; NOSKO, S.; MUSIL, P. 

• Bilateral filter IP core; Bilaterální filtr pro HDR tone map­
ping (IP core); software; NOSKO, S.; MUSIL, M . ; MUSIL, 
P. 

• WaldBoost Detector; HW detektor objektů ve videu; soft­
ware; MUSIL, M . ; MUSIL, P.; JURÁNEK, R.; ZEMČÍK, 
P. 

Stays Abroad 

• 2013 COST IC1005 - HDR Summer school, Technological 
Educational Institute of Crete, Heracleion, Greece, one week 

• 2014 University of Warwick, Coventry, United Kingdom, 2 
stays (each one week) 

• 2019 Betl and Road Summer School on Technological Inno­
vation, Beijing Institute of Technology, Beijing, China, two 
week 

58 



Bibliography 

[1] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, "Fpga-based 
face detection system using haar classifiers," in FPGA, 2009. 

[2] J. Granát, A. Herout, M . Hradiš, and P. Zemčík, "Hardware 
acceleration of adaboost classifier," in Workshop on 
Multimodal Interaction and Related Machine Learning 
Algorithms (MLMI), 2007, pp. 1-12. 

[3] M . Hiromoto, H. Sugano, and R. Miyamoto, "Partially 
parallel architecture for adaboost-based detection with 
haar-like features," IEEE Transactions on Circuits and 
Systems for Video Technology, vol. 19, 2008. 

[4] C. Kyrkou and T. Theocharides, "A flexible parallel 
hardware architecture for adaboost-based real-time object 
detection," in VLSI Systems, 2011. 

[5] C. Huang and F. Vahid, "Scalable object detection 
accelerators on fpgas using custom design space 
exploration," SASP, 2011. 

[6] B. Brousseau and J. Rose, "An energy-efficient, fast fpga 
hardware architecture for opencv-compatible object 
detection," in Field-Programmable Technology (FPT), 2012. 

[7] S. Jin, D. Kim, T. T. Nguyen, D. Kim, M . Kim, and J. W. 
Jeon, "Design and implementation of a pipelined datapath 

59 



for high-speed face detection using fpga," IEEE Transactions 
on Industrial Informatics, vol. 8, pp. 158 - 167, 2012. 

[8] P. Zemčík and M . Žádník, "Adaboost engine," in FPL, 2007. 

[9] P. Viola and M . Jones, "Rapid object detection using a 
boosted cascade of simple features," CVPR, 2001. 

[10] L. Bourdev and J. Brandt, "Robust object detection via soft 
cascade," in CVPR, 2005. 

[11] J. Sochman and J. Matas, "Waldboost - learning for time 
constrained sequential detection," in CVPR, 2005. 

[12] E. Ohn-Bar and M . M . Trivedi, "To boost or not to boost? 
on the limits of boosted trees for object detection," CoRR, 
vol. abs/1701.01692, 2017. 

[13] F. Kadlček and O. Fučík, "Automatic synthesis of small 
adaboost classifier in fpga," in Design and Diagnostics of 
Electronic Circuits & Systems (DDECS), 2013. 

[14] H.-C. Lai, M . Savvides, and T. Chen, "Proposed fpga 
hardware architecture for high frame rate face detection 
using feature cascade classifiers," in BTAS, 2007. 

[15] P. Musil, R. Juránek, M . Musil, and P. Zemčík, "Cascaded 
stripe memory engines for multi-scale object detection in 
fpga," IEEE Transactions on Circuits and Systems for 
Video Technology, vol. 30, no. 1, pp. 267-280, 2019. 

[16] D. Barina, P. Musil, M . Musil, and P. Zemcik, "Single-loop 
approach to 2-d wavelet lifting with jpeg 2000 
compatibility," in 2015 International Symposium on 
Computer Architecture and High Performance Computing 
Workshop (SBAC-PADW), 2015, pp. 31-36. 

[17] P. Zemčík, P. Musil, and M . Musil, High Dynamic Range 
Video. Elsevier Science, 2016, pp. 145-154. 

60 



[18] S. Nosko, M . Musil, P. Musil, and P. Zemcik, "True hdr 
camera with bilateral filter based tone mapping," in SCCG 

,17: Spring Conference on Computer Graphics 2017. 
Association for Computing Machinery, 2017, pp. 1-9. 

[19] P. Viola and M . J. Jones, "Robust real-time face detection," 
Int. J. Comput. Vision, vol. 57, no. 2, pp. 137-154, 2004. 

[20] P. Zemcik, R. Juranek, P. Musil, M . Musil, and M . Hradis, 
"High performance architecture for object detection in 
streamed videos," in Field Programmable Logic and 
Applications (FPL), 2013. 

[21] Itseez, "Open source computer vision library," 
https://github.com/itseez/opencv, 2015. 

[22] R. Juranek, A. Herout, and P. Zemcik, "Impelementing local 
binary patterns with simd instructions of cpu," in 
Proceedings of Winter Seminar on Computer Graphics. 
West Bohemian University, 2010, p. 5. 

[23] A. Herout, R. Josth, R. Juranek, J. Havel, M . Hradis, and 
P. Zemcik, "Real-time object detection on cuda," Journal of 
Real-Time Image Processing, vol. 2010, no. 1, pp. 1-12, 
2010. 

[24] C. Kyrkou, C. Ttofis, and T. Theocharides, 
"Fpga-accelerated object detection using edge information," 
International Conference on Field Programmable Logic and 
Applications (FPL 2011), pp. 167 - 170, September 2011. 

[25] S. Martelli, D. Tosato, M . Cristani, and V. Murino, "Fast 
fpga-based architecture for pedestrian detection based on 
covariance matrices," in Image Processing (ICIP), 2011. 

[26] P. Dollar, R. Appel, S. Belongie, and P. Perona, "Fast 
feature pyramids for object detection," IEEE Trans. Pattern 
Anal. Mach. Intell, vol. 36, no. 8, p. 1532-1545, Aug. 2014. 

61 

https://github.com/itseez/opencv


[27] N . Dalai and B. Triggs, "Histograms of oriented gradients 
for human detection," in CVPR, 2005. 

[28] C. Kyrkou, C.-S. Bouganis, T. Theocharides, and M . M . 
Polycarpou, "Embedded hardware-efficient real-time 
classification with cascade support vector machines," IEEE 
Transactions on Very Large Scale Integration (VLSI) 
Systems, vol. 27, pp. 99-112, 2016. 

[29] T. Kryjak, M . Komorkiewicz, and M . Gorgon, "Fpga 
implementation of real-time head-shoulder detection using 
local binary patterns, svm and foreground object detection," 
in Design and Architectures for Signal and Image Processing 
(DASIP), 2012. 

[30] C. Yeh, C. Lin, K. Muchtar, H. Lai, and M . Sun, 
"Three-pronged compensation and hysteresis thresholding 
for moving object detection in real-time video surveillance," 
IEEE Transactions on Industrial Electronics, vol. 64, no. 6, 
pp. 4945-4955, 2017. 

[31] D. Bouris, A. Nikitakis, and I. Papaefstathiou, "Fast and 
efficient fpga-based feature detection employing the surf 
algorithm," in 2010 18th IEEE Annual International 
Symposium on Field-Programmable Custom Computing 
Machines, 2010, pp. 3-10. 

[32] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y . LeCun, and 
E. Culurciello, "Hardware accelerated convolutional neural 
networks for synthetic vision systems," in IS CAS, 2010. 

[33] Y . Sato and Y . Kuriya, "Multi-scale elastic graph matching 
for face detection," Journal on Advances in Signal 
Processing, vol. 2013, p. 175, 11 2013. 

[34] P. Dollar, Z. Tu, P. Perona, and S. Belongie, "Integral 
channel features," in Proceedings of the British Machine 

62 



Vision Conference. B M V A Press, 2009, pp. 91.1-91.11, 
doi:10.5244/C.23.91. 

[35] Y . Yazywa, T. Yashimi, T. Tsuzuki, T. Dohy, Y . Yamauchi, 
T. Yamashita, and H. Fujiyoshi, "Fpga hardware with 
target-reconfigurable object detector," IEEE Transactions 
on Information and Systems(IEICE), vol. 98, no. 9, pp. 
1637-1645, 2015. 

[36] X . Ma, W. A. Najjar, and A. K. Roy-Chowdhury, 
"Evaluation and acceleration of high-throughput fixed-point 
object detection on fpgas," IEEE Transactions on Circuits 
and Systems for Video Technology, vol. 25, no. 6, pp. 
1051-1062, 2015. 

[37] Y . Said and M . Atri, "Efficient and high-performance 
pedestrian detector implementation for intelligent vehicles," 
Intelligent Transport Systems(IET), vol. 10, pp. 438-444, 
2016. 

[38] Z. Xu, R. Shi, Z. Sun, Y . L i , Y . Zhao, and C. Wu, "A 
heterogeneous system for real-time detection with 
adaboost," in High Performance Computing and 
Communications, 2016. 

[39] M . Bilal, A. Khan, M . U. Karim Khan, and C. Kyung, "A 
low-complexity pedestrian detection framework for smart 
video surveillance systems," IEEE Transactions on Circuits 
and Systems for Video Technology, vol. 27, no. 10, pp. 
2260-2273, 2017. 

[40] J. Yang, Y . Yang, Z. Chen, L. Liu, J. Liu, and N . Wu, "A 
heterogeneous parallel processor for high-speed vision chip," 
IEEE TSCVT, 2017. 

[41] S. Ren, K. He, R. B. Girshick, and J. Sun, "Faster R-CNN: 
towards real-time object detection with region proposal 
networks," CoRR, vol. abs/1506.01497, 2015. 

63 



[42] J. Redmon and A. Farhadi, "YOLO9000: better, faster, 
stronger," CoRR, vol. abs/1612.08242, 2016. 

[43] S. Bhattarai, A. Madanayake, R. J. Cintra, S. Duffner, and 
C. Garcia, "Digital architecture for real-time cnn-based face 
detection for video processing," in CCAA, June 2017, pp. 
1-6. 

[44] J. Qiu, J. Wang, S. Yao, K. Guo, B. L i , E. Zhou, J. Yu, 
T. Tang, N . Xu, S. Song, Y . Wang, and H. Yang, "Going 
deeper with embedded fpga platform for convolutional 
neural network," in FPGA, ser. F P G A '16. New York, NY, 
USA: A C M , 2016. 

[45] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, 
"Energy-efficient cnn implementation on a deeply pipelined 
fpga cluster," in ISLPED. New York, NY, USA: A C M , 
2016, pp. 326-331. 

[46] M . Hradis, A. Herout, and P. Zemcik, "Local rank patterns -
novel features for rapid object detection," in Proceedings of 
International Conference on Computer Vision and Graphics 
2008, ser. Lecture Notes in Computer Science, 2008, pp. 1-2. 

[47] R. Juranek, M . Hradis, and P. Zemcik, Real-Time Systems. 
InTech Education and Publishing, 2012, ch. Real-Time 
Object Detection with Classifiers, p. 21. 

[48] J. Zhang, M . Marszalek, S. Lazebnik, and C. Schmid, "Local 
features and kernels for classification of texture and object 
categories: A comprehensive study," Int. J. Comput. Vision, 
vol. 73, no. 2, pp. 213-238, 2007. 

[49] T. Ojala, M . Pietikainen, and T. Maenpaa, "Gray scale and 
rotation invariant texture classification with local binary 
patterns," in ECCV '00: Proceedings of the 6th European 

64 



Conference on Computer Vision-Part I. London, UK: 
Springer-Verlag, 2000, pp. 404-420. 

[50] R. E. Schapire and Y . Singer, "Improved boosting 
algorithms using confidence-rated predictions," Mach. 
Learn., vol. 37, no. 3, pp. 297-336, 1999. 

[51] K. Turkowski, "Properties od surface-normal 
transformations," in Graphics Gems, 1990. 

[52] J. Sochman and J. Matas, "Learning fast emulators of 
binary decision processes," International Journal of 
Computer Vision, vol. 83, no. 2, pp. 149-163, June 2009. 

[53] C. Caraffi, T. Vojir, J. Trefný, J. Sochman, and J. Matas, 
"A System for Real-time Detection and Tracking of Vehicles 
from a Single Car-mounted Camera," in ITS Conference, 
Sep. 2012, pp. 975-982. 

[54] A. Broggi, E. Cardarelli, S. Cattani, P. Medici, and 
M . Sabbatelli, "Vehicle detection for autonomous parking 
using a soft-cascade adaboost classifier," in 2014 IEEE 
IVSP, June 2014. 

65 



66 


