
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF ELECTRICAL AND ELECTRONIC
TECHNOLOGY
ÚSTAV ELEKTROTECHNOLOGIE

RS-FEC LAYER IMPLEMENTATION FOR 400GB/S
ETHERNET
RS-FEC LAYER IMPLEMENTATION FOR 400GB/S ETHERNET

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Patrik Zahálka

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Petr Vyroubal, Ph.D.

BRNO 2020

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Master's Thesis
Master's study field Electrical Manufacturing and Materials Engineering

Department of Electrical and Electronic Technology
Student: Bc. Patrik Zahálka ID: 173783
Year of
study: 2 Academic year: 2019/20

TITLE OF THESIS:

RS-FEC layer implementation for 400Gb/s ethernet

INSTRUCTION:

Learn about the Intel Stratix 10 DX FPGA chips and describe the principles of Reed-Solomon correction coding
and its use in the Ethernet protocol. Design an RS-FEC layer architecture for 400 Gb / S Ethernet on an Intel
Stratix 10 DX FPGA chip. Implement the proposed architecture and verify its functionality in simulations. Evaluate
the results and discuss the possibilities for further expansion.

RECOMMENDED LITERATURE:

Podle pokynů vedoucího diplomové práce.

Date of project
specification: 3.2.2020 Deadline for submission: 19.5.2020

Supervisor: Ing. Petr Vyroubal, Ph.D.

 doc. Ing. Petr Bača, Ph.D.
Subject Council chairman

WARNING:
The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Diplomová práce
magisterský navazující studijní obor Elektrotechnická výroba a materiálové inženýrství

Ústav elektrotechnologie
Student: Bc. Patrik Zahálka ID: 173783
Ročník: 2 Akademický rok: 2019/20

NÁZEV TÉMATU:

Implementace vrstvy RS-FEC pro 400 Gb/s Ethernet

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s FPGA čipy Intel Stratix 10 DX a popište principy opravného kódování Reed-Solomon a jeho
použitím v rámci protokolu Ethernet. Navrhněte architekturu vrstvy RS-FEC pro 400 Gb/S Ethernet na FPGA čipu
Intel Stratix 10 DX. Navrženou architekturu implementujte a ověřte její funkčnost v simulacích. Zhodnoťte
dosažené výsledky a diskutujte možnosti dalšího rozšíření.

DOPORUČENÁ LITERATURA:

Podle pokynů vedoucího diplomové práce.

Termín zadání: 3.2.2020 Termín odevzdání: 3.6.2020

Vedoucí práce: Ing. Petr Vyroubal, Ph.D.

 doc. Ing. Petr Bača, Ph.D.
předseda oborové rady

UPOZORNĚNÍ:
Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

ABSTRACT
This Master’s thesis deals with RS-FEC layer implementation using VLSI hardware de-
scription for 400 GE (Gigabit Ethernet) in the FPGA Intel® Stratix® 10 DX 2100. In the
theoretical part of this work, current state of Ethernet speeds and context of RS-FEC
layer within Ethernet protocol is described including PLD fabrication process and mathe-
matical aspects of RS-FEC self-correction algorithm. In the practical part, parametrizable
RS-FEC system is described including evaluation of the first results achieved and future
scope of this project is discussed.

KEYWORDS
Reed-Solomon Error Correction Codes, Forward Error Correction, 400 Gbps Ethernet,
FPGA

ABSTRAKT
Tato diplomová práce se věnuje problematice VLSI návrhu a implementaci vrstvy RS-FEC
pro 400 Gb/s Ethernet do FPGA Intel® Stratix® 10 DX 2100. V práci je charakterizo-
ván současný stav rychlostí Ethernetu, význam a kontext samoopravných kódů v rámci
protokolu Ethernet. Dále je popsána výroba PLD čipů i matematická podstata RS sa-
moopravných kódů. V části praktické je představen návrh řešení systému RS-FEC, který
byl realizován genericky pomocí jazyka VHDL. Zároveň byly jeho komponenty imple-
mentovány a v závěrečné diskusi je popsáno jeho řešení, dosažené výsledky včetně jeho
budoucího rozšíření.

KLÍČOVÁ SLOVA
Reed-Solomonovy samoopravné kódy, 400 Gb/s Ethernet, FPGA

ZAHÁLKA, Patrik. RS-FEC layer implementation for 400 Gb/s Ethernet. Brno, 2020,
77 p. Master’s Thesis. Brno University of Technology, Fakulta elektrotechniky a komu-
nikačních technologií, Ústav elektrotechnologie. Advised by Ing. Petr Vyroubal, Ph.D.

Typeset by the thesis package, version 3.05; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
V dnešní době nám možná připadá přirozené, že poskytovatelé datových služeb
přichází čas od času s novými produkty i vyššími rychlostmi datových přenosů.
Dříve bylo standardní praxí počkat si na to, až se nám s připojením přes tele-
fonní linku načte obrázek a netrpělivě jsme sledovali každou jeho načtenou část.
Dnes však na tuto skutečnost pomalu zapomínáme. Navíc i vzhledem k tomu,
že se do sítě připojuje stále více nových zařízení, stávají se internetové služby
populárním a nepostradatelným médiem pro dnešní společnost [1]. Nároky uži-
vatelů internetu ruku v ruce s technologickým pokrokem však dovedly maximální
přenosové rychlosti od jednotek kilobitů po stovky gigabitů za sekundu, a meta
zde rozhodně nekončí. V současné době existují experimantální vysokorychlostní
ethernetové platformy, které operují bezmála na jednotkách terabitů za sekundu.
Rychlejší přenos dat neznamená pouze nějaké vyšší číslo či kratší dobu čekání na
odeslání souboru. Stojí za tím obrovské úsilí celého elektrotechnického průmsylu od
inovací v kabeláži, elektrotechnické i elektronické výrobě po inovace v informačních
a síťových technologiích. Každý takový pokrok umožní posun v jiných odvětvích,
například ve zdravotním průmyslu pro vývoj nových léků a vakcín, předpovědích
klimatu, finančních službách, genetickém inženýrství atp.

Vzhledem k tomu, že jsou obecně přenosová média vystavena faktorům rušení,
stává se běžně, že se někdy přenesená zpráva poškodí a přijímač ji proto poté chybně
vyhodnotí (či vůbec). Toto se stává tím častěji, čím rychlejší platforma je a čím méně
je ošetřena proti rušení. Tomu lze však předejít několika způsoby. Jedním z nich
je např. použití kroucené dvojlinky, která je však tématem pro nižší přenosové
rychlosti, až 1 Gbit/s [2]. Jiný způsob, než použití kabeláže, je implementace
samoopravných algoritmů pro rekonstrukci přenášené zprávy navzdory tomu, že je
z části poškozena. Jedná se o algoritmy, které lze implementovat do hradlových polí
FPGA jako firmware. V této diplomové práci je řešen aspekt implementace Reed-
Solomonových kódu pomocí návrhu VLSI pro hradlová pole Intel® Stratix® 10 DX
pro projekt NDK - Netcope Development Kit.

Reed-Solomonovy kódy byly doporučeny jako vhodné řešení pro dosažení rychlostí
100 Gb/s ve standardu IEEE Std. 802.3𝑏𝑚TM z roku 2015. Důvodem je hlavně
to, že jsou celkově dobře prostudovány a jejich vývoj sice stojí úsilí, ale dodá
potřebnou kapacitu pro opravování chyb a lze je v rozumném měřítku implemen-
tovat do hradlových polí FPGA. Základní koncept pro opravu chyb pomocí Reed-
Solomonových kódů spočívá v tom, že se připojí redundantní část o určitém počtu
symbolů ke zprávě, kterou chceme poslat, tzv. parita. Tím se vytvoří unikátní
a validní datový „balík“, tzv. kódové slovo, které je výstupem vysílací strany sys-
tému RS-FEC. Pokud se kódové slovo poškodí, přijímací strana chybu detekuje
a vytvoří polynom, který se dále dešifruje následujícími komponentami, které dokáží

najít pozice chyb a jejich velikosti na těchto pozicích. Toto „poškození“ lze chá-
pat tak, že se k původnímu nepoškozenému kódovému slovu přičetl určitý chy-
bový polynom, který právě reprezentuje vzniklý šum. Systém tedy hledá přesně
tento polynom, který způsobil chybu při přenosu, tzv. chybový polynom 𝐸(𝑥).
Nalezením tohoto polynomu a jeho přičtením k přijatému „poškozenému“ kódovému
slovu se docílí rekonstrukce, ideálně původního validního kódového slova. Reed-
Solomonovy kódy se obecně značí 𝑅𝑆(𝑛, 𝑘), kde 𝑛 specifikuje počet prvků celého
kódového slova a 𝑘 počet prvků zprávy.

Tato diplomová práce se tedy zabývá touto problematikou, implementací RS(544,
514) pro 400 Gb/s Ethernet. Předpokládá se, že čtenář nemá předchozí zkušenosti
s touto problematikou, a proto je v práci Reed-Solomonův samoopravný algoritmus
detailně shrnut. Teoretická část dále obsahuje kapitolu o síťových technologiích,
výrobě mikročipů a informace o použité technologii. V praktické části je uveden
návrh řešení systému pro 400GE (Gigabit Ethernet), podrobný rozbor navržených
komponent a prozatimní dosažené výsledky úspěšné implementace. Dále jsou v tomto
textu shrnuty výsledky a také je konstruktivně okomentováno další rozšíření tohoto
systému. Samotný proces Reed-Solomonových samoopravných kódů je detailně pop-
sán v [3] včetně jeho hardwarové podoby, a proto se tato diplomová práce z velké
části odkazuje právě na tento zdroj.

Reed-Solomonovy kódy operují nad tzv. Galoisově konečným tělesem. To ve
výsledku znamená, že celý samoopravný algoritmus provádí výpočty s (𝑚−1)-bitový-
mi symboly, přičemž každý takový symbol je jedním z celkem jeho 2𝑚 − 1 uspořá-
daných členů. V rámci systému RS-FEC pro 400GE se výpočet provádí s de-
setibitovými symboly, proto 𝑚 = 10. Prvky Galoisova tělesa jsou určeny i us-
pořádány podle toho, jaký tzv. primitivní polynom 𝑝(𝑥) řádu 𝑚 (v binární podobě)
toto těleso vytváří. Zajímavou vlastností konečných těles je to, že pokud se budeme
snažit vytvořit (2𝑚 +1) prvek, výsledkem bude znovu prvek první, (2𝑚 +2) prvek je
znovu prvek druhý atd. V Galoisově tělese platí také odlišná algebra, a to taková,
že při provádění algebraických operací nedochází ke změně řádů (přetékání bitů).
Operace sčítání a odčítání je jedna a ta samá operace, která se provádí pomocí hradla
𝑋𝑂𝑅. Systém tedy nevyžaduje použití žádných sčítaček ani odčítaček, a tudíž nelze
využít DSP bloky v čipu FPGA. V práci byla tedy zvolena varianta implementace
systému do Look-up tabulek hradlového pole včetně jejich použití jako paměti ROM.
Jak je obecně známo, logické operátory 𝑋𝑂𝑅 jsou sobě komutativní a výsledný
návrh lze optimalizovat, což provádí syntézní nástroje, v této práci Intel Quartus
Prime Pro [4]. Operace násobení se také liší a provádí se ve dvou fázích. Vstupy
do násobičky nad 𝐺𝐹 (2𝑚) chápeme jako polynomy řádu 𝑚−1 a provádíme klasické
násobení mnohočlenu mnohočlenem. Výsledek tohoto násobení však překračuje řád
prvků 𝐺𝐹 (2𝑚) a je tedy nutné jej do tohoto řádu “vrátit” pomocí operace modulo

𝑚 vydělením tím samým primitivním polynomem 𝑝(𝑥), který generuje celé Ga-
loisovo těleso 𝐺𝐹 (2𝑚). Implementace dělení v Galoisově poli je komplikovanější
a vyžaduje využití velkého množství logických zdrojů. Vzhledem k tomu, že se v
systému RS-FEC násobičky vyskytují ve velkém množství, jedná se o komponentu
velmi náročnou na využití zdrojů v FPGA, zejména Look-up tabulek. Dělení bylo
provedeno tak, že po nalezení inverzního prvku dělitele (jmenovatel) se tento prvek
vynásobil s dělencem (čitatel). V komponentách, kde se provádí dělení nad 𝐺𝐹 (2𝑚),
se proto musely nejdříve najít tyto inverzní prvky, seřadit vzestupně dle jejich zák-
ladní hodnoty a pro dosažení vysoké datové propustnosti implementovat do Look-up
tabulek charakteru ROM. Toto provádí navržený VHDL podprogram, který dokáže
vytvořit GF inverze pro kterákoliv požadovaná 𝐺𝐹 (2𝑚) bez nutnosti spouštět ex-
terní skripty. Tyto vektory však zabírají velké množství logických zdrojů a bylo
potřeba jich v systému generovat co nejméně. I když je systém syntetizovatelný,
výsledný návrh vyžaduje pro finální implementaci z důvodu přílišného využití dos-
tupných zdrojů v FPGA odpovídající optimalizace. To se také projevuje dlouhou
dobou fáze hledání vhodného propojení logických buněk (Route). V návrhu bylo
tedy nutné vhodně určit, kdy použít konstanty a kdy násobičky. Pro samoopravný
algoritmus bylo také potřeba najít čtverce a vyšší řády Galoisova tělesa. Vhodným
řešením bylo použití operace násobení nežli generování konstanty navzdory tomu,
že prvotní návrh počítal s pravým opakem, a to z důvodu využití co nejmenšího
množství násobiček v GF pro zkrácení kritické cesty ze vstupu na výstup kompo-
nent.

Vrstva RS-FEC je součástí podvrstvy PCS (Physical Coding Sublayer) fyz-
ické vrstvy Ethernetu PHY. Komponenta systému RS-FEC, která přijímá data z
PCS vrstvy na vysílací straně, se nazývá RS-FEC Enkodér, který provádí tzv.
skramblování. To je takový rekurzivní proces, který provádí dělení mnohočlenu
mnohočlenem, tedy celé zprávy 𝑀(𝑥) tzv. Generačním polynomem 𝐺(𝑥), který
definuje norma IEEE Std 802.3bsTM 2017. Jeho úkolem je vytvořit tzv. 𝑝𝑎𝑟𝑖𝑡𝑢,
což je zbytek po tomto rekurzivním procesu dělení. V praxi se při implementaci
RS-FEC Enkodéru ukázalo, že syntézní nástroje nedokáží plně optimalizovat kom-
plexní zapojení této funkce pro potřebnou datovou propustnost, což je z velké části
dáno návrhem násobiček. Zjistilo se, že dva různé parametrizovatelné návrhy ná-
sobiček v RS-FEC Enkodéru vyústily ve dva různé, avšak zanedbatelně rozdílné,
výsledky ve smyslu využití zdrojů, a proto je potřeba hledět na procesy skramblování
a deskramblování jinak, než udává obecné schéma pro provádění této operace.

Vysílací strana dále také provádí distribuci jednotlivých symbolů zprávy mezi
jednotlivé linky PCS. Vzhledem ke standardu IEEE Std 802.3 bsTM 2017 distribuci
provádí MUX mezi 16 PCS linek, přičemž navržený systém nabízí funkci volby počtu
linek pomocí generických patametrů, a tudíž lze navržený systém použít i pro 200GE

či budoucí rychlosti Ethernetu, pro které v současnosti ještě neexistuje normovaná
verze.

Druhou částí systému RS-FEC je část přijímací, která dekóduje dvě kódová
slova. Pro provedení opravy zprávy musí přijímací strana nejprve vrátit proložené
symboly zprávy do stavu před proložením. Poté se provede tzv. deskramblování,
a to každého přijatého kódového slova. To je obdobný proces jako skramblování,
avšak se v tomto případě dělení provádí pouze jedním elementem Galoisova tělesa,
resp. kořenem generačního polynomu 𝐺(𝑥), poté jeho následujícím elementem, atp.
Dělení se provede tedy celkem 2𝑡-krát, přičemž v FPGA lze toto dělení provádět par-
alelně. Nutno podotknout, že opravnou kapacitu Reed-Solomonova samoopravného
algoritmu 𝑡 určuje jeho tzv. 𝐻𝑎𝑚𝑖𝑛𝑔𝑜𝑣𝑎 𝑣𝑧𝑑á𝑙𝑒𝑛𝑜𝑠𝑡, která je dána počtem parit-
ních symbolů, v tomto případě algoritmus opraví až 15 symbolů. Deskramblováním
lze zjistit, zda jsou přijatá kódová slova dělitelná beze zbytku kořeny Generačního
polynomu 𝐺(𝑥). Tím se ověří, zda při přenosu k nějaké chybě došlo, čili zda je na
vstupu dekodéru validní kódové slovo či nikoliv. Pokud je výsledek nulový, systém
RS-FEC opravu provádět nebude. Pokud ne, deskrambler vytvořil takový polynom,
který je nutno dále dešifrovat za účelem zpětného vytvoření validního kódového
slova. Takový vytvořený polynom se nazývá syndrom 𝑆(𝑥) a přímo charakterizuje
chybový vektor 𝐸(𝑥). Operace pro výpočet syndromů 𝑆(𝑥) lze také chápat jako
provádění rychlé Fourierovy transformace nad konečným Galoisovo tělesem, CFFT
(Cyclotomic Fast Fourier Transform).

Díky nalezeným syndromům 𝑆(𝑥) lze najít pozice a velikosti chyb na těchto poz-
icích ve třech komponentách. Děšifrování tedy pokračuje hledáním dvou polynomů,
a to polynomu pro lokalizaci chyb Λ(𝑥), tzv. lokátoru chyb, a vektoru vyhodnocu-
jícího velikosti chyb Ω(𝑥). Pro jejich nalezení byl použit rozšířený Euklidův algo-
ritmus, který obecně provádí hledání největšího společného dělitele (𝑁𝑆𝐷) dvou
polynomů 𝑆(𝑥), 𝑥2𝑡. V procesu dekódování je Euklidův algoritmus použit pro řešení
tzv. klíčové rovnice (anglicky Key equation), která řeší polynom Ω(𝑥). Tuto tzv.
Klíčovou rovnici lze upravit do tvaru pro Euklidův procesor, čili 𝑆(𝑥) × Λ(𝑥) +
𝐹 (𝑥) × 𝑥2𝑡 = Ω(𝑥). Cílem Euklidova procesoru však není nalezení 𝑁𝑆𝐷, nýbrž
přímo polynomů Ω(𝑥) a Λ(𝑥), což je jeho hlavní výhoda. Euklidův procesor se ses-
tává z celkem 𝑡 vrstev, přičemž každá vrstva se skládá ze strany pro polynomiální
dělení a násobení. Při výpočtu se v jeho každé následující vrstvě snižuje stupeň
mezivýsledku polynomu Ω(𝑥), zatímco se zvyšuje řád Λ(𝑥), což reflektuje počet
vzniklých chyb. Euklidův algoritmus se „zastaví“, jakmile splní podmínku stupně
mezivýsledku Ω(𝑥) < 𝑡. V tomto bodě lze polynom Λ(𝑥) vyřešit v kompoentě Chien
search a signál Ω(𝑥) přivést na vstup komponenty Forneyho algoritmu.

Komponenta Chien search řeší výpočet lokátoru chyb hrubou silou. A to tak,
že dosazuje jednotlivé primitivní elementy Galoisova tělesa reprezentující jednotlivé

pozice chybového polynomu 𝐸(𝑥) a tím hledá, na kterých se bude Λ(𝑥) rovnat nule.
Výsledný polynom má tedy stejnou šířku, jako kódové slovo. Komponenta dále
počítá derivaci tohoto polynomu Λ′(𝑥).

Vstupy pro Forneyho algoritmus jsou tyto dva polynomy z Chien search včetně
polynomu Ω(𝑥) z Euklidova procesoru. Úkolem této komponenty je výpočet zlomku,
přičemž v čitateli je Ω(𝑥) a ve jmenovateli Λ′(𝑥), což vyžaduje pro polynom stupně
𝑛 − 1 využití velkého množství logických zdrojů v FPGA. A dále součin s náležitým
inverzním prvkem Galoisova tělesa. V první implementaci funkční verze Forneyho
algoritmu se ukázalo, že uložení různých stupňů inverzních prvků Galoisova tělesa
do ROM vyústilo v dlouhou dobu fáze propojování (anglicky fáze Route), a proto
bylo nutné provádět výpočet těchto mocnin přímo v hardwaru.

Jelikož navržené komponenty splňují požadavky pro časování, avšak využívají
velké množství logiky, práce se bude v budoucnu orientovat směrem ke snížení
využití logických zdrojů v FPGA, zejména Look-up tabulek plnící funkci paměti
ROM, které jsou kritickým bodem v současného návrhu. Řešení by mohl přinést
přístup sdílení jak konstantních elementů ROM paměti mezi komponentami sys-
tému RS-FEC, tak registrů, zejména v Euklidově procesoru. Vhodným řešením pro
minimalizaci využití zdrojů ve Forneyho algoritmu může také přinést přístup selekce
jednotlivých 𝑡 chybových pozic v komponentě Chien search, čímž se Forneyho vzorec
použije místo 𝑛-krát pouze 𝑡-krát. Toto však bude vyžadovat vytvoření odpovídající
logiky a zpoždění výpočtu o jeden hodinový takt.

DECLARATION

I declare that I have written the Master’s Thesis titled “RS-FEC layer implementation
for 400 Gb/s Ethernet” independently, under the guidance of the advisor and using
exclusively the technical references and other sources of information cited in the thesis
and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master’s
Thesis I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENTS

I would like to express my gratitude to the thesis supervisor Ing. Petr Vyroubal, Ph.D.
at the Faculty of Electrical Engineering and Communication at the Brno University of
Technology (BUT) for his availability and leadership in the right direction. The key
contribution to the existence of this thesis is thanks to Ing. Jíří Matoušek, Ph.D. at
the Faculty of Information Technology BUT for his trust and assigning this topic to me
which evoked a constant enthusiasm in me. I also want to thank to my thesis advisor
Ing. Štěpán Friedl at the academical institution Cesnet s. z. p. o. for his professional
guidance and his availability.
Finally, I am also very grateful for the support of my dear family and my dear friends,
especially to Bc. David Houška, for providing me support and encouragement through
the process of development, research and writing this paper. Thank you for such a
wonderful contribution.

Contents

Introduction 17

1 Theoretical Part 18
1.1 Brief History of Ethernet . 18
1.2 OSI Reference Model . 19
1.3 Forward Error Correction and Current State of Ethernet Speeds . . . 21
1.4 Programmable Logic Devices Fabrication 23
1.5 Field Programmable Gate Arrays . 26

1.5.1 Pipelining . 28
1.5.2 Typical Applications . 31

1.6 Intel® Stratix® 10 . 32
1.7 Reed-Solomon Error Correction Codes 33

1.7.1 Galois Field . 34
1.7.2 Galois Field Mathematics . 34
1.7.3 The Code Generator Polynomial 36

1.8 Reed-Solomon Encoder . 36
1.9 Reed-Solomon Decoder . 37

1.9.1 The Syndromes . 38
1.9.2 The Set of Syndrome Equations 39
1.9.3 The Error Locator Polynomial 39
1.9.4 The Euclidean Algorithm . 40
1.9.5 Chien Search . 41
1.9.6 Forney’s Equation . 42
1.9.7 RS-FEC Error Correction Capability 42

2 Practical Part 44
2.1 Motivation . 44
2.2 RS-FEC Layer Concept and Galois Field Construction 44

2.2.1 Reed-Solomon Encoder . 48
2.2.2 Symbols Distribution . 49
2.2.3 Reed-Solomon Decoder . 52
2.2.4 Testing . 64
2.2.5 Implementation . 65

2.3 Discussion and Reflection . 71

Summary 72

Bibliography 73

List of symbols, physical constants and abbreviations 76

List of Figures
1.1 Seven layers of OSI Reference model (taken from [5]) 19
1.2 Graph of current state and future projections of Ethernet speeds

(taken from [6]) . 21
1.3 Current state and future projections of standards completion for var-

ious forms of Ethernet (taken from [6]) 22
1.4 Process of Czochralski crystal pulling: (a) melted polycrystalline sil-

icon (b) in a crucible. (c, d) Seeding procedure: The seed crystal
dipped into the melt, followed by Dash necking (e), shouldering (f),
cylindrical growth (g), growth of end cone (h), lift off (i), cooling and
removing the crystal (j) (taken from [7]) 23

1.5 Illustration of the process of Chemical Vapour Deposition (CVD)
(taken from [8]) . 24

1.6 Process of transferring a pattern onto a substrate. (a) Coating the
substrate with a photosensitive material; (b) alignment of the mask
and exposure to the UV light source; (c) spraying the photoresist
to remove the extra photoresist defined by the mask patterns (taken
from [9]). 25

1.7 Structure of the typical SRAM-based FPGA (taken from [10]). 27
1.8 High-level structure of the typical SRAM-based FPGA (taken from

[10]). 27
1.9 Basic concept of a sequential circuit (taken from [11]) 29
1.10 Structure of Tri-gate 3D Fin-Fet by Intel® (taken from [[12]]) 32
1.11 RS code definitions (taken from [3]) 34
1.12 RS-FEC error correction capability breakdown (taken from [13]) . . . 42
2.1 Diagram of RS-FEC concept . 45
2.2 Galois field multiplier . 47
2.3 Numerical representation of RS-FEC Encoder operation (taken from

[3]) . 49
2.4 RS-FEC Encoder hardware diagram for polynomial division 50
2.5 RS-FEC Transmitter diagram for 400GBASE 50
2.6 Diagram of the RS-FEC Decoder . 53
2.7 Sequential solution for a single RS-FEC decoder 54
2.8 Hardware of descrambler for syndromes calculation 55
2.9 Numerical representation of syndrome calculation operation 56
2.10 Eample of first layer of Euclidean processor operation [3] 57
2.11 Example of remaining layers of Euclidean processor operation [3] . . . 58
2.12 Diagram of Euclidean processor unit for RS-FEC 59

2.13 Diagram of Chien search as the unit for error positions determination 61
2.14 Diagram of Forney’s algorithm as a unit for error polynomial calculation 63
2.15 Hardware for error correction . 64
2.16 Testing of the RS-FEC system . 65

List of Tables
1.1 RS-FEC (544, 514) for 200GE/400GE Specifications (taken from [14]) 22
1.2 Positives and downsides of FPGAs (taken from [15]) 30
1.3 Applications of FPGAs for High Performance Servers (taken from [16]) 31
1.4 Applications of FPGAs for High Performance Embedded Computers

(taken from [16]) . 32
2.1 Example of primitive elements and inverses of 𝐺𝐹 (2𝑚) where 𝑚=4

(taken from [3]) . 46
2.2 Coefficients of the generator polynomial 𝐺𝑖 (taken from [17]) 48
2.3 Duration of compilation stages of RS-FEC Encoder for 𝑅𝑆(544, 514) . 67
2.4 Duration of compilation stages of RS-FEC Descrambler for 𝑅𝑆(544, 514) 67
2.5 Results of synthesis and implementation of time-constrained sequen-

tial RS-FEC Encoder for 400GE . 68
2.6 Results of synthesis and implementation of time-constrained sequen-

tial RS-FEC Descrambler for 400GE 68
2.7 Duration of single stages of compilation of both components of Eu-

clidean processor . 68
2.8 Results of synthesis and implementation of a single sequential com-

ponent RS-EUC for 400GE . 69
2.9 Duration of single stages of compilation of both components for find-

ing error locations . 69
2.10 Results of synthesis and implementation of both components RS-CHS

for 400GE . 69
2.11 Duration of compilation stages of a single entity of RS-FOR conduct-

ing Forney’s algorithm . 70
2.12 Results of synthesis and implementation of a single time-constrained

sequential entity RS-FOR for 400GE 70

Introduction
In recent decades, since the communication technologies have become widespread,
all the industry sectors and businesses require increasing amount of data to remain
agile and innovative. Technologies ensuring real-time data processing and fast data
transferring became an essential part of the world today. On the other hand, while
talking about large data transferring, such changing dynamics of public demands re-
quires also high stability of data transfer. Therefore, one of the the main purposes of
Reed Solomon Forward Error Correction (RS-FEC) algorithm is to ensure error-free
digital data transfer. Thanks to the RS-FEC layer, balance between high perfor-
mance, efficiency and reliability of digital data transfer can be achieved to reduce
noise effects not only in high-speed Ethernet platforms [18, 19]. In particular, this
system will be employed within a new NDK platform (Netcope Development Kit)
which is currently in development at the academic organisation Cesnet, z. s. p. o.

Error correction methods are used on daily basis by all of us. For instance, by
putting emphasis on whether an information sent has been successfully received and
processed, simply by repeating the message over and over again. This repetition is
a form of the error correction encoding. The principle is similar in RS-FEC, based
on attaching redundant parity-check symbols to the message sent to the encoder
part of the error correction system. Therefore, the system uses this redundancy for
erroneous data correction at the error correction decoder. The purpose of adding
the decoder part (the error correction capability) is also to avoid decoding some
other message [19]. The principle of error correction coding within the RS-FEC
layer is based on attaching parity-check symbols as a redundant part to the message
received instead of repeating the whole message again. Subsequently, the decoder,
the unit ensuring the confidence level of the system, correctly extracts the original
source signal out of the corrupted data on the input of the decoder [19].

Employing RS-FEC layer seemed to be an effective solution for reaching 100 Gbps
rates, however, its full error correction capability has still not been fully exploited
yet, even for the new 400GE. In terms of the RS-FEC system, the main difference
between these two standards is that the new 200/400 Gbps rates operate with two
codewords in parallel compared to only single one for 100 Gbps rates. Therefore,
the most challenging aspect for successful implementation of this system is to bal-
ance and minimize logic resources utilization. The main reason for RS-FEC system
implementation into an FPGA as firmware is clearly the capability of conducting
hardware operations in an FPGA concurrently enabling high-speed computations,
possibly at 400 Gbps rate which is the main topic of this paper [19, 11]. In addition,
VLSI design enables its development in a generic form for faster development of
future platforms and creating different variants of the system.

17

1 Theoretical Part
In the theoretical part of this work, FPGA technology is briefly described, PLD
(Programmable Logic Devices) manufacturing and RS error correction codes is char-
acterized. Also, one chapter dealing with Galois field algebra is included and RS
error correction flow from the mathematical point of view is described.

1.1 Brief History of Ethernet
Since its introduction in the early 1980s, Ethernet has become a dominant and
popular protocol for Local-Area-Networks (LANs), used mostly in offices. Over the
following years, demands for higher data-rates of Ethernet began to rise enormously.
The first experimental 2,94 Mbps shared bus-based system was able to transmit
with only one station at a time. So called Medium Access Control (MAC) protocol
detecting collisions controls the use of the shared bus. Each station is free to transmit
MAC frames but if a collision occurs during transmission, it stops for certain amount
of time and tries again if the channel is free for transmitting. The first commercially
available standards were bus-based systems capable of 10 Mbps operation. There
were no changes to the MAC protocol or MAC frame format. But, the innovation
was that Ethernet was configured in a star topology which enabled traffic to go
through a central hub, however, again with transmission limited through the hub.
The need for faster data-rates resulted in the central hub replacement by a switch
allowing full-duplex operation. Thanks to this, with the switch and MAC format
protocol unchanged, collision detection is no longer needed. Further enhancements
to the MAC layer were added through time to improve data rate requirements, such
as provision for larger frame size. Ethernet quickly achieved widespread attention
and acceptance and became a dominant technology. Not only for LANs, but also
Metropolitan-Area Networks(MANs) and spread also to a wide range of applications
and environments due to its extraordinary adaptability[20].

The same MAC protocol and frame format are used at all data rates. The main
differences among various standardizations for different data transfer speeds are at
physical layer in the definition of signal transmission medium of Ethernet [20].

Historical perspective of the first Ethernet platforms did help in the initiation
higher speeds of Ethernet development beyond 100GE. The bandwidth explosion was
(and still is) driven by increasing number of users, increased access methodologies,
access rates and increased number of services (such as social media, video on demand,
etc.). From 2000 to 2019 around 3.1 billion individual users were connected to the
Internet. [1].

18

Nowadays, the most data-intensive sectors with the most significant growth rates
of data traffic are financial, data-intensive science and peering. Slower growth rates
have been estimated for cable users and end-stations, such as IP traffic and servers
I/O. [21].

1.2 OSI Reference Model
The very first primary definition of modern networking was approved by the In-
ternational Organisation for Standardisation in 1984. The OSI (Open Systems
Interconnection) Reference model can be perceived as a core of serial networking
technologies, including industrial Ethernet. It is a layered description of data trans-
fer among devices within a network [22].

Fig. 1.1: Seven layers of OSI Reference model (taken from [5])

19

The uppermost layer, number 7, is called Application Layer and is the closest to
end users. It directly interacts with users’ software applications to provide desired
communication functions [22].

Layer 6 is called Presentation Layer which provides end user data translation to
network format so that lower layers can accept the data [22].

Session Layer is the fifth layer which manages connections between respective
remote and local computers and also terminates connections between them. It also
conducts data verification procedures if data have been delivered correctly or not
[22].

Layer 4 is called Transport Layer ensuring complete delivery of data usually by
using error correction functions or by other means. Sequences of data from are being
transferred from a source to a destination host via network [22].

Layer 3, Network Layer, creates logical paths using switching functions for data
transmission from node to node so that network can be formed from the node of the
transmitter side to the address node of the desired destination. [22].

Layer 2, so called Data Link Layer (DLL) allows direct node-to-node data trans-
fer. On this level, data are packed into frames based on Point-to-Point Protocol and
encoded into single bits and further unpacked. The layer is divided into two sublay-
ers: 𝑀𝑒𝑑𝑖𝑎𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (MAC) controls which device in a network will be permit-
ted to transmit data to a media. The second sublayer is 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐿𝑖𝑛𝑘𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (LLC)
conducting frame synchronization, network layer protocols identification. LLC is
also used to control data flow and checks for errors [22].

The very bottom layer is Physical (PHY) which is responsible for conveying
unstructured raw data bitstream at the electrical level and defines the physical
specifications of the data connection, such as optical fibre specifications, operation
voltages of an electrical fibre, layout pins of the connector etc. PHY and MAC layers
are interconnected via MII interface [22].

Conventional Ethernet PHY consists of three additional sublayers: Physical Cod-
ing Sublayer (PCS), Physical Medium Attachment (PMA) and Physical Media De-
pendent (PMD) sublayer. PCS is responsible for interfacing to the higher layer
MAC through MMI (Media-Independent Interface) interface. PMD sublayer speci-
fies optoelectronic components and, if required, implements digital signal processing
on the transmittted and/or received signal. PMA sublayer conducts multiplexing of
𝑛 physical lanes to 𝑥 PCS lanes and backwards [17, 23].

20

1.3 Forward Error Correction and Current State of
Ethernet Speeds

The very first implementations of RS (Reed-Solomon) error correction algorithms
were first available since the Voyager deep space communication system in the 1977.
[19, 11]. Nowadays, RS codes can be found in various applications, such as radio and
television transmissions, disk storage, high-speed computer memory I/O and data
communication technologies. For instance, high-speed Ethernet. FEC was first
introduced for backplane and then, to deliver more economical optical transceivers
and cable technologies, for a few front-panel use, such as copper cabling for 100GE,
50GE and 25GE for the purpose of error-free data transmissions, however, for the
penalty of carrying additional bits for the FEC mechanism to encode, transmit,
decode and correct the data packet re-transmissions [14].

Fig. 1.2: Graph of current state and future projections of Ethernet speeds (taken
from [6])

In recent years, Ethernet protocol is undergoing significant development. It is
capable of achieving 100GE, 200GE and 400GE speeds. Trends of current speeds of
Ethernet are shown in figures 1.2 and 1.3 [14, 6].

21

Fig. 1.3: Current state and future projections of standards completion for various
forms of Ethernet (taken from [6])

The FEC system is required for such high throughput because optical transceivers,
electrical interfaces and cables are noisy signalling environments. So the bit error
rate (BER) which these electronics generate itself require an algorithm-based error-
correction method. RS-FEC uses an approach of finite-sized block of bits known as
a block code. In Ethernet it is called a message. RS-FEC is a cyclic type of FEC
despite it works as a linear code, meaning with fixed block of bits where a FEC
symbol is 10 bits in size. It is known also as RS 544 FEC. In the following table 1.1,
details of RS-FEC for Ethernet implementations are summarized [14]:

Tab. 1.1: RS-FEC (544, 514) for 200GE/400GE Specifications (taken from [14])

Symbols Explanation
514 Total number of symbols in a codeword

514 · 10 = 5,440 Bits in the codeword or block
544 - 514 = 30 Number of check symbols per codeword or block

514 · 10 = 5,140 Number of bits referring to the size of the information bits
per block

(544−514)
2

Maximum number of symbols which can be corrected in
a codeword or in a block

22

1.4 Programmable Logic Devices Fabrication
FPGA chips belong to the family of active semiconductor devices. Such devices
require extremely pure silicon and germanium in lesser extent. Intrinsic silicon
is much more difficult to prepare than intrinsic germanium. The pure form of
silicon needs about 1.5 · 1010 of intrinsic carriers per cm3 and 2.4 · 1013 per cm3 for
germanium. Silicon is obtained from silicon dioxide or silicon tetrachloride by normal
metallurgical processes and needs to be further purified until the number of foreign
atoms is less than 1 in 1·1010 per 𝑐𝑚3 to create silicon pure enough for semiconductor
devices. The most frequent method is the Czochralski crystal pulling, shown in figure
1.4 [7]. This method is based on seed crystal insertion into a bath of molten silicon.

Fig. 1.4: Process of Czochralski crystal pulling: (a) melted polycrystalline silicon
(b) in a crucible. (c, d) Seeding procedure: The seed crystal dipped into the melt,
followed by Dash necking (e), shouldering (f), cylindrical growth (g), growth of end
cone (h), lift off (i), cooling and removing the crystal (j) (taken from [7])

A single silicon crystal of 10 to 15 cm with required impurities can be obtained
by being withdrawn from the molten bath. In the next step the cooled crystal
is being divided into 1 mm thick slices along the crystallographic direction of the
crystal in order to avoid internal structure disruption of the crystal. Resulting slice
is approximately 0,2 mm thick after the etching and polishing procedures removing
surface damage after the step of slicing. This is the key step for further epitaxial
layer growth with the same orientation on to the underlying sliced silicon surface
[24].

23

In the next step, ion implantation to the pure silicon crystal lattice with impuri-
ties is performed. In this step, the energy of accelerated ion implants up to 300 keV,
determining the depth of implanting, are bombarded into the silicon substrate [24].

Next and the most important stage of the integrated circuit fabrication process
is epitaxial deposition. It involves an epitaxial layer growth on the slice of the
silicon dioxide. The layer is grown in the atmosphere of silicon tetrachloride and
hydrogen respectively with strictly controlled conditions. A perfect crystal is the
key requirement for correct outputs of subsequent stages [24].

The first stage after the epitaxial deposition is oxidization which is used two or
three times in order to create a mask for the impurity atoms diffusion after selective
etching. One method of oxidization used for oxide layer creation of high quality
physical properties is based on passing oxygen over the surface of silicon slice at
a temperature of 1200 °C, as illustrated in 1.5. As the result, passivizing layer with
uniform thickness of 5 · 10−7 m is created. Oxide layers have been used also as
elements in active and passive devices and silicon functional blocks. Oxide layer
becomes important especially during planar and epitaxial planar transistors man-
ufacturing. The reason is very low leakage currents currents due to the junctions
formed under A layer of silicon oxide. In this way, 10 silicon slices with 200 mono-
lithic circuits in each would be produced [24]. Next step is photo-engraving process

Fig. 1.5: Illustration of the process of Chemical Vapour Deposition (CVD) (taken
from [8])

which involves two operations: photographic mask preparation and the etching of the

24

silicon dioxide. The purpose of this step is to cut off windows allowing the diffusion
of subsequent stages to take place. Next step is the photographic mask production.
Each one comprises of large number of identical elements, each of which is the origi-
nal mask layout. Due to the photographic equipment limitations, sequence of stages
for reduction are required. A typical sequence involves artwork originals prepara-
tion, photographic reduction, step-by-step contact printing and rephotographing.
Subsequently, when the photographic mask has been prepared, with photo etching
the processing of the slice may be started, illustrated in figure 1.6. The former part,
the centrifugal force spreads the liquid photoresist dropped on a rotating surface of
the slice at 800 rpm and subsequently is let to dry in an oven. In the latter part,
as the photoresist is placed in the exact position required and subsequently exposed
to UV (Ultraviolet) light. The UV light causes the photoresist to polymerize with
the opaque layer. The rest of the photoresist unexposed to the UV light is then
removed. The polymerized photoresist forms a layer resistant to hydrofluoric acid
used to etch the silicon base away [24]. The further step of of integrated circuit

Fig. 1.6: Process of transferring a pattern onto a substrate. (a) Coating the sub-
strate with a photosensitive material; (b) alignment of the mask and exposure to
the UV light source; (c) spraying the photoresist to remove the extra photoresist
defined by the mask patterns (taken from [9]).

fabrication is diffusion which consists of combination of epitaxial deposition and

25

diffusion. The diffusion process takes place within the holes etched in the silicon
dioxide. During the process of diffusion the time and concentration of the impurities
must be accurately controlled in order to obtain specific diffusion depths according
to the required transistor design. The choice of an element of diffusant must meet
the requirement for easy diffusion into the intrinsic silicon but not into the silicon
dioxide. For instance, boron and phosphorus are the usual diffusants. The next
step, the process of evaporation is to be conducted which is important for ohmic
contact production and interconnections realization. This process takes place in
vacuum with golden, nickel or also aluminium rods being evaporated. As the result,
a thin layer over the entire surface is produced. The main issue of the process is
to avoid changing the desired nature of the semiconductors when alumina is added.
Therefore, with masking and etching only the desired alumina configuration remains
to form the contacts and interconnections [24].

As a slice of semiconductor has been developed, the very last step is cutting into
individual circuits and packaging. Cutting can be performed by using a diamond-
tipped tool by drawing it across the edge of the surface of the slice. Subsequently,
by breaking each part separate chips are produced. Individual chips are ready for
mounting and encapsulation [24].

1.5 Field Programmable Gate Arrays
Typical hierarchical structure of modern FPGA chips consists of programmable
logic blocks further containing pool of combinatorial logic blocks and flip-flops to be
used in an intended design. These logic elements are often combined with memory,
typically with various amount of SRAM (Static Random Access Memory) inside
an FPGA chip. This typical architecture is shown in the figure 1.7 which contains
so called CLB (Configurable Logic Block) units interconnected within a matrix-like
grid and surrounded by programmable interconnect. Each CLB typically consists
of a set of so called BLE (Basic Logic Element) units. Inside a single BLE there
is an element allowing logical function implementation called LUT (Look-up table)
[11, 10, 25].

More detailed view on a typical high-level hierarchical structure of an FPGA
is shown in figure 1.8. CLBs form a large array including BRAMs (Block RAMs)
and DSP (Digital Signal Processing) blocks, similar to arithmetic logic units (ALU)
of a processor which can be programmed accordingly to perform arithmetic logic
operations, such as add, multiply, subtract, compare, etc. Depending on the type of
operators required, both CLBs and DSPs can perform integer, floating point or/and
bitwise operations. Results of these operations are stored in registers present in

26

Fig. 1.7: Structure of the typical SRAM-based FPGA (taken from [10]).

CLBs, DSPs or/and BRAMs. These blocks can be connected via flexible config-
urable interconnects which are based on user design. The output of one operator
can directly flow into the input of the next operator [16].

Fig. 1.8: High-level structure of the typical SRAM-based FPGA (taken from [10]).

The architecture then enables to create a massive array of application-specific
ALUs which allow both instruction and data-level parallelism. Compared to pro-
cessor units, there are no inefficiencies, such as processor cache, but data within
an FPGA can be directly streamed between operators. These operators can be

27

configured to have point-to-point dedicated interconnects, thereby setting them to
pipelined configuration. For instance, throughput on integer operations are in order
of Tera-operations per second, on floating point operations in order of gigaflops per
second [16].

Another great advantage of FPGAs is that they can be easily interfaced to other
chips or external signals by so called input/output blocks (IOBs) (see figure 1.8)
behind the chip pads. So that each pad can serve as an input or an output or
both. In particular, IOBs are designed to support various memory and processor-
interface standards, such as support of multiple DDR3 (Double Data Rate Type 3),
DDR4 (Double Data Rate Type 4) and more memory controllers, various generations
of PCI Express® (Peripheral Component Interface), Intel’s Front Side Bus (FSB),
Quick Path Interconnect (QPI) protocols. Support for these processor interfaces
and protocols enables computing applications running on FPGAs to interact with
processor and accelerate the desired applications [16].

FPGA vendors also include hardwired IP (Intellectual Property) nonprogrammable
cores inside the chips supporting commons recurrent functions in many designs[11].
These include general-purpose processors, high-speed serial interfaces, arithmetic
blocks and Ethernet MAC (Medium Access Control) [11].

1.5.1 Pipelining
Clock conditioning has become also a common feature in FPGAs. Digital circuits can
be also supplied by a clock signal which is, ideally, a simple square wave oscillating
at a certain fixed frequency. The most basic concept of a sequential system in an
FPGA chip contains number of combinatorial logic blocks in between arrays of clock-
sensitive components called flip-flops where current state of outputs of combinatorial
blocks depends on current state of inputs to these combinatorial blocks. These are
generally made of all logic functions with any level of intended complexity realized by
logic gates including interconnection among them. This involves also multiplexors,
encoders and decoders [11].

For instance, a D-type flip-flop (DFF). Every time there is a rising edge of the
clock signal, it allows desired signals to propagate from its input D to its output
Q. In this particular moment the input D is connected to the output Q in a single
DFF. However, apart from this specific time D is disconnected from Q [11].

An important requirement for the resultant sequential system is that signals
between the output Q of the first flip-flop and the input D of the next one must
remain stable by the time the next clock cycle rising edge. It is therefore required
to ensure the worst case propagation delay between these delay elements of the
design. This also applies for all subsequent DFFs. Nowadays, this timing check is

28

automated so that the designer needs to be concerned with the specification of the
logic behaviour of the circuit [11].

Fig. 1.9: Basic concept of a sequential circuit (taken from [11])

This technique is generally known as pipelining. Data throughput is one of the
most important parameters not only in this work. The purpose of pipelining is to
satisfy throughput requirements also with minimum resource penalty. Algorithms
which can be performed in parallel with sequential delay elements (such as DFFs)
result in higher throughput, such as in digital processing (DSP) applications, multi-
core CPU (Central Processing Unit) parallel platforms, many-core GPU (Graphics
Processing Unit) and FPGAs compared to traditional single-core systems. Among
all these parallel platforms, FPGA-based systems allow the highest flexibility for
programming parallel cores. This can be achieved thanks to the high-level synthesis
which significantly increases productivity, reduces time-to-market window and helps
to implement efficient parallel hardware of complex register transfer level (RTL) de-
signs. The objective of the synthesis is to find a suitable performance solution for a
design with given available resources [26].

Pipeline optimization strategy is based on partitioning this large scale designs
into smaller data processing elements connected in series while each element (combi-
natorial block) executes its operation in parallel in a time-sliced mode. This requires
some buffer storage (pipeline registers). The registered output of one element be-
comes the input of the next one. The time between each clock signal is set to be
greater than the longest delay between pipeline stages, so that when the registers
are clocked data written to the following registers are results of the previous stage of
the pipeline. Pipelined systems also requires more resources then the combinatorial
logic elements because each pipeline stage cannot reuse resources of other stages
[26].

The key pipeline parameters are number of pipeline stages, latency, clock cy-
cle time, delay, throughput and turnaround time. A pipeline synthesis can be
constrained by resources or time, or combination of both. A resource-constraint
synthesis pipeline limits the area on chip or available number of functional units

29

on target device. A time-constraint pipeline synthesis puts more effort to required
throughput and turnaround time. Finding a solution which consumes minimum re-
sources is the task for the so called scheduler [26]. Reasons why FPGAs are chosen
as promising platforms for high-performance data-intensive applications are summa-
rized in table 1.2 including their drawbacks [15, 16]. Compared to GPUs and other
multicores which consume power in hundreds of watts, FPGAs power consumption
lies in the range of tens of watts [27] [16].

Tab. 1.2: Positives and downsides of FPGAs (taken from [15])

Advantages Disadvantages
Massive parallelism of compute opera-
tions which can be put to more optimal
configurations

Processing data with constrained cost
and resources.

Flexibility in terms of involvement of
different kinds of components (hard
cores, IP, memory, LUT structure of
the programmable fabric). Second,
ability to field reprogram parts or the
entire FPGA chip.

Not clear what should stay as soft-
ware part and what hardware part of
a desired complex system. Interfacing
between these two approaches requires
additional development.

Flexibility in terms of an ability to field
reprogram parts or the entire FPGA
chip.

Low efficiency of data movement
around the chip.

Small amount of distributed mem-
ory incorporated into the fabric which
brings the memory closer to the pro-
cessing

IP library is required for FPGA-based
systems development.

Low power solution enabling more pro-
cessing than GPUs for quarter of power
required

Design entry methodology is lacking
more restricted approach to harness the
flexibility of the hardware.

Scalability in terms of creating a chain
of FPGA chips together while the algo-
rithm is larger than the single one.

Strict rules of what is synthetizable and
what is not.

Nowadays, custom chips deliver more
data throughput per dollar.

Innovation is required in the area
of high-performance interfacing to get
large amount of data onto the chip.

30

The major reason for lower power consumption in FPGAs is that these devices
operate in range of 100-300 MHz compared to processors executing operations usu-
ally between 2-3 GHz. Recently, in terms of high-end FPGA devices such as Intel®

Stratix® DX, programmable clock-tree performance reaches around 1GHz [27] [16].

1.5.2 Typical Applications
In the mid-2000s the high performance computing industry (HPC) demand caused
course of General-purpose CPU vendors to shift from single-core CPU-based sys-
tems orientation to multicore architectures to meet high-performance demands of
the industry. The reason for this is that if frequency of single-core processors in-
creases, power dissipation rises to impractical levels. The result of this is that it
enables to exploit CPU performance by adopting parallel designs enabling previously
unattainable performance levels [16].

There is a broad spectrum of applications where FPGAs embedded inside equip-
ment or forming a massive compute server farms play major role. In table 1.3 appli-
cations for High Performance Servers are shown. These applications are in constant
need of compute power. The greater the computation power, the more complex
algorithms can be implemented to produce more accurate results [16]. In table 1.4

Tab. 1.3: Applications of FPGAs for High Performance Servers (taken from [16])

Industry Sample Applications

Government labs
Climate modelling, nuclear waste simulation, war-
fare modelling, disease modelling and research, air-
craft and spacecraft modelling

Defense
Video, audio, data mining, analysis for threat
monitoring, pattern matching, image analysis for
target recognition

Financial services Options valuation, risk analysis of assets

Geo-sciences and engineering Seismic modelling and analysis, reservoir simula-
tion

Life sciences Gene encoding and matching, drug modelling and
discovery

sample applications for High-Performance Embedded Computers are shown. All
industries mentioned require certain specific equipment for compute-intensive and
data-intensive tasks. In the past, these systems were based on custom integrated
circuits designed for high memory rates and to handle data-intensive processing [16].

31

Tab. 1.4: Applications of FPGAs for High Performance Embedded Computers
(taken from [16])

Industry Sample Applications
Defense Beam forming in radar

Airborne Electronics Image compression and analysis in payload
Communications Encryption in network routers
Medical Imaging Image rendering

Financial Services Low latency and high throughput data processing in trad-
ing solutions

1.6 Intel® Stratix® 10
Since the task of this work is to implement the system RS-FEC into FPGA Intel®

Stratix® 10 DX 2100, this chapter therefore deals with the technology present in
Intel® Stratix® 10 family.

SoC (System on Chip) devices of this family dispose of the Intel HyperFlex
FPGA Architecture combined with 14 nm Tri-Gate (3D) process technology (see
the structure in the figure 1.10) which replaced the conventional 2D planar MOS-
FET transistors so that geometries have been reduced below 20 nm. It contains so
called Hyper-Registers present all over the functional blocks within the chip. The
advantage of this technology is that all the conventional blocks such as Adaptable
Logic Modules ALMs, embedded memory (M20K) and digital signal processing al-
low to select the optimal register location automatically after place-and-route to
maximize core performance without additional changes or added complexity after
the place-and-route step of the design process. The next advantage is that such
registers reduce routing congestion [25]. Another useful feature of the chip is the

Fig. 1.10: Structure of Tri-gate 3D Fin-Fet by Intel® (taken from [[12]])

programmable clock tree synthesis. It reduces timing and skew uncertainty to reach
the maximum core clock performance. This feature enables its entire architecture to

32

double its performance compared to its predecessors Stratix V FPGAs. Core clock-
ing also uses intelligent branch which allows to reduce dynamic power dissipation in
the clock networks [25].

The Hyper-Aware design flow includes a Fast Forward Compile tool which en-
ables performance exploration and guides the designer to the maximum performance
of his solution. A Hyper-Retimer step near the end of the design offers further op-
timization after place-and-route step. An enhanced synthesis and place-and-route
algorithms which use the Hyper-Registers. In the end, it uses 70 % less power
than Stratix V FPGAs predcessors. There is an embedded quad-core 64-bit ARM
Cortex-A53 processor system included and also components DRAM (Dynamic Ran-
dom Access Memory), SRAM (Static Random Access Memory) and ASICs in a
single package [25].

1.7 Reed-Solomon Error Correction Codes
Reed-Solomon codes belong to the category of block codes. This means that a
message to be transmitted to the divider of n symbols is divided into separate block
of data called codeword. The former part of a single codeword is an original message
consisting of k information symbols in a message to be transmitted.

In the latter part a parity protection of (𝑛 − 𝑘) = 2𝑡 symbols is added to the
original message. The error-correction capability of RS codes is determined by its
Hamming distance which is determined by number of parities. For RS codes, its
Hamming distance is 2𝑡 + 1 and the overall error-correcting capability is [13]:

𝑒𝑟𝑟𝑜𝑟–𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

2 (1.1)

The variable t specifies the number of symbols the algorithm is able to correct in
a block of n symbols of the codeword. This is illustrated in the figure 1.11 [3].
So that each block of information symbols has its own parity protection added as a
separate part of the codeword.

In addition, RS code is also a linear code. This means that sum of any two code-
words is still a valid codeword [13]. It is also a cyclic code meaning that cyclically
shifting the symbols of a codeword produces another one. RS code can be therefore
described as an (𝑛, 𝑘) code. Different parameters for a code provides different levels
of protection and complexity of the implementation changes respectively [3].

There is a significant advantage of RS code. It enables having all bits of a symbol
of m in error and it counts as only one symbol error in terms of the correction
capacity of the code [3].

33

Fig. 1.11: RS code definitions (taken from [3])

1.7.1 Galois Field
Galois field belongs to the family of finite fields and named after the French math-
ematician Évariste Galois. A Galois field consists of a set of elements based on
a primitive element 𝛼 which takes values 𝛼, 𝛼0, 𝛼1, 𝛼2, . . . , 𝛼𝑁−1 to form a set of 2𝑚

elements where 𝑁 = 2𝑚 − 1. Galois fields are then marked as 𝐺𝐹 (2𝑚). Each field
element can be also represented by polynomial expression [3]:

𝑎𝑚−1𝑥
𝑚−1 + . . . + 𝑎1𝑥

0, (1.2)

where coefficients 𝛼𝑚−1 to 𝛼0 take values of 0 or 1. Therefore, it is possible to
describe a single field element by the binary number 𝛼𝑚−1, . . . , 𝛼1, 𝛼0. There is in
total 2𝑚 combinations of the 𝑚− bit number [3].

1.7.2 Galois Field Mathematics
Arithmetic operations with finite field elements differ from conventional mathematics
with normal integers, especially while multiplying in a Galois field. Galois field
arithmetical operations are addition, subtraction, multiplication and division. The
difference is that any arithmetical operation of two field elements always produces
another field element [3].

Addition and Subtraction

While adding two Galois field elements, two polynomials are added in this form [3]:

(𝑎𝑚−1𝑥
𝑚−1 + . . . + 𝑎1𝑥

0) + (𝑏𝑚−1𝑥
𝑚−1 + . . . + 𝑏1𝑥

0) = 𝑐𝑚−1𝑥
𝑚−1 + . . . + 𝑐1𝑥

0 (1.3)

This operation 𝑎𝑖 + 𝑏𝑖 = 𝑐𝑖 applies for degrees 0 ≤ 𝑖 ≤ 𝑚 − 1. The coefficients
can only take the values 0 and 1. If 𝑎𝑖 = 𝑏𝑖, then 𝑐𝑖 produces 0. Respectively, if

34

𝑎𝑖 ̸= 𝑏𝑖, then 𝑐𝑖 produces 1. This signifies that addition of two Galois field elements is
accomplished by modulo-two addition of their respective coefficients. In binary form,
addition is realized by the exclusive-OR function of two binary numbers. Therefore,
addition of two identical Galois field elements produces zero. It also implies that
any result of subtraction of two Galois field elements from each other is exactly the
same as addition. In the end, minus sign can be replaced with plus sign. In other
words, if a positive element in an equation is needed to be expressed on the other
side of the equation, the sign stands the same [3].

Multiplication and Division

There is a significant difference between multiplication with standard integers and
multiplication in a Galois field. The main difference is that if polynomials of degree
𝑚 − 1 are multiplied, the result is a product polynomial of degree 2𝑚 − 2 which is
not a valid element of GF(2𝑚). With the same approach as with subtraction, for
a result of multiplication product modulo is required. In Galois field, the valid field
element is obtained by dividing the product product polynomial by a field generator
polynomial 𝑝(𝑥) in order to “return” the value of the straightforward multiplication
of the polynomial back to a valid Galois field element [3].

Division of two field elements of the Galois field is accomplished by multiplying
the inverse of the divisor. The inverse element is defined as when the element value
is multiplied by the inverse field element, value of 1 is produced [3].

The Field Generator Polynomial

The field generator polynomial or primitive polynomial 𝑝(𝑥) of degree 𝑚 defines
a specific finite field bound to it. When a different generator polynomial or prim-
itive polynomial is selected, it produces different results. Therefore, one generator
polynomial or primitive polynomial must be selected for a single Galois field. The
next requirement for a generator polynomial or a primitive polynomial is that it
must be irreducible (with no factors of the GF) [3].

Based on the primitive element 𝛼 as a root of the field generator polynomial the
all non-zero values of Galois field can be generated. So that to obtain the complete
field, it means that [3]:

𝑝(𝛼) = 0 (1.4)

To determine the repeating sequence of the field elements, it is needed to express
the highest degree of the primitive polynomial. First, since a GF element is written
in the index form, for instance 𝛼0, it is possible to get next value 𝛼1 by multiplying
its entire polynomial 𝛼0 in its polynomial form by 𝛼. Then, the next Galois field
value is obtained. It is also important to mention that if the highest degree of the

35

generator polynomial 𝑝(𝑥) has been reached this way, it is needed for any member
of the polynomial form to substitute this member by the expression of the highest
degree of the generator polynomial. In this manner, all 2𝑚 Galois field elements can
be obtained by starting with an element with index 0 up to the element (2𝑚 − 2). It
is also important to highlight that the decimal form of an element is a representation
of the respective polynomial form, meaning binary form. For instance, polynomial
𝛼2 + 1 is equal to the representation of bits 𝑥2 and 𝑥0 in log. 1 giving 0101 in the
4-bit binary form. Next important characteristics of the Galois field is that if the
maximum is exceeded, it can be found that the index form, for instance for the first
element beyond the last one which is 𝛼(2𝑚−1), is equal to element 𝛼0, the next one
equals to 𝛼1 and so on and all these values remain valid within the desired Galois
field [3].

1.7.3 The Code Generator Polynomial
While constructing an RS code, the values of the message parity symbols must be
elements of a Galois field. An (𝑛, 𝑘) RS code is constructed by the code generator
polynomial 𝐺(𝑥) involving (𝑛 − 𝑘 = 2𝑡) factors, the roots of consecutive elements of
the Galois field. For a code based on m-bit symbols, the Galois field consists of 2𝑚

elements [3]:
𝑔(𝑥) = (𝑥 + 𝛼𝑏)(𝑥 + 𝛼𝑏+1) . . . (𝑥 + 𝛼𝑏+2𝑡−1), (1.5)

where 𝑏 specifies at which degree the Galois field roots begin.

1.8 Reed-Solomon Encoder
The output of the encoding process comprises of two data blocks. The first block
is formed by 𝑘 information symbols and is represented by the message polynomial
𝑀(𝑥) of order 𝑘 − 1. This polynomial of information symbols to be encoded can be
written as follows [3]:

𝑀(𝑥) = 𝑀𝑘−1𝑥
𝑘−1 + . . . + 𝑀1𝑥 + 𝑀0, (1.6)

where 𝑘 is the number of symbols in a message to be transmitted, 𝑀𝑘−1 is the first
symbol of the message and each one 𝑀𝑘−1, . . . , 𝑀1, 𝑀0 is an m-bit message symbol,
an element of 𝐺𝐹 (2𝑚) [3].

The key purpose of the RS encoder is to add the parity polynomial to the message
polynomial 𝑀(𝑥) in order to form a valid codeword 𝑇 (𝑥) to be transmitted. To
encode the message polynomial 𝑀(𝑥), it has to be first multiplied by 𝑥𝑛−𝑘. In
this step, its resultant degree is extended by (𝑛 − 𝑘) symbols and 𝑀(𝑥) is shifted

36

to the part of the higher bit significance which ensures that there will be enough
number of free bits for the parity polynomial symbols in the less significant part of
the resulting polynomial 𝑇 (𝑥). In the subsequent part, the result must be divisible
by the generator polynomial 𝐺(𝑥). After the division, a quotient 𝑄(𝑥) is produced
including a remainder 𝑟(𝑥) of degree up to 𝑛 − 𝑘 − 1 [3]:

𝑀(𝑥) × 𝑥𝑛−𝑘

𝑔(𝑥) = 𝑞(𝑥) + 𝑟(𝑥)
𝑔(𝑥) (1.7)

As described in the section 1.7.2 Multiplication and division, any result of a division
operation in a Galois field is the remainder 𝑟(𝑥) as a valid element of the Galois field.
An important property of the transmitted codeword is that it is always divisible by
the generator polynomial without remainder which also applies to the individual
roots of the generator polynomial 𝐺(𝑥). In the end, the transmitted code word is
formed by combining 𝑀(𝑥) and 𝑟(𝑥) [3]:

𝑇 (𝑥) = 𝑀(𝑥) × 𝑥𝑛−𝑘 + 𝑟(𝑥) (1.8)

which gives the following polynomial in a systematic form [3]:

𝑇 (𝑥) = 𝑀𝑘−1𝑥
𝑛−1 + . . . + 𝑀0𝑥

𝑛−𝑘 + 𝑟𝑛−𝑘−1𝑥
𝑛−𝑘−1 + . . . + 𝑟0 (1.9)

Process of Encoding can be also perceived as conducting so called Galois field
Fourier transform (further studied in [13]). It is a generalized view of discrete Fourier
Transform to finite fields. In this point of view, polynomial 𝑉 (𝑥) = 𝑉0 + 𝑉1𝑥 + . . . +
𝑉𝑛−1𝑥

𝑛−1, where 𝛼𝑛 = 1, represents the spectrum of the transmitted codeword
𝑇 (𝑥) over 𝐺𝐹 (2𝑚). Polynomials 𝑉 (𝑥) and 𝑇 (𝑥) form a Fourier transform pair.
Fourier Transform and inverse transform in Galois Field are polynomial evaluations
by replacing 𝑥 with 𝛼𝑖. From the point of view of frequency domain, process of
encoding is making 2t spectral components as zero 𝑉𝑗 = 0 for 𝑗 = 0, 1, . . . , 2𝑡 − 1.

1.9 Reed-Solomon Decoder
In the RS decoder part, the transmitted polynomial 𝑇 (𝑥) becomes the first part
of a received polynomial 𝑅(𝑥). The last part of the received polynomial 𝑅(𝑥) of
𝑛 = 𝑘+2𝑡 members is the error polynomial 𝐸(𝑥). Each of the coefficients 𝐸𝑛−1 . . . 𝐸0

is an 𝑚-bit error value and a valid element of 𝐺𝐹 (2𝑚). Therefore, the 𝑅(𝑥) is [3]:

𝑅(𝑥) = 𝑇 (𝑥) + 𝐸(𝑥) (1.10)

where the error polynomial 𝐸(𝑥) can be written in a polynomial form as:

𝐸(𝑥) = 𝐸𝑛−1𝑥
𝑛−1 + . . . + 𝐸1𝑥 + 𝐸0 (1.11)

37

The positions of the errors errors in the entire code word by the degree of 𝑥 for this
term. If more than 𝑡 = (𝑛−𝑘)

2 of the 𝐸 values are non-zero, the correction capacity
of the code is exceeded and the errors are not correctable [3].

1.9.1 The Syndromes
The first step of the decoding process is to divide the received polynomial 𝑅(𝑥) by
each of the factors (𝑥 + 𝛼𝑖) (see equation 1.5) which form the generator polynomial
𝐺(𝑥) thanks to the property of the transmitted codeword which is always divis-
ible by the generator polynomial without remainder. It applies, obviously, when
the transmitted codeword 𝑇 (𝑥) has been received without any of its bits in error.
Remainders of these divisions are known as syndromes 𝑆𝑖 [3]:

𝑅(𝑥)
(𝑥 + 𝛼𝑖) = 𝑄𝑖(𝑥) + 𝑆𝑖

(𝑥 + 𝛼𝑖) , (1.12)

which applies for 𝑏 ≤ 𝑖 ≤ 𝑏+2𝑡−1; where 𝑏 is chosen to match the set of consecutive
factors in the equation 1.5. In this work, 𝑏 = 0 is chosen so the remainders can be
written as 𝑆𝑖, . . . , 𝑆2𝑡−1. The following rearrangement gives a single syndrome value
𝑆𝑖 [3]:

𝑆𝑖 = 𝑄𝑖(𝑥) × (𝑥 + 𝛼𝑖) + 𝑅(𝑥), (1.13)

so that after expressing 𝑥 = 𝛼𝑖 the equation is reduced to [3]:

𝑆𝑖 = 𝑅(𝛼𝑖) (1.14)

𝑆𝑖 = 𝑅𝑛−1(𝛼𝑖)𝑛−1 + 𝑅𝑛−2(𝛼𝑖)𝑛−2 + . . . + 𝑅1𝛼
𝑖 + 𝑅0 (1.15)

where 𝑅𝑛−1, . . . , 𝑅0 are the symbols of the received codeword. Therefore, a remain-
der 𝑆𝑖 by the substitution 𝑥 = 𝛼𝑖 in the received polynomial 𝑅(𝑥) in each of the
syndrome values can also be formed as an alternative to the division in the equation
1.12 [3].

If the substitution 𝑥 = 𝛼𝑖 is applied to the equation 1.10, it can be found that
[3]:

𝑅(𝛼𝑖) = 𝑇 (𝛼𝑖) + 𝐸(𝛼𝑖) (1.16)

and because of the fact that 𝑇 (𝛼𝑖) is a factor of 𝑔(𝑥), then 𝑇 (𝛼𝑖) = 0. This gives
the resulting property of the syndrome values which are not affected by the data
values [3]:

𝑅(𝛼𝑖) = 𝐸(𝛼𝑖) = 𝑆𝑖 (1.17)

These syndrome values are therefore directly dependent on the error pattern.
It implies that if no errors have occurred, all syndrome values are in zero. It is
important to emphasize that based on the equation 1.14 it is possible to calculate
the syndrome values directly from the received codeword 𝑅(𝑥) [3].

38

1.9.2 The Set of Syndrome Equations
For the syndrome value determination and its location, reformulation of the error
polynomial is required in a way in which only the error values are included. This
can be achieved in further steps. Therefore, if assumed that 𝑣 errors have occurred
in a single transmission, then [3]:

𝐸(𝑥) = 𝑌1𝑥
𝑒1 + 𝑌2𝑥

𝑒2 + . . . + 𝑌𝑣𝑥𝑒𝑣 (1.18)

while 𝑣 ≤ 𝑡; 𝑒1, . . . , 𝑒𝑣 are identificators of the specific error locations in a codeword
which, in a form of powers of 𝑥, represent the corresponding degrees of 𝑅(𝑥) in error.
And, 𝑌1, . . . , 𝑌𝑣 represent 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 occurred in these specific error positions of
the received codeword 𝑅(𝑥). It is now known that 𝑅(𝛼𝑖) = 𝐸(𝛼𝑖) and if 1.18 is
substituted in 1.17, then a single syndrome 𝑆𝑖 can be written as [3]:

𝑆𝑖 = 𝐸(𝛼𝑖) = 𝑌1𝛼
𝑖𝑒1 + 𝑌2𝛼

𝑖𝑒2 + . . . + 𝑌𝑣𝛼𝑖𝑒𝑣 (1.19)

where if 𝛼𝑖𝑒1 , . . . , 𝛼𝑖𝑒𝑣 is substituted by 𝑋 𝑖
1, . . . , 𝑋 𝑖

𝑣 known as 𝑒𝑟𝑟𝑜𝑟 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠, then
the generic equation for 2𝑡 syndromes in a single transmission is [3]:

𝑆𝑖 = 𝑌1(𝑋 𝑖
1) + 𝑌2(𝑋 𝑖

2), . . . , 𝑌𝑣(𝑋 𝑖
𝑣) (1.20)

The number of syndrome equations is restricted by the correction capacity of the
RS code used. They are generally denoted as 𝑆0, . . . , 𝑆2𝑡−1 in order to correspond
to the roots 𝛼0, . . . , 𝛼2𝑡−1 of the generator polynomial 𝐺(𝑥). The powers of 𝑋 𝑖

𝑣

depend on these roots chosen for the generator polynomial so that the powers of
syndrome locators 𝑋 𝑖

𝑣 in a single equation 1.20 are the same for the respective
syndrome equations while the 𝑣 index denotes the index where the error occurred
in the received codeword 𝑅(𝑥) [3].

1.9.3 The Error Locator Polynomial
The following step of the RS decoding procedure is the process of error locator
polynomial determination. A form of the error locator polynomial denoted as Λ(𝑥)
has 𝑣 factors constructed as (1 + 𝑋𝑗𝑥). It has its error locators 𝑋𝑗 as inverses
𝑋−1

1 , . . . , 𝑋−1
𝑣 as its roots of the 𝑣 values when 𝑗 = 1 [3]:

Λ(𝑥) = (1 + 𝑋1𝑥) + (1 + 𝑋2𝑥) + . . . + (1 + 𝑋𝑣𝑥) (1.21)

Its expanded version has degree of 𝑣, as follows [3]:

Λ(𝑥) = 1 + Λ1𝑥 + . . . + Λ𝑣−1𝑥
𝑣−1 + Λ𝑣𝑥𝑣 (1.22)

Now, the task is to find these coefficients of the error locator polynomial.

39

1.9.4 The Euclidean Algorithm
In this step, coefficients of the error location polynomial are obtained. The Euclidean
algorithm is based on finding the the highest common factor of two numbers. It
uses the relationship between the errors and the syndromes expressed in a form of
an equation based on polynomials. It requires two new polynomials: the 𝑠𝑦𝑛𝑑𝑟𝑜𝑚𝑒

𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑆(𝑥) and a 𝑒𝑟𝑟𝑜𝑟 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 Ω(𝑥). These two polynomials
will be used in a so called Key equation [3]. Origin of this equation is described in
detail in [28]. In this point, it is important to mention that all the requirements for
each of the syndromes still apply (see equation 1.19). Now, the set of syndromes
(the syndrome polynomial) 𝑆(𝑥) can be written in a polynomial form as [3]:

𝑆(𝑥) = 𝑆𝑏+2𝑡−1𝑥
2𝑡−1 + . . . + 𝑆𝑏+1𝑥 + 𝑆𝑏, (1.23)

where the coefficients are 2𝑡 syndrome values already calculated from the received
codeword (see equation 1.15) [3]. The error magnitude polynomial is defined as [3]:

Ω(𝑥) = Ω𝑣−1𝑥
𝑣−1 + . . . + Ω1𝑥 + Ω0 (1.24)

The Key equation can be written as [3]:

Ω(𝑥) = [𝑆(𝑥)Λ(𝑥)]𝑚𝑜𝑑(𝑥2𝑡) (1.25)

where 𝑆(𝑥) is the syndrome polynomial and Λ(𝑥) is the error polynomial. Terms of
degree 𝑥2𝑡 or higher are ignored. Then, the key equation is [3]:

Ω0 = 𝑆𝑏 (1.26)

Ω1 = 𝑆𝑏+1 + 𝑆𝑏Λ1 (1.27)

...

Ω𝑣−1 = 𝑆𝑏+𝑣−1 + 𝑆𝑏+𝑣−2Λ1 + . . . + 𝑆𝑏Λ𝑣−1 (1.28)

In general, the extended Euclidean algorithm finds the highest common factor 𝑑

of two elements 𝑎 and 𝑏 [3]:
𝑢𝑎 + 𝑣𝑏 = 𝑑 (1.29)

where 𝑢 and 𝑣 are coefficients produced by the algorithm. The product of 𝑆(𝑥) of
degree 2𝑡 − 1 and Λ(𝑥) of degree 𝑣 gives the resultant product of degree 2𝑡 + 𝑣 − 1
(see equation 1.28) [3]:

𝑆(𝑥) × Λ(𝑥) = 𝐹 (𝑥) × 𝑥2𝑡 + Ω(𝑥) (1.30)

40

where the single terms of 1 × 𝑥2𝑡 are represented by the terms of 𝐹 (𝑥) and the
remaining part by Ω(𝑥). If rearranged to calculate the Ω(𝑥), then [3]:

Ω(𝑥) = Λ(𝑥) × 𝑆(𝑥) + 𝐹 (𝑥) × 𝑥2𝑡 (1.31)

now, the 𝑆(𝑥) and 𝑥2𝑡 correspond to the 𝑎 and 𝑏 terms of the equation 1.29 [3].
The Euclidean algorithm continues as follows. The purpose of the algorithm is to
find Ω(𝑥) with degree less than 𝑡 (see equation 1.1). First, the algorithm consists of
dividing 𝑥2𝑡 by 𝑆(𝑥) and a remainder is produced. In the next step, 𝑆(𝑥) becomes
the new dividend while the previous remainder is the new divisor. This process is
continued until the degree of remainder (representing Ω(𝑥)) becomes less than 𝑡 and
the multiplying factor Λ(𝑥) will be also found [3].

The Euclidean algorithm can be can be also applied to polynomials. Originally,
its task is to find the greatest common divisor (GCD) of two polynomials 𝑎(𝑥) and
𝑏(𝑥). Their GCD can be written as [13]:

𝑢(𝑥)𝑎(𝑥) + 𝑣(𝑥)𝑏(𝑥) = 𝑔𝑐𝑑(𝑎(𝑥), 𝑏(𝑥)) (1.32)

By setting 𝑏(𝑥) as primitive polynomial 𝑝(𝑥), the 𝑔𝑐𝑑(𝑎(𝑥), 𝑝(𝑥)) equals 1 since 𝑝(𝑥)
is relative prime to 𝑏(𝑥). Then, if rewritten in this way, we have [13]:

𝑢(𝑥)𝑎(𝑥) + 𝑣(𝑥)𝑝(𝑥) = 𝑔𝑐𝑑(𝑎(𝑥), 𝑝(𝑥)) (1.33)

𝑢(𝑥)𝑎(𝑥) + 𝑣(𝑥)𝑝(𝑥) = 1 (1.34)

Modulo 𝑝(𝑥) is applied at both sides, then [13]:

1 = 𝑎(𝑥)𝑢(𝑥)𝑚𝑜𝑑(𝑝(𝑥)) (1.35)

𝑎−1(𝑥) = 𝑢(𝑥)𝑚𝑜𝑑(𝑝(𝑥)) (1.36)

Now, 𝑢(𝑥) mod 𝑝(𝑥) is the inverse of 𝑎(𝑥) and therefore the algorithm requires
polynomial divisions [13].

1.9.5 Chien Search
Chien search serves for roots determination of the coefficient values Λ1, . . . , Λ𝑣 (see
equation 1.22) in order to solve the error locator polynomial. If the polynomial is
written in this form [3]:

Λ(𝑥) = 𝑋1(𝑥 + 𝑋−1
1)𝑋2(𝑥 + 𝑋−1

2) . . . (1.37)

then, the result of the function will be zero if 𝑥 = 𝑋−1
1 , 𝑋−1

2 , . . . are found, where 𝑥

is [3]:
𝑥 = 𝛼−𝑒1 , 𝛼−𝑒2 , (1.38)

41

In the Chien search all possible field values of the GF roots 𝛼𝑖, where 0 ≤ 𝑖 ≤
(𝑛−1) are substituted into equation 1.22. The values 𝑋1, . . . , 𝑋𝑣 of the error locator
polynomial are then found by trial and error. If the expression Λ(𝑥) = 0, then the
value 𝑥 is a root of this function which has been found by the Chien search and the
error position 𝑋1, . . . , 𝑋𝑣 has been identificated. The search begins with 𝛼−(𝑛−1)

(= 𝛼1), then 𝛼−(𝑛−2) (= 𝛼2) and continues to 𝛼0 corresponding to the last symbol
of the word while the first symbol of the codeword corresponds to the 𝑥𝑛−1 term [3].

1.9.6 Forney’s Equation
Forney’s equation allows to calculate error values 𝑌1, . . . , 𝑌𝑣 (see equation 1.18)
and therefore the error polynomial 𝐸(𝑥) formation. An error value is calculated
accordingly [3]:

𝑌𝑗 = 𝑋1−𝑏
𝑗

Ω(𝑋−1
𝑗)

Λ′(𝑋−1
𝑗)

(1.39)

where Λ′(𝑋−1
𝑗) is the derivative of Λ(𝑋) for 𝑥 = 𝑋−1

𝑗 . If 𝑏 = 1, the 𝑋1−𝑏
𝑗 term

disappears. Therefore, the formula is often quoted in the literature as Ω/Λ′, which
gives wrong results for 𝑏 = 0 and other values defined in equation 1.5 where the code
generator polynomial has been determined. The equation 1.39 gives valid results
only for symbol positions in error. If the calculation is made at other positions, the
result is generally non-zero and invalid. Therefore, the Chien search is needed in
order to identify these error positions [3].

1.9.7 RS-FEC Error Correction Capability
Beside the already introduced notation 𝑅𝑆(𝑛, 𝑘) it essentially defines a vector space
of 𝑘 dimensions and the every non-zero codeword differs at least 2𝑡 + 1 coordinates.
The received codeword 𝑅(𝑥) is also called RS frame.

Fig. 1.12: RS-FEC error correction capability breakdown (taken from [13])

While receiving an invalid codeword, the decoder will map the codeword to the
closest one in the vector space defined by (𝑛, 𝑘) RS code. In case of more than 𝑡

42

errors occurred during transmission, the received codeword may be closer to another
valid codeword and therefore the decoder will map it to this valid codeword. In
this situation, the error is undetectable because the Euclidean processor has found
solution for a valid codeword reconstruction. If an erroneous codeword differs from
all the codewords in 𝑡 + 1 or more coordinates, then the codeword after decoding
is still invalid. In this case, the error is detectable and the decoder can report the
error [13]. A breakdown of all possible types of errors which may occur during
transmission are shown in figure 1.12.

43

2 Practical Part
Practical part of the work deals with hardware aspect of Reed-Solomon error cor-
rection algorithm for 400 Gigabit Ethernet and its implementation in Intel® Stratix®

10 DX FPGA chip.
Brief digital circuit block diagrams for both encoder and decoder components

are shown and explained in following chapters. It is also important to highlight that
since the beginning of this work there has been a strong focus on parametrizability
of the system, required data throughput and the overall functionality covering the
main points of the scope of this project.

2.1 Motivation
During writing this thesis, the Physical Coding Sublayer of Ethernet PHY has been
realized and implemented. Hence, the further step was to develop an IEEE Std.
802.3𝑏𝑠TM−2017 compliant RS-FEC layer for 400 Gigabit Ethernet for project Net-
cope Development Kit within the academical organisation Cesnet z. s. p. o.

Because of the fact that many modern technologies, such as constantly emerging
cloud services providers, financial network organizations, large scale enterprise data
centers are dependent on digital data, RS error correction system is a sufficient
solution for ensuring reliability of current data rates in the PHY layer [14].

In terms of future Ethernet speeds, there are prototypes nowadays reaching 800
Gbps speeds employing 2x RS-FEC based on Clause 119 of IEEE Std. 802.3 [29].
Hence, it is therefore highly likely that RS-FEC will be present in future Ethernet
IEEE standards and it is therefore worth its parametrizable VLSI (Very-Large-Scale
Integration) description.

2.2 RS-FEC Layer Concept and Galois Field Con-
struction

General concept of RS-FEC system follows procedure shown in figure 2.1. Ensuring
reliability of digital data transmission begins in the part of transmitter. Incoming
message 𝑀(𝑥) to be corrected by the decoder part of the RS-FEC algorithm has
to be encrypted first to form a parity polynomial which is adjusted to the message
itself and then sent together in a form of a codeword 𝑇 (𝑥) to the receiver (decoder).

On the way between data transmitter and receiver, noise of the environment
causes a quantifiable error 𝐸(𝑥) which can be expressed in a form of a polynomial
of the same degree as the transmitted codeword 𝑇 (𝑥). The idea is that the Error

44

polynomial 𝐸(𝑥) which has been added to the transmitted codeword 𝑇 (𝑥) during
transmission.

The main task of the decoder is to find the error pattern 𝐸(𝑥) so that the pattern
can be subtracted/added to the received message 𝑅(𝑥) at the side of the RS decoder.

TOP_RS-FEC

RECEIVER

TRANSMITTER

NOISY CHANNEL

Corrected codeword T(x)

Message M(x)

Transmitted codeword T(x)

Received codeword R(x)

E(x) reconstruction

R(x) = E(x) + T(x)

Codeword T(x) formation

ParityMessage

Parity discarded

Fig. 2.1: Diagram of RS-FEC concept

First of all, since the entire system operates over GF(2𝑚) where m=10, there-
fore with 10-bit symbols, it is needed the Galois field to be formed 𝐺𝐹 (210). It is
a repeating sequence of 210 10-bit primitive elements 𝛼 where each of them has its
own position label 𝛼𝑖 starting with 𝛼0=1 and ending with 𝛼210−2 while following
elements, such as 𝛼210−1 represent again 𝛼0 and so on.

Based on the chapter 1.7.2 a list of primitive GF elements 𝛼𝑖 where 𝑖=0, 1, 2, ...
(210 − 2) can be constructed in a way shown in table 2.1.

With reference to the chapter 1.7.2 an inverse GF element is a valid element
of the GF to be multiplied with another one while 1 (𝛼0) is produced. Inverse
elements of Galois field can be found using logarithmic method, however, excluding

45

Tab. 2.1: Example of primitive elements and inverses of 𝐺𝐹 (2𝑚) where 𝑚=4 (taken
from [3])

Index form Polynomial form Binary form Decimal form Inverses (decimal)
0 0 0000 0 0
𝛼0 1 0001 1 1
𝛼1 𝛼 0010 2 9
𝛼2 𝛼2 0100 4 13
𝛼3 𝛼3 1000 8 15
𝛼4 𝛼+1 0011 3 14
𝛼5 𝛼2+𝛼 0110 6 7
𝛼6 𝛼3+𝛼2 1100 12 10
𝛼7 𝛼3+𝛼+1 1011 11 5
𝛼8 𝛼2+1 0101 5 11
𝛼9 𝛼3+𝛼 1010 10 12
𝛼10 𝛼2+𝛼+1 0111 7 6
𝛼11 𝛼3+𝛼2+𝛼 1110 14 3
𝛼12 𝛼3+𝛼2+𝛼+1 1111 15 8
𝛼13 𝛼3+𝛼2+1 1101 13 4
𝛼14 𝛼3+1 1001 9 2

field element 0 which does not have multiplicative inverse. Following example shows
calculation of inverse of (𝛼14 = 9) in GF where 𝑚 = 4: [3]

𝛼−𝑖𝑚𝑜𝑑(2𝑚−1) = 𝛼−14𝑚𝑜𝑑15 = 𝛼1 = 2 (2.1)

For inverse of 𝛼−13 = 𝛼2 = 4, 𝛼−12 = 𝛼3 = 8 etc. Inverse Galois field is therefore
a “mirrored” form of Galois field which applies for elements 𝛼1, 𝛼1, . . ., 𝛼2𝑚−2.

Each component of the RS-FEC system requires two main functions for its oper-
ation. First, addition/subtraction in Galois field which is realized by XOR function.
Second, multiplication in GF which is realized by two main components, as shown
in 2.2, multiplier and divider. Result of the multiplication operation over GF(2𝑚)
produces another valid element of this field which is ensured by the modulo opera-
tion.

If we want to multiply two binary polynomials, we will get a product of degree
2𝑚 − 1 which is not an element of GF(2𝑚). Then the product becomes a dividend
in the following division operation reducing the degree to a valid element of GF(2𝑚)
while divisor is primitive polynomial 𝑝(𝑥) and has degree 𝑚. As a result, remainder
after the division is a valid element of GF(2𝑚) and quotient is discarded.[3]

46

GF_MULT:

factor_A<m-1:0>

MULTIPLIER

DIVIDER

primitive polynomial<m:0>

factor_B <m-1:0>

remainder<m-1:0>

dividend<2m-2:0>

Fig. 2.2: Galois field multiplier

GF multipliers are critical component for resultant hardware requirements be-
cause they are used in every component in a large extent. In this work, two types
of parametrizable GF multipliers were synthetized and implemented. It turned out
that RS-FEC Encoder with behavioral VLSI description of shift-and-add full GF
multipliers (based on [3], page 28) requires less logic than its RTL-based description.
But when implemented within a more complex component, the resultant difference
in hardware utilization was not significant. Therefore, future optimizations should
focus on optimal operation with 10-bit symbols rather than its full parametrizability.

IEEE Std 802.3𝑏𝑠TM−2017 also defines Primitive polynomial 𝑝(𝑥) in subchapter
119.2.4.6 for 𝐺𝐹 (210): [17]

𝛼 = 𝑥10 + 𝑥3 + 1 (2.2)

and Generator polynomial for parity polynomial calculation 𝐺(𝑥), shown in table
2.2 [17].

The circuit needed for parity calculation conducts pipelined form of long poly-
nomial division where the dividend is incoming message 𝑀(𝑥) multiplied by 𝑥2𝑡

which serves as a room for parity polynomial 𝑟(𝑥) and the divisor is constant gener-
ator polynomial 𝐺(𝑥). The divider is based on adding already multiplied generator
polynomial by a specific GF element with already pre-registered values of this op-

47

eration. Initially, this number can be found when the most significant degree of
the 𝑀(𝑥)×𝑥2𝑡 is added to the most significant degree of initialized register in 0.
Then, the generator polynomial 𝐺(𝑥) is multiplied with this number and is added
to remaining degrees of the register. In the next cycle, registered values replace the
previous ones and the operation continues in the same way.

Tab. 2.2: Coefficients of the generator polynomial 𝐺𝑖 (taken from [17])

𝑖 𝐺𝑖 𝑖 𝐺𝑖 𝑖 𝐺𝑖

0 523 11 883 22 565
1 834 12 503 23 108
2 128 13 942 24 1
3 158 14 385 25 552
4 185 15 495 26 230
5 127 16 720 27 187
6 392 17 94 28 552
7 193 18 132 29 575
8 610 19 593 30 1
9 788 20 249
10 361 21 282

It requires 𝑘 cycles to calculate the parity polynomial 𝑟(𝑥) [3]. Such operation
has been implemented in a similar way which is shown in figure 2.5 as a hardware
representation of this recursive function.

2.2.1 Reed-Solomon Encoder
The process of remainder polynomial 𝑟(𝑥) calculation [3] follows IEEE Std. 802.3bsTM-
2017 for 200GE and 400GE. [17] The RS-FEC Encoder follows procedure shown in
figure 2.3.

RS-FEC Encoder has been successfully verified using ModelSim and compared
with Annex 119A IEEE Std. 802.3𝑏𝑠TM−2017. The encoder part has been created
first for 𝑚 = 4. Results of this simulation and intermediate calculations correspond
to the values available in [3] on page 11. Full parametrizability of this component
has been therefore confirmed. An advantage of the code is the possibility of larger or
smaller variants creation for various data lengths (shortened codes creation) simply
by changing generic variables in the code. However, digital circuits introduced for
RS-FEC Encoder and Descrambler provide general functional models, for resultant
implementation, larger parallel combinatorial functions with registers were to be
taken in account for the desired sequential RS-FEC system within the PCS layer.

48

0 0 0 0
1

g(x) 1→15 3 1 12
15 3 1 12
2

g(x) 13→ 7 4 13 3
4 5 1 3
3

g(x) 7→11 9 7 2
14 8 4 2
4

g(x) 10→12 13 10 1
4 9 8 1
5

g(x) 1→15 3 1 12
6 11 0 12
6

g(x) 0→ 0 0 0 0
11 0 12 0
7

g(x) 12→ 8 7 12 15
8 11 12 15
8

g(x) 0→ 0 0 0 0
11 12 15 0
9

g(x) 2→13 6 2 11
1 9 2 11

10
g(x) 11→ 3 14 11 13

10 12 0 13 0
11

g(x) 1→15 3 1 12
3 3 12 12

×

×

×

×

×

×

×

×

×

×

×

x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Fig. 2.3: Numerical representation of RS-FEC Encoder operation (taken from [3])

General diagram of RS-FEC Encoder operation for 400GE is shown in figure
2.5. It consists of two main components: RS_400_FEC_ENC consisting of two RS-
FEC Encoders for codeword_A and codeword_B generation and MUX for symbols
distribution.

2.2.2 Symbols Distribution
According to the IEEE Std. 802.3𝑏𝑠 TM −2017 subchapter 119.2.4.7 for 400GE the
two codewords codeword_A and codeword_B of 544 symbols are further interleaved

49

RS-FEC_ENC

message <k-1:0>
9
0

...

D D

GF
MULT

G2t-1G2t-2

GF
MULT

GF
MULT

G0 G1

G2t
=1

D

parities <2t-1:0>
9
0

...message <k+2t:2t>
9
0

...

GF
MULT

GF
MULT

... constant elements of Generator polynomial G(x)

D

10 10 10 10

10

Fig. 2.4: RS-FEC Encoder hardware diagram for polynomial division

in the component RS_ENC_INT and distributed among 16 PCS lanes. This compo-
nent has also been designed generically. Therefore, by changing number of generic
parameters it is possible to switch between 200 Gbps or 400 Gbps platforms or even
IEEE Standards for future Ethernet speeds, if needed.

message_A<513:0>
9

0

GENERIC RS-FEC ENCODER A

message_A9
0

GENERIC PCS LANES INTERLEAVER MUX

...

... 9
0

parity_A... message_B9
0

... 9
0

parity_B...

codeword_A<543:0> codeword_B<543:0>

codewords_interleaved<1087:0>
9

0
...

message_B<513:0>
9

0

GENERIC RS-FEC ENCODER B

...

RS_400_FEC_ENC

RS_ENC_INT

clk

...

<29:0><543:30><543:30> <29:0>

Fig. 2.5: RS-FEC Transmitter diagram for 400GBASE

50

The interleaving and deinterleaving of two codewords has been realized at symbol-
level and follows the procedure shown in the pseudocode below [17]:

const int MSGS = 2 //𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑡𝑜 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒

const int PCSL = 16 //𝑃𝐶𝑆 𝑙𝑎𝑛𝑒𝑠

const int SYM = 514-1 //𝑆𝑦𝑚𝑏𝑜𝑙𝑠 𝑜𝑓 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑏𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑑

const int GENPOL = 31-1 //𝑆𝑦𝑚𝑏𝑜𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐺(𝑥)

if (PCSL
MSGS) mod(MSGS) = 0

then
A = PCSL

MSGS

if (SYM+1 + GENPOL
J) mod(J) = 0

then
B = SYM+1 + GENPOL

J

const int CWSYM = SYM + GENPOL

for all K=0 to (A-1)
for all J=0 to (B-1)

if even(K)

tx_out<PCSL×K+MSGS ×J> = codeword_A<CWSYM-A×K-J>
tx_out<PCSL×K+2J+1> = codeword_B<CWSYM-A×K-J>

else

tx_out<16K+2J> = codeword_B<CWSYM-A×K-J>
tx_out<16K+2J+1> = codeword_A<CWSYM-A×K-J>

51

2.2.3 Reed-Solomon Decoder
Reed-Solomon decoder constitutes the most complicated part of the Reed-Solomon
error correction system. Its block diagram is shown in figure . Block diagrams of each
component or RS-FEC Decoder are shown and described in further subchapters.

Before the input vectors err_codeword_A and err_codeword_B enter top-level
RS-FEC Decoder entity RS_FEC_DEC, input interleaved signal is deinterleaved back
to separate codewords A and B. This is because two RS-FEC Decoders reconstruct
error polynomial err_pol_A and err_pol_B from these two input codewords sepa-
rately while each one operates with respective RS frame. Deinterleaving has been
also designed generically and is therefore possible to switch among various plat-
forms based on number of PCS (Physical Coding Sublayer) lanes of the platform as
determined in IEEE Std. 802.3𝑏𝑠TM−2017. In terms of 400GE operation 16 PCS
lanes.

Since the input signal propagates through RS-FEC Decoder, first, the system
checks if input codewords are divisible by consequent roots of Generator polyno-
mial 𝐺(𝑥) without remainder. In this work, 𝑏 = 0 and therefore the division starts
with 𝛼0 for respective syndrome 𝑆1 and so on. This operation exploits the fact that
Generator polynomial 𝐺(𝑥) has been constructed from such GF elements beginning
with 𝛼𝑏, as determined in equation 1.5), and therefore made the incoming code-
words divisible by these elements without remainder one after another forming a set
of syndromes. An entity conducting this operation is FEC_DESC and has been real-
ized generically. Remainders of subsequent divisions by Galois field primitives form
factors of respective degrees of Syndrome polynomial 𝑆(𝑥) (see 1.19) syndrome_A
and syndrome_B. Also, desired number of Galois field elements were calculated (see
Tab. 2.1 using a function generating a constant vector implemented in ROM-based
Look-up tables. This function can generate any 𝐺𝐹 (2𝑚), in this case 𝐺𝐹 (24) for
prototype and 𝐺𝐹 (210) for resultant data widths.

The set of syndromes is further decoded by two Euclidean processors for each
codeword separately used for mapping the received codeword based on its syndromes
to the closest valid codeword by further components. There are two outputs from
each Euclidean processor. First, magnitude polynomial 𝛾Ω(𝑥) and second error
locator polynomial 𝛾Λ(𝑥). These polynomials are used to give information about
locations and magnitudes of errors in received codewords based on their syndromes.
Since the Key equation (see equation 1.26) has been introduced in [28] on page
2 and Euclid’s method applied to the Key equation, equation 1.31 can be found.
The Euclidean processor consists of 𝑡 layers in total which determines the maximal
degree of output vectors lambda and omega.

52

GENERIC PCS LANES DEINTERLEAVER MUX

...
RS_DEC_DEINT

err_codeword_A<543:0>
9
0

...

RS_400_FEC_DEC

err_codeword_B<543:0>
9
0

...clk

SYNDROME CALCULATION A SYNDROME CALCULATION B

FEC_DESC FEC_DESC

syndrome_A<29:0>
0

9 ...

GALOIS FIELD
GENERATOR

GALOIS FIELD
INVERSES

GENERATOR

EUCLIDEAN
PROCESSOR A

omega_A
0
9 lambda_A

0
9

EUCLIDEAN
PROCESSOR B

syndrome_B<29:0>
0
9 ...

omega_B
0
9 lambda_B

0
9

FEC_EUC FEC_EUC

CHIEN SEARCH A

lambda_derived_A<543:0>
0

9
...

err_positions_A<543:0>
0
9 ...

FEC_LOC

fec_out_A<1027:514>
0
9 ...

FEC_MAG

FORNEY'S AlLGORITHM A

err_pol_A<543:0>
0
9 ...

CHIEN SEARCH B

lambda_derived_B<543:0>
0

9
...

err_positions_B<543:0>
0
9 ...

FEC_LOC

fec_out_B<513:0>
0
9 ...

FEC_MAG

FORNEY'S AlLGORITHM B

err_pol_B<543:0>
0
9 ...

<14:0> <14:0> <14:0> <14:0>

Fig. 2.6: Diagram of the RS-FEC Decoder

53

An interesting property of this algorithm is that if 𝛾Ω(𝑥) has been successfully
found, its degree determines in which layer the calculation has finished. In other
words, if the received codeword contains single error, the result of 𝛾Ω(𝑥) computation
is in the first layer. If the received codeword contains two errors, the result of
computation 𝛾Ω(𝑥) lies in the second layer etc. Respectively, 𝛾Λ(𝑥) has been also
found in these layers, as well. In addition to the polynomial division part, GF
inverses have to be used in this process which were found using logarithms as shown
in equation 2.1. This process and its implementation is described in more detail in
subchapter 2.2.3.

Last two entities for solving the Error polynomial 𝐸(𝑥) fec_out_A and fec_out_B
are Chien search and Forney’s algorithm. For these components, multiple degrees of
inverses were found using a function which generates inverses as a constant stored
in ROM-based LUTs. It has also been designed generically and can be therefore
used for any GF(2𝑚). Chien search solves equation 1.37 and derivation described in
1.9.6. Forney’s algorithm conducts more straightforward operation, and this is the
fraction in the equation 1.39.

CONTROL
&

BUFFER

EUCLIDEAN
PROCESSOR CHIEN SEARCH

FORNEY'S
ALGORITHM

OUTPUT

DESCRAMBLERR(x)

Ω(x)

Λ(x)S(x)

Ω(x)

Λ'(x)

err.
loc.

E(x)

S(x)

Fig. 2.7: Sequential solution for a single RS-FEC decoder

The resultant RS-FEC is a sequential component which further requires control
unit which also serves for error correction status reporting to the PCS layer. Its
operation is summarized in 1.9.7. In addition, buffers are needed to synchronize
signals with the sequential error correction flow. This is shown in figure 2.7.

Syndromes computation

Hardware for syndrome calculation follows procedure shown in figure 2.9. The most
significant degree of the input received message 𝑅(𝑥) is added with registered value
initialized in 0 and then multiplied with a constant primitive element 𝛼𝑏. In the
next cycle, XOR gate reads one degree lower factor of the input message 𝑅(𝑥) and

54

FEC_DESC:

... elements of Galois field as constantsαi

syndrome <2t-1:0>...9

0

GF
MULT

α1

D

GF
MULT

α0

D

GF
MULT

D

GF
MULT

D

α2t-2 α2t-1

9

0
... err_codeword<543:0>

clk

=1

Fig. 2.8: Hardware of descrambler for syndromes calculation

the remaining process remains the same. Here, 𝑏 = 0. Then, this value rewrites the
previous initial value in the register etc.

In parallel, this operation shown in figure 2.9 runs with other primitive elements
of GF 𝛼𝑏+1, ... 𝛼𝑏+𝑘+2𝑡−1. Process with multiplying by 𝛼0 forms 𝑆0, 𝛼1 forms 𝑆0 etc.
This general operation is represented in a diagram shown in 2.8.

Euclidean processor design

The main process present in a single layer of the Euclidean processor has been
divided into two parts: left-hand process for polynomial division and right-hand
process conducting polynomial multiplication and addition, as described in [3]. Fig-
ure 2.10 shows calculation of the first layer of the Euclidean processor for 𝛾Ω(𝑥) and
𝛾Λ(𝑥) calculation and figure 2.11 the second layer.

Suppose that input to the FEC_EUC from RS_DESC is this polynomial 𝑆(𝑥):

𝑆(𝑥) = 12𝑥3 + 4𝑥2 + 3𝑥 + 15 (2.3)

55

x
14

x
13

x
12

x
11

x
10

x
9

x
8

x
7

x
6

x
5

x
4

x
3

x
2

x
1

x
0

0

R14 1

α
0
× 1→ 1

R13

α
0
×

2

× 3→ 3

R12 3

α
0 × 0→ 0

R11 4

α
0
× 4→ 4

R10 5

α
0
× 1→ 1

R9 11

α
0
× 10→10

R8 7

α
0
× 13→13

R7 8

α
0 × 5→ 5

R6 9

α
0
× 12→12

R5 10

α
0
× 6→ 6

R4 11

α
0
× 13→13

R3 3

α
0
× 14→14

R2 1

α
0
× 15→15

R1 12

α
0
× 3→ 3

R0 12

15

×

×

×

×

×

×

×

×

×

×

×

×

Fig. 2.9: Numerical representation of syndrome calculation operation

56

x
4

x
3

x
2

x
1

x
0

x
2

x
1

x
0

dividend: 1 0 0 0 0 0 0

divisor 10x: 1 14 13 12 10 0

14 13 12 0 10 0

divisor 6: 14 11 10 4 0 6

remainder: 6 6 4 10 6

×

×

Fig. 2.10: Eample of first layer of Euclidean processor operation [3]

In the first layer, register with dividend polynomial initialized in 𝑥2𝑡 (here, 𝑥4) will be
divided by polynomial 𝑆(𝑥) as dividend, however, multiplied by certain value causing
the most significant degree of the dividend (𝑥4) to be equal to the most significant
degree of the divisor which results in cancelling the most significant degrees after
addition of contents in these two registers. This number can be found by dividing the
most significant degree of the dividend by divisor’s most significant factor. Divisor
polynomial is constant for the entire layer based on its degree, number of division
steps differs. Then, resulting quotient of the division is:

1𝑥4

12𝑥3 = 𝛼0𝑥4 × 𝛼−6𝑥−3 = 𝛼0𝑥4 × 𝛼9𝑥−3 = 1𝑥4 × 10𝑥−3 = 10𝑥 (2.4)

This number (10x) is the quotient which multiplies both the divisor 𝑆(𝑥) and
also register with polynomial 𝐹 (𝑥) in the right-hand side of the process. On the left,
multiplied divisor factors are added to respective factors of the dividend 𝑥4 while
the most significant degree is cancelled. Then, another factor with degree lower by
one is adjusted to the dividend in the next cycle and register of the dividend is
rewritten. Multiplication on the right-hand side with polynomial 𝐹 (𝑥) initialized in
1 is trivial (it is important to mention that multiplication is performed over 𝐺𝐹 (24):

1 × (10𝑥) = 10𝑥 (2.5)

However, there is no previous layer and therefore all remaining registers are set
to 0. At the same time as left-hand preforms addition, on the right-hand side is
performed as well and then rewrites current register for addition:

0 + 10𝑥 = 10𝑥 (2.6)

This process continues once again since maximal number of errors 𝑡 occured. If
the number of errors is lower, based on the divisor’s degree the number of cycles can
be determined.

𝑐𝑦𝑐𝑙𝑒𝑠 = 1 + (𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 − 𝑑𝑒𝑔𝑟𝑒𝑒_𝑑𝑖𝑣𝑖𝑠𝑜𝑟) (2.7)

57

If the degree of dividend in this example is 4 and degree of divisor is 3, then
2 cycles of division have to be performed to obtain remainder. On this basis, first
implementation of Euclidean processor is based to secure the Euclidean processor
operation.

The second and following layers operate on similar basis as the first one, however,
inputs to the layer change. First, on the left-hand side, divisor from the previous
layer becomes current layer dividend and remainder from the previous layer is divisor
of the current layer. This applies also for next layers. On the right-hand side, two
registers read data from the previous layer. First, current register 𝐹 (𝑥) is loaded
with data from previous result 𝛾Λ(𝑥) and initial sum to the process (first row) reads
data of 𝐹 (𝑥) from previous cycle.

x
4

x
3

x
2

x
1

x
0

x
2

x
1

x
0

dividend: 12 4 3 15 0 1

divisor 2x: 12 12 8 7 12 0

8 11 15 7 12 1

divisor 13: 8 8 1 11 8

remainder: 3 14 7 7 9

×

×

Fig. 2.11: Example of remaining layers of Euclidean processor operation [3]

Now it is important to select the right output. If the degree of remainder on
the left-hand side of the euclidean algorithm is lower than t (in this example 2) the
𝛾Λ(𝑥) and 𝛾Ω(𝑥) has been found. In the realization of euclidean processor, output
logic selects correct output based on registered degrees of dividends and divisors
of each layer of the euclidean. There is also room for improvement because the
degree can be estimated only in the first layer and based on this, other layers can
be synchronized accordingly. This has to be tested first.

The diagram of the euclidean processor is shown in figure 2.12. Similarly as the
algorithm shown above, the main operation is divided into three main parts. Based
on incoming syndrome polynomial degree every layer of the euclidean processor is
configured. For the division part, inverses of GF are loaded in LUTs. Intermediate
remainders of each layer are used by control logic to set up next layer and output
logic selects the right output. In addition, intermediate product from the right-hand
process is also sent to control logic in order to shift products after multiplication
accordingly.

58

FEC_EUC:

... inverse elements of Galois field as constants

clk
syndrome <2t-1:0>...

9

0

GALOIS FIELD
INVERSES

GENERATOR

EUCLIDEAN_PROCESSOR_LAYER

LEFT-HAND PROCESS
POLYNOMIAL

DIVISION

RIGHT-HAND PROCESS
POLYNOMIAL

MULTIPLICATION

inter_remainder <t-1:0>
9

0
inter_product <t:0>

9

0

CURRENT LAYER
SETUP

PROCESS INPUT DEGREES REGISTER

OUTPUT LOGIC

inter_quotient <t-1:0>
9

0

omega<t-1:0>
0
9

lambda<t:0>
0
9

Fig. 2.12: Diagram of Euclidean processor unit for RS-FEC

59

Hardware for error locations

Chien search component performs two main operations: solves Error locator poly-
nomial 𝛾Λ(𝑥) (see equation 1.37) and derivation of polynomial 𝛾Λ′(𝑥) for each of
𝛼𝑏, 𝛼𝑏+1...𝛼𝑏+𝑘+2𝑡−1 described in chapter1.9.5. Based on these two outputs, Error
polynomial can be solved using Forney’s equation. There are therefore 𝑘 + 2𝑡 − 1
solutions for each of 𝛼𝑏, 𝛼𝑏+1 ... 𝛼𝑏+𝑘+2𝑡−1 elements for both output vectors which
correspond to the width of Error polynomial 𝐸(𝑥). With reference to equation 1.37
the Error locator polynomial can be solved by following procedure. The result of
the previous example in the right-hand side process of the Euclidean processor is
[3]:

𝛾Λ(𝑥) = 𝛾Λ2 + 𝛾Λ1 + 𝛾 = 7𝑥2 + 7𝑥 + 9 (2.8)

Divided by 𝛾 the Error locator polynomial equals to:

𝛾Λ(𝑥)
𝛾

= Λ(𝑥) = 14𝑥2 + 14𝑥 + 1 (2.9)

The Chien search algorithm can be performed at positions 𝑥 = 𝛼𝑏, 𝛼𝑏+1 ...
𝛼𝑏+𝑘+2𝑡−1, in this example for 𝑒14 = 𝛼14, as follows:

Λ(𝑥) = 14𝑥2 + 14𝑥 + 1 = 14(𝛼−𝑒14)2 + 14𝛼−𝑒14 + 1 = 14(𝛼−14)2 + 14𝛼−14 + 1 (2.10)

In this point it is possible to identify respective inverse elements stored in ROM-
based Look-up table shown in 2.1 realized by a constant vector generated by a
generic VHDL function:

Λ(𝑥) = 14(𝛼1)2 + 14𝛼1 + 1 (2.11)

Implemented hardware of Chien Search then follows this calculation of this line:

Λ(𝛼−14) = 𝛼11(𝛼1)2 + 𝛼11𝛼1 + 𝛼0 (2.12)

Λ(𝛼−14) = 𝛼11𝛼2 + 𝛼11𝛼1 + 𝛼0 = 𝛼13 + 𝛼2 + 𝛼0 = 13 + 15 + 1 = 3 (2.13)

The result of Λ(𝛼−14) is 3 which signifies that on position 𝑒14 an error did not
occur. This computation runs for all error positions 𝑒𝑏 ... 𝑒𝑏+𝑘+2𝑡−1 in parallel and
therefore the benefit of parallelism in an FPGA has been exploited.

Since the first derivative of Λ(𝑥) has been found, as shown in the following
example where even degrees of 𝑥 are set to zero [3]:

Λ(𝑋𝑗)′ = Λ1 + Λ3 × 𝑋−2
𝑗 + Λ5 × 𝑋−4

𝑗 + . . . (2.14)

Λ(𝑋𝑗)′ = 14𝑋𝑗

𝑋𝑗

= 14 (2.15)

60

FEC_LOC

... inverse elements of Galois field as constants

clk

GALOIS FIELD
INVERSES

GENERATOR

lambda<t:0>
0
9

ERROR LOCATOR DERIVATON

and their respective degrees

GF
MULT

GF
MULT

GF
MULT

=1 =1 =1

GF
MULT

GF
MULT

GF
MULT

GF
MULT

GF
MULT

GF
MULT

9
0

lambda_derived<k+2t-1:0>...

9
0

err_positions<k+2t-1:0>...

γΛ0γΛ1γΛt-1γΛt

γΛ0γΛ1γΛt-1γΛt

γΛ0γΛ1γΛt-1γΛt

10(t+1)

101010 10

101010 10

101010 10

10

10

10

...

...

...

(α0)
-t

(α0)
-t+1

(α0)
-1

(α1)
-1

(α1)
-t+1

(α1)
-t

(αk+2t)
-t

(αk+2t)
-t+1

(αk+2t)
-1

Fig. 2.13: Diagram of Chien search as the unit for error positions determination

61

Hardware for Λ(𝑥) derivation calculation differs only in terms of number of fac-
tors to be added by XOR gates as represented in 2.13. It terms of hardware require-
ments reduction, it is not needed to divide the Error locator polynomial by 𝛾 thanks
to the fact that 𝛾 will be cancelled out in further division in Forney’s algorithm, it
is convenient to omit the division part in 2.17.

It is also important to note that 𝛾Λ(𝑥) at each error position has its own deriva-
tive 𝛾Λ(𝑥)′ and therefore derivatives of higher degrees of the Magnitude polynomial
𝛾Λ(𝑥) (degrees of 3 and more) will differ compared to the example above. It is
therefore possible to form a vector of the same length as the error polynomial with
derivatives of 𝛾Λ(𝑥)′ for each error position which is convenient for parallel compu-
tations omitting redundant control logic prolonging the critical path from input to
output.

Hardware for Error Magnitudes Calculation

Since the results of Error locator polynomial 𝛾Λ(𝑥) and derivation of 𝛾Λ′(𝑥) are
found, Forney’s algorithm solves the Error polynomial 𝐸(𝑥) by calculating fraction
for each of 𝛼𝑏, 𝛼𝑏+1, . . ., 𝛼𝑏+𝑘+2𝑡−1. Therefore, this component has been divided
into three main parts. First part solves Magnitude polynomial 𝛾Ω(𝑥) and second
part solves fraction with already calculated 𝛾Λ′(𝑥). If an error position is found,
multiplication of the solved fraction with respective primitive element of GF is per-
formed. This 2-way MUX causes that if the received codeword has no errors, the
entire Error polynomial 𝐸(𝑥) is set to 0 otherwise calculates result only for selected
zero error positions. Since the result of the left-hand side process of the Euclidean
processor is [3]:

𝛾Ω(𝑥) = 𝛾Ω1 + 𝛾Λ0 = 3𝑥 + 14 (2.16)

Divided by 𝛾 the Magnitude polynomial Ω(𝑥) equals to:
𝛾Ω(𝑥)

𝛾
= Ω(𝑥) = 6𝑥 + 15 (2.17)

Forney’s algorithm follows equation 1.39 as shown in this example [3]:

𝑌𝑗 = 𝑋1−𝑏
𝑗

Ω(𝑋−1
𝑗)

Λ′(𝑋−1
𝑗)

(2.18)

Since error positions 𝑋𝑗 have been found in the Chien search part (here, at
positions 𝑋𝑗 = 𝛼9 and 𝑋𝑗 = 𝛼2), error magnitudes 𝑌𝑗 can be calculated for these
positions where 𝑏 = 1 [3]:

𝑌𝑗 = 𝑋1−𝑏
𝑗

6(𝑋−1
𝑗) + 15

Λ′(𝑋−1
𝑗)

= 𝛼9 6𝛼−9 + 15
14 = 13 (2.19)

62

FEC_MAG

... elements of Galois field as constants

clk
omega<t-1:0>

0
9

GF
MULT

GF
MULT

GF
MULT

=1

...

GF
MULT

GF
MULT

GF
MULT

GF
MULT

GF
MULT

GF
MULT

9
0

lambda_derived<k+2t-1:0>...

9
0

err_magnitudes<k+2t-1:0>...

γΩ0γΩ1γΩt-2γΩt-1

10t

101010 10

101010 10

101010 10

10

10

γΩ0γΩ1γΩt-2γΩt-1

γΩ0γΩ1γΩt-2γΩt-1

GF
MULT

9
0

err_pol<k+2t-1:0>...

err_positions<i> = 0<9:0>

0
GALOIS FIELD
GENERATOR

1

0

GALOIS FIELD
INVERSES

GENERATOR

10

10
10

10
10

10

FRACTION

10

=1 =1

...

...

(α0)
-t+1

(α0)
-t+2

(α0)
-1

(α1)
-t+1

(α1)
-t+2

(α1)
-1

(αk+2t)
-1

and their respective degrees

(αk+2t)
-t+2

(αk+2t)
-t+1

Fig. 2.14: Diagram of Forney’s algorithm as a unit for error polynomial calculation

63

And here for 𝛼2 [3]:

𝑌𝑗 = 𝑋1−𝑏
𝑗

6(𝑋−1
𝑗) + 15

Λ′(𝑋−1
𝑗)

= 𝛼2 6𝛼−2 + 15
14 = 2 (2.20)

Result of this operation is then added to the input err_codeword and then the
𝑅(𝑥) can be corrected as shown in figure 2.15:

𝑥14 𝑥13 𝑥12 𝑥11 𝑥10 𝑥9 𝑥8 𝑥7 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1 𝑥0

𝑅(𝑥) = 1 2 3 4 5 11 7 8 9 10 11 3 1 12 12
𝐸(𝑥) = 0 0 0 0 0 13 0 0 0 0 0 0 2 0 0
𝑇 (𝑥) = 1 2 3 4 5 6 7 8 9 10 11 3 3 12 12

FEC_CORR

9

0
err_pol <k+2t-1:0>...

9

0
... err_codeword<k+2t-1:0>

5439

5439

9

0
... corr_codeword<k+2t-1:0>

9

0
... FEC_OUT<k-1:0>

5439

5139

Fig. 2.15: Hardware for error correction

2.2.4 Testing
Testing of the system RS-FEC follows a straightforward procedure illustrated in
figure 2.16. The main idea is to generate an error pattern in the form of polynomial
representing 𝑅(𝑥). The calculated error pattern should be the same as the generated
one. In addition, inner signals are also being traced for effective debugging of the
code. The functionality of the algorithm was tested for shortened RS(544, 514) and
𝑅𝑆(256, 226) over 𝐺𝐹 (210) using 𝐺(𝑥) from Clause 119; RS(29, 15) over 𝐺𝐹 (210)
with 𝐺(𝑥) from Clause 91 and shortened 𝑅𝑆(9, 5) over 𝐺𝐹 (24) with reference to [3]
where all possible error positions and error values were examined.

64

TB_RS_400_FEC

RS_FEC TESTBENCH

TRANSMITTER RECEIVER

generated

error polynomial

inner signals

& output

inner signals

& output

message

generated

codeword erroneous

codeword

data evaluation

Fig. 2.16: Testing of the RS-FEC system

2.2.5 Implementation
This section summarizes the implementation part of the time-constrained system.
During implementation, timing constraints for clock signals were set to 5 ns. Dis-
cussion, reflection and future improvements can be found in chapter 2.3.

Implementation Compilation flow

Development of RS-FEC for 400GE was conducted using Intel® Quartus® Prime
Pro Edition Design Software [4] which supports VHDL 1987 (IEEE Standard 1076-
1987), VHDL 1993 (IEEE Standard 1076-1993) and VHDL 2008 (IEEE Standard
1076-2008). Compilation flow of imported design consists of 8 main stages [30]:

• IP Generation - identifies IP components used in the project, their status and
version.

• Analysis & Synthesis - performs synthesis, optimization, minimization and
maps design logic to device resources, checks for design file and project errors.
Results of this stage are preliminary and preserved for next stages. Design
synthesis translates design source files into a form of netlist for mapping to
device resources. It examines the logical completeness and consistency of the
design, checks for boundary connectivity, syntax errors and also minimizes
and optimizes design logic and may change or remove redundant user logic
to ensure efficient use of device resources. In the end of synthesis, the Com-
piler generates a database of the most basic (atom) elements which design
synthesis requires to implement the design in silicon. Atoms include logic cells
organised into look-up tables, D flip flops I/O pins, block memory, DSP block

65

and connections between atoms. This can be graphically represented in RTL
Viewer.

• Fitter (Place & Route) - placement and routing to specific target device is
performed while respecting timing and placement constraints and any Fitter
settings specified. Fitter determines the best placement and routing of logic
in the target FPGA device. By default, fitter selects appropriate resources,
interconnection paths and pin locations. If design logic is assigned to specific
device resources, the Fitter attempts to match those requirements and optimize
any other remaining unconstrained design logic. If the Fitter cannot fit the
design in the current device, the compilation is terminated and reports an
error message. This stage consists of 6 substages [30]:

– Plan - places all periphery elements (I/Os and PLLs, etc.) and determines
legal clock plan. Core placement or routing has not yet been performed.

– Early Place - this is an optional stage. It places all core elements in
an approximate location. This facilitates further design planning and
finalizes clock planning for Intel® Stratix® 10 family and Intel® AgilexTM

designs.
– Place - places all core elements in a legal location.
– Route - creates all routing between elements in the design.
– Retime - moves (retimes) existing registers into Hyper-Registers for fine-

grained performance improvement.
– Fitter (Finalize) - For Intel® Stratix® 10 family devices preforms post-

Route fix-up after retime stage. Also, generates Technology Map Viewer
to view internal structure of the design netlist after Analysis & Synthesis,
for instance, for high fanout nets examination.

• Fast Forward Timing Closure Recommendations - generates reports which
estimate performance gains by making specific RTL modifications.

• Timing Analysis - analyzes and validates the timing performance of all design
logic.

• Power Analysis - this is an optional stage for device power consumption esti-
mation.

• Assembler - converts the placement and routing by Fitter into a progrmam-
ming image for the FPGA device.

• EDA Netlist Writer - generates output files of the project for use in other EDA
tools.

66

Galois Field Multipliers

GF multipliers appear in all the components of RS-FEC and were designed generi-
cally in two parts: part modulo and multiplication part with reference to [3], page
28 where circuit of a full 4-bit shift-and-add multiplier is described, generic version
of such function has been created on gate level. Single GF multiplier consumes 39
ALMs. But, this number can be reduced during optimization process in Fitter stage
of the design compilation process.

CRC Implementation

Further progress of the RS-FEC development with already designed GF multipliers
could proceed in Scrambler and Descrambler synthesis and implementation. These
components were realised based on a general procedure for data scrambling and
descrambling (see Figure 2.4 and Figure 2.8). As assumed, some level of optimization
of GF multipliers has been reached. On the other hand, results of synthesis of these
components show enormous use of resources. This is because synthesis tools, in
general, struggle with full optimization of large and complex functions over Galois
fields, especially RS codes 𝑅𝑆(544, 514). Despite the fact that there was some
level optimization, the more cycles is demanded for the recursive algorithm to be
conducted, the optimization process gets less effective. In addition, it takes a long
time to synthesize and implement these components. Achieved results and times of
synthesis and implementation phases are summarized in following tables.

Tab. 2.3: Duration of compilation stages of RS-FEC Encoder for 𝑅𝑆(544, 514)

Stage Duration [hh:mm:ss]
Synthesis 08:47:31

Fitter 02:48:36
Timing Analyzer 00:02:17

Tab. 2.4: Duration of compilation stages of RS-FEC Descrambler for 𝑅𝑆(544, 514)

Stage Duration [hh:mm:ss]
Synthesis 00:44:02

Fitter 05:00:01
Timing Analyzer 00:03:13

Designed parametrizable system is implementable, however, timing requirements
of the system with general model for scrambling and descrambling have not been
fulfilled. The design therefore has to be further optimized. First, optimization

67

of GF multipliers towards critical path reduction might help the design to reduce
resource utilization and increase maximal operation frequency for the cost of its
parametrizability reduction in the future. Based on previous practice of RS-FEC
designs within the academical organisation Cesnet s. z. p. o., implementation of so
called “xor network”, a fully optimized net of exclusive-OR gates which also might
significantly reduce critical path and resource utilization, as studied in [31].

Tab. 2.5: Results of synthesis and implementation of time-constrained sequential
RS-FEC Encoder for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 359516 1800 -

Implementation 388305 2420 6̃.81 MHz

Tab. 2.6: Results of synthesis and implementation of time-constrained sequential
RS-FEC Descrambler for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 719583 1800 -

Implementation 507043 786533 6̃.81 MHz

Euclidean Processor Implementation

The first attempt to implement hardware of the designed and tested Euclidean
processor into Intel Stratix DX FPGA resulted in exceeding available resources. This
happened mainly because each generated layer of the Euclidean processor contained
its own Look-up table of GF inverses of 2𝑚 which resulted in such high hardware
consumption. In addition, used tool for synthesis did not estimate correctly which
registers and ALMs of certain layer will not be used in a given layer of the Euclidean
processor.

Tab. 2.7: Duration of single stages of compilation of both components of Euclidean
processor

Stage Duration [hh:mm:ss]
Synthesis 00:13:37

Fitter 00:09:23
Timing Analyzer 00:00:16

In this paper, for timing estimation of the current design, single layer of the eu-
clidean processor has been implemented. Further improvements include Euclidean

68

processor re-design, generally in terms of sharing registers of both sides of RS-FEC,
however, functional core will remain the same. Further efforts for resources uti-
lization minimization will be focused on implementing additional logic to single
euclidean layers selecting correct results based on its current layer index which in-
directly determines incoming polynomial degrees and therefore discard unnecessary
logic which is never used in the current layer of a given index. Result of implemen-
tation of one layer is shown below.

Tab. 2.8: Results of synthesis and implementation of a single sequential component
RS-EUC for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 11833 340 -

Implementation 13322 14568 2̃37.64 MHz

Chien Search Component Implementation

Synthesis and implementation of hardware for Chien Search components show that
resources utilization do not exceed critical level for its implementation and timing
requirements have been fulfilled. Results of these stages are shown in Tab. 2.9 and
Tab. 2.12 below.

Tab. 2.9: Duration of single stages of compilation of both components for finding
error locations

Stage Duration [hh:mm:ss]
Synthesis 00:03:27

Fitter 00:36:06
Timing Analyzer 00:00:37

Tab. 2.10: Results of synthesis and implementation of both components RS-CHS
for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 57506 28753 -

Implementation 66685 107813 2̃23.76 MHz

Forney’s Algorithm implementation

In the component for Forney’s algorithm computation, the most important part to
focus on is the use of a constant containing Galois field inverses. This constant

69

contains 2𝑚 bits and is therefore the largest in the design. This constant is used for
division by respective GF derivative calculated in Chien Search component for each
error position. There is actually 𝑛 = 544 error positions but only 𝑡 = 30 positions
can be corrected. The hardware in Forney’s algorithm calculates error magnitude
for each 𝑛. This means that the 2𝑚 elements has to be generated 544 times. This
is actually the cause of such a large hardware utilization which has to be reduced
to only, ideally, 𝑡-times 2𝑚. This approach might be fulfilled by a sorting algorithm
which will shift error positions in a given direction of an array and accumulate
them. Then, with 𝑡-times for loop, pointer will find respective inverse elements in
the constant array of GF inverses based on the given positions.

Tab. 2.11: Duration of compilation stages of a single entity of RS-FOR conducting
Forney’s algorithm

Stage Duration [hh:mm:ss]
Synthesis 00:46:07

Fitter 04:31:17
Timing Analyzer 00:03:05

Current design expects the result of the Forney’s algorithm to be calculated in
three clock cycles. Further extensions will probably require one more clock cycle
delay.

Tab. 2.12: Results of synthesis and implementation of a single time-constrained
sequential entity RS-FOR for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 521565 14897 -

Implementation 539392 977902 2̃45.16 MHz

70

2.3 Discussion and Reflection
In this work, main goals of the RS-FEC development have been reached. Since the
very beginning of the development, the design was focused mainly on maximal data
throughput, exploiting benefits of the FPGA technology, its parametrizability and
resource usage, however, in lesser extent. Full parametrizability of the design has
been reached which enables its reusability and possible creation of various forms
of the system for future uses or its implementation in different areas. In addition,
including Galois fields generation, its inverses and various degrees of inverses us-
ing VHDL subprograms without using additional scripts might noticeably reduce
development speed of future Ethernet platforms.

In terms of the overall functionality, the system has been tested and full parametriz-
ability has been successfully verified. It is therefore possible to modify this system
for various shortened forms of RS-FEC by changing these main generic variables:
𝑚, 𝑛, 𝑘, 2𝑡 and number of PCS lanes for codewords distribution. Thanks to generic
PCS lanes interleaving and deinterleaving the system can be implemented also for
200GE or other projects.

On the other hand, current state of art requires further optimization, especially
CRC and Euclidean processor units, and control logic, which is the plan for future
work. In the end, the focus of the development changed from the effort for maximal
data throughput and timing requirements to balance between resources utilization
and data throughput where resources play crucial role for implementation of such a
large system. Based on unbiased user experience from this development work, three
key points should ensure its further safe progress: identification and restriction of
resource-intensive look-up tables generation, sharing resources between two parts of
the RS-FEC and use of best practices from previous RS-FEC implementations to
combine the best approaches to this topic.

In terms of the resources minimization, significant reduction of ALUTs might be
reached by selecting error positions only at the Chien search component and form
the error polynomial at the Forney’s algorithm in the last stage of the pipeline of the
component. This will require an extra logic at the Chien search and one clock cycle
delay but significantly reduce number of ROM-based Look-up tables in the Forney’s
algorithm, meaning using Forney’s equation 𝑡-times only compared to generating
these inverses of the 𝐺𝐹 (2𝑚) 𝑛-times.

71

Summary
In this Master’s Thesis, fully parametrizable Reed-Solomon self-correcting algorithm
for 400 GE has been successfully designed, its function verified in simulations, op-
timized and implemented. In the theoretical part of this work, Reed-Solomon error
correcting algorithm is described including FPGA technology and Galois finite field
algebra including a general overview of modern networking and implications to cur-
rent high-speed Ethernet. Based on the theoretical part of the work it turned out
that due to the Finite field algebra it will not be possible to use dedicated DSP
blocks of the FPGA chip. Hence, the entire algorithm was stored in LUTs.

In the practical part, design and testing of RS-FEC system is discussed, used
hardware for its realization and future challenges including best practices are sum-
marized. The very first attempt to implement the system resulted in exceedingly
large resource utilization and therefore optimizations were needed to be conducted.
The main cause of this were complicated and hardware-intensive inverse circuits
of Euclidean processor layers. It turned out that it is not feasible to implement
fully parallel Euclidean processor unit including Forney’s algorithm. Based on user
experience from this work of VLSI design of Forney’s algorithm and Chien search
it was found that it is better to calculate single degrees of inverses of Galois field
elements on chip than storing them in ROM-based Look-up tables. However, in the
current state of art, all components of the RS-FEC are implementable and further
optimization is required. Major challenge of this project and key for its implementa-
tion was to balance hardware resources utilization from the previous focus on timing
fulfilment, which is mainly the task for further CRC unit optimization.

This work suggests using ROM-based Look-up tables in lesser extent. It was
found that implementation of ROM-based Look-up tables at the smallest scale pos-
sible is the key for successful implementation of this system in Intel® Stratix® 10
DX FPGA. Hence, employing Euclidean processor units for solving Key equations
is discussed. Since there are two encoders and decoders employed for each code-
word respectively, it is therefore better to consider shared resources between these
two parts of RS-FEC system and using algorithms based on minimal utilization of
ROM-based Look-up tables.

Future orientation of this work will be focused mainly on ALUTs usage mini-
mization and increasing throughput for CRC unit. In particular, significant benefit
of this system is its parametrizability which enables faster further optimization pro-
cess which applies especially for Euclidean processor. Another benefit is its simple
implementability for various scales of the code underlining its variability also for
various future uses.

72

Bibliography
[1] David J. Law. Ieee 802.3 industry connections bandwidth assessment part

ii. page 57, April 2020. URL: http://www.ieee802.org/3/ad_hoc/bwa2/
BWA2_Report.pdf.

[2] Ieee standard for ethernet amendment 4: Physical layer specifications and man-
agement parameters for 1 gb/s operation over a single twisted-pair copper cable.
IEEE Std 802.3bp-2016 (Amendment to IEEE Std 802.3-2015 as amended by
IEEE Std 802.3bw-2015, IEEE Std 802.3by-2016, and IEEE Std 802.3bq-2016),
pages 1–211, 2016.

[3] C.K.P. Clarke. Bbc r & d white paper whp 031, Jan 2002. URL: https:
//downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf.

[4] Intel® quartus® prime software suite. URL: https://www.intel.com/content/
www/us/en/software/programmable/quartus-prime/overview.html.

[5] Tcp/ip vs. osi: What’s the difference between the two models?, Nov
2017. URL: https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=
2820&lang=en.

[6] 2019 roadmap, 2019. URL: https://ethernetalliance.org/technology/
2019-roadmap/.

[7] J. Friedrich. Methods for bulk growth of inorganic crystals: Crystal growth.
In Reference Module in Materials Science and Materials Engineering. Elsevier,
2016. doi:10.1016/b978-0-12-803581-8.01010-9.

[8] Sh.K. Amin, Mai Hassan, S El-Sherbiny, and H. Abdallah. An overview of
production and development of ceramic membranes. 11:7708–7721, 01 2016.

[9] Behraad Bahreyni. Fabrication and design of resonant microdevices. W. An-
drew Inc, Norwich, NY, 2008.

[10] David H. K. Hoe, L. P. Deepthi Bollepalli, and Chris D. Martinez. FPGA
fault tolerant arithmetic logic: A case study using parallel-prefix adders. VLSI
Design, 2013:1–10, November 2013. doi:10.1155/2013/382682.

[11] J Serrano. Introduction to FPGA design. CERN, 2008. URL: https:
//cds.cern.ch/record/1100537, doi:10.5170/CERN-2008-003.231.

[12] Venkata P. Yanambaka, Saraju P. Mohanty, Elias Kougianos, Dhruva Ghai, and
Garima Ghai. Process variation analysis and optimization of a FinFET-based

73

http://www.ieee802.org/3/ad_hoc/bwa2/BWA2_Report.pdf
http://www.ieee802.org/3/ad_hoc/bwa2/BWA2_Report.pdf
https://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf
https://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820&lang=en
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820&lang=en
https://ethernetalliance.org/technology/2019-roadmap/
https://ethernetalliance.org/technology/2019-roadmap/
https://doi.org/10.1016/b978-0-12-803581-8.01010-9
https://doi.org/10.1155/2013/382682
https://cds.cern.ch/record/1100537
https://cds.cern.ch/record/1100537
https://doi.org/10.5170/CERN-2008-003.231

VCO. IEEE Transactions on Semiconductor Manufacturing, 30(2):126–134,
May 2017. doi:10.1109/tsm.2017.2669314.

[13] B Xue. Vlsi design of a reed-solomon decoder for gigabit automotive ethernet,
2016. Thesis Supervisor: C.H. (Kees) van Berkel (Supervisor 1), Marc C.W.
Geilen (Supervisor 2), Özgün Paker (External coach).

[14] Test solutions to validate 400ge devices and networks, 2017. URL:
https://ethernetalliance.org/wp-content/uploads/2018/02/Ixia-
400GE-Test-Solutions.pdf.

[15] B. BAILEY. Using fpgas for ai, Dec 2019. URL: https://www.edn.com/
design/integrated-circuit-design/4314765/Taking-a-bite-out-of-
power-techniques-for-low-power-ASIC-design.

[16] P. Sundararajan. High performance computing using fpgas, Sep 2010. URL:
http://www.bdtic.com/download/Xilinx/WP375.pdf.

[17] IEEE standard for ethernet - amendment 10: Media access control parame-
ters, physical layers, and management parameters for 200 gb/s and 400 gb/s
operation. doi:10.1109/ieeestd.2017.8207825.

[18] Why is big data so important in today’s world?, Feb 2019. URL:
https://datafloq.com/read/why-is-big-data-so-important-in-todays-
world/2674.

[19] William A Geisel. Tutorial on reed-solomon error correction coding. NASA,
1990. URL: https://ntrs.nasa.gov/search.jsp?R=19900019023.

[20] William Stallings. Gigabit ethernet: From 1 to 100 gbps
and beyond. The Internet Protocol Journal, pages 20–
32, 2015. URL: https://pdfs.semanticscholar.org/0c43/
eb117949f3eb6d5bd361b97f5a90d9f4266e.pdf.

[21] David J. Law. Ieee 802.3 industry connections bandwidth assessment part ii.
page 40, April 2012.

[22] Information technology – open systems interconnection – basic reference
model: The basic model, Jul 1994. URL: https://www.itu.int/ITU-T/
recommendations/rec.aspx?rec=2820&lang=en.

[23] et al. Savio. A physical coding sublayer for gigabit ethernet over
pof, Oct 2010. URL: https://www.researchgate.net/publication/
273445103_A_PHYSICAL_CODING_SUBLAYER_FOR_GIGABIT_ETHERNET_OVER_POF.

74

https://doi.org/10.1109/tsm.2017.2669314
https://ethernetalliance.org/wp-content/uploads/2018/02/Ixia-400GE-Test-Solutions.pdf
https://ethernetalliance.org/wp-content/uploads/2018/02/Ixia-400GE-Test-Solutions.pdf
https://www.edn.com/design/integrated-circuit-design/4314765/Taking-a-bite-out-of-power-techniques-for-low-power-ASIC-design
https://www.edn.com/design/integrated-circuit-design/4314765/Taking-a-bite-out-of-power-techniques-for-low-power-ASIC-design
https://www.edn.com/design/integrated-circuit-design/4314765/Taking-a-bite-out-of-power-techniques-for-low-power-ASIC-design
http://www.bdtic.com/download/Xilinx/WP375.pdf
https://doi.org/10.1109/ieeestd.2017.8207825
https://datafloq.com/read/why-is-big-data-so-important-in-todays-world/2674
https://datafloq.com/read/why-is-big-data-so-important-in-todays-world/2674
https://ntrs.nasa.gov/search.jsp?R=19900019023
https://pdfs.semanticscholar.org/0c43/eb117949f3eb6d5bd361b97f5a90d9f4266e.pdf
https://pdfs.semanticscholar.org/0c43/eb117949f3eb6d5bd361b97f5a90d9f4266e.pdf
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820&lang=en
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820&lang=en
https://www.researchgate.net/publication/273445103_A_PHYSICAL_CODING_SUBLAYER_FOR_GIGABIT_ETHERNET_OVER_POF
https://www.researchgate.net/publication/273445103_A_PHYSICAL_CODING_SUBLAYER_FOR_GIGABIT_ETHERNET_OVER_POF

[24] R. C. Seals and G. F. Whapshott. Programmable Logic: PLDs and FPGAs.
Macmillan Education UK, 1997. doi:10.1007/978-1-349-14003-9.

[25] M. HUTTON. Understanding how the new intel® hyperflex™ fpga ar-
chitecture enables nextgeneration high-performance systems. URL:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/wp/wp-01231-understanding-how-hyperflex-architecture-
enables-high-performance-systems.pdf.

[26] Ab Al-Hadi Ab Rahman, Anatoly Prihozhy, and Marco Mattavelli. Pipeline
synthesis and optimization of FPGA-based video processing applications with
CAL. EURASIP Journal on Image and Video Processing, 2011(1), November
2011. doi:10.1186/1687-5281-2011-19.

[27] Intel® stratix® 10 device datasheet, Mar 2020. URL: https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/
s10_datasheet.pdf.

[28] M. Morii and M. Kasahara. Generalized key-equation of remainder decoding
algorithm for reed-solomon codes. IEEE Transactions on Information Theory,
38(6):1801–1807, 1992.

[29] 800g specification. URL: https://ethernettechnologyconsortium.org/wp-
content/uploads/2020/03/800G-Specification_r1.0.pdf.

[30] Intel® quartus® prime pro edition user guide: Design compilation, Apr 2020.
URL: www.intel.com/content/www/us/en/programmable/documentation/
zpr1513988353912.html#jbr1443197641054.

[31] Jan Velecký. Implementation of self-correcting codes for 100 gb/s ethernet,
2017. Thesis Supervisor: Ing. Lukáš Kekely.

75

https://doi.org/10.1007/978-1-349-14003-9
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01231-understanding-how-hyperflex-architecture-enables-high-performance-systems.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01231-understanding-how-hyperflex-architecture-enables-high-performance-systems.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01231-understanding-how-hyperflex-architecture-enables-high-performance-systems.pdf
https://doi.org/10.1186/1687-5281-2011-19
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10_datasheet.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10_datasheet.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10_datasheet.pdf
https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/800G-Specification_r1.0.pdf
https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/800G-Specification_r1.0.pdf
www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html#jbr1443197641054
www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html#jbr1443197641054

List of symbols, physical constants and abbre-
viations
RS Reed-Solomon
FPGA Field Programmable Gate Array
GE Gigabit Ethernet
VLSI Very-Large-Scale Integration
FEC Forward Error Correction
PHY Ethernet Physical Layer
LAN Local Area Network
MAC Medium Access Control
OSI Open Systems Interconnection
DLL Data Link Layer
LLC Local Link Control
PCS Physical Coding Sublayer
PMD Physical Media Dependent
PMA Physical Medium Attachment
BER Bit Error Rate
DDR Double Data Rate
PCI Peripheral Component Interface
FSB Front Side Bus
QPI Quick Path Interconnect
DFF D-type Flip Flop
DSP Digital Signal Processing
RTL Register Transfer Level
CPU Central Processing Unit
GPU Graphics Processing Unit
I/O Input/Output
MOSFET Metal Oxide Semiconductor Field Effect Transistor
ALUT Adaptive Look-up Table
UV Ultraviolet
HPC High Performance Computing
CLB Configurable Logic Block
RAM Random Access Memory
BLE Basic Logic Element
LUT Look-Up-Table
DLLs Delay Locked Loops
PLLs Phase Locked Loops

76

ASICs Application Specific Integrated Circuits
IP Intellectual Property
MAC Medium Access Control
SoC System on Chip
ALMs Adaptable Logic Modules
DRAM Dynamic Random Access Memory
SRAM Static Random Access Memory
GPUs Graphics Compressing Units
CRC Cyclic Redundancy Check

77

	Introduction
	Theoretical Part
	Brief History of Ethernet
	OSI Reference Model
	Forward Error Correction and Current State of Ethernet Speeds
	Programmable Logic Devices Fabrication
	Field Programmable Gate Arrays
	Pipelining
	Typical Applications

	Intel® Stratix® 10
	Reed-Solomon Error Correction Codes
	Galois Field
	Galois Field Mathematics
	The Code Generator Polynomial

	Reed-Solomon Encoder
	Reed-Solomon Decoder
	The Syndromes
	The Set of Syndrome Equations
	The Error Locator Polynomial
	The Euclidean Algorithm
	Chien Search
	Forney's Equation
	RS-FEC Error Correction Capability

	Practical Part
	Motivation
	RS-FEC Layer Concept and Galois Field Construction
	Reed-Solomon Encoder
	Symbols Distribution
	Reed-Solomon Decoder
	Testing
	Implementation

	Discussion and Reflection

	Summary
	Bibliography
	List of symbols, physical constants and abbreviations

