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ABSTRACT 
This Master's thesis deals with RS-FEC layer implementation using VLSI hardware de
scription for 400 GE (Gigabit Ethernet) in the F P G A Intel® Stratix® 10 DX 2100. In the 
theoretical part of this work, current state of Ethernet speeds and context of RS-FEC 
layer within Ethernet protocol is described including PLD fabrication process and mathe
matical aspects of RS-FEC self-correction algorithm. In the practical part, parametrizable 
RS-FEC system is described including evaluation of the first results achieved and future 
scope of this project is discussed. 

KEYWORDS 
Reed-Solomon Error Correction Codes, Forward Error Correction, 400 Gbps Ethernet, 
FPGA 

ABSTRAKT 
Tato diplomová práce se věnuje problematice VLSI návrhu a implementaci vrstvy RS-FEC 
pro 400 Gb/s Ethernet do F P G A Intel® Stratix® 10 DX 2100. V práci je charakterizo
ván současný stav rychlostí Ethernetu, význam a kontext samoopravných kódů v rámci 
protokolu Ethernet. Dále je popsána výroba PLD čipů i matematická podstata RS sa
moopravných kódů. V části praktické je představen návrh řešení systému RS-FEC, který 
byl realizován genericky pomocí jazyka VHDL . Zároveň byly jeho komponenty imple
mentovány a v závěrečné diskusi je popsáno jeho řešení, dosažené výsledky včetně jeho 
budoucího rozšíření. 
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ROZŠÍŘENÝ ABSTRAKT 
V dnešní době nám možná připadá přirozené, že poskytovatelé datových služeb 
přichází čas od času s novými produkty i vyššími rychlostmi datových přenosů. 
Dříve bylo standardní praxí počkat si na to, až se nám s připojením přes tele
fonní linku načte obrázek a netrpělivě jsme sledovali každou jeho načtenou část. 
Dnes však na tuto skutečnost pomalu zapomínáme. Navíc i vzhledem k tomu, 
že se do sítě připojuje stále více nových zařízení, stávají se internetové služby 
populárním a nepostradatelným médiem pro dnešní společnost [1]. Nároky uži
vatelů internetu ruku v ruce s technologickým pokrokem však dovedly maximální 
přenosové rychlosti od jednotek kilobitů po stovky gigabitů za sekundu, a meta 
zde rozhodně nekončí. V současné době existují experimantální vysokorychlostní 
ethernetové platformy, které operují bezmála na jednotkách terabitů za sekundu. 
Rychlejší přenos dat neznamená pouze nějaké vyšší číslo či kratší dobu čekání na 
odeslání souboru. Stojí za tím obrovské úsilí celého elektrotechnického průmsylu od 
inovací v kabeláži, elektrotechnické i elektronické výrobě po inovace v informačních 
a síťových technologiích. Každý takový pokrok umožní posun v jiných odvětvích, 
například ve zdravotním průmyslu pro vývoj nových léků a vakcín, předpovědích 
klimatu, finančních službách, genetickém inženýrství atp. 

Vzhledem k tomu, že jsou obecně přenosová média vystavena faktorům rušení, 
stává se běžně, že se někdy přenesená zpráva poškodí a přijímač j i proto poté chybně 
vyhodnotí (či vůbec). Toto se stává tím častěji, čím rychlejší platforma je a čím méně 
je ošetřena proti rušení. Tomu lze však předejít několika způsoby. Jedním z nich 
je např. použití kroucené dvojlinky, která je však tématem pro nižší přenosové 
rychlosti, až 1 Gbit/s [2]. Jiný způsob, než použití kabeláže, je implementace 
samoopravných algoritmů pro rekonstrukci přenášené zprávy navzdory tomu, že je 
z části poškozena. Jedná se o algoritmy, které lze implementovat do hradlových polí 
F P G A jako firmware. V této diplomové práci je řešen aspekt implementace Reed-
Solomonových kódu pomocí návrhu VLSI pro hradlová pole Intel® Stratix® 10 D X 
pro projekt N D K - Netcope Development Ki t . 

Reed-Solomonovy kódy byly doporučeny jako vhodné řešení pro dosažení rychlostí 
100 Gb/s ve standardu IEEE Std. 802.36m™ z roku 2015. Důvodem je hlavně 
to, že jsou celkově dobře prostudovány a jejich vývoj sice stojí úsilí, ale dodá 
potřebnou kapacitu pro opravování chyb a lze je v rozumném měřítku implemen
tovat do hradlových polí F P G A . Základní koncept pro opravu chyb pomocí Reed-
Solomonových kódů spočívá v tom, že se připojí redundantní část o určitém počtu 
symbolů ke zprávě, kterou chceme poslat, tzv. parita. Tím se vytvoří unikátní 
a validní datový „balík", tzv. kódové slovo, které je výstupem vysílací strany sys
tému RS-FEC. Pokud se kódové slovo poškodí, přijímací strana chybu detekuje 
a vytvoří polynom, který se dále dešifruje následujícími komponentami, které dokáží 



najít pozice chyb a jejich velikosti na těchto pozicích. Toto „poškození" lze chá
pat tak, že se k původnímu nepoškozenému kódovému slovu přičetl určitý chy
bový polynom, který právě reprezentuje vzniklý šum. Systém tedy hledá přesně 
tento polynom, který způsobil chybu při přenosu, tzv. chybový polynom E(x). 
Nalezením tohoto polynomu a jeho přičtením k přijatému „poškozenému" kódovému 
slovu se docílí rekonstrukce, ideálně původního validního kódového slova. Reed-
Solomonovy kódy se obecně značí RS(n,k), kde n specifikuje počet prvků celého 
kódového slova a k počet prvků zprávy. 

Tato diplomová práce se tedy zabývá touto problematikou, implementací RS(544, 
514) pro 400 Gb/s Ethernet. Předpokládá se, že čtenář nemá předchozí zkušenosti 
s touto problematikou, a proto je v práci Reed-Solomonův samoopravný algoritmus 
detailně shrnut. Teoretická část dále obsahuje kapitolu o síťových technologiích, 
výrobě mikročipů a informace o použité technologii. V praktické části je uveden 
návrh řešení systému pro 400GE (Gigabit Ethernet), podrobný rozbor navržených 
komponent a prozatímní dosažené výsledky úspěšné implementace. Dále jsou v tomto 
textu shrnuty výsledky a také je konstruktivně okomentováno další rozšíření tohoto 
systému. Samotný proces Reed-Solomonových samoopravných kódů je detailně pop
sán v [3] včetně jeho hardwarové podoby, a proto se tato diplomová práce z velké 
části odkazuje právě na tento zdroj. 

Reed-Solomonovy kódy operují nad tzv. Galoisově konečným tělesem. To ve 
výsledku znamená, že celý samoopravný algoritmus provádí výpočty s (m—^-bitový
mi symboly, přičemž každý takový symbol je jedním z celkem jeho 2 m — 1 uspořá
daných členů. V rámci systému RS-FEC pro 400GE se výpočet provádí s de-
setibitovými symboly, proto m = 10. Prvky Galoisova tělesa jsou určeny i us
pořádány podle toho, jaký tzv. primitivní polynom p(x) řádu m (v binární podobě) 
toto těleso vytváří. Zajímavou vlastností konečných těles je to, že pokud se budeme 
snažit vytvořit (2 m + 1) prvek, výsledkem bude znovu prvek první, (2 m + 2) prvek je 
znovu prvek druhý atd. V Galoisově tělese platí také odlišná algebra, a to taková, 
že při provádění algebraických operací nedochází ke změně řádů (přetékání bitů). 
Operace sčítání a odčítání je jedna a ta samá operace, která se provádí pomocí hradla 
XOR. Systém tedy nevyžaduje použití žádných sčítaček ani odčítaček, a tudíž nelze 
využít DSP bloky v čipu F P G A . V práci byla tedy zvolena varianta implementace 
systému do Look-up tabulek hradlového pole včetně jejich použití jako paměti R O M . 
Jak je obecně známo, logické operátory XOR jsou sobě komutativní a výsledný 
návrh lze optimalizovat, což provádí syntézní nástroje, v této práci Intel Quartus 
Prime Pro [4]. Operace násobení se také liší a provádí se ve dvou fázích. Vstupy 
do násobičky nad GF(2m) chápeme jako polynomy řádu m — 1 a provádíme klasické 
násobení mnohočlenu mnohočlenem. Výsledek tohoto násobení však překračuje řád 
prvků GF{2m) a je tedy nutné jej do tohoto řádu "vrátit" pomocí operace modulo 



m vydělením tím samým primitivním polynomem p(x), který generuje celé Ga-
loisovo těleso GF(2m). Implementace dělení v Galoisově poli je komplikovanější 
a vyžaduje využití velkého množství logických zdrojů. Vzhledem k tomu, že se v 
systému RS-FEC násobičky vyskytují ve velkém množství, jedná se o komponentu 
velmi náročnou na využití zdrojů v F P G A , zejména Look-up tabulek. Dělení bylo 
provedeno tak, že po nalezení inverzního prvku dělitele (jmenovatel) se tento prvek 
vynásobil s dělencem (čitatel). V komponentách, kde se provádí dělení nad GF(2m), 
se proto musely nejdříve najít tyto inverzní prvky, seřadit vzestupně dle jejich zák
ladní hodnoty a pro dosažení vysoké datové propustnosti implementovat do Look-up 
tabulek charakteru R O M . Toto provádí navržený V H D L podprogram, který dokáže 
vytvořit G F inverze pro kterákoliv požadovaná GF(2m) bez nutnosti spouštět ex
terní skripty. Tyto vektory však zabírají velké množství logických zdrojů a bylo 
potřeba jich v systému generovat co nejméně. I když je systém syntetizovatelný, 
výsledný návrh vyžaduje pro finální implementaci z důvodu přílišného využití dos
tupných zdrojů v F P G A odpovídající optimalizace. To se také projevuje dlouhou 
dobou fáze hledání vhodného propojení logických buněk (Routě). V návrhu bylo 
tedy nutné vhodně určit, kdy použít konstanty a kdy násobičky. Pro samoopravný 
algoritmus bylo také potřeba najít čtverce a vyšší řády Galoisova tělesa. Vhodným 
řešením bylo použití operace násobení nežli generování konstanty navzdory tomu, 
že prvotní návrh počítal s pravým opakem, a to z důvodu využití co nejmenšího 
množství násobiček v G F pro zkrácení kritické cesty ze vstupu na výstup kompo
nent. 

Vrstva RS-FEC je součástí podvrstvy PCS (Physical Coding Sublayer) fyz
ické vrstvy Ethernetu P H Y . Komponenta systému RS-FEC, která přijímá data z 
PCS vrstvy na vysílací straně, se nazývá RS-FEC Enkodér, který provádí tzv. 
skramblování. To je takový rekurzivní proces, který provádí dělení mnohočlenu 
mnohočlenem, tedy celé zprávy M(x) tzv. Generačním polynomem G(x), který 
definuje norma IEEE Std 802.3bs™ 2017. Jeho úkolem je vytvořit tzv. paritu, 
což je zbytek po tomto rekurzivním procesu dělení. V praxi se při implementaci 
RS-FEC Enkodéru ukázalo, že syntézní nástroje nedokáží plně optimalizovat kom
plexní zapojení této funkce pro potřebnou datovou propustnost, což je z velké části 
dáno návrhem násobiček. Zjistilo se, že dva různé parametrizovatelné návrhy ná
sobiček v RS-FEC Enkodéru vyústily ve dva různé, avšak zanedbatelně rozdílné, 
výsledky ve smyslu využití zdrojů, a proto je potřeba hledět na procesy skramblování 
a deskramblování jinak, než udává obecné schéma pro provádění této operace. 

Vysílací strana dále také provádí distribuci jednotlivých symbolů zprávy mezi 
jednotlivé linky PCS. Vzhledem ke standardu IEEE Std 802.3 b s™ 2017 distribuci 
provádí M U X mezi 16 PCS linek, přičemž navržený systém nabízí funkci volby počtu 
linek pomocí generických patametrů, a tudíž lze navržený systém použít i pro 200GE 



či budoucí rychlosti Ethernetu, pro které v současnosti ještě neexistuje normovaná 
verze. 

Druhou částí systému RS-FEC je část přijímací, která dekóduje dvě kódová 
slova. Pro provedení opravy zprávy musí přijímací strana nejprve vrátit proložené 
symboly zprávy do stavu před proložením. Poté se provede tzv. deskramblování, 
a to každého přijatého kódového slova. To je obdobný proces jako skramblování, 
avšak se v tomto případě dělení provádí pouze jedním elementem Galoisova tělesa, 
resp. kořenem generačního polynomu G(x), poté jeho následujícím elementem, atp. 
Dělení se provede tedy celkem 2í-krát, přičemž v F P G A lze toto dělení provádět par
alelně. Nutno podotknout, že opravnou kapacitu Reed-Solomonova samoopravného 
algoritmu t určuje jeho tzv. Hamingova vzdálenost, která je dána počtem parit
ních symbolů, v tomto případě algoritmus opraví až 15 symbolů. Deskramblováním 
lze zjistit, zda jsou přijatá kódová slova dělitelná beze zbytku kořeny Generačního 
polynomu G(x). Tím se ověří, zda při přenosu k nějaké chybě došlo, čili zda je na 
vstupu dekodéru validní kódové slovo či nikoliv. Pokud je výsledek nulový, systém 
RS-FEC opravu provádět nebude. Pokud ne, deskrambler vytvořil takový polynom, 
který je nutno dále dešifrovat za účelem zpětného vytvoření validního kódového 
slova. Takový vytvořený polynom se nazývá syndrom S(x) a přímo charakterizuje 
chybový vektor E(x). Operace pro výpočet syndromů S(x) lze také chápat jako 
provádění rychlé Fourierovy transformace nad konečným Galoisovo tělesem, C F F T 
(Cyclotomic Fast Fourier Transform). 

Díky nalezeným syndromům S(x) lze najít pozice a velikosti chyb na těchto poz
icích ve třech komponentách. Dešifrování tedy pokračuje hledáním dvou polynomů, 
a to polynomu pro lokalizaci chyb A(x), tzv. lokátoru chyb, a vektoru vyhodnocu
jícího velikosti chyb íl(x). Pro jejich nalezení byl použit rozšířený Euklidův algo
ritmus, který obecně provádí hledání největšího společného dělitele (NSD) dvou 
polynomů S(x), x2t. V procesu dekódování je Euklidův algoritmus použit pro řešení 
tzv. klíčové rovnice (anglicky Key equation), která řeší polynom Q(x). Tuto tzv. 
Klíčovou rovnici lze upravit do tvaru pro Euklidův procesor, čili S(x) x A(x) + 
F(x) x x2t = íl(x). Cílem Euklidova procesoru však není nalezení NSD, nýbrž 
přímo polynomů íl(x) a A(x), což je jeho hlavní výhoda. Euklidův procesor se ses
tává z celkem t vrstev, přičemž každá vrstva se skládá ze strany pro polynomiální 
dělení a násobení. Při výpočtu se v jeho každé následující vrstvě snižuje stupeň 
mezivýsledku polynomu Q(x), zatímco se zvyšuje řád A(x), což reflektuje počet 
vzniklých chyb. Euklidův algoritmus se „zastaví", jakmile splní podmínku stupně 
mezivýsledku Q(x) < t. V tomto bodě lze polynom A(x) vyřešit v kompoentě Chien 
search a signál íl(x) přivést na vstup komponenty Forneyho algoritmu. 

Komponenta Chien search řeší výpočet lokátoru chyb hrubou silou. A to tak, 
že dosazuje jednotlivé primitivní elementy Galoisova tělesa reprezentující jednotlivé 



pozice chybového polynomu E(x) a tím hledá, na kterých se bude A(x) rovnat nule. 
Výsledný polynom má tedy stejnou šířku, jako kódové slovo. Komponenta dále 
počítá derivaci tohoto polynomu A'(x). 

Vstupy pro Forneyho algoritmus jsou tyto dva polynomy z Chien search včetně 
polynomu íl(x) z Euklidova procesoru. Úkolem této komponenty je výpočet zlomku, 
přičemž v čitateli je Q(x) a ve jmenovateli A!(x), což vyžaduje pro polynom stupně 
n — 1 využití velkého množství logických zdrojů v F P G A . A dále součin s náležitým 
inverzním prvkem Galoisova tělesa. V první implementaci funkční verze Forneyho 
algoritmu se ukázalo, že uložení různých stupňů inverzních prvků Galoisova tělesa 
do R O M vyústilo v dlouhou dobu fáze propojování (anglicky fáze Routě), a proto 
bylo nutné provádět výpočet těchto mocnin přímo v hardwaru. 

Jelikož navržené komponenty splňují požadavky pro časování, avšak využívají 
velké množství logiky, práce se bude v budoucnu orientovat směrem ke snížení 
využití logických zdrojů v F P G A , zejména Look-up tabulek plnící funkci paměti 
R O M , které jsou kritickým bodem v současného návrhu. Řešení by mohl přinést 
přístup sdílení jak konstantních elementů R O M paměti mezi komponentami sys
tému RS-FEC, tak registrů, zejména v Euklidově procesoru. Vhodným řešením pro 
minimalizaci využití zdrojů ve Forneyho algoritmu může také přinést přístup selekce 
jednotlivých t chybových pozic v komponentě Chien search, čímž se Forneyho vzorec 
použije místo n-krát pouze í-krát. Toto však bude vyžadovat vytvoření odpovídající 
logiky a zpoždění výpočtu o jeden hodinový takt. 
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Introduction 
In recent decades, since the communication technologies have become widespread, 
all the industry sectors and businesses require increasing amount of data to remain 
agile and innovative. Technologies ensuring real-time data processing and fast data 
transferring became an essential part of the world today. On the other hand, while 
talking about large data transferring, such changing dynamics of public demands re
quires also high stability of data transfer. Therefore, one of the the main purposes of 
Reed Solomon Forward Error Correction (RS-FEC) algorithm is to ensure error-free 
digital data transfer. Thanks to the RS-FEC layer, balance between high perfor
mance, efficiency and reliability of digital data transfer can be achieved to reduce 
noise effects not only in high-speed Ethernet platforms [18, 19]. In particular, this 
system will be employed within a new N D K platform (Netcope Development Kit) 
which is currently in development at the academic organisation Cesnet, z. s. p. o. 

Error correction methods are used on daily basis by all of us. For instance, by 
putting emphasis on whether an information sent has been successfully received and 
processed, simply by repeating the message over and over again. This repetition is 
a form of the error correction encoding. The principle is similar in RS-FEC, based 
on attaching redundant parity-check symbols to the message sent to the encoder 
part of the error correction system. Therefore, the system uses this redundancy for 
erroneous data correction at the error correction decoder. The purpose of adding 
the decoder part (the error correction capability) is also to avoid decoding some 
other message [19]. The principle of error correction coding within the RS-FEC 
layer is based on attaching parity-check symbols as a redundant part to the message 
received instead of repeating the whole message again. Subsequently, the decoder, 
the unit ensuring the confidence level of the system, correctly extracts the original 
source signal out of the corrupted data on the input of the decoder [19]. 

Employing RS-FEC layer seemed to be an effective solution for reaching 100 Gbps 
rates, however, its full error correction capability has still not been fully exploited 
yet, even for the new 400GE. In terms of the RS-FEC system, the main difference 
between these two standards is that the new 200/400 Gbps rates operate with two 
codewords in parallel compared to only single one for 100 Gbps rates. Therefore, 
the most challenging aspect for successful implementation of this system is to bal
ance and minimize logic resources utilization. The main reason for RS-FEC system 
implementation into an F P G A as firmware is clearly the capability of conducting 
hardware operations in an F P G A concurrently enabling high-speed computations, 
possibly at 400 Gbps rate which is the main topic of this paper [19, 11]. In addition, 
VLSI design enables its development in a generic form for faster development of 
future platforms and creating different variants of the system. 
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1 Theoretical Part 
In the theoretical part of this work, F P G A technology is briefly described, P L D 
(Programmable Logic Devices) manufacturing and RS error correction codes is char
acterized. Also, one chapter dealing with Galois field algebra is included and RS 
error correction flow from the mathematical point of view is described. 

1.1 Brief History of Ethernet 

Since its introduction in the early 1980s, Ethernet has become a dominant and 
popular protocol for Local-Area-Networks (LANs), used mostly in offices. Over the 
following years, demands for higher data-rates of Ethernet began to rise enormously. 
The first experimental 2,94 Mbps shared bus-based system was able to transmit 
with only one station at a time. So called Medium Access Control (MAC) protocol 
detecting collisions controls the use of the shared bus. Each station is free to transmit 
M A C frames but if a collision occurs during transmission, it stops for certain amount 
of time and tries again if the channel is free for transmitting. The first commercially 
available standards were bus-based systems capable of 10 Mbps operation. There 
were no changes to the M A C protocol or M A C frame format. But, the innovation 
was that Ethernet was configured in a star topology which enabled traffic to go 
through a central hub, however, again with transmission limited through the hub. 
The need for faster data-rates resulted in the central hub replacement by a switch 
allowing full-duplex operation. Thanks to this, with the switch and M A C format 
protocol unchanged, collision detection is no longer needed. Further enhancements 
to the M A C layer were added through time to improve data rate requirements, such 
as provision for larger frame size. Ethernet quickly achieved widespread attention 
and acceptance and became a dominant technology. Not only for LANs, but also 
Metropolitan-Area Networks(MANs) and spread also to a wide range of applications 
and environments due to its extraordinary adaptability[20]. 

The same M A C protocol and frame format are used at all data rates. The main 
differences among various standardizations for different data transfer speeds are at 
physical layer in the definition of signal transmission medium of Ethernet [20]. 

Historical perspective of the first Ethernet platforms did help in the initiation 
higher speeds of Ethernet development beyond 100GE. The bandwidth explosion was 
(and still is) driven by increasing number of users, increased access methodologies, 
access rates and increased number of services (such as social media, video on demand, 
etc.). From 2000 to 2019 around 3.1 billion individual users were connected to the 
Internet. [1]. 
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Nowadays, the most data-intensive sectors with the most significant growth rates 
of data traffic are financial, data-intensive science and peering. Slower growth rates 
have been estimated for cable users and end-stations, such as IP traffic and servers 
I/O. [21]. 

1.2 OSI Reference Model 

The very first primary definition of modern networking was approved by the In
ternational Organisation for Standardisation in 1984. The OSI (Open Systems 
Interconnection) Reference model can be perceived as a core of serial networking 
technologies, including industrial Ethernet. It is a layered description of data trans
fer among devices within a network [22]. 

Go gle 

Network process to appl icat ion 

WWW/HTTP, P2P, EMAIL/POP, SMTP, Telnet, FTP 

. f t 
Data representa t ion and encrypt ion 

Recognizing data: H T M L , D O C J P E G , MP3, AVI, Sockets 

Interhost commun ica t i on 

ession establishment in TCP, SIP, RTP, RPC-Named pipes 

End-to-end connect ions and rel iabi l i ty 

UDP, SCTP, SSL, TLS 

Path de te rmina t ion and logical address ing 

IP, ARP, IPsec, ICMP, IGMP, OSPF 

Physical address ing 
Ethernet, 802.11, MAC/LLC, VALN, ATM, HDP, Fibre Channel 
Frame Relay, HDLC, PPP, Q.921, Token Ring 

ia, s ignal, and b inary t r ansm iss ion 

-232, RJ45, V.34, 100BASE-TX, SDH, DSL, 802.1 

Fig. 1.1: Seven layers of OSI Reference model (taken from [5]) 
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The uppermost layer, number 7, is called Application Layer and is the closest to 
end users. It directly interacts with users' software applications to provide desired 
communication functions [22]. 

Layer 6 is called Presentation Layer which provides end user data translation to 
network format so that lower layers can accept the data [22]. 

Session Layer is the fifth layer which manages connections between respective 
remote and local computers and also terminates connections between them. It also 
conducts data verification procedures if data have been delivered correctly or not 
[22]. 

Layer 4 is called Transport Layer ensuring complete delivery of data usually by 
using error correction functions or by other means. Sequences of data from are being 
transferred from a source to a destination host via network [22]. 

Layer 3, Network Layer, creates logical paths using switching functions for data 
transmission from node to node so that network can be formed from the node of the 
transmitter side to the address node of the desired destination. [22]. 

Layer 2, so called Data Link Layer (DLL) allows direct node-to-node data trans
fer. On this level, data are packed into frames based on Point-to-Point Protocol and 
encoded into single bits and further unpacked. The layer is divided into two sublay
ers: MediaAccessControl (MAC) controls which device in a network will be permit
ted to transmit data to a media. The second sublayer is LogicalLinkControl (LLC) 
conducting frame synchronization, network layer protocols identification. L L C is 
also used to control data flow and checks for errors [22]. 

The very bottom layer is Physical (PHY) which is responsible for conveying 
unstructured raw data bitstream at the electrical level and defines the physical 
specifications of the data connection, such as optical fibre specifications, operation 
voltages of an electrical fibre, layout pins of the connector etc. P H Y and M A C layers 
are interconnected via M i l interface [22]. 

Conventional Ethernet P H Y consists of three additional sublayers: Physical Cod
ing Sublayer (PCS), Physical Medium Attachment (PMA) and Physical Media De
pendent (PMD) sublayer. PCS is responsible for interfacing to the higher layer 
M A C through M M I (Media-Independent Interface) interface. P M D sublayer speci
fies optoelectronic components and, if required, implements digital signal processing 
on the transmittted and/or received signal. P M A sublayer conducts multiplexing of 
n physical lanes to x PCS lanes and backwards [17, 23]. 
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1.3 Forward Error Correction and Current State of 

Ethernet Speeds 

The very first implementations of RS (Reed-Solomon) error correction algorithms 
were first available since the Voyager deep space communication system in the 1977. 
[19, 11]. Nowadays, RS codes can be found in various applications, such as radio and 
television transmissions, disk storage, high-speed computer memory I/O and data 
communication technologies. For instance, high-speed Ethernet. F E C was first 
introduced for backplane and then, to deliver more economical optical transceivers 
and cable technologies, for a few front-panel use, such as copper cabling for 100GE, 
50GE and 25GE for the purpose of error-free data transmissions, however, for the 
penalty of carrying additional bits for the F E C mechanism to encode, transmit, 
decode and correct the data packet re-transmissions [14]. 

E T H E R N E T S P E E D S 
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Fig. 1.2: Graph of current state and future projections of Ethernet speeds (taken 
from [6]) 

In recent years, Ethernet protocol is undergoing significant development. It is 
capable of achieving 100GE, 200GE and 400GE speeds. Trends of current speeds of 
Ethernet are shown in figures 1.2 and 1.3 [14, 6]. 
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Fig. 1.3: Current state and future projections of standards completion for various 
forms of Ethernet (taken from [6]) 

The F E C system is required for such high throughput because optical transceivers, 
electrical interfaces and cables are noisy signalling environments. So the bit error 
rate (BER) which these electronics generate itself require an algorithm-based error-
correction method. RS-FEC uses an approach of finite-sized block of bits known as 
a block code. In Ethernet it is called a message. RS-FEC is a cyclic type of F E C 
despite it works as a linear code, meaning with fixed block of bits where a F E C 
symbol is 10 bits in size. It is known also as RS 544 F E C . In the following table 1.1, 
details of RS-FEC for Ethernet implementations are summarized [14]: 

Tab. 1.1: RS-FEC (544, 514) for 200GE/400GE Specifications (taken from [14]) 

Symbols Explanation 
514 Total number of symbols in a codeword 

514 • 10 = 5,440 Bits in the codeword or block 
544 - 514 = 30 Number of check symbols per codeword or block 

514 • 10 = 5,140 
Number of bits referring to the size of the information bits 
per block 

(544-514) Maximum number of symbols which can be corrected in 
2 a codeword or in a block 
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1.4 Programmable Logic Devices Fabrication 

F P G A chips belong to the family of active semiconductor devices. Such devices 
require extremely pure silicon and germanium in lesser extent. Intrinsic silicon 
is much more difficult to prepare than intrinsic germanium. The pure form of 
silicon needs about 1.5 • 10 1 0 of intrinsic carriers per cm 3 and 2.4 • 10 1 3 per cm 3 for 
germanium. Silicon is obtained from silicon dioxide or silicon tetrachloride by normal 
metallurgical processes and needs to be further purified until the number of foreign 
atoms is less than 1 in 1 • 10 1 0 per cm3 to create silicon pure enough for semiconductor 
devices. The most frequent method is the Czochralski crystal pulling, shown in figure 
1.4 [7]. This method is based on seed crystal insertion into a bath of molten silicon. 

o l 

Fig. 1.4: Process of Czochralski crystal pulling: (a) melted polycrystalline silicon 
(b) in a crucible, (c, d) Seeding procedure: The seed crystal dipped into the melt, 
followed by Dash necking (e), shouldering (f), cylindrical growth (g), growth of end 
cone (h), lift off (i), cooling and removing the crystal (j) (taken from [7]) 

A single silicon crystal of 10 to 15 cm with required impurities can be obtained 
by being withdrawn from the molten bath. In the next step the cooled crystal 
is being divided into 1 mm thick slices along the crystallographic direction of the 
crystal in order to avoid internal structure disruption of the crystal. Resulting slice 
is approximately 0,2 mm thick after the etching and polishing procedures removing 
surface damage after the step of slicing. This is the key step for further epitaxial 
layer growth with the same orientation on to the underlying sliced silicon surface 
[24]. 
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In the next step, ion implantation to the pure silicon crystal lattice with impuri
ties is performed. In this step, the energy of accelerated ion implants up to 300 keV, 
determining the depth of implanting, are bombarded into the silicon substrate [24]. 

Next and the most important stage of the integrated circuit fabrication process 
is epitaxial deposition. It involves an epitaxial layer growth on the slice of the 
silicon dioxide. The layer is grown in the atmosphere of silicon tetrachloride and 
hydrogen respectively with strictly controlled conditions. A perfect crystal is the 
key requirement for correct outputs of subsequent stages [24]. 

The first stage after the epitaxial deposition is oxidization which is used two or 
three times in order to create a mask for the impurity atoms diffusion after selective 
etching. One method of oxidization used for oxide layer creation of high quality 
physical properties is based on passing oxygen over the surface of silicon slice at 
a temperature of 1200 °C, as illustrated in 1.5. As the result, passivizing layer with 
uniform thickness of 5 • 10~7 m is created. Oxide layers have been used also as 
elements in active and passive devices and silicon functional blocks. Oxide layer 
becomes important especially during planar and epitaxial planar transistors man
ufacturing. The reason is very low leakage currents currents due to the junctions 
formed under A layer of silicon oxide. In this way, 10 silicon slices with 200 mono
lithic circuits in each would be produced [24]. Next step is photo-engraving process 

IMMI (lour 
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Pressure Range 

t 
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To (realnit ill and 
disposal of exhaust 
Rases 

Substrate Deposited layer 
Gas inlet introduced from a 

ROS ineicriitR \y\tvm 

• Uniform coaling layer 
•Thickness: 2-100urn 

Fig. 1.5: Illustration of the process of Chemical Vapour Deposition (CVD) (taken 
from [8]) 

which involves two operations: photographic mask preparation and the etching of the 
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silicon dioxide. The purpose of this step is to cut off windows allowing the diffusion 
of subsequent stages to take place. Next step is the photographic mask production. 
Each one comprises of large number of identical elements, each of which is the origi
nal mask layout. Due to the photographic equipment limitations, sequence of stages 
for reduction are required. A typical sequence involves artwork originals prepara
tion, photographic reduction, step-by-step contact printing and rephotographing. 
Subsequently, when the photographic mask has been prepared, with photo etching 
the processing of the slice may be started, illustrated in figure 1.6. The former part, 
the centrifugal force spreads the liquid photoresist dropped on a rotating surface of 
the slice at 800 rpm and subsequently is let to dry in an oven. In the latter part, 
as the photoresist is placed in the exact position required and subsequently exposed 
to U V (Ultraviolet) light. The U V light causes the photoresist to polymerize with 
the opaque layer. The rest of the photoresist unexposed to the U V light is then 
removed. The polymerized photoresist forms a layer resistant to hydrofluoric acid 
used to etch the silicon base away [24]. The further step of of integrated circuit 

(a) Spin the photoresist 

i i l i i i i i i i 
UV source 

I hwwuI 

(b) Expose the photoresist 

(c) Develop the photoresist 

Fig. 1.6: Process of transferring a pattern onto a substrate, (a) Coating the sub
strate with a photosensitive material; (b) alignment of the mask and exposure to 
the U V light source; (c) spraying the photoresist to remove the extra photoresist 
defined by the mask patterns (taken from [9]). 

fabrication is diffusion which consists of combination of epitaxial deposition and 
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diffusion. The diffusion process takes place within the holes etched in the silicon 
dioxide. During the process of diffusion the time and concentration of the impurities 
must be accurately controlled in order to obtain specific diffusion depths according 
to the required transistor design. The choice of an element of diffusant must meet 
the requirement for easy diffusion into the intrinsic silicon but not into the silicon 
dioxide. For instance, boron and phosphorus are the usual diffusants. The next 
step, the process of evaporation is to be conducted which is important for ohmic 
contact production and interconnections realization. This process takes place in 
vacuum with golden, nickel or also aluminium rods being evaporated. As the result, 
a thin layer over the entire surface is produced. The main issue of the process is 
to avoid changing the desired nature of the semiconductors when alumina is added. 
Therefore, with masking and etching only the desired alumina configuration remains 
to form the contacts and interconnections [24]. 

As a slice of semiconductor has been developed, the very last step is cutting into 
individual circuits and packaging. Cutting can be performed by using a diamond-
tipped tool by drawing it across the edge of the surface of the slice. Subsequently, 
by breaking each part separate chips are produced. Individual chips are ready for 
mounting and encapsulation [24]. 

1.5 Field Programmable Gate Arrays 

Typical hierarchical structure of modern F P G A chips consists of programmable 
logic blocks further containing pool of combinatorial logic blocks and flip-flops to be 
used in an intended design. These logic elements are often combined with memory, 
typically with various amount of S R A M (Static Random Access Memory) inside 
an F P G A chip. This typical architecture is shown in the figure 1.7 which contains 
so called C L B (Configurable Logic Block) units interconnected within a matrix-like 
grid and surrounded by programmable interconnect. Each C L B typically consists 
of a set of so called B L E (Basic Logic Element) units. Inside a single B L E there 
is an element allowing logical function implementation called L U T (Look-up table) 
[11, 10, 25]. 

More detailed view on a typical high-level hierarchical structure of an F P G A 
is shown in figure 1.8. CLBs form a large array including B R A M s (Block RAMs) 
and DSP (Digital Signal Processing) blocks, similar to arithmetic logic units (ALU) 
of a processor which can be programmed accordingly to perform arithmetic logic 
operations, such as add, multiply, subtract, compare, etc. Depending on the type of 
operators required, both CLBs and DSPs can perform integer, floating point or/and 
bitwise operations. Results of these operations are stored in registers present in 
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Fig. 1.7: Structure of the typical SRAM-based F P G A (taken from [10]). 

CLBs, DSPs or/and B R A M s . These blocks can be connected via flexible config
urable interconnects which are based on user design. The output of one operator 
can directly flow into the input of the next operator [16]. 
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Fig. 1.8: High-level structure of the typical SRAM-based F P G A (taken from [10]). 

The architecture then enables to create a massive array of application-specific 
ALUs which allow both instruction and data-level parallelism. Compared to pro
cessor units, there are no inefficiencies, such as processor cache, but data within 
an F P G A can be directly streamed between operators. These operators can be 
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configured to have point-to-point dedicated interconnects, thereby setting them to 
pipelined configuration. For instance, throughput on integer operations are in order 
of Tera-operations per second, on floating point operations in order of gigaflops per 
second [16]. 

Another great advantage of F P G A s is that they can be easily interfaced to other 
chips or external signals by so called input/output blocks (IOBs) (see figure 1.8) 
behind the chip pads. So that each pad can serve as an input or an output or 
both. In particular, IOBs are designed to support various memory and processor-
interface standards, such as support of multiple DDR3 (Double Data Rate Type 3), 
DDR4 (Double Data Rate Type 4) and more memory controllers, various generations 
of PCI Express® (Peripheral Component Interface), Intel's Front Side Bus (FSB), 
Quick Path Interconnect (QPI) protocols. Support for these processor interfaces 
and protocols enables computing applications running on F P G A s to interact with 
processor and accelerate the desired applications [16]. 

F P G A vendors also include hardwired IP (Intellectual Property) nonprogrammable 
cores inside the chips supporting commons recurrent functions in many designsfll]. 
These include general-purpose processors, high-speed serial interfaces, arithmetic 
blocks and Ethernet M A C (Medium Access Control) [11]. 

1.5.1 Pipelining 

Clock conditioning has become also a common feature in FPGAs . Digital circuits can 
be also supplied by a clock signal which is, ideally, a simple square wave oscillating 
at a certain fixed frequency. The most basic concept of a sequential system in an 
F P G A chip contains number of combinatorial logic blocks in between arrays of clock-
sensitive components called flip-flops where current state of outputs of combinatorial 
blocks depends on current state of inputs to these combinatorial blocks. These are 
generally made of all logic functions with any level of intended complexity realized by 
logic gates including interconnection among them. This involves also multiplexors, 
encoders and decoders [11]. 

For instance, a D-type flip-flop (DFF). Every time there is a rising edge of the 
clock signal, it allows desired signals to propagate from its input D to its output 
Q. In this particular moment the input D is connected to the output Q in a single 
D F F . However, apart from this specific time D is disconnected from Q [11]. 

A n important requirement for the resultant sequential system is that signals 
between the output Q of the first flip-flop and the input D of the next one must 
remain stable by the time the next clock cycle rising edge. It is therefore required 
to ensure the worst case propagation delay between these delay elements of the 
design. This also applies for all subsequent DFFs. Nowadays, this timing check is 
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automated so that the designer needs to be concerned with the specification of the 
logic behaviour of the circuit [11]. 

Fig. 1.9: Basic concept of a sequential circuit (taken from [11]) 

This technique is generally known as pipelining. Data throughput is one of the 
most important parameters not only in this work. The purpose of pipelining is to 
satisfy throughput requirements also with minimum resource penalty. Algorithms 
which can be performed in parallel with sequential delay elements (such as DFFs) 
result in higher throughput, such as in digital processing (DSP) applications, multi-
core C P U (Central Processing Unit) parallel platforms, many-core G P U (Graphics 
Processing Unit) and F P G A s compared to traditional single-core systems. Among 
all these parallel platforms, FPGA-based systems allow the highest flexibility for 
programming parallel cores. This can be achieved thanks to the high-level synthesis 
which significantly increases productivity, reduces time-to-market window and helps 
to implement efficient parallel hardware of complex register transfer level (RTL) de
signs. The objective of the synthesis is to find a suitable performance solution for a 
design with given available resources [26]. 

Pipeline optimization strategy is based on partitioning this large scale designs 
into smaller data processing elements connected in series while each element (combi
natorial block) executes its operation in parallel in a time-sliced mode. This requires 
some buffer storage (pipeline registers). The registered output of one element be
comes the input of the next one. The time between each clock signal is set to be 
greater than the longest delay between pipeline stages, so that when the registers 
are clocked data written to the following registers are results of the previous stage of 
the pipeline. Pipelined systems also requires more resources then the combinatorial 
logic elements because each pipeline stage cannot reuse resources of other stages 
[26]. 

The key pipeline parameters are number of pipeline stages, latency, clock cy
cle time, delay, throughput and turnaround time. A pipeline synthesis can be 
constrained by resources or time, or combination of both. A resource-constraint 
synthesis pipeline limits the area on chip or available number of functional units 
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on target device. A time-constraint pipeline synthesis puts more effort to required 
throughput and turnaround time. Finding a solution which consumes minimum re
sources is the task for the so called scheduler [26]. Reasons why F P G A s are chosen 
as promising platforms for high-performance data-intensive applications are summa
rized in table 1.2 including their drawbacks [15, 16]. Compared to GPUs and other 
multicores which consume power in hundreds of watts, F P G A s power consumption 
lies in the range of tens of watts [27] [16]. 

Tab. 1.2: Positives and downsides of F P G A s (taken from [15]) 

Advantages Disadvantages 
Massive parallelism of compute opera
tions which can be put to more optimal 
configurations 

Processing data with constrained cost 
and resources. 

Flexibility in terms of involvement of 
different kinds of components (hard 
cores, IP, memory, L U T structure of 
the programmable fabric). Second, 
ability to field reprogram parts or the 
entire F P G A chip. 

Not clear what should stay as soft
ware part and what hardware part of 
a desired complex system. Interfacing 
between these two approaches requires 
additional development. 

Flexibility in terms of an ability to field 
reprogram parts or the entire F P G A 
chip. 

Low efficiency of data movement 
around the chip. 

Small amount of distributed mem
ory incorporated into the fabric which 
brings the memory closer to the pro
cessing 

IP library is required for FPGA-based 
systems development. 

Low power solution enabling more pro
cessing than GPUs for quarter of power 
required 

Design entry methodology is lacking 
more restricted approach to harness the 
flexibility of the hardware. 

Scalability in terms of creating a chain 
of F P G A chips together while the algo
rithm is larger than the single one. 

Strict rules of what is synthetizable and 
what is not. 

Nowadays, custom chips deliver more 
data throughput per dollar. 

Innovation is required in the 
of high-performance interfacing to get 
large amount of data onto the chip. 
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The major reason for lower power consumption in F P G A s is that these devices 
operate in range of 100-300 MHz compared to processors executing operations usu
ally between 2-3 GHz. Recently, in terms of high-end F P G A devices such as Intel® 
Stratix® D X , programmable clock-tree performance reaches around 1GHz [27] [16]. 

1.5.2 Typical Applications 

In the mid-2000s the high performance computing industry (HPC) demand caused 
course of General-purpose C P U vendors to shift from single-core CPU-based sys
tems orientation to multicore architectures to meet high-performance demands of 
the industry. The reason for this is that if frequency of single-core processors in
creases, power dissipation rises to impractical levels. The result of this is that it 
enables to exploit C P U performance by adopting parallel designs enabling previously 
unattainable performance levels [16]. 

There is a broad spectrum of applications where F P G A s embedded inside equip
ment or forming a massive compute server farms play major role. In table 1.3 appli
cations for High Performance Servers are shown. These applications are in constant 
need of compute power. The greater the computation power, the more complex 
algorithms can be implemented to produce more accurate results [16]. In table 1.4 

Tab. 1.3: Applications of F P G A s for High Performance Servers (taken from [16]) 

Industry Sample Applications 
Climate modelling, nuclear waste simulation, war

Government labs fare modelling, disease modelling and research, air
craft and spacecraft modelling 
Video, audio, data mining, analysis for threat 

Defense monitoring, pattern matching, image analysis for 
target recognition 

Financial services Options valuation, risk analysis of assets 

Geo-sciences and engineering 
Seismic modelling and analysis, reservoir simula

tion 

Life sciences 
Gene encoding and matching, drug modelling and 

Life sciences 
discovery 

sample applications for High-Performance Embedded Computers are shown. A l l 
industries mentioned require certain specific equipment for compute-intensive and 
data-intensive tasks. In the past, these systems were based on custom integrated 
circuits designed for high memory rates and to handle data-intensive processing [16]. 
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Tab. 1.4: Applications of F P G A s for High Performance Embedded Computers 
(taken from [16]) 

Industry Sample Applications 
Defense Beam forming in radar 

Airborne Electronics Image compression and analysis in payload 
Communications Encryption in network routers 
Medical Imaging Image rendering 

Financial Services 
Low latency and high throughput data processing in trad

ing solutions 

1.6 Intel® Stratix® 10 

Since the task of this work is to implement the system RS-FEC into F P G A Intel® 
Stratix® 10 D X 2100, this chapter therefore deals with the technology present in 
Intel® Stratix® 10 family. 

SoC (System on Chip) devices of this family dispose of the Intel HyperFlex 
F P G A Architecture combined with 14 nm Tri-Gate (3D) process technology (see 
the structure in the figure 1.10) which replaced the conventional 2D planar MOS-
F E T transistors so that geometries have been reduced below 20 nm. It contains so 
called Hyper-Registers present all over the functional blocks within the chip. The 
advantage of this technology is that all the conventional blocks such as Adaptable 
Logic Modules A L M s , embedded memory (M20K) and digital signal processing al
low to select the optimal register location automatically after place-and-route to 
maximize core performance without additional changes or added complexity after 
the place-and-route step of the design process. The next advantage is that such 
registers reduce routing congestion [25]. Another useful feature of the chip is the 

Fin 

(a) 3D Structure (b) Cross-sectional View 

Fig. 1.10: Structure of Tri-gate 3D Fin-Fet by Intel® (taken from [[12]]) 

programmable clock tree synthesis. It reduces timing and skew uncertainty to reach 
the maximum core clock performance. This feature enables its entire architecture to 
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double its performance compared to its predecessors Stratix V FPGAs . Core clock
ing also uses intelligent branch which allows to reduce dynamic power dissipation in 
the clock networks [25]. 

The Hyper-Aware design flow includes a Fast Forward Compile tool which en
ables performance exploration and guides the designer to the maximum performance 
of his solution. A Hyper-Retimer step near the end of the design offers further op
timization after place-and-route step. A n enhanced synthesis and place-and-route 
algorithms which use the Hyper-Registers. In the end, it uses 70 % less power 
than Stratix V F P G A s predcessors. There is an embedded quad-core 64-bit A R M 
Cortex-A53 processor system included and also components D R A M (Dynamic Ran
dom Access Memory), S R A M (Static Random Access Memory) and ASICs in a 
single package [25]. 

1.7 Reed-Solomon Error Correction Codes 

Reed-Solomon codes belong to the category of block codes. This means that a 
message to be transmitted to the divider of n symbols is divided into separate block 
of data called codeword. The former part of a single codeword is an original message 
consisting of k information symbols in a message to be transmitted. 

In the latter part a parity protection of (n — k) = 2t symbols is added to the 
original message. The error-correction capability of RS codes is determined by its 
Hamming distance which is determined by number of parities. For RS codes, its 
Hamming distance is 2t + 1 and the overall error-correcting capability is [13]: 

Hamming distance 
error-correcting capability = (1.1) 

The variable t specifies the number of symbols the algorithm is able to correct in 
a block of n symbols of the codeword. This is illustrated in the figure 1.11 [3]. 
So that each block of information symbols has its own parity protection added as a 
separate part of the codeword. 

In addition, RS code is also a linear code. This means that sum of any two code
words is still a valid codeword [13]. It is also a cyclic code meaning that cyclically 
shifting the symbols of a codeword produces another one. RS code can be therefore 
described as an (n, k) code. Different parameters for a code provides different levels 
of protection and complexity of the implementation changes respectively [3]. 

There is a significant advantage of RS code. It enables having all bits of a symbol 
of m in error and it counts as only one symbol error in terms of the correction 
capacity of the code [3]. 
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Fig. 1.11: RS code definitions (taken from [3]) 

1.7.1 Galois Field 

Galois field belongs to the family of finite fields and named after the French math
ematician Evariste Galois. A Galois field consists of a set of elements based on 
a primitive element a which takes values a, a0, a1, a2, , a N-l to form a set of 2 r 

elements where N = 2m — 1. Galois fields are then marked as GF(2Tl 

element can be also represented by polynomial expression [3]: 

a m _ i x m 1 + . . . + aix0, 

Each field 

;i.2) 

where coefficients am-\ to ao take values of 0 or 1. Therefore, it is possible to 
describe a single field element by the binary number c n m _ i , . . . , cui, a0. There is in 
total 2 m combinations of the m— bit number [3]. 

1.7.2 Galois Field Mathematics 

Arithmetic operations with finite field elements differ from conventional mathematics 
with normal integers, especially while multiplying in a Galois field. Galois field 
arithmetical operations are addition, subtraction, multiplication and division. The 
difference is that any arithmetical operation of two field elements always produces 
another field element [3]. 

Addition and Subtraction 

While adding two Galois field elements, two polynomials are added in this form [3]: 

( a m _ i i m _ 1 + . . . + a ix 0 ) + (I)™-!!™"1 + . . . + hx° Cm-iXm 1 + . . . + C\X 0 (1.3) 

This operation O j + 6j = Q applies for degrees 0 < % < m — 1. The coefficients 
can only take the values 0 and 1. If O j = bi, then Q produces 0. Respectively, if 
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O j 7^ bi, then Q produces 1. This signifies that addition of two Galois field elements is 
accomplished by modulo-two addition of their respective coefficients. In binary form, 
addition is realized by the exclusive-OR function of two binary numbers. Therefore, 
addition of two identical Galois field elements produces zero. It also implies that 
any result of subtraction of two Galois field elements from each other is exactly the 
same as addition. In the end, minus sign can be replaced with plus sign. In other 
words, if a positive element in an equation is needed to be expressed on the other 
side of the equation, the sign stands the same [3]. 

Multiplication and Division 

There is a significant difference between multiplication with standard integers and 
multiplication in a Galois field. The main difference is that if polynomials of degree 
m — 1 are multiplied, the result is a product polynomial of degree 2m — 2 which is 
not a valid element of GF(2 m ) . With the same approach as with subtraction, for 
a result of multiplication product modulo is required. In Galois field, the valid field 
element is obtained by dividing the product product polynomial by a field generator 
polynomial p(x) in order to "return" the value of the straightforward multiplication 
of the polynomial back to a valid Galois field element [3]. 

Division of two field elements of the Galois field is accomplished by multiplying 
the inverse of the divisor. The inverse element is defined as when the element value 
is multiplied by the inverse field element, value of 1 is produced [3]. 

The Field Generator Polynomial 

The field generator polynomial or primitive polynomial p(x) of degree m defines 
a specific finite field bound to it. When a different generator polynomial or prim
itive polynomial is selected, it produces different results. Therefore, one generator 
polynomial or primitive polynomial must be selected for a single Galois field. The 
next requirement for a generator polynomial or a primitive polynomial is that it 
must be irreducible (with no factors of the GF) [3]. 

Based on the primitive element a as a root of the field generator polynomial the 
all non-zero values of Galois field can be generated. So that to obtain the complete 
field, it means that [3]: 

To determine the repeating sequence of the field elements, it is needed to express 
the highest degree of the primitive polynomial. First, since a G F element is written 
in the index form, for instance a0, it is possible to get next value a1 by multiplying 
its entire polynomial a0 in its polynomial form by a. Then, the next Galois field 
value is obtained. It is also important to mention that if the highest degree of the 
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generator polynomial p(x) has been reached this way, it is needed for any member 
of the polynomial form to substitute this member by the expression of the highest 
degree of the generator polynomial. In this manner, all 2 m Galois field elements can 
be obtained by starting with an element with index 0 up to the element (2 m — 2). It 
is also important to highlight that the decimal form of an element is a representation 
of the respective polynomial form, meaning binary form. For instance, polynomial 
a2 + 1 is equal to the representation of bits x2 and x° in log. 1 giving 0101 in the 
4-bit binary form. Next important characteristics of the Galois field is that if the 
maximum is exceeded, it can be found that the index form, for instance for the first 
element beyond the last one which is o/2™ -1*1, is equal to element a0, the next one 
equals to a 1 and so on and all these values remain valid within the desired Galois 
field [3]. 

1.7.3 The Code Generator Polynomial 

While constructing an RS code, the values of the message parity symbols must be 
elements of a Galois field. A n (n, k) RS code is constructed by the code generator 
polynomial G(x) involving (n — k — 2t) factors, the roots of consecutive elements of 
the Galois field. For a code based on m-bit symbols, the Galois field consists of 2 m 

elements [3]: 

g{x) = (x + ab)(x + ab+1)... (x + ab+2t-v), (1.5) 

where b specifies at which degree the Galois field roots begin. 

1.8 Reed-Solomon Encoder 

The output of the encoding process comprises of two data blocks. The first block 
is formed by k information symbols and is represented by the message polynomial 
M(x) of order k — 1. This polynomial of information symbols to be encoded can be 
written as follows [3]: 

M(x) = Mk_xxk~x + ... + Mxx + M 0 , (1.6) 

where k is the number of symbols in a message to be transmitted, M^-i is the first 
symbol of the message and each one M^-i,..., Mi, M 0 is an m-bit message symbol, 
an element of GF{2m) [3]. 

The key purpose of the RS encoder is to add the parity polynomial to the message 
polynomial M(x) in order to form a valid codeword T{x) to be transmitted. To 
encode the message polynomial M(x), it has to be first multiplied by xn~k. In 
this step, its resultant degree is extended by (n — k) symbols and M(x) is shifted 

36 



to the part of the higher bit significance which ensures that there will be enough 
number of free bits for the parity polynomial symbols in the less significant part of 
the resulting polynomial T(x). In the subsequent part, the result must be divisible 
by the generator polynomial G(x). After the division, a quotient Q(x) is produced 
including a remainder r(x) of degree up to n — k — 1 [3]: 

Mix) x xn~k , . rix) ,„ „ x 

g[x) g[x) 

As described in the section 1.7.2 Multiplication and division, any result of a division 
operation in a Galois field is the remainder r(x) as a valid element of the Galois field. 
A n important property of the transmitted codeword is that it is always divisible by 
the generator polynomial without remainder which also applies to the individual 
roots of the generator polynomial G(x). In the end, the transmitted code word is 
formed by combining M(x) and r(x) [3]: 

T(x) = M{x) x xn~k + r(x) (1.8) 

which gives the following polynomial in a systematic form [3]: 

T(x) = Mk_xxn-X + ... + M0xn~k + rn_k_lxn~k-1 + . . . + r 0 (1.9) 

Process of Encoding can be also perceived as conducting so called Galois field 
Fourier transform (further studied in [13]). It is a generalized view of discrete Fourier 
Transform to finite fields. In this point of view, polynomial V(x) = VQ + V\X + ... + 
Vn-\xn~l, where a" = 1, represents the spectrum of the transmitted codeword 
T(x) over GF(2m). Polynomials V(x) and T(x) form a Fourier transform pair. 
Fourier Transform and inverse transform in Galois Field are polynomial evaluations 
by replacing x with a1. From the point of view of frequency domain, process of 
encoding is making 2t spectral components as zero Vj — 0 for j — 0 , 1 , . . . , 2t — 1. 

1.9 Reed-Solomon Decoder 

In the RS decoder part, the transmitted polynomial T(x) becomes the first part 
of a received polynomial R(x). The last part of the received polynomial R(x) of 
n = k+2t members is the error polynomial E(x). Each of the coefficients En_i... E0 

is an m-bit error value and a valid element of GF(2m). Therefore, the R(x) is [3]: 

R(x) = T(x) + E(x) (1.10) 

where the error polynomial E(x) can be written in a polynomial form as: 

E(x) = En_xxn~x + ... + ElX + E0 (1.11) 
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The positions of the errors errors in the entire code word by the degree of x for this 
term. If more than t = (n~fc) of the E values are non-zero, the correction capacity 
of the code is exceeded and the errors are not correctable [3]. 

1.9.1 The Syndromes 

The first step of the decoding process is to divide the received polynomial R(x) by 
each of the factors (x + a1) (see equation 1.5) which form the generator polynomial 
G(x) thanks to the property of the transmitted codeword which is always divis
ible by the generator polynomial without remainder. It applies, obviously, when 
the transmitted codeword T(x) has been received without any of its bits in error. 
Remainders of these divisions are known as syndromes Si [3]: 

R U ) -Qi(x) + T - ^ - , (1.12) 
(x + a1) % [x + a1)' 

which applies for b < i < b + 2t— 1; where b is chosen to match the set of consecutive 
factors in the equation 1.5. In this work, b = 0 is chosen so the remainders can be 
written as Si,..., S2t-i- The following rearrangement gives a single syndrome value 
Si [3]: 

Si = Qi(x)x(x + ai) + R(x), (1.13) 

so that after expressing x = a1 the equation is reduced to [3]: 

Si = R{al) (1.14) 

Si = Rn-M'f-1 + Rn.2(aT-2 + ... + i W + RQ (1.15) 

where Rn-i,... ,RQ are the symbols of the received codeword. Therefore, a remain
der Si by the substitution x = a1 in the received polynomial R(x) in each of the 
syndrome values can also be formed as an alternative to the division in the equation 
1.12 [3]. 

If the substitution x = a1 is applied to the equation 1.10, it can be found that 
[3]: 

R{ai)=T{ai) + E{ai) (1.16) 

and because of the fact that T(al) is a factor of g(x), then T(al) = 0. This gives 
the resulting property of the syndrome values which are not affected by the data 
values [3]: 

R{al) = E{al) = Si (1.17) 

These syndrome values are therefore directly dependent on the error pattern. 
It implies that if no errors have occurred, all syndrome values are in zero. It is 
important to emphasize that based on the equation 1.14 it is possible to calculate 
the syndrome values directly from the received codeword R(x) [3]. 
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1.9.2 The Set of Syndrome Equations 

For the syndrome value determination and its location, reformulation of the error 
polynomial is required in a way in which only the error values are included. This 
can be achieved in further steps. Therefore, if assumed that v errors have occurred 
in a single transmission, then [3]: 

E(x) = YlX

ei + Y2x£2 + ... + Yvx£v (1.18) 

while v < t: identificators of the specific error locations in a codeword 
which, in a form of powers of x, represent the corresponding degrees of R(x) in error. 
And, Y i , . . . , Yv represent error values occurred in these specific error positions of 
the received codeword R(x). It is now known that R(al) = E(al) and if 1.18 is 
substituted in 1.17, then a single syndrome Si can be written as [3]: 

Si = E{al) = Yxaiei + Y2aie2 + ... + Yvaie" (1.19) 

where if al£l,..., atev is substituted by X{,..., Xl

v known as error locators, then 
the generic equation for 2t syndromes in a single transmission is [3]: 

Si = Yx{Xi) + Y2(Xl

2),Yv(Xl) (1.20) 

The number of syndrome equations is restricted by the correction capacity of the 
RS code used. They are generally denoted as So,..., S2t-i in order to correspond 
to the roots a0,..., a 2 ' - 1 of the generator polynomial G(x). The powers of Xl

v 

depend on these roots chosen for the generator polynomial so that the powers of 
syndrome locators X%

v in a single equation 1.20 are the same for the respective 
syndrome equations while the v index denotes the index where the error occurred 
in the received codeword R(x) [3]. 

1.9.3 The Error Locator Polynomial 

The following step of the RS decoding procedure is the process of error locator 
polynomial determination. A form of the error locator polynomial denoted as A(x) 
has v factors constructed as (1 + XJX). It has its error locators Xj as inverses 
X f 1 , . . . , X " 1 as its roots of the v values when j — 1 [3]: 

A(x) = (1 + XlX) + (1 + X2x) + . . . + (1 + Xvx) (1.21) 

Its expanded version has degree of v, as follows [3]: 

A(x) = l+A1x + ... + Av_1xv~1 + Avxv (1.22) 

Now, the task is to find these coefficients of the error locator polynomial. 
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1.9.4 The Euclidean Algorithm 

In this step, coefficients of the error location polynomial are obtained. The Euclidean 
algorithm is based on finding the the highest common factor of two numbers. It 
uses the relationship between the errors and the syndromes expressed in a form of 
an equation based on polynomials. It requires two new polynomials: the syndrome 
polynomial S(x) and a error magnitude polynomial Q(x). These two polynomials 
will be used in a so called Key equation [3]. Origin of this equation is described in 
detail in [28]. In this point, it is important to mention that all the requirements for 
each of the syndromes still apply (see equation 1.19). Now, the set of syndromes 
(the syndrome polynomial) S(x) can be written in a polynomial form as [3]: 

S(x) = Sb+^x2'-1 + ... + Sb+ix + Sh, (1.23) 

where the coefficients are 2t syndrome values already calculated from the received 
codeword (see equation 1.15) [3]. The error magnitude polynomial is defined as [3]: 

Q(x) = fitf-ia"-1 + . . . + fiix + tt0 (1.24) 

The Key equation can be written as [3]: 

Q(x) = [S(x)A(x)]mod(x2t) (1.25) 

where S(x) is the syndrome polynomial and A(x) is the error polynomial. Terms of 
degree x2t or higher are ignored. Then, the key equation is [3]: 

= Sb (1.26) 

n^Sb+i + SbAi (1.27) 

fiv-i — Sb+v-i + Sb+v-2Ai + . . . + SbAv_i (1-28) 

In general, the extended Euclidean algorithm finds the highest common factor d 
of two elements a and b [3]: 

ua + vb = d (1.29) 

where u and v are coefficients produced by the algorithm. The product of S(x) of 
degree 2t — 1 and A(x) of degree v gives the resultant product of degree 2t + v — 1 
(see equation 1.28) [3]: 

S(x) x A(x) = F(x) x x2t + tt(x) (1.30) 
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where the single terms of 1 x x2t are represented by the terms of F(x) and the 
remaining part by Q(x). If rearranged to calculate the Q(x), then [3]: 

n(x) = A(x) x S(x) + F(x) x x2t (1.31) 

now, the S(x) and x2t correspond to the a and b terms of the equation 1.29 [3]. 
The Euclidean algorithm continues as follows. The purpose of the algorithm is to 
find Q(x) with degree less than t (see equation 1.1). First, the algorithm consists of 
dividing x2t by S(x) and a remainder is produced. In the next step, S(x) becomes 
the new dividend while the previous remainder is the new divisor. This process is 
continued until the degree of remainder (representing Q(x)) becomes less than t and 
the multiplying factor A(x) will be also found [3]. 

The Euclidean algorithm can be can be also applied to polynomials. Originally, 
its task is to find the greatest common divisor (GCD) of two polynomials a(x) and 
b(x). Their G C D can be written as [13]: 

u(x)a(x) +v(x)b(x) = gcd(a(x),b(x)) (1-32) 

By setting b(x) as primitive polynomial p(x), the gcd(a(x),p(x)) equals 1 since p(x) 
is relative prime to b(x). Then, if rewritten in this way, we have [13]: 

u(x)a(x) +v(x)p(x) = gcd(a(x),p(x)) (1.33) 

u(x)a(x) +v(x)p(x) = 1 (1-34) 

Modulo p(x) is applied at both sides, then [13]: 

1 = a(x)u(x)mod(p(x)) (1.35) 

a~1(x) = u(x)mod(p(x)) (1.36) 

Now, u(x) mod p(x) is the inverse of a(x) and therefore the algorithm requires 
polynomial divisions [13]. 

1.9.5 Chien Search 

Chien search serves for roots determination of the coefficient values A i , . . . , A„ (see 
equation 1.22) in order to solve the error locator polynomial. If the polynomial is 
written in this form [3]: 

A(x) = X1(x + X 1 - 1 ) X 2 ( x + X ^ 1 ) . . . (1.37) 

then, the result of the function will be zero if x = X f 1 , X ^ T 1 , . . . are found, where x 
is [3]: 

x = a-e\a~e\.... (1.38) 
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In the Chien search all possible field values of the G F roots a 1 , where 0 < % < 
(n — 1) are substituted into equation 1.22. The values Xi,..., Xv of the error locator 
polynomial are then found by trial and error. If the expression A(x) = 0, then the 
value x is a root of this function which has been found by the Chien search and the 
error position X1,..., Xv has been identificated. The search begins with a _ ( n _ 1 ) 
(= a1), then a~(n~2) (= a2) and continues to a0 corresponding to the last symbol 
of the word while the first symbol of the codeword corresponds to the xn~x term [3]. 

1.9.6 Forney's Equation 

Forney's equation allows to calculate error values Yi,... ,YV (see equation 1.18) 
and therefore the error polynomial E(x) formation. A n error value is calculated 
accordingly [3]: 

Y - x 1 - b Q ( y X j ^ (1 39^ 

where A'(XT' 1 ) is the derivative of A ( X ) for x = X " 1 . If b — 1, the Xj~b term 
disappears. Therefore, the formula is often quoted in the literature as fi/A', which 
gives wrong results for b = 0 and other values defined in equation 1.5 where the code 
generator polynomial has been determined. The equation 1.39 gives valid results 
only for symbol positions in error. If the calculation is made at other positions, the 
result is generally non-zero and invalid. Therefore, the Chien search is needed in 
order to identify these error positions [3]. 

1.9.7 RS-FEC Error Correction Capability 

Beside the already introduced notation RS(n, k) it essentially defines a vector space 
of k dimensions and the every non-zero codeword differs at least 2t + 1 coordinates. 
The received codeword R(x) is also called RS frame. 

correctable 
uncorrectable 

(decoding failure) 

Fig. 1.12: RS-FEC error correction capability breakdown (taken from [13]) 

While receiving an invalid codeword, the decoder will map the codeword to the 
closest one in the vector space defined by (n, k) RS code. In case of more than t 
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errors occurred during transmission, the received codeword may be closer to another 
valid codeword and therefore the decoder will map it to this valid codeword. In 
this situation, the error is undetectable because the Euclidean processor has found 
solution for a valid codeword reconstruction. If an erroneous codeword differs from 
all the codewords in t + 1 or more coordinates, then the codeword after decoding 
is still invalid. In this case, the error is detectable and the decoder can report the 
error [13]. A breakdown of all possible types of errors which may occur during 
transmission are shown in figure 1.12. 
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2 Practical Part 
Practical part of the work deals with hardware aspect of Reed-Solomon error cor
rection algorithm for 400 Gigabit Ethernet and its implementation in Intel® Stratix® 
10 D X F P G A chip. 

Brief digital circuit block diagrams for both encoder and decoder components 
are shown and explained in following chapters. It is also important to highlight that 
since the beginning of this work there has been a strong focus on parametrizability 
of the system, required data throughput and the overall functionality covering the 
main points of the scope of this project. 

2.1 Motivation 

During writing this thesis, the Physical Coding Sublayer of Ethernet P H Y has been 
realized and implemented. Hence, the further step was to develop an IEEE Std. 
802.36s™-2017 compliant RS-FEC layer for 400 Gigabit Ethernet for project Net-
cope Development Kit within the academical organisation Cesnet z. s. p. o. 

Because of the fact that many modern technologies, such as constantly emerging 
cloud services providers, financial network organizations, large scale enterprise data 
centers are dependent on digital data, RS error correction system is a sufficient 
solution for ensuring reliability of current data rates in the P H Y layer [14]. 

In terms of future Ethernet speeds, there are prototypes nowadays reaching 800 
Gbps speeds employing 2x RS-FEC based on Clause 119 of IEEE Std. 802.3 [29]. 
Hence, it is therefore highly likely that RS-FEC will be present in future Ethernet 
IEEE standards and it is therefore worth its parametrizable VLSI (Very-Large-Scale 
Integration) description. 

2.2 RS-FEC Layer Concept and Galois Field Con

struction 

General concept of RS-FEC system follows procedure shown in figure 2.1. Ensuring 
reliability of digital data transmission begins in the part of transmitter. Incoming 
message M(x) to be corrected by the decoder part of the RS-FEC algorithm has 
to be encrypted first to form a parity polynomial which is adjusted to the message 
itself and then sent together in a form of a codeword T{x) to the receiver (decoder). 

On the way between data transmitter and receiver, noise of the environment 
causes a quantifiable error E{x) which can be expressed in a form of a polynomial 
of the same degree as the transmitted codeword T(x). The idea is that the Error 
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polynomial E(x) which has been added to the transmitted codeword T(x) during 
transmission. 

The main task of the decoder is to find the error pattern E(x) so that the pattern 
can be subtracted/added to the received message R(x) at the side of the RS decoder. 

T O P R S - F E C 

Message M(x) 

Codeword T(x) formation T R A N S M I T T E R 

Message u u Parity 

Transmitted codeword T(x) 

NOISY C H A N N E L R(x) = E(x) + T(x) 

Received codeword R(x) 

E(x) reconstruction R E C E I V E R 

Corrected codeword T(x) 
Parity discarded 

Fig. 2.1: Diagram of RS-FEC concept 

First of all, since the entire system operates over GF(2 m ) where m=10, there
fore with 10-bit symbols, it is needed the Galois field to be formed GF{210). It is 
a repeating sequence of 2 1 0 10-bit primitive elements a where each of them has its 
own position label a1 starting with a°—l and ending with a2l°~2 while following 
elements, such as a 2 * 0 - 1 represent again a0 and so on. 

Based on the chapter 1.7.2 a list of primitive G F elements a% where i—0, 1, 2, ... 
(2 1 0 — 2) can be constructed in a way shown in table 2.1. 

With reference to the chapter 1.7.2 an inverse G F element is a valid element 
of the G F to be multiplied with another one while 1 (a0) is produced. Inverse 
elements of Galois field can be found using logarithmic method, however, excluding 
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Tab. 2.1: 
from [3]) 

Example of primitive elements and inverses of GF(2m ) where m=4 (taken 

Index form Polynomial form Binary form Decimal form Inverses (decimal) 
0 0 0000 0 0 

a0 1 0001 1 1 

a1 a 0010 2 9 

a2 a2 0100 4 13 

a3 a 3 1000 8 15 

a 4 a+1 0011 3 14 

a 5 a2+a 0110 6 7 
a6 a3+a2 1100 12 10 

a7 a 3+a:+l 1011 11 5 

a 8 a2+l 0101 5 11 

a 9 a3+a 1010 10 12 

a 1 0 a2+a+l 0111 7 6 

a11 a3+a2+a 1110 14 3 
a12 a3+a2+a+l 1111 15 8 

a 1 3 a3+a2+l 1101 13 4 

a 1 4 a3+l 1001 9 2 

field element 0 which does not have multiplicative inverse. Following example shows 
calculation of inverse of ( a 1 4 = 9) in G F where m = 4: [3] 

a-imod(2^-l) = a-Umodl5 = Ql = 2 ^ 

For inverse of a - 1 3 = a2 = 4, a~12 = a3 = 8 etc. Inverse Galois field is therefore 
a "mirrored" form of Galois field which applies for elements a1, a1, . . . , a 2 ™ - 2 . 

Each component of the RS-FEC system requires two main functions for its oper
ation. First, addition/subtraction in Galois field which is realized by X O R function. 
Second, multiplication in G F which is realized by two main components, as shown 
in 2.2, multiplier and divider. Result of the multiplication operation over GF(2 T O) 
produces another valid element of this field which is ensured by the modulo opera
tion. 

If we want to multiply two binary polynomials, we will get a product of degree 
2m — 1 which is not an element of GF(2 m ) . Then the product becomes a dividend 
in the following division operation reducing the degree to a valid element of GF(2 T O) 
while divisor is primitive polynomial p(x) and has degree m. As a result, remainder 
after the division is a valid element of GF(2 m ) and quotient is discarded. [3] 
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factor A<m-1:0> 

G F MULT: 

factor B <m-l:0> 

M U L T I P L I E R 

dividend<2m-2:0> 

DIVIDER 

primitive polynomial<m:0> 

remainder < m-1:0 > 

Fig. 2.2: Galois field multiplier 

G F multipliers are critical component for resultant hardware requirements be
cause they are used in every component in a large extent. In this work, two types 
of parametrizable G F multipliers were synthetized and implemented. It turned out 
that RS-FEC Encoder with behavioral VLSI description of shift-and-add full GF 
multipliers (based on [3], page 28) requires less logic than its RTL-based description. 
But when implemented within a more complex component, the resultant difference 
in hardware utilization was not significant. Therefore, future optimizations should 
focus on optimal operation with 10-bit symbols rather than its full parametrizability. 

IEEE Std 802.36s™—2017 also defines Primitive polynomial p(x) in subchapter 
119.2.4.6 for GF(2 1 0 ) : [17] 

a = x10 + x3 + 1 (2.2) 

and Generator polynomial for parity polynomial calculation G(x), shown in table 
2.2 [17]. 

The circuit needed for parity calculation conducts pipelined form of long poly
nomial division where the dividend is incoming message M(x) multiplied by x2t 

which serves as a room for parity polynomial r(x) and the divisor is constant gener
ator polynomial G(x). The divider is based on adding already multiplied generator 
polynomial by a specific G F element with already pre-registered values of this op-
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eration. Initially, this number can be found when the most significant degree of 
the M(x)xx2t is added to the most significant degree of initialized register in 0. 
Then, the generator polynomial G(x) is multiplied with this number and is added 
to remaining degrees of the register. In the next cycle, registered values replace the 
previous ones and the operation continues in the same way. 

Tab. 2.2: Coefficients of the generator polynomial Gi (taken from [17]) 

i Gi i Gi i Gi 
0 523 11 883 22 565 
1 834 12 503 23 108 
2 128 13 942 24 1 
3 158 14 385 25 552 
4 185 15 495 26 230 
5 127 16 720 27 187 
6 392 17 94 28 552 
7 193 18 132 29 575 
8 610 19 593 30 1 
9 788 20 249 
10 361 21 282 

It requires k cycles to calculate the parity polynomial r(x) [3]. Such operation 
has been implemented in a similar way which is shown in figure 2.5 as a hardware 
representation of this recursive function. 

2.2.1 Reed-Solomon Encoder 

The process of remainder polynomial r(x) calculation [3] follows IEEE Std. 802.3bsT M-
2017 for 200GE and 400GE. [17] The RS-FEC Encoder follows procedure shown in 
figure 2.3. 

RS-FEC Encoder has been successfully verified using ModelSim and compared 
with Annex 119A IEEE Std. 802.36s™—2017. The encoder part has been created 
first for m — 4. Results of this simulation and intermediate calculations correspond 
to the values available in [3] on page 11. Full parametrizability of this component 
has been therefore confirmed. A n advantage of the code is the possibility of larger or 
smaller variants creation for various data lengths (shortened codes creation) simply 
by changing generic variables in the code. However, digital circuits introduced for 
RS-FEC Encoder and Descrambler provide general functional models, for resultant 
implementation, larger parallel combinatorial functions with registers were to be 
taken in account for the desired sequential RS-FEC system within the PCS layer. 
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Fig. 2.3: Numerical representation of RS-FEC Encoder operation (taken from [3]) 

General diagram of RS-FEC Encoder operation for 400GE is shown in figure 
2.5. It consists of two main components: RS_400_FEC_ENC consisting of two RS-
F E C Encoders for codeword_A and codeword_B generation and M U X for symbols 
distribution. 

2.2.2 Symbols Distribution 

According to the IEEE Std. 802.36s ™ -2017 subchapter 119.2.4.7 for 400GE the 
two codewords codeword_A and codeword_B of 544 symbols are further interleaved 

49 



message <k-l:0> 

RS-FEC E N C 

... constant elements of Generator polynomial G(x) 

/10 G i 

G F 
M U L T 

AO 

G F 
M U L T 

D 

^^^^ 
Go, 

10 

G F 
M U L T 

G 2 t 

G F 
M U L T 

/10 

G F 
M U L T 

D - - - - - f W > r W > f J l 

9 9 
0 message <k+2t:2t> 0 parities <2t-l:0> 

Fig. 2.4: RS-FEC Encoder hardware diagram for polynomial division 

in the component RS_ENC_INT and distributed among 16 PCS lanes. This compo
nent has also been designed generically. Therefore, by changing number of generic 
parameters it is possible to switch between 200 Gbps or 400 Gbps platforms or even 
IEEE Standards for future Ethernet speeds, if needed. 

9 
0 

message A<513:0> 

400 F E C E N C 

G E N E R I C RS-FEC E N C O D E R A 

elk 
9 
0 

message B<513:0> 

G E N E R I C RS-FEC E N C O D E R B 

codeword_A<543:0>\r codeword_B<543:0>v 
9 
0 

message A 
<543:30> 

9 
0 

parity A 
<29:0> 

9 
0 

message B 
<543:30> 

9 
0 

parity B 
<29:0> 

R S E N C I N T , r 

G E N E R I C PCS L A N E S I N T E R L E A V E R M U X 

codewords interleaved<1087:0> 

Fig. 2.5: RS-FEC Transmitter diagram for 400GBASE 
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The interleaving and deinterleaving of two codewords has been realized at symbol-

level and follows the procedure shown in the pseudocode below [17]: 

const int MSGS = 2 //'Messages to interleave 

const int PCSL = 16 //PCS lanes 

const int SYM = 514-1 //Symbols of a message to be encoded 

const int GENPOL = 31-1 //Symbols of the Generator polynomial G{x) 

i f (HSG'S) mod(MSGS) = 0 
then 
. _ PCSL  
A ~ MSGS 

if (SYM±1_J_GENPQL) M O D ( J ) = 0 

then 
o _ SYM+1 + GENPDL 
B - J 

const int CWSYM = SYM + GENPOL 

for a l l K=0 to (A-l) 
for a l l J=0 to (B-l) 

i f even(K) 

tx_out<PCSLxK+MSGS xJ> = codeword_A<CWSYM-AxK-J> 
tx_out<PCSLxK+2J+l> = codeword_B<CWSYM-AxK-J> 

else 

tx_out<16K+2J> = codeword_B<CWSYM-AxK-J> 
tx out<16K+2J+l> = codeword A<CWSYM-AxK-J> 
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2.2.3 Reed-Solomon Decoder 

Reed-Solomon decoder constitutes the most complicated part of the Reed-Solomon 
error correction system. Its block diagram is shown in figure . Block diagrams of each 
component or RS-FEC Decoder are shown and described in further subchapters. 

Before the input vectors err_codeword_A and err_codeword_B enter top-level 
RS-FEC Decoder entity RS_FEC_DEC, input interleaved signal is deinterleaved back 
to separate codewords A and B. This is because two RS-FEC Decoders reconstruct 
error polynomial err_pol_A and err_pol_B from these two input codewords sepa
rately while each one operates with respective RS frame. Deinterleaving has been 
also designed generically and is therefore possible to switch among various plat
forms based on number of PCS (Physical Coding Sublayer) lanes of the platform as 
determined in IEEE Std. 802.36s™-2017. In terms of 400GE operation 16 PCS 
lanes. 

Since the input signal propagates through RS-FEC Decoder, first, the system 
checks if input codewords are divisible by consequent roots of Generator polyno
mial G(x) without remainder. In this work, 6 = 0 and therefore the division starts 
with a0 for respective syndrome S\ and so on. This operation exploits the fact that 
Generator polynomial G(x) has been constructed from such G F elements beginning 
with ab, as determined in equation 1.5), and therefore made the incoming code
words divisible by these elements without remainder one after another forming a set 
of syndromes. A n entity conducting this operation is FEC_DESC and has been real
ized generically. Remainders of subsequent divisions by Galois field primitives form 
factors of respective degrees of Syndrome polynomial S(x) (see 1.19) syndrome_A 
and syndrome_B. Also, desired number of Galois field elements were calculated (see 
Tab. 2.1 using a function generating a constant vector implemented in ROM-based 
Look-up tables. This function can generate any GF(2m), in this case GF(24) for 
prototype and G F ( 2 1 0 ) for resultant data widths. 

The set of syndromes is further decoded by two Euclidean processors for each 
codeword separately used for mapping the received codeword based on its syndromes 
to the closest valid codeword by further components. There are two outputs from 
each Euclidean processor. First, magnitude polynomial 7JI(x) and second error 
locator polynomial ryA(x). These polynomials are used to give information about 
locations and magnitudes of errors in received codewords based on their syndromes. 
Since the Key equation (see equation 1.26) has been introduced in [28] on page 
2 and Euclid's method applied to the Key equation, equation 1.31 can be found. 
The Euclidean processor consists of t layers in total which determines the maximal 
degree of output vectors lambda and omega. 
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err codeword B<543:0> 
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GALOIS FIELD 
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<14:0> 
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CHIEN SEARCH A 

lambda derived A<543:0> 
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err_pol_A<543:0> 

FE C DESC 

SYNDROME CALCULATION B 
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EUCLIDEAN 
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FE C MAG 

FORNEY'S A1LGORITHM B 

err_pol_B<543:0> 

fee out A<1027:514> fee out B<513:0> 

Fig. 2.6: Diagram of the RS-FEC Decoder 
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A n interesting property of this algorithm is that if ryfl(x) has been successfully 
found, its degree determines in which layer the calculation has finished. In other 
words, if the received codeword contains single error, the result of jQ(x) computation 
is in the first layer. If the received codeword contains two errors, the result of 
computation jQ,(x) lies in the second layer etc. Respectively, jA(x) has been also 
found in these layers, as well. In addition to the polynomial division part, GF 
inverses have to be used in this process which were found using logarithms as shown 
in equation 2.1. This process and its implementation is described in more detail in 
subchapter 2.2.3. 

Last two entities for solving the Error polynomial E(x) f ec_out_A and f ec_out_B 
are Chien search and Forney's algorithm. For these components, multiple degrees of 
inverses were found using a function which generates inverses as a constant stored 
in ROM-based LUTs. It has also been designed generically and can be therefore 
used for any GF(2 m ) . Chien search solves equation 1.37 and derivation described in 
1.9.6. Forney's algorithm conducts more straightforward operation, and this is the 
fraction in the equation 1.39. 

R(x) DESCRAMBLER S(x) 

S(x) 

EUCLIDEAN 
PROCESSOR 

CONTROL 
& 

BUFFER 

A(x) CHIEN SEARCH 

loo. 

A'(x 

fi(x) 

E(x) 

FORNEY'S 
ALGORITHM 

OUTPUT 

Fig. 2.7: Sequential solution for a single RS-FEC decoder 

The resultant RS-FEC is a sequential component which further requires control 
unit which also serves for error correction status reporting to the PCS layer. Its 
operation is summarized in 1.9.7. In addition, buffers are needed to synchronize 
signals with the sequential error correction flow. This is shown in figure 2.7. 

Syndromes computation 

Hardware for syndrome calculation follows procedure shown in figure 2.9. The most 
significant degree of the input received message R(x) is added with registered value 
initialized in 0 and then multiplied with a constant primitive element oA In the 
next cycle, X O R gate reads one degree lower factor of the input message R(x) and 
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err codeword<543:0> 

FEC DESC: 

... elements of Galois field as constants 

GF 
MULT 

ai 

GF 
MULT 

a2t-2 
ll i 

a2t-l 

GF 
MULT 

GF 
MULT 

syndrome <2t-l:0> 

Fig. 2.8: Hardware of descrambler for syndromes calculation 

the remaining process remains the same. Here, 6 = 0. Then, this value rewrites the 
previous initial value in the register etc. 

In parallel, this operation shown in figure 2.9 runs with other primitive elements 
of G F ab+1, ... a 6 + f e + 2 t _ 1 . Process with multiplying by a0 forms So, a1 forms So etc. 
This general operation is represented in a diagram shown in 2.8. 

Euclidean processor design 

The main process present in a single layer of the Euclidean processor has been 
divided into two parts: left-hand process for polynomial division and right-hand 
process conducting polynomial multiplication and addition, as described in [3]. Fig
ure 2.10 shows calculation of the first layer of the Euclidean processor for jQ^x) and 
jA(x) calculation and figure 2.11 the second layer. 

Suppose that input to the F E C _ E U C from R S D E S C is this polynomial S(x): 

S(x) = 12x3 + Ax2 + 3x + 15 (2.3) 
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Fig. 2.9: Numerical representation of syndrome calculation operation 
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Fig. 2.10: Eample of first layer of Euclidean processor operation [3] 

In the first layer, register with dividend polynomial initialized in x2t (here, xA) will be 
divided by polynomial S(x) as dividend, however, multiplied by certain value causing 
the most significant degree of the dividend (x 4) to be equal to the most significant 
degree of the divisor which results in cancelling the most significant degrees after 
addition of contents in these two registers. This number can be found by dividing the 
most significant degree of the dividend by divisor's most significant factor. Divisor 
polynomial is constant for the entire layer based on its degree, number of division 
steps differs. Then, resulting quotient of the division is: 

= a°x4 x a~6x-3 = a°x4 x a9x~3 = lx4 x lOx" 3 = lOx (2.4) 
12ar 

This number (lOx) is the quotient which multiplies both the divisor S(x) and 
also register with polynomial F(x) in the right-hand side of the process. On the left, 
multiplied divisor factors are added to respective factors of the dividend xA while 
the most significant degree is cancelled. Then, another factor with degree lower by 
one is adjusted to the dividend in the next cycle and register of the dividend is 
rewritten. Multiplication on the right-hand side with polynomial F(x) initialized in 
1 is trivial (it is important to mention that multiplication is performed over GF(2A): 

1 x (10x) = lOx (2.5) 

However, there is no previous layer and therefore all remaining registers are set 
to 0. At the same time as left-hand preforms addition, on the right-hand side is 
performed as well and then rewrites current register for addition: 

0 + lOx = lOx (2.6) 

This process continues once again since maximal number of errors t occured. If 
the number of errors is lower, based on the divisor's degree the number of cycles can 
be determined. 

cycles = 1 + (degree _dividend — degree_divisor) (2.7) 
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If the degree of dividend in this example is 4 and degree of divisor is 3, then 
2 cycles of division have to be performed to obtain remainder. On this basis, first 
implementation of Euclidean processor is based to secure the Euclidean processor 
operation. 

The second and following layers operate on similar basis as the first one, however, 
inputs to the layer change. First, on the left-hand side, divisor from the previous 
layer becomes current layer dividend and remainder from the previous layer is divisor 
of the current layer. This applies also for next layers. On the right-hand side, two 
registers read data from the previous layer. First, current register F(x) is loaded 
with data from previous result ^K{x) and initial sum to the process (first row) reads 
data of F(x) from previous cycle. 

zyA1 

x2 x1 x° x2 x1 r 
X 

dividend: 12 4 3 15 0 1 
divisorx 2x: 12 12 8 7 12 0 

8 11 15 7 12 1 
divisorx 13: 8 8 1 11 8 
remainder: 3 14 7 7 9 

Fig. 2.11: Example of remaining layers of Euclidean processor operation [3] 

Now it is important to select the right output. If the degree of remainder on 
the left-hand side of the euclidean algorithm is lower than t (in this example 2) the 
jA(x) and •yQ(x) has been found. In the realization of euclidean processor, output 
logic selects correct output based on registered degrees of dividends and divisors 
of each layer of the euclidean. There is also room for improvement because the 
degree can be estimated only in the first layer and based on this, other layers can 
be synchronized accordingly. This has to be tested first. 

The diagram of the euclidean processor is shown in figure 2.12. Similarly as the 
algorithm shown above, the main operation is divided into three main parts. Based 
on incoming syndrome polynomial degree every layer of the euclidean processor is 
configured. For the division part, inverses of G F are loaded in LUTs. Intermediate 
remainders of each layer are used by control logic to set up next layer and output 
logic selects the right output. In addition, intermediate product from the right-hand 
process is also sent to control logic in order to shift products after multiplication 
accordingly. 
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syndrome <2t-l:0> 

[ )... inverse elements of Galois field as constants 

PROCESS INPUT DEGREES REGISTER 

EUCLIDEAN PROCESSOR LAYER 

GALOIS FIELD 
INVERSES 

GENERATOR 

LEFT-HAND PROCESS 
POLYNOMIAL 

DIVISION 

1 
inter remainder <t-l:0> -> 

inter_quotient <t-l:0> 

CURRENT LAYER 
SETUP 

RIGHT-HAND PROCESS 
POLYNOMIAL 

MULTIPLICATION 

inter _ pro duct <t:0> 

OUTPUT LOGIC 

omega<t-l:0> 9 
0 lambda<t:0> 

Fig. 2.12: Diagram of Euclidean processor unit for RS-FEC 
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Hardware for error locations 

Chien search component performs two main operations: solves Error locator poly
nomial 7A(x) (see equation 1.37) and derivation of polynomial 7A'(a;) for each of 
ab, a b + 1 . . .o ; b + f c + 2 '~ 1 described in chapterl.9.5. Based on these two outputs, Error 
polynomial can be solved using Forney's equation. There are therefore k + 2t — 1 
solutions for each of ab, ab+1 ... a f 6 + f e + 2 t _ 1 elements for both output vectors which 
correspond to the width of Error polynomial E(x). With reference to equation 1.37 
the Error locator polynomial can be solved by following procedure. The result of 
the previous example in the right-hand side process of the Euclidean processor is 
[3]: 

-yA(x) = 7A2 + 7A1 + 7 = 7x2 + 7x + 9 (2.8) 

Divided by 7 the Error locator polynomial equals to: 

1 ^ 1 = A(x) = Ux2 + Ux + 1 (2.9) 
7 

The Chien search algorithm can be performed at positions x = ab, ab+1 ... 
a b + f c + 2 ' _ 1 , in this example for eu = a 1 4 , as follows: 

A(x) = Ux2 + Ux + 1 = 14(a" e i 4 ) 2 + 14a" 6 1 4 + 1 = 14(a" 1 4 ) 2 + 14a" 1 4 + 1 (2.10) 

In this point it is possible to identify respective inverse elements stored in R O M -
based Look-up table shown in 2.1 realized by a constant vector generated by a 
generic V H D L function: 

A(x) = Uia1)2 + 14a 1 + 1 (2.11) 

Implemented hardware of Chien Search then follows this calculation of this line: 

A(a" 1 4 ) =a1\a1)2 + a11a1 + a° (2.12) 

A(cT 1 4 ) = a

n a 2 + c ^ V + a0 = a 1 3 + a2 + a0 = 13 + 15 + 1 = 3 (2.13) 

The result of A ( a - 1 4 ) is 3 which signifies that on position eu an error did not 
occur. This computation runs for all error positions e& ... eb+k+2t-i in parallel and 
therefore the benefit of parallelism in an F P G A has been exploited. 

Since the first derivative of A(x) has been found, as shown in the following 
example where even degrees of x are set to zero [3]: 

A(Xj)' = A1+A3x X~2 + A 5 x X " 4 + . . . (2.14) 

A W = ^ = 14 (2.15) 
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Fig. 2.13: Diagram of Chien search as the unit for error positions determination 
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Hardware for A(x) derivation calculation differs only in terms of number of fac
tors to be added by X O R gates as represented in 2.13. It terms of hardware require
ments reduction, it is not needed to divide the Error locator polynomial by 7 thanks 
to the fact that 7 will be cancelled out in further division in Forney's algorithm, it 
is convenient to omit the division part in 2.17. 

It is also important to note that 7A(x) at each error position has its own deriva
tive 7A(x)' and therefore derivatives of higher degrees of the Magnitude polynomial 
"fA(x) (degrees of 3 and more) will differ compared to the example above. It is 
therefore possible to form a vector of the same length as the error polynomial with 
derivatives of 7A(x)' for each error position which is convenient for parallel compu
tations omitting redundant control logic prolonging the critical path from input to 
output. 

Hardware for Error Magnitudes Calculation 

Since the results of Error locator polynomial 7A(x) and derivation of 7 A'(a;) are 
found, Forney's algorithm solves the Error polynomial E(x) by calculating fraction 
for each of ab, ab+1, ..., a b + f c + 2 ' _ 1 . Therefore, this component has been divided 
into three main parts. First part solves Magnitude polynomial 7JI(x) and second 
part solves fraction with already calculated jA'^x). If an error position is found, 
multiplication of the solved fraction with respective primitive element of G F is per
formed. This 2-way M U X causes that if the received codeword has no errors, the 
entire Error polynomial E(x) is set to 0 otherwise calculates result only for selected 
zero error positions. Since the result of the left-hand side process of the Euclidean 
processor is [3]: 

7fi(x) = 7^1 + 7A0 = 3x + 14 (2.16) 

Divided by 7 the Magnitude polynomial Q(x) equals to: 

= = QX + 15 (2.17) 
7 

Forney's algorithm follows equation 1.39 as shown in this example [3]: 

Y, = * } - g g > (,18) 

Since error positions Xj have been found in the Chien search part (here, at 
positions Xj = a9 and Xj = a2), error magnitudes Yj can be calculated for these 
positions where 6 = 1 [3]: 

Yj~Xi A ' ( X r i ) ~ a 14 - 1 3 ( 2 ' 1 9 ) 
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Fig. 2.14: Diagram of Forney's algorithm as a unit for error polynomial calculation 
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And here for a2 [3]: 

Yj = X3 

^ ^ ( X - ^ + lö 2 6 a " 2 + 15 
14 

(2.20) 

Result of this operation is then added to the input err_codeword and then the 
R(x) can be corrected as shown in fij $ure 2.15: 

Q 
X M X 8 X 7 X 6 X 5 

4 
X X 3 x2 x 1 x° 

R(x) = 1 2 3 4 5 11 7 8 9 10 11 3 1 12 12 
E{x) = 0 0 0 0 0 13 0 0 0 0 0 0 2 0 0 
T(x) = 1 2 3 4 5 6 7 8 9 10 11 3 3 12 12 

F E C C O R R 

err codeword<k+2t-l:0> 

err_pol <k+2t-l:0> 

5439 
-/• 

Fig. 2.15: Hardware for error correction 

2.2.4 Testing 

Testing of the system RS-FEC follows a straightforward procedure illustrated in 
figure 2.16. The main idea is to generate an error pattern in the form of polynomial 
representing R(x). The calculated error pattern should be the same as the generated 
one. In addition, inner signals are also being traced for effective debugging of the 
code. The functionality of the algorithm was tested for shortened RS (544, 514) and 
ÄS(256, 226) over GF(2 1 0 ) using G(x) from Clause 119; RS(29, 15) over GF(2 1 0 ) 
with G(x) from Clause 91 and shortened RS(9, 5) over GF{2A) with reference to [3] 
where all possible error positions and error values were examined. 
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R E C E I V E R 

Fig. 2.16: Testing of the RS-FEC system 

2.2.5 Implementation 

This section summarizes the implementation part of the time-constrained system. 
During implementation, timing constraints for clock signals were set to 5 ns. Dis
cussion, reflection and future improvements can be found in chapter 2.3. 

Implementation Compilation flow 

Development of RS-FEC for 400GE was conducted using Intel® Quartus® Prime 
Pro Edition Design Software [4] which supports V H D L 1987 (IEEE Standard 1076-
1987), V H D L 1993 (IEEE Standard 1076-1993) and V H D L 2008 (IEEE Standard 
1076-2008). Compilation flow of imported design consists of 8 main stages [30]: 

• IP Generation - identifies IP components used in the project, their status and 
version. 

• Analysis & Synthesis - performs synthesis, optimization, minimization and 
maps design logic to device resources, checks for design file and project errors. 
Results of this stage are preliminary and preserved for next stages. Design 
synthesis translates design source files into a form of netlist for mapping to 
device resources. It examines the logical completeness and consistency of the 
design, checks for boundary connectivity, syntax errors and also minimizes 
and optimizes design logic and may change or remove redundant user logic 
to ensure efficient use of device resources. In the end of synthesis, the Com
piler generates a database of the most basic (atom) elements which design 
synthesis requires to implement the design in silicon. Atoms include logic cells 
organised into look-up tables, D flip flops I/O pins, block memory, DSP block 
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and connections between atoms. This can be graphically represented in RTL 
Viewer. 

• Fitter (Place & Route) - placement and routing to specific target device is 
performed while respecting timing and placement constraints and any Fitter 
settings specified. Fitter determines the best placement and routing of logic 
in the target F P G A device. By default, fitter selects appropriate resources, 
interconnection paths and pin locations. If design logic is assigned to specific 
device resources, the Fitter attempts to match those requirements and optimize 
any other remaining unconstrained design logic. If the Fitter cannot fit the 
design in the current device, the compilation is terminated and reports an 
error message. This stage consists of 6 substages [30]: 

— Plan - places all periphery elements (I/Os and PLLs , etc.) and determines 
legal clock plan. Core placement or routing has not yet been performed. 

— Early Place - this is an optional stage. It places all core elements in 
an approximate location. This facilitates further design planning and 
finalizes clock planning for Intel® Stratix® 10 family and Intel® Agilex™ 
designs. 

— Place - places all core elements in a legal location. 
— Route - creates all routing between elements in the design. 
— Retime - moves (retimes) existing registers into Hyper-Registers for fine

grained performance improvement. 
— Fitter (Finalize) - For Intel® Stratix® 10 family devices preforms post-

Route fix-up after retime stage. Also, generates Technology Map Viewer 
to view internal structure of the design netlist after Analysis & Synthesis, 
for instance, for high fanout nets examination. 

• Fast Forward Timing Closure Recommendations - generates reports which 
estimate performance gains by making specific RTL modifications. 

• Timing Analysis - analyzes and validates the timing performance of all design 
logic. 

• Power Analysis - this is an optional stage for device power consumption esti
mation. 

• Assembler - converts the placement and routing by Fitter into a progrmam-
ming image for the F P G A device. 

• E D A Netlist Writer - generates output files of the project for use in other E D A 
tools. 
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Galois Field Multipliers 

G F multipliers appear in all the components of RS-FEC and were designed generi-
cally in two parts: part modulo and multiplication part with reference to [3], page 
28 where circuit of a full 4-bit shift-and-add multiplier is described, generic version 
of such function has been created on gate level. Single G F multiplier consumes 39 
A L M s . But, this number can be reduced during optimization process in Fitter stage 
of the design compilation process. 

CRC Implementation 

Further progress of the RS-FEC development with already designed G F multipliers 
could proceed in Scrambler and Descrambler synthesis and implementation. These 
components were realised based on a general procedure for data scrambling and 
descrambling (see Figure 2.4 and Figure 2.8). As assumed, some level of optimization 
of G F multipliers has been reached. On the other hand, results of synthesis of these 
components show enormous use of resources. This is because synthesis tools, in 
general, struggle with full optimization of large and complex functions over Galois 
fields, especially RS codes 725(544,514). Despite the fact that there was some 
level optimization, the more cycles is demanded for the recursive algorithm to be 
conducted, the optimization process gets less effective. In addition, it takes a long 
time to synthesize and implement these components. Achieved results and times of 
synthesis and implementation phases are summarized in following tables. 

Tab. 2.3: Duration of compilation stages of RS-FEC Encoder for i?5(544, 514) 

Stage Duration [hh:mm:ss 
Synthesis 08:47:31 

Fitter 02:48:36 
Timing Analyzer 00:02:17 

Tab. 2.4: Duration of compilation stages of RS-FEC Descrambler for i?5(544, 514) 

Stage Duration [hh:mm:ss 
Synthesis 00:44:02 

Fitter 05:00:01 
Timing Analyzer 00:03:13 

Designed parametrizable system is implementable, however, timing requirements 
of the system with general model for scrambling and descrambling have not been 
fulfilled. The design therefore has to be further optimized. First, optimization 
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of G F multipliers towards critical path reduction might help the design to reduce 
resource utilization and increase maximal operation frequency for the cost of its 
parametrizability reduction in the future. Based on previous practice of RS-FEC 
designs within the academical organisation Cesnet s. z. p. o., implementation of so 
called "xor network", a fully optimized net of exclusive-OR gates which also might 
significantly reduce critical path and resource utilization, as studied in [31]. 

Tab. 2.5: Results of synthesis and implementation of time-constrained sequential 
RS-FEC Encoder for 400GE 

Phase ALUTs Dedicated Logic Registers Maximal Frequency 
Synthesis 359516 1800 -

Implementation 388305 2420 6.81 MHz 

Tab. 2.6: Results of synthesis and implementation of time-constrained sequential 
RS-FEC Descrambler for 400GE 

Phase ALUTs Dedicated Logic Registers Maximal Frequency 
Synthesis 719583 1800 -

Implementation 507043 786533 6.81 MHz 

Euclidean Processor Implementation 

The first attempt to implement hardware of the designed and tested Euclidean 
processor into Intel Stratix D X F P G A resulted in exceeding available resources. This 
happened mainly because each generated layer of the Euclidean processor contained 
its own Look-up table of G F inverses of 2 m which resulted in such high hardware 
consumption. In addition, used tool for synthesis did not estimate correctly which 
registers and A L M s of certain layer will not be used in a given layer of the Euclidean 
processor. 

Tab. 2.7: Duration of single stages of compilation of both components of Euclidean 
processor 

Stage Duration [hh:mm:ss 
Synthesis 00:13:37 

Fitter 00:09:23 
Timing Analyzer 00:00:16 

In this paper, for timing estimation of the current design, single layer of the eu-
clidean processor has been implemented. Further improvements include Euclidean 
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processor re-design, generally in terms of sharing registers of both sides of RS-FEC, 
however, functional core will remain the same. Further efforts for resources uti
lization minimization will be focused on implementing additional logic to single 
euclidean layers selecting correct results based on its current layer index which in
directly determines incoming polynomial degrees and therefore discard unnecessary 
logic which is never used in the current layer of a given index. Result of implemen
tation of one layer is shown below. 

Tab. 2.8: Results of synthesis and implementation of a single sequential component 
RS-EUC for 400GE 

Phase ALUTs Dedicated Logic Registers Maximal Frequency 
Synthesis 11833 340 -

Implementation 13322 14568 237.64 MHz 

Chien Search Component Implementation 

Synthesis and implementation of hardware for Chien Search components show that 
resources utilization do not exceed critical level for its implementation and timing 
requirements have been fulfilled. Results of these stages are shown in Tab. 2.9 and 
Tab. 2.12 below. 

Tab. 2.9: Duration of single stages of compilation of both components for finding 
error locations 

Stage Duration [hh:mm:ss 
Synthesis 00:03:27 

Fitter 00:36:06 
Timing Analyzer 00:00:37 

Tab. 2.10: Results of synthesis and implementation of both components RS-CHS 
for 400GE 

Phase ALUTs Dedicated Logic Registers Maximal Frequency 
Synthesis 57506 28753 -

Implementation 66685 107813 223.76 MHz 

Forney's Algorithm implementation 

In the component for Forney's algorithm computation, the most important part to 
focus on is the use of a constant containing Galois field inverses. This constant 
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contains 2m bits and is therefore the largest in the design. This constant is used for 
division by respective G F derivative calculated in Chien Search component for each 
error position. There is actually n = 544 error positions but only t = 30 positions 
can be corrected. The hardware in Forney's algorithm calculates error magnitude 
for each n. This means that the 2 m elements has to be generated 544 times. This 
is actually the cause of such a large hardware utilization which has to be reduced 
to only, ideally, t-times 2 m . This approach might be fulfilled by a sorting algorithm 
which will shift error positions in a given direction of an array and accumulate 
them. Then, with t-times for loop, pointer will find respective inverse elements in 
the constant array of G F inverses based on the given positions. 

Tab. 2.11: Duration of compilation stages of a single entity of RS-FOR conducting 
Forney's algorithm 

Stage Duration [hh:mm:ss 
Synthesis 00:46:07 

Fitter 04:31:17 
Timing Analyzer 00:03:05 

Current design expects the result of the Forney's algorithm to be calculated in 
three clock cycles. Further extensions will probably require one more clock cycle 
delay. 

Tab. 2.12: Results of synthesis and implementation of a single time-constrained 
sequential entity RS-FOR for 400GE 

Phase ALUTs Dedicated Logic Registers Maximal Frequency 
Synthesis 521565 14897 -

Implementation 539392 977902 245.16 MHz 
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2.3 Discussion and Reflection 

In this work, main goals of the RS-FEC development have been reached. Since the 
very beginning of the development, the design was focused mainly on maximal data 
throughput, exploiting benefits of the F P G A technology, its parametrizability and 
resource usage, however, in lesser extent. Full parametrizability of the design has 
been reached which enables its reusability and possible creation of various forms 
of the system for future uses or its implementation in different areas. In addition, 
including Galois fields generation, its inverses and various degrees of inverses us
ing V H D L subprograms without using additional scripts might noticeably reduce 
development speed of future Ethernet platforms. 

In terms of the overall functionality, the system has been tested and full parametriz
ability has been successfully verified. It is therefore possible to modify this system 
for various shortened forms of RS-FEC by changing these main generic variables: 
m, n, k, 2t and number of PCS lanes for codewords distribution. Thanks to generic 
PCS lanes interleaving and deinterleaving the system can be implemented also for 
200GE or other projects. 

On the other hand, current state of art requires further optimization, especially 
C R C and Euclidean processor units, and control logic, which is the plan for future 
work. In the end, the focus of the development changed from the effort for maximal 
data throughput and timing requirements to balance between resources utilization 
and data throughput where resources play crucial role for implementation of such a 
large system. Based on unbiased user experience from this development work, three 
key points should ensure its further safe progress: identification and restriction of 
resource-intensive look-up tables generation, sharing resources between two parts of 
the RS-FEC and use of best practices from previous RS-FEC implementations to 
combine the best approaches to this topic. 

In terms of the resources minimization, significant reduction of ALUTs might be 
reached by selecting error positions only at the Chien search component and form 
the error polynomial at the Forney's algorithm in the last stage of the pipeline of the 
component. This will require an extra logic at the Chien search and one clock cycle 
delay but significantly reduce number of ROM-based Look-up tables in the Forney's 
algorithm, meaning using Forney's equation t-times only compared to generating 
these inverses of the GF(2m) n-times. 
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Summary 
In this Master's Thesis, fully parametrizable Reed-Solomon self-correcting algorithm 
for 400 G E has been successfully designed, its function verified in simulations, op
timized and implemented. In the theoretical part of this work, Reed-Solomon error 
correcting algorithm is described including F P G A technology and Galois finite field 
algebra including a general overview of modern networking and implications to cur
rent high-speed Ethernet. Based on the theoretical part of the work it turned out 
that due to the Finite field algebra it will not be possible to use dedicated DSP 
blocks of the F P G A chip. Hence, the entire algorithm was stored in LUTs. 

In the practical part, design and testing of RS-FEC system is discussed, used 
hardware for its realization and future challenges including best practices are sum
marized. The very first attempt to implement the system resulted in exceedingly 
large resource utilization and therefore optimizations were needed to be conducted. 
The main cause of this were complicated and hardware-intensive inverse circuits 
of Euclidean processor layers. It turned out that it is not feasible to implement 
fully parallel Euclidean processor unit including Forney's algorithm. Based on user 
experience from this work of VLSI design of Forney's algorithm and Chien search 
it was found that it is better to calculate single degrees of inverses of Galois field 
elements on chip than storing them in ROM-based Look-up tables. However, in the 
current state of art, all components of the RS-FEC are implementable and further 
optimization is required. Major challenge of this project and key for its implementa
tion was to balance hardware resources utilization from the previous focus on timing 
fulfilment, which is mainly the task for further C R C unit optimization. 

This work suggests using ROM-based Look-up tables in lesser extent. It was 
found that implementation of ROM-based Look-up tables at the smallest scale pos
sible is the key for successful implementation of this system in Intel® Stratix® 10 
D X F P G A . Hence, employing Euclidean processor units for solving Key equations 
is discussed. Since there are two encoders and decoders employed for each code
word respectively, it is therefore better to consider shared resources between these 
two parts of RS-FEC system and using algorithms based on minimal utilization of 
ROM-based Look-up tables. 

Future orientation of this work will be focused mainly on ALUTs usage mini
mization and increasing throughput for C R C unit. In particular, significant benefit 
of this system is its parametrizability which enables faster further optimization pro
cess which applies especially for Euclidean processor. Another benefit is its simple 
implementability for various scales of the code underlining its variability also for 
various future uses. 
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List of symbols, physical constants and abbre-

viations 
RS Reed-Solomon 
F P G A Field Programmable Gate Array 
G E Gigabit Ethernet 
VLSI Very-Large-Scale Integration 
F E C Forward Error Correction 
P H Y Ethernet Physical Layer 
L A N Local Area Network 
M A C Medium Access Control 
OSI Open Systems Interconnection 
D L L Data Link Layer 
L L C Local Link Control 
PCS Physical Coding Sublayer 
P M D Physical Media Dependent 
P M A Physical Medium Attachment 
B E R Bit Error Rate 
D D R Double Data Rate 
PCI Peripheral Component Interface 
FSB Front Side Bus 

QPI Quick Path Interconnect 
D F F D-type Flip Flop 
DSP Digital Signal Processing 
R T L Register Transfer Level 
C P U Central Processing Unit 
G P U Graphics Processing Unit 
I /O Input/Output 
M O S F E T Metal Oxide Semiconductor Field Effect Transistor 

A L U T Adaptive Look-up Table 
U V Ultraviolet 
H P C High Performance Computing 
C L B Configurable Logic Block 
R A M Random Access Memory 
B L E Basic Logic Element 
L U T Look-Up-Table 
DLLs Delay Locked Loops 
PLLs Phase Locked Loops 
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ASICs Application Specific Integrated Circuits 
IP Intellectual Property 
M A C Medium Access Control 
SoC System on Chip 
A L M s Adaptable Logic Modules 
D R A M Dynamic Random Access Memory 
S R A M Static Random Access Memory 
GPUs Graphics Compressing Units 
C R C Cyclic Redundancy Check 
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