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ABSTRACT

This Master's thesis deals with RS-FEC layer implementation using VLSI hardware de-
scription for 400 GE (Gigabit Ethernet) in the FPGA Intel® Stratix® 10 DX 2100. In the
theoretical part of this work, current state of Ethernet speeds and context of RS-FEC
layer within Ethernet protocol is described including PLD fabrication process and mathe-
matical aspects of RS-FEC self-correction algorithm. In the practical part, parametrizable
RS-FEC system is described including evaluation of the first results achieved and future
scope of this project is discussed.

KEYWORDS

Reed-Solomon Error Correction Codes, Forward Error Correction, 400 Gbps Ethernet,
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ABSTRAKT

Tato diplomova prace se vénuje problematice VLSI navrhu a implementaci vrstvy RS-FEC
pro 400 Gb/s Ethernet do FPGA Intel® Stratix® 10 DX 2100. V praci je charakterizo-
van soucasny stav rychlosti Ethernetu, vyznam a kontext samoopravnych kédi v ramci
protokolu Ethernet. Dale je popsana vyroba PLD ¢ipl i matematickd podstata RS sa-
moopravnych kédi. V Casti praktické je predstaven navrh feseni systému RS-FEC, ktery
byl realizovan genericky pomoci jazyka VHDL. Zaroven byly jeho komponenty imple-
mentovany a v zavérecné diskusi je popsano jeho feseni, dosazené vysledky véetné jeho
budouciho rozsiteni.
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ROZSIRENY ABSTRAKT

V dnesni dobé nam moznéa pripada prirozené, ze poskytovatelé datovych sluzeb
prichézi cas od casu s novymi produkty i vysSsimi rychlostmi datovych pfenosu.
Drive bylo standardni praxi pockat si na to, az se nam s pripojenim pres tele-
fonni linku nacte obrazek a netrpélivé jsme sledovali kazdou jeho nactenou cast.
Dnes vsak na tuto skuteénost pomalu zapominame. Navic i vzhledem k tomu,
ze se do sité pripojuje stale vice novych zafizeni, stavaji se internetové sluzby
popularnim a nepostradatelnym médiem pro dnesni spole¢nost [1]. Néroky uzi-
vatelll internetu ruku v ruce s technologickym pokrokem vsSak dovedly maximélni
prenosové rychlosti od jednotek kilobitii po stovky gigabiti za sekundu, a meta
zde rozhodné nekonci. V soucasné dobé existuji experimantalni vysokorychlostni
ethernetové platformy, které operuji bezmdala na jednotkach terabiti za sekundu.
odeslani souboru. Stoji za tim obrovské usili celého elektrotechnického primsylu od
inovaci v kabelazi, elektrotechnické i elektronické vyrobé po inovace v informacnich
a sitovych technologiich. Kazdy takovy pokrok umozni posun v jinych odvétvich,
napiiklad ve zdravotnim primyslu pro vyvoj novych 1éki a vakcin, predpovédich
klimatu, financ¢nich sluzbach, genetickém inzenyrstvi atp.

Vzhledem k tomu, Ze jsou obecné prenosova média vystavena faktortim ruseni,
stava se bézné, ze se nékdy prenesend zprava poskodi a prijimac ji proto poté chybné
vyhodnoti (¢i viibec). Toto se stava tim Castéji, ¢im rychlejsi platforma je a ¢im méné
je osetfena proti ruseni. Tomu lze vSak predejit nékolika zplisoby. Jednim z nich
je napr. pouziti kroucené dvojlinky, kterda je vsak tématem pro nizsi prenosové
rychlosti, az 1 Gbit/s [2]. Jiny zptsob, nez pouziti kabelaze, je implementace
samoopravnych algoritmt pro rekonstrukci prenasené zpravy navzdory tomu, Ze je
z Casti poskozena. Jedna se o algoritmy, které lze implementovat do hradlovych poli
FPGA jako firmware. V této diplomové praci je feSen aspekt implementace Reed-
Solomonovych kédu pomoci navrhu VLSI pro hradlova pole Intel® Stratix® 10 DX
pro projekt NDK - Netcope Development Kit.

Reed-Solomonovy kédy byly doporuceny jako vhodné feseni pro dosazeni rychlosti
100 Gb/s ve standardu IEEE Std. 802.3bm™ 7z roku 2015. Dtvodem je hlavné
to, ze jsou celkové dobre prostudovany a jejich vyvoj sice stoji usili, ale doda
potfebnou kapacitu pro opravovani chyb a lze je v rozumném méritku implemen-
tovat do hradlovych poli FPGA. Zékladni koncept pro opravu chyb pomoci Reed-
Solomonovych kédt spociva v tom, ze se pripoji redundantni ¢ast o urc¢itém poctu
symboli ke zpravé, kterou chceme poslat, tzv. parita. Tim se vytvori unikatni
a validni datovy ,balik®, tzv. kodové slovo, které je vystupem vysilaci strany sys-
tému RS-FEC. Pokud se kédové slovo poskodi, prijimaci strana chybu detekuje

a vytvori polynom, ktery se dale desifruje nasledujicimi komponentami, které dokazi



najit pozice chyb a jejich velikosti na téchto pozicich. Toto ,poskozeni® lze cha-
pat tak, ze se k pivodnimu neposkozenému kédovému slovu pricetl urcity chy-
bovy polynom, ktery pravé reprezentuje vznikly Sum. Systém tedy hleda presné
tento polynom, ktery zptusobil chybu pri prenosu, tzv. chybovy polynom FE(zx).
Nalezenim tohoto polynomu a jeho pri¢tenim k prijatému ,,poskozenému® kédovému
slovu se docili rekonstrukce, idedlné ptivodniho validniho kédového slova. Reed-
Solomonovy kédy se obecné zna¢i RS(n, k), kde n specifikuje pocet prvkia celého
kédového slova a k pocet prvka zpravy.

Tato diplomova prace se tedy zabyva touto problematikou, implementaci RS(544,
514) pro 400 Gb/s Ethernet. Predpoklada se, ze ¢tenal nemé predchozi zkusenosti
s touto problematikou, a proto je v praci Reed-Solomontuv samoopravny algoritmus
detailné shrnut. Teoreticka c¢ast dale obsahuje kapitolu o sifovych technologiich,
vyrobé mikro¢ipt a informace o pouzité technologii. V praktické ¢asti je uveden
navrh feseni systému pro 400GE (Gigabit Ethernet), podrobny rozbor navrzenych
komponent a prozatimni dosazené vysledky tispésné implementace. Déle jsou v tomto
textu shrnuty vysledky a také je konstruktivné okomentovano dalsi rozsiteni tohoto
systému. Samotny proces Reed-Solomonovych samoopravnych kodi je detailné pop-
san v [3] véetné jeho hardwarové podoby, a proto se tato diplomova prace z velké
casti odkazuje pravé na tento zdroj.

Reed-Solomonovy kédy operuji nad tzv. Galoisové konecnym télesem. To ve
vysledku znamend, Ze cely samoopravny algoritmus provadi vypocty s (m—1)-bitovy-
mi symboly, ptricemz kazdy takovy symbol je jednim z celkem jeho 2™ — 1 uspora-
danych ¢lent. V ramci systému RS-FEC pro 400GE se vypocet provadi s de-
setibitovymi symboly, proto m = 10. Prvky Galoisova télesa jsou urceny i us-
poradany podle toho, jaky tzv. primitivni polynom p(z) fadu m (v bindrni podobé)
toto téleso vytvari. Zajimavou vlastnosti konecnych téles je to, ze pokud se budeme
snazit vytvorit (2" + 1) prvek, vysledkem bude znovu prvek prvni, (2" + 2) prvek je
znovu prvek druhy atd. V Galoisové télese plati také odlisna algebra, a to takova,
ze pri provadéni algebraickych operaci nedochézi ke zméné radu (pretékani biti).
Operace s¢itani a odcitani je jedna a ta sama operace, ktera se provadi pomoci hradla
XOR. Systém tedy nevyzaduje pouziti zadnych sc¢itacek ani od¢itacek, a tudiz nelze
vyuzit DSP bloky v ¢ipu FPGA. V préci byla tedy zvolena varianta implementace
systému do Look-up tabulek hradlového pole véetné jejich pouziti jako paméti ROM.
Jak je obecné znamo, logické operatory XOR jsou sobé komutativni a vysledny
navrh lze optimalizovat, coz provadi syntézni nastroje, v této praci Intel Quartus
Prime Pro [4]. Operace nasobeni se také lisi a provadi se ve dvou fazich. Vstupy
do nésobicky nad GF(2™) chapeme jako polynomy radu m — 1 a provadime klasické
nasobeni mnohoclenu mnohoc¢lenem. Vysledek tohoto nasobeni vSak prekracuje rad

prvka GF(2™) a je tedy nutné jej do tohoto rfadu “vratit” pomoci operace modulo



m vydélenim tim samym primitiviim polynomem p(x), ktery generuje celé Ga-
loisovo téleso GF'(2™). Implementace déleni v Galoisové poli je komplikovanéjsi
a vyzaduje vyuziti velkého mnozstvi logickych zdroji. Vzhledem k tomu, Ze se v
systému RS-FEC nésobicky vyskytuji ve velkém mnozstvi, jedna se o komponentu
velmi naro¢nou na vyuziti zdroju v FPGA, zejména Look-up tabulek. Déleni bylo
provedeno tak, Ze po nalezeni inverzniho prvku délitele (jmenovatel) se tento prvek
vynasobil s délencem (¢itatel). V komponentach, kde se provadi déleni nad GF'(2™),
se proto musely nejdrive najit tyto inverzni prvky, seradit vzestupné dle jejich zak-
ladni hodnoty a pro dosazeni vysoké datové propustnosti implementovat do Look-up
tabulek charakteru ROM. Toto provadi navrzeny VHDL podprogram, ktery dokaze
vytvorit GF inverze pro kterdkoliv pozadovand G F'(2™) bez nutnosti spoustét ex-
terni skripty. Tyto vektory vsSak zabiraji velké mnozstvi logickych zdroji a bylo
potfeba jich v systému generovat co nejméné. I kdyz je systém syntetizovatelny,
vysledny navrh vyzaduje pro findlni implementaci z dtivodu ptiliSného vyuziti dos-
tupnych zdroju v FPGA odpovidajici optimalizace. To se také projevuje dlouhou
dobou faze hledani vhodného propojeni logickych bunék (Route). V navrhu bylo
tedy nutné vhodné urcit, kdy pouzit konstanty a kdy nasobicky. Pro samoopravny
algoritmus bylo také potfeba najit ¢tverce a vyssi rady Galoisova télesa. Vhodnym
feSenim bylo pouziti operace nasobeni nezli generovani konstanty navzdory tomu,
ze prvotni navrh pocital s pravym opakem, a to z divodu vyuziti co nejmensiho
mnozstvi nasobicek v GF pro zkraceni kritické cesty ze vstupu na vystup kompo-
nent.

Vrstva RS-FEC je soucéasti podvrstvy PCS (Physical Coding Sublayer) fyz-
ické vrstvy Ethernetu PHY. Komponenta systému RS-FEC, kterd prijima data z
PCS vrstvy na vysilaci strané, se nazyva RS-FEC Enkodér, ktery provadi tzv.
skramblovani. To je takovy rekurzivni proces, ktery provadi déleni mnohoclenu
mnohoclenem, tedy celé zpravy M(z) tzv. Generaénim polynomem G(z), ktery
definuje norma IEEE Std 802.3bs™ 2017. Jeho tkolem je vytvofit tzv. paritu,
coz je zbytek po tomto rekurzivnim procesu déleni. V praxi se pii implementaci
RS-FEC Enkodéru ukazalo, ze syntézni nastroje nedokazi plné optimalizovat kom-
plexni zapojeni této funkce pro potrebnou datovou propustnost, coz je z velké ¢asti
dano navrhem néasobicek. Zjistilo se, ze dva rizné parametrizovatelné néavrhy na-
sobicek v RS-FEC Enkodéru vyustily ve dva rtzné, avsak zanedbatelné rozdilné,
vysledky ve smyslu vyuziti zdroji, a proto je potieba hledét na procesy skramblovani
a deskramblovani jinak, nez udava obecné schéma pro provadéni této operace.

Vysilaci strana dale také provadi distribuci jednotlivych symboli zpravy mezi
jednotlivé linky PCS. Vzhledem ke standardu IEEE Std 802.3 bs™ 2017 distribuci
provadi MUX mezi 16 PCS linek, pricemz navrzeny systém nabizi funkci volby poctu

linek pomoci generickych patametri, a tudiz 1ze navrzeny systém pouzit i pro 200GE



¢i budouci rychlosti Ethernetu, pro které v soucasnosti jesté neexistuje normovana
verze.

Druhou casti systému RS-FEC je ¢ast prijimaci, ktera dekéduje dvé kodova
slova. Pro provedeni opravy zpravy musi prijimaci strana nejprve vratit prolozené
symboly zpravy do stavu pred prolozenim. Poté se provede tzv. deskramblovani,
a to kazdého prijatého kodového slova. To je obdobny proces jako skramblovani,
avsak se v tomto pripadé déleni provadi pouze jednim elementem Galoisova télesa,
resp. kofenem genera¢niho polynomu G(x), poté jeho nédsledujicim elementem, atp.
Déleni se provede tedy celkem 2t-krat, pricemz v FPGA lze toto déleni provadét par-
alelné. Nutno podotknout, Ze opravnou kapacitu Reed-Solomonova samoopravného
algoritmu t urcuje jeho tzv. Hamingova vzdalenost, ktera je dana poctem parit-
nich symbolti, v tomto ptipadé algoritmus opravi az 15 symboli. Deskramblovanim
lze zjistit, zda jsou prijatda kdédova slova délitelna beze zbytku koreny Genera¢niho
polynomu G(x). Tim se ovéri, zda pii prenosu k néjaké chybé doslo, ¢ili zda je na
vstupu dekodéru validni kédové slovo ¢i nikoliv. Pokud je vysledek nulovy, systém
RS-FEC opravu provadét nebude. Pokud ne, deskrambler vytvoril takovy polynom,
ktery je nutno dale desifrovat za tcelem zpétného vytvoreni validniho kédového
slova. Takovy vytvoreny polynom se nazyva syndrom S(x) a pfimo charakterizuje
chybovy vektor E(x). Operace pro vypocet syndromu S(x) lze také chapat jako
provadéni rychlé Fourierovy transformace nad koneénym Galoisovo télesem, CFE'T
(Cyclotomic Fast Fourier Transform).

Diky nalezenym syndromim S(z) lze najit pozice a velikosti chyb na téchto poz-
icich ve trech komponentach. Désifrovani tedy pokracuje hledanim dvou polynom,
a to polynomu pro lokalizaci chyb A(z), tzv. lokdtoru chyb, a vektoru vyhodnocu-
jiciho velikosti chyb €(x). Pro jejich nalezeni byl pouzit rozsiteny Eukliduv algo-
ritmus, ktery obecné provadi hledéni nejvétsiho spoleéného délitele (NSD) dvou
polynomti S(x), 2?¢. V procesu dekddovéani je Euklidiiv algoritmus pouZit pro FeSeni
tzv. klicové rovnice (anglicky Key equation), kterd fesi polynom Q(z). Tuto tzv.
Kli¢ovou rovnici lze upravit do tvaru pro Eukliduv procesor, ¢li S(z) x A(x) +
F(z) x 2% = Q(z). Cilem Euklidova procesoru vSak neni nalezeni NSD, nybr#
primo polynomu Q(x) a A(z), coz je jeho hlavni vyhoda. Eukliduv procesor se ses-
tava z celkem t vrstev, pricemz kazda vrstva se skldda ze strany pro polynomidlni
déleni a nasobeni. Pri vypoctu se v jeho kazdé nasledujici vrstvé snizuje stupen
mezivysledku polynomu (x), zatimco se zvySuje Tad A(z), coz reflektuje pocet
vzniklych chyb. Euklidav algoritmus se ,,zastavi, jakmile splni podminku stupné
mezivysledku Q(x) < t. V tomto bodé lze polynom A(zx) vyfesit v kompoenté Chien
search a signal {)(x) privést na vstup komponenty Forneyho algoritmu.

Komponenta Chien search resi vypocet lokatoru chyb hrubou silou. A to tak,

ze dosazuje jednotlivé primitivni elementy Galoisova télesa reprezentujici jednotlivé



pozice chybového polynomu F(z) a tim hleda, na kterych se bude A(z) rovnat nule.
Vysledny polynom ma tedy stejnou sitku, jako kédové slovo. Komponenta déle
pocita derivaci tohoto polynomu A'(x).

Vstupy pro Forneyho algoritmus jsou tyto dva polynomy z Chien search véetné
polynomu Q(z) z Euklidova procesoru. Ukolem této komponenty je vipocet zlomku,
pricemz v citateli je Q(z) a ve jmenovateli A’'(x), coz vyzaduje pro polynom stupné
n — 1 vyuziti velkého mnozstvi logickych zdroju v FPGA. A déle soucin s nélezitym
inverznim prvkem Galoisova télesa. V prvni implementaci funkéni verze Forneyho
algoritmu se ukézalo, Ze ulozeni riznych stupnt inverznich prvki Galoisova télesa
do ROM vytstilo v dlouhou dobu faze propojovani (anglicky faze Route), a proto
bylo nutné provadét vypocet téchto mocnin piimo v hardwaru.

Jelikoz navrzené komponenty spliuji pozadavky pro c¢asovani, avsak vyuzivaji
velké mnozstvi logiky, prace se bude v budoucnu orientovat smérem ke snizeni
vyuziti logickych zdroji v FPGA, zejména Look-up tabulek plnici funkei paméti
ROM, které jsou kritickym bodem v sou¢asného navrhu. Reseni by mohl pfinést
pristup sdileni jak konstantnich elementt ROM paméti mezi komponentami sys-
tému RS-FEC, tak registrii, zejména v Euklidové procesoru. Vhodnym fesenim pro
minimalizaci vyuziti zdroji ve Forneyho algoritmu muze také prinést pristup selekce
jednotlivych t chybovych pozic v komponenté Chien search, ¢imz se Forneyho vzorec
pouzije misto n-krat pouze t-krat. Toto vSak bude vyzadovat vytvoreni odpovidajici

logiky a zpozdéni vypoctu o jeden hodinovy takt.
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Introduction

In recent decades, since the communication technologies have become widespread,
all the industry sectors and businesses require increasing amount of data to remain
agile and innovative. Technologies ensuring real-time data processing and fast data
transferring became an essential part of the world today. On the other hand, while
talking about large data transferring, such changing dynamics of public demands re-
quires also high stability of data transfer. Therefore, one of the the main purposes of
Reed Solomon Forward Error Correction (RS-FEC) algorithm is to ensure error-free
digital data transfer. Thanks to the RS-FEC layer, balance between high perfor-
mance, efficiency and reliability of digital data transfer can be achieved to reduce
noise effects not only in high-speed Ethernet platforms [18, 19]. In particular, this
system will be employed within a new NDK platform (Netcope Development Kit)
which is currently in development at the academic organisation Cesnet, z. s. p. o.
Error correction methods are used on daily basis by all of us. For instance, by
putting emphasis on whether an information sent has been successfully received and
processed, simply by repeating the message over and over again. This repetition is
a form of the error correction encoding. The principle is similar in RS-FEC, based
on attaching redundant parity-check symbols to the message sent to the encoder
part of the error correction system. Therefore, the system uses this redundancy for
erroneous data correction at the error correction decoder. The purpose of adding
the decoder part (the error correction capability) is also to avoid decoding some
other message [19]. The principle of error correction coding within the RS-FEC
layer is based on attaching parity-check symbols as a redundant part to the message
received instead of repeating the whole message again. Subsequently, the decoder,
the unit ensuring the confidence level of the system, correctly extracts the original
source signal out of the corrupted data on the input of the decoder [19].
Employing RS-FEC layer seemed to be an effective solution for reaching 100 Gbps
rates, however, its full error correction capability has still not been fully exploited
yet, even for the new 400GE. In terms of the RS-FEC system, the main difference
between these two standards is that the new 200/400 Gbps rates operate with two
codewords in parallel compared to only single one for 100 Gbps rates. Therefore,
the most challenging aspect for successful implementation of this system is to bal-
ance and minimize logic resources utilization. The main reason for RS-FEC system
implementation into an FPGA as firmware is clearly the capability of conducting
hardware operations in an FPGA concurrently enabling high-speed computations,
possibly at 400 Gbps rate which is the main topic of this paper [19, 11]. In addition,
VLSI design enables its development in a generic form for faster development of

future platforms and creating different variants of the system.
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1 Theoretical Part

In the theoretical part of this work, FPGA technology is briefly described, PLD
(Programmable Logic Devices) manufacturing and RS error correction codes is char-
acterized. Also, one chapter dealing with Galois field algebra is included and RS

error correction flow from the mathematical point of view is described.

1.1 Brief History of Ethernet

Since its introduction in the early 1980s, Ethernet has become a dominant and
popular protocol for Local-Area-Networks (LANSs), used mostly in offices. Over the
following years, demands for higher data-rates of Ethernet began to rise enormously.
The first experimental 2,94 Mbps shared bus-based system was able to transmit
with only one station at a time. So called Medium Access Control (MAC) protocol
detecting collisions controls the use of the shared bus. Each station is free to transmit
MAC frames but if a collision occurs during transmission, it stops for certain amount
of time and tries again if the channel is free for transmitting. The first commercially
available standards were bus-based systems capable of 10 Mbps operation. There
were no changes to the MAC protocol or MAC frame format. But, the innovation
was that Ethernet was configured in a star topology which enabled traffic to go
through a central hub, however, again with transmission limited through the hub.
The need for faster data-rates resulted in the central hub replacement by a switch
allowing full-duplex operation. Thanks to this, with the switch and MAC format
protocol unchanged, collision detection is no longer needed. Further enhancements
to the MAC layer were added through time to improve data rate requirements, such
as provision for larger frame size. Ethernet quickly achieved widespread attention
and acceptance and became a dominant technology. Not only for LANs, but also
Metropolitan-Area Networks(MANs) and spread also to a wide range of applications
and environments due to its extraordinary adaptability[20].

The same MAC protocol and frame format are used at all data rates. The main
differences among various standardizations for different data transfer speeds are at
physical layer in the definition of signal transmission medium of Ethernet [20].

Historical perspective of the first Ethernet platforms did help in the initiation
higher speeds of Ethernet development beyond 100GE. The bandwidth explosion was
(and still is) driven by increasing number of users, increased access methodologies,
access rates and increased number of services (such as social media, video on demand,
etc.). From 2000 to 2019 around 3.1 billion individual users were connected to the
Internet. [1].
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Nowadays, the most data-intensive sectors with the most significant growth rates
of data traffic are financial, data-intensive science and peering. Slower growth rates
have been estimated for cable users and end-stations, such as IP traffic and servers
I/0. [21].

1.2 OSI Reference Model

The very first primary definition of modern networking was approved by the In-
ternational Organisation for Standardisation in 1984. The OSI (Open Systems
Interconnection) Reference model can be perceived as a core of serial networking
technologies, including industrial Ethernet. It is a layered description of data trans-
fer among devices within a network [22].

Physical addressing

Fig. 1.1: Seven layers of OSI Reference model (taken from [5])
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The uppermost layer, number 7, is called Application Layer and is the closest to
end users. It directly interacts with users’ software applications to provide desired
communication functions [22].

Layer 6 is called Presentation Layer which provides end user data translation to
network format so that lower layers can accept the data [22].

Session Layer is the fifth layer which manages connections between respective
remote and local computers and also terminates connections between them. It also
conducts data verification procedures if data have been delivered correctly or not
22].

Layer 4 is called Transport Layer ensuring complete delivery of data usually by
using error correction functions or by other means. Sequences of data from are being
transferred from a source to a destination host via network [22].

Layer 3, Network Layer, creates logical paths using switching functions for data
transmission from node to node so that network can be formed from the node of the
transmitter side to the address node of the desired destination. [22].

Layer 2, so called Data Link Layer (DLL) allows direct node-to-node data trans-
fer. On this level, data are packed into frames based on Point-to-Point Protocol and
encoded into single bits and further unpacked. The layer is divided into two sublay-
ers: MediaAccessControl (MAC) controls which device in a network will be permit-
ted to transmit data to a media. The second sublayer is Logical LinkControl (LLC)
conducting frame synchronization, network layer protocols identification. LLC is
also used to control data flow and checks for errors [22].

The very bottom layer is Physical (PHY) which is responsible for conveying
unstructured raw data bitstream at the electrical level and defines the physical
specifications of the data connection, such as optical fibre specifications, operation
voltages of an electrical fibre, layout pins of the connector etc. PHY and MAC layers
are interconnected via MII interface [22].

Conventional Ethernet PHY consists of three additional sublayers: Physical Cod-
ing Sublayer (PCS), Physical Medium Attachment (PMA) and Physical Media De-
pendent (PMD) sublayer. PCS is responsible for interfacing to the higher layer
MAC through MMI (Media-Independent Interface) interface. PMD sublayer speci-
fies optoelectronic components and, if required, implements digital signal processing
on the transmittted and/or received signal. PMA sublayer conducts multiplexing of

n physical lanes to  PCS lanes and backwards [17, 23].
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1.3 Forward Error Correction and Current State of

Ethernet Speeds

The very first implementations of RS (Reed-Solomon) error correction algorithms
were first available since the Voyager deep space communication system in the 1977.
[19, 11]. Nowadays, RS codes can be found in various applications, such as radio and
television transmissions, disk storage, high-speed computer memory I/O and data
communication technologies. For instance, high-speed Ethernet. FEC was first
introduced for backplane and then, to deliver more economical optical transceivers
and cable technologies, for a few front-panel use, such as copper cabling for 100GE,
50GE and 25GE for the purpose of error-free data transmissions, however, for the
penalty of carrying additional bits for the FEC mechanism to encode, transmit,

decode and correct the data packet re-transmissions [14].

ETHERNET SPEEDS
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Fig. 1.2: Graph of current state and future projections of Ethernet speeds (taken
from [6])

In recent years, Ethernet protocol is undergoing significant development. It is
capable of achieving 100GE, 200GE and 400GE speeds. Trends of current speeds of
Ethernet are shown in figures 1.2 and 1.3 [14, 6].
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Fig. 1.3: Current state and future projections of standards completion for various
forms of Ethernet (taken from [6])

The FEC system is required for such high throughput because optical transceivers,
electrical interfaces and cables are noisy signalling environments. So the bit error
rate (BER) which these electronics generate itself require an algorithm-based error-
correction method. RS-FEC uses an approach of finite-sized block of bits known as
a block code. In Ethernet it is called a message. RS-FEC is a cyclic type of FEC
despite it works as a linear code, meaning with fixed block of bits where a FEC
symbol is 10 bits in size. It is known also as RS 544 FEC. In the following table 1.1,
details of RS-FEC for Ethernet implementations are summarized [14]:

Tab. 1.1: RS-FEC (544, 514) for 200GE/400GE Specifications (taken from [14])

Symbols Explanation

514 Total number of symbols in a codeword
514 - 10 = 5,440 Bits in the codeword or block
544 - 514 = 30 Number of check symbols per codeword or block

514 - 10 = 5.140 Number of bits referring to the size of the information bits
per block

(544—514) Maximum number of symbols which can be corrected in

2 a codeword or in a block
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1.4 Programmable Logic Devices Fabrication

FPGA chips belong to the family of active semiconductor devices. Such devices
require extremely pure silicon and germanium in lesser extent. Intrinsic silicon
is much more difficult to prepare than intrinsic germanium. The pure form of
silicon needs about 1.5 - 10'° of intrinsic carriers per cm® and 2.4 - 10'3 per cm? for
germanium. Silicon is obtained from silicon dioxide or silicon tetrachloride by normal
metallurgical processes and needs to be further purified until the number of foreign
atoms is less than 1 in 1-10'° per em? to create silicon pure enough for semiconductor
devices. The most frequent method is the Czochralski crystal pulling, shown in figure

1.4 [7]. This method is based on seed crystal insertion into a bath of molten silicon.

0l
| [ | A

c) d e
I vy !
— Melt
- r T
I Crucible
f) 9) h) d) )

Fig. 1.4: Process of Czochralski crystal pulling: (a) melted polycrystalline silicon
(b) in a crucible. (¢, d) Seeding procedure: The seed crystal dipped into the melt,
followed by Dash necking (e), shouldering (f), cylindrical growth (g), growth of end
cone (h), lift off (i), cooling and removing the crystal (j) (taken from [7])

A single silicon crystal of 10 to 15 cm with required impurities can be obtained
by being withdrawn from the molten bath. In the next step the cooled crystal
is being divided into 1 mm thick slices along the crystallographic direction of the
crystal in order to avoid internal structure disruption of the crystal. Resulting slice
is approximately 0,2 mm thick after the etching and polishing procedures removing
surface damage after the step of slicing. This is the key step for further epitaxial
layer growth with the same orientation on to the underlying sliced silicon surface
[24].
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In the next step, ion implantation to the pure silicon crystal lattice with impuri-
ties is performed. In this step, the energy of accelerated ion implants up to 300 keV,
determining the depth of implanting, are bombarded into the silicon substrate [24].

Next and the most important stage of the integrated circuit fabrication process
is epitaxial deposition. It involves an epitaxial layer growth on the slice of the
silicon dioxide. The layer is grown in the atmosphere of silicon tetrachloride and
hydrogen respectively with strictly controlled conditions. A perfect crystal is the
key requirement for correct outputs of subsequent stages [24].

The first stage after the epitaxial deposition is oxidization which is used two or
three times in order to create a mask for the impurity atoms diffusion after selective
etching. One method of oxidization used for oxide layer creation of high quality
physical properties is based on passing oxygen over the surface of silicon slice at
a temperature of 1200 °C, as illustrated in 1.5. As the result, passivizing layer with
uniform thickness of 5 - 1077 m is created. Oxide layers have been used also as
elements in active and passive devices and silicon functional blocks. Oxide layer
becomes important especially during planar and epitaxial planar transistors man-
ufacturing. The reason is very low leakage currents currents due to the junctions
formed under A layer of silicon oxide. In this way, 10 silicon slices with 200 mono-

lithic circuits in each would be produced [24]. Next step is photo-engraving process

(3" Pressure gauge

I Furnace
-
Load door =9 To treatment and
<+ .—E— disposal of exhaust
I — \ pgases

f Substrate Deposited layer

Gas inlet introduced from a
gas melering system

® Uniform coating layer
¢ Thickness: 2-100 pm

Fig. 1.5: Illustration of the process of Chemical Vapour Deposition (CVD) (taken
from [8])

which involves two operations: photographic mask preparation and the etching of the
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silicon dioxide. The purpose of this step is to cut off windows allowing the diffusion
of subsequent stages to take place. Next step is the photographic mask production.
Each one comprises of large number of identical elements, each of which is the origi-
nal mask layout. Due to the photographic equipment limitations, sequence of stages
for reduction are required. A typical sequence involves artwork originals prepara-
tion, photographic reduction, step-by-step contact printing and rephotographing.
Subsequently, when the photographic mask has been prepared, with photo etching
the processing of the slice may be started, illustrated in figure 1.6. The former part,
the centrifugal force spreads the liquid photoresist dropped on a rotating surface of
the slice at 800 rpm and subsequently is let to dry in an oven. In the latter part,
as the photoresist is placed in the exact position required and subsequently exposed
to UV (Ultraviolet) light. The UV light causes the photoresist to polymerize with
the opaque layer. The rest of the photoresist unexposed to the UV light is then
removed. The polymerized photoresist forms a layer resistant to hydrofluoric acid
used to etch the silicon base away [24]. The further step of of integrated circuit

.
.

.
9/ (a) Spin the photoresist

- (b) Expose the photoresist
Positive resisy Vegative resist

AN SN

- - (c) Develop the photoresist

Fig. 1.6: Process of transferring a pattern onto a substrate. (a) Coating the sub-
strate with a photosensitive material; (b) alignment of the mask and exposure to
the UV light source; (c) spraying the photoresist to remove the extra photoresist
defined by the mask patterns (taken from [9]).

fabrication is diffusion which consists of combination of epitaxial deposition and
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diffusion. The diffusion process takes place within the holes etched in the silicon
dioxide. During the process of diffusion the time and concentration of the impurities
must be accurately controlled in order to obtain specific diffusion depths according
to the required transistor design. The choice of an element of diffusant must meet
the requirement for easy diffusion into the intrinsic silicon but not into the silicon
dioxide. For instance, boron and phosphorus are the usual diffusants. The next
step, the process of evaporation is to be conducted which is important for ohmic
contact production and interconnections realization. This process takes place in
vacuum with golden, nickel or also aluminium rods being evaporated. As the result,
a thin layer over the entire surface is produced. The main issue of the process is
to avoid changing the desired nature of the semiconductors when alumina is added.
Therefore, with masking and etching only the desired alumina configuration remains
to form the contacts and interconnections [24].

As a slice of semiconductor has been developed, the very last step is cutting into
individual circuits and packaging. Cutting can be performed by using a diamond-
tipped tool by drawing it across the edge of the surface of the slice. Subsequently,
by breaking each part separate chips are produced. Individual chips are ready for

mounting and encapsulation [24].

1.5 Field Programmable Gate Arrays

Typical hierarchical structure of modern FPGA chips consists of programmable
logic blocks further containing pool of combinatorial logic blocks and flip-flops to be
used in an intended design. These logic elements are often combined with memory,
typically with various amount of SRAM (Static Random Access Memory) inside
an FPGA chip. This typical architecture is shown in the figure 1.7 which contains
so called CLB (Configurable Logic Block) units interconnected within a matrix-like
grid and surrounded by programmable interconnect. Each CLB typically consists
of a set of so called BLE (Basic Logic Element) units. Inside a single BLE there
is an element allowing logical function implementation called LUT (Look-up table)
[11, 10, 25].

More detailed view on a typical high-level hierarchical structure of an FPGA
is shown in figure 1.8. CLBs form a large array including BRAMs (Block RAMs)
and DSP (Digital Signal Processing) blocks, similar to arithmetic logic units (ALU)
of a processor which can be programmed accordingly to perform arithmetic logic
operations, such as add, multiply, subtract, compare, etc. Depending on the type of
operators required, both CLBs and DSPs can perform integer, floating point or/and

bitwise operations. Results of these operations are stored in registers present in
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Fig. 1.7: Structure of the typical SRAM-based FPGA (taken from [10]).

CLBs, DSPs or/and BRAMs. These blocks can be connected via flexible config-
urable interconnects which are based on user design. The output of one operator

can directly flow into the input of the next operator [16].

Configurable
Interconnects 8 8 8 8 DCM
| | | | | | |
[ [ [
10B e —_ - - e 10B
CLB CLB Block DSP CLB
10B —t —t- RAM -1— S 10B
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m m m m m m
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Fig. 1.8: High-level structure of the typical SRAM-based FPGA (taken from [10]).

The architecture then enables to create a massive array of application-specific
ALUs which allow both instruction and data-level parallelism. Compared to pro-
cessor units, there are no inefficiencies, such as processor cache, but data within

an FPGA can be directly streamed between operators. These operators can be
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configured to have point-to-point dedicated interconnects, thereby setting them to
pipelined configuration. For instance, throughput on integer operations are in order
of Tera-operations per second, on floating point operations in order of gigafiops per
second [16].

Another great advantage of FPGAs is that they can be easily interfaced to other
chips or external signals by so called input/output blocks (IOBs) (see figure 1.8)
behind the chip pads. So that each pad can serve as an input or an output or
both. In particular, IOBs are designed to support various memory and processor-
interface standards, such as support of multiple DDR3 (Double Data Rate Type 3),
DDR4 (Double Data Rate Type 4) and more memory controllers, various generations
of PCI Express® (Peripheral Component Interface), Intel’s Front Side Bus (FSB),
Quick Path Interconnect (QPI) protocols. Support for these processor interfaces
and protocols enables computing applications running on FPGAs to interact with
processor and accelerate the desired applications [16].

FPGA vendors also include hardwired IP (Intellectual Property) nonprogrammable
cores inside the chips supporting commons recurrent functions in many designs[11].
These include general-purpose processors, high-speed serial interfaces, arithmetic
blocks and Ethernet MAC (Medium Access Control) [11].

1.56.1 Pipelining

Clock conditioning has become also a common feature in FPGAs. Digital circuits can
be also supplied by a clock signal which is, ideally, a simple square wave oscillating
at a certain fixed frequency. The most basic concept of a sequential system in an
FPGA chip contains number of combinatorial logic blocks in between arrays of clock-
sensitive components called flip-flops where current state of outputs of combinatorial
blocks depends on current state of inputs to these combinatorial blocks. These are
generally made of all logic functions with any level of intended complexity realized by
logic gates including interconnection among them. This involves also multiplexors,
encoders and decoders [11].

For instance, a D-type flip-flop (DFF). Every time there is a rising edge of the
clock signal, it allows desired signals to propagate from its input D to its output
Q. In this particular moment the input D is connected to the output Q in a single
DFF. However, apart from this specific time D is disconnected from Q [11].

An important requirement for the resultant sequential system is that signals
between the output Q of the first flip-flop and the input D of the next one must
remain stable by the time the next clock cycle rising edge. It is therefore required
to ensure the worst case propagation delay between these delay elements of the

design. This also applies for all subsequent DFFs. Nowadays, this timing check is
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automated so that the designer needs to be concerned with the specification of the

logic behaviour of the circuit [11].

~ O e, W~ | 1 CIRCUIT
o | ouThgT BOUNDARY
: FF#1 FF#2 :

> > /

Fig. 1.9: Basic concept of a sequential circuit (taken from [11])

This technique is generally known as pipelining. Data throughput is one of the
most important parameters not only in this work. The purpose of pipelining is to
satisfy throughput requirements also with minimum resource penalty. Algorithms
which can be performed in parallel with sequential delay elements (such as DFFs)
result in higher throughput, such as in digital processing (DSP) applications, multi-
core CPU (Central Processing Unit) parallel platforms, many-core GPU (Graphics
Processing Unit) and FPGAs compared to traditional single-core systems. Among
all these parallel platforms, FPGA-based systems allow the highest flexibility for
programming parallel cores. This can be achieved thanks to the high-level synthesis
which significantly increases productivity, reduces time-to-market window and helps
to implement efficient parallel hardware of complex register transfer level (RTL) de-
signs. The objective of the synthesis is to find a suitable performance solution for a
design with given available resources [26].

Pipeline optimization strategy is based on partitioning this large scale designs
into smaller data processing elements connected in series while each element (combi-
natorial block) executes its operation in parallel in a time-sliced mode. This requires
some buffer storage (pipeline registers). The registered output of one element be-
comes the input of the next one. The time between each clock signal is set to be
greater than the longest delay between pipeline stages, so that when the registers
are clocked data written to the following registers are results of the previous stage of
the pipeline. Pipelined systems also requires more resources then the combinatorial
logic elements because each pipeline stage cannot reuse resources of other stages
26].

The key pipeline parameters are number of pipeline stages, latency, clock cy-
cle time, delay, throughput and turnaround time. A pipeline synthesis can be
constrained by resources or time, or combination of both. A resource-constraint

synthesis pipeline limits the area on chip or available number of functional units
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on target device. A time-constraint pipeline synthesis puts more effort to required
throughput and turnaround time. Finding a solution which consumes minimum re-
sources is the task for the so called scheduler [26]. Reasons why FPGAs are chosen
as promising platforms for high-performance data-intensive applications are summa-
rized in table 1.2 including their drawbacks [15, 16]. Compared to GPUs and other
multicores which consume power in hundreds of watts, FPGAs power consumption

lies in the range of tens of watts [27] [16].

Tab. 1.2: Positives and downsides of FPGAs (taken from [15])

Advantages

Disadvantages

Massive parallelism of compute opera-
tions which can be put to more optimal

configurations

Processing data with constrained cost

and resources.

Flexibility in terms of involvement of
different kinds of components (hard
cores, IP, memory, LUT structure of
the programmable fabric).  Second,
ability to field reprogram parts or the

entire FPGA chip.

Not clear what should stay as soft-
ware part and what hardware part of
a desired complex system. Interfacing
between these two approaches requires

additional development.

Flexibility in terms of an ability to field
reprogram parts or the entire FPGA
chip.

Low efficiency of data movement

around the chip.

Small amount of distributed mem-
ory incorporated into the fabric which
brings the memory closer to the pro-

cessing

IP library is required for FPGA-based

systems development.

Low power solution enabling more pro-
cessing than GPUs for quarter of power

required

Design entry methodology is lacking
more restricted approach to harness the

flexibility of the hardware.

Scalability in terms of creating a chain
of FPGA chips together while the algo-

rithm is larger than the single one.

Strict rules of what is synthetizable and

what is not.

Nowadays, custom chips deliver more
data throughput per dollar.

Innovation is required in the area
of high-performance interfacing to get

large amount of data onto the chip.
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The major reason for lower power consumption in FPGAs is that these devices
operate in range of 100-300 MHz compared to processors executing operations usu-
ally between 2-3 GHz. Recently, in terms of high-end FPGA devices such as Intel®

Stratix® DX, programmable clock-tree performance reaches around 1GHz [27] [16].

1.56.2 Typical Applications

In the mid-2000s the high performance computing industry (HPC) demand caused
course of General-purpose CPU vendors to shift from single-core CPU-based sys-
tems orientation to multicore architectures to meet high-performance demands of
the industry. The reason for this is that if frequency of single-core processors in-
creases, power dissipation rises to impractical levels. The result of this is that it
enables to exploit CPU performance by adopting parallel designs enabling previously
unattainable performance levels [16].

There is a broad spectrum of applications where FPGAs embedded inside equip-
ment or forming a massive compute server farms play major role. In table 1.3 appli-
cations for High Performance Servers are shown. These applications are in constant
need of compute power. The greater the computation power, the more complex

algorithms can be implemented to produce more accurate results [16]. In table 1.4

Tab. 1.3: Applications of FPGAs for High Performance Servers (taken from [16])

Industry Sample Applications

Climate modelling, nuclear waste simulation, war-
Government labs fare modelling, disease modelling and research, air-

craft and spacecraft modelling

Video, audio, data mining, analysis for threat
Defense monitoring, pattern matching, image analysis for

target recognition

Financial services Options valuation, risk analysis of assets

) ) ) Seismic modelling and analysis, reservoir simula-
Geo-sciences and engineering u
ion

) ) Gene encoding and matching, drug modelling and
Life sciences

discovery

sample applications for High-Performance Embedded Computers are shown. All
industries mentioned require certain specific equipment for compute-intensive and
data-intensive tasks. In the past, these systems were based on custom integrated

circuits designed for high memory rates and to handle data-intensive processing [16].
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Tab. 1.4: Applications of FPGAs for High Performance Embedded Computers
(taken from [16])

Industry Sample Applications

Defense Beam forming in radar

Airborne Electronics Image compression and analysis in payload

Communications Encryption in network routers

Medical Imaging Image rendering

. . . Low latency and high throughput data processing in trad-
Financial Services )
ing solutions

1.6 Intel® Stratix® 10

Since the task of this work is to implement the system RS-FEC into FPGA Intel®
Stratix® 10 DX 2100, this chapter therefore deals with the technology present in
Intel® Stratix® 10 family.

SoC (System on Chip) devices of this family dispose of the Intel HyperFlex
FPGA Architecture combined with 14 nm Tri-Gate (3D) process technology (see
the structure in the figure 1.10) which replaced the conventional 2D planar MOS-
FET transistors so that geometries have been reduced below 20 nm. It contains so
called Hyper-Registers present all over the functional blocks within the chip. The
advantage of this technology is that all the conventional blocks such as Adaptable
Logic Modules ALMs, embedded memory (M20K) and digital signal processing al-
low to select the optimal register location automatically after place-and-route to
maximize core performance without additional changes or added complexity after
the place-and-route step of the design process. The next advantage is that such

registers reduce routing congestion [25]. Another useful feature of the chip is the

(a) 3D Structure (b) Cross-sectional View

Fig. 1.10: Structure of Tri-gate 3D Fin-Fet by Intel® (taken from [[12]])

programmable clock tree synthesis. It reduces timing and skew uncertainty to reach

the maximum core clock performance. This feature enables its entire architecture to
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double its performance compared to its predecessors Stratix V FPGAs. Core clock-
ing also uses intelligent branch which allows to reduce dynamic power dissipation in
the clock networks [25].

The Hyper-Aware design flow includes a Fast Forward Compile tool which en-
ables performance exploration and guides the designer to the maximum performance
of his solution. A Hyper-Retimer step near the end of the design offers further op-
timization after place-and-route step. An enhanced synthesis and place-and-route
algorithms which use the Hyper-Registers. In the end, it uses 70 % less power
than Stratix V FPGAs predcessors. There is an embedded quad-core 64-bit ARM
Cortex-A53 processor system included and also components DRAM (Dynamic Ran-
dom Access Memory), SRAM (Static Random Access Memory) and ASICs in a
single package [25].

1.7 Reed-Solomon Error Correction Codes

Reed-Solomon codes belong to the category of block codes. This means that a
message to be transmitted to the divider of n symbols is divided into separate block
of data called codeword. The former part of a single codeword is an original message
consisting of k information symbols in a message to be transmitted.

In the latter part a parity protection of (n — k) = 2t symbols is added to the
original message. The error-correction capability of RS codes is determined by its
Hamming distance which is determined by number of parities. For RS codes, its

Hamming distance is 2t + 1 and the overall error-correcting capability is [13]:

Hamming distance
2

(1.1)

error—correcting capability =

The variable t specifies the number of symbols the algorithm is able to correct in
a block of n symbols of the codeword. This is illustrated in the figure 1.11 [3].
So that each block of information symbols has its own parity protection added as a
separate part of the codeword.

In addition, RS code is also a linear code. This means that sum of any two code-
words is still a valid codeword [13]. It is also a cyclic code meaning that cyclically
shifting the symbols of a codeword produces another one. RS code can be therefore
described as an (n, k) code. Different parameters for a code provides different levels
of protection and complexity of the implementation changes respectively [3].

There is a significant advantage of RS code. It enables having all bits of a symbol
of m in error and it counts as only one symbol error in terms of the correction

capacity of the code [3].
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Fig. 1.11: RS code definitions (taken from [3])

1.7.1 Galois Field

Galois field belongs to the family of finite fields and named after the French math-
ematician Evariste Galois. A Galois field consists of a set of elements based on
a primitive element a which takes values o, a®, o', a?,..., o™~ to form a set of 2™
elements where N = 2™ — 1. Galois fields are then marked as GF(2™). Each field

element can be also represented by polynomial expression [3]:
m—1 0
A1 X + ... Fax”, (1.2)

where coefficients a,,_1 to oy take values of 0 or 1. Therefore, it is possible to
describe a single field element by the binary number «,,_1,...,aq,ay. There is in

total 2™ combinations of the m— bit number [3].

1.7.2 Galois Field Mathematics

Arithmetic operations with finite field elements differ from conventional mathematics
with normal integers, especially while multiplying in a Galois field. Galois field
arithmetical operations are addition, subtraction, multiplication and division. The
difference is that any arithmetical operation of two field elements always produces
another field element [3].

Addition and Subtraction

While adding two Galois field elements, two polynomials are added in this form [3]:
(1™ @ 2®) + (bpor™ L 012°) = 2™ e (1.3)

This operation a; + b; = ¢; applies for degrees 0 < i < m — 1. The coeflicients

can only take the values 0 and 1. If a; = b;, then ¢; produces 0. Respectively, if
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a; # b;, then ¢; produces 1. This signifies that addition of two Galois field elements is
accomplished by modulo-two addition of their respective coefficients. In binary form,
addition is realized by the exclusive-OR function of two binary numbers. Therefore,
addition of two identical Galois field elements produces zero. It also implies that
any result of subtraction of two Galois field elements from each other is exactly the
same as addition. In the end, minus sign can be replaced with plus sign. In other
words, if a positive element in an equation is needed to be expressed on the other

side of the equation, the sign stands the same [3].

Multiplication and Division

There is a significant difference between multiplication with standard integers and
multiplication in a Galois field. The main difference is that if polynomials of degree
m — 1 are multiplied, the result is a product polynomial of degree 2m — 2 which is
not a valid element of GF(2™). With the same approach as with subtraction, for
a result of multiplication product modulo is required. In Galois field, the valid field
element is obtained by dividing the product product polynomial by a field generator
polynomial p(x) in order to “return” the value of the straightforward multiplication
of the polynomial back to a valid Galois field element [3].

Division of two field elements of the Galois field is accomplished by multiplying
the inverse of the divisor. The inverse element is defined as when the element value

is multiplied by the inverse field element, value of 1 is produced [3].

The Field Generator Polynomial

The field generator polynomial or primitive polynomial p(z) of degree m defines
a specific finite field bound to it. When a different generator polynomial or prim-
itive polynomial is selected, it produces different results. Therefore, one generator
polynomial or primitive polynomial must be selected for a single Galois field. The
next requirement for a generator polynomial or a primitive polynomial is that it
must be irreducible (with no factors of the GF) [3].

Based on the primitive element « as a root of the field generator polynomial the
all non-zero values of Galois field can be generated. So that to obtain the complete
field, it means that [3]:

pla) =0 (L4)

To determine the repeating sequence of the field elements, it is needed to express
the highest degree of the primitive polynomial. First, since a GF element is written
in the index form, for instance oY, it is possible to get next value o! by multiplying
its entire polynomial o in its polynomial form by «. Then, the next Galois field

value is obtained. It is also important to mention that if the highest degree of the
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generator polynomial p(z) has been reached this way, it is needed for any member
of the polynomial form to substitute this member by the expression of the highest
degree of the generator polynomial. In this manner, all 2™ Galois field elements can
be obtained by starting with an element with index 0 up to the element (2™ —2). It
is also important to highlight that the decimal form of an element is a representation
of the respective polynomial form, meaning binary form. For instance, polynomial
a? + 1 is equal to the representation of bits 2% and 2° in log. 1 giving 0101 in the
4-bit binary form. Next important characteristics of the Galois field is that if the
maximum is exceeded, it can be found that the index form, for instance for the first
element beyond the last one which is a®" 1), is equal to element a, the next one

equals to a! and so on and all these values remain valid within the desired Galois
field [3].

1.7.3 The Code Generator Polynomial

While constructing an RS code, the values of the message parity symbols must be
elements of a Galois field. An (n, k) RS code is constructed by the code generator
polynomial G(z) involving (n — k = 2t) factors, the roots of consecutive elements of
the Galois field. For a code based on m-bit symbols, the Galois field consists of 2™
elements [3]:

g(z) = (z+a®)(z + o) ... (z + a2, (1.5)

where b specifies at which degree the Galois field roots begin.

1.8 Reed-Solomon Encoder

The output of the encoding process comprises of two data blocks. The first block
is formed by k information symbols and is represented by the message polynomial
M (z) of order k — 1. This polynomial of information symbols to be encoded can be

written as follows [3]:
M(z) = My_ 2" + ...+ Mz + M,, (1.6)

where k is the number of symbols in a message to be transmitted, M _; is the first
symbol of the message and each one M;_q, ..., My, My is an m-bit message symbol,
an element of GF(2™) [3].

The key purpose of the RS encoder is to add the parity polynomial to the message
polynomial M(z) in order to form a valid codeword T'(z) to be transmitted. To
encode the message polynomial M(z), it has to be first multiplied by z"*. In
this step, its resultant degree is extended by (n — k) symbols and M (x) is shifted
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to the part of the higher bit significance which ensures that there will be enough
number of free bits for the parity polynomial symbols in the less significant part of
the resulting polynomial 7'(z). In the subsequent part, the result must be divisible
by the generator polynomial G(x). After the division, a quotient Q(z) is produced
including a remainder r(z) of degree up ton —k —1 [3]:

r(z)

= q(x) + 7@ (1.7)

M(z) x xm*k
9(x)

As described in the section 1.7.2 Multiplication and division, any result of a division
operation in a Galois field is the remainder r(z) as a valid element of the Galois field.
An important property of the transmitted codeword is that it is always divisible by
the generator polynomial without remainder which also applies to the individual
roots of the generator polynomial G(z). In the end, the transmitted code word is
formed by combining M (x) and r(z) [3]:

T(x) = M(z) x "% + r(z) (1.8)
which gives the following polynomial in a systematic form [3]:
T(x) = My_12™ 4+ .+ Mox™ F 2™ " g (1.9)

Process of Encoding can be also perceived as conducting so called Galois field
Fourier transform (further studied in [13]). It is a generalized view of discrete Fourier
Transform to finite fields. In this point of view, polynomial V' (z) = Vo + Viz+ ...+
Vpo12™ Y, where o™ = 1, represents the spectrum of the transmitted codeword
T(z) over GF(2™). Polynomials V(x) and T'(z) form a Fourier transform pair.
Fourier Transform and inverse transform in Galois Field are polynomial evaluations
by replacing x with of. From the point of view of frequency domain, process of

encoding is making 2t spectral components as zero V; = 0 for j =0,1,...,2t — 1.

1.9 Reed-Solomon Decoder

In the RS decoder part, the transmitted polynomial T'(z) becomes the first part
of a received polynomial R(x). The last part of the received polynomial R(z) of
n = k+2t members is the error polynomial E(x). Each of the coefficients F,,_; ... Ej

is an m-bit error value and a valid element of GF(2™). Therefore, the R(x) is [3]:
R(z) =T(x) + E(x) (1.10)
where the error polynomial F(z) can be written in a polynomial form as:

E(z)=E, 12" ' +...+ Eyv + Ey (1.11)
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The positions of the errors errors in the entire code word by the degree of x for this

term. If more than t = @ of the E values are non-zero, the correction capacity

of the code is exceeded and the errors are not correctable [3].

1.9.1 The Syndromes

The first step of the decoding process is to divide the received polynomial R(z) by

each of the factors (z + a') (see equation 1.5) which form the generator polynomial

G(x) thanks to the property of the transmitted codeword which is always divis-

ible by the generator polynomial without remainder. It applies, obviously, when

the transmitted codeword T'(x) has been received without any of its bits in error.

Remainders of these divisions are known as syndromes S; [3]:
R(x) S;

which applies for b < i < b+2t—1; where b is chosen to match the set of consecutive
factors in the equation 1.5. In this work, b = 0 is chosen so the remainders can be
written as S;, ..., So;_1. The following rearrangement gives a single syndrome value
S; 3]

S; = Qi(x) x (z + o) + R(x), (1.13)

so that after expressing x = ' the equation is reduced to [3]:

S; = R(a) (1.14)
SZ' = Rn_l(ai)"_l + Rn_g(o/)"_z + ...+ Rlo/ + RO (115)
where R,,_1, ..., Ry are the symbols of the received codeword. Therefore, a remain-

der S; by the substitution = o' in the received polynomial R(z) in each of the
syndrome values can also be formed as an alternative to the division in the equation
1.12 [3).
If the substitution z = a' is applied to the equation 1.10, it can be found that
R(a") =T (o) + E(a") (1.16)
and because of the fact that T'(a') is a factor of g(z), then T'(a?) = 0. This gives
the resulting property of the syndrome values which are not affected by the data
values [3]:
R(a") = E(a') = S, (1.17)

These syndrome values are therefore directly dependent on the error pattern.
It implies that if no errors have occurred, all syndrome values are in zero. It is
important to emphasize that based on the equation 1.14 it is possible to calculate

the syndrome values directly from the received codeword R(z) [3].
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1.9.2 The Set of Syndrome Equations

For the syndrome value determination and its location, reformulation of the error
polynomial is required in a way in which only the error values are included. This
can be achieved in further steps. Therefore, if assumed that v errors have occurred

in a single transmission, then [3]:
E(z) =Yz 4+ Yoz + ... + Y, (1.18)

while v <'t; eq,..., e, are identificators of the specific error locations in a codeword
which, in a form of powers of x, represent the corresponding degrees of R(z) in error.
And, Yi,...,Y, represent error values occurred in these specific error positions of
the received codeword R(z). It is now known that R(a') = F(a') and if 1.18 is

substituted in 1.17, then a single syndrome S; can be written as [3]:
S; = BE(a') = V10" + Y5a' + ... + Y,a' (1.19)

where if o', ... o' is substituted by Xji,..., X, known as error locators, then

the generic equation for 2¢ syndromes in a single transmission is [3]:
Si = Yi(X]) + Ya(X)), ..., Y,(X) (1.20)

The number of syndrome equations is restricted by the correction capacity of the
RS code used. They are generally denoted as Sy, ..., S9_1 in order to correspond

2t—1

to the roots a°, ..., «a of the generator polynomial G(x). The powers of X!

depend on these roots chosen for the generator polynomial so that the powers of
syndrome locators X! in a single equation 1.20 are the same for the respective
syndrome equations while the v index denotes the index where the error occurred

in the received codeword R(x) [3].

1.9.3 The Error Locator Polynomial

The following step of the RS decoding procedure is the process of error locator
polynomial determination. A form of the error locator polynomial denoted as A(x)
has v factors constructed as (1 + X;z). It has its error locators X; as inverses

Xt oo, Xt as its roots of the v values when j = 1 [3]:
Az)=(14+X2)+ (1 + Xox)+ ...+ (1 + X,2) (1.21)
Its expanded version has degree of v, as follows [3]:
Az)=14+Az+.. .+ A 2"+ Ayt (1.22)

Now, the task is to find these coefficients of the error locator polynomial.
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1.9.4 The Euclidean Algorithm

In this step, coefficients of the error location polynomial are obtained. The Euclidean
algorithm is based on finding the the highest common factor of two numbers. It
uses the relationship between the errors and the syndromes expressed in a form of
an equation based on polynomials. It requires two new polynomials: the syndrome
polynomial S(x) and a error magnitude polynomial Q(z). These two polynomials
will be used in a so called Key equation [3]. Origin of this equation is described in
detail in [28]. In this point, it is important to mention that all the requirements for
each of the syndromes still apply (see equation 1.19). Now, the set of syndromes

(the syndrome polynomial) S(x) can be written in a polynomial form as [3]:
S(x) = Spyar12® '+ 4 Sz + S, (1.23)

where the coefficients are 2t syndrome values already calculated from the received

codeword (see equation 1.15) [3]. The error magnitude polynomial is defined as [3]:
Qz) = Quorz" 4L+ Qe + Qo (1.24)

The Key equation can be written as [3]:
Q(z) = [S(x)A(z)mod(z*) (1.25)

where S(z) is the syndrome polynomial and A(x) is the error polynomial. Terms of

degree z* or higher are ignored. Then, the key equation is [3]:

Q=5 (1.26)
Q) = Sy + SpA, (1.27)
Qv—l = Sb+v—1 + Sb+v—2A1 +...+ SbAv—l (128)

In general, the extended Euclidean algorithm finds the highest common factor d

of two elements a and b [3]:
ua +vb=d (1.29)

where u and v are coefficients produced by the algorithm. The product of S(x) of
degree 2t — 1 and A(x) of degree v gives the resultant product of degree 2t + v — 1
(see equation 1.28) [3]:

S(x) x A(z) = F(x) x 2* + Q(x) (1.30)
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where the single terms of 1 x 2% are represented by the terms of F(x) and the

remaining part by Q(x). If rearranged to calculate the Q(z), then [3]:
Qx) = A(z) x S(z) + F(x) x 2* (1.31)

now, the S(z) and z* correspond to the a and b terms of the equation 1.29 [3].
The Euclidean algorithm continues as follows. The purpose of the algorithm is to
find Q(z) with degree less than ¢ (see equation 1.1). First, the algorithm consists of
dividing z* by S(z) and a remainder is produced. In the next step, S(x) becomes
the new dividend while the previous remainder is the new divisor. This process is
continued until the degree of remainder (representing 2(x)) becomes less than ¢t and
the multiplying factor A(z) will be also found [3].

The Euclidean algorithm can be can be also applied to polynomials. Originally,
its task is to find the greatest common divisor (GCD) of two polynomials a(z) and
b(x). Their GCD can be written as [13]:

u(z)a(z) + v(z)b(z) = ged(a(x),b(x)) (1.32)

By setting b(x) as primitive polynomial p(z), the ged(a(x), p(z)) equals 1 since p(z)
is relative prime to b(x). Then, if rewritten in this way, we have [13]:

u(@)a(z) + v(z)p(r) = ged(a(z), p(r)) (1.33)
u(z)a(z) +v(z)p(z) =1 (1.34)
Modulo p(z) is applied at both sides, then [13]:
1 = a(z)u(x)mod(p(x)) (1.35)
a Y (x) = u(z)mod(p(z)) (1.36)
Now, u(z) mod p(x) is the inverse of a(x) and therefore the algorithm requires
polynomial divisions [13].
1.9.5 Chien Search

Chien search serves for roots determination of the coefficient values Ay,..., A, (see
equation 1.22) in order to solve the error locator polynomial. If the polynomial is

written in this form [3]:

Ar) =X (z+ X7 HXo(x+ X510 (1.37)
then, the result of the function will be zero if x = X', X3!, ... are found, where
is [3]:

r=a o (1.38)
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In the Chien search all possible field values of the GF roots of, where 0 < i <
(n—1) are substituted into equation 1.22. The values X7, ..., X, of the error locator
polynomial are then found by trial and error. If the expression A(x) = 0, then the
value x is a root of this function which has been found by the Chien search and the
error position Xj,..., X, has been identificated. The search begins with a~(~1
(= a'), then a~™~2) (= o?) and continues to a® corresponding to the last symbol

of the word while the first symbol of the codeword corresponds to the "~ term [3].

1.9.6 Forney’s Equation

Forney’s equation allows to calculate error values Yi,...,Y, (see equation 1.18)
and therefore the error polynomial E(x) formation. An error value is calculated
accordingly [3]:

Q(x; )
N (X
where A'(X;") is the derivative of A(X) for x = X;'. If b = 1, the X" term

disappears. Therefore, the formula is often quoted in the literature as /A’, which

Y; = le—b (1.39)

gives wrong results for b = 0 and other values defined in equation 1.5 where the code
generator polynomial has been determined. The equation 1.39 gives valid results
only for symbol positions in error. If the calculation is made at other positions, the
result is generally non-zero and invalid. Therefore, the Chien search is needed in

order to identify these error positions [3].

1.9.7 RS-FEC Error Correction Capability

Beside the already introduced notation RS(n, k) it essentially defines a vector space
of k dimensions and the every non-zero codeword differs at least 2t + 1 coordinates.

The received codeword R(z) is also called RS frame.

‘ Received RS frame ‘

‘ valid RS frame | ‘ invalid RS frame ‘
uncorrectable
| no error | | undetectable error I | correctable I (decoding failure)

Fig. 1.12: RS-FEC error correction capability breakdown (taken from [13])

While receiving an invalid codeword, the decoder will map the codeword to the

closest one in the vector space defined by (n,k) RS code. In case of more than ¢
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errors occurred during transmission, the received codeword may be closer to another
valid codeword and therefore the decoder will map it to this valid codeword. In
this situation, the error is undetectable because the Euclidean processor has found
solution for a valid codeword reconstruction. If an erroneous codeword differs from
all the codewords in ¢ + 1 or more coordinates, then the codeword after decoding
is still invalid. In this case, the error is detectable and the decoder can report the
error [13]. A breakdown of all possible types of errors which may occur during

transmission are shown in figure 1.12.
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2 Practical Part

Practical part of the work deals with hardware aspect of Reed-Solomon error cor-
rection algorithm for 400 Gigabit Ethernet and its implementation in Intel® Stratix®
10 DX FPGA chip.

Brief digital circuit block diagrams for both encoder and decoder components
are shown and explained in following chapters. It is also important to highlight that
since the beginning of this work there has been a strong focus on parametrizability
of the system, required data throughput and the overall functionality covering the

main points of the scope of this project.

2.1 Motivation

During writing this thesis, the Physical Coding Sublayer of Ethernet PHY has been
realized and implemented. Hence, the further step was to develop an IEEE Std.
802.3bs™ —2017 compliant RS-FEC layer for 400 Gigabit Ethernet for project Net-
cope Development Kit within the academical organisation Cesnet z. s. p. o.

Because of the fact that many modern technologies, such as constantly emerging
cloud services providers, financial network organizations, large scale enterprise data
centers are dependent on digital data, RS error correction system is a sufficient
solution for ensuring reliability of current data rates in the PHY layer [14].

In terms of future Ethernet speeds, there are prototypes nowadays reaching 800
Gbps speeds employing 2x RS-FEC based on Clause 119 of IEEE Std. 802.3 [29].
Hence, it is therefore highly likely that RS-FEC will be present in future Ethernet
IEEE standards and it is therefore worth its parametrizable VLSI (Very-Large-Scale

Integration) description.

2.2 RS-FEC Layer Concept and Galois Field Con-

struction

General concept of RS-FEC system follows procedure shown in figure 2.1. Ensuring
reliability of digital data transmission begins in the part of transmitter. Incoming
message M (z) to be corrected by the decoder part of the RS-FEC algorithm has
to be encrypted first to form a parity polynomial which is adjusted to the message
itself and then sent together in a form of a codeword T'(z) to the receiver (decoder).

On the way between data transmitter and receiver, noise of the environment
causes a quantifiable error E(x) which can be expressed in a form of a polynomial

of the same degree as the transmitted codeword T'(x). The idea is that the Error
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polynomial E(z) which has been added to the transmitted codeword T'(z) during
transmission.

The main task of the decoder is to find the error pattern F(z) so that the pattern
can be subtracted/added to the received message R(z) at the side of the RS decoder.

TOP_RS-FEC

Message M(x)

Codeword T'(x) formation TRANSMITTER

Message l l Parity

Transmitted codeword T'(x)

__________________________________

Received codeword R(x)

|

E(z) reconstruction RECEIVER

'

Corrected codeword T(x)
Parity discarded

Fig. 2.1: Diagram of RS-FEC concept

First of all, since the entire system operates over GF(2™) where m=10, there-
fore with 10-bit symbols, it is needed the Galois field to be formed GF(2'°). Tt is

a repeating sequence of 2'° 10-bit primitive elements o where each of them has its

own position label of starting with a®=1 and ending with o2'’~2

2101

while following
elements, such as « represent again o and so on.

Based on the chapter 1.7.2 a list of primitive GF elements o where i=0, 1, 2, ...
(2% — 2) can be constructed in a way shown in table 2.1.

With reference to the chapter 1.7.2 an inverse GF element is a valid element
of the GF to be multiplied with another one while 1 (a°) is produced. Inverse

elements of Galois field can be found using logarithmic method, however, excluding
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Tab. 2.1: Example of primitive elements and inverses of GF'(2™) where m=4 (taken
from [3])

Index form Polynomial form Binary form Decimal form Inverses (decimal)
0 0 0000 0 0
al 1 0001 1 1
ol o 0010 2 9
o? a? 0100 4 13
a? o’ 1000 8 15
ot a+1 0011 3 14
o’ o’ +a 0110 6 7
ab ad+a? 1100 12 10
o’ a’+a+1 1011 11 5
ad a’+1 0101 5 11
o’ aB+a 1010 10 12

ol o’ +a+l 0111 7 6
all aA+a+a 1110 14 3
al? aA+a+a+l 1111 15 8
all ad+a’+1 1101 13 4
alt ad+1 1001 9 2

field element 0 which does not have multiplicative inverse. Following example shows

calculation of inverse of (a'* =9) in GF where m = 4: [3]

a—imod(Qm—l) — a—14mod15 — Oél —9 (2 1)
For inverse of a3 = a? = 4, ™12 = o® = 8 etc. Inverse Galois field is therefore
a “mirrored” form of Galois field which applies for elements o, ot, ..., 2" 72

Each component of the RS-FEC system requires two main functions for its oper-
ation. First, addition/subtraction in Galois field which is realized by XOR function.
Second, multiplication in GF which is realized by two main components, as shown
in 2.2, multiplier and divider. Result of the multiplication operation over GF(2™)
produces another valid element of this field which is ensured by the modulo opera-
tion.

If we want to multiply two binary polynomials, we will get a product of degree
2m — 1 which is not an element of GF(2™). Then the product becomes a dividend
in the following division operation reducing the degree to a valid element of GF(2™)
while divisor is primitive polynomial p(x) and has degree m. As a result, remainder

after the division is a valid element of GF(2™) and quotient is discarded. 3]
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factor  A<m-1:0> factor B <m-1:0>

GF_ MULT:

MULTIPLIER

Y
dividend<2m-2:0>

DIVIDER

remainder<m-1:0>

Fig. 2.2: Galois field multiplier

GF multipliers are critical component for resultant hardware requirements be-
cause they are used in every component in a large extent. In this work, two types
of parametrizable GF multipliers were synthetized and implemented. It turned out
that RS-FEC Encoder with behavioral VLSI description of shift-and-add full GF
multipliers (based on [3], page 28) requires less logic than its RTL-based description.
But when implemented within a more complex component, the resultant difference
in hardware utilization was not significant. Therefore, future optimizations should
focus on optimal operation with 10-bit symbols rather than its full parametrizability.

IEEE Std 802.3bs™ —2017 also defines Primitive polynomial p(z) in subchapter
119.2.4.6 for GF(2'9): [17]

a=a"+2°+1 (2.2)

and Generator polynomial for parity polynomial calculation G(x), shown in table
2.2 [17).

The circuit needed for parity calculation conducts pipelined form of long poly-
nomial division where the dividend is incoming message M (z) multiplied by z%
which serves as a room for parity polynomial r(x) and the divisor is constant gener-
ator polynomial G(x). The divider is based on adding already multiplied generator

polynomial by a specific GF element with already pre-registered values of this op-
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eration. Initially, this number can be found when the most significant degree of
the M (xz)xx? is added to the most significant degree of initialized register in 0.
Then, the generator polynomial G(z) is multiplied with this number and is added
to remaining degrees of the register. In the next cycle, registered values replace the

previous ones and the operation continues in the same way.

Tab. 2.2: Coefficients of the generator polynomial G; (taken from [17])

1 G, 1 G, G
0 523 11 883 22 565
1 834 12 503 23 108
2 128 13 942 24 1
3 158 14 385 25 552
4 185 15 495 26 230
5 127 16 720 27 187
6 392 17 94 28 552
7 193 18 132 29 375
8 610 19 593 30 1
9 788 20 249

10 361 21 282

It requires k cycles to calculate the parity polynomial r(x) [3]. Such operation
has been implemented in a similar way which is shown in figure 2.5 as a hardware

representation of this recursive function.

2.2.1 Reed-Solomon Encoder

The process of remainder polynomial () calculation [3] follows IEEE Std. 802.3bs™™-
2017 for 200GE and 400GE. [17] The RS-FEC Encoder follows procedure shown in
figure 2.3.

RS-FEC Encoder has been successfully verified using ModelSim and compared
with Annex 119A IEEE Std. 802.3bs™—2017. The encoder part has been created
first for m = 4. Results of this simulation and intermediate calculations correspond
to the values available in [3] on page 11. Full parametrizability of this component
has been therefore confirmed. An advantage of the code is the possibility of larger or
smaller variants creation for various data lengths (shortened codes creation) simply
by changing generic variables in the code. However, digital circuits introduced for
RS-FEC Encoder and Descrambler provide general functional models, for resultant
implementation, larger parallel combinatorial functions with registers were to be

taken in account for the desired sequential RS-FEC system within the PCS layer.
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e e e A A A R A A
0 0 0 0
1
gl@)x  1-15 3 1 12
15 3 1 12

2
g(z)x 13—7 4 13 3
4 5 1 3
3
g(z)x T—11 9 7 2
14 8 4 2
4
g(z)x 1012 13 10 1
4 9 8 1
5
g(z)x 1515 3 1 12
6 11 0 12
6
g(z)x 0—-0 0 0 O
11 0 12 0
7
9(z) 1258 7 12 15
8§ 11 12 15
8
g(z)x 0—-0_0 0 0
11 12 15 0
9
g9(z)x 2513 6 2 11
19 2 11
10
9(z)x 1153 14 11 13
10 12 0 13 O
11
g(z)x 1515 3 1 12
3 3 12 12

Fig. 2.3: Numerical representation of RS-FEC Encoder operation (taken from [3])

General diagram of RS-FEC Encoder operation for 400GE is shown in figure
2.5. It consists of two main components: RS 400 FEC_ENC consisting of two RS-
FEC Encoders for codeword_A and codeword_B generation and MUX for symbols

distribution.

2.2.2 Symbols Distribution

According to the IEEE Std. 802.3bs ™ —2017 subchapter 119.2.4.7 for 400GE the

two codewords codeword_A and codeword_B of 544 symbols are further interleaved
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?) message <k-1:0>
RS-FEC_ENC
@ ... constant elements of Generator polynomial G(x) .
GF 10
o MULT ﬂL
28 elel
Y y
GF GF GF GF
MULT MULT MULT MULT
=ﬁ£§ D= }L’} o }EDE

4

Ne)

message <k+2t:2t> parities <2t-1:0>

!

Fig. 2.4: RS-FEC Encoder hardware diagram for polynomial division

in the component RS_ENC_INT and distributed among 16 PCS lanes. This compo-
nent has also been designed generically. Therefore, by changing number of generic
parameters it is possible to switch between 200 Gbps or 400 Gbps platforms or even
IEEE Standards for future Ethernet speeds, if needed.

g message A <513:0> clk g message  B<513:0>
RS 400 FEC ENC
Y Y
GENERIC RS-FEC ENCODER A GENERIC RS-FEC ENCODER B
codeword A <543:0>y codeword B<543:0>y
9| message A |9|  parity A 9|  message B |9|  parity B
0 <543:30> 0 <29:0> 0 <543:30> 0 <29:0>
RS _ENC_ INTy

GENERIC PCS LANES INTERLEAVER MUX

Y
codewords__interleaved<1087:0>

oo l

Fig. 2.5: RS-FEC Transmitter diagram for 400GBASE

Ne)

50



The interleaving and deinterleaving of two codewords has been realized at symbol-

level and follows the procedure shown in the pseudocode below [17]:

const int MSGS 2
const int PCSL 16
const int SYM = 514-1
const int GENPOL = 31-1

//Messages to interleave

//PCS lanes

//Symbols of a message to be encoded
//Symbols of the Generator polynomial G(x)

if (PCSLY mod(MsGS) = 0

MSGS
then

A — PCSL

— MSGS

if (SYM+1 +J GENPOL) mod(J) =0

then
B — SYM+1 + GENPOL
- J

const int CWSYM = SYM + G

ENPOL

for all K=0 to (A-1)
for all J=0 to (B-1)

if even(K)

tx_out<PCSLXK+MSGS xJ> =

codeword_A<CWSYM-AXK-J>

tx_out<PCSLxK+2J+1> = codeword_B<CWSYM-AXK-J>

else

tx_out<16K+2J> = codeword
tx_out<16K+2J+1> = codewo

_B<CWSYM-AXK-J>
rd_A<CWSYM-AxK-J>
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2.2.3 Reed-Solomon Decoder

Reed-Solomon decoder constitutes the most complicated part of the Reed-Solomon
error correction system. Its block diagram is shown in figure . Block diagrams of each
component or RS-FEC Decoder are shown and described in further subchapters.

Before the input vectors err_codeword_A and err_codeword_B enter top-level
RS-FEC Decoder entity RS_FEC_DEC, input interleaved signal is deinterleaved back
to separate codewords A and B. This is because two RS-FEC Decoders reconstruct
error polynomial err_pol A and err_pol B from these two input codewords sepa-
rately while each one operates with respective RS frame. Deinterleaving has been
also designed generically and is therefore possible to switch among various plat-
forms based on number of PCS (Physical Coding Sublayer) lanes of the platform as
determined in IEEE Std. 802.3bs™—-2017. In terms of 400GE operation 16 PCS
lanes.

Since the input signal propagates through RS-FEC Decoder, first, the system
checks if input codewords are divisible by consequent roots of Generator polyno-
mial G(z) without remainder. In this work, b = 0 and therefore the division starts
with o for respective syndrome S; and so on. This operation exploits the fact that
Generator polynomial G(z) has been constructed from such GF elements beginning
with a®, as determined in equation 1.5), and therefore made the incoming code-
words divisible by these elements without remainder one after another forming a set
of syndromes. An entity conducting this operation is FEC_DESC and has been real-
ized generically. Remainders of subsequent divisions by Galois field primitives form
factors of respective degrees of Syndrome polynomial S(z) (see 1.19) syndrome_A
and syndrome_B. Also, desired number of Galois field elements were calculated (see
Tab. 2.1 using a function generating a constant vector implemented in ROM-based
Look-up tables. This function can generate any GF(2™), in this case GF(21) for
prototype and GF(2'9) for resultant data widths.

The set of syndromes is further decoded by two Euclidean processors for each
codeword separately used for mapping the received codeword based on its syndromes
to the closest valid codeword by further components. There are two outputs from
each Euclidean processor. First, magnitude polynomial vQ(z) and second error
locator polynomial yA(z). These polynomials are used to give information about
locations and magnitudes of errors in received codewords based on their syndromes.
Since the Key equation (see equation 1.26) has been introduced in [28] on page
2 and Euclid’s method applied to the Key equation, equation 1.31 can be found.
The Euclidean processor consists of ¢ layers in total which determines the maximal

degree of output vectors lambda and omega.
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FEC EUC v FEC_EUC
EUCLIDEAN EUCLIDEAN
PROCESSOR A PROCESSOR B
|
v ¥ v
19| omega_ A 9| lambda A 9| omega B 9| lambda B
0] <14:0> 0 <14:0> 0| <14:0> 0 <14:0>
[
FEC LOC v v i FEC LOC
CHIEN SEARCH A < > CHIEN SEARCH B
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v
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Ne}

fec out B<513:0>

Fig. 2.6: Diagram of the RS-FEC Decoder
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An interesting property of this algorithm is that if v€Q(z) has been successfully
found, its degree determines in which layer the calculation has finished. In other
words, if the received codeword contains single error, the result of 7{)(x) computation
is in the first layer. If the received codeword contains two errors, the result of
computation yQ(x) lies in the second layer etc. Respectively, yA(z) has been also
found in these layers, as well. In addition to the polynomial division part, GF
inverses have to be used in this process which were found using logarithms as shown
in equation 2.1. This process and its implementation is described in more detail in
subchapter 2.2.3.

Last two entities for solving the Error polynomial F(z) fec_out_A and fec_out_B
are Chien search and Forney’s algorithm. For these components, multiple degrees of
inverses were found using a function which generates inverses as a constant stored
in ROM-based LUTs. It has also been designed generically and can be therefore
used for any GF(2™). Chien search solves equation 1.37 and derivation described in
1.9.6. Forney’s algorithm conducts more straightforward operation, and this is the

fraction in the equation 1.39.

err.

loc.

A

FORNEY'S
ALGORITHM

S(X)= EUCLIDEAN  [A(®)
PROCESSOR

R(x) DESCRAMBLER

y

CHIEN SEARCH

=
ry

12

S(x) CONTROL Q(x)
&
BUFFER E(x)

!

OUTPUT

Y

A

Fig. 2.7: Sequential solution for a single RS-FEC decoder

The resultant RS-FEC is a sequential component which further requires control
unit which also serves for error correction status reporting to the PCS layer. Its
operation is summarized in 1.9.7. In addition, buffers are needed to synchronize

signals with the sequential error correction flow. This is shown in figure 2.7.

Syndromes computation

Hardware for syndrome calculation follows procedure shown in figure 2.9. The most
significant degree of the input received message R(z) is added with registered value
initialized in 0 and then multiplied with a constant primitive element a’. In the

next cycle, XOR gate reads one degree lower factor of the input message R(x) and
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3 err_codeword<543:0> Clk

FEC DESC:

. ... elements of Galois field as constants

g%“g%“ 8. @y

GF GF
MULT MULT MULT MULT

D H D M \»E D M

Y
syndrome <2t-1:0>

Fig. 2.8: Hardware of descrambler for syndromes calculation

the remaining process remains the same. Here, b = 0. Then, this value rewrites the
previous initial value in the register etc.

In parallel, this operation shown in figure 2.9 runs with other primitive elements
of GF ottt ... abtF+2=1 Process with multiplying by o forms Sy, a' forms S, etc.

This general operation is represented in a diagram shown in 2.8.

Euclidean processor design

The main process present in a single layer of the Euclidean processor has been
divided into two parts: left-hand process for polynomial division and right-hand
process conducting polynomial multiplication and addition, as described in [3]. Fig-
ure 2.10 shows calculation of the first layer of the Euclidean processor for v2(z) and
vA(z) calculation and figure 2.11 the second layer.

Suppose that input to the FEC_EUC from RS _DESC is this polynomial S(z):

S(z) = 122° + 42® + 3z + 15 (2.3)
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Fig. 2.9: Numerical representation of syndrome calculation operation
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@ 2 2 L A 7 7! 7

dividend: 1 0 0 0 0 0 0
divisorx10z: 1 14 13 12 10 0
14 13 12 0 10 0

divisorx 6: 14 11 10 4 0 6
remainder: 6 6 4 10 6

Fig. 2.10: Eample of first layer of Euclidean processor operation [3]

In the first layer, register with dividend polynomial initialized in 2 (here, z*) will be
divided by polynomial S(x) as dividend, however, multiplied by certain value causing
the most significant degree of the dividend (z?) to be equal to the most significant
degree of the divisor which results in cancelling the most significant degrees after
addition of contents in these two registers. This number can be found by dividing the
most significant degree of the dividend by divisor’s most significant factor. Divisor
polynomial is constant for the entire layer based on its degree, number of division

steps differs. Then, resulting quotient of the division is:

4
1lx 0

o8 = Azt x a3 = a2t x %273 = 12t x 10272 = 102 (2.4)

This number (10x) is the quotient which multiplies both the divisor S(x) and
also register with polynomial F'(x) in the right-hand side of the process. On the left,
multiplied divisor factors are added to respective factors of the dividend z* while
the most significant degree is cancelled. Then, another factor with degree lower by
one is adjusted to the dividend in the next cycle and register of the dividend is
rewritten. Multiplication on the right-hand side with polynomial F'(x) initialized in

1 is trivial (it is important to mention that multiplication is performed over GF'(2%):
1 x (10z) = 10z (2.5)

However, there is no previous layer and therefore all remaining registers are set
to 0. At the same time as left-hand preforms addition, on the right-hand side is

performed as well and then rewrites current register for addition:
0+ 10z = 10z (2.6)

This process continues once again since maximal number of errors ¢t occured. If
the number of errors is lower, based on the divisor’s degree the number of cycles can

be determined.

cycles = 1+ (degree_ dividend — degree_divisor) (2.7)
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If the degree of dividend in this example is 4 and degree of divisor is 3, then
2 cycles of division have to be performed to obtain remainder. On this basis, first
implementation of Euclidean processor is based to secure the Euclidean processor
operation.

The second and following layers operate on similar basis as the first one, however,
inputs to the layer change. First, on the left-hand side, divisor from the previous
layer becomes current layer dividend and remainder from the previous layer is divisor
of the current layer. This applies also for next layers. On the right-hand side, two
registers read data from the previous layer. First, current register F'(z) is loaded
with data from previous result yA(z) and initial sum to the process (first row) reads

data of F(x) from previous cycle.

@ 2 2 L A 7 7! 7

dividend: 12 4 3 15 0 1
divisorx 2x: 12 12 8 7 12 0
8 11 15 7 12 1

divisorx 13: 8 8 1 11 8
remainder: 3 14 7 7 9

Fig. 2.11: Example of remaining layers of Euclidean processor operation [3]

Now it is important to select the right output. If the degree of remainder on
the left-hand side of the euclidean algorithm is lower than t (in this example 2) the
vA(z) and ¥Q(z) has been found. In the realization of euclidean processor, output
logic selects correct output based on registered degrees of dividends and divisors
of each layer of the euclidean. There is also room for improvement because the
degree can be estimated only in the first layer and based on this, other layers can
be synchronized accordingly. This has to be tested first.

The diagram of the euclidean processor is shown in figure 2.12. Similarly as the
algorithm shown above, the main operation is divided into three main parts. Based
on incoming syndrome polynomial degree every layer of the euclidean processor is
configured. For the division part, inverses of GF are loaded in LUTs. Intermediate
remainders of each layer are used by control logic to set up next layer and output
logic selects the right output. In addition, intermediate product from the right-hand
process is also sent to control logic in order to shift products after multiplication

accordingly.
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Fig. 2.12: Diagram of Euclidean processor unit for RS-FEC
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Hardware for error locations

Chien search component performs two main operations: solves Error locator poly-
nomial YA(z) (see equation 1.37) and derivation of polynomial vA’(x) for each of

al, ottt

.abtEF2=1 described in chapter1.9.5. Based on these two outputs, Error
polynomial can be solved using Forney’s equation. There are therefore k + 2t — 1
solutions for each of a, a®! ... a®***+2~1 clements for both output vectors which
correspond to the width of Error polynomial E(x). With reference to equation 1.37
the Error locator polynomial can be solved by following procedure. The result of
the previous example in the right-hand side process of the Euclidean processor is
[3]:

YA(z) = YAy + YA, + v =T2* + Tz + 9 (2.8)

Divided by v the Error locator polynomial equals to:

YA()
¥

= A(z) = 142” + 142 + 1 (2.9)

The Chien search algorithm can be performed at positions x = af, o’*t! ..

altEF2=1 i this example for ery = a4, as follows:
Az) = 1422 4 1z + 1 = 14(a4) 4 14~ + 1 = 14(a" ) + 140~ + 1 (2.10)

In this point it is possible to identify respective inverse elements stored in ROM-
based Look-up table shown in 2.1 realized by a constant vector generated by a

generic VHDL function:
A(z) = 14(at)? + 140t + 1 (2.11)
Implemented hardware of Chien Search then follows this calculation of this line:
Ala™) =o't (ah)? + attal +a° (2.12)
Ao ™ =a"a? +a''a' +a’=a® +a?+a’=13+15+1=3 (2.13)

The result of A(a™!) is 3 which signifies that on position ey4 an error did not
occur. This computation runs for all error positions e; ... epixyor—1 in parallel and
therefore the benefit of parallelism in an FPGA has been exploited.

Since the first derivative of A(x) has been found, as shown in the following

example where even degrees of x are set to zero [3]:

AXG) =M+ Ag x X724+ As x X0 4. (2.14)
14X,
M) = 2 =14 (2.15)

J
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Fig. 2.13: Diagram of Chien search as the unit for error positions determination
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Hardware for A(z) derivation calculation differs only in terms of number of fac-
tors to be added by XOR gates as represented in 2.13. It terms of hardware require-
ments reduction, it is not needed to divide the Error locator polynomial by v thanks
to the fact that v will be cancelled out in further division in Forney’s algorithm, it
is convenient to omit the division part in 2.17.

It is also important to note that yA(z) at each error position has its own deriva-
tive YA(z) and therefore derivatives of higher degrees of the Magnitude polynomial
vA(z) (degrees of 3 and more) will differ compared to the example above. It is
therefore possible to form a vector of the same length as the error polynomial with
derivatives of yA(z)" for each error position which is convenient for parallel compu-
tations omitting redundant control logic prolonging the critical path from input to
output.

Hardware for Error Magnitudes Calculation

Since the results of Error locator polynomial yA(z) and derivation of yA'(z) are
found, Forney’s algorithm solves the Error polynomial E(x) by calculating fraction
for each of a, o, ..., ab**+2=1 Therefore, this component has been divided
into three main parts. First part solves Magnitude polynomial vQ(z) and second
part solves fraction with already calculated yA’(x). If an error position is found,
multiplication of the solved fraction with respective primitive element of GF is per-
formed. This 2-way MUX causes that if the received codeword has no errors, the
entire Error polynomial E(z) is set to 0 otherwise calculates result only for selected
zero error positions. Since the result of the left-hand side process of the Kuclidean

processor is [3]:

YQ(x) = v + yAo = 3z + 14 (2.16)
Divided by v the Magnitude polynomial Q(z) equals to:
Q
YUD) _ o) = 62+ 15 (2.17)
Y
Forney’s algorithm follows equation 1.39 as shown in this example [3]:
QX
V=X~ 2.18
J J A’( Xj_l) ( )

Since error positions X; have been found in the Chien search part (here, at
positions X; = o and X; = o?), error magnitudes Y; can be calculated for these
positions where b =1 [3]:
6(X;)+15  6a?+15

Y; = X}7" a

Vi o 13 (2.19)
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Fig. 2.14: Diagram of Forney’s algorithm as a unit for error polynomial calculation
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And here for o? [3]:

6(X;")+15  ,6a72+15
e (A
N(XH 14

J

Y, =X 2 (2.20)

Result of this operation is then added to the input err_codeword and then the
R(zx) can be corrected as shown in figure 2.15:

P4 13 120 g1 100 09 48 0T 46 o5 a4 430 02 1 40
R(z)= 1 2 3 4 5 11 7 8 9 10 11 3 1 12 12
Exz)= 0 o0 O O 0O 13 0 0 0O 0 O 0 2 0 O
Tx)= 1 2 3 4 ) 6 7 8 9 10 11 3 3 12 12
8 - err _codeword <k+2t-1:0> 5439
8 - err pol <k+2t-1:0> 2439
FEC CORR
5439 1/
(T
9
ol corr _codeword <k+2t-1:0>
5139
—8 FEC OUT<k-1:0>
Fig. 2.15: Hardware for error correction
2.2.4 Testing

Testing of the system RS-FEC follows a straightforward procedure illustrated in
figure 2.16. The main idea is to generate an error pattern in the form of polynomial
representing R(x). The calculated error pattern should be the same as the generated
one. In addition, inner signals are also being traced for effective debugging of the
code. The functionality of the algorithm was tested for shortened RS(544, 514) and
RS(256,226) over GF(2'°) using G(x) from Clause 119; RS(29, 15) over GF(2'9)
with G(z) from Clause 91 and shortened RS(9,5) over GF(2%) with reference to [3]

where all possible error positions and error values were examined.
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Fig. 2.16: Testing of the RS-FEC system

2.2.5 Implementation

This section summarizes the implementation part of the time-constrained system.
During implementation, timing constraints for clock signals were set to 5 ns. Dis-

cussion, reflection and future improvements can be found in chapter 2.3.

Implementation Compilation flow

Development of RS-FEC for 400GE was conducted using Intel® Quartus® Prime
Pro Edition Design Software [4] which supports VHDL 1987 (IEEE Standard 1076-
1987), VHDL 1993 (IEEE Standard 1076-1993) and VHDL 2008 (IEEE Standard
1076-2008). Compilation flow of imported design consists of 8 main stages [30]:

o [P Generation - identifies IP components used in the project, their status and
version.

o Analysis & Synthesis - performs synthesis, optimization, minimization and
maps design logic to device resources, checks for design file and project errors.
Results of this stage are preliminary and preserved for next stages. Design
synthesis translates design source files into a form of netlist for mapping to
device resources. It examines the logical completeness and consistency of the
design, checks for boundary connectivity, syntax errors and also minimizes
and optimizes design logic and may change or remove redundant user logic
to ensure efficient use of device resources. In the end of synthesis, the Com-
piler generates a database of the most basic (atom) elements which design
synthesis requires to implement the design in silicon. Atoms include logic cells

organised into look-up tables, D flip flops I/O pins, block memory, DSP block
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and connections between atoms. This can be graphically represented in RTL
Viewer.

Fitter (Place & Route) - placement and routing to specific target device is
performed while respecting timing and placement constraints and any Fitter
settings specified. Fitter determines the best placement and routing of logic
in the target FPGA device. By default, fitter selects appropriate resources,
interconnection paths and pin locations. If design logic is assigned to specific
device resources, the Fitter attempts to match those requirements and optimize
any other remaining unconstrained design logic. If the Fitter cannot fit the
design in the current device, the compilation is terminated and reports an
error message. This stage consists of 6 substages [30]:

— Plan - places all periphery elements (I/Os and PLLs, etc.) and determines
legal clock plan. Core placement or routing has not yet been performed.

— Early Place - this is an optional stage. It places all core elements in
an approximate location. This facilitates further design planning and
finalizes clock planning for Intel® Stratix® 10 family and Intel® Agilex™
designs.

— Place - places all core elements in a legal location.

— Route - creates all routing between elements in the design.

— Retime - moves (retimes) existing registers into Hyper-Registers for fine-
grained performance improvement.

— Fitter (Finalize) - For Intel® Stratix® 10 family devices preforms post-
Route fix-up after retime stage. Also, generates Technology Map Viewer
to view internal structure of the design netlist after Analysis & Synthesis,
for instance, for high fanout nets examination.

Fast Forward Timing Closure Recommendations - generates reports which
estimate performance gains by making specific RTL modifications.

Timing Analysis - analyzes and validates the timing performance of all design
logic.

Power Analysis - this is an optional stage for device power consumption esti-
mation.

Assembler - converts the placement and routing by Fitter into a progrmam-
ming image for the FPGA device.

EDA Netlist Writer - generates output files of the project for use in other EDA

tools.
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Galois Field Multipliers

GF multipliers appear in all the components of RS-FEC and were designed generi-
cally in two parts: part modulo and multiplication part with reference to [3], page
28 where circuit of a full 4-bit shift-and-add multiplier is described, generic version
of such function has been created on gate level. Single GF multiplier consumes 39
ALMs. But, this number can be reduced during optimization process in Fitter stage

of the design compilation process.

CRC Implementation

Further progress of the RS-FEC development with already designed GF multipliers
could proceed in Scrambler and Descrambler synthesis and implementation. These
components were realised based on a general procedure for data scrambling and
descrambling (see Figure 2.4 and Figure 2.8). As assumed, some level of optimization
of GF multipliers has been reached. On the other hand, results of synthesis of these
components show enormous use of resources. This is because synthesis tools, in
general, struggle with full optimization of large and complex functions over Galois
fields, especially RS codes RS(544,514). Despite the fact that there was some
level optimization, the more cycles is demanded for the recursive algorithm to be
conducted, the optimization process gets less effective. In addition, it takes a long
time to synthesize and implement these components. Achieved results and times of

synthesis and implementation phases are summarized in following tables.

Tab. 2.3: Duration of compilation stages of RS-FEC Encoder for RS(544,514)

Stage Duration [hh:mm:ss]
Synthesis 08:47:31
Fitter 02:48:36
Timing Analyzer 00:02:17

Tab. 2.4: Duration of compilation stages of RS-FEC Descrambler for RS(544,514)

Stage Duration [hh:mm:ss]
Synthesis 00:44:02
Fitter 05:00:01
Timing Analyzer 00:03:13

Designed parametrizable system is implementable, however, timing requirements
of the system with general model for scrambling and descrambling have not been

fulfilled. The design therefore has to be further optimized. First, optimization

67



of GF multipliers towards critical path reduction might help the design to reduce
resource utilization and increase maximal operation frequency for the cost of its
parametrizability reduction in the future. Based on previous practice of RS-FEC
designs within the academical organisation Cesnet s. z. p. o., implementation of so
called “xor network”, a fully optimized net of exclusive-OR gates which also might

significantly reduce critical path and resource utilization, as studied in [31].

Tab. 2.5: Results of synthesis and implementation of time-constrained sequential
RS-FEC Encoder for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 359516 1800 -
Implementation 388305 2420 6.81 MHz

Tab. 2.6: Results of synthesis and implementation of time-constrained sequential
RS-FEC Descrambler for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 719583 1800 -
Implementation 507043 786533 6.81 MHz

Euclidean Processor Implementation

The first attempt to implement hardware of the designed and tested Euclidean
processor into Intel Stratix DX FPGA resulted in exceeding available resources. This
happened mainly because each generated layer of the Euclidean processor contained
its own Look-up table of GF inverses of 2" which resulted in such high hardware
consumption. In addition, used tool for synthesis did not estimate correctly which
registers and ALMs of certain layer will not be used in a given layer of the Euclidean

Pprocessor.

Tab. 2.7: Duration of single stages of compilation of both components of Euclidean

processor
Stage Duration [hh:mm:ss]
Synthesis 00:13:37
Fitter 00:09:23
Timing Analyzer 00:00:16

In this paper, for timing estimation of the current design, single layer of the eu-

clidean processor has been implemented. Further improvements include Euclidean
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processor re-design, generally in terms of sharing registers of both sides of RS-FEC,
however, functional core will remain the same. Further efforts for resources uti-
lization minimization will be focused on implementing additional logic to single
euclidean layers selecting correct results based on its current layer index which in-
directly determines incoming polynomial degrees and therefore discard unnecessary
logic which is never used in the current layer of a given index. Result of implemen-

tation of one layer is shown below.

Tab. 2.8: Results of synthesis and implementation of a single sequential component
RS-EUC for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 11833 340 -
Implementation 13322 14568 237.64 MHz

Chien Search Component Implementation

Synthesis and implementation of hardware for Chien Search components show that
resources utilization do not exceed critical level for its implementation and timing
requirements have been fulfilled. Results of these stages are shown in Tab. 2.9 and
Tab. 2.12 below.

Tab. 2.9: Duration of single stages of compilation of both components for finding

error locations

Stage Duration [hh:mm:ss]
Synthesis 00:03:27
Fitter 00:36:06
Timing Analyzer 00:00:37

Tab. 2.10: Results of synthesis and implementation of both components RS-CHS
for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 57506 28753 -
Implementation 66685 107813 223.76 MHz

Forney’s Algorithm implementation

In the component for Forney’s algorithm computation, the most important part to

focus on is the use of a constant containing Galois field inverses. This constant
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contains 2™ bits and is therefore the largest in the design. This constant is used for
division by respective GF derivative calculated in Chien Search component for each
error position. There is actually n = 544 error positions but only ¢ = 30 positions
can be corrected. The hardware in Forney’s algorithm calculates error magnitude
for each n. This means that the 2™ elements has to be generated 544 times. This
is actually the cause of such a large hardware utilization which has to be reduced
to only, ideally, t-times 2™. This approach might be fulfilled by a sorting algorithm
which will shift error positions in a given direction of an array and accumulate
them. Then, with t-times for loop, pointer will find respective inverse elements in

the constant array of GF inverses based on the given positions.

Tab. 2.11: Duration of compilation stages of a single entity of RS-FOR conducting

Forney’s algorithm

Stage Duration [hh:mm:ss]
Synthesis 00:46:07
Fitter 04:31:17
Timing Analyzer 00:03:05

Current design expects the result of the Forney’s algorithm to be calculated in
three clock cycles. Further extensions will probably require one more clock cycle

delay.

Tab. 2.12: Results of synthesis and implementation of a single time-constrained
sequential entity RS-FOR for 400GE

Phase ALUTs Dedicated Logic Registers Maximal Frequency
Synthesis 521565 14897 -
Implementation 539392 977902 245.16 MHz
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2.3 Discussion and Reflection

In this work, main goals of the RS-FEC development have been reached. Since the
very beginning of the development, the design was focused mainly on maximal data
throughput, exploiting benefits of the FPGA technology, its parametrizability and
resource usage, however, in lesser extent. Full parametrizability of the design has
been reached which enables its reusability and possible creation of various forms
of the system for future uses or its implementation in different areas. In addition,
including Galois fields generation, its inverses and various degrees of inverses us-
ing VHDL subprograms without using additional scripts might noticeably reduce
development speed of future Ethernet platforms.

In terms of the overall functionality, the system has been tested and full parametriz-
ability has been successfully verified. It is therefore possible to modify this system
for various shortened forms of RS-FEC by changing these main generic variables:
m, n, k, 2t and number of PCS lanes for codewords distribution. Thanks to generic
PCS lanes interleaving and deinterleaving the system can be implemented also for
200GE or other projects.

On the other hand, current state of art requires further optimization, especially
CRC and Euclidean processor units, and control logic, which is the plan for future
work. In the end, the focus of the development changed from the effort for maximal
data throughput and timing requirements to balance between resources utilization
and data throughput where resources play crucial role for implementation of such a
large system. Based on unbiased user experience from this development work, three
key points should ensure its further safe progress: identification and restriction of
resource-intensive look-up tables generation, sharing resources between two parts of
the RS-FEC and use of best practices from previous RS-FEC implementations to
combine the best approaches to this topic.

In terms of the resources minimization, significant reduction of ALUTSs might be
reached by selecting error positions only at the Chien search component and form
the error polynomial at the Forney’s algorithm in the last stage of the pipeline of the
component. This will require an extra logic at the Chien search and one clock cycle
delay but significantly reduce number of ROM-based Look-up tables in the Forney’s
algorithm, meaning using Forney’s equation t-times only compared to generating

these inverses of the GF(2™) n-times.
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Summary

In this Master’s Thesis, fully parametrizable Reed-Solomon self-correcting algorithm
for 400 GE has been successfully designed, its function verified in simulations, op-
timized and implemented. In the theoretical part of this work, Reed-Solomon error
correcting algorithm is described including FPGA technology and Galois finite field
algebra including a general overview of modern networking and implications to cur-
rent high-speed Ethernet. Based on the theoretical part of the work it turned out
that due to the Finite field algebra it will not be possible to use dedicated DSP
blocks of the FPGA chip. Hence, the entire algorithm was stored in LUTSs.

In the practical part, design and testing of RS-FEC system is discussed, used
hardware for its realization and future challenges including best practices are sum-
marized. The very first attempt to implement the system resulted in exceedingly
large resource utilization and therefore optimizations were needed to be conducted.
The main cause of this were complicated and hardware-intensive inverse circuits
of Euclidean processor layers. It turned out that it is not feasible to implement
fully parallel Euclidean processor unit including Forney’s algorithm. Based on user
experience from this work of VLSI design of Forney’s algorithm and Chien search
it was found that it is better to calculate single degrees of inverses of Galois field
elements on chip than storing them in ROM-based Look-up tables. However, in the
current state of art, all components of the RS-FEC are implementable and further
optimization is required. Major challenge of this project and key for its implementa-
tion was to balance hardware resources utilization from the previous focus on timing
fulfilment, which is mainly the task for further CRC unit optimization.

This work suggests using ROM-based Look-up tables in lesser extent. It was
found that implementation of ROM-based Look-up tables at the smallest scale pos-
sible is the key for successful implementation of this system in Intel® Stratix® 10
DX FPGA. Hence, employing Euclidean processor units for solving Key equations
is discussed. Since there are two encoders and decoders employed for each code-
word respectively, it is therefore better to consider shared resources between these
two parts of RS-FEC system and using algorithms based on minimal utilization of
ROM-based Look-up tables.

Future orientation of this work will be focused mainly on ALUTs usage mini-
mization and increasing throughput for CRC unit. In particular, significant benefit
of this system is its parametrizability which enables faster further optimization pro-
cess which applies especially for Euclidean processor. Another benefit is its simple
implementability for various scales of the code underlining its variability also for

various future uses.
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List of symbols, physical constants and abbre-

viations

RS Reed-Solomon

FPGA Field Programmable Gate Array
GE Gigabit Ethernet

VLSI Very-Large-Scale Integration
FEC Forward Error Correction
PHY Ethernet Physical Layer
LAN Local Area Network

MAC Medium Access Control

OSI Open Systems Interconnection
DLL Data Link Layer

LLC Local Link Control

PCS Physical Coding Sublayer
PMD Physical Media Dependent
PMA Physical Medium Attachment
BER Bit Error Rate

DDR Double Data Rate

PCI Peripheral Component Interface
FSB Front Side Bus

QPI Quick Path Interconnect
DFF D-type Flip Flop

DSP Digital Signal Processing
RTL Register Transfer Level

CPU Central Processing Unit

GPU Graphics Processing Unit

I/0 Input/Output

MOSFET Metal Oxide Semiconductor Field Effect Transistor
ALUT Adaptive Look-up Table

uv Ultraviolet

HPC High Performance Computing
CLB Configurable Logic Block
RAM Random Access Memory
BLE Basic Logic Element

LUT Look-Up-Table

DLLs Delay Locked Loops

PLLs Phase Locked Loops
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ASICs
1P
MAC
SoC
ALMs
DRAM
SRAM
GPUs
CRC

Application Specific Integrated Circuits
Intellectual Property

Medium Access Control

System on Chip

Adaptable Logic Modules

Dynamic Random Access Memory
Static Random Access Memory
Graphics Compressing Units

Cyclic Redundancy Check
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