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Jan Trochta: The use and processing of TLS data for purposes of 

forestry and forest ecology 

ABSTRACT: 

The use of terrestrial laser scanner in forestry seems to be promising technology for new findings 

about forest ecosystem together with precise information for forest managers and planners. With 

new technology comes also new methodology of data acquisition, data processing and 

presentation of results. In this thesis are proposed methodological aspects of scanning setup if 

forest with analysis of two main obstacles - terrain and tree stems together with estimation of 

synergic effect of additional scan and optimal distance of such scan. In the following section 

software for processing of TLS data from forest environment - 3D Forest - is introduced and 

briefly described. In the last part original and early attempt of the below ground tree biomass 

reconstruction and volume estimation using TLS data is presented as a part of coppice forest 

study.  

KEY WORDS: Terrestrial laser scanning; 3D Forest; scanning setup; LiDAR;  

Jan Trochta: Využití a zpracování dat z TLS pro účely lesnictví a 

ekologie lesa. 

ABSTRAKT: 

Využití pozemního laserového skenování v lesnictví se zdá být velmi slibnou technologií 

přinášející nové poznatky o lesním ekosystému stejně jako přesné informace pro vlastníky a 

správce lesa. S novou technologií přichází také nové způsoby sběru dat, jejich zpracování a 

prezentace výsledků. Tato disertační práce přibližuje možné metodologické postupy, které lze 

uplatnit pro lepší sběr dat v lesním prostředí s minimalizací ztrát způsobených překážkami (terén, 

kmeny stromů) a zároveň určit velikost synergického efektu, který přináší další sken z určité 

vzdálenosti. Následující sekce se zaobírá samotným zpracováním dat v nově vytvořené 

softwarové aplikaci 3D Forest a srovnáním základních stromový parametrů s běžnými metodami. 

Poslední část je věnována jednomu z prvních pokusů odhalit množství biomasy skrývající se pod 

zemí pomocí pozemního skenování.  

KLÍČOVÁ SLOVA: Pozemní laserové skenování; 3D Forest; LiDAR; pozice skenování;  
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1. INTRODUCTION 

Forests cover about one third (about 3 999 000 000 ha) of earth surface (Keenan et al., 2015) and 

thus play an important role in human society as a source of timber, fuel or paper products. In 

addition, forests depends on and also contribute to many complex processes that have great 

impact on all components of ecosystem: production of clear water, soil protection, stabilizing air 

temperature and humidity, mitigation of CO2 emissions, ensure shelter for wildlife plants and 

animals and many more (Duffy, 2009; Hector and Bagchi, 2007; Naeem et al., 2009). To keep all 

possible functions present in our forests we need to understand their spontaneous anatomy, 

physiology and dynamics on forests unchanged by direct human impact.  

Such forests are widely named as primary forest or old-growth forests. Based on FAO assessment 

(Keenan et al., 2015) primary forests cover about 33% of total forest area, but more than half of 

the area is based only in three states: Russian Federation, Canada and Brazil. The two biomes 

mostly found there – tropical and boreal forests - cover more than 88% of all primary forest on 

earth. Primary forests in temperate forest biom are rare since this biom is historically affected by 

rise of human civilization. In Europe primary forests cover less than 3 % of forested area (Forests 

of Europe, 2011) with hotspots in Scandinavia and south-east part of Europe. Primary forests in 

Czech Republic (Ministerstvo Zemědělství, 2015) cover about 1.1% of forested area. Such places 

needs to be protected from human impact but still studied by forest researchers in order to 

uncover numerous processes and relationships that create the forest ecosystem so unique.  

Forest system can be studied by appropriate methods at many scales – from micro-organisms 

(López-Mondéjar et al., 2015) to global scale (Crowther et al., 2015). However, up-scaling or 

down-scaling of various investigations at different scales is not straightforward and sometimes 

very difficult. Spatially-explicit methods with high accuracy, precision, great detail and broad 

reach are needed (not only) to overcome these scaling issues and bring new insight into forest 

ecosystem.  

Recently the methods based on LiDAR technology came in sight of researchers as fast, precise 

and detailed acquisition method of spatially oriented data. Laser combined with fast recording 

device, precise mechanics and time measurement build together a laser scanner. The scanner 
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emits laser beams into surrounding space, some of the beams are backscattered from surrounding 

objects/surfaces back into the scanner and the scanner records precise distance of the reflecting 

points from scanner (Fig. 1). Depending on mounting type laser scanning can be distinguished 

into: Airborne Laser Scanning (ALS), Terrestrial Laser Scanning (TLS) and Mobile Laser 

Scanning (MLS). Each method has similar output - point cloud, but with different perspective, 

point density and methods of further processing. TLS can be used for the most detailed studies on 

branch and leaf scale (Côté et al., 2009) to plot scale, ALS is better suited from tree to regional 

scale studies (Naesset, 1997) and MLS in places where it´s possible to use vehicle – streets, parks 

or plantations (Rutzinger et al., 2010).  

This work further focuses on the TLS technology only (sometimes also called ground-based laser 

scanning). Speed of terrestrial scanners in present time reach 1 000 000 points per second with 

horizontal 360° and vertical 290° field of view with resolution 0.009° cover greatly surrounding 

of the scanner. 

 

 

Fig.  1: Illustrative figure of terrestrial laser scanner technology used on tripod. 

 

Expected results of laser scanning are georeferenced point clouds of target objects, detailed 

models with parameters of scanned objects or other spatial information that can be extracted. The 

advantage of laser scanning is that the real 3D shapes of target objects are recorded with only 

little simplification of reality compared to other recent non-destructive filed methods. The TLS 

field measurements are also fast and easy to repeat with respect to the level of detail recorded.  
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Despite indisputable advantages of the TLS mentioned above, there are also many obstacles that 

are recently a subject of intensive research. Some of the current issues of TLS have been 

addressed in these Ph.D. Thesis in a form of three Papers and/or manuscripts in different stage of 

publication process attached at the end of this work (further referred to as Papers I to III). The 

first question arise immediately with design of data collection since the complex forest 

environment constitutes so many obstacles (like stems, branches, terrain, etc.) for effective TLS. 

The Paper I thus address the question how to setup the scanner positions for area-wide stem 

mapping of natural forests. After data acquisition one needs to process the point clouds by 

specific algorithms designed to handle big data and produce outputs with good accuracy in 

reasonable time. Such algorithms are greatly appreciated by user community, no less than a 

stand-alone application that can provide the whole pipeline and make the data-processing a lot 

easier. These issues are addressed in the Paper II, where the powerful algorithms built-in new 

stand-alone software application - 3D Forest - are described and tested. The TLS has been usually 

used for description and quantification of above-ground biomass (AGB) of forest stands. The 

AGB however constitutes only 80% of the total tree biomass (Barbaroux et al., 2003). Paper III 

thus presents one of the pioneer attempts applying TLS technology for examination of 

belowground tree root structures. In following sections the three individual Papers are set in a 

specific context and introduced in more detail.  

 

2. SCANNING SETUP 

With TLS data collection Liang et al. (2016) define three main approaches – single scan, multiple 

single scans and multiple scans.  

 

2.1. Single scan setup 

Single scan setup is mainly used in forest inventories (Liang et al., 2011), detailed gap analysis 

(Seidel et al., 2015) or LAI estimation similar to hemispherical photos (Danson et al., 2007). The 

main advantage of such setup is in short time data acquisition due to the simple setup – just put 
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scanner into the center of the plot, setup the scanner and start scanning. Straightforward concept 

of single scan setup can be applied in national forest inventories or other statistical inventories as 

presented in Liang et al. (2011). Disadvantage of such concept is in occlusion effect leading to 

missing trees or their parts in resulting point cloud and relatively small diameter of dense point 

cloud. This was acknowledged in multiple studies from various types of forest e.g. (Brolly and 

Kiraly, 2009; Liang and Hyyppä, 2013; Maas et al., 2008; Olofsson et al., 2014). An approach 

how to compensate the occlusions was introduced by Ducey and Astrup (2013) who try to 

statistically define the portion of occlusion and estimate probability of tree nondetection. This 

approach thus try to deal with the biggest disadvantages of the single scan setup and might 

significantly improve its use.  

 

2.2. Multiple single scans setup 

Multiple single scanning setup is used only rarely (e.g. (Liang and Hyyppä, 2013) in order to 

minimize disadvantages of multiple setup, i.e. the need of co-registration and alignment of the 

multiple scans. On the other hand, it loses the advantage of a “synergic effect” of multiple scans 

described in the Paper I (Trochta et al. 2013). 

 

2.3. Multiple scans setup 

Multiple scanning setup is used in the most studies for tree reconstruction or estimation of tree 

parameters e.g. (Hopkinson et al., 2004; Maas et al., 2008; Van der Zande et al., 2011) since it 

provides point cloud with less occlusions and generally better coverage of trees, as they are 

scanned from different angles and sides. On the other hand, this setup needs more time for setup 

the scanner on more positions and setup control points that create correspondence between scans. 

The multiple scanning setup is particularly tricky in unfavorable wind and day time conditions, 

where tree tops and branches might be considerably shifted in individual scans. The distance 

among scanning position in many studies have been set only intuitively, usually in a range from 

10 to 100 m and differed substantially among individual studies (Calders et al., 2015; Puttonen et 
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al., 2013). The issue of effective arrangement of scanner positions in the multiple scanning setup 

was thoroughly studied in the Paper I.     

The paper focused on the effect of occlusion, successful stem recognition rate of trees with DBH 

≥10 cm and effect of forest stand conditions for multiple scanning setup in various primary 

forests. It demonstrated that with the single scan setup the stem recognition rate decrease almost 

linearly with the distance from scanner and reach about 80 % at distance of 15-20 m. However, 

with three additional scans the 80 % recognition rate can be still achieved at the 25-30 m 

distance. The multiple scans thus significantly reduce the sharp decline of the recognition rate at 

further distances from the scanner. For are-wide stem mapping of trees with DBH ≥10 cm the 

most effective distance among scanner positions (i.e. the one with the highest synergic effect) 

appeared to be about 40m. The effect of occlusion was tested separately for terrain and tree 

stems. The results suggest that total occlusion is usually formed the by combination of both 

factors rather than by one of the factors only. However, in sites with rough terrain, the relief 

configuration (especially deep depressions) has a more significant effect of occlusion than 

present tree stems. More detailed information can be found in the PAPER I of this thesis. 

 

 

Fig.  2: Multiple scanning setup used on study site Velká Pleš (10 ha). Point cloud data were reduced to 
display only 1% of all points. Scanning positions are represent by red dots. 
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3. POINT CLOUD PROCESSING 

After data acquisition user have to process scans – align scans and register them to coordinate 

system, select scanned area representing study plot and segment into target objects. Such process 

pipeline is almost universal for any scanning setup where object-oriented processing is followed.  

The first steps – scan alignment, registration and area selection are often solved by scanner 

manufactures that provide special software suited for those tasks. Such software can read binary 

data from scanner, find targets identifying the control points in various scans, find the best match 

of scans and register them to selected coordinate system. After this all is done, a user can export 

point cloud into various formats for further use. This part of process line is quite straightforward 

and thanks to scanner manufactures partly automated using predefined scanning settings.  

Further processing of the point cloud from forest environment is more complicated since the 

target objects (trees) are not parametric, each tree has its specific shape, trees are ingrown into 

other trees and trees and branches are frequently occluded. 

  

3.1. Tree segmentation 

Successful tree segmentation usually precede the tree reconstruction. Selection of all points 

representing given tree is the first really important task in the process line. In present time, tree 

segmentation is conducted either by manual or automated segmentation. Manual segmentation is 

quite simple but time consuming. On contrary, automatic way is very complex task composed of 

numerous interconnected algorithms. Up to present time, the automatic tree segmentation is a 

bottleneck of the process line and a development of highly reliable segmentation algorithm would 

undoubtedly contribute to wider applicability of TLS in forestry in general. 

Alternative approaches can be employed, avoiding the step of tree segmentation itself and instead 

only try to estimate and export selected tree parameter like DBH or tree height e.g. (Bienert et al., 

2006; Brolly and Kiraly, 2009; Maas et al., 2008) mainly using cylindrical fitting, or height 

difference between terrain and the topmost point in its neighborhood.. The first attempts of 

automated parameter segmentation were based on estimation of a circle or cylindrical form of 
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stem (Aschoff and Spiecker, 2004; Pfeifer et al., 2004). Since tree structure is very complex, 

more sophisticated methods based on tree skeleton were developed later (Bremer et al., 2013; 

Livny et al., 2010).  Those simplified approaches however can’t fully exploit the potential of 

detailed and complex TLS data.  

The real breakthrough was made by Raumonen et al. (2013), defining spatially exact small 

patches of point cloud and their merging based on its distance to neighboring patch and its shape. 

Similar approach but with not defined size of the patch was used also by Tao et al. (2015). This 

segmentation approach was independently adopted also in the Paper II (Trochta et al. (2016). It is 

based on point clusters that meets the user-given criteria of point density and minimal distance 

among points. Such clusters are then connected into ‘tree clouds’ based on rules of distance and 

angle among neighboring cluster centroids. In an oak forest with relatively sparse understory this 

procedure reached in average accuracy of 90% of correctly assigned points representing a 

particular tree. The omission and commission error rates were around 3 % for each (tested on 824 

trees segmented both automatically and manually). The segmentation results are comparable to 

those attained by Raumonen et al. (2013) and Tao et al. (2015),  there are still some lacks in 

problematic places such as crossing of branches of two trees, occlusions and mistaking of tree 

base with terrain points through all suggested methods. More testing is needed to prove the 

segmentation reliability also in other forest types and terrain conditions. Prior to individual trees 

the point cloud is also automatically segmented into terrain / vegetation.  For details see the 

section Segmentation of trees (3.2) in the Paper II.  

 

3.2. Tree reconstruction 

Once the individual trees are segmented it´s possible to reconstruct each tree though its important 

parameters. The first tree parameters being extracted were tree position, DBH and tree height as 

usual in forest inventories (Hopkinson et al., 2004; Maas et al., 2008). More parameters can 

follow for tree crown (Bayer et al., 2013; Fernández-Sarría et al., 2013; Seidel et al., 2011; 

Trochta et al., 2016; Zheng and Moskal, 2012) describing its size, LAI, planar projection, 

estimation of crown volume and surface. The issue of tree parameters is also addresses in the 

PAPER II in the section Tree parameters (3.3). It introduces the algorithms employed for 
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extraction of individual tree parameters such as tree base position, DBH, tree height, stem curve, 

tree planar projection and a number of crown parameters. The PAPER II also presents a 

comparison of two principal tree parameters – DBH and tree height - derived from TLS with 

conventional field measurements (section 4.2). In addition, the detailed sensitivity analysis of 

DBH estimation is provided there (section 5).  

 

3.3. Tree modeling 

Tree reconstruction is not only a parametrization of tree, but also a creation of solid 

representation of the object that helps in characterization of tree physiology; inter tree 

interactions and understanding the role of each tree in plot. Detailed models as presented in (Côté 

et al., 2011; Widlowski et al., 2014) can help in estimation of architectural properties and 

topology of trees with high fidelity. Tree parameters can be created automatically based on 

Quantitative Surface Models (QSM) algorithm that can produce detailed tree representation build 

automatically (Calders et al., 2015).  

Most studies focus on the reconstruction and precise volume estimation of trunk, branches or the 

AGB of the whole tree (Calders et al., 2015; Hackenberg et al., 2014; Hauglin et al., 2013; Hosoi 

et al., 2013; Srinivasan et al., 2014). On the contrary, PAPER III (Vrška et al., 2016) introduce 

an original and early attempt of the below ground tree biomass reconstruction and volume 

estimation. Tree roots system of one oak stool in ancient coppice forest of Lipina (Fig. 3) was 

excavated using hand tools, pneumatic drills and an air-spade supersonic nozzle. The soil was 

removed to the underlying bedrock at a maximum depth of 65 cm. Right after uncovering the 

roots the stool was scanned from multiple positions to record the state and architecture of the 

entire system with as much details as possible. Point clouds were aligned, merged and further 

processed in the Geomagic Studio software to create the 3D mesh model of the stool composed 

of seven stems and one snag interconnected by complex underground root-system. With the 

model it was then easy to estimate volume of above-ground and below-ground biomass. The 

mass of root-system was estimated to 1.02 m3 of woody biomass lying below ground. On 

contrary the above-ground biomass was estimated to 2.13 m3 in 7 stems and one snag.  
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Fig.  3 Exposed coppice stool root system (Lipina research plot). The current state was excavated and 
captured by a terrestrial laser scanner and saved as a mesh object for further analysis.  

From known center of the root-system, average distance to the stems and an average annual 

radial increment we concluded that age of the whole system was about 825 years 

(SE ± 145 years). More details are provided in the PAPER III. 

 

3.4. Forest TLS data processing software 

Apart of individual algorithm using for special purpose, a common user appreciate a set of such 

algorithms built into ne stand-alone and application that can provide complete processing of the 

raw point cloud, compute and export tree parameters and visualize point clouds or model 

representations of the trees. In present time a potential user can choose from multiple applications 

that each has its focus on different part of point cloud processing or tree reconstruction. 

One of specialized software is AutoStem (TreeMetrics, 2015), commercial software made for 

forestry purposes developed by TreeMetrics Company. Primary target of TreeMetrics based on 

their web site is to create new technology to preserve the environment and ensure sustainable use 
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of the natural resources. In present time AutoStem is provided only as a service and not as an 

application for own use.  

Another commercial software on the market is LiForest (True Reality Geospatial Solutions, 

2015). LiForest focuses its processing mainly into ALS data from forest environment, but in 

recent version introduced also the processing of TLS data and extraction of basic tree parameters 

like DBH, tree position and tree height.  

Not only commercial software but also development of open source and free applications has 

great potential to take a leading role in TLS data processing. Almost all these applications are 

based on two platforms that handle cloud storage, accessing and various methods for filtering, 

segmenting, etc. –  more general Point Cloud Library (Rusu and Cousins, 2011) and specialized 

CompuTree (Piboule et al., 2015). CompuTree is also a standalone application with possible 

plugins that allow user to segment trees and compute their parameters (DBH, tree height, QSM) 

and their visualization. Various parameters and methods can be computed based on installed 

plugins.  

Similar tree parameters can be estimated in SimpleTree (Hackenberg et al., 2015). This 

application focused on detailed tree reconstruction is based on Point Cloud Library. Tree model is 

composed of detailed branch models with parameters like branch order, branch length, and crown 

volume  

The last (but not least) application is thoroughly described in the PAPER II (Trochta et al., 2016). 

The original 3D Forest application represents “created by foresters to foresters” style of 

application. This application is developed for three-dimensional studies of forest structure and 

dynamics. 3D Forest combines automated methods of terrain and tree segmentation with tree 

reconstruction of position, DBH, tree height, planar area or stem profile. The application can 

describe forest plot in detail of a single tree and its parts as well as interaction of the trees in 

canopy level. This is important as foresters and forest ecologists are actively using new LiDAR 

technologies for inference about a number of important forests structural features including 

vertical biomass distribution, tree allometry and light environments. 3D Forest is a timely 

application designed for this growing field of research. Detailed description of used methods and 

the complete TLS processing pipeline can be found in PAPER II and on web pages 

www.3dforest.eu.  
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4. CONCLUSIONS 

In this Ph.D. thesis the potential of terrestrial laser scanning in forestry and forest ecology 

research was investigated. The three presented studies (PAPERS I-III) guide readers thought the 

processing of TLS data and can help with effective data acquisition, tree segmentation and 

reconstruction. 

By using conventional field measurement techniques such as Field-Map (Černý et al., 2006), the 

stem-position map is ready to use almost instantly after the fieldwork. In contrast, massive data 

processing must be performed after TLS measurements. The point clouds, on the other hand, 

include much more information than necessary for simple stem-position mapping, especially for 

the canopy layer.  

The 3D Forest application presented in the theses contributes to better exploitation this great 

information potential focusing on forest stand description by means of individual trees and their 

mutual spatial arrangement in real 3D space. It allows users to take the advantage of TLS data for 

detailed spatially-oriented forestry and forest ecology studies in a user friendly environment. 

Currently it can provide standard census data such as tree positions, DBHs and heights; it also 

provides more complex tree parameters such as stem curve, convex/concave planar projection, 

crown dimensions, crown volume, surface, center of mass, crown to crown intersections and 

others. In the comparison with other applications the 3D Forest appeared as comparable with the 

best tools world-wide. 

 The advantages of TLS technology revealed also in its unconventional use for reconstruction and 

quantification of the ancient coppice stool root system. TLS allowed quantification of the root 

system biomass, while preserving and documenting its in situ spatial architecture resulting from 

its long-time development.  Combining TLS results with other data brings new insight into the 

complex forest ecosystem and can help in understanding of the complex natural processes taking 

place there. 
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5. SOUHRN 

V této disertační práci jsou zkoumány možnosti využití pozemního laserového skenování v 

lesnictví a ekologii lesa. Tři přiložené studie (PAPER I-III) jsou průvodcem po jednotlivých 

problémových oblastech, které brzdí širší využití pozemního skenování v lesnictví. Tyto 

problémové oblasti jsou jak v počátečním sběru dat, tak i v jejich zpracování.  

Použití běžných metod sběru dat jako je průměrka, výškoměr nebo technologie Field-Map (Černý 

et al., 2006) nám poskytnou potřebné údaje téměř okamžitě nebo jen s malým mezistupněm 

zpracování dat. Naproti tomu pozemní laserové skenování potřebuje velké množství dalšího 

zpracování dat, aby bylo možno dosáhnout podobných výsledků.  Výsledkem ale není jen několik 

základních stromový parametrů. Z pozemního laserového skenování je možné získat velmi 

detailní model stromu i jeho okolí, a spolu se základními parametry i další informace, které jsou 

běžnými způsoby velmi nákladně zjistitelné.    

Aby bylo možno získat detailní informace o jednotlivém stromu nebo jeho části, je potřeba si 

správně zvolit postup sběru dat v terénu. V současné době se nejčastěji používají dva základní 

přístupy – jeden sken na ploše a více skenovacích pozic. Výhodou jednoho skenu z plochy je 

rychlost nastavení a sběru dat. Tento přístup má velké negativum v množství zastíněných míst, a 

tím i nezachycení jednotlivých detailů nebo celých stromů. Použitím více skenů na jedné ploše se 

množství zastíněných míst snižuje, ale vzrůstá náročnost na nastavení skeneru a možnost změny 

povětrnostních podmínek, které výsledek znehodnotí. Z prezentované studie (PAPER I) je patrné, 

že pokud jsou cílem stromy s výčetní tloušťkou nad 10 cm, je možné počítat s úspěšným 

zachycením 85% stromů, pokud budou jednotlivé pozice od sebe vzdáleny 40 m.  

Po pořízení dat je potřeba jednotlivé skeny spojit, registrovat do souřadnicového systému, vybrat 

zájmové území a výsledné mračno bodů zpracovat na jednotlivé stromy. Část z těchto kroků je 

běžně řešena v aplikacích výrobců dodávaných ke skeneru. Pro samotné zpracování jednotlivých 

stromů je již potřeba speciální aplikace a právě pro tento účel je vytvořena a v PAPER II 

prezentována aplikace 3D Forest. Tato aplikace je kolekcí algoritmů, které se osvědčily při 

zpracování dat z TLS. Implementované algoritmy umožňují získat automaticky body 

představující terén, jednotlivé stromy a tyto stromy i dále popsat pomocí jednotlivých parametrů 

jako jsou: pozice stromu, výčetní tloušťka, výška a délka stromu, profil kmene, planární projekce 
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a další korunové parametry. Přesnost výpočtu základních parametrů (výčetní tloušťka, výška) je 

srovnána s měřením běžnými prostředky jako je průměrka nebo výškoměr. Dále je studována i 

přesnost automatické segmentace jednotlivých stromů, kde dosahuje 90% správně přiřazených 

bodů jednotlivým stromům.  

Výsledkem pozemního laserového skenování v lesním prostředí jsou, jak už bylo nastíněno, 

požadované parametry jednotlivých stromů, a také detailní mračno bodů reprezentující daného 

jedince. Toto mračno bodů je možno dále zpracovat a vytvořit tak jasně definovaný objekt, pro 

který je snadné již určit např. objem nebo plochu. Jedním z takových výsledků je i detailní model 

kořenového systému (PAPER III), který odhalil, jak jsou jednotlivé stromy propojeny pod zemí a 

kolik biomasy je tam uloženo nebo jaká byla jeho historie. Díky pozemnímu laserovému 

skenování lze odvodit poměr nadzemní a podzemní biomasy, který tvoří u studovaného 

polykormonu dubu 2:1 ve prospěch nadzemní části. Takový poměr je celkem zásadním zjištěním, 

jelikož běžně se používá poměr 5:1 (Barbaroux et al., 2003). Toto zjištění může pomoci 

například pro zjištění množství zadržených látek jako je dusík, uhlík, vodík nebo kyslík v lesním 

prostředí.  

Výsledky z jednotlivých studií mohou přispět k lepšímu získání podrobných dat o lesním 

ekosystému, pomocí aplikace k detailnímu popisu jedinců i celých lesních porostů.  Ze zjištěných 

informací můžeme lépe porozumět komplexní struktuře a fungování lesního ekosystému a 

zpřesnit dopady lidské činnosti na přírodu a také lépe zajistit udržitelnost hospodaření člověka 

s přírodními zdroji. 
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Abstract: 

With the development of terrestrial laser scanning and applications in forestry, the question arises 

as to how the scanners should be ideally placed for the best possible data acquisition. We 

searched for an optimal scanning distance for recognition of stems in natural beech-dominated 

forests, focusing particularly on the shading effect of tree stems and terrain. Recognised tree 

stems in TLS point clouds were compared with reference stem maps. A GIS based visibility 

simulation was carried out to enhance the quantitative assessment and generalizability of results. 

The analyses also include the additive effect of multiple scanning positions. Single scans only 

have a tree recognition rate above 80% up to a distance of 15 m from the scanner; using at least 

three scanning positions a comparable recognition rate was attained up to 20–25 m. A simulated 

coverage of a beech-dominated natural forest by laser beams using a 40 m square grid of 

scanning positions captured at least half of the stem perimeter for more than 90% of trees with a 

DBH ≥10 cm. In sites with rough terrain, the relief configuration has a more significant effect of 

occlusion than present tree stems. 
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1. INTRODUCTION 

Forest inventories are one of the main tools for decision making for forest managers, policy 

makers, conservation planners and forest scientists. Traditional approaches such as area-wide 

stem-position mapping or statistical inventory methods can provide much of the desirable 

information. Research on forest ecology and dynamics (e.g., Janik et al. 2011; Král et al. 2010a; 

Šebková et al. 2011) are examples of the recent extensive use of such spatially oriented data. 

However, further insight into many questions of forest ecology and management still require 

more detailed studies with a greater use of spatial information. An increase in the speed and 

objectivity of data collection and extraction is thus highly desirable. 

LiDAR (Light Detection And Ranging) technology provides the capacity for detailed mapping of 

3D structures of forests with millimetre accuracy (van Leeuwen & Nieuwenhuis 2010). It has 

great promise for collecting spatial information in forests because of its excellent measurement 

precision, short acquisition time and level of detail. Due to these various advantages, LiDAR has 

been used widely to replace conventional methods of spatially oriented measurement of trees and 

forest structures since 2001 (Dassot et al. 2011). Both platforms of LiDAR data acquisition, 

Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS), have been utilized for this 

purpose. 

ALS is generally used for plot level investigations. The basic characteristics of a forest such as: 

canopy height (Naesset 1997; Parker & Russ 2004), determination of relief under the tree canopy 

(Kraus & Pfeifer 1998), the detection of individual trees (Chen et al. 2006; Heurich 2008), and 

biomass (Popescu 2007) have been successfully derived from ALS data. 

TLS is used to describe forest vegetation at the tree level and is capable of acquiring levels of 

detail far beyond that of which ALS is capable. Basic parameters of individual trees, such as the 

diameter at breast height (DBH) (Bienert et al. 2006; Maas et al. 2008), or tree height (Bienert et 

al. 2007; Király & Brolly 2007) can be derived via this automated method. Other variables of tree 

structure (e.g., crown, stem or whole tree dimensions) can be observed and measured in the point 

cloud by time-consuming manual interpretation (Côté et al. 2009; Fleck et al. 2007; Hopkinson et 

al. 2004), although (semi)-automatic algorithms have recently been developed with various 

degrees of success (Bienert et al. 2007; Côté et al. 2011; Lefsky & McHale 2008). Data 
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describing specific characteristics of individual trees can also be summarized to describe 

characteristics at the plot level, e.g. stem density (Hopkinson et al. 2004), overall volume of 

biomass (Lefsky & McHale 2008; Huang et al. 2008), or the fuel capacity in a forest (García et 

al. 2011). The early applications of TLS in area-wide stem mapping have been also presented 

(Brolly & Kiraly 2009; Hopkinson et al. 2004). More details on the use of terrestrial LiDAR in 

developing a forest inventory can be found in several books, e.g. Vosselman & Maas (2010), or 

in recent reviews by van Leeuwen & Nieuwenhuis (2010) and van Leeuwen et al. (2011).  

Various field conditions can greatly affect the quality and character of data acquired by TLS. 

Weather conditions (e.g., fog, drizzle, rain or even wet surfaces after rain) can cause a significant 

reduction in the resulting point cloud density and measurement range due to the absorption of the 

laser pulse energy by water. Wind that moves leaves, branches and even tree trunks is a limiting 

factor for precise measurements. Leaves are also a physical obstacle for laser beams penetrating 

the forest stand and decrease the attainable range for measurement. On the other hand, the 

presence of leaves is beneficial when the actual shape of individual tree crowns is investigated 

(e.g. Rutzinger et al. 2010). Thus, studies that combine the measurement of leaf-off and leaf-on 

states are common (e.g., Clawges et al. 2007; Hill & Broughton 2009; Kim et al. 2009). For area-

wide forest measurements (e.g., complete census-stem position mapping) that are preferably 

carried out when leaves have dropped, the shading of stems and branches is another key limiting 

factor. The presence of rough terrain appears to be another pronounced occlusive effect in TLS, 

which can significantly reduce the visibility of tree individuals in the surrounding area. Although 

numerous forestry applications have employed TLS, these limiting conditions have not yet been 

adequately studied. To some extent, the increase of scanning positions can overcome the effect of 

occlusion, although at increased cost both in terms of labour as well as financially (van Leeuwen 

& Nieuwenhuis 2010). As general rules of the configuration of optimal scanners have not yet 

been established (Hopkinson et al. 2004), the positioning of TLS stations is usually selected 

subjectively, depending on local site conditions and plot visibility. This may lead to sub-optimal 

coverage of a target area that is detected only in post-processing, i.e., too late to effectively 

correct the problem. Moreover, subjective scan-head locations might lead to biased sampling. 

In this study we focus on the optimal spatial arrangement of scanning positions, taking into 

account the shading effect of tree stems and relief. For natural forests that have often been 



 

23 

preserved on sites with rugged terrain and that are characterised by a rich stand structure, these 

two limiting factors are of high importance. We addressed the following fundamental questions: 

What is an effective acquisition range for recognition of stems from a single TLS position? What 

is the ‘synergic effect’ of multiple scans and what distance between scanning positions is best for 

capturing stems? How should the TLS ideally be spaced in the forest for the best possible data 

acquisition? What is the shading effect of trees and relief? Can TLS be used for a complete 

census (stem mapping) if placed in a regular grid? To answer these questions we compared TLS 

data to reference stem maps and supported and extended the findings through visibility 

modelling. 

 

2. MATERIAL AND METHODS 

2.1. Study sites and data acquisition 

Our research took place in beech-dominated natural forests the Žofínský prales and Boubínský 

prales National Nature Reserves, Czech Republic (hereafter referred to as the Žofín and Boubín 

forests, respectively). 

 



 

24 

 

Figure 1: Study sites – a) Boubín forest and b) Žofín forest with 10 m contours and location in the 
Czech Republic . Each site with four study plots measured by TLS (grey areas) and marked positions of 

LiDAR scanner (black dots). 

 The core area of the Žofín forest (74,5 ha) has been under strict protection since 1838. The 

altitude ranges from 735 to 825 m. The mean slope of the study site is about 8.8 °, and the mean 

local altitudinal differences within a 10 m radius are about 3 m (see description of relief filters 

below). Mean annual precipitation varies between 800 and 950 mm and the mean annual 

temperature is 4.3 °C (Průša 1985). According to the last census carried out in 2008, the mean 

density of living trees with DBH ≥ 10 cm is about 226 per hectare, mean basal area 36.05 m2/ha, 

and with mean volume 584.62 m3/ha. The study site is composed mainly of European beech 

(Fagus sylvatica L; 65%.), Norway spruce (Picea abies (L.) Karsten; 33%) and an admixture of 

silver fir (Abies alba Mill.; less than 2%).  

The Boubín forest (45.1 ha) has also been under strict protection since 1858. The altitude of the 

Boubín forest ranges from 930 to 1110 m, the mean slope is 15.5 ° and local altitudinal 

differences within 10 m radius are on average 5.5 m. The mean annual temperature is 4.0 °C. 

(Vrška et al. 2001). According to last census carried out in 2010, the mean stand density is about 
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204 living trees per hectare, mean basal area 41.39 m2/ha, with mean volume 659.40 m3/ha. 

Similarly as in the Žofín forest, the Boubín forest is composed mainly of European beech (54%.), 

Norway spruce (44%) and an admixture of silver fir (2%; as calculated according to tree counts). 

  

 

Figure 2: DBH distribution of living trees for the Boubín and Žofín study sites. 

The DBH distributions of the study sites (Fig. 2) have reverse J-shaped (Žofín) or rotation 

sigmoid (Boubín) curves typical for European natural beech forests (Westphal et al. 2006). 

However, the stand structure of both sites is locally highly variable (Král et al. 2010a), formed by 

a fine-scale mosaic of patches in different phases of forest development, which implies that local 

DBH distributions can be right skewed, bell-shaped or bi-modal (Král et al. 2010b). Also, the 

understory varies locally with significant patches of natural regeneration occurring mostly in 

canopy gaps, while the presence of shrubs and tall herbs is quite scarce.  

 All standing and downed trees of a DBH ≥ 10 cm within the core areas of both study sites have 

previously been mapped by conventional field measurements using Field-Map technology 

(computer aided field data collection equipment composed of software, field computer, laser 

rangefinder, inclinometer and electronic compass and angle encoder – for details see 

www.fieldmap.cz, Pecheur el al. 2010). The resulting stem-position maps with linked databases 

were used as reference data for the LiDAR data assessment (the conventional stem mapping and 

TLS positionally aligned in decimetres, which was sufficient for comparing the presence/absence 

of individual trees in both datasets). 

Within both study sites, four permanent plots were established in the 1970s as transects for 

detailed studies of temporal changes in vertical stand structure (Fig. 1). These plots were re-
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measured in 2010 by TLS using the Optech ILRIS-36D laser scanner with an automated pan/tilt 

base mounted on a tripod. The scanner has a dynamic scanning range of 3–1,500 m for an 80% 

reflectivity target, 3–800 m for a 20% reflectivity target and 3–350 m for a 4% reflectivity target, 

with a positional accuracy of 8 mm at a distance of 100 m. Thanks to the automated pan/tilt base, 

the scanner can acquire data from -20 ° through 90 ° (zenith) x 360 ° with no loss of accuracy or 

functionality (Optech, 2009). The scans were acquired in early spring when the deciduous trees 

had no leaves and when the snow had already melted off. These conditions ensured the best 

possible visibility of stems. In the Žofín forest, one plot was scanned from 3 scanning positions 

and three plots were scanned using 4 scanning positions. In the Boubín forest, all four plots were 

scanned using 4 scanning positions (Fig. 1). The distance among scanning positions within plots 

varied from 20 to 110 m for scanning pairs, with the mean distance among four scans ranging 

from 40 to 85 m. The area fully scanned at one plot was on average about 1.2 ha. The scanning 

resolution (density) was set to 2 cm spacing for a 20 m distance from the scanner. Data acquired 

at each plot were consequently fitted together using artificial targets on a geodetically-measured 

grid (44 m per side) and cloud-to-cloud fitting using ICP algorithm, then registered in the S-JTSK 

Czech national coordinate system with a mean positional error varying between 6.5–9.8 cm for 

the Žofín plots and from 3.1–6.9 cm for the Boubín plots. For each scan a horizontal layer (slice) 

of points 120–140 cm explicitly above the derived terrain was created for recognition of the trees 

and their DBH.  

In order to examine the effects of terrain on stem recognition explicitly, the roughness and 

morphology of the relief of both study sites was quantified by two focal filters at several spatial 

scales. The range filter calculates the difference between the largest and smallest value of DEM 

in a given neighbourhood. When normalized by filter diameter, the resulting values represent the 

average slope percentage at the scale of the filter extent. The slope shape filter (Kimball & 

Weihrauch 2000) estimates the convexity/concavity of terrain morphology from DEM. It is 

calculated by applying a pixel kernel that has -1 as the coefficient at the N,S,E and W borders of 

the kernel, 4 in the middle (the target pixel) and 0 everywhere else. The result is a raster layer in 

which negative values represent concave landforms (pits) and positive values represent convex 

landforms (mounds). If normalized by the number of directions used and the filter radius, the 

absolute values represent the average of the slope percentage from the target pixel in all 

examined directions at the distance of the filter radius employed (Kimball & Weihrauch 2000). In 
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other words, it also denotes the ‘acuteness’ of the given morphological relief form (Samonil et al. 

2008). For both filters the 10 m radius seemed to be the most indicative of the relief roughness, 

and thus was used in subsequent statistical evaluations. 

 

2.2. Stem identification and validation 

Firstly, we observed what proportion of standing trees could be recognised from each of the 

scanning positions and how that recognition is affected by the distance from the scanner.  Eight 

concentric circles were made at 5 m radius steps around each scanning position as follows: r1 = 5 

m, r2 = 10 m, …., r8 = 40 m. The circles formed seven 5 m lags (i.e., 5–10 m, … 35–40 m; see 

Table 1). The “zero” lag, 0–5 m is not included in the analyses because the ILRIS-3D registers 

the closest point at a distance of 3 m from the scanner. In these lags the trees recognised by visual 

interpretation from LiDAR data were counted and compared with the number of existing trees in 

the reference data (stem-position map measured by Field-Map). The stem interpretation was 

carried out on the top plan view with a sliced point cloud at a height of 120-140 cm above terrain. 

The tree stems thus appeared as full or partial rings. The presence of at least an approximate 

semicircle was set as the criteria for recognizing the presence of a tree stem. The ratio of 

recognised trees from the LiDAR data (NL) to present trees in the reference data (NR ) for each 

lag was used as a measure of successful tree recognition (R) by LiDAR, i.e., R lag X = NL lag X / NR 

lag X (%); where X is the number of the lag. The 90% nonparametric bias-corrected and 

accelerated (Bca) confidence intervals based on 1000 bootstrap replications (Efron & Tibshirani, 

1993) were constructed for mean values of LiDAR tree recognition for each lag and number of 

scanning positions. 

For each of the seven study plots (grey areas in Fig. 1) scanned from 4 scanning positions, there 

are six unique scanning position pairs, four scanning position triplets and one tetrad of scanning 

positions.  In the one study plot scanned from 3 scanning positions there are three scanning 

position pairs and one scanning position triplet. Therefore, the number of real observations m (the 

count of single scanning positions and all unique combinations of multiple scanning positions) 

varies according to the number of combined scanning positions within the study plots (Table 1).  
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Table 1: Number of real observations m (count of single scanning positions and unique combinations 
of multiple scanning positions) and appropriate sums of observed trees in the reference data for a 

given lag. 

Lag 

1 scan 2 scans 3 scans 4 scans 

[m=31] [m=45] [m=29] [m=7] 

5-10 142 401 414 136 

10-15 255 693 735 240 

15-20 322 899 930 304 

20-25 425 1152 1221 398 

25-30 480 1316 1382 451 

30-35 620 1670 1758 569 

35-40 655 1785 1871 608 

 

The increased recognition of trees using data from additional scanning positions depends on the 

distance between scanning positions. Scans which are too close together have similar viewing 

angles of the same trees, and scans too far apart sight at different trees. Therefore, to evaluate the 

effect of mutual scanning position spacing, we assessed the dependency of increased recognition 

on the distance between scanning positions whereby the mean distance of three or more scans 

was used). The increase of tree recognition (%) was determined by comparing the sum of the 

trees recognised separately from individual scans, to the number of trees recognised from merged 

scans. 

 

2.3. Modelling tree stem visibility 

The results of the two previous analyses were tested and extended by GIS modelling at the 

Boubín study site, selected because it has higher variability in terrain conditions. We simulated 

the visibility of tree stems from TLS positions with an estimated optimal distance and lay out. 

Based on the results of previous analysis (percentage of tree detection in point clouds depending 

on the distance and number of scans), a regular (squared) 40 m grid of scanning positions was 
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designed. If there was a spatial coincidence with a standing tree, the scanning position was 

shifted slightly (as would be the case in real field measurements). The Viewshed tool in the 

Spatial Analyst for ArcGIS 10 was used to determine the raster surface locations visible to a 

particular set of observer features. To determine the visibility of a target cell, each cell between 

the viewpoint cell and target cell was examined for line of sight. When there were cells of higher 

value between the viewpoint and the target cells, this meant that the line of sight was blocked, in 

which case the target cell was determined not to be part of the viewshed. If line of sight was not 

blocked then this cell was included in the viewshed (Kim et al., 2004).  

For the modelling, the stem-position map (trees of DBH ≥10 cm) from conventional field 

measurements and a digital elevation model were used, and is thus based on an existing actual 

dataset. The 296 simulated scanning positions and more than 11,000 standing trees in the 

reference data were entered into the analysis. The height of the observation towers (representing 

TLS sensors) was set at 1.8 m and the maximal visible range from one scanning position set at 

100 m. For the purpose of visibility modelling, the stems were represented by cylinders of width 

equal to the DBH. For the final tree visibility assessment, the perimeter of each stem was divided 

in ArcGis by default into 37 points. Values of the visibility raster resulting from the viewshed 

analysis were extracted into these points and thus the ratio of the visible and non-visible parts of 

the perimeter of each tree was calculated. In order to augment the portability of the results to 

other sites, quantitative measures of the stand structure and local relief conditions were compared 

to corresponding visibility rates. All visibility models were created with a 5 cm spatial resolution. 

Initially, the effect of relief was neglected (a plane was used) so that the results only represented 

the net shading of stems with a DBH ≥ 10 cm. The influence of the stand variables local number 

of trees, number of mature trees, volume of biomass and basal area (BA) of standing trees was 

tested on a 40 m grid defined by the scanner positions located at the corners of the grid. The 

mean visibility of stems within a grid cell was correlated with the local hectare-based variables 

for that cell. The Pearson’s correlation coefficient and coefficient of determination were 

calculated. This comparison was repeated on an 80 m grid (cells of the 40 m grid were grouped 

by 4) in order to test the effect on a coarser scale.  

A subsequent analysis took into account the pure shading effect of the terrain only. The detailed 

digital elevation model (DEM) of the Boubín forest used was interpolated from the Z values of 
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tree coordinates of the stem map that provides a dense point set of known coordinates (average 

nearest neighbour distance is about 3.3 m). The rasters resulting from the normalized terrain 

morphology filters applied to the DEM were divided into 5 relative intervals from lowest to 

highest according to the distributions of their values. The values of the range filter were split into 

the following categories: very low (values less than 20), low (20-25), medium (25-31), high (31-

40) and very high (above 40), representing the relative classes of increasing local terrain 

differences. The values of the shape filter were split into their relative classes representing the 

local relief shapes as follows: deep pits (values less than -4), moderate pits (from -4 to -1), planes 

(from -1 to 1), moderate mounds (from 1 to 4) and high mounds (above 4). The modelled 

visibility of the ground was sampled in a 5 m point grid and separated into each of the defined 

relief morphology classes. The differences in visibility were tested by one-factorial ANOVA and 

Tukey’s Honestly Significant Differences Test for significant differences in all pair-wise 

comparisons. Finally, the composed (real) shading effect of relief and stems for the whole study 

site was quantified.  

 

3. RESULTS 

3.1. Distance from the scanner 

Figure 3 shows the percentage of successfully recognised trees in a given distance interval (lag) 

from the scanner, using mean values and a BCa 90% confidence interval. Single scans only have 

a recognition rate above 80% for up to 15 m from the scanner. At further distances from the 

scanner (35-40 m away), recognition rapidly and almost linearly decreases to 40–50%. It is 

apparent that multiple scanning positions significantly improve the percentage of recognised 

trees, especially at greater distances from the scanner. By employing at least two scanning 

positions, 80% of trees are still recognised at 15–20 m. By using at least three scans, there is a 

comparable recognition rate of approximately 80% at 20–25 m and greater. Similarly, with the 

use of at least three scans, 65% of trees are recognised at 35–40 m. 
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Figure 3: Successfully recognized trees according to the number of scans divided into lags (distance 
from the scanner).  Points – bootstrap mean values; whiskers – bootstrap 90% confidence interval. 

  

3.2. Distances among scanners 

Not only does the number of scanning positions significantly affect successful tree recognition, 

but the distance between them also has great importance. Figure 4 shows the relative impact of an 

additional scan at a given distance on tree recognition. The increase in tree recognition (which we 

also call a ‘synergic effect’) was defined as the percentage increase of the number of recognised 

trees in merged multiple scans, compared with the number of recognised trees in separated scans. 

A statistically significant relationship was found for scanning pairs only; the synergic effect 

markedly decreased with increasing distance (p < 0.001). The highest increase in tree recognition 

(about 20%) was detected for inter-scanner distances of about 40 m, while the lowest 

(insignificant) increase was at distances above 110 m. The triplets and tetrads of scanning 

positions exhibit no significant relationship between the synergic effect and inter-scanner 

distance. 
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Figure 4: The increase of tree recognition (%) merging two scans in relation to the inter-scanner 
distance. 

 

3.3. Visibility modeling 

GIS modelling of tree visibility for the whole Boubín forest (45.1 ha) was carried out using a 

40 m regular grid of scanning positions. Such spacing should, according to the previous analysis, 

ensure at least 80% success in tree recognition (i.e. trees were well visible).  

 

Figure 5: Modelled visibility of standing trees (DBH ≥ 10 cm) in Boubín from 296 regularly spaced 
scanning positions arranged in a 40 m square grid; the shading effect of relief was neglected. Grey bars 
– the tree counts (left axis); black line – the cumulative cumulative (from right to left) percentage of all 

standing trees (right axis). 
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When the shading effect of relief was not taken into account (i.e. a plane was used), 98.8% of all 

trees were demonstrated as having at least 50% of the stem perimeter visible (Fig. 5). Almost 

4500 trees (i.e., 40%) were completely visible, and out of the 132 potentially unrecognisable trees 

(those exhibiting less than 50% of the stem perimeter) only 16 trees were completely undetected. 

No significant effect of all tested stand variables on the local visibility of trees was detected in the 

40 m or the 80 m grids. The local tree density, basal area, volume and density of mature trees 

were not correlated with the proportion of well-visible trees, which in all grid cells always 

exceeded 98% detection.  

 

 

Figure 6: Modelled visibility of all trees in Boubín from 296 regularly spaced scanning positions 
arranged in a 40 m square grid; combined shading effect of stems and relief (real conditions). Grey bars 

– the tree counts (left axis); black line – the cumulative 

 

When the shading effects of stems and terrain were combined, a total of 90.7% of standing trees 

were shown to have at least 50% of the stem perimeter visible (Fig.6). Only 3.4% of stems were 

completely visible and of the 1048 potentially unrecognised trees, only the 3% were completely 

undetected. The frequency of undetected trees seems generally to decrease slightly with 

increasing DBH class, mainly due to the proportion of completely missed trees (Fig. 7). 
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Figure 7: Proportion of potentially unrecognized trees in visibility modelling across 10 cm DBH 
classes; combined shading effect of stems and relief. Unrecognised trees are divided into missing (all 
of the stem perimeter is in shadow) and poorly visible (less than 50% of the stem perimeter is visible). 

Bars refer to the number of trees in a given DBH class (left axis); the lines refer to the percentage of 
poorly visible and missing trees (right axis). 

 

We also compared the pure shading effect of stems, terrain and their combination by comparing 

the number of scanners targeting the forest ground (see Fig. 8). In the Boubín forest the stems 

have a smaller shading effect in comparison with bare terrain. Although some parts of the site 

were targeted maximally by ‘only’ 14 scanners, there was only 0.01 ha of pure shadow 

(i.e. places not covered by any scanner) and all points within the site were on average detected by 

6.1 scanners. The shading effect of terrain is more variable, although the mean scanner coverage 

is comparable (i.e. average point detection by 5.9 scanners). The coverage ranges from 0 (on 0.84 

ha) up to 19 scanners. Thus, the pure shadow is much higher even though the maximum scanner 

coverage is also higher. The combined shadow of stems and terrain cover ca. 2.3 ha, which is 

about 5% of the study site. On average, the entire site in this case, is covered by 3.2 scanners.  
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Figure 8: Number of scanners targeting forest ground in the visibility model when the effect of 
occlusion of terrain, stems and their combination is applied. 

 

The pure shading effect of terrain was further analysed using the quantitative measures of local 

relief conditions. Following significant ANOVA results, post-hoc Tukey tests revealed 

significant differences between the mean values of visibility among most classes of local terrain 

differences and all local relief shapes. As expected, increasing local terrain differences gradually 

decrease the mean number of scanners targeting the forest ground from about 7.5 scanners to less 

than 5 scanners (Fig. 9a). They also increase the proportion of pure shadow from 0.4% to 5% 

(Table 2). The effect of local relief shape is a bit different (Fig. 9b). In particular, the presence of 

pits especially points to a decrease in the mean visibility of the ground from about 7 scanners on 

planes and mounds to less than 2.5 in deep pits. Also, the proportion of pure shadow in deep pits 

was markedly higher (12.2%) in comparison to all other relief shapes (less than 1% of pure 

shadow).  
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Figure 9: The mean number of scanners targeting forest ground depending on a) local terrain 
differences and b) the local relief shapes. 

 

Table 2: Proportion of pure shadow (i.e. no scanner is targeting the ground) depending on local terrain 
differences and relief shapes. 

Local terrain differences 

very low low medium; high very high 

0,4% 0,8% 1,3% 1,6% 5,0% 

Local relief shapes 

deep pits moderate pits plane moderate mounds high mounds 

12,2% 1,0% 0,4% 0,2% 0,3% 

 

 

4. DISCUSSION  

Using TLS in natural forests poses various complications due to complex stand structures such as 

shadows behind trees, heterogeneous tree density and the distribution of stems and branches in 

space, as well as due to relief morphology. All of these aspects affect the successful recognition 

of trees.  
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4.1. Distance from the scanner 

The main relationship observed is simple and unsurprising; the closer a tree is to the scanner, the 

better its recognition (see Fig. 3). This better recognition at close ranges is most likely due to less 

shadowing. The scanning resolution at these distances is still sufficient and therefore not as 

critical. The only exception is the ‘zero lag’ (0–5 m), where the tree capture is reduced because of 

the 3 m minimum scanning range of the ILRIS 3D scanner. Therefore, this lag was not included 

in the analysis. This effect can be eliminated using alternative scanning devices with a lower 

minimum range (e.g. a ScanStation C10 with a minimum range of 0.1 m).  

The second relationship observed was also predictable; the more scanners that target an area the 

better the rate of tree recognition in the area. As in the first case, the benefit of this analysis is the 

explicit quantification of the expected relationship of the number as well as the distance of the 

scanners to the rate of recognition. The acceptable resolution rate (above 80%) employing four 

scanning positions is achieved at distances shorter than 25 m. These results were taken into 

consideration in designing the visibility analysis. 

The higher observed variance (and wider confidence interval) for one scanning position can be 

explained by the specific spatial arrangement of trees and their shadows around a single scanner. 

The use of additional scanning positions reduced the effect of the unique spatial arrangement of 

trees, thereby resulting in a narrower confidence interval. The wider confidence interval of a tree 

recognition rate for cases when four scanning positions are combined is the result of the low 

number of real observations (only 7 tetrads of scans entered the bootstrap – see Table 1).  

The question still remains as to the additive effect of further and more distant scanning positions. 

By using the proposed 40 m grid of scanning positions and realistic effective range of 100 m, one 

place, in theory, can be targeted by up to 21 scans. Under real conditions some places were 

visible by 11 scanners (see Fig. 8). Supposing that all the partial point clouds are aligned 

properly, then further improvement in tree recognition is anticipated, as supported by the results 

of visibility modelling (see below). 
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4.2. Distance between scanners 

The mutual spatial arrangement and spacing of scanning positions is another important aspect of 

effective wide-scale TLS of stand structure. Adjacent scanning positions mutually complement 

each other and therefore only partially captured trees in individual scans can be recognised when 

individual point clouds are merged. Consequently, the number of recognised trees in merged 

multiple scans is higher when compared with the number of successfully recognised trees in 

identical scans that are analysed separately, creating a kind of ‘synergic effect’ (see Fig. 4). 

However, scanning positions that are too close together have similar viewing angles of the same 

trees and therefore do not complement each other in the detection of the cylindrical shape of a 

stem that is necessary for successful recognition. Scanning positions that are too far apart detect 

different trees rather than cross-recognising common trees from different viewing angles. The 

synergic effect of multiple scanning positions is in both cases low, although for different reasons. 

Naturally, there is some optimal range of scanner spacing where adjacent scans effectively 

mutually complement each other. Theoretically, for the full range of possible inter-scanner 

distances, the synergic effect should exhibit a ‘bell-shaped’ curve. Instead however, in Fig. 4, a 

linear decreasing trend is observed for scan pairs. One can conclude that the tested inter-scanner 

distances are behind the peak of the theoretically expected bell-shaped curve. In other words, the 

spacing of the scanners (21–115 m) was probably always within a reasonable range, and 

unreasonably close scanning positions were not used during the field measurements and therefore 

are missing from the chart. It would appear that the inter-scanner spacing of about 40 m shows 

evidence of the highest synergic effect.  

In the case of 3 and 4 scans, no significant relationship was observed between their spacing 

(distance) and the synergic effect. This may be attributable to the fact that the mean distance 

among multiple scanners was used, which most likely weakened any observable dependence.  

 

4.3. Visibility simulation 

The spacing of scanning positions for the visibility analysis was designed to match the results of 

the preceding analyses. Thus, a 40 m square grid of scanning positions was tested, ensuring that 
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each part of the grid can theoretically be targeted from the 4 closest scanning positions with a 

maximum nearest distance of 28.3 m as well as by up to 17 additional surrounding positions 

within the 100 m visible range. Moreover, the regular distribution of scanning positions to some 

extent reduces the variability of point cloud density caused by the variable distance of scanned 

objects from the scanner. Considering the angular nature of laser scanner resolution and the 

actual scanning resolution used in the field (0.01 rad), the reasonable scanning range was 

probably less than that which was actually used  (i.e., 10 cm point density at 100 m). In contrast, 

the physical range of the scanner was actually much higher (in our case ca. 800 m for a 20% 

reflectivity target). As the reasonable (effective) scanning range can be adjusted to some extent 

by adjusting the scanning resolution, the 100 m distance was ultimately setup as the maximal 

visible range for the viewshed analysis, which is also in accordance with the assumed acquisition 

range of TLS in a forest environment (Hopkinson et al. 2004; Jupp et al. 2009; van Leeuwen et 

al. 2011).  

The visibility modelling assessed the real viewing conditions and real shading effect of standing 

stems and terrain of the Boubín study site (45 ha). The interpretation of the analysis, however, 

should be cautious. The visibility of particular objects is essential but not a sufficient condition of 

valid object detection. Strictly speaking, the fact that a tree is visible from a scanning position 

does not necessarily mean that it will be correctly recognised in the point cloud, which may 

potentially be attributable to insufficient point density or to the detection of only a small part of 

the stem perimeter. Therefore, only trees with at least half the stem perimeter visible were likely 

to be recognised. In these cases, the DBH can be measured directly, although it could also be 

determined by fitting a circle to a smaller part of the stem perimeter (e.g. Aschoff, 2004). 

When the net shading effect of tree stems was assessed by approximating the terrain as a plane, 

nearly 99% of all trees were likely to be recognised (Fig. 5). Only 132 of the stems were missed 

throughout the whole study site. The percentage of directly visible trees was not dependant on the 

local stand variables tested (tree density, BA and volume). The arrangement of scanners in a 40 

m grid on a planar surface is probably dense enough to eliminate most of the tree shadows if a 

visibility range of 100 m is applied (i.e. if a shorter scanning range had been simulated this 

relation would more likely have been detected). In the case of the real composed shading effect of 

relief and stems, about 90% of trees were still likely to be recognised (Fig.6). Comparing the area 
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of pure shadow, the effect of occlusion for relief was 50 times higher than the effect of occlusion 

for stems (Fig. 8). The variation in relief thus proved to be a very important aspect of visibility. 

Although this aspect is unique for each study site, such results indicate that TLS spacing could be 

sparser in flat forests (depending on the presence and density of the understory). Interestingly, the 

total effect of occlusion was more than 3 times higher than the sum of the separate shadows of 

stems and terrain. While the shading effect of stems is more uniform throughout the study area, 

the relief exhibits places of both poor visibility (particularly with the occurrence of pits) and 

excellent visibility, though occasionally high levels of visibility may be obscured by stems when 

both effects are combined. The overall estimated recognition rate resulting from the visibility 

analysis is about 10% higher compared with the results of point cloud interpretation (Fig. 3). This 

can be attributed to the additive effect of further scanning positions (up to 17 additional 

surrounding scanning positions within the 100 m range used), and to the fact that visibility 

modelling only takes into account the shading effect of terrain and tree stems above 10 cm DBH, 

while in real conditions there are other objects that might also reduce visibility. 

In terms of applicability, we should therefore bear in mind that other shading effects (e.g. the 

presence of lying deadwood), as well as that of areas of dense natural regeneration of trees under 

the 10 cm DBH threshold are not included in the analysis. In any case, visibility modelling 

appears to be a useful tool for planning extensive TLS measurements in forest ecosystems. If 

existing data of the study site is available, such as a DEM and/or an old stem-position map, one 

could predict the minimal spacing of scanner positions to cover a particular study site (e.g., Figs. 

6 and 7). This could be accomplished in a relatively short period of time (it took us 25 hours for a 

visibility analysis of 45 ha). Performing an iterative visibility analysis in terms of changing 

scanner spacing, the optimal spatial arrangement of scanning positions for a particular site can be 

estimated prior to commencing field work. Moreover, the effects of terrain occlusion and tree 

stems can be isolated and quantified depending on the local terrain and forest stand conditions. 

Keeping the prescribed 40 m scanner spacing and 100 m visibility range, site visibility might be 

quickly and easily approximated from ancillary data using above described relations (Fig. 9, 

Table 2). As the local stand variables do not significantly change the proportion of well-visible 

trees in the model, a quick approximation can be performed with only the site’s DEM.  
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5. CONCLUSIONS 

Due to the peculiarities of both field measurement approaches, TLS methodology and 

conventional (Field-Map, Peucheur et al. 2010) stem mapping are not directly comparable. In the 

case of traditional stem mapping, much of the interpretation work is carried out in the field, 

whereas TLS field measurements only produce huge amounts of raw data. Keeping these 

differences in mind, it is not surprising that the TLS field work in itself is far less labour-

intensive and faster than conventional stem mapping. For example, the Boubín study site was 

measured in 155 field days by a group of 3 people using Field-Map devices (www.fieldmap.cz). 

The TLS measurement could be done in 888 hours (111 days with 8 hour shifts) using the ILRIS 

36D and 296 scanning positions. These estimates assume that the net scanning time of one 

hemisphere can be calculated in about 2 hours plus about 1 additional hour necessary to transfer 

among scanning positions, and for the adjustment of scanners and the supporting tripod, etc.). 

Similarly, this could be performed in 43 days by a device with a higher scanning frequency (e.g., 

the ScanStation C10 with which the net scanning time of one hemisphere can be performed in ca. 

10 minutes using the same scanning resolution).  

In the case of using conventional field measurement techniques, the stem map is ready to use 

almost instantly after the fieldwork. In contrast, massive data processing must be performed after 

TLS measurements. This includes the fitting and merging or aligning of individual point clouds, 

registering in the particular coordinate system, and particularly point cloud segmentation with 

backward field verification. The point clouds, on the other hand, include much more information 

than necessary for simple stem-position mapping, especially for the canopy layer. The data can 

be used for precise DEM and DSM (digital surface model) or DCM (digital canopy model) 

extraction, gap fraction estimates of the whole study site, detailed descriptions and quantification 

of stand structure including suppressed trees and sub-canopy regeneration, measurement of the 

majority of individual tree heights, etc. (see van Leeuwen & Nieuwenhuis 2010). As forest 

dynamics should be regarded as a three-dimensional process (Falkowski et al. 2009), the above 

analyses could significantly improve our understanding of the underlying developmental and 

analytical processes. 
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It is unlikely that potential of TLS data would be fully exploited on extensive areas by manual 

interpretation, as it would be too labour-intensive and too costly to carry out. The LiDAR point 

cloud data do offer the potential for automated tree identification and counting and location 

estimation (van Leeuwen et al. 2011) but in forest areas other than uniform single-tier plantations 

this process would require some kind of sophisticated feature recognition and extraction process 

(Hopkinson et al. 2004). This being the case, there is a need for researchers to develop point 

cloud processing algorithms for automatic object recognition, classification and measurements. 

The successful incorporation of these algorithms in a processing chain could significantly 

enhance the speed and efficiency of point cloud ‘data mining’. However, a thorough labour-

consumption analysis of the complete processing chain of the stem mapping has yet to be 

undertaken. It would seem that the greatest advantage of TLS will be in the multiple utilisations 

of point clouds for a range of analyses, rather than in expediting the implementation of fast and 

easy stem mapping alone.  
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Abstract  

Terrestrial laser scanning (TLS) is a powerful technology for capturing the three-dimensional 

structure of forests with a high level of detail and accuracy. Over the last decade many algorithms 

have been developed to extract various tree parameters from TLS data.  

Here we present 3D Forest, an open-source non platform specific software application with an 

easy-to-use GUI with compilation of algorithms focused on forest environment and tree 

parameters extraction. The current version (0.4) extracts important parameters of forest structure 

from TLS data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as 

well as more advanced parameters such as tree planar projections, stem profiles or detailed crown 

parameters including convex and concave crown surface and volume. Moreover, 3D Forest 

provides quantitative measures of between-crown interactions and their real arrangement in 3D 

space. We present new method of automatic tree segmentation algorithm and crown 

segmentation. Comparison with field data measurement show no significant difference in 

measuring DBH or tree height using 3D forest. 
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1. INTRODUCTION 

Big part of forest ecosystem research is based on spatially oriented data. Research on forest 

dynamics commonly makes use of large census plots, where the position and size of every tree 

individual is measured and recorded (Anderson-Teixeira et al., 2014). These observations are 

fundamentally two-dimensional, trees being represented as points with X, Y coordinates of the 

tree base and other parameters (e.g. species, DBH, height) only recorded in a database. However, 

forests are intrinsically three-dimensional systems. Canopy disturbances, tree regeneration, tree 

growth and competition (especially aboveground competition for light) all take place in real 

space and time. These processes cannot be explicitly represented in two-dimensional forest plots.   

The technology of terrestrial laser scanning (TLS) undoubtedly has the potential to change this 

state of affairs and bring real 3D insights to research in forest ecology and dynamics. It has great 

promise for collecting spatial information in forests because of its excellent measurement 

precision, short acquisition time, and level of detail (van Leeuwen and Nieuwenhuis, 2010). TLS 

is capable of acquiring levels of detail far beyond the capabilities of airborne laser scanning (Côté 

et al., 2012; Hackenberg et al., 2014), and thus may be used to describe forest stand vegetation at 

the level of individual trees including juvenile sub-canopy trees (Seidel et al., 2011a). 

 The output of TLS data preprocessing are registered and aligned point clouds with millions of 

points oriented in 3D space with millimeter accuracy. This specific data format requires specific 

methods of processing. Due to the extensive amounts of data and their high information potential, 

the automated processing of TLS point clouds is of crucial importance. Numerous algorithms 

have been introduced during past decade(s), with early studies focusing on basic tree parameters 

such as tree height, DBH and position (Maas et al., 2008) and recent works dealing with more 

advanced issues such as crown shape and dimensions (Metz et al., 2013), light propagation in 

forest gaps (Seidel et al., 2015) and individual-specific estimates of woody biomass (Calders et 

al., 2015). The recent development of several applications for extraction of various tree 

parameters from TLS point clouds (e.g. SimpleTree (Hackenberg et al., 2015), CompuTree 

(Piboule et al., 2015), Liforest (True Reality Geospatial Solutions, 2015) or AutoStem 

(TreeMetrics, 2015)) prove that using TLS has great potential to help foresters and forest 

researcher in detailed tree parametrization.  
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Therefore, we introduce 3D Forest, a software application for describing forest 3D structure 

based on tree parameters. The application is not platform-specific, and has an easy-to-use 

graphical interface also suitable for non-experts in TLS data processing. It provides a free, open-

source solution for computing the following tree parameters: tree base position, DBH, tree height, 

stem curve, tree planar projection and crown parameters like: crown centroid, crown base, height, 

crown volume and surface using convex hull or concave hull or volume of crown intersection. It 

also produces a detailed DTM of the study plot.  

In the following sections, we introduce the algorithms employed for extraction of terrain and 

individual tree parameters, briefly describe the workflow in 3D Forest and present a comparison 

of two principal TLS derived tree parameters with conventional field measurements. We 

conclude by describing current and future developments to be incorporated in future versions of 

3D Forest with relation to the forest dynamics. 

 

2. 3D FOREST WORKFLOW 

To better demonstrate the workflow of 3D Forest and its outputs, we present an example of TLS 

data processing using a subplot (2.4 ha) of a larger study site known as the Velká Pleš Forest 

Dynamics Plot (VPFDP) (Fig. 1).  

Prior to importing to 3D Forest, the data scanned from multiple scanner positions are fitted and 

registered in the proprietary software usually provided with the ground-based laser scanner. 3D 

Forest can import data in the following formats: txt, xyz, pcd, pts, ptx and las. For version 0.4 

only data with X, Y, Z and Intensity fields can be imported. In the 3D Forest workflow, the 

imported point cloud prior to any segmentation is called the Base cloud (Fig. 1a).  

The Base cloud is then separated into two parts: i) the points representing the terrain surface, i.e. 

the Terrain cloud; and ii) all other points, which in forests usually represent vegetation and 

therefore called the Vegetation cloud (Fig. 1b). 



 

50 

The next step is segmentation of the Vegetation cloud into individual trees – i.e. Tree clouds (Fig. 

1c). This is done automatically by the above described algorithm (section 2.2.) with possible 

manual adjustment.  

Individual Tree clouds are the subject of further automatic processing. Tree and crown 

parameters can be extracted, e.g. tree base position with DBH and tree height (Fig 1d) and/or 

crown surface, volume and other crown parameters can be estimated (Fig. 1e). Between-crown 

interactions can be quantified by crown concave hull intersections (Fig. 1f) and its parameters. 

All extracted tree parameters are simultaneously visualized in the 3D Forest viewer, which allows 

a direct visual check of their fit with appropriate tree clouds. Results can be exported as a table of 

extracted tree parameters, images of viewer or segmented point clouds (e.g. terrain cloud or tree 

clouds) for further analyses in other software. The geometry of tree planar projections can be 

exported in a .txt file of polygon vertices coordinates and imported as a polygon vector layer into 

common GIS software.  
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Fig. 1 Demonstration of the 3D Forest workflow on a small sub-sample of the VPFDP: (a) TLS data 
imported into 3D Forest (i.e. the Base cloud) prior to any segmentation; (b) automatically segmented 

Terrain cloud (brown) and Vegetation cloud (green) using the octree search method, refined by manual 
adjustment; (c) individual trees segmented into Tree clouds displayed in random colors; (d) DBH and 

tree height displayed for each tree; (e) concave hulls of tree crowns; (f) crowns represented by 3D 
convex hulls and their intersections (in yellow). 
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3. ALGORITHMS USED IN 3D FOREST 

The application 3D Forest 0.4 released in year 2016 is licensed under the terms of GNU GPL v3 

and is not platform specific written in programming language C++. Source code, compiled 

version, user manual and subsample of testing data are available at web page www.3dforest.eu. 

Compiled version is prepared for Windows 64 bit operating system only. Hardware requirements 

are 64 bit processor with at least 4 GB RAM memory.  

Application has benefit of using free libraries like: PCL (Rusu and Cousins, 2011), VTK 

(Hanwell et al., 2015), Boost (Boost, 2015), LibLAS (Isenburg, 2014) or Qt (Qt, 2015). Only 

brief decription of the software algorithms follows, more details are available in the User Guide 

and source code at web site.  

 

3.1. Terrain extraction 

The first presented algorithm is used for terrain extraction since almost all forest and tree 

parameters are connected with a distance from the ground (DBH, tree height, etc.). |TLS data 

provide not only detailed view into forest, but also cover terrain and other reflective elements of 

the environment. Automated terrain extraction methods have been widely developed in airborne 

laser scanning (ALS); in TLS processing, however, only a few studies have dealt with DTM 

extraction in forests in more detail (Bienert et al., 2006; Brolly and Kiraly, 2009). In 3D Forest 

we implement two methods: i) Segmentation of the lowest points on Z axis based on search in 

octree with given resolution; and ii) Voxelization of the input could and selecting of the lowest 

voxels on Z axis as a terrain.  

The first method using an octree search recursively subdividing the 3D space of the  point cloud 

into eight cubes (all axis are divided in half) until arriving at the specified resolution R (R = 

length of the cube edge). Using a too-coarse resolution leads to missing spots in the terrain, while 

too-fine resolution leads to a very noisy terrain cloud. Two pass algorithm is incorporated: In the 

first pass a temporary sub-cloud containing all points of the lowest cubes of the tenfold resolution 

(10R) is created. Then, a new octree search of resolution R is carried out within this temporary 
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sub-cloud and saved into a new terrain point cloud, the rest is saved as a vegetation point cloud. 

The octree search provides more detailed results, but with more noise included.  

The second method calculates centroid for points within every voxel of given input size (defined 

by the user) and creates new point cloud of voxels centroids. The centroids of the lowest voxels 

on Z axis are selected and saved as a terrain point cloud; the rest is classified as a vegetation point 

cloud. 

The noise points in output can be removed using filters or adjusted manually. Missing points in 

the terrain point cloud (e.g. in stem shadows) can be filled in by inverse distance weighted 

interpolation incorporated into application. 

 

3.2. Segmentation of trees 

After terrain extraction a rest of vegetation needs to be segmented into single trees for computing 

its parameters. For segmentation of forest vegetation into individual trees (Fig. 1c), autors are 

aware only of two automated methods. Raumonen et al. (2015) use two main principles - tree 

topology and cover-sets – to segment vegetation into trees. The segmentation of the point cloud 

into stems and branches is based on using large surface patches of a fixed size. The stem bases 

and approximate stems are located heuristically, based on the assumption that stems are vertical. 

Tao et al. (2015) use strategy for individual tree segmentation consisted of three major parts: 

point cloud normalization, trunk detection and DBH estimation, and finally crown segmentation. 

Trunks are detected using density-based spatial clustering and while all trunks are segmented, for 

each trunk DBH and mean horizontal distance to its center is measured. Crown points are 

segmented based on weighted distance to the tree base and tree DBH.  

 In 3D Forest we present automatic approach based on distance between points and 

minimal number of points forming clusters and an angle between centroids of the clusters. In the 

first step of segmentation, the whole vegetation is divided into horizontal slices with user-defined 

input size [cm] S (S is a fundamental parameter of the segmentation used also in subsequent 

steps). Within these slices the clusters with user defined minimal number of points N and 

maximal distance S between two nearest points are constructed. Next step is to reconstruct bases 

of the trees. For each cluster with centroid height lower than 1.3 m above terrain the 10 
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neighboring (nearest) clusters up to distance 2S are found. We suppose those clusters come from 

the same tree base. All such clusters are merged into segments and tested if they are formed by at 

least 5 clusters and if the maximal dimension of segment is at least 1 m to be identified as the 

tree. When all segments are tested and evaluated, we use different approach to add more clusters 

to the tree. A cluster is added to the tree if its centroid lies within the distance 4S to the nearest 

centroid of the tree and the angle between the vector of these two centroids and the Eigen vector 

of the 5 closest centroids of the stem is less than 10 degrees. For non-selected clusters we test 

distance betweeen cluster points and tree points and if the clusters fit condition of S they are 

joined to the tree. At the final step all non- selected points are tested if they can be joined to any 

tree according to rising distance (maximaly to 3S). Automatically segmented trees can be visually 

checked and in case of need adjusted by manual segmentation. Resulting individual tree clouds 

are used for estimation of tree parameters.  

 

3.3. Tree parameters 

Trees segmented are ready for computing tree parameters. 3D Forest 0.4 can compute following 

parameters: tree position, tree DBH, tree height, stem curve and tree planar projection.  

Tree position in censuses is usually understood as the position of the center of the tree base 

(Condit, 1998), and this convention was also adopted in 3D Forest (green sphere in Fig. 1b). Two 

methods for extracting the tree position are implemented. The first method uses all points up to a 

user specified height (default is 60 cm) above the lowest point of the tree and computes median 

coordinates of X and Y. The Z coordinate is defined as the median Z value of the n (default value 

is 5) closest points of terrain to that X, Y position. The second method use approach of Bienert et 

al. (2006), who applied a Randomized Hough Transform (RHT) for circle detection (Xu and Oja, 

1993) on tree points at 1.3 m and 0.65 m above the lowest point of the tree cloud. The tree 

position is defined as the intersection of vector formed by centers of the two estimated circles 

with the DTM surface. 

The two available methods for the computation of Tree DBH (red cylinder with size in cm in Fig. 

1b) are: i) Randomized Hough Transform for circle detection (RHT) with adjustable number of 

iterations (default is 200) of circle estimation (Xu and Oja, 1993); and ii) Least Square 
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Regression (LSR) with an algebraic estimation of the circle and geometric reduction of squared 

distances to the computed circle (Chernov and Lesort, 2003). Both methods use a sub-set of the 

tree point cloud – a horizontal slice from 1.25 to 1.35 cm above the calculated tree position - 

called the DBH cloud in the 3D Forest environment. For successful circle fitting at least 4 points 

in this slice are needed. Both methods were tested for sensitivity of input data and computational 

time in a manner to find the best use and setup for each method in manner to get precise and 

reliable results in appropriate time. Manual editing (i.e. elimination of all points not representing 

the DBH) is available at this stage of the 3D Forest workflow.  

The Tree Height (TH) / Length is defined as the difference in Z coordinates between the highest 

point of the tree point cloud and the tree base position (vertical line and number above the tree in 

Fig. 2b). The second method (tree length) computes the largest Euclidean distance between any 

two points of the tree point cloud. This method is thus suitable for calculation of the total length 

of leaning trees or even the length of lying deadwood.  

For analysis of the Stem curve and its shape we use a similar approach as in Maas et al. (2008). 

The position of stem centers and stem diameters are calculated at different heights above the tree 

base position, starting at 0.65m followed by 1.3m, 2m and then every next meter above terrain 

(yellow cylinders in Fig. 2b). The circles (defining the local stem center and diameter) are fitted 

by the RHT algorithm to horizontal 7cm slices of the tree point cloud defined at appropriate 

heights. The algorithm stops when the estimated diameter is two times greater than in both of the 

two previous circles, which indicates expansion of the tree cloud into the crown. 

3D Forest can compute and visualize an area of Tree planar projection using a 2D 

convex/concave hull of the tree point cloud orthogonally projected on the horizontal plane at the 

height of the tree base position. The convex hull (Fig. 2e) is calculated using the Gift wrapping 

algorithm (Preparata and Hong, 1977), then the area of the resulting polygon is calculated. Since 

convex shapes do not fit well the actual shape of many irregular trees, we also implemented a 

concave planar projection (Fig. 2d). The concave projection extends the convex hull algorithm 

using the Divide and conquer algorithm to split the sides of the polygon according to the given 

maximal polygon side length. The level of detail/generality as well as the area of the concave 

polygon can vary according to the maximal side length value defined by the user.  
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Fig. 2 Extraction and visualization of tree parameters from a single tree cloud: (a) visualization of tree 
parameters: CBH – crown base height, CH – crown height, CTH – crown total height, CL – Crown 

length, CW – crown width, CC –crown centroid, DBH – diameter at breast height, TH – tree height, 
white sphere – tree position;  (b) tree with computed basic parameters –position (blue sphere), DBH 

(60.8 cm), TH ( 35.6 m) and stem profile (yellow cylinders); (c) tree crown (black cloud) represented by 
CTH (24.3 m), CH (24.1 m), CL( 14.6 m), CBH (11.3 m), crown centroid (orange sphere) and its planar 
projection (green sphere) with distance and azimuth from the tree position; (d) concave hull of the 
crown with volume (803.6 m3) and surface( 1617 m2) and orthogonal projection into plane with its 

surface area (113.4 m2); (e)  3D convex hull of the crown with volume (2009 m3) and surface ( 866.8 m2) 
and orthogonal projection into plane with appropriate surface area (133.5 m2).  

 

3.4. Crown Segmentation  

In our application, trees are divided into stem and crown of the tree. Separation of the crown 

cloud from the single tree cloud is possible manually or using automatic extraction. 

 In the first step of the automatic extraction algorithm the tree cloud is divided into 0.5 m 

high horizontal sections and its widths (average x and y axis extension) are compared one by one 

from the lowest section. If three (or more) consecutive sections are wider than the previous one, 

the last thin section is used as a starting position for detailed search. As the first step of the 

detailed search, the circles are fitted by LSR to the two 10 cm high horizontal sections. From 

centers of those circles the position of the fitted circle center of the next 10 cm high horizontal 

section is approximated. The subset of points for consecutive circle fitting is limited to the points 
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within a radius two times greater than the last fitted circle. This should avoid using points 

representing overhanging branches for diameter computation. If the new (uppermost) section 

diameter is not 25 % wider than the previous one, algorithms continues by predicting next stem 

center from the last two fitted circles and computing the next section diameter. Height of the last 

section diameter complying the examined limit is considered as the crown base. All points of the 

tree cloud above this position are considered as the tree crown together with points which were 

excluded from fitting circles in detailed search.  

 When crown manual separation is used, all stem points below the crown are manually 

removed from the tree cloud. Z coordinate of the highest point from the removed points is taken 

as the crown base height. 

 

3.5. Crown parameters 

As for the whole tree also for tree crown can be computed parameters. All available parameters 

are listed below with brief description.  

The Crown Base Height (CBH) is in relation to the tree position and might be defined as the 

height where the lowest branch is connected to the stem. It is computed like the difference 

between tree base position Z coordinate and the Z coordinate of the crown base resulting from the 

crown extraction (Fig. 2a, c).  

Crown Height (CH) is the difference between the Z coordinate of the crown base and the Z 

coordinate of the highest point of the crown (Fig. 2a, c).  

Crown Total Height (CTH) represents the difference between Z coordinates of crowns highest 

and lowest points (Fig. 2a, c).  

Crown Length (CL) is the longest distance between the two vertices of convex hull of the crown 

planar projection (Fig. 2a, c ).  

Crown Width (CW) is the sum of the two longest perpendicular distances from the crown length 

line to a convex hull vertex (Fig. 2a).  



 

58 

Crown centroid (CC) is computed from border points, which are defined by 2D concave hulls of 

crown horizontal sections (orange point in Fig. 2a, c). Height of the horizontal sections and the 

maximal length of concave hull edge are adjustable by the user. Position of the crown centroid is 

then computed as average coordinates from border points; this avoids displacement of the crown 

centroid caused by different cloud density when all crown points are used. The second option is 

the calculation of centroid of the 3D convex hull.  

Crown position deviation (CPD) is defined by distance, direction (azimuth angle) and inclination. 

The distance and direction are measured between the tree base position and orthogonal projection 

of the crown center position (green sphere in Fig. 2c). Crown inclination is the inclination of the 

line connecting the tree base position and the position of the crown center from the vertical.  

Crown volume and surface area may be estimated by its concave and/or convex 3D 

representation. Concave representation (Fig. 2d) is based on horizontal sections (slices) of user 

defined height and its concave hulls. Crown volume is then a sum of volumes of all horizontal 

sections (which are calculated as section 2D concave hull area multiplied by section height). 

Surface area is computed by specific triangulation algorithm. For triangulation, polygons created 

by concave hull of each section are used (border points). Top and bottom of the crown is 

triangulated by creating triangles between highest/lowest point of the crown and highest/lowest 

polygon edges respectively. The rest is triangulated by strip triangulation of two consecutive 

polygons. 

3D convex hull created by 3D Voronoi triangulation (Fig. 2e) is another option for obtaining 

crown volume and surface area. For the reduction of calculation time only boarder points and all 

points from two uppermost and lowermost horizontal sections are used implicitly. If needed, 

computation using all crown points is also available.  

Volume of crown by voxels of user specified size is also available; crown volume is then the sum 

of voxels volumes. All voxels that contain at least one point are counted.  

Last but not least, 3D Forest allows user to compute Intersecting mass of two neighboring crowns 

(Fig. 1f). Intersection is computed as Boolean AND in 3D space using objects created by 3D 

convex hull (only). The intersection parameters like volume and center of mass are computed. To 

provide additional information about the competition pressure in canopies, direction from crown 
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center to intersection center of mass is expressed by horizontal azimuth and vertical angle, the 

distance in 3D space of these two points is also computed. 

 

4. COMPARISON WITH CONVENTIONAL 

MEASUREMENTS 

To demonstrate the actual applicability of 3D Forest in real conditions, we compared outputs 

from 3D Forest with results from a standard census of the VPFDP. The VPFDP (10.3 ha) is a 

xerophilous open forest on steep slopes and rocky outcrops. The stand is dominated by sessile 

oak (Quercus petraea Matt.), with admixtures of European ash (Fraxinus excelsior L.), European 

hornbeam (Carpinus betulus L.), small-leaved lime (Tilia cordata Mill.), and 14 other tree 

species. The position and DBH of all trees with DBH ≥10 cm were recorded in a census from 

year 2013. Tree positions were measured by a Field-Map device (www.fieldmap.cz) using a 

regular grid (44x44m) of reference points positioned by total station; DBHs were measured by a 

standard Haglöf caliper (recorded precision of 1 cm). Tree heights were measured for 181 trees 

using a TruPulse laser rangefinder / digital inclinometer (recorded precision of 10 cm based on).  

At the same time, the whole plot was scanned in the leaf-off state using a Leica ScanStation C10 

terrestrial laser scanner at a resolution of 2 mm in 10 m and using the regular multiple scanning 

position setup (44x44m) as proposed by Trochta et al. (2013). Scanned data were aligned, co-

registered and exported into txt file in the Cyclone Register software provided with the scanner. 

After importing of files and automated terrain/vegetation segmentation, 824 individual trees of 

DBH ≥ 10cm on the 2.4 ha sub-plot were segmented both manually and automatically from the 

vegetation point cloud.  

 

4.1. Automated segmentation 

The first task was to evaluate the automatic tree segmentation algorithm depending on algorithm 

input parameters (Input cluster size, point cluster density). The outputs were compared in 



 

60 

confusion matrix to the manual tree segmentation used as a reference. Overall accuracy of the 

segmentation, mapping accuracy and omission and commission errors for each tree were 

calculated on the bases of individual points of particular tree clouds. The latter three indicators 

were tested by Kruskal-Wallis nonparametric ANOVA test (statistical significance level α = 

0.05) for identifying the best combination of input parameters. 

 

 

Fig. 3 Accuracy of automated segmentation as compared to manually segmented trees used as a 
reference.  Four basic input cluster size (input size) and two point cluster density were tested: (a) 

overall segmentation accuracy (points connected by dashed line) and mapping accuracies of individual 
trees; (b) commission errors and(c) omission errors. In all charts rectangles connected by solid line 

represent medians, box upper and lower quartiles and whiskers represents upper and lower extremes; 
white box represents minimal cluster size of 10 points in a cluster and grey box minimum of 5 points in 
a cluster. Asterisk above boxplot represent the statistically significant group with the best values from 

all segmentation.  

 

The analysis showed that overall and mapping accuracy rise with greater input size (Fig. 3a). 

Overall accuracy gained 89.9 % in combination of 15cm input size (S) and 5 number of points 

(N); still all setups with input size greater than 5 cm achieved more than 85 % overall accuracy. 

Since the overall accuracy gives us only general information about the whole segmentation, we 

used also mapping accuracy of each tree as a more detailed descriptor. The best mapping 

accuracy (median value 87.8 % was achieved with S of 15 cm and N of 5 points. Still, Kruskal-

Wallis test found no significant differences in mapping accuracy using S of 10, 12 and 15 cm and 

N of 10 points and using S of 15 and 12 cm and N of 5 points per cluster (group of marked  in 

Fig. 3a). Median commission error decreased to the minimal value of 2% at input size of 10, 12 

and 15 cm and N of 5 points (Fig. 3b). Omission error (Fig. 3c) had a similar trend as the 

commission error but smallest value (3%) was reached with S of 15 cm and N of 10 points. 
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Opposed to commission error, differences in omission error were statistically significant for each 

input size and number of points in a cluster.  

Results are quite comparable with similar study (Tao et al., 2015) even when scanning setup and 

study area are different. Overall accuracy is comparable (89% vs 93%). The omission error 

(recall) and Commission error (precision) has also similar results and 3D forest has slightly better 

result (3%) than comparing study (5%).  

The optimal values of S and N can vary with overall density of the TLS point cloud used - with 

more dense clouds the optimal segmentation distance can be smaller than 10 cm or clusters of 

more points might be preferable. Anyway, we demonstrated that with appropriate settings the 

automatic segmentation algorithm may provide fairly acceptable results. Still, in closed canopy 

forests with abundant understory and numerous stem and branch junctions of neighboring trees 

the visual check and manual adjustment will be needed. 

 

4.2. Tree DBH and height 

Since 3D Forest provides two methods of DBH estimation we compared both methods with field 

measurements by paired t-tests; the pairs were arranged by joining the spatially nearest tree 

positions in both datasets. The tree height measurement was compared in the same way. The LSR 

method provided slightly higher values than conventional caliper measurements (mean difference 

1.17 cm). The RHT method provided results quite comparable to the conventional field census 

(mean difference 0.3 cm; see Table 1). The tree heights derived by 3D Forest were comparable to 

conventional TruPulse field measurements, with a mean difference of 12 cm (Table 1). 

Result of DBH estimation can be compared with other study (Maas et al., 2008), where DBH was 

evaluated. Maas et al. (2008) achieve slight overestimation in DBH using TLS (about 1 cm) 

which almost the same result as using LSR method in 3D Forest. RHT method underestimate 

results (0.3 cm) but still has smaller difference in results than Maas et al. (2008).  
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Table 1 Results of paired t-tests comparing automated methods of estimating DBH (Least Square 
Regression and Randomized Hough Transform) and tree height with conventional measurements 

using calipers and a digital inclinometer; computed for the significance level α = 0.05.  

 

 

5. ANALYSIS OF SENSITIVITY FOR DBH COMPUTATION 

With the analysis of sensitivity we tried to find optimal setup and limits of the two implemented 

methods of DBH computation. Five factors likely affecting the result were selected for testing: 

stem DBH, missing part of stem perimeter, proportion of noise points and number of points 

creating the DBH ring. For the RHT computation also the number of iterations was tested and for 

both methods time complexity of computation evaluated. The time complexity of RHT 

computation is O(n * i3) and LSR is O(n); where n is number of trees and i is the number of 

iterations. The testing was performed on artificial dataset designed as a pooled sample of 

simulated DBH clouds with points representing mixture of different levels of all tested factors. 

Full factorial design was used to simulate in total 48 300 trees; DBH for each artificial tree was 

estimated by both methods implemented in 3D Forest. The correct DBH estimation was 

rigorously defined as ± 1 mm difference from the expected DBH value. Results were analyzed by 

ANOVA for multiple factors at a statistical significance level α = 0.05 and post-hoc Tukey test to 

find differences among factors levels.  

 

-95% +95%

Caliper DBH 32,30 9,06

LSR DBH 33,47 10,48 824 -1,17 5,338 -6,32 823 4,4E-10 -1,540 -0,809

Caliper DBH 32,30 9,06

RHT DBH 31,96 10,04 824 0,332 5,113 1,864 823 0,062633504 -0,018 0,682

TruePulse height 15,25 5,01

3D Forest height 15,38 4,96 181 -0,12 1,620 -1,03 180 0,304122889 -0,362 0,114

Mean
Sdt. 

Dv.
N

Confidence interval
pDiff

Std. Dv. 

Diff
t df
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Table 2 Result of two-way ANOVA analysis for each factor of DBH computation by both methods. 
Significant tests are signed by “<” in the “Pr(>F)” column of the table.    

 

Df Sum Sq Mean Sq F value Pr(>F) p

DBH [mm] 22 5,63 0,2557 60,842 < 2,00E-16

Number of points 20 0,02 0,0008 0,192 0,998

Noise [%] 3 8,4 0,9337 222,156 < 2,00E-16

Missing part [%] 9 1,22 0,1359 32,343 < 2,00E-16

Residuals 48239 202,74 0,0042

DBH [mm] 22 1158 53 570,3 < 2,00E-16

Number of points 20 5274 264 2857,5 < 2,00E-16

Noise [%] 9 46331 5148 55780,9 < 2,00E-16

Missing part [%] 9 223 25 268,8 < 4,38E-16

Iterations 7 6609 944 10229,8 < 2,00E-16

Residuals 386332 35654 0

LSR

RHT

 

According to ANOVA (Table 2) it is evident that each factor except number of point at LRS is 

statistically significant; how each factor affects correct DBH estimation is depicted in Fig. 4. 

From the Tukey test we can conclude that LSR method is suitable for trees with DBH in the 

range of 10 – 50 cm (Fig. 4a). DBH clouds have to be composed of at least 3 points (Fig. 4b) 

representing at least 60% of the stem perimeter (Fig. 4e). The most importantly, the method is 

extremely sensitive to the presence of noise points - already 10 % of noise causes a total failure 

of the correct DBH estimation (Fig. 4d).  

The RHT method proved to be more robust, showing significantly lower sensitivity to noise (Fig. 

4d), DBH size (Fig.4a) and the missing part of the stem perimeter (Fig.4e). Using the RHT the 

tree DBH can be estimated since 1 cm; the DBH cloud should have at least 4 points to provide at 

least 50% rate of successful DBH recognition (Fig. 4b) with the best fit around 20-40 (100) 

points. The correct DBH estimation declines slowly with noise increasing to 50% and then 

rapidly drops to 0 (Fig. 4d). The RHT is on the other side more time consuming depending on the 

number of iterations (Fig. 4f). Tukey test showed that from 500 iterations successful recognition 

rate is not further increasing with the increasing number of iterations and additional iterations are 

thus only time consuming (Fig. 4c, Fig. 4f). 

Due to the overall slight overestimation of the LSR method (Table 1) and the rigorous difference 

from the expected DBH value (± 1 mm) used in the definition of the correct DBH estimate for the 
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sensitivity analysis, the LSR provided generally significantly lower rates of successful DBH 

recognition there. 

 

 

Fig. 4 Analysis of sensitivity of RHT and LSR estimation of DBH to selected factors expressed by 
successful DBH recognition rate (%); the tested factors were as follow: (a) DBH; (b) Number of points 
in DBH cloud perimeter; (c) Number of iterations (RHT only); (d) Portion of noise ; (e) Missing part of 

stem perimeter and (f) Computational time where Y axis have logarithmic scale. All values are 
displayed as means with 95% confidence intervals. The black marks and solid line represent RHT 

method - left Y axis is used; grey marks and dotted line represent LSR method with range of values on 
right Y axis of graphs. 
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6. CONCLUSIONS 

The use of LiDAR technology undoubtedly has great potential in forest ecosystem research. 

While for processing ALS data several software packages may be used (e.g. FUSION, TerraScan, 

LiForest), only few free software specialized for tree description is available for TLS data so far. 

The 3D Forest contributes to filling this gap focusing on forest stand description by means of 

individual trees and their mutual spatial arrangement in a 3D space. It allows users to take the 

advantage of TLS data for detailed spatially-oriented forestry and forest ecology studies in a user 

friendly environment. Currently it can provide standard census data such as tree positions, DBHs 

and heights; it also provides more complex tree parameters such as stem curve, convex/concave 

planar projection, crown dimensions, crown volume, surface, center of mass and others. 

Implemented methods are comparable with other literature findings on automatic segmentation of 

trees (Tao et al., 2015), tree parameters (Maas et al., 2008) or crown parameters (Seidel et al., 

2011b).  

In addition,  the 3D Forest allows to compute intersecting mass of two neighboring crowns, 

which affords superior identification and quantification of aboveground competition of trees e.g. 

(Metz et al., 2013; Seidel et al., 2015) or testing the canopy related predictions of metabolic 

scaling theory of forests (Coomes et al., 2012; Pretzsch and Dieler, 2012) with authentic data on 

tree crowns. On the other hand, 3D forest is still rather limited in pinpoint biomass estimates and 

detailed modeling of a single tree as provided e.g. by SimpleTree (Hackenberg et al., 2015), on 

branch and leaves level (Côté et al., 2012; Raumonen et al., 2013).  

The future development of 3D forest is aimed at the realistic modeling of the potential direct 

solar irradiance of individual tree crowns based on real tree shapes, positions and sun-path at the 

respective latitude, year season and daytime. This will enable studies of the competition for light 

in a new individualistic manner (e.g. which tree crown overshadows which, when and how 

much).  

The 3D Forest software including the source code is freely available at www.3dforest.eu. 

Researchers and developers are openly invited to join our effort in further development of the 

software. The 3D Forest users can also leave comments and suggestions at forum or via ticket 

system on the web page. 
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Abstract 

Ancient coppice woods are areas that reflect long-term human influence and contain high species 

biodiversity. In this type of forest we aimed: i) to analyse the below- and above ground biomass 

of stools and to estimate the age of largest stool; ii) to define a “zone of interference” for 

coppices; iii) to describe and classify variability in the shape and size of coppice stools; iv) to 

define the specific characteristics of the spatial distribution of stems and stools;  

The study was conducted in the Podyjí National Park, Czech Republic, where two old oak 

coppice stands were fully stem mapped: Lipina (3.90 ha) and Šobes (2.37 ha). Cores were 

processed using TimeTable and PAST4. Below- and above-ground biomass of largest stool was 

computed using the data from terrestrial laser scanner. Tree zones of influence were analysed 

with V-Late landscape analysis tools using Shape Index. The pair correlation function and L 

function were used to describe the spatial patterns of trees with DBH ≥ 7 cm, and the null model 

of Complete Spatial Randomness and Matérn cluster process were tested. For the modelled old 

stool we estimated a ratio of 2:1 for above/below ground volume with no reduction of below 

ground biomass regarding the hollow roots. The age of the largest stool was estimated 825 years 

(SE ± 145 years). An “Inner Zone of Influence” was defined, with a total area covering 

323 m2/ha. The median area of this zone in both plots was 0.40 m2 for all trees, 0.23 m2 for 

singles and 0.87 m2 for stools. The Matérn cluster process was successfully fitted to our empirical 

data. In this model the mean cluster radius ranged between 1.9 to 2.1 m and mean number of 

points per cluster was 1.7 and 1.9. The most prevalent characteristics of these ancient oak 

coppices were their compact shape and clustered spatial distribution up to 10 m. 
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1. INTRODUCTION 

Ancient coppice woods are a specific type of habitat, reflecting long-term human influence and 

containing high species biodiversity. They conserve local tree ecotypes, and at some sites are the 

only remnants of original woods with natural species composition, even if the structure of the 

stands has been modified (Bechmann 1990, Fuller & Warren 1993, Rackham 2006). Coppices 

demonstrate vast variability and adaptability in the tree and herb layers and in their processes as a 

whole (Peterken 1996, Verheyen et al. 1999, Rackham 2006, Schweingruber 2007). Coppicing is 

considered to be one of the most important ways to manage temperate lowland (oak-dominated) 

or highland (beech-dominated) woodlands of West and Central Europe, Eastern Asia and North-

East America in reserves or urban areas where this kind of management was historically used 

(Evans & Barkham 1992, Iida & Nakashizuka 1995, Joys et al. 2004, Rackham 2006, Nielsen & 

Møller 2008, Itô et al. 2012). 

For coppice or coppice with standards systems, the most common tree species have traditionally 

been oaks (Quercus sp.), chestnut (Castanea sativa), lindens (Tilia sp.), hornbeam (Carpinus 

betulus), and beech (Fagus sylvatica), though others have been used as well (Rackham 2006). 

The main tree species in lowlands is sessile oak Quercus petraea (Matt.) Liebl - a slower-

growing but long-lived deciduous tree species whose wood, bark, acorns and litter have versatile 

uses. Sessile oak can tolerate a considerable lack of moisture and rocky substrates. Late to leaf, 

this species is associated with spring geophytes, and natural oak or oak-hornbeam woods are 

generally considered to host light-demanding species of flora and fauna (Dey 2002, Ducousso & 

Bordacs 2003, Linford 2007). 

For the purposes of this paper, one or more stems of the same origin creating a single 

interconnected system were considered as one ‘tree’. Individual stems were designated as 

‘singles’, while multi-stemmed trees as ‘stools’. Stools are formed by clonal stems forming 

interconnected groups or clusters of individuals that originated through vegetative propagation, 

such as layering, root suckers, stolons or stump shoots, from the same parent plant (Falinska 

1985, Oldeman 1990, Kull 1995, Jeník & Soukupová 1999). 

What distinguishes coppiced trees from trees of seed origin is the root and stool system, which 

can be very old, crooked and extremely large (Peterken 1996, Bauhus 2009). A single coppice 
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stool can have stems several meters away from each other, which nevertheless can be visually 

identified in the field by experienced observers due to curvatures at the stem bases (Coles 1978) 

or the typical concentric or linear formations of stems. The age of a stool may be estimated from 

its diameter; the largest stools are thought to have been continuously coppiced for centuries 

(Rackham 1980, Pigott 1989, Bouwer 2008). 

Since the mid 19th century, continuous coppicing and the ageing of coppice stools have been 

blamed for lower stand productivity and quality throughout Europe, and especially for the 

worsening of soil conditions (Vyskot 1961). However, recent scientific research has not 

confirmed previous assumptions and has even concluded that in coppice systems, in comparison 

with high forests, the decomposition rate and transport of nutrients is faster and soil chemical 

conditions more favourable, argued to be the consequence of higher light and heat consumption 

(Hölscher et al. 2001, Bruckman et al. 2011).  

In 1985 Wu et al. introduced the term ‘ecological field theory’ based on interactions and 

interferences among plants. Graded circular zones surrounding individual plants (‘influence 

domain’ (Walker et al. 1989) or ‘zone of influence’ (Weber & Bardgett 2011) were defined. For 

herbaceous plants, even a Generalized Linear Model concerning the belowground zone of 

influence has been drawn. This showed that belowground zones of influence are not of fixed 

circular shapes (Casper et al. 2003). The aim of this paper is to describe and define zones of 

interference for new seedling recruitment in the case of coppiced trees. Such zones are 

undoubtedly different from those around trees of seed origin, and for coppiced trees the 

belowground part is of outstanding importance. We hypothesized that large coppice stools 

influence the interference potential to a high degree, which a newly germinated seedling would 

have to overcome to establish itself and successfully grow at a site within the area of a stool. 

To describe spatial patterns of stools we used the method of spatial point process analysis, in 

which the “points” are tree locations and the “marks” tree characteristics such as species, 

diameter, height, social status etc. (Stoyan & Penttinen 2000).  Due to vegetative reproduction, 

coppice stands tend to be characterized by high clumping intensities at small spatial scales, i.e. 

clustered formations. The size and shape of the stool cluster could therefore also be characteristic 

for different tree species or ecotope conditions, such as terrain exposition, and they play a 

significant role in determining the age of the stool, in other words the length of continuous human 
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activity - coppicing. Therefore, we also attempted to better define the specific characteristics of 

the stems and stools in ancient coppices. 

To foster a better understanding of the structure and patterns in ancient coppices both below and 

above ground, we asked the following questions: 

 What is the ratio of below- and above-ground structure and biomass of ancient Central 

European coppices and how old are the largest stools? 

 What is size of “zone of interference” for coppices – the area around every tree (stool) 

that is practically inaccessible for natural seed regeneration? 

 What is the variability in the shape and size of coppice stools? 

 What the specific characteristics of the spatial distribution of stems and stools in ancient 

coppices are? 

 

2. MATERIAL AND METHODS 

2.1. Study site 

We studied long abandoned sessile oak (Quercus petraea) dominated ancient coppices in the 

Podyjí National Park (hereafter PNP), Czech Republic. Average yearly temperature in the PNP is 

between 8°C and 9°C, average precipitation is 550–600 mm (Tolasz et al. 2007). In a 

biogeographical sense, the PNP lies in the transition zone between the Hercynian and Pannonian 

provinces (the mesophytic and the thermophytic) that, together with the varied morphology of the 

river valley and the plateaux, creates high species diversity (Chytrý & Vicherek 1995). The PNP 

is among the longest settled areas in Central Europe, and has been continuously inhabited since 

5-6,000 BC (Čižmář 2002, Neruda 2007). The forest history in the PNP has been described by 

Škorpík (1993), Vrška (1998), and Reiterová & Škorpík (2012). Woodlands in the PNP were 

intensively influenced by deforestation, pasture, burning, litter raking, cultivation terraces and 

coppicing. 
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Two research plots, Lipina - 3.90 ha (48°49'19"N, 15°57'47"E) and Šobes - 2.37 ha (48°49'32"N, 

15°58'21"E) (Fig. 1.), are located in the core (non-intervention) zone of the PNP. Lipina lies on 

the eastern side of the National Park with an average inclination of 20˚ and elevation ranging 

between 300-365 m a.s.l. Šobes lies on the transition ridge between the valley and the plateaux, 

and has more moderate slopes at elevations between 382-395 m a.s.l. The geological bedrock at 

both sites consists of granites and similar rocks of Proteozoic to Paleozoic age (Škorpík 1993). 

The vegetation and soil conditions at Lipina were described in Janík et al. (2007). The ancient 

coppices at Lipina, Šobes and other stands in the PNP were left unmanaged after active coppicing 

started to be abandoned at the end of 19th century and definitively ceased in the 1950s.  

 

Figure 1 The location of the research plots within the Podyjí National Park (Czech Republic). 
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2.2. Stool mapping and biomass computation 

Tree and stand data were acquired using Field-Map technology, with a MapStar compass module, 

laser rangefinder, Impulse altimeter (Laser Technology) and Hammerhead field computer 

(WalkAbout Computers) (www.fieldmap.cz). All standing and lying trees with diameter at breast 

height (DBH) ≥ 7 cm and stumps with diameter at the base ≥ 7 cm were measured and stem 

position maps were constructed, for Lipina in 2006 (Janík et al. 2007) and for Šobes in 2010. For 

standing stems the following categories were distinguished: live normal, live breakage - snap, full 

dead stem and snag. Lying deadwood was measured and classified into three stages of decay: 

hard, touchwood and disintegrated (Král et al. 2014). For growing shape construction the heights 

were measured for 10% of standing stems. Height curves were constructed with Naeslund’s 

function. During fieldwork in 2010, every standing stem and stump was classified as a single or 

part of a stool, and the affiliation of stems to stools was recorded in the database using unique IDs 

for each stool. 

In 2010, we exposed the root systems of three old stools of different sizes and shapes (Fig. 2). 

Unearthing was performed manually using hand tools, pneumatic drills and an air-spade 

supersonic nozzle (Nadezhdina & Cermak 2003). We removed the earth to the underlying 

bedrock at a maximum depth of 65 cm. Exposing the root and stool systems served as a basis for 

the assessment and mapping of these stools by terrestrial laser scanning. Each uncovered stool 

was scanned from 9 different positions to record all shapes. After merging all scans into a single 

one, the resulting point cloud was used to create a model of a stool and its stems (Fig 2a) for 

estimating biomass and stem positions. For scanning, a Leica ScanStation C10 was used together 

with Cyclone software for merging single scans and exported to ASCII file. From the ASCII data, 

the model of stems, branches and roots was created using Geomagic Studio 2014 software. A 

closed manifold surface of all stems and roots that were recognized in stools was generated, and 

the volume of each part was estimated and a planar projection of each tree and the whole stool 

was created.   
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Figure 2 Exposed coppice stool root system (Lipina research plot). The current state was captured by a 

terrestrial laser scanner and saved as a mesh for further analysis. In part (a) the stems are visualized as 

a side view of the single stool with the whole root system (brown) as a realistic model. A detailed root 

system model (b) shows all coarse roots, positions of the living stems (grey dots on stem profiles) and 

their connections (green – living trees; yellow  –  historical stumps; grey – standing snags) to the origin 

(blue star) of the stool. 

2.3. Stand age analysis and stool age estimation 

To survey the age structure of living stems, we sampled the research plots for 

dendrochronological analysis with an increment borer in 2010. On the basis of stem position 

maps, we created a regular square network of 44.25 m. At each network point the 2-3 closest live 

stems were cored. We collected 115 increment cores of individual stems (Lipina 72, Šobes 43). 

The cores were processed using TimeTable and PAST4 with an accuracy of 0.01 mm. To 

extrapolate the age of cores bored off-pith, missing tree rings were calculated from the measured 

distance to the estimated pith with a compass and the average width of the first five measured tree 

rings. Only cores with a maximum of 6 extrapolated tree rings were included into the age 

analyses (Lipina 38; Šobes 26). 
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For stool age (SA) estimation we used the following formula, in which: 

AGR is the average growth rate based on annual radial increment; 

DSR is the average distance of current stems from the parent central root (Fig. 2b); 

AAS is the average age of current stems minus 20 as the age used for the AGR; 

SA = AGR * DSR + (AAS - 20) 

AGR is based on the radial growth of individual stems (shoots), which is simultaneous with the 

growth of the stool radius; therefore the growth rate of the entire stool should be twice the radial 

increment measured on shoots. In practice, the real rate of radius growth of the stool cluster is not 

twice the mean annual radial growth but is rather somewhat smaller. The reason behind this is 

that the ground plan projection of the stem circumference is an „inclined plane“. New coppice 

shoots always spread outwards from the original stump, but because of space restrictions by the 

original stump, they bend as they grow larger, creating stem curvature at the base and oblique 

growth. Based on Pigott (1989), we used a coefficient rate of 1.8 of the mean width increment. 

Based on forest management plans from the beginning of the 20th century (Vrška 1998) we 

established that the rotation period at our research plots was intended to be 40 years. Older 

written material was not so detailed, but previous research has demonstrated that the further one 

goes back in time, the shorter the coppice cycle tended to be. For instance, in the Middle Ages 

coppicing was done every seven to ten years (Evans & Barkham 1992, Rackham 2006). A twenty-

year period was chosen as a long-term average rotation period. According to the historical 

surveys the AGR was calculated as the average radial increment of the first 20 tree rings from the 

dendrochronological analysis of the entire research plot. 

DSR was calculated using the 3D model of the stool root and standard image analysis.  
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2.4. Tree inner zone of influence 

In order to determine the tree interference zone – the area practically inaccessible for the 

successful establishment and growth of tree seedlings – we defined the Tree Inner Zone of 

Influence (TreeIZI). TreeIZI is a closed polygonal area which constituted a projection of i) the basal 

area(s) of standing stem(s) or stump(s), ii) a buffer(s) around the basal area(s), and in the case of 

stools: iii) the stool polygon and iv) a buffer around the polygon (Fig. 3). The circumference of 

the stool polygon was created as a link among standing stems or stumps through a procedure of 

searching nearest neighbours in the stool such that i) all stems or stumps should lie inside the 

polygon, and ii) the circumference line should go directly through each stem or stump position 

(i.e. a convex hull of stems positions). The buffer size (BS) around each stem or stump was 

determined by linear scaling according to the diameter (DBH). For smaller trees the buffer radius 

is a little larger than DBH, while larger trees have a buffer radius almost equal to the DBH value. 

BS = 0.85 * DBH + 7.386. 

For the circumference, the line of stool buffers with r = the mean diameter of stool was used. 

Variability analysis and categorization of TreeIZI shapes were carried out with landscape analysis 

tools V-Late (Lang & Tiede 2003) using the Shape Index, where: 

Pij = the perimeter of patch ij in terms of the number of cell surfaces. 

min Pij = the minimum perimeter of patch ij in terms of the number of cell surfaces 

SHAPE = Pij / min Pij 

The Shape Index (SI) is a dimensionless expression of compactness. Maximum compactness is 

represented by a circle; with increasing complexity, crookedness or jaggedness SI also increases. 

The range of SI is ≥ 1, and is without limit. The V-Late ArcGis extension is an implementation of 

procedures based on Fragstat (McGarigal & Marks 1995). 
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Figure 3 Construction of Tree Area (Tree Inner Zone of Influence) – projection of individual buffers 
around stool and and it shape class. Stools have benn classified by Shape Index into four classes: 

circular – single tree (A); circular polycormon (B); compact polygon(C) and oblonged (D). 

 

2.5. Tree spatial patterns 

To describe the density variability of both individual standing stems and stumps, we used the 

univariate pair correlation function. The pair correlation function is a second order characteristic, 

as are the frequently used K function (Ripley 1977) and L function (Besag 1977). Stoyan & 

Penttinen (2000) define the pair correlation function as follows: consider two infinitesimally 

small discs of areas dx and dy at distance r. Let p(r) denote the probability that each disc contains 

a point of the process. Then p(r) = λ2g(r)dx dy, where λ is density. Put in a different way, the pair 

correlation function g(r) is the probability of observing a pair of points separated by a distance r, 

divided by the corresponding probability for a Poisson process (Baddeley 2008). It is related to 

the K function by: 

g(r) = d/dr * K(r)/(2 * π)      for r ≥ 0 

 

The essential difference between the K function and pair correlation function is the non-

cumulative character of the latter. The pair correlation function uses annuli as distance classes, 
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not circles. Under the assumption of a homogenous Poisson process, g(r) = 1. Values of g(r) 

larger than one indicate clustering, while values smaller than one indicate regularity. The pair 

correlation function g(r) was estimated for each plot at steps of 1 m for r-values up to 20 m. A 

null model of complete spatial randomness (hereafter CSR) was used on the assumption that the 

first-order intensity λ is constant within plots. For the fixed value of r we used 199 Monte Carlo 

simulations of CSR to obtain pointwise critical envelopes for g(r). The significance level of tests 

was 0.01 (Besag & Diggle 1977). A fixed r had to be chosen prior to the simulation, since if all r 

values are considered simultaneously, the probability of rejecting H0 increases and the true error 

probability is larger (Loosmore & Ford 2006, Illian et al. 2008). Therefore, if we had estimated 

continuous intervals of the distances over which an observed pattern deviates from the 

hypothesized model, the results could not have been considered significant with a significance 

level of 0.01. 

A cluster process model was also fitted to the data as an alternative to the Poisson homogenous 

process. We used the Matérn cluster process, in which the parent points come from a 

homogeneous Poisson process with intensity κ, and each parent has a Poisson number (μ) of 

offsprings, independently and uniformly distributed in a disc of radius R centered on the parent 

(Baddeley 2008). We used the L function as summary statistics for fitting the model to the data 

(Ripley 1988). To determine the values of the parameters that achieve the best match between the 

fitted LΘ(r) and the empirical L-function of the data, we used the method of minimum contrast 

(Diggle 2003). Since maps of individual plant locations cannot be used to investigate processes 

occurring at scales that approach the accuracy of the measurements (Freeman & Ford 2002), and 

our spatial error was ±1.1 m, we focused primarily on large-scale processes, such as clustering. 

All spatial analyses were conducted using the package ‘‘spatstat’’ (Baddeley & Turner 2005) in 

the statistics software R (R Development Core Team 2006). 
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3. RESULTS 

3.1. Below- and above-ground biomass and coppice stand 

structure 

The basic characteristics of the tree layer at Lipina and Šobes are shown in Table 1. 

Approximately 640 live standing stems per hectare represented a timber stock of ± 260 m3/ha and 

a basal area of ± 30m2/ha. The number of stumps (mostly of artificial origin) was 41/ha at Lipina 

and 271/ha at Šobes. The median diameter of stems and stumps was 22 cm at both plots, but at 

Šobes there were more thick individuals (Fig. 4). Long-term coppicing significantly altered the 

forest structure and texture. The majority of stems and stumps were growing in stools; in total 

only ca. 25% were single-stemmed trees (Table 2). At Šobes there were proportionally more 

multi-stemmed trees (stools with 4 and more stems or stumps), but two- and three-stemmed 

stools still predominated (Fig. 5). 

 

Figure 4 Histogram of the diameter distribution of standing stems and stumps at Lipina and Šobes . 
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Table 1 Main tree layer parameters at Lipina and Šobes 

total [*/ha] total [*/ha]

[ha] 2,37 3,90

stem numbers [N] 1503 634 2501 641

basal area [m2] 75,8 32,0 642,0 164,6

timber volume [m3] 621,0 262,0 115,4 29,6

stem numbers [N] 139 59 471 121

basal area [m2] 3,0 1,3 9,9 2,5

timber volume [m3] 18,0 7,6 65,0 16,7

stem numbers [N] 643 271 160 41

basal area [m2] 20,9 8,8 4,2 1,1

H 39 183

T 75 955

D 3 47

total [N] 117 49 1185 304

H 6,0 48,0

T 11,0 166,0

D 0,0 4,0

total [m3] 17,0 7,2 218,0 55,9

ŠOBES LIPINA

live standing trees

dead standing trees

stumps

stem 

numbers

dead lying 

trees

decay stage

decay stage

PLOT

AREA

Timber 

volume

 

The average upper height of the stand was ca. 18 metres at both plots. A distinctive difference 

between the plots was found for deadwood volume, which was more than 4 times higher at 

Lipina than at Šobes (73 m3/ha and 15 m3/ha, respectively). The dynamics of changes in the tree 

layer was more pronounced at Lipina, while at Šobes larger gaps in the crown canopy were 

missing because of the smaller number of fallen dead trees, which were also less disintegrated 

than at Lipina. 

From the modelled stool, above and below ground biomass was calculated. The below ground 

biomass of the stool was estimated to be 1.02 m3 of woody biomass connecting 7 living stems 

and one snag, and the sum of the above ground biomass was about 2.13 m3. The stool had a 

planar projection area of 122.35 m2 with an average stem planar projection area of 26.4 m2. The 

uncovered area and the root system had an area of about 20 m2. 
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Table 2 Representation of single and multi-stemmed trees (polycormons; stools) by numerical 
representation and Tree Inner Zone of influence coverage. 

total [*/ha] total [*/ha] total [*/ha]

[ha] 2,37 3,90 6,27

stools [N] 1841 777 2298 589 4139 660

singles [N] 444 187 834 214 1278 204

total [N] 2285 964 3132 803 5417 864

stools [N] 496 209 820 210 1316 210

[m2] 767,8 324,0 940,0 241,0 1707,8 272,4

singles [N] 444 187 834 214 1278 204

[m2] 116,0 48,9 198,8 51,0 314,8 50,2

total [N] 940 397 1654 424 2594 414

[m2] 883,8 372,9 1138,8 292,0 2022,6 322,6

PLOT

AREA

standing stems and 

stumps

TOTAL

tree zone of inner 

influence

ŠOBES LIPINA

 

 

 

Figure 5 Histogram of the distribution according the number of stems or stumps in one stool 
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3.2. Stand age and stool age 

According to the dendrochronological analyses, forest stands at the research plots were last 

coppiced in 1885 (Lipina) and 1890 (Šobes). The measured mean stem age was 124 years at 

Lipina (Q25-75: 116-126 yrs) and 120 years at Šobes (Q25-75: 109-122 yrs) (Fig. 6). Spot felling 

could be traced during the Great depression, World War II, and sporadically since the 1950s. 

During the 1980s/90s, Šobes was thinned as part of a planned transformation into high forest, and 

the number of stems in one stool was partially reduced. We also detected small-scale thinning at 

Lipina; stumps from these thinnings can still be easily recognized in the forest, and almost none 

has re-sprouted with new shoots. 

 

Figure 6 Box plot of age distribution at the Lipina and Šobes sites. 

 

The largest stool (Fig. 2b) had an average distance of 2.13 m (SE ± 0.3 m) and an average annual 

radial increment of 1.46 mm (SE ± 0.06 mm). The age of this stool was 825 years 

(SE ± 145 years), which means that the stool originated in the 11th–13th centuries (High Middle 

Ages). Older roots were often hollow inside and we observed a secondary growth of cambium 

into this hollow space (Fig. 7). This obviously rules out any age analysis. 
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Figure 7 Stool root profile – internal cambium created in the root cavity 

 

3.3. Tree inner zone of influence 

Tree Inner Zone of Influence (TreeIZI) area covered 292 m2/ha at Lipina and 372 m2/ha at Šobes 

(mean 323 m2/ha). The median area of TreeIZI for a full set of both plots was 0.40 m2 for all trees, 

0.23 m2 for singles and 0.87 m2 for stools. At Šobes the Interquartile Range of TreeIZI values was 

wider compared with Lipina (Fig. 8), and the occurrence of larger stools ≈ larger TreeIZI was 

more frequent. While the distribution of stem and stump diameters tended to be normal or normal 

related, the distribution of TreeIZI area was strongly positively skewed and best fit with extreme 

values or lognormal distribution - even if very few large stools composed a relatively large total 

of the TreeIZI area. 

 

Figure 8 Total tree area (Tree Inner Zone of Influence) for single trees and trees in polycormons. The 
boxplots represent range of area for single trees and polycormons on study plot. 
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For a basic differentiation of the variety of TreeIZI areas, we used the Shape Index (SI). Based on 

the results, we defined three categories of TreeIZI shapes (I - rounded; II - compact; III – jagged, 

Table 3, Fig. 3), by comparing to the boundary values of SI for the basic, mathematically easily 

definable shapes of a pentagon (SI 1.075) and equilateral triangle (SI 1.285). Both in numbers 

and area, the most prevalent was category II (compact), (Table 3). Mean patch size at Lipina was 

smaller than at Šobes for all categories, most significantly in category III (jagged). In general, for 

our data raising SI raises the patch size of TreeIZI (Pearson’s r 0.4856, significance of F for 

regression analysis: p<0.0001). 

 

Table 3 Stool shapes and tree types according to assessed indexes. Representation of Tree Inner Zones 
of Influence categories and their basic characteristics 

Šobes Lipina Šobes Lipina Šobes Lipina Šobes Lipina Šobes Lipina 

I single SI ≤ 1,001 187 214 49 51 0,3 0,2 0,1 0,1 1,0 1,0

I SI  ≤ 1,075 13 10 10 5 0,8 0,5 1,0 0,2 1,1 1,0

II compact
1,075 < SI ≤ 

1,285
167 149 251 174 1,5 1,2 1,2 1,0 1,2 1,2

III
elongated 

or jagged
SI > 1,285 29 52 62 62 2,1 1,2 2,2 1,3 1,4 1,4

Total 396 424 372 292  -  -  -  -  -  - 

 circular

polycormon 

(stool)

Class Shape type Tree type Criterion

Number of 

Patches 

[N/ha]

Class Area 

[m2/ha]

Mean Patch 

Size (MPS) 

[m2]

PS Standard 

Deviation; 

(PSSD)

Mean Shape 

Index (MSI)

 

 

3.4. Tree spatial patterns 

Our evaluation of the spatial distribution of all standing stems and stumps (both singles and 

stools) resulted in slight differences between the two plots (Fig. 9). While at Lipina stems and 

stumps were significantly clustered over all examined distances (Fig. 9 – a), at Šobes for the 

majority of distances complete spatial randomness (CSR) could not be rejected and a 

significantly clustered distribution was confirmed only for individual distances (1, 4, 5, 8, 16 and 

19 m) (Fig. 9 – b). Since the CSR hypothesis was rejected for the distribution of trees at Lipina 

and partly at Šobes, the Matérn cluster process was fitted to our empirical data. The minimum 

contrast method based on the L function yielded the estimates R = 2.11 m (cluster radius), c= 
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1.85 (mean number of points per cluster) and intensity κ = 0.04 m-2 for Lipina stems and R= 1.22 

m, c = 1.68 and κ = 0.05 m-2 for stems at Šobes. The empirical L function and envelopes from 

199 simulations of the fitted model showed good agreement for Šobes trees in particular. 

 

Figure 9 Pair correlation functions g(r) show spatial patterns of all stems at Lipina (a) and Šobes (b). 
gobs(r) – observed function, gtheo(r) – theoretical value of complete spatial randomness, glow(high)(r) 

– pointwise envelopes resulting from 199 Monte Carlo simulations of the null model of complete 
spatial randomness. If the value of gobs(r) is larger than the value of the ghigh(r) then the stems 

suggest positive association. If the value of gobs(r) is smaller than value of the glow(r) then the stems 
suggest negative association. In the grey zone, we cannot reject the null hypothesis of complete spatial 

randomness. The variable “r” refers to distance. 

 

4. DISCUSSION 

4.1. Ancient stool roots and age 

Because roots are generally less accessible and more difficult to explore and measure, they are 

less well known than the aboveground parts of plants. A detailed morphological and anatomic 

analysis of root systems can potentially indicate relationships between roots, the outside 

environment and other organisms at a particular site. The analysis of root systems, especially in 

the case of older individuals, can be used to gain insights into the complex and long-term driving 

factors influencing individual stands. Analyses of roots of oak on skeletal soils have shown that 

in such conditions oak sometimes develops distorted plates or slats, which are pushed into the 

small spaces between rocks or fissures of the parent rock (Jeník 1957, Schweingruber 2007). Oak 

tree rings are visible only in root ends and adjacent areas of surface skeletal roots, which also 

show other signs of transitional anatomy between aboveground and underground organs (Jeník 
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1957, Bédéneau & Pagés 1984). As a result, dendrochronological cores of old roots cannot be 

used to determine the age of ancient coppice stools. 

Structural differences in wood anatomy are more variable for broadleaf trees than for conifers 

(Gaertner 2001), making it much more difficult to detect changes in the wood in response to 

various events. Because the influences of climate, stand density, and social position of a tree 

causes large variability in ring width pattern, Copini et al. (2010) rejected using the pattern of 

wide rings around the pith, previously utilized by Haneca et al. (2005a, 2005b, 2009) as a 

fingerprint of coppice management. Our findings are in agreement with these views. 

To examine the age of ancient stools and the processes that led to their current shape, one must 

go beneath the surface to uncover the root and stump system. We made a visual and acoustic 

evaluation (by tapping on roots) of the exposed underground of ancient stools and took cross 

sections of different roots. We concluded that the overwhelming majority of large roots were 

hollow because of heart rot or were preserved only as remnants of the original root in the form of 

slab roots. Because the oldest parts of the roots were decayed, the deadwood samples we were 

able to take could not serve as indicators of stool age. The approximated age of one of the largest 

oak stools at our research plots was 825 years (SE ± 145 years). Similar or even older coppice 

stools of oaks and lindens with respect to size and growth rate have been reported by Rackham 

(2006) and Pigott (1989). 

For the modelled old stool we estimated a ratio of 2:1 for above/below ground volume with no 

reduction of below ground biomass regarding the hollow roots. This is in contrast to Barbaroux et 

al. (2003), who found a 5:1 biomass estimation ratio in a high forest. Stem bases were clustered 

only at 20 m2 but the trees were spread into the neighbourhood and altogether covered a 5 times 

greater area than in high forest.  

 

4.2. Tree inner zone of influence 

In our study we simplified the shape of stool clusters into three categories (I - rounded; II - 

compact; III - jagged). However, the number of variants can be very high depending on tree 

species: coppicing ability and strength, mortality rate and its spatial distribution, length of 

rotation period, longevity and rate of growth. 
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The present form of ancient coppices was shaped by the mortality of new shoots due to mutual 

competition, the ageing and dying of old stools (Johnson 1977, Larsen & Johnson 1998, Rydberg 

2000), as well as by natural habitat conditions and the length, intensity and frequency of human 

impact. The probability of sprouting steeply declines for stools with large DBH. If many sprouts 

persist on a single stump, they may develop a sweep in the lower part of the bole. 

It appears that for most oak species the key factor limiting seedling recruitment is light 

availability, i.e. overstory crown closure. Seed regeneration is therefore far more likely in open 

sites away from the parent tree (Crow 1992, Dey 2002, Steele & Smallwood 2002). However, 

with the gradual decay and dying off of ancient oak stools, one can expect an increase in 

seedlings of tree species other than oak (lime, hornbeam, maple, pine) (Szymura et al. 2014). 

 

4.3. Tree spatial patterns 

In accordance with our assumptions, stems often showed a significantly clustered distribution. 

This reflects the vegetative origin of stems in stools. At Lipina, stems had clustering at all study 

intervals up to 20 m. A similar spatial distribution was observed in the Mondariz and Pantón 

coppice forests in Spain (Rozas et al. 2009). The maximum intensity of clumping in our study 

and in Mondariz and Pantón is almost identical, with ranges at ca. 1 m. 

Interestingly, stool centroids also showed a clustered distribution at distances to 10m. This could 

be the effect of long-term human influence (short-rotation period). If the stems were cut at a 

young age (7-10, later 20 years), then the forest stand was essentially single-layered at all times. 

All stems needed a minimal crown area for survival, and less successful trees were gradually 

eliminated, so the forest stand tended towards a clustered spatial distribution.      

 

5. CONCLUSIONS 

For the modelled old stool we estimated a ratio of 2:1 for above/below ground volume with no 

reduction of below ground biomass regarding the hollow roots. The age of the largest stool was 
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estimated 825 years (SE ± 145 years). Total area of “Inner Zone of Influence” covers 323 m2/ha. 

The median area of this zone in both plots was 0.40 m2 for all trees, 0.23 m2 for singles and 0.87 

m2 for stools. The Matérn cluster process was successfully fitted to our empirical data. In this 

model the mean cluster radius ranged between 1.9 to 2.1 m and mean number of points per 

cluster was 1.7 and 1.9. The most prevalent characteristics of these ancient oak coppices were 

their compact shape and clustered spatial distribution up to 10 m. 

 

6. LIST OF ABBREVIATIONS 

PNP - Podyjí National Park 

CSR - Complete Spatial Randomness 
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