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Abstrakt
Táto diplomová práca sa zaoberá novým prístupom k zhlukovaniu časových rád na základe
dynamického faktorového modelu. Dynamický faktorový model je technika redukujúca
dimenziu a rozširuje klasickú faktorovú analýzu o požiadavku autokorelačnej štruktúry
latentných faktorov. Parametre modelu sa odhadujú pomocou EM algoritmu za použitia
Kalmanovho filtra a vyhladzovača a taktiež sú aplikované nevyhnutné podmienky na
model, aby sa stal identifikovateľným.

Po tom, ako je v práci predstavený teoretický koncept prístupu, dynamický faktorový
model je aplikovaný na skutočné pozorované časové rady a práca skúma jeho správanie a
vlastnosti na jednomesačných meteorologických dátach požiarneho indexu (Fire Weather
Index) na 108 požiarnych staniciach umiestnených v Britskej Kolumbii. Postup výpočtu
modelu odhadne záťažovú maticu (loadings matrix) spolu so zodpovedajúcim malým poč-
tom latentných faktorov a kovariačnou maticou modelovaných časových rád. Diplomová
práca aplikuje k-means zhlukovanie na výslednú záťažovú maticu a ponúka rozdelenie
meteorologických staníc do zhlukov založené na redukovanej dimenzionalite pôvodných
dát.

Vďaka odhadnutým priemerom zhlukov a odhadnutým latentným faktorom je možné
získať aj priemerné trendy každého zhluku. Následne sú dosiahnuté výsledky porovnané s
výsledkami získanými na dátach z rovnakých staníc avšak iného mesiaca, aby sa stanovila
stabilita zhlukovania. Práca sa taktiež zaoberá efektom varimax rotácie záťažovej matice.
Diplomová práca naviac navrhuje metódu detekovania odľahlých časových rád založenú na
odhadnutej kovariačnej matici modelu a rozoberá dôsledky odľahlých hodnôt na odhanutý
model.

Summary
This thesis studies a novel approach to time series clustering based on a dynamic factor
model. Dynamic factor model is a dimension reduction technique enhancing classical
factor analysis by a requirement of an autocorrelation structure of the latent factors.
Parameters of the model are estimated via EM algorithm employing Kalman filtering
and smoothing and necessary restrictions are placed on the model, so the model becomes
identifiable.

After describing the theoretical concept of the approach, the dynamic factor model
is applied to the real observed time series and the work discusses its behaviour and
properties on one-month meteorological data of fire weather index at 108 fire stations
located in British Columbia. The procedure of the model estimates a loadings matrix of
the model with a corresponding small number of latent factors and a variance-covariance
matrix of the modeled time series. The thesis applies k-means clustering to the resulted
loadings matrix and provides a division of the stations into clusters based on the reduced
dimensionality of the original data.

With the estimated cluster means and the latent factors, it is possible to obtain par-
ticular mean trends for each cluster. Then, the achieved clusters are compared with the
results obtained for the same set of stations but within a different month to assess the sta-
bility of the clustering. The work discusses the effect of varimax rotation on the loadings
matrix as well. Moreover, the thesis suggests a method for detecting possible time series
outliers based on the estimated variance-covariance matrix of the model and discusses the
effect of outliers on the estimated model.
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Rozšírený abstrakt
Diplomová práca skúma využitie dynamického faktorového modelu na modelovanie reál-
nych časových rád a využitie výstupu z tohto modelu na zhlukovanie časových rád. Práca
je rozdelená do 3 hlavných častí. V 2. a 3. kapitole sa venujeme teoretickému výkladu
dynamického faktorového modelu a metódam použitým pri analytickej práci s výsledkami
modelovania. V 4. kapitole vysvetľujeme pôvod a charakter reálnych dát použitých v
praktickej analýze. 5. kapitola obsahuje praktickú časť tejto diplomovej práce. Vysvetľu-
jeme tu našu analýzu reálnych dát za použitia dynamického faktorového modelu.

Dynamický faktorový model je technika redukujúca dimenziu vstupných dát, zatiaľ čo
dynamicita ostáva zachovaná. Pracuje s časovými radami, ktoré rozloží na súčet súčinu
záťažovej matice (loadings matrix) s malým počtom latentných faktorov a idiosynkratic-
kého komponentu (odhadovaná chyba). Metóda vychádza z klasickej faktorovej analýzy
a je rozšírená o autokorelačnú požiadavku na latentných faktoroch. Každá časová rada je
tým pádom reprezentovaná vektorom záťaží ako súčet záťaží na jednotlivých odhadnutých
latentných faktoroch. V literatúre sa uvádza statická a dynamická forma dynamického
faktorového modelu. Obidve formy sú ekvivalentné, avšak statická reprezentuje dynam-
icitu implicitne a je jednoduchšia na výpočet. Taktiež sa modely rozdeľujú na ”exak-
tné” a ”približné”. Exaktný model nedovoľuje žiadnu kovariáciu zložiek idiosynkratického
komponentu (odhadovaná chyba), zatiaľ čo viac realistický približný model dovoľuje istú
koreláciu medzi časovými radami. V práci sme odvodili prevod medzi statickou a dy-
namickou formou, ktorý sa v žiadnej literatúre s ktorou sme pracovali nedá dohľadať a
reprezentuje vlastný prínos autora. Nakoniec uvádzame zjednodušenú formu dynamického
faktorového modelu ako autoregresný model s oneskorením o jeden časový index. Odhady
modelu vychádzajú z predpokladu, že latentné faktory podliehajú viacrozmernému nor-
málnemu rozdeleniu, rovnako ako idiosynkratický komponent a náhodná chyba na au-
toregresívnom procese latentných faktorov, u ktorých sa však predpokladá už nulová
stredná hodnota. Dynamický faktorový model obsahuje veľa hyperparametrov, ktoré
nepoznáme a potrebujeme odhadnúť. Tomuto účelu slúži EM algoritmus. Za použitia
Kalmanovho filtra a vyhladzovača sa v prvom kroku odhaduje stredná hodnota logar-
itmu združenej vierohodnostnej funkcie (E krok) a následne sa upravujú hodnoty hy-
perparametrov tak, aby sa odhadnutá stredná hodnota z predchádzajúceho kroku ma-
ximalizovala (M krok). Takýmto spôsobom sa snažíme dosiahnuť optimálneho odhadu
parametrov modelu. Následne taktiež vysvetľujeme nevyhnutné podmienky požadované
v modeli tak, aby boli odhady parametrov identifikovateľné. Tieto podmienky spôsobujú,
že je prvá časová rada modelovaná iba prvým latentným faktorom, druhá časová rada mo-
delovaná prvými dvoma latentnými faktormi atď. Z tohto dôvodu vysvetľujeme varimax
rotáciu záťažovej matice a latentných faktorov, ktorá rieši tento problém. V 3. kapitole
vysvetľujeme koncept Akaikeho informačného kritéria (AIC), ktoré je často používané
ako miera vhodnosti modelu na konkrétnych dátach. Toto kritérium používame v našej
analýze na porovnávanie rôznych modelov a selekciu toho najlepšieho. Ďalej vysvetľujeme
k-means zhlukovanie. Táto metóda sa snaží nájsť vhodné umiestnenie vopred určeného
množstva centier a rozdelenie dátových hodnôt do zhlukov prislúchajúcich konkrétnemu
centru tak, aby bola minimalizovaná suma vzdialeností dátových bodov od centra zhluku.
Túto metódu aplikujeme v našej analýze na záťažovú maticu a vytvárame tak rozdele-
nie meteorologických staníc do zhlukov na základe výstupu z dynamického faktorového
modelu. Tento prístup je novým prístupom v zhlukovaní časových rád.



Dáta, ktoré pri analýze spracovávame sú hodnoty tzv. Fire Weather Index (FWI).
Ide o index, ktorý meria riziko intenzity požiaru v danej lokalite. Je výsledkom mera-
nia ďalších 5 indexov, ktoré sú získané na základe 4 základných meteorologických meraní
teploty, množstva zrážok, vlhkosti a rýchlosti vetra. Ďalšie indikátory ako typ dreva v
lesoch, vlhkosť zeme a podzemných zložiek či potenciál pre vznik požiaru sú tiež súčasťou
týchto indexov. Fire Weather Index je jedna zložka Canadian Forest Fire Weather Index
System, čo je systém na kontrolu požiarov v Britskej Kolumbii. Slúži predovšetkým na
predpovedanie vzniku požiarov a ich intenzity za účelom adekvátnej prípravy a prerozde-
lenia dostupných a obmedzených ľudských či materiálnych zdrojov a prípravy obyvateľstva
na potenciálne nebezpečenstvo.

V kapitole 5 sa venujeme praktickej časti tejto diplomovej práce, a to aplikovaniu
dynamického faktorového modelu na FWI dáta. Pracujeme s dátami za mesiace júl a
august z roku 2003 a programujeme v jazyku R. Máme hodnoty Fire Weather Index
pre 108 meteorologických staníc počas 31 dní. Vybrali sme stanice, ktoré sa nachádzajú
v južnej časti Britskej Kolumbie, kde je zväčša vnútrozemská klíma, vyššie teploty, a
podľa istých meraní je to oblasť s prevažne najvyššími priemernými hodnotami FWI v
rámci celej Kanady, a zároveň sme pre týchto 108 staníc mali plné dáta. Analýzu v
práci demonštrujeme na mesiaci júl a neskôr výsledky porovnávame s mesiacom august,
ktorého výsledky analýzy uvádzame v prílohe. Pred odhadom samotného dynamického
faktorového modelu sme dáta centralizovali, teda odpočítali od každej časovej rady ich
priemernú hodnotu. Samotné hľadanie najlepšieho modelu prebiehalo nasledovne. Pri
inicializácii modelu môžeme stanoviť dve premenné: počet faktorov, ktorý očakávame,
a štruktúru kovariačnej matice. Dostupné štruktúry kovariačnej matice sú: ”diagonálna
rovnaká” - odhadujeme prvky na diagonále kovariačnej matice idiosynkratického kompo-
nentu, ktoré predpokladáme, že sú rovnaké, prvky mimo diagonály sú odhadnuté nulou;
”diagonálna rozdielna” - predpokladáme, že prvky na diagonále sú rozdielne, mimo dia-
gonály rovné nule; ”zhodný rozptyl a kovariácia” - odhadujeme všetky prvky na diagonále
aj mimo nej s tým, že predpokladáme, že prvky mimo diagonálu sú sebe rovné a prvky
na diagonále sú tiež sebe rovné. Počet faktorov, ktoré sme sa pokúšali odhadnúť bol 2
až 5. Pre každú kombináciu kovariačnej štruktúry s daným počtom faktorov sme odhadli
parametry zvoleného dynamického faktorového modelu. Výsledné modely sme porovnali
na základe upraveného Akaikeho informačného kritéria a uprednostnili sme jednoduchší
model (menej faktorov) pred komplexnejším. Ako najlepší model sme na základe týchto
kritérii zvolili dynamický faktorový model s 4 latentnými faktormi a ”diagonálnou rozdiel-
nou” kovariačnou štruktúrou. V práci sme následne vykreslili histogramy vysvetľujúce
konvergenciu parametrov (keďže ide o iteračný proces, máme podmienky konvergencie
pre odhad parametrov), rozdelenie záťaží na jednotlivých časových radách zo záťažovej
matice či priebeh latentných faktorov. Záťažovú maticu spolu s latentnými faktormi sme
uviedli a porovnali pred varimax rotáciou, ako aj po nej. Vďaka varimax rotácii sa nám
podarilo prekonať spomenutú podmienku a prvé štyri časové rady sú riadne modelované
všetkými štyrmi faktormi. Taktiež druhý sľubovaný efekt varimax rotácie, a to prehĺbenie
rozdielu medzi záťažami jednotlivých faktorov, sa nám nepodarilo dostatočne preukázať.
Odhad kovariačnej matice ponúka možnosť ako detekovať odľahlé časové rady. V práci
sme použili prístup, v ktorom sme najprv pomocou Shapiro-Wilk testu dobrej zhody
hľadali rozdelenie, ktorým by sa odhady rozptylov časových rád mohli riadiť, a potom
sme stanovili 99 % percentil pre odhadnuté rozdelenie. Na základe zvoleného kritéria
dobrej zhody sa ako najvhodnejšie javilo lognormálne rozdelenie. Hodnoty rozptylov,



ktoré boli mimo tohto 99% percentilu lognormálneho rozdelenia s odhadnutými paramet-
rami sme prehlásili za odľahlé hodnoty. Takto bola identifikovaná jedna časová rada ako
odľahlá. Ďalej sme v práci vytvorili zhluky na základe k-means zhlukovania. Ako vhodný
počet zhlukov nám vyšiel 4. Stanice sme vykreslili na mape s farbami prislúchajúcimi
daným zhlukom. Ďalej sme zobrazili trendy časových rád rozdelených do zhlukov spolu
s priemerným trendom, čo je zaujímavý prínos tohto prístupu. Rovnako tak sme boli
schopní vykresliť rozdelenie záťaží jednotlivých faktorov na časových radách rozdelených
do zhlukov a sledovať zmeny v rámci samotných zhlukov. V poslednej časti tejto kapitoly
sme porovnali dosiahnuté rozdelenie do zhlukov s najlepším modelom odhadnutým na au-
gustových dátach. Z vizuálneho porovnania sme sledovali, že rozdelenie staníc do zhlukov
sa trochu zmenilo, čo potvrdili aj číselné charakteristiky Rand Index a Adjusted Rand
Index. Na augustových dátach už nepozorujeme také výrazné zhluky v rámci mapy, avšak
hlavné centrum jednotlivých zhlukov spolu prislúchajúcimi stanicami zostalo pomerne za-
chované. V práci sme ukázali možnosti využitia nového prístupu k zhlukovaniu časových
rád na základe dynamického faktorového modelu a k-means zhlukovaniu aplikovaného na
záťažovú maticu výsledného dynamického faktorového modelu.
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1. INTRODUCTION

1 Introduction
Time series are all around us. Every day we see changes in temperature, electricity usage,
popularity charts, stock markets, or many other economical aspects. The one that is able
to process this information in one’s favor may benefit from its power and use it to his
advantage. We want to predict, we want to systemize, we want to group, we want to
find hidden patterns. The reason for this is very simple. There is much more information
than we can see. And to get this information, we need to dig deeper. We need to create
a model and apply it to real-world observations. With mathematical interpretation new
doors open to data observation.

One of these models is also a Dynamic Factor Model. It is a dimension reduction
technique applied to time series. In Chapter 2 we will state its definition and discover
its properties. We will find necessary restrictions that need to be placed on the model
just to be able to estimate the parameters of the model. Then with restrictions placed on
the model, we will discuss the EM algorithm together with Kalman filter and smoother,
which are methods suitable for model estimation. Then we will explain Varimax rotation,
which we need to rotate model output to overcome restrictions placed on the model.

In Chapter 3 we will explain AIC, which we use for comparing the models and choosing
the most suitable one for our observed data. In [1] many methods for time series clustering
are explained. In this thesis, we introduce a new technique. By estimating a dynamic
factor model we reduce the dimensionality of our original data and obtain an estimated
loadings matrix. Then on this matrix, we apply k-means clustering. This way we are able
to obtain time series division into clusters and also thanks to estimated latent factors and
cluster means, we are able to plot individual cluster mean trends.

The data we will work with in this thesis are values of the ”Fire Weather Index”. In
Chapter 4 we will explain, that it is a component of the fire management system used to
prevent uncontrolled wildfires and manage resources in British Columbia since the year
1970. The index measures potential fire intensity in case of fire ignition. It combines 5
different indices and is computed based on meteorological measurements of precipitation,
wind speed, temperature, and moisture.

In Chapter 5 we will provide our data analysis of Fire Weather Index measurements.
We have measurements for months July and August in the year 2003. First, we will focus
on the month July and break down each step of the analysis. We will examine the inputs
and the outputs of an implementation of a dynamic factor model using the Multivariate
Auto-Regressive State-Space (MARSS) package in R and provide graphs with possible
visualizations gathered from the outputs. Then we will execute a k-means clustering on
rotated loadings matrix of the most suitable dynamic factor model and divide stations
into clusters. We will show a map of the southern location of British Columbia with
stations divided into clusters and station trends within clusters with its cluster means.
We will discuss also outliers detection as a possible result of the dynamic factor model. In
the end, we will compare the obtained results from July data with next month’s August
data and see, how the clusters and trends change with next month’s FWI measurements.
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2 Dynamic factor model
Dynamic factor model is a model of dynamic factor analysis (DFA), which is a statistical
method that allows us to reduce the dimensionality of data with preserving the information
about the lags and their effect on our observations in time. When examining a big
amount of time series a need for discovering underlying processes arises. Finding common
patterns, latent factors as we call them, is an important part of data analysis, the basis
for further work such as detection of similarities, finding common influences on the time
series, classification, prediction. Dynamic factor model helps us understand our data,
especially big amount of data, by describing the covariance relationship among many
variables in terms of a few underlying factors [2] and simultaneously describing the effect
of these factors on observations through their lags [3].

This chapter will focus on explaining the mathematical background of dynamic factor
models and their basic description in a state-space form. The first section will introduce
a classical factor model as a basis for understanding the origin of a dynamic factor model.
Further, we’ll explain the needed restrictions for solving the equation as the classical
optimization problem is not identifiable. We will provide EM algorithm as a method for
estimating the unknown parameters.

2.1 Factor model
According to [2] and [4] let X be an observable p-dimensional random vector X =
(X1, X2, . . . , Xp)

′ with mean µ and covariance matrix Σ. Then

X1 = l11F1 + l12F2 + · · ·+ l1mFm + ε1

X2 = l21F1 + l22F2 + · · ·+ l2mFm + ε2
... ...

Xp = lp1F1 + lp2F2 + · · ·+ lpmFm + εp

(2.1)

is called factor model, where F = (F1, F2, . . . , Fm)
′ is a m-dimensional vector of m

common factors, coefficients lij are called factor loadings of jth factor on ith variable
and ε = (ε1, ε2, . . . , εp) is a random vector of additional sources of variation called errors.
We normally center our data of observations and since lij creates a matrix, we denote

X − µ = LF + ε, (2.2)

where X − µ is a p×1 vector of centered random variables and L = (lij) is a p×m matrix
called matrix of factor loadings. In this model X is observable, F, ε are unobservable
and L is to be estimated.

Since the model has so many unobservable quantities, it is convenient to have addi-
tional assumptions about F and ε:

(i) Mean values of both vectors are zero

E(F ) = 0 (2.3)
E(ε) = 0. (2.4)
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2. DYNAMIC FACTOR MODEL

(ii) Variance matrix of factors is m×m identity matrix

var(F ) = cov(F, F ) = E[FF ′] = I. (2.5)

This means, that all of the factors are uncorrelated with one another.

(iii) Variance matrix of errors is a p× p diagonal matrix

var(ε) = E[εε′] = Ψ =


ψ1 0 · · · 0
0 ψ2 · · · 0
... 0

. . . 0
0 0 · · · ψp

 , (2.6)

which means there is no cross-sectional dependence.

(iv) F and ε are uncorrelated

cov(ε, F ) = cov(F, ε) = E[εF ′] = 0. (2.7)

Altogether these assumptions constitute an orthogonal factor model.
Orthogonal factor model determines the covariance structure of X

(X − µ)(X − µ)′ = (LF + ε)(LF + ε)′

= (LF + ε)((LF )′ + ε′)

= (LF (LF )′) + ε(LF )′ + LFε′ + εε′
(2.8)

so

Σ = cov(X) = E((X − µ)(X − µ)′)

= LE (FF ′)L′+ E(εF ′)L′ + LE(Fε′)+ E(εε′)

= LL′ + Ψ.

(2.9)

Because F and ε are uncorrelated (2.7), we have

(X − µ)F ′ = (LF + ε)F ′ = LFF ′ + εF ′ (2.10)

and

cov(X,F ) = E(X − µ)F ′ = LE(FF ′)+ E(εF ′) = L. (2.11)

This defines a covariance structure for the orthogonal factor model (2.9) as

var(Xi) = l2i1 + . . .+ l2im + ψi

cov(Xi, Xk) = li1lk1 + . . .+ limlkm
(2.12)

and (2.11) as

cov(Xi, Fj) = lij. (2.13)
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2.2. LAG OPERATOR

The defined orthogonal model is linear in the common factors. From (2.2) we can write

xi =
m∑
j=1

lijfj + µi + εi, i = 1, 2, . . . , p, (2.14)

and by specifying

var(Xi) = σii, (2.15)

together from (2.12) we obtain

σii =
m∑
j=1

l2ij + ψi. (2.16)

Then by denoting

h2i =
m∑
j=1

l2ij (2.17)

we have

σii = h2i + ψi, i = 1, 2, . . . , p, (2.18)

where the variance of ith variable contributed by the m common factors l2i1+l2i2+· · ·+l2im is
called ith communality and ψi is called specific variance. We see that ith communality
is the sum of squares of the loadings of the ith variable on m common factors.

When m = p, any covariance matrix Σ can be represented as in (2.9) with Ψ equal to
zero matrix. However, factor analysis is most useful for us when m < p, so p observations
are represented by much less factors and provides a more simple explanation of covariation
in X with fewer parameters than original p(p+1)/2 parameters in Σ. With m > 1 there
is some ambiguity in the factor model because of possibility of two factor models leading
to same properties. We will discuss this issue regarding time series in section 2.8.

2.2 Lag operator
Let {Yt} be a time series defined as in [5]. Then a lag operator L maps a sequence {Yt}
into

LYt = Yt−1, (2.19)

for all t which means, that lag operator produces the previous element of a particular
time series. Lag operator may be applied repeatedly, so

LkYt = Yt−k (2.20)

for all k ∈ N. We may apply lag operator to a constant c or an inversion to a lag operator
and obtain

Lc = c

L−1Yt = Yt+1.
(2.21)
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2. DYNAMIC FACTOR MODEL

Lag polynomials are commonly used to describe autoregressive (AR) processes. Let φ(L)
be a one-sided lag polynomial of kth degree

φ(L) =
k∑

i=0

φiL
i = φ0L

0 + φ1L
1 + . . .+ φkL

k, (2.22)

which means it is a polynomial of lag operators. Then a lag polynomial φ(L) applied to
a process Yt is

φ(L)Yt = (φ0L
0 + φ1L

1 + . . .+ φkL
k)Yt

= φ0L
0Yt + φ1L

1Yt + . . .+ φkL
kYt

= φ0Yt + φ1Yt−1 + . . .+ φkYt−k.

(2.23)

2.3 Dynamic factor model
As stated in [6], the dynamic factor model (DFM) represents the evolution of a vector
of p observed time series X t, where our real data (observed time series) are modeled
by a reduced number of unobserved common (latent) factors which evolve over time,
plus uncorrelated disturbances which represent measurement error and/or idiosyncratic
dynamics (noise) of the individual series. We distinguish between dynamic and static
form of the dynamic factor model and between exact and approximate dynamic factor
model. The dynamic form represents the dependence of observed time series X t on lags
of the factors explicitly, it is more intuitive in terms of understanding the dynamics of the
model and more realistic, but harder to estimate. The static form represents the dynamics
implicitly. It can be equivalent to dynamic form and it is used by MARSS package [29] in
R, which we will use further in real data application. The difference between exact and
approximate model is in cross-sectional correlation of idiosyncratic component. Exact
model does not allow any cross-sectional correlation, while approximate model, which is
more realistic in applications, allows for existence of certain correlation across time series.

2.3.1 Dynamic form
Let X t be a p × 1 vector of time series of interest depending on m unobserved latent
factors f t and a mean-zero idiosyncratic component εt as in (2.4), where latent factors
and idiosyncratic terms are in general correlated, thus (2.7) does not hold. Dynamic form
of the model can be written as

X t = λ(L)f t + εt (2.24)
f t = Ψ(L)f t−1 + ηt, (2.25)

where the lag polynomial matrix λ(L) is p×m, Ψ(L) is m×m and ηt is m× 1 vector of
mean-zero error on factors. Errors are assumed to be uncorrelated at all leads and lags,
so that

E(εtη
′
t−k) = 0 for all k. (2.26)

Idiosyncratic component εt can be serially correlated [5]. Lag polynomial matrix λ(L)
would look like

21



2.3. DYNAMIC FACTOR MODEL

λ(L) =


λ11(L) λ12(L) · · · λ1m(L)
λ21(L) λ22(L) · · · λ2m(L)

... ... . . . ...
λp1(L) λp2(L) · · · λpm(L)

 , (2.27)

where λij(L) stands for a lag polynomial on the ith row and jth column.
For the ith time series Xit, the equation looks like

Xit = λi(L)f t + εit, (2.28)

where the ith row

λi(L) = (λi1(L), λi2(L), . . . , λim(L)) (2.29)

of λ(L) is called the dynamic factor loading on the ith series and λi(L)f t is called common
component of the ith series. We treat the lag polynomial λ(L) as one sided.

Let us assume m latent factors f t = (f1t, f2t, . . . , fmt)
′ and sth degree of a lag poly-

nomial, which means

λ(L) = λ0L
0 + λ1L

1 + . . .+ λsL
s. (2.30)

Then for the particular time series Xit we could write

Xit = λi(L)f t + εit

=
[
λi1(L) λi2(L) · · · λim(L)

]

f1t
f2t
...
fmt

+ εit

= λi1(L)f1t + λi2(L)f2t + · · ·+ λim(L)fmt + εit

=
s∑

j=0

λi1j f1t−j +
s∑

j=0

λi2j f2t−j + · · ·+
s∑

j=0

λimj fmt−j + εit

= λi10 f1t + λi11 f1t−1 + . . .+ λi1s f1t−s

+ λi20 f2t + λi21 f2t−1 + . . .+ λi2s f2t−s

+ · · ·
+ λim0 fmt + λim1 fmt−1 + . . .+ λims fmt−s + εit,

(2.31)

where

λij(L)fjt = (λij0 L
0 + λij1 L

1 + · · ·+ λijs L
s)fjt

= λij0 fjt + λij1 fjt−1 + · · ·+ λijs fjt−s,
(2.32)

where i = 1, . . . , p denotes particular time series and j = 1, . . . ,m denotes latent factors.
Then λij0 is loading of 0th lag of jth latent factor on ith time series.
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2. DYNAMIC FACTOR MODEL

For the vector autoregression (2.25) of m factors f t that has r lags, we may write

f t =


f1t
f2t
...
fmt

 =


Ψ1(L) 0 · · · 0

0 Ψ2(L) · · · 0
... ... . . . ...
0 0 · · · Ψm(L)



f1t−1

f2t−1
...

fmt−1

+


η1
η2
...
ηm,

 , (2.33)

where
Ψi(L) = Ψi

1L
0 +Ψi

2L
1 + · · ·+Ψi

rL
r−1. (2.34)

For ith factor i = 1, . . . ,m (2.33) is written as

fit = Ψi(L)fit−1 + ηi = (Ψi
1L

0 +Ψi
2L

1 + · · ·+Ψi
rL

r−1)fit−1 + ηi

= Ψi
1fit−1 +Ψi

2fit−2 + · · ·+Ψi
rfit−r + ηi,

(2.35)

where Ψi
j stands for autoregression coefficient of jth lag on ith factor.

2.3.2 Static form
Static form rewrites the dynamic form (2.24) and (2.25) to depend on n static factors F t.
Dynamic form involves m dynamic factors f t, while it is assumed that n ≥ m. According
to [6], rewriting a dynamic form into a static form makes the model more amenable to
principal component analysis.

Let the lag polynomial matrix λ(L) be of sth degree lag polynomials and let F t =
(f ′

t,f
′
t−1, . . . ,f

′
t−s)

′ be a n× 1 vector of static factors in contrast to dynamic factors. For
m dynamic factors we can write

F t =


f ′

t

f ′
t−1
...

f ′
t−s

 =


(f1t, f2t, . . . , fmt)

′

(f1t−1, f2t−1, . . . , fmt−1)
′

...
(f1t−s, f2t−s, . . . , fmt−s)

′

 =



f1t
f2t
...
fmt

f1t−1

f2t−1
...

fmt−1
...

f1t−s

f2t−s
...

fmt−s



(2.36)

Then let Λ = (λ0,λ1, . . . ,λs) be a p× (m · s) matrix of matrices λk (k = 1, . . . , s), where

λk =


λ11k λ12k · · · λ1mk
λ21k λ22k · · · λ2mk
... ... . . . ...
λp1k λp2k · · · λpmk

 (2.37)
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is a p ×m matrix of coefficients on the kth lag of λ(L) in (2.24). Also let Φ(L) be the
matrix consisting of ones, zeros and elements of Ψ(L) such that (2.25) is rewritten in
terms of F t. Then we can rewrite dynamic form (2.24) and (2.25) into static form

X t = ΛF t + εt (2.38)
F t = ΦF t−1 +Gηt. (2.39)

If we join together (2.36), (2.37), (2.38) and break it down, we obtain

X t =
[
λ0 λ1 · · · λs

]


f ′
t

f ′
t−1
...

f ′
t−s

+ εt = λ0f
′
t + λ1f

′
t−1 + · · ·+ λsf

′
t−s + εt

=

λ
11
0 · · · λ1m0
... . . . ...
λp10 · · · λpm0



f1t
f2t
...
fmt

+

λ
11
1 · · · λ1m1
... . . . ...
λp11 · · · λpm1



f1t−1

f2t−1
...

fmt−1

+ · · ·

+

λ
11
s · · · λ1ms
... . . . ...
λp1s · · · λpms



f1t−s

f2t−s
...

fmt−s

+ εt.

(2.40)

Then for particular time series Xit that depends on up to sth lagged values of f t, we get

Xit = λi10 f1t + λi20 f2t + · · ·+ λim0 fmt

+ λi11 f1t−1 + λi21 f2t−1 + · · ·+ λim1 fmt−1

+ · · ·
+ λi1s f1t−s + λi2s f2t−s + · · ·+ λims fmt−s + εit,

(2.41)

which is exactly the same as (2.31).
Now let us see, how dynamic form is equal with static form in vector autoregression

function. Let us assume m dynamic factors f t and vector autoregression for f t has r lags,
so fit = Ψi

1fit−1+Ψi
2fit−2+ . . .+Ψi

rfit−r. Then for (2.25) and (2.39) correspondence may
be written as
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Φ =



Ψ1
1 0 · · · 0 Ψ1

2 0 · · · 0 · · · Ψ1
r 0 · · · 0

0 Ψ2
1 · · · 0 0 Ψ2

2 · · · 0 · · · 0 Ψ1
r · · · 0

... ... . . . ... ... ... . . . ... · · · ... ... . . . ...
0 0 · · · Ψm

1 0 0 · · · Ψm
2 · · · 0 0 · · · Ψm

r

1 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
... ... . . . ... ... ... . . . ... · · · ... ... . . . ...
0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
... ... ... ... ... ... ... ... . . . ... ... ... ...
0 0 · · · 0 0 0 · · · 0 · · · 1 0 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
... ... ... ... ... ... ... ... . . . ... ... . . . ...
0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0



, (2.42)

F t = ΦF t−1 +Gηt

f1t
f2t
...
fmt

f1t−1

f2t−1
...

fmt−1
...

f1t−r+1

f2t−r+1
...

fmt−r+1



= Φ



f1t−1

f2t−1
...

fmt−1

f1t−2

f2t−2
...

fmt−2
...

f1t−r

f2t−r
...

fmt−r



+



1
1
...
1
0
0
...
0
...
0
0
...
0



ηt =



Ψ1
1f1t−1 +Ψ1

2f1t−2 + · · ·+Ψ1
rf1t−r

Ψ2
1f2t−1 +Ψ2

2f2t−2 + · · ·+Ψ2
rf2t−r

...
Ψm

1 fmt−1 +Ψm
2 fmt−2 + · · ·+Ψm

r fmt−r

f1t−1

f2t−1
...

fmt−1
...

f1t−r+1

f2t−r+1
...

fmt−r+1



+



1
1
...
1
0
0
...
0
...
0
0
...
0



ηt

=



Ψ1
1L

0f1t−1 +Ψ1
2L

1f1t−1 + · · ·+Ψ1
rL

r−1f1t−1

Ψ2
1L

0f2t−1 +Ψ2
2L

1f2t−1 + · · ·+Ψ2
rL

r−1f2t−1
...

Ψm
1 L

0fmt−1 +Ψm
2 L

1fmt−1 + · · ·+Ψm
r L

r−1fmt−1

f1t−1

f2t−1
...

fmt−1
...

f1t−r+1

f2t−r+1
...

fmt−r+1



+



1
1
...
1
0
0
...
0
...
0
0
...
0



ηt
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=



(Ψ1
1L

0 +Ψ1
2L

1 + · · ·+Ψ1
rL

r−1)f1t−1

(Ψ2
1L

0 +Ψ2
2L

1 + · · ·+Ψ2
rL

r−1)f2t−1
...

(Ψm
1 L

0 +Ψm
2 L

1 + · · ·+Ψm
r L

r−1)fmt−1

f1t−1

f2t−1
...

fmt−1
...

f1t−r+1

f2t−r+1
...

fmt−r+1



+



1
1
...
1
0
0
...
0
...
0
0
...
0



ηt

=



Ψ1(L)f1t−1

Ψ2(L)f2t−1
...

Ψm(L)fmt−1

f1t−1

f2t−1
...

fmt−1
...

f1t−r+1

f2t−r+1
...

fmt−r+1



+



1
1
...
1
0
0
...
0
...
0
0
...
0



ηt →


Ψ1(L) 0 · · · 0

0 Ψ2(L) · · · 0
... ... . . . ...
0 0 · · · Ψm(L)



f1t−1

f2t−1
...

fmt−1

+ ηt

= Ψ(L)f t−1 + ηt. (2.43)

As we can see in (2.36), F t consists of stacked current and past values of f t, that
is why we may call it also a stacked form. In general, the number of static factors m
exceeds the number of dynamic factors n. When n > m, the static factors have a dynamic
singularity, that means, n −m linear combinations of F t are predictable from past F t.
For a single dynamic factor m = 1, two static factors n = 2 and two lags on ft we may
write

F t =

[
F1t

F2t

]
=

[
ft
ft−1

]
=

[
Ψ1

1 Ψ1
2

1 0

] [
ft−1

ft−2

]
= ΦF t−1 (2.44)

where n−m = 1 linear combination may be written as

F2t = ft−1 = F1t−1. (2.45)
According to [6], in macroeconomic data the difference between number of static and
dynamic factors is often small, in some applications even equal.

In [3] it is stated, that in static form factors have only a contemporaneous effect on
observations X t, while dynamic factors have effect on observations through their lags too.
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Typically we need more static factors than dynamic factors. The dynamic form (2.24),
(2.25) is more realistic but harder to estimate than static form (2.38), (2.39). However
the estimation in dynamic form may be accomplished by going through the equivalent
static model, which we explained above.

2.3.3 Simplified form
In the further work, we will work with a simplified version of static model according to
[7]. This theoretical background is applied in derivation of EM algorithm [8], which is
used in MARSS package [29], that we will use in our time series analysis. Now we join
notation from (2.1) and works mentioned above, that will be used further.

Let us have a general formulation for static form of a dynamic factor model with m
common trends (factors)

X t = LF t + µ+ εt

F t = F t−1 + ηt,
(2.46)

where L is a p×m matrix of unknown factor loadings, F t is a m× 1 vector of factors at
time t and µ is called offset or level parameter. We assume, that

F 0 ∼ Nm(π0,H0) (2.47)
εt ∼ Np(0,R) (2.48)
ηt ∼ Nm(0,Q). (2.49)

The parameters L,R,Q,µ,π0 and H0 are unknown and they are called hyperparameters.
The variance of X t is given by

var(X t) = L var(F t)L
′ +R (2.50)

and mean by
E(X t) = LE(F t) + µ. (2.51)

As we can see, the covariance is very similar to (2.9).
Based on (2.46) and (2.47 - 2.49) the conditional distributions of involved random

vectors are
(X t|F t = f t) ∼ Np(Lf t + µ,R)

(F t|F t−1 = f t−1) ∼ Nm(f t−1,Q).
(2.52)

2.4 Joint density function
According to [2] let X1,X2, . . . ,Xn be p × 1 vectors of random sample of size n from
a multivariate normal distribution. Vectors are mutually independent and each one has
a distribution Np(µ,Σ). Let xi be a specific realization of the random vector X i. The
joint density function f() of all the observations is the product of the marginal normal
densities

f(x1,x2, . . . ,xp) =
n∏

j=1

{
1

(2πp/2)|Σ|1/2
e−(xj−µ)′Σ−1(xj−µ)/2

}

=
1

(2π)np/2
1

|Σ|n/2
e−

∑n
j=1(xj−µ)′Σ−1(xj−µ)/2,

(2.53)
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where | · | is a determinant of a covariance matrix.
In [8] this is discussed regarding stochastic processes. Let X t and F t be a ran-

dom vectors with distributions given by dynamic factor model (2.46). Let x = x1:T =
(x1,x2, . . . ,xT )

′ and f = f 0:T = (f 0,f 1, . . . ,fT )
′ be a specific realizations of these ran-

dom vectors. Then, the joint density function can be written as

f(x,f) = f(x|F = f)f(f), (2.54)

where

f(f) = f(f 0)
T∏
t=1

f(f t|F 1:t−1 = f 1:t−1)

f(x|F = f) =
T∏
t=1

f(xt|F = f)

(2.55)

So joint density function of (x1,x2, . . . ,xT ,f 0,f 1, . . . ,fT ) is

f(x1,x2, . . . ,xT ,f 0,f 1, . . . ,fT ) =

=
T∏
t=1

f(xt|F = f)× f(f 0)
T∏
t=1

f(f t|F 1:t−1 = f 1:t−1)

=
T∏
t=1

f(xt|F t = f t)× f(f 0)
T∏
t=1

f(f t|F t−1 = f t−1).

(2.56)

In the equation F 1:t−1 becomes F t−1 because of Markov property of multivariate autore-
gressive process and F becomes F t, because X t depends only on F t in (2.46).

2.5 Kalman filter
Kalman filter, and further Kalman smoother, is a technique to obtain estimators for
the underlying unobserved signal xt given the data y1:s = {y1, . . . ,ys} to time s. This
perfectly fits our problem with observed time series X t, unobserved latent factors F t and
unknown hyperparameters in our dynamic factor model. For s < t we call the problem
forecasting or prediction. For s = t the problem is called filtering and finally for s > t
we call the problem smoothing. We will focus on just two cases, filtering and smoothing.
This whole section is gathered from [9].

We will use the following definitions for the terms F t|T and H t|T :

F t|T :=E(F t|x1:T )

H t|T :=E{(F t − F t|T )(F t − F t|T )
′}

=E{(F t − E(F t|x1:T ))(F t − E(F t|x1:T ))
′}.

(2.57)

Also

H t,t−1|T = E{(F t − F t|T )(F t−1 − F t−1|T )
′|x1:T}

= E{(F t − E(F t|x1:T ))(F t−1 − E(F t−1|x1:T ))
′|x1:T}

(2.58)
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2. DYNAMIC FACTOR MODEL

is conditioned covariance matrix of F t and F t−1.
Let us have a dynamic factor model (2.46) with initial conditions F 0|0 = π0 and

H0|0 = H0 for t = 1, . . . , T defined in (2.58). Then

F t|t−1 = F t−1|t−1 (2.59)
H t|t−1 = H t−1|t−1 +Q (2.60)

and

F t|t = F t|t−1 +Kt(X t −LF t|t−1 − µ) (2.61)
H t|t = (I −KtL)H t|t−1, (2.62)

where
Kt = H t|t−1L

′(LH t|t−1L
′ +R)−1 (2.63)

is called Kalman gain. Important byproducts of this filter are the innovations

et = X t − E(X t|X1:t−1) = X t −LF t|t−1 − µ (2.64)

and the corresponding variance-covariance matrices

H t := var(et) = var(L(F t − F t|t−1) + εt) = LH t|t−1L
′ +R (2.65)

for t = 1, . . . , T . Thus we may rewrite (2.61) and (2.63) into a form

F t|t = F t|t−1 +Ktet, (2.66)
Kt = H t|t−1L

′(H t +R)−1. (2.67)

The scheme in Figure 2.1 shows, how the prediction step and the correction step follows
each other. We start with initial conditions, then we create a prediction conditioned
on the initial conditions. After the prediction is made, we compute the Kalman gain
which we substitute together with the prediction into a correction of the estimate and
the covariance matrix. After the correction, we move again to prediction and the whole
iteration repeats.

2.6 Kalman smoother
Kalman smoother is the next step after obtaining linear estimates from Kalman filter. As
mentioned in section 2.5, it is the case when s > t. Let us have initial conditions F T |T
and HT |T for t = T, T − 1, . . . , 1 obtained from Kalman filter (2.61) and (2.62). Then
Kalman smoother is specified as

F t−1|T = F t−1|t−1 + J t−1(F t|T − F t|t−1), (2.68)
H t−1|T = H t−1|t−1 + J t−1(H t|T −H t|t−1)J

′
t−1, (2.69)

where
J t−1 = H t−1|t−1(H t|t−1)

−1. (2.70)
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Figure 2.1: Scheme of Kalman filtering.

2.7 Joint log-likelihood function
As [2] states, we wish to have the ”best” explanation of the data. In terms of our hy-
perparameters, the ”best” may mean to select the parameter values that maximize the
joint density function from (2.56). This is called maximum likelihood estimation and the
maximizing parameter values are called maximum likelihood estimates. In this approach
we handle the joint density function as a function of parameters under given observations
x1, . . . ,xT , which is named likelihood function. Similarly to [7] and [8] the joint log
likelihood function of the observations x1,x2, . . . ,xT and the factors (if we could observe
them) f 0,f 1, . . . ,fT is

logL(x1,x2, . . . ,xT ,f 0,f 1, . . . ,fT ) =

− 1

2

T∑
t=1

(xt −Lf t − µ)′R−1(xt −Lf t − µ)− T

2
log |R|

− 1

2

T∑
t=1

(f t − f t−1)
′Q−1(f t − f t−1)−

T

2
log |Q|

− 1

2
(f 0 − π0)

′H−1
0 (f 0 − π0)−

T

2
log |H0|

+ constant,

(2.71)

Same equation is derived also in [9].
This log likelihood function of observations (x1,x2, . . . ,xT ,f 0,f 1, . . . ,fT ) is called

a complete data likelihood. Since the factors are unknown, we possess only incomplete
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2. DYNAMIC FACTOR MODEL

data and the function cannot be optimized directly. EM algorithm serves exactly this
purpose. Thanks to it, it is possible to obtain a maximum likelihood estimates of the
hyperparameters based on the incomplete data x1,x2, . . . ,xT .

2.7.1 EM algorithm
Expectation-maximization algorithm is a iterative method used in statistics to find a
maximum likelihood estimates of the parameters, when the observations may be viewed
as the incomplete data [10]. The iteration alternates between performing an expectation
(E) step, which creates a function for the expectation of the log-likelihood function evalu-
ated using the current estimate for the parameters and a maximization (M) step, which
computes parameter-estimates by maximizing the expected log-likelihood function found
in the E step. These parameter-estimates are then used to determine the distribution of
the latent variables in the next E step. First formulation of this algorithm was provided in
[10]. The EM algorithm explained here is from [7], which is derived from [9] and program
implementation used further in the code is from [8].

In the algorithm, first we maximize the conditional expectation of the complete data
likelihood function

E[logL(x1, . . . ,xT ,F 0,F 1, . . . ,F T )|x1, . . . ,xT ;Θ
j−1], (2.72)

where Θj−1 contains all the hyperparameters (Θ = L,R,Q,µ,π0,H0) estimated in the
(j− 1)th iteration. Then in the next step, the conditional expectation is maximized with
respect to the hyperparameters.

E-step: Conditional expectation of the complete data likelihood function looks like

E[logL(x1, . . .,xT ,F 0,F 1, . . . ,F T )|x1, . . . ,xT ;Θ
j−1] =

− tr{R−11

2

T∑
t=1

((xt −LF t − µ)(xt −LF t − µ)′ +LH t|TL
′)} − 1

2
log |R|

− 1

2
tr{Q−1(C − 2B +A)} − 1

2
log |Q|

− 1

2
tr{H−1

0 (H0|T + (F 0 − π0)(F 0 − π0)
′)} − 1

2
log |H0|

+ constant,

(2.73)

where tr{·} is trace of a matrix and

A =
T∑
t=1

(F t−1|TF
′
t−1|T +H t−1|T )

B =
T∑
t=1

(F t|TF
′
t−1|T +H t,t−1|T )

C =
T∑
t=1

(F t|TF
′
t|T +H t|T ).

(2.74)
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The terms F t|T and H t|T are defined in (2.57) and represent the best linear estimator for
F t and corresponding variance matrix H t given all observations. These we obtain from
Kalman filter and smoother explained in sections 2.5 and 2.6.

M-step: We obtain updated equations for hyperparameters (Θ = L,R,Q,µ,π0,H0)
by maximizing the conditional expectation of the complete data likelihood function (2.72)
with respect to the hyperparameters. In [7] it is shown, that arguments

Q =
1

T
(C − 2B +A) (2.75)

R =
1

T

T∑
t=1

((xt −LF t|T − µ)(xt −LF t|T − µ)′ +LH t|TL
′) (2.76)

π0 = F 0|T (2.77)
H0 = H0|T (2.78)

µ =
1

T

T∑
t=1

(xt −LF t|T ) (2.79)

L = E2E
−1
1 , (2.80)

where

E1 =
T∑
t=1

(F t|TF
′
t|T +H t|T ) (2.81)

E2 =
T∑
t=1

(xtF
′
t|T − µF ′

t|T ) (2.82)

maximize the conditional expectation of the complete data likelihood function.

2.8 Identification
According to [11] the dynamic factor model is not identifiable. This occurs because if T
is a m×m non-singular matrix, matrix of factor loadings LT−1 and common trends TF t

would lead to equivalent model fits

X t = LF t + µ+ εt

F t = F t−1 + ηt

(2.83)

and
X t = LT−1TF t + µ+ εt

TF t = TF t−1 + Tηt,
(2.84)

according to [7] and [24]. There is infinite number of parameter sets which would lead to
same density function for the observations [11]. To solve this problem, additional restric-
tions are addressed in dynamic factor model, similar to restrictions in factor analysis. In
[11], these three restrictions are suggested:
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2. DYNAMIC FACTOR MODEL

(i) The covariance matrix of latent factors is the identity matrix

Q = I. (2.85)

This is not a sufficient restriction to make the model identifiable, since if T is an
orthogonal matrix, (2.84) still satisfies all of the restrictions of the original model
because var(Tηt) = TQT ′ = TIT ′ = TT ′ = I. This restriction implies that the
latent factors will be uncorrelated with each other.

(ii) The ijth element of L is set to zero for j > i, i = 1, . . . ,m− 1. For example, if we
assume three latent factors (m = 3), then loadings matrix would look like

L =


l11 0 0
l21 l22 0
l31 l32 l33
... ... ...
lp1 lp2 lp3

 . (2.86)

Alternatively we could set Q equal to a diagonal matrix while lij = 0 for j > i and
lii = 1 for i = 1, . . . ,m.

(iii) The first m elements of the level parameter µ are set to zero. For example, if we
assume three latent factors (m = 3), then the level parameter would look like

µ =
[
0 0 0 µ4 · · · µp

]′
. (2.87)

This restriction is already assumed in the model in [11].

With these restrictions set on the model, solution of the factor loadings L exists and is
unique. The problem with these restrictions is that the first observed time series X1t is
determined only by the first latent factor F1t, second time series is determined by the first
two latent factors and so on up to mth time series. Therefore a factor rotation may be
applied to the factor loadings and common factors after parameter estimation of the model
to avoid this problem. Many of the methods of factor rotation exist in factor analysis
literature. We will explain varimax rotation, which will be used in our data analysis.

2.9 Varimax rotation
Varimax rotation, originally proposed in [12] is commonly used in factor analysis men-
tioned in section 2.1. It is a method to obtain principal components with high correlation
for some variables and no correlation with other variables. It minimizes the number of
principal components and is suited for locating clusters that lie at right angles to each
other [13]. This is also useful in time series clustering. Advantage of this rotation of the
factor loadings and latent factors in time series applications is to overcome the problem
of first m time series being not properly modeled by the factors due to the restrictions
placed on the model because of identifiability of the model mentioned in section 2.8.
Second advantage is, that varimax rotation changes the loadings matrix in a way, that
creates the largest difference between the loadings [29], thus each observed time series
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2.9. VARIMAX ROTATION

will be modeled by the least number of the latent factors, which suits potential clustering
analysis in the future. For small number of the observed time series it is important to
overcome the problem with restrictions and the rotation is needed.

Let us have estimated dynamic factor model (2.46). Then

X t = L∗F ∗
t + µ+ εt

F ∗
t = F ∗

t−1 + η∗
t

(2.88)

is equivalent dynamic factor model with rotated loadings matrix L∗ = (l∗ij)p×m and rotated
common trends, where

L∗ = LT−1

F ∗
t = TF t

η∗
t = Tηt

(2.89)

and
var(η∗

t ) = TQT ′. (2.90)

Let
l̃∗ij =

l∗ij
hi

(2.91)

be the rotated coefficients scaled by the square root of the communalities defined in (2.17).
Then the normal varimax criterion procedure selects the orthogonal transformation T
for (2.89) that maximize

V =
1

p

m∑
j=1

[ p∑
i=1

l̃∗ 4ij − 1

p

( p∑
i=1

l̃∗ 2ij

)2 ]
. (2.92)

Scaling the rotated coefficients by communalities give time series with smaller communal-
ities (less reliable variables) more weight in the determination of the structure. Without
the scaling less reliable variables are given less weight than those, whose variance is well
explained by the m latent factors. After the transformation T is determined, the rotated
loadings l̃∗ij may be multiplied by hi and the original communalities are preserved. Equa-
tion (2.92) may be interpreted as a sum of m variances of squares of scaled loadings for
each latent factor [2].
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3 Results assessment
From a dynamic factor model we obtain parameter estimates and maximized likelihood
value. We will use the maximum likelihood to compute AIC, which will serve as a criterion
for model selection. k-means method, which will be used for clustering of our observed
time series, will be executed on the loadings matrix as an output of a dynamic factor
model.

3.1 Akaike information criterion
The Akaike information criterion (AIC) is a common method for selecting the most appro-
priate model. It is an approximately unbiased estimator of the expected Kullback-Leiber
information of a fitted model [14]. We suppose, that for our observable time series X t and
unobservable latent factors F t with joint density function (2.56), there exists a generating
parameter structure Θ0 with an unknown parametric likelihood function L(x,f ;Θ). To
preserve the notation from [15], we denote this parametric likelihood function L(Θ|Y ).

Now L(Θ0|Y ) refers to a true or generating model (2.72), which we are trying to
get to as close as possible. We estimate models with different hyperparameters Θk(k ∈
K) (in our model this means different number of expected latent factors or different
variance-covariance structure) and obtain hyperparameter estimates Θ̂k. Let L(Θ|Y ) be
an approximating model. Then we consider Kullback-Leiber information [15] estimated
as

δ(Θ0,Θ) = E0{−2 logL(Θ|Y )}, (3.1)
where E0 denotes the expectation under the generating model and L(Θ|Y ) represent the
likelihood corresponding to the approximated model obtained from EM algorithm (2.72).
We are able to estimate hyperparameters from approximating model Θ = Θ̂, but we are
not able to possess the estimations of the true parameters Θ0, which are needed for the
computation of (3.1) [15]. However, −2 logL(Θ|Y ) serves as a biased estimator of (3.1).
Therefore a bias adjustment (or penalty term) is introduced [16] and is approximated by
2k, where k stands for a dimension of Θ̂ (number of hyperparameters being estimated).
Then

AIC = −2 logL(Θ̂|Y ) + 2k (3.2)
is Akaike Information Criterion. Under appropriate conditions [16], AIC should be asymp-
totically close to the expected value of (3.1).

AIC tends to favor higher dimensional models [16] (may be our case, since we will be
comparing models with different dimensions), but especially for a small sample settings
(which is not our case). Therefore a corrected AIC was introduced to overcome this
problem. It contains adjusted penalty term, and so

AICc = −2 logL(Θ̂|Y ) + 2
kn

n− k − 1
, (3.3)

where L(Θ̂|Y ) is estimated likelihood of our model, k stands for a number of estimated
parameters1 and n is dimension of the sample. In our analysis with p = 108 time series
and T = 31 days, we have a sample size n = pT = 3348.

1In our dynamic factor models k will be obtained as (pm−m(m−1)
2 )+

∑
i unique(σi), where unique(σi)

are unique parameters estimated in variance-covariance matrix R (section 5.3.1).
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3.2 k-means clustering
It is a clustering technique, which aims to group values into k number of clusters based on
their distance to the "mean" of the cluster (also named centroid) and the total distance
from all values within the cluster [2]. The process starts with the initialization of k
clusters, which we decide in advance based on other indices. Each cluster contains its
mean (centroid). For each cluster a within cluster sum of squares (WSS) is computed [17]

W (Ck) =

|Ck|∑
i=1

(xi − µk)
2, (3.4)

where Ck stands for kth cluster (set of points belonging to kth cluster), |Ck| is cardi-
nality, µk = (µk1, . . . , µkm)

′ is the m-dimensional mean (centroid) of kth cluster and
xi = (xi1, . . . , xim)

′ are m-dimensional points belonging to kth cluster. Then the goal of
k-means is to change the clusters and points belonging to a cluster in a way, that the total
within sum of squares of all the clusters is minimized∑

k

W (Ck) −→ min. (3.5)

The algorithm may be found in [18]. To determine correct number of clusters is up to
discussion. We will use mainly two methods explained in section 5.5. Other indices
possible to use are mentioned in [37].
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4 Fire Weather Index
Forest fires endanger humans for ages. Although occasional wildfires are beneficial for
the overall health of the forest, at the same time they may be extremely destructive
and harmful for the forest resources and species, public safety, and their property. In
September and August 2003, a one-in-a-hundred-year wildfire in The Okanagan Mountain
Park burned down around 250km2 of forest and parkland, forced to evacuate 27 000
people, and destroyed around 239 homes. Ignited by a lightning strike on August 16th,
over 1 000 forestry firefighters, contractors, and loggers, as well as 1 400 members of the
Canadian Armed Forces, tried to take control of the fire for over a month [19]. Around $1
402 000 were donated to those impacted by the fires, even though claims submitted by the
individuals created a total of $67 134 880 [20]. The Canadian Forest Fire Danger Rating
System (CFFDRS) is a fire management system trying to provide a complex analysis
of the fire danger situation based on the integration of the scientific, technological and
human elements [21]. Fire Weather Index (FWI) is the sixth and final component of the
fire weather index system. It combines altogether 5 other numerical values and creates a
subsystem of CFFDRS [22]. Our data analysis in section 5 processes Fire Weather Index
values.

4.1 Canadian Forest Fire Danger Rating System
CFFDRS is the principal source of fire intelligence for all forest fire management agencies
in Canada. The system supports fire management decision making regarding strategies,
fire prevention or firefighter safety. It is a important element of effective fire organization.
Fire danger refers to an assessment of both fixed and variable factors of the fire envi-
ronment (fuels, weather, topography) that determine the ease of ignition, rate of spread,
difficulty of control and impact of wildfires. Principally the system serves as a economic
activity that helps to reduce costly and limited resources and efficiently allocate an ap-
propriate level of resources across a region or a country from day to day or place to place,
on the basis of existing and forecasted fire danger levels [21]. In Figure 4.1 we may see
the fire management actions included in the CFFDRS.

Figure 4.1: The structure of the Canadian Forest Fire Danger Rating System [21].
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4.2 Canadian Forest Fire Weather Index System
The purpose of the FWI system is to evaluate how flammable the forest is at any time.
Flammability of the forest and therefore fire danger changes continuously because of
the continuous weather changes. The system was completed in 1970 and since then, it
provides a uniform method of evaluating fire weather severity across Canada, relates the
effects of past and current weather on fuel flammability and provides numerical ratings of
relative fire potential. As seen in Figure 4.2, system joins weather variables, fuel moisture
characteristics and fire behaviour characteristics [22].

Figure 4.2: The structure of the Canadian Forest Fire Weather Index System consisting
of 6 components [21].

Information about the system is gathered from [22]. The system is composed of 3 moisture
codes:

• Fine Fuel Moisture Code (FFMC) - a numerical rating of the moisture content of
the surface litter layers 1 or 2 centimeters in depth. It is related to ease of ignition
because it represents the moisture content of fine fuels, where most fires ignite. A
fire will not start in most fine fuels until the moisture content is below about 25-30%.

• Duff Moisture Code (DMC) - a numerical rating of the dryness of forest floor layers 5
to 10 centimeters deep. Duff consumption is the main source of the energy produced
by the moving flame. In many fuel types, the duff starts to be involved in combustion
when the code is about 20.

• Drought Code (DC) - a long-term drought indicator. It represents loss of water
from the soil by evaporation from the surface and by transpiration from plant in
a 200mm moisture reservoir with a full reservoir equivalent of 800%. This code
is well correlated with the moisture content of deep compact organic layers 10-20
centimeters thick. It is an indicator of the effect of seasonal drought on forest fuels,
total fuel consumption and smoldering in deep organic layers and large fallen logs.

and 3 fire behaviour indices:
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• Initial Spread Index (ISI) - a numerical rating of relative fire spread without the
effect of slope or fuel consumption. It combines wind speed with fine fuel moisture
and increases exponentially with wind speed.

• Buildup Index (BUI) - a numerical rating of the amount of fuel available for com-
bustion. It is a weighted combination of DMC and DC without any other weather
elements.

• Fire Weather Index (FWI) - combines ISI (representing rate of speed) and BUI (rep-
resenting fuel consumption) into one numerical rating of fire intensity. It depends
only on weather inputs in order to give uniform results regardless of fuel type. The
calculation looks as follows:

f(D) =


0.626U0.809 + 2 U ≤ 80

1000

25 + 108.64e−0.023U
U > 80

B = 0.1Rf(D)

S =

{
e(2.72(0.434 lnB)0.647) B > 1

B B ≤ 1,

(4.1)

where U is the buildup index (BUI), R is the initial spread index (ISI) and S is the
resulted today’s fire weather index values [23].
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5 Application of a dynamic factor
model

In our research, we will apply a dynamic factor model to a Fire Weather Index (FWI)
time series measured and computed on the meteorological stations in British Columbia.
The first goal is to determine the most suitable dynamic factor model that explains the
data. From the model, we obtain a loadings matrix and a number of latent factors.
After we compute the varimax rotation of the loadings and the factors, we apply k-
means clustering to the loadings matrix and try to determine time series division into the
clusters. Clusters join together stations with similar behaviour. This is a significant part
of fire management. By properly selecting similar FWI trends we are able to distinguish
between more dangerous areas, provide a better controlling system, effectively distribute
available and limited resources and prepare for possible fire ignition. Therefore, being
able to observe the collective behaviour of the stations and not just individual stations
helps us prepare better for the possible threats and save resources.

In the analysis, we follow steps and adjust codes from [24] and [25].

5.1 Data summary
In the analysis we use a FWI measurements (mentioned in section 4.2) from 108 meteo-
rological stations. We work with the data from July and August in 2003. Time period
of the measurements is from 1.7.2003 to 31.8.2003, which is 31 days per month. We may
summarize the data specifications in Table 5.1.

number of stations p = 108
number of time points (per month) T = 31
date start 1.7.2003
date ends 31.8.2003
complete data yes

Table 5.1: Summary of the data used in the analysis.

We will execute the analysis for months individually. In whole section we will provide
specific analysis with visualizations of the data for month July. The results and visualiza-
tions for month August are shown in Attachments. In the end of this section we compare
the results for both months.

In the original data we had following information about the stations:

• station_code - number assigned to a particular meteorological station (1-933)

• station_name - name of the meteorological station

• station_category - if the station is still active or no longer in use (archived)

• latitude and longitude - specification of the position on the map

• install_date - when the station was installed (from 1970 to 2003)

• elevation - height above the sea level
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• danger_region - British Columbia is divided into 3 danger regions of the different
fire climates [21], see Figure 5.1

• weather_zone - the number of zone in which the station is located (we use southern
zones)

Figure 5.1: Map of British Columbia with weather zones [26]. Grey area are the weather
zones used in our data analysis.

In the original dataset we had data from around 933 stations with FWI values from
the years 1970 to 2014. Not all of them are active at the same time. In the year 1970 there
were 23 active stations, in 2014 it was around 191 and right now in 2021 it is 260 weather
stations. Stations change in the course of time and some are being created, meanwhile
some get deactivated and the data is archived. Therefore, at first we selected stations that
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had measurements for the year 2003. In the data there are 5 types of FWI measurements
- actual, estimate, substitution - partial, forecast, startup. To ensure reliability of the
model, we selected only stations with the complete measurements, i.e. that have values
actual for every time point in the time series. Due to the long computation time with all
the stations (186 so far), we decided to focus only on specific weather zones to decrease
the number of stations in the model. As we can see in the map of British Columbia in
Figure 5.1, whole province is divided into 30 weather zones. In our analysis we covered
the stations in the weather zones considered to be more dangerous with respect to the
possibility of fires (southern location, prevailing higher temperatures and inland climate).
In Figure 5.2 we may see, that the region covered the most extreme area (in years 1957-
1966) in terms of mean FWI measurements for the summer months within whole Canada.

Figure 5.2: Fire weather zones of Canada calculated from mean fire weather index values
for the months June, July, and August for 364 weather stations for the period 1957 to
1966 [27].

The used weather zones marked in Figure 5.1 are 1, 2, 3, 4, 5, 7, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27. Later we repeat

We also had to select stations that have complete measurements (”actual” FWI mea-
surements) for both months July and August. Altogether this selection makes 108 stations
in 20 southern weather zones covering almost half of the province. In Figure 5.3 we may
see the actual map of the selected area with the location of the stations.
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Figure 5.3: Map of the stations located in the selected area with the information about
the particular station [28]. Same data was obtained from the original dataset. In the
figure there are stations active to date 29.3.2021.

The measurements from all 108 stations may be seen plotted in Figure 5.4.

Figure 5.4: Plot of 108 observed time series used in the data analysis.

5.2 Data pre-processing
Before computation of the model, we had to do two adjustments of the time series. In the
first place, we rounded the data to two decimal places, since some stations contained FWI
measurements not rounded. In the second place, we had to center (de-mean) the data.
Previous analyses of the data were performed using centered data, thus we also wanted to
keep the convention for the further comparison of the results. Also according to [7], EM
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algorithm from section 2.7.1 for the model with the third constraint (2.87) is not robust
and it takes long time to converge [25]. Therefore EM estimates are more stable if after
each Kalman smoothing iteration the average of each latent factor F is calculated and
substracted from the estimated latent factor F t|T , thus we constrain F t to have a zero
mean across time t = 1, . . . , T . With this approach, all elements of µ are estimated and
they represent the average level of X t relative to L(F t − F t). For this reason we center
observed time series

X†
t = X t −X (5.1)

and set all elements of µ to zero.
MARSS package provides an option to standardize the data (z-score) mentioned in

[7], which speeds up the computation time up to 2-3 times. It is a possibility to do,
when the higher number of iterations is demanded in the EM algorithm within practical
computation time or for the model comparisons. We do not standardize the data, because
we want to preserve the information of the variance structure of the observed time series.
Dynamic factor model of standardized sets may be seen in [7], [25], [34] or in [35].

5.3 MARSS package
Multivariate Auto-Regressive State-Space (MARSS) package is a R package used for es-
timating the parameters of linear state-space models with Gaussian errors for time series
[29]. We mostly use the information from [30] and the codes from MARSS User Guide
[25]. Dynamic factor model is a special case of a state-space model [9]. Package provides
computation of Kalman filter, Kalman Smoother and EM algorithm for estimating pa-
rameters of our model, which is exactly what we need. Basic initialization of a MARSS
model for dynamic factor analysis in R with possible inputs may be seen in Attachments.

In our analysis we work with the setting from Table 6.1. To find the best model fit
we will be estimating models with m= 2, 3, 4, 5 latent factors and variance-covariance
structures ”diagonal and equal”, ”diagonal and unequal”, ”equal variance covariance” and
”unconstrained” (see section 5.3.1).

5.3.1 Variance-covariance matrix R
The most important parameter we set in the model is the expected variance-covariance
structure of our modeled time series. The expected form of R directly influence the model
structure and computation time.

Let us assume 5 observed time series (p = 5). Then

• R = ”diagonal and equal”

R =


σ2 0 0 0 0
0 σ2 0 0 0
0 0 σ2 0 0
0 0 0 σ2 0
0 0 0 0 σ2

 (5.2)

means we expect time series to be modeled with the same variance and no co-
variances between the different time series. Only one parameter σ2 is being es-
timated, which means shorter computation time (which allows higher number of
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EM iterations) is demanded. This would represent conditional independence and
homoscedasticity of the measurements at different stations.

• R = ”diagonal and unequal”

R =


σ2
1 0 0 0 0
0 σ2

2 0 0 0
0 0 σ2

3 0 0
0 0 0 σ2

4 0
0 0 0 0 σ2

5

 (5.3)

means we expect different variances of the time series and no covariance between
them. p parameters (equal to number of time series) have to be estimated. This
may represent conditional independence and heteroscedasticity of the measurements
at different stations.

• R = ”equal variance covariance”

R =


σ2 c c c c
c σ2 c c c
c c σ2 c c
c c c σ2 c
c c c c σ2

 (5.4)

means we expect the same variance for each time series and the same non-zero
covariance for every two time series. Here just the 2 parameters are estimated.
This allows for conditional dependence between the stations, which might be far
from true in the spatial case.

• R = ”unconstrained”

R =


σ2
1 σ12 σ13 σ14 σ15

σ21 σ2
2 σ23 σ24 σ25

σ31 σ32 σ2
3 σ34 σ35

σ41 σ42 σ43 σ2
4 σ45

σ51 σ52 σ53 σ54 σ2
5

 (5.5)

means we do not restrict the variance-covariance matrix to have any pre-defined
structure. This is basically the best option, since we do not loose any information
possible to get from the data. The problem is, it is computationally demanding to
estimate such number of parameters for a larger set of time series. We compute
p(p+1)

2
parameters just for the variance-covariance matrix. This structure would be

able to reflect the conditional spatial dependence between the stations, which could
lead to a much more complex results.

5.3.2 Convergence tests
There are two ways how the EM algorithm ends. Either maximum number of itera-
tions had been reached or convergence tests pass. The MARSS package works with two
convergence tests abstol and con.test.slope.tol.
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• abstol - Absolute tolerance of the difference between the last and the previous it-
eration of the log-likelihood function. If the absolute value is less than 0.0001, we
consider log-likelihood function to be converged.

|log L(j) − log L(j−1)| < 0.0001 (5.6)

This test applies only to the log-likelihood function.

• conv.test.slope.tol - Tests slope of the log parameter against the log iterations (log-
log slope convergence test). If the absolute value of the slope is less than 0.5, we
consider the parameter to be converged. For elaborate explanation see Attachments.
This test applies to the parameters of the loadings matrix L, variance-covariance
parameters R and the log-likelihood function log L.

• conv.test.deltaT - Number of iterations to use in the computation of the log-log
slope test.

If both tests are passed for the log-likelihood function and the log-log slope test is passed
for the parameter estimations of L and R, then EM iteration process is ended. This is
demanded situation.

5.3.3 Time consumption
Unfortunately, EM algorithm is quite time consuming and therefore MARSS package
provides an option to set a maximum number of iterations to be passed through EM
algorithm. If the maximum number of iterations is computed and not every parameter
had converged, the computation ends and the output states, which of the parameters had
converged and which not. Creating an appropriate model means to deal with a problem of
exchanging complexity of a model for a computational time. More complex model, such
as having more latent factors, more time series and more complex variance-covariance
structure, means we are able to do less number of iterations in the same amount of time,
thus possibility of not reaching the MLEs.

Because of this issue, in our analysis we decided to do as much iterations per model
as possible, but not to exceed more than around 12 hours of computational time per
model. If the model is less complex, we computed more iterations, if the model is difficult
to estimate, we did fewer iterations. Though the best would be to compute the same
number of iterations for each model, thus the comparison of the models would be more
relevant, we are not able to do that and we consider the issue as an disadvantage of the
technique.

5.4 Data analysis
Main part of this thesis is to find the most suitable model for the observed data. For
July data we tried fitting different number of factors and different variance-covariance
structures data according to setting in Table 6.1. In Table 5.2 we may see the resulted
models.
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R m logLik K AICc time convergence warnings maxit p
diagonal and equal 2 -10623.286 216 21708.51 2010.81 0 0 3732 108
diagonal and equal 3 -10225.161 322 21163.09 17178.24 10 81 10000 108
diagonal and equal 4 -9990.506 427 20960.19 43630.98 10 79 10000 108
diagonal and equal 5 -9787.76 531 20838.15 39213.58 10 47 5000 108

diagonal and unequal 2 -10088.3 323 20891.81 1115.13 0 0 1457 108
diagonal and unequal 3 -9650.341 429 20285.12 19588.65 10 1 10000 108
diagonal and unequal 4 -9319.98 534 19911.08 35710.92 10 11 9000 108
diagonal and unequal 5 -9168.171 638 19913.32 40031.75 10 76 5000 108

equalvarcov 2 -10604.421 217 21673.07 5680.3 10 19 10000 108
equalvarcov 3 -10210.927 323 21137.07 23800.17 10 54 10000 108
equalvarcov 4 -9981.426 428 20944.66 37093.29 10 114 8000 108
equalvarcov 5 -9775.758 532 20816.98 49754.04 10 62 5000 108

Table 5.2: Resulted models. K is the number of parameters being estimated. Convergence
number has a specific meaning within MARSS [33] (10 - abstol convergence of the log-
likelihood has been reached but some parameters did not converge in the log-log slope
test, 0 - both tests passed). Warnings column states the number of parameters that did
not converge. Maxit states number of computed EM iterations.

We were not able to compute a model with ”unconstrained” variance-covariance structure
(5.5). Due to complexity of the structure, with more than 30 time series in the model we
obtained information that the computation became unstable because of R update matrix
being not positive definite.

In the literature, the main criteria used for the comparison of the models and choice of
the best model fit is AICc (3.3). The model with the smaller value of AICc is considered
to be the better model. In Table 5.3 we may see the order of the models from the best
to the worst regarding their difference in the AICc from the lowest (best) value. As we

R m logLik K ∆AICc convergence warnings
diagonal and unequal 4 -9319.98 534 - 10 11
diagonal and unequal 5 -9168.171 638 2.243111 10 76
diagonal and unequal 3 -9650.341 429 374.03731 10 1

equalvarcov 5 -9775.758 532 905.895129 10 62
diagonal and equal 5 -9787.76 531 927.072189 10 47

diagonal and unequal 2 -10088.3 323 980.732351 0 0
equalvarcov 4 -9981.426 428 1033.574577 10 114

diagonal and equal 4 -9990.506 427 1049.106205 10 79
equalvarcov 3 -10210.927 323 1225.987313 10 54

diagonal and equal 3 -10225.161 322 1252.00439 10 81
equalvarcov 2 -10604.421 217 1761.987351 10 19

diagonal and equal 2 -10623.286 216 1797.431816 0 0

Table 5.3: Order of the model fits from the best to the worst with respect to the difference
of AICc.

can see from Table, the best model fit to our data seems to be a ”diagonal and unequal”
variance-covariance structure (5.4). Also it seems that more factors provide a better
fit to our data in general. For the structures ”equalvarcov” and ”diagonal and equal”
higher number of factors are always a better fit to the data. For ”diagonal and unequal”
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structure 4 and 5 factors seem to model the data quite similarly. We were able to compute
more iterations for 4 factor model and we obtained more converged values. Therefore we
conclude that models with 4 and 5 latent factors for ”diagonal and unequal” structure
are the best model fit to our data. In Figure 5.5 we may see the visual comparison of the
models based on the AICc.

Figure 5.5: Comparison of the models based on the resulted value of AICc. Smaller AICc
means a better fit to the data (compared to other models).

Let us see, how the fits of different models for particular time series look like. We have
chosen two time series based on their estimated variance from a dynamic factor model,
which for station 316 is low and for station 297 is high. In Figure 5.6 we may see their
centered FWI measurements with a fit of model with ”diagonal and unequal” structure
and 4 latent factors.

(a) (b)

Figure 5.6: Particular time series (blue lines) and their estimation by a ”diagonal and
unequal” model with 4 latent factors (red lines). (a) station 316 with estimated variance
σ̂2
316 = 6.7829, (b) station 297 with estimated variance σ̂2

297 = 182.3466.

We may observe that station 316 has a significant trend and the model is able to capture
it. On the other hand, station 297 has greater volatility and no distinct trend.

Let us now see, how different models fit these two stations. First we will demonstrate
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5. APPLICATION OF A DYNAMIC FACTOR MODEL

(a) m = 2, R = ”diagonal and unequal” (b) m = 2, R = ”diagonal and unequal”

(c) m = 3, R = ”diagonal and unequal” (d) m = 3, R = ”diagonal and unequal”

(e) m = 4, R = ”diagonal and unequal” (f) m = 4, R = ”diagonal and unequal

(g) m = 5, R = ”diagonal and unequal” (h) m = 5, R = ”diagonal and unequal”

Figure 5.7: Plots of the model fits with same variance-covariance structure but different
number of factors.
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the difference on models with the same variance-covariance structure (diagonal and un-
equal) and different number of latent factors. As we can see in Figure 5.7, for station
316 with growing number of latent factors the fit gets closer to the real time series values
and most of the real values are caught in the confidence interval of the model fit. The fit
changes mostly for 2-4 latent factors and the difference between fit of 4 and 5 factors is
negligible. For station 297, there is little difference in the fit of the models with 2-4 latent
factors and the real change happens with 5 latent factors. Fit gets closer to the real time
series values and the estimated variance gets smaller.

(a) m = 4, R = ”diagonal and unequal” (b) m = 4, R = ”diagonal and unequal”

(c) m = 4, R = ”diagonal and equal” (d) m = 4, R = ”diagonal and equal”

(e) m = 4, R = ”equal variance covariance” (f) m = 4, R = ”equal variance covariance”

Figure 5.8: Plots of the model fits with the same number of factors but different variance-
covariance structure.

When comparing different variance-covariance structures with same number of factors
in Figure 5.8, model fits behave similarly for station 316. Each structure is able to catch
the trend and for ”equal variance covariance” structure we observe bigger confidence
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5. APPLICATION OF A DYNAMIC FACTOR MODEL

interval. Confidence interval for ith time series is computed as a fitted value plus-minus
1 − α/2 quantile of a normal distribution times standard error liF t ± z0.975(liH t|T l

′
i),

where li is the ith row of the loadings matrix [30]. For station 297 structures ”diagonal
and equal” and ”equal variance covariance” behave very similarly, we also do not observe
such a grow in the confidence interval. Neither of the structures is able to model real time
series values for this station.

5.4.1 Best model fit
Based on the AICc from Table 5.3, we should consider two models as the best fits for
the data, diagonal and unequal variance-covariance structure with 4 and 5 latent factors.
Since the 5 factors model is more complex, we were able to compute less number of
iterations than for 4 factors model. Therefore the difference between converged estimates
is 65 parameters. We do not want to over-fit the data, therefore if it is possible, we choose
simpler model over more complex one. As we can see in Figure 5.7, more factors provide
better fit for the high variance stations (297) but for the low variance, it does not change
much. We do not want to adjust model selection to fit the potential outliers better, but
we want to find the equilibrium between the good data fit and the model complexity.

Taking all of this into consideration we conclude, that the best model fit
for our data is a dynamic factor model with diagonal and unequal variance-
covariance structure (5.4) and 4 latent factors.

R m logLik K AICc time (s) convergence warnings maxit p
diagonal and unequal 4 -9319.98 534 19911.08 35710.92 10 11 9000 108

Table 5.4: Best model fit.

It is an exact dynamic factor model, as mentioned in section 2.3, and in the following
analysis we will work with this model.

As we can see, with this model we reached the abstol convergence of the log-likelihood
function and 11 parameters did not pass log-log slope test. Histogram of parameter slopes
with and without converged parameters and histogram of differences between the last two
iterations may be seen in Figure 5.9.
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(a) (b)

(c)
Figure 5.9: (a) Histogram of slopes of last 10 iterations for each parameter that passed
log-log slope test. (b) Histogram of slopes with parameters that did not pass the log-log
slope test. (c) Histogram of the parameter differences between the 8999th and the 9000th
iteration.

We can see that the differences are small even for not converged values. The model seems
to be reasonable regarding convergence tests.

Let us now see how the loadings matrix L and the latent factors F t change after
varimax rotation. In Figure 5.10 we may see the stacked histogram with the loadings of
the particular time series.
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(a) before varimax rotation

(b) after varimax rotation
Figure 5.10: Stacked histogram of loadings values of latent factors for each modeled time
series (in other words estimated lij values). A column in the graph is the sum of the
factor loadings for a particular time series. To obtain a loading of the particular factor
on the particular time series, we have to search for that series on the x-axis, then find the
proper colour representing the factor we want to find loading for and then subtract the
lower bound from the higher bound of that particular color in the column.

We can observe some small changes. The most significant seems to be the change on
last 30 time series, where factor 4 became quite dominant after varimax rotation. The
problem of first time series being modeled just by the first latent factor, following up to

53



5.4. DATA ANALYSIS

4th time series, is solved. Besides values changing sign, we do not observe the promised
result of the varimax rotation, that is to create bigger difference between the loadings and
promote just a subset of the factors. We were expecting to obtain one or two dominant
factors for each time series. If we compare loadings of the individual factors in Figure
5.11, we observe that factor 4 got multiplied within last 30 stations. On the other hand,

(a) before varimax rotation

(b) after varimax rotation
Figure 5.11: Histogram of the loadings separated by factors.

factor 2 got decreased. Factor 3 has multiple changes, first 10 stations increased and last
30 stations decreased. Factor 1 has almost no significant changes.
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Varimax rotation changes the loadings matrix and also the factors. Let us compare
the factors before and after rotation in Figure 5.12. We may observe that the factors have

(a) before varimax rotation (b) after varimax rotation

Figure 5.12: Latent factors F t before and after varimax rotation.

very similar trends and they differ mostly in the amplitude of the change between days.
The most significant change is in the beginning of the factor 3, which changed the sign
and is rising instead of being more or less constant.
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5.4.2 Outliers detection
As we could see in Figures 5.7 and 5.8, the station 297 is modeled with high variance.
Therefore, the station may be considered as the outlier of the dataset. If we assume the
best model fit for the data is as in Table 5.4, then if the variance estimated for a particular
time series is too high, time series may be considered as an outlier. Let us see this in the
histogram and the boxplot of the model variances in Figure 5.13. The boxplot detected

(a) (b)

Figure 5.13: (a) Histogram of the estimated variances. (b) Boxplot of the estimated
variances.

12 high variance time series with the values from 50.9 - 182.35.
We determine the outliers using 99% quantile of a data distribution fit [32]. Based on

the Shapiro-Wilk goodness of fit test [31] we found out, that we do not reject hypothesis,
that variances follow a lognormal distribution.

Shapiro-Wilk Goodness of Fit test

data: Variances
W = 0.9884743, p-value = 0.4868429
alternative hypothesis: True cfd does not equal

Lognormal distribution
Table 5.5: Output of the Shapiro-Wilk Goodness of Fit test for a lognormal distribution
[31].

We also tested for Weibull and Gamma distribution and both tests rejected the null
hypothesis.

So if we fit a lognormal distribution in Figure 5.14, we obtain a lognormal distribution
with estimated parameters µ = 2.602, σ2 = 0.989. Now using a 99% quantile we will select
the distribution outliers. For LN(2.602, 0.989) a 99% quantile is q0.99 = 133.1376. There-
fore we will consider higher values as the outliers. That makes 1 outlier with variance:
station 297 - 182.35.

How to set the right threshold of variance for claiming a time series to be an outlier
is up to discussion. Dynamic factor model provides us with the information only about
estimated variances. We decided to consider a time series as an outlier, if it does not
belong to a 99% quantile of a fitted distribution following [32]. Further, we will observe
the influence of the selected outlier on the model estimation and the conclusion.
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Figure 5.14: Lognormal distribution fit of the estimated variances (diagonal of estimated
variance-covariance matrix R). Estimated distribution parameters are: LN(µ, σ2) =
LN(2.602, 0.989).

Let us see the relation of estimated variances with sample means and sample variance
estimates. In Figure 5.15 we may observe, that with rising sample means estimated

(a) Estimated variances vs. station means. (b) Estimated variances vs. original variances

Figure 5.15: Scatter plot of estimated variances (diagonal of R) vs sample means (used
when centering data in section 5.2) and sample variance estimates.

variances stay low, while with sample means over 38 some variances get much higher.
Especially, our detected outlier has the highest sample mean. On the other hand, when
compared to sample variance estimates, we observe that the outlier has still high variance
but there are 9 values bigger than our outlier.

5.5 Clustering
To create clusters out of our 108 stations is the main purpose of this thesis. Dynamic
factor model provides us with a loadings matrix, which may be a good base for creating
clusters. We will be using a common clustering method k-means. For the computation
of k-means we will use the R package stats. For determining number of clusters and
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visualizations of the techniques we will use the package NbClust. Following analysis of
determining the number of clusters is based on [36] and [37].

There are many methods how to determine number of clusters for k-means. We will
demonstrate two of them.

• Elbow method - Method based on computing total within sum of squares (WSS) for
different number of expected clusters. We search for a number of clusters for which
WSS is the smallest and at the same time, if we add one more cluster, WSS does not
change significantly. In Figure 5.16 we can see that the elbow is at number 2. Up to

Figure 5.16: Elbow method for determining the number of clusters.

number 4, WSS still changes quite a lot, then after 4 and 5 clusters, WSS changes
just a little bit. Therefore from this method we may conclude, that choosing 2-4
clusters might be relevant.

• Gap statistic - Explained in [37], gap statistic measures total within intra-cluster
variation for different values of k with their expected values under null reference
distribution of the data. The number of clusters that maximizes the gap statistics
is considered to be the most appropriate. We observe that the highest values of

Figure 5.17: Gap statistic for determining the number of clusters.

gap statistic are for 5 and more clusters and mostly the same for 2-4 clusters. This
suggests that 5 clusters should be appropriate. Result contradict the conclusion
from elbow method.
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We decided to choose 4 clusters, as it seems to be appropriate for our 4 latent factor
model.

After performing k-means on the rotated loadings matrix with 4 assumed clusters, we
obtained a map with stations divided into clusters in Figure 5.18.

Figure 5.18: Map of the stations divided into clusters based on k-means clustering of the
rotated loadings matrix obtained from a dynamic factor model.

For each cluster we obtained also a cluster mean (represented as a point in a 4-dimensional
space), therefore multiplied with the rotated latent factors we may plot a corresponding
cluster mean as a time series. In Figure 5.19 we may see clusters with their cluster means.

Figure 5.19: Plot of the observed centered time series divided into k-means clusters com-
puted from the rotated loadings matrix of a dynamic factor model with cluster means
(red lines).
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Using the cluster division we may now plot in Figure 5.20 how the loadings change after
varimax rotation within the clusters. We are able to see some significant changes. In

(a) before varimax rotation

(b) after varimax rotation

Figure 5.20: Factor loadings of the stations divided into clusters based on k-means clus-
tering.

Figure 5.11 we observed a significant change in the factor 2 and 4. From Figure 5.20 we
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may see that the change occured mostly in the cluster 2 and 3 and the change within
these clusters at the factors 2 and 4 is very significant. Besides this, we may see some
little change in the cluster 1 at factors 3 and 4. Cluster 4 seems to change the least.

5.5.1 Outliers
Let us see, where the outlier and the time series with high variances, determined in section
5.4.2, are within the clusters and how do they behave. In Figure 5.21 we may observe,
that 5 out of 11 stations in cluster 2 have high variances. Cluster 4 contains only one

Figure 5.21: Plot of the outlier (red line) and the time series with high variance (green
lines) within the clusters.

high variance station and the outlier belongs to cluster 1.
This suggests certain specificity. k-means clustering based on rotated loadings matrix

selected cluster 2 as a cluster with few stations and simultaneously many of them being
high variance stations. This may mean, that the stations in cluster 2 are somehow different
from the others, that they belong to special climate or that it is difficult to predict their
behaviour. On the other hand, cluster 4 contains only one high variance station. Model
of these stations seem to be quite stable.

Let us see where the outlier and high variance time series are placed on the map in
Figure 5.22. In the map we can see two areas at the east border and in the center, where
the presence of the stations with high variances is quite significant. This can suggest
places with specific climate or specific technical details with the stations. In terms of
FWI measurements this may mean different things and should be discussed with experts.
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Figure 5.22: Map of the outlier and the stations with high variances.

5.5.2 Model without outliers
Outliers are considered to be time series that may significantly influence the model esti-
mation. Therefore we tried to remove the outlier (stations 297) detected in section 5.4.2
and estimate the model again to see, if there would be any significant changes in the
model and following cluster analysis.

We found out that removing an outlier from a dataset did not change the resulted
clustering and mean trends within clusters. We observe same map and same cluster
trends, therefore we do not provide the figures.

5.6 Comparison with August data
As mentioned in section 5.1, we chose 108 stations on purpose. All those stations have
complete data also for the next month in year 2003, August. We repeated whole data
analysis for the FWI measurements in August and focused on comparing the results
obtained from clustering. All the relevant graphs created for August may be found in
Attachments.

For August FWI data the most suitable model is in Table 5.6. Same as for July, we
R m logLik K AICc time (s) convergence warnings maxit p

diagonal and unequal 5 -10584 638 22745 30287 1 159 3000 108

Table 5.6: Best model fit for August data.

rotated loadings matrix together with latent factors and created 4 clusters with k-means.
Resulted August map compared to July clusters may be seen in Figure 5.23. As we can
see clusters changed. Cluster 2 contains more stations and reaches more to the center
of the observed area in August. Cluster 4 seems to change the least. We may observe
some specific groups of stations within clusters that did not change, i.e. cluster 1 in the
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(a) July (b) August

Figure 5.23: Map of stations divided into cluster for month July and August.

center, cluster 4 in the surrounding, cluster 2 in the South East corner. There are some
interchanges between the clusters, mainly from cluster 3.

Clusters with mean trends may be seen in Figure 5.24.

(a) July (b) August

Figure 5.24: Division of stations into clusters with mean trends for months July and
August.

In August we may observe two big drops in the FWI. In cluster 2 between 15th and 16th
day and in cluster 3 between 5th and 6th day. Clusters were able to capture this anomaly
and select stations with this behaviour.

Also we can observe that character of the clusters changed between two months. In
August, stations seem to have greater variance than in July, especially in cluster 4. In
cluster 2 we observe again, that there are periods in which some time series differ from
mean trend significantly. Based on the [38] we calculated the Rand Index (RI), which
measures the difference between two cluster partitioning and the Adjusted Rand Index
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(ARI), which rescales the index and takes into account that by random chance some
stations would belong to the same cluster. Result is a value between 0 and 1, where 1
means two partitioning are identical. We obtained RI = 0.721703 and ARI = 0.2858123.
We see that Rand Index is quite high and suggests that two clusterings are similar,
although taking random chance into consideration with ARI, the partitioning does not
seem to be that similar.

Nevertheless, clustering of different month’s data preserved some underlying structure
of the station division. The results should be discussed with the experts to analyze, what
may be the causes of such changes.
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6 Conclusion
The goal of this thesis was to explore the possible use of the dynamic factor model in

time series clustering. We explained the difference between the dynamic and the static
form and stated a simplified form used in our data analysis. We discussed how the
computation of a dynamic factor model is executed, what restrictions need to be placed
on the model to overcome the problem of unidentifiability of the model, and how to use
varimax rotation to overcome issues connected to the restrictions.

Then using FWI measurements from July 2003, we estimated dynamic factor model
parameters and found out that a dynamic factor model with diagonal and unequal variance-
covariance structure and 4 latent factors fits our observed data the best regarding AICc.
We discussed how the loadings matrix changed with varimax rotation and how the model
can determine outliers based on their estimated variance. The loadings matrix of a dy-
namic factor model proved to be a suitable dimension reduction tool for clustering. Thanks
to it we were able to put stations into clusters and also see the cluster mean trends thanks
to the multiplication of cluster means and estimated latent factors. This is a useful prop-
erty of a dynamic factor model. In the end, we compared the results obtained for the
month of July with results obtained for the month of August and we observed how the
cluster division and cluster mean trends changed.
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Used symbols
L lag operator

X t random vector of measurements at time t

f t vector of dynamic factors or realizations of latent factors at time t

λ(L),Ψ(L) lag polynomial matrices

εt idiosyncratic component

ηt vector of mean-zero error on factors

F t vector of static factors

Λ,L loadings matrix

Nm(µ,Σ) m-dimensional multivariate normal distribution with expected value µ
and variance-covariance matrix Σ

(X t|F t = f t) conditional distribution

f(·) joint density function

R variance-covariance matrix of modeled time series in dynamic factor model

Q variance-covariance matrix of latent factors

F t|T conditional expected value of latent factors in Kalman filter

H t|T conditional variance-covariance matrix of latent factors in Kalman filter

Kt Kalman gain

et innovations

logL log-likelihood function

Θ vector of hyperparameters

T transformation matrix

I identity matrix

µ level parameter of a dynamic factor model

L∗ rotated loadings matrix after varimax rotation

AIC Akaike information criterion

W (Ck) within cluster sum of squares

µk centroid of kth cluster
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FWI Fire Weather Index

p number of stations, observed time series

T number of time points

LN(µ, σ2) lognormal distribution

RI Rand Index

ARI Adjusted Rand Index
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Attachments
MARSS initialization in R

MARSS(data,

model = list( m,

R,

tinitx),

method = "kem",
form = "dfa",
inits = list( x0

Q

V 0),

control = list( maxit,

allow.degen,

abstol,

conv.test.slope.tol,

conv.test.deltaT ),

demean,

zscore),

where the parameters are:

• data - p× T complete matrix of FWI index, p time series over 1, . . . , T time points.

• m - Number of latent factors to be estimated.

• R - Form of variance-covariance structure for time series (”diagonal and equal”,
”diagonal and unequal”, ”equal variance covariance”, ”unconstrained”).

• tinitx - Whether to consider initial states F 0 and H0 at time t = 0 or t = 1.

• method - "kem" performs estimation using EM algorithm and calls Kalman Filtering
and Smoothing. Another option "BFGS" performs a quasi-Newton estimation [9].

• form - "dfa" is a helper function to put a state-space model into a simplified form
of a dynamic factor model from section 2.3.3.

• inits - Set of initial values for the estimation.

• x0 - m× 1 vector of the mean π0. It is the initial condition F 0|0 = E(F 0|x0) from
the Kalman filter 2.5.

• Q - Variance-covariance matrix of the latent factors. It is set to m × m identity
matrix according to the restriction (2.85).
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• V0 - Initial variance-covariance matrix H0|0 = E{(F 0 − F 0|0)(F 0 − F 0|0)
′)}.

• control - Control parameters within the computation of the EM algorithm.

• maxit - If the conditions of the convergence for the parameters and the log-likelihood
function are not met, how many EM iterations to do before the computation is
ended.

• allow.degen - If the values of Q or R appear to be going to zero, algorithm tries to
set the values to zero.

• abstol - Absolute tolerance convergence test for the log-likelihood function. If the
difference in the absolute value between the last and the previous iteration of the log-
likelihood function is less than abstol value, the log-likelihood function is considered
to be maximized.

• con.test.slope.tol - Convergence test for the parameters. If the slope of the log
parameter versus log iteration is less than this value, the parameter passed log-log
convergence test.

• conv.test.deltaT - How many of the last EM iterations to include in the log-log
convergence test for the parameters.

• demean or zscore - If to center or standardize the input data.

m 2, 3, 4, 5

R

”unconstrained”
”diagonal and unequal”
”diagonal and equal”

”equalvarcov”
tinitx 1

method ”kem”
form ”dfa”

x0

0...
0


m×1

Q Im×m

V 0

5 · · · 0
... . . . ...
0 · · · 5


m×m

maxit 5000− 10000
allow.degen TRUE

abstol 0.0001
conv.test.slope.tol 0.5
conv.test.deltaT 9

demean TRUE
zscore FALSE

µ 0

Table 6.1: Setting of the MARSS() function in R used for our data analysis.

72



ATTACHMENTS

Log-log slope test
Let us have a regression line

log Y = β0 + β1 logx, (6.1)

where Y is the parameter estimate and x is the iteration number. Parameter estimates
are based on last 10 values. Then if

|β̂1| < 0.5, (6.2)

we consider parameter estimate to be converged. In Figure 6.1 we may see both cases.

(a)

(b)
Figure 6.1: The regression lines of the log-log convergence test. We plot last 10 log
of the parameter estimations against log of the last 10 iterations (1991 - 2000). (a)
parameter converged, the slope is β̂1 = 0.02609 (b) parameter did not converge, the slope
is β̂1 = −1.098.
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Consequence of restriction on latent factors
As mentioned in section 2.9, after the model fit is computed we have to do a rotation of
the factor loadings and the latent factors. The reason for the rotation is, that with the
restrictions from section 2.8 placed on the model, first latent factor is determined only by
the data of the first time series, second latent factor is determined by first two observed
time series and so on.

(a)

(b)
Figure 6.2: (a) Plot of the estimated latent factors of the best model fit. (b) Plot of the
first four (1-4) centered observed time series in our dataset.
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Results for August data

R m logLik K AICc time convergence maxit N_ts
diagonal and equal 3 -11299.81 322 23312.38 23524.79 10 10000 108
diagonal and equal 4 -11091.93 427 23163.03 39246.37 10 8000 108
diagonal and equal 5 -10881.43 531 23025.48 38493.13 10 4000 108

diagonal and unequal 3 -10972.53 429 22929.49 25416.25 10 10000 108
diagonal and unequal 4 -10773.45 534 22818.01 32062.69 10 6000 108
diagonal and unequal 5 -10584.03 638 22745.04 30286.86 1 3000 108

equalvarcov 3 -11285.69 323 23286.59 20382.59 10 10000 108
equalvarcov 4 -11075.86 428 23133.52 32618.75 10 7000 108
equalvarcov 5 -10860.09 532 22985.64 46230.16 10 5000 108

Table 6.2: Resulted models for August data

R m logLik K ∆ AICc convergence maxit
diagonal and unequal 5 -10584.03 638 0 1 3000
diagonal and unequal 4 -10773.45 534 72.97331 10 6000
diagonal and unequal 3 -10972.53 429 184.45048 10 10000

equalvarcov 5 -10860.09 532 240.59719 10 5000
diagonal and equal 5 -10881.43 531 280.4455 10 4000

equalvarcov 4 -11075.86 428 388.48471 10 7000
diagonal and equal 4 -11091.93 427 417.99195 10 8000

equalvarcov 3 -11285.69 323 541.5561 10 10000
diagonal and equal 3 -11299.81 322 567.34406 10 10000

Table 6.3: Order of the model fits from the best to the worst with respect to the difference
of AICc on August data.

Figure 6.3: Comparison of the models based on the resulted value of AICc. Smaller AICc
means a better fit to the data (compared to other models).
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(a) (b)

(c)
Figure 6.4: (a) Histogram of slopes of last 10 iterations for each parameter that passed
log-log slope test. (b) Histogram of slopes with parameters that did not pass the log-log
slope test. (c) Histogram of the parameter differences between the 2999th and the 3000th
iteration.

(a) (b)

Figure 6.5: (a) Histogram of the estimated variances. (b) Boxplot of the estimated
variances.
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(a) before varimax rotation

(b) after varimax rotation

Figure 6.6: Stacked histogram of loadings values of latent factors for each modeled time
series (in other words estimated lij values). A column in the graph is the sum of the
factor loadings for a particular time series. To obtain a loading of the particular factor
on the particular time series, we have to search for that series on the x-axis, then find the
proper colour representing the factor we want to find loading for and then subtract the
lower bound from the higher bound of that particular color in the column.
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(a) before varimax rotation

(b) after varimax rotation

Figure 6.7: Histogram of the loadings separated by factors.
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(a) before varimax rotation

(b) after varimax rotation

Figure 6.8: Factor loadings of the stations divided into clusters based on k-means clus-
tering.
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