
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

SIMULATION ENVIRONMENT FOR OBJECTS IN
LOW EARTH ORBIT
SIMULAČNÍ PROSTŘEDÍ OBJEKTŮ NA NÍZKÉ OBĚŽNÉ DRÁZE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ZBYNĚK POSPÍŠIL
AUTOR PRÁCE

SUPERVISOR Ing. JIŘÍ NOVÁK
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Computer Graphics and Multimedia (DCGM)

Student: Pospíšil Zbyněk

Programme: Information Technology

Category: Modelling and Simulation

Academic year: 2023/24

Assignment:

1. Study the basics of orbital mechanics and describe the influences causing changes of orbital
elements.

2. Perform motion data acquisition of objects in low Earth orbit (satellites, space trash).
3. Develop a simulation environment with a Graphical User Interface (GUI) allowing prediction of

position and velocity of objects in time.
4. Perform uncertainty analysis of the simulation model and compare the simulated trajectories with

available data.
5. Evaluate the achieved results and discuss possible future advances of the project.

Literature:
• CURTIS, Howard D. Orbital mechanics for engineering students. Amsterdam; Boston: Elsevier

Butterworth-Heinemann, 2005, ISBN 0-7506-6169-0.
• MAINI, Anil K a Varsha AGRAWAL. Satellite Technology. 3. New York: Wiley, 2014. ISBN

9781118636473.

Requirements for the semestral defence:
1. and 2. assignment points.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Novák Jiří, Ing.

Head of Department: Černocký Jan, prof. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 16.5.2024

Approval date: 9.11.2023

Bachelor's Thesis Assignment
153125

Simulation Environment for Objects in Low Earth OrbitTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract

This thesis is concerned with the problematic of predicting satellite’s position in Low Earth
orbit. It implements such behaviour with numerical integration methods and basic analyt-
ical methods, as well as with graphical user interface for plotting the results and enabling
the user to manually adjust simulation’s aspects. The input satellite data is taken in real
time from public databases in TLE format. This work also provides an insight into various
principles of orbital mechanics.

Abstrakt
Tato práce se zabývá problematikou předpovědi polohy satelitu na Nízkém orbitu Země
a vizualizací těchto dat v samostatném programu. Takových cílů je dosaženo použitím
jak analytických, tak i numerických integračních metod, analyzujících orbitální parame-
try získané z veřejných databází ve formátu TLE. Účelem práce je srozumitelně přiblížit
tuto problematiku veřejnosti a nadšencům. Celý průběh simulace je zachycen v grafickém
prostředí a umožňuje uživateli ladit podrobný běh simulace.

Keywords
Mathematical numerical simulation, Orbital mechanics, Determining position of satellite,
Orbital perturbations, Analytical simulation, Coordinate conversion, Low Earth orbit, TLE,
Ground tracks, Visualization

Klíčová slova
Matematická numerická simulace, Orbitální mechaniky, Určování pozice satelitu, Pertur-
bace orbitu, Analytická simulace, Převody souřadnic, Nízká orbita Země, TLE, Poloha nad
zemí, Vizualizace

Reference
POSPÍŠIL, Zbyněk. Simulation Environment for Objects in Low Earth Orbit. Brno, 2024.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Jiří Novák

Rozšířený abstrakt
Tato práce popisuje problematiku předpovědi dráhy satelitu na Nízké oběžné dráze Země.
Jejím cílem je jednak vytvořit samostatný program, který dokáže získat informace o orbitál-
ních parametrech satelitu ze dvou databází a druhak numerickými a analytickými metodami
co nejpřesněji nasimulovat tato data v čase a následně je zobrazit v grafickém prostředí.
Zároveň je záměrem této práce nastínit problematiku orbitálních mechanik nadšencům do
kosmonautiky a srozumitelně ji vysvětlit.

Pozici satelitu na oběžné dráze lze popsat různými způsoby: vektorem ze středu Země,
jeho pozicí pomocí zeměpisné šířky, zeměpisné délky a výšky nad povrchem, nebo tzv.
orbitálními parametry. Každý způsob je vhodný k něčemu jinému. Tato práce nejdřív získá
data ve formátu tzv. dvouřádkových elementů (TLE), které orbitální parametry obsahují.
Jedná se o velmi univerzální způsob, jak polohu reprezentovat. Simulovat můžeme už je
– analyticky – avšak mnohem přesnější je převést parametry do vektoru ze středu Země,
tzv. inerciální soustavy. V ní je satelit reprezentován vektorem polohy a také vektorem
jeho rychlosti. Tento způsob je vynikající k numerickému, přesnému určování budoucí
trajektorie, protože narozdíl od orbitálních parametrů dokáže počítat s více vnějšími vlivy,
které na satelit působí v dlouhodobém horizontu. Takovými vlivy jsou podle klesající
důležitosti odpor atmosféry, gravitační vliv Slunce a Měsíce, vliv Slunečního záření, vliv
šišatosti Země atd. Každý z těchto vlivů působí na satelit velmi malým zrychlením, které
mění výsledný vektor rychlosti a tím i vektor polohy. Primárním vlivem je samozřejmě
gravitace Země samotné.

Vektorem polohy ze středu Země ale nepopíšeme polohu běžnému člověku. Souřadnice se
proto musí převést do známé zeměpisné šířky, zeměpisné délky a výšky nad povrchem.
K tomu je ještě potřeba znát jak moc je Země otočená, což zjistíme tzv. epochou, tedy
časovým údajem naměření TLE.

Druhá kapitola se zabývá teorii, vysvětlí funkci jednotlivých orbitálních parametrů, popisuje
převody mezi výše zmíněnými souřadnými systémy a popisuje vlivy, které svým zrychlením
působí na satelit. Tato práce počítá s vlivy atmosféry, šišatostí Země a gravitačním pů-
sobením Slunce, Měsíce a všech planet Sluneční soustavy.

Třetí kapitola se zabývá implementací programu, tedy získáváním TLE dat ze dvou veře-
jných databází (Celestrak a Space-Track), popisu formátu TLE dat, architekturou simulá-
toru, numerickým metodám Euler a Runge-Kutt a nastíněním analytické simulace orbitál-
ních elementů. Grafická část programu je implementována v jazyce Python v prostředí
PyQt6, simulátor je pro větší rychlost a efektivitu napsán v jazyce C++.

Čtvrtá kapitola se zabývá validací modelů a porovnáváním výsledků simulátoru s pozdějšími
referenčními měřeními satelitu a s referenčním modelem SGP4, kterému se práce snaží
přiblížit.

Simulation Environment for Objects in Low
Earth Orbit

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the au-
thor under the supervision of Mr. Ing. Jiří Novák. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Zbyněk Pospíšil

May 15, 2024

Acknowledgements
I would line to sincerely thank my supervisor Mr. Ing. Jan Novák for his support, all the
advice and a lot of patience, especially during final months.
Special thanks belongs to Mr. Martin Douša, also for a lot of patience and willingness to
teach others how to code.
Finally, I owe a debt of gratitude to my family and my closest friends for their continuous
support, without which this work would not have been possible.

Contents

1 Introduction 5

2 Theory of Orbital Mechanics 7
2.1 Basics of kinematics . 7
2.2 Keplerian elements . 9
2.3 Reference frames and Coordinate transformations 13
2.4 Orbital perturbations . 19

3 Design and Implementation 27
3.1 User Interface Architecture . 28
3.2 Obtaining Satellite Data . 30
3.3 Simulator implementation . 33
3.4 Plotting the results . 37

4 Simulating Experiments 39
4.1 Precision of coordinate conversion . 39
4.2 Comparison with reference measurements 41
4.3 Comparison with SGP4 model . 43

5 Conclusion 46

Bibliography 47

A Two-line element format 51

B XML response format 53

C Contents of the included storage media 55

1

List of abbreviations

3LE Three-line element set. 29–32

BCRS Barycentric Celestial Reference System. 32

ECEF Earth-centred, Earth-fixed frame. 6, 13, 14, 16, 18, 33, 34, 37–39, 42, 44

ECI Earth-centred inertial frame. 5, 13, 14, 16–18, 21, 25, 30, 34, 37–39, 41, 42, 44

ERP Earth radiation pressure. 25, 44

GEO Geostationary Earth orbit. 21, 43

GMST82 Greenwich mean sidereal time 1982. 6, 14–16

GMT Greenwich Mean Time. 15

LEO Low Earth orbit. 5, 7, 19, 21, 26, 27, 30, 44

MEO Medium Earth orbit. 21, 43

NORAD North American Aerospace Defense Command. 32, 41, 51

ODE Ordinary differential equation. 34, 35

RAAN Right ascension of the ascending node. 10, 14, 52

RK4 Fourth Order Runge-Kutta. 34, 35

SGP Simplified General Perturbation model. 5, 6, 18, 20, 22, 24, 30, 39, 41–46

SRP Solar radiation pressure. 24, 25, 44

TEME True equator, mean equinox frame. 5, 13, 18, 30, 43, 44

TLE Two-line element set. 5, 6, 13, 18, 20, 24, 28–32, 34, 37, 39–44, 46, 51–53

USSA76 U.S. Standard Atmosphere 1976. 6, 20, 21

UT1 Universal Time. 15, 44

UTC Universal Coordinated Time. 15, 44

WGS84 World Geodetic System 1984. 6, 16–18

2

Nomenclature

Orbital Elements

Ω Right ascension of the ascending node; RAAN rad

𝜔 Argument of periapsis rad

𝜃 True anomaly rad

𝐸 Eccentric anomaly rad

𝑒 Eccentricity 1

ℎ Specific angular momentum km2 · s−1

𝑖 Inclination rad

𝑀𝑒 Mean anomaly of elliptical orbit rad

Vectors

r Position vector in cartesian system

v Velocity vector in cartesian system

a Acceleration vector in cartesian system

p Perturbation vector in cartesian system

Orbital perturbations

𝜇𝑒 Earth’s standard gravitational parameter km3 · s−2

𝜇𝑚 Moon’s standard gravitational parameter km3 · s−2

𝜇⊙ Sun’s standard gravitational parameter km3 · s−2

𝜔𝑒 Earth’s angular rotation velocity rad · s−1

𝜌 Atmospheric density km ·𝑚−3

𝐴 Cross-sectional area of satellite perpendicular to motion m2

𝐵 Ballistic coefficient 1

𝐵* B-Star kg ·m2

3

𝐶𝑑 Drag coefficient 1

𝑃𝑠𝑟 Solar radiation pressure N ·m−2

Other Symbols

𝜆 Longitude; azimuthal angle of Earth rad

𝜑 Azimuthal angle of spherical coordinate system rad

𝜑 Geodetic latitude rad

𝜑′ Geocentric latitude; polar angle of Earth rad

𝜃 Polar angle of spherical coordinate system rad

𝜃𝐺𝑀𝑆𝑇82 Greenwich mean sidereal time angle rad

𝑎 Semi-major axis km

ℎ Height of the satellite km

𝑗 Julian day

𝑛 Mean motion

𝑃 Periapsis km

𝑅𝑒 Earth’s equatorial radius km

à Vernal equinox

4

Chapter 1

Introduction

Space is a fascinating place, that has attracted the attention of humans for centuries. All
the way from basic astronomy in ancient Greece and China, through new insights made
outside of Europe in the Middle Ages, and with revolution in knowledge starting with
Nicolaus Copernicus’s geocentric model, Johannes Kepler‘s theory of orbital mechanics
and Galileo Galilei‘s improvements in observational astronomy, up to the knowledge boom
in 20th century and first rockets. Advancements in this scientific field have become the
matter of national pride for politics and a unique opportunity for scientists to develop new
technologies, that improve our lives on daily basis.

This work attempts to summarize the technical and mathematical know-how of many doc-
uments, regarding the topic of basic satellite simulation. Such works are very scarce and
often too complex.

The main focus of this thesis is to create an user-friendly program with graphical interface,
which retrieves satellite’s orbital parameters from public databases and uses author’s model
to propagate its movement in LEO. The intent is to be as precise as possible in coordinate
conversions and subsequent simulations. The results will be compared with the reference
SGP4 model, which is commonly used by state agencies and amateurs for quick but rela-
tively imprecise orbital propagation. The author also aims to help to understand the topics
of orbital mechanics and explain them to an average space fan.

Author of this document is a space enthusiast, who deeply admires recent advances in rocket
technology. This work is dedicated to those, who dream of making a difference.

This thesis incorporates numerical orbit propagation in the form of vector-based simulation,
as does the reference SGP4 model and simplified analytical propagation of orbital elements.
Basics of kinematics alongside spherical coordinates can be found in section 2.1. Our model
processes TLE data (explained in section 3.2), containing orbital elements in ECI TEME
coordinate frame, specific to use with SGP models. Orbital or Keplerian elements, along
the Kepler’s laws of planetary motion are explained in section 2.2. This in-depth look also
includes their variations, different angles (anomalies) or parameters. Section 2.3 begins
with their transformation to perifocal coordinate frame in 2D space. This is then trans-
formed into orbit around the Earth into ECI frame using Euler’s 𝑧𝑥𝑧 transformation matrix
from eq. (2.14). As spacecraft’s position is now determined with state vector – position
vector and velocity vector – its propagation is done numerically with Euler or Runge-Kutta
simulation methods (both in section 3.3). The foundation for correct orbital propagation

5

is formed by the two-body equation for relative motion (eq. (2.27)). This basic satellite-
Earth interaction is expanded upon with perturbation effects, such as atmospheric drag
(using USSA76 model), third body gravitation (Skyfield library) or Earth obliquity (all in
section 2.4). Solar and Earth radiation pressures are described, but not implemented. Con-
version of state vector into familiar ECEF WGS84 position of latitude longitude and height
is achieved with TLE’s measurement timestamp (epoch). This epoch is first converted into
Julian date, using the J2000 constant and to GMST82 angle, describing the angle of Earth’s
rotation (see eq. (2.19)). The calculated latitude (see eq. (2.25)) is geodetic, respecting the
bulged shape of Earth. Processes described in this paragraph are illustrated in fig. 3.3.

Regarding the design and implementation of the model, the UI is written in Python’s library
PyQt6 and the computation part in C++ for greater efficiency. The file structure is outlined
in fig. 3.1 and in table 3.1. TLEs are obtained from Celestrak and Space-Track databases,
that supplement each other. Position of the Sun, Moon and the planets of our Solar System
is retrieved via Skyfield python library. Handling of the requests, as well as description of
the TLE format is described in section 3.2. Simulator implementation is briefly summarized
in section 3.3. Plotting of trajectories is done using PyQtGraph (described in section 3.4).

Finally, chapter 4 focuses on the validation of the model. Precision of coordinate conversions
(in section 4.1) and comparison of propagated orbits with reference TLE measurements (in
section 4.2) and with the reference SGP4 model (see section 4.3) are summarized at the
end. Summarized are also SGP4’s limitations.

6

Chapter 2

Theory of Orbital Mechanics

This chapter explains the theory behind kinematics of space travel, used reference frames
and subsequent conversions between them and various orbital perturbations, that affect
objects in Low Earth orbit (LEO). This chapter also tries to present the complex topic of
orbital mechanics in an understandable way and consequently does not derive the principles
nor the theory of provided equations. However their source is, conveniently, always listed.
All equations are functionally equal to those used by the simulator.

2.1 Basics of kinematics

Kinematics is a subdomain of physics that studies and describes the geometry of motion.
The causes for that motion are various, for example the gravitational pull or radiation
pressure. However effects of such causes are the concern of dynamics. Kinematics explains
the basics, mainly the positioning, velocity and acceleration of the studied object. The
position of a point may be described in terms of cartesian, spherical, cylindrical, or curvi-
linear coordinates [3]. This work utilizes cartesian system with familiar vectors and spherical
system for the “sphere” of the Earth with two angles – latitude, longitude and also a height.

The vectors in cartesian coordinates can be represented as lines, that start from origin,
have direction and magnitude. Vectors are typically in 2D or 3D space with two or three
coordinates respectively. All vectors in following chapters will be in bold.

The position in cartesian coordinates is given by position vector r ∈ R⊯, with origin at the
main reference point (e.g. a planet) and tip at the object’s location. Following chapters
will use metres m as primary units.

The velocity vector v ∈ R⊯, representing object’s velocity, originates from the tip of position
vector and points to the new location of object in delta time. Commonly used SI units
are naturally metres per second m · s−1. The vector can be mathematically expressed by
eq. (2.1).

v = ṙ =
∆r

∆𝑡
(2.1)

7

Finally, acceleration vector a ∈ R⊯ also originates from the tip of the position vector,
however its direction and magnitude represent the change, over delta time, of the velocity
vector. The SI units are metres per squared second m · s−2. Analogically, whilst utilizing
velocity from eq. (2.1), acceleration can be mathematically expressed by eq. (2.2).

a = r̈ = v̇ =
∆v

∆𝑡
(2.2)

The link between all three vectors can be furthermore easily explained in 2D space in fig. 2.1.

r

v

a

O
(a) Vectors in time 𝑡0

r
v

a

O
(b) Vectors in time 𝑡1

Figure 2.1: Relation between the different kinematics vectors in delta time.

Note that the tip of position vector r was moved by the velocity vector v. Analogically,
same applies for velocity and acceleration vectors. These principles, albeit in 2D space, are
the very basics for simulating and predicting movement of objects in 3D, as the acceleration
vector is known at any given moment in time. This is furthermore discussed in section 2.4.

The position in spherical coordinates is dictated by two angles and a distance from the
origin – centre of the sphere. The distance 𝑟 therefore defines the radius of the sphere.
First angle, the polar angle 𝜃 lies between the 𝑧 axis facing upwards (northward), the origin
and an imaginary point. The second, azimuthal angle 𝜑, lies between the 𝑥 axis, the origin
and the projection of our imaginary point onto 𝑥𝑦 plane, as illustrated in fig. 2.2.

θ

φ

r

z

x

y

Figure 2.2: Showcase of spherical coordinates (𝜃, 𝜑, 𝑟) defining a point.

When referencing our planet, polar angle 𝜃 is known as latitude 𝜑 and azimuthal angle 𝜑
is called longitude 𝜆. The 𝑥 axis passes through the Vernal equinox à. The distance 𝑟 is
measured from the Earth’s centre.

8

2.2 Keplerian elements

Johannes Keppler, German astronomer, described the basics of planetary motion at the
start of 17th century. His findings were based on the work of Nicolaus Copernicus and
improved his three laws regarding circular orbit theory as such:

1. The orbit of a planet is an ellipse with the Sun at one of the two focal points.

2. A line between a planet and the Sun sweeps out equal areas during equal intervals of
time.

3. The square of an object’s orbital period is proportional to the cube of the length of
the semi-major axis of its orbit.

Although these laws describe planetary motion, the planet and Sun can also be interchanged
with the orbit of satellite and Earth. The laws state, that planet (or satellite) on elliptical
path around the object it orbits, travels faster when it´s closer to the orbiting body, as
it exchanges potential energy for kinetic and vice versa. In reality, Keppler´s findings
don’t account for the small acceleration exerted on the Sun from the gravitational pull of
the orbiting planets in accordance with Newton´s second and third laws. This would be
problematic with objects of comparable mass orbiting each other, but for most situations
inside our Solar System, such effects are practically negligible [21].

In addition, the apsides are also commonly used to describe the nearest and farthest point
of the orbiting object around its primary body. Any object that is orbiting planet Earth
names them perigee and apogee, while for example orbits around the Sun have perihelion
and aphelion respectively. When describing any arbitrary orbit, the terms periapsis and
apoapsis are used.

Main orbital elements

Keplerian elements, also known as orbital elements, are formed by a set of six parameters,
that describe the orbit of an object and its position on it. Although they are commonly
used in orbital mechanics for forming satellite’s or planet’s orbit, they present an ideal-
ized mathematical view, that does not account for external disturbances – perturbations.
Tracking programs therefore need to perform slight corrections.

Defining the size and shape of the orbit requires:

• eccentricity 𝑒 – Unit of elongation from perfectly circular orbit. Circular orbits
have 𝑒 = 0, elliptical orbits 𝑒 ∈ (0, 1). Eccentricity equal or greater than 1 is
used to describe parabolic or hyperbolic non-orbital trajectories of objects. 𝑒 ∈ 𝑅+,
𝑒 ∈ ⟨0, ∞); [1]

• specific angular momentum ℎ — The cross product of relative position and relative
velocity vectors the body divided by its mass, often replaced by semi-major axis 𝑎.
ℎ ∈ ⟨0, ∞); [km2 · s−1]

or alternatively

9

• semi-major axis 𝑎 — The sum of apoapsis and periapsis distances divided by two.
The centre of elliptical orbit. 𝑎 ∈ (0, ∞); [km]

With the orbit plane set, we can describe the orientation of the orbit with three Euler
angles:

• right ascension of the ascending node Ω – Angle between the Vernal equinox’s à di-
rection and the ascending node of the orbit. Ascending node is the point, where
orbiting satellite crosses the Earth’s equator, moving from southern to northern hemi-
sphere. Its counterpart is the Descending node. Also known as RAAN or RA of node.
Ω ∈ ⟨0∘, 360∘)

• inclination 𝑖 — The angle between reference (for example equatorial) and orbital plane
that it describes. Satellite orbits close to 0 degrees are referred to as equatorial, while
orbits close to 90 degrees are regarded as polar. 𝑖 ∈ ⟨0∘, 180∘)

• argument of periapsis 𝜔 — Orients the elliptic orbit in orbital frame, i.e. orients the
orbit’s periapsis, its lowest point. Also known as argument of perigee. 𝜔 ∈ ⟨0∘, 360∘)

The last orbital element provides us with an exact position of the orbiting object:

• true anomaly 𝜃 — Angle on orbital plane between orbiting object and its periapsis with
focus in the focal point (inside orbiting body). Increases non-linearly as objects move
faster near periapsis and slower near apoapsis. Often replaced by mean anomaly 𝑀 .
𝜔 ∈ ⟨0∘, 360∘)

Satellite

Orbit

Plane of reference

Reference direction
Vernal equinox

Argument of periapsis

ω

True anomaly

θ

Ω

Right ascension of the
ascending node

i

Inclination

Ascending node

Figure 2.3: Keplerian elements that defy orbit’s orientation in space.

10

As not every orbital parameter might be known, several equations will be presented, that
explain various conversions. First, the true anomaly 𝜃 can be obtained via eq. (2.3),

𝜃 = 2 · arctan

⎛⎝tan

(︃
𝐸

2

)︃
·

√︃
1 + 𝑒

1− 𝑒

⎞⎠ (2.3)

where 𝑒 is eccentricity and 𝐸 is eccentric anomaly from eq. (2.7). Specific angular momen-
tum ℎ may also not be specified and needs to be obtained via eq. (2.4),

ℎ =
√
𝜇𝑒 · 𝑃 · (1 + 𝑒) (2.4)

where 𝑒 stands for eccentricity, 𝜇𝑒 is the gravitational parameter of Earth and 𝑃 is periapsis
of the orbit, calculated from eq. (2.5),

𝑃 = 𝑎 · (1− 𝑒) (2.5)

where 𝑎 is the semi-major axis of the orbit. The format of data, that the simulator retrieves
from public sources however omits even this. Instead, mean motion 𝑛 is utilized, which
describes how many orbits per day spacecraft undergoes.1 Low values are consistent with
satellite having both apsides in low altitudes, hence moving faster and vice versa. The
semi-major axis can be obtained from eq. (2.6),

𝑎 =
3

⎯⎸⎸⎸⎸⎸⎷
𝜇𝑒(︃

𝑛 ·
2𝜋

86,400

)︃2 (2.6)

where 𝜇𝑒 stands for Earth’s gravitational parameter and 𝑛 for mean motion. Note the
constant 86,400 representing number of seconds in 24 hours. All these equations will prove
useful in conversions of orbital elements to other coordinate frames and in analytical prop-
agation of the elements.

Anomalies

These anomalies (angles) can replace the last orbital element – true anomaly 𝜃. Although
not part of the basic six, they are commonly used in various equations and calculations.

• mean anomaly 𝑀𝑒 – Fraction of the elapsed orbit since the start of periapsis. Sweeps
the area of orbit in the same time as true anomaly 𝜃, but its value increases linearly
along an imaginary circle, as seen in fig. 2.4. It therefore does not always point to
spacecraft, unlike true anomaly 𝜃, except when it reaches periapsis or apoapsis. The
subscript 𝑒 means elliptic orbit. 𝑀𝑒 ∈ ⟨0,∘ 360∘)

1It can also be described by radians per second, needed for some equations. But Two-line elements
(TLEs) describe it in orbits per day.

11

• eccentric anomaly 𝐸 – Angle on orbital plane (focused in its centre) between orbited
planet and a special point. This point lies on orbital plane on auxiliary circle with
radius equal to semi-major axis (long half the ellipse) and on line that is both inter-
secting the satellite and is perpendicular to semi-minor axis (short half of the ellipse).
𝐸 ∈ ⟨0∘, 360∘)

Eccentric anomaly 𝐸 can also be obtained using the Kepler’s eq. (2.7),

𝐸 − 𝑒 · sin𝐸 = 𝑀𝑒 (2.7)

where 𝑒 is eccentricity and 𝑀𝑒 mean anomaly. Finding the root of this equation is not
trivial and requires the use of the Newton’s approximation method.

Figure 2.4 illustrates the difference between mean anomaly 𝑀𝑒 and true anomaly 𝜃 of a
satellite on elliptic trajectory, indicated by arrows. Note the greater area swept by true
anomaly near periapsis, as opposed to the uniformity of mean anomaly.

periapsis

Mean anomaly
True anomaly

apoapsis

Figure 2.4: The difference between mean anomaly 𝑀𝑒 and true anomaly 𝜃.

Link to Epoch

Although we successfully defined the size and orientation of orbit and pinpointed the po-
sition of satellite, these parameters naturally change with time. The key missing link to
reality is determining for what timestamp – epoch – are orbital elements valid. This topic
will be explored in subsequent section 2.3.

12

2.3 Reference frames and Coordinate transformations

For projecting the orbit in three-dimensional space with Earth in the origin, inertial and
fixed frames are used. Earth-centred inertial (ECI) frame is needed for describing and
numerically predicting the movement of spacecraft using the state vector, whereas Earth-
centred, Earth-fixed (ECEF) frame is useful for projecting satellites position onto rotating
Earth’s surface for a given Epoch. Note, that ECI and ECEF frames can be furthermore
subdivided, as reference directions, original usage, or means of computation may slightly
differ. This work will utilize True-Equator Mean-equinox ECI subframe (TEME), that is
needed for working with TLE, as outlined in section 3.2.

Perifocal frame

This coordinate frame describes the orbit in two dimensions, in its “natural frame”. This
frame is centered at the focus point of the orbit, the planet. Its 𝑥𝑦 plane is the orbital plane
and its 𝑥 axis passes through satellite’s periapsis. Perifocal frame is used as an inter-step
in converting orbital elements into state vector.

Calculating the spacecraft’s position and velocity vectors is performed as shown in matrix
notation in eq. (2.8) and eq. (2.9),

r𝑃 =
ℎ2

𝜇 · (1 + 𝑒 · cos 𝜃)
·

⎧⎪⎪⎨⎪⎪⎩
cos 𝜃

sin 𝜃

0

⎫⎪⎪⎬⎪⎪⎭ (2.8)

v𝑃 =
𝜇

ℎ
·

⎧⎪⎪⎨⎪⎪⎩
− sin 𝜃

𝑒+ cos 𝜃

0

⎫⎪⎪⎬⎪⎪⎭ (2.9)

where ℎ represents specific angular momentum from eq. (2.4), 𝑒 eccentricity and 𝜃 true
anomaly from eq. (2.3). The Earth’s gravitational parameter 𝜇 is also present. Note the
extra arbitrary 𝑧 coordinate, which is handy for subsequent operations and is equal to zero.

State vector

The state vector is composed of both position and velocity vector in 3-dimensional space, as
outlined in section 2.1. For position, one of the ECI frames is generally used, positioning the
spacecraft with 𝑥𝑦𝑧 coordinates around a non-rotating origin in the centre of the Earth. Its
𝑥 axis points in the direction of the Vernal equinox à, the 𝑥𝑦 plane is the Earth’s equatorial
plane and 𝑧 plane its rotational axis. The positioning of Vernal equinox à is changed in
50-year intervals by about tenth of a degree.

Both components of a state vector can be described via eq. (2.10).

r𝑆 =

⎧⎪⎪⎨⎪⎪⎩
𝑥

𝑦

𝑧

⎫⎪⎪⎬⎪⎪⎭ ,v𝑆 =

⎧⎪⎪⎨⎪⎪⎩
𝑥̇

𝑦̇

𝑧̇

⎫⎪⎪⎬⎪⎪⎭ (2.10)

13

Since predicting state vectors is the main concern of orbital mechanics, obtaining it from
the six orbital elements first requires obtaining the position and velocity vectors in perifocal
frame via eq. (2.8) and eq. (2.9). Note, that orbital elements that define the orbital’s size,
shape and spacecraft’s position were needed.

As for the three Euler angles – elements describing the orientation of orbit – argument of
periapsis 𝜔, inclination 𝑖 and RAAN Ω, we use them to rotate both perifocal vectors into
ECI frame using 𝑧𝑥𝑧 Euler transformation matrices in eq. (2.11), eq. (2.12) and eq. (2.13).

𝑅𝑧(𝜔) =

⎡⎢⎢⎣cos𝜔 − sin𝜔 0

sin𝜔 cos𝜔 0

0 0 1

⎤⎥⎥⎦ (2.11)

𝑅𝑥(𝑖) =

⎡⎢⎢⎣1 0 0

0 cos 𝑖 − sin 𝑖

0 sin 𝑖 cos 𝑖

⎤⎥⎥⎦ (2.12)

𝑅𝑧(Ω) =

⎡⎢⎢⎣cosΩ − sinΩ 0

sinΩ cosΩ 0

0 0 1

⎤⎥⎥⎦ (2.13)

Furthermore, all three separate coordinate transformations can be simplified into a single
matrix 𝑇 in eq. (2.14).

𝑇𝑃/𝑆 = 𝑅𝑧(𝜔) ·𝑅𝑥(𝑖) ·𝑅𝑧(Ω) =⎡⎢⎢⎣cosΩ cos𝜔 − sinΩ cos 𝑖 sin𝜔 − sinΩ cos 𝑖 cos𝜔 − cosΩ sin𝜔 sinΩ sin 𝑖

cosΩ cos 𝑖 sin𝜔 + sinΩ cos𝜔 cosΩ cos 𝑖 cos𝜔 − sinΩ sin𝜔 − cosΩ sin 𝑖

sin 𝑖 sin𝜔 sin 𝑖 cos𝜔 cos 𝑖

⎤⎥⎥⎦ (2.14)

Transformation of perifocal vectors 𝑟𝑃 and 𝑣𝑃 from eq. (2.8) and eq. (2.9) is achieved by
multiplying both with transformation matrix 𝑇𝑃/𝑆 , resulting in eq. (2.15).

r𝑆 = r𝑃 · 𝑇𝑃/𝑆

v𝑆 = r𝑃 · 𝑇𝑃/𝑆

(2.15)

Epoch and Earth’s rotation

The main concern of conversion between ECI and Earth-centered, Earth-fixed system
(ECEF) represented by latitude, longitude and height, is correction for rotation of the
planet Earth. The reference moment in time is spacecraft’s epoch, which is converted into
Julian date, then into Greenwich mean sidereal time (GMST82) which itself is the desired
angle of Earth’s rotation.

14

• The spacecraft’s epoch is composed of year, day and its fractional portion and is
available alongside orbital elements in public databases. As mentioned in section 2.2,
epoch determines for what timestamp are the elements valid.

• Julian date is the amount of days (with remainder fraction) that have passed since
noon of Universal Time (UT1) on January 1st 4713 BC of the Julian Calendar. This
point in time was chosen for mathematical convenience, as calculating with preceding
years is simplified. Naturally, the transition of Julian to Gregorian calendar doesn’t
need to be accounted for. The Universal Time, historically known as Greenwich
Mean Time (GMT) is similar to the familiar Universal Coordinated Time (UTC).
In comparison, UTC differs negligibly from the UT1 by ’leap seconds’, as the UT1
can vary due to Earth’s rotation [18]. Note, that midnight in UT1 corresponds to a
Julian date fraction of 0.5 [2]. For example, the widely-used reference epoch J2000 –
the noon of January 1st 2000 – is Julian day 2,451,545.0.

• Greenwich mean sidereal time (GMST82) measures Earth’s rotation with respect to
distant stars and is defined as the hour angle between the Greenwich Meridian and the
vernal equinox (the intersection of the planes of the earth’s equator and the earth’s
orbit, the ecliptic) [31]. GMST82 is composed of the angle 𝜃𝐺𝑀𝑆𝑇82 in radians and
its velocity 𝜃𝐺𝑀𝑆𝑇82 in radians per day.

For simplicity, following equations will utilize certain time-related constants from the ta-
ble 2.1.

constant value unit meaning
J 2,451,545 days J2000; days since 12:00 UTC, Jan 1st 4713 BC
D 36,525 days approximated number of days in century
H 24 hours hours in day
M 1440 minutes minutes in day
S 86,400 seconds seconds in day

Table 2.1: Useful time-related constants.

The general transition from epoch’s year, day and time into Julian date 𝑗 is performed as
shown in eq. (2.16),

𝑗 = 𝐽 + 0.5 + 365 · 𝑦 + ⌊0.25 · 𝑦⌋ − ⌊0.01 · 𝑦⌋+ ⌊0.0025 · 𝑦⌋+ 𝑙 + 𝑑+
ℎ

𝐻
+

𝑚

𝑀
+

𝑠

𝑆
(2.16)

where 𝑦 is the measured year minus 2000. Also note the J2000 constant with half a day
added, and constants 𝐻, 𝑀 and 𝑆 from table 2.1. Correction is necessary for leap years 𝑙.
If 𝑦 is a leap year, 𝑙 will be −1 and 0 if otherwise. Variable 𝑑 is the number of day in a year,
regardless of month. Variables ℎ, 𝑚 and 𝑠 mean hours, minutes and seconds respectively,
in UTC time.

Since fraction of the day 𝑓 is a known value included in epoch, eq. (2.16) can be furthermore
simplified by eq. (2.17).

15

𝑗 = 𝐽 + 0.5 + 365 · 𝑦 + ⌊0.25 · 𝑦⌋ − ⌊0.01 · 𝑦⌋+ ⌊0.0025 · 𝑦⌋+ 𝑙 + 𝑑+ 𝑓 (2.17)

Transformation from Julian date to GMST82 is done via converting Julian days 𝑗 from
eq. (2.17) into centuries 𝑐, that have passed since the J2000 timestamp, as shown in
eq. (2.18),

𝑐 =
(𝑗 − 𝐽)

𝐷
(2.18)

where 𝐽 and 𝐷 are taken from table 2.1, and finally utilizing eq. (2.17) and eq. (2.18) in
transformation to inter-step 𝑥 and then to the rotation angle 𝜃𝐺𝑀𝑆𝑇82 (in eq. (2.19)) and
to its velocity 𝜃𝐺𝑀𝑆𝑇82 (in eq. (2.20)) [14],

𝑥 = (((−6.2 · 10−6 · 𝑐+ 0.093104) · 𝑐+ 8,640,184.812866) · 𝑐+ 67,310.54841) · 𝑐

𝜃𝐺𝑀𝑆𝑇82 =

(︃
frac(𝑗) + frac

(︃
𝑥

𝑆

)︃)︃
· 2𝜋

(2.19)

𝜃𝐺𝑀𝑆𝑇82 =

(︃
1 +

(−6.2 · 10−6 · 3 · 𝑐+ 0.093104 · 2) · 𝑐+ 8,640,184.812866

𝑆 ·𝐷

)︃
· 2𝜋 (2.20)

where function frac(𝑥) is defined as frac(𝑥) = 𝑥−⌊𝑥⌋. The other constants in the equation
cannot be easily explained and are beyond the scope of this work. The definitions stem
from IAU and are generally taken as convention [4][30][31].

Ground tracking

Transforming ECI state vector into ECEF spherical reference frame of latitude 𝜑, longi-
tude 𝜆 and height ℎ (outlined in section 2.1) is necessity for ground-tracking a satellite
– monitoring its position and path above Earth’s surface. Although this task would be
simple with a perfect sphere, Earth is an ellipsoid, thanks to its polar rotation and Moon’s
gravity, that is bulged on the equator by 21.38 km. This complicates calculations for precise
measurement.

Throughout the time, universal standard used for on-Earth position measurements, the
World Geodetic System (WGS84), was created. It belongs to the family of ECEF coordinate
systems and is widely used in geography, cartography and most notably in navigation using
GPS satellites. WGS84 also defines our planet as an ellipsoid – radii, distances and various
other properties.

The point on Earth’s surface above which the satellite is in zenith is referred to as a sub-
point. On a perfect sphere, the Earth’s centre, satellite’s sub-point and satellite’s position
would be in a plane and alongside Earth’s equatorial plane would form an angle called
geocentric latitude 𝜑′. As the Earth is bulged in reality, satellite’s sub-point will be shifted
slightly towards the Equator, forming a new angle, geodetic latitude 𝜑, as illustrated in
fig. 2.5 with satellite in local zenith.

16

N

Equator

Satellite

local horizon

φ′ φ

Sub-point

Figure 2.5: Difference between geocentric and geodetic latitudes.

Although the error is eliminated when measuring above either poles or the equator, the error
can be as high as 3∘ at 45∘ geocentric latitude, which is for most cases impractical [14].

Calculating the longitude 𝜆 is not affected by oblateness of the Earth, hence simple eq. (2.21),

𝜆 = arctan

(︃
r𝑦

r𝑥

)︃
− 𝜃𝐺𝑀𝑆𝑇82 (2.21)

where r𝑥 and r𝑦 are 𝑥 and 𝑦 coordinates of ECI position state vector from eq. (2.10) and
𝜃𝐺𝑀𝑆𝑇82 is the angle by which the Earth has rotated, as calculated in eq. (2.19).

The geodetic latitude, however, cannot be calculated analytically and can only be approxi-
mated. First, the Earth’s first eccentricity squared is calculated from the inverse flattening
𝑓 of Earth’s WGS84 ellipsoid [27], as in eq. (2.22).

𝑒2 = 2𝑓 − 𝑓2 (2.22)

Geodetic latitude 𝜑 is then obtained by iterating over the following eq. (2.23), eq. (2.24)
and eq. (2.25),

𝜑𝑛 = 𝜑 (2.23)

𝐶 =
1√︀

1− 𝑒2 · sin2 (𝜑𝑛)
(2.24)

𝜑 = arctan

⎛⎝r𝑧 + 𝐶 · 𝑒2 ·𝑅𝑒 · sin (𝜑𝑛)√︁
r2𝑥 + r2𝑦

⎞⎠ (2.25)

in which Earth’s first eccentricity squared 𝑒2 is obtained via eq. (2.22), then r𝑥, r𝑦 and
r𝑧 are 𝑥, 𝑦 and 𝑧 coordinates of ECI position state vector from eq. (2.10) and 𝑅𝑒 is the

17

equatorial Earth’s radius of 6378.137 km. The iteration is to be repeated until the difference
|𝜑𝑛 − 𝜑| is negligible [14].

Finally the height ℎ of the satellite above surface is calculated as in eq. (2.26),

ℎ =

√︁
r2𝑥 + r2𝑦

cos (𝜑)
−𝑅𝑒 · 𝐶 (2.26)

which uses variables as explained in the paragraph above. Note, that simple magnitude
of ECI position state vector, that would normally measure object’s distance from origin,
won’t suffice.

Conversion summary

Determining satellite’s position on Earth from given orbital parameters is not trivial and
was customized for data provided in Two Line Element (TLE) sets. Although results can
generally be achieved in multiple ways, processing data from TLE has specific key principles,
as they are accustomed for use in SGP family of perturbation models.

First, position and velocity vector in perifocal frame is formed using eq. (2.8) and eq. (2.9)
respectively. Perifocal orbit has accurate dimensions, that need to be rotated and angled
to ECI (TEME) frame of planet Earth via eq. (2.10), resulting in new position and velocity
vector – collectively named state vector. State vectors can be predicted by simulation, or
can further be transformed into ECEF (WGS84) frame of familiar latitude, longitude and
height via eq. (2.25), eq. (2.21) and eq. (2.26) respectively.

18

2.4 Orbital perturbations

Predicting position of a satellite along with proper simulation of its trajectory is crucial in
any space application. Although it is possible to determine and predict object’s position
with just orbital elements, this approach is not ideal for longer simulations, as not all effects
can be expressed analytically. Real world physics have to account for gravitational forces of
the Sun, Moon and the planets, obliquity of planet Earth, atmospheric drag, solar radiation
etc. The small force of all these perturbations is combined into 𝑥𝑦𝑧 acceleration vector,
that affects the velocity and subsequently the position (eg. state vector) of orbiting object
in delta time. These forces can sometimes be exploited to break free of spacecraft’s ∆𝑣
budget, as in the case of solar sailing [11].

The basics for these computations and predicting spacecraft’s position vector r from eq. (2.10)
involve the two-body equation for relative motion in eq. (2.27),

r̈ = −𝜇𝑒 ·
r

𝑟3
(2.27)

where 𝜇𝑒 is Earth’s standard gravitational parameter, a constant that approximates to
398,600 km3 · s−2 and r is spacecraft’s distance from Earth’s centre. Variable r is the
magnitude of vector r.

The practical application of eq. (2.27) in state vector prediction can be written as in
eq. (2.28) and eq. (2.29),

a = −𝜇𝑒 ·
r

𝑟3
+ p (2.28)

{︃
ṙ

v̇

}︃
=

{︃
v

a

}︃
=

⎧⎨⎩ v

−𝜇𝑒 ·
r

𝑟3
+ p

⎫⎬⎭ (2.29)

where changes to state vector in time are made by calculating the acceleration a for current
position (in 𝑡0) and applying this change to velocity (in 𝑡0) and subsequently, the changed
velocity to initial position, creating a new position in delta time (as explained in section 2.1).
Note, that the additional vector p represents the sum of various perturbations described
above and adds to the acceleration vector. This second order differential computation can
be solved for example with (Leonhard) Euler’s or commonly Runge-Kutta methods, which
will be described in subsequent section 3.3.

Atmospheric drag

Although only a negligible fraction (0.0001%) of the Earth’s atmosphere is above the 100 km
line separating space from our planet, atmospheric drag models are critical for any satellite
in LEO and in heights up to 1000 km [29]. As satellites move with high average orbital
speeds of 29.78 km ·s−1, exerted drag becomes significant and can deorbit satellite in 180 km
orbit in matter of hours [17]. To put things into perspective, the reentry height for Apollo
13, as well as other missions including the Space Shuttle, was around 121 km. Accurate

19

modelling is more difficult than with other perturbation forces, due to different shapes and
materials used by spacecrafts and due to atmospheric densities that depend on external
factors.

The simulation will employ a model U.S. Standard Atmosphere 1976 (USSA76), which uses
table values and exponential interpolation to find atmospheric density 𝜌 up to 1000 km [19].
The model implemented in the code is taken from [7]. The following text will assume 𝜌 as
a function of altitude.

This chapter outlines two main methods for working with drag, either with the use of
ballistic coefficient, or with so-called B-star. The ballistic coefficient is commonly used
in aerodynamics and ballistics, whereas the B-star is more precise and customized for
space applications. Its usage is however limited to SGP family of perturbation models or
specialized programs. Both are provided in TLE sets alongside orbital elements.

The ballistic coefficient 𝐵 measures how fast will object decelerate due to drag and can be
distributed alongside orbital elements. High value implies low air resistance is to be expected
and vice versa. It composes of core values, such as satellite’s mass 𝑚, cross-sectional area
𝐴 and drag coefficient 𝐶𝑑, as outlined in eq. (2.30).

𝐵 =
𝐶𝑑 ·𝐴
𝑚

(2.30)

Drag is also measured against a rotating atmosphere, hence the cross product of Earth’s
angular velocity 𝜔𝑒 (in radians per second) and spacecraft’s position vector r is subtracted
from its velocity vector v, forming a relative velocity vector v𝑟𝑒𝑙 in eq. (2.31).

v𝑟𝑒𝑙 = v − 𝜔𝑒 × r (2.31)

Note, that Earth’s rotation speed is precisely 360.9856 degrees per 24 hours. Calculating
the final drag acceleration vector p is done with the use of USSA76 function for atmospheric
density 𝜌 and with ballistic coefficient and relative velocity from eq. (2.30) and eq. (2.31)
respectively, forming the modified drag eq. (2.32).

p𝐵−𝑑𝑟𝑎𝑔 = −
1

2
· v2

𝑟𝑒𝑙 ·𝐵 · 𝜌 · v̂𝑟𝑒𝑙 (2.32)

The second approach is with the use of B-star (B*). It also estimates the effect of drag
onto satellite, however it is provided (again, with orbital elements) as an average of multiple
observations and incorporates additional corrections and adjustments, as for example the
drag varies with orientation of the spacecraft [11]. Single observation is defined in eq. (2.33),

𝐵* =
𝜌0

2
·
𝐶𝑑 ·𝐴
𝑚

=
𝜌0

2
·𝐵 (2.33)

where ballistic coefficient B, cross-sectional area 𝐴 and drag coefficient 𝐶𝑑 are known vari-
ables from eq. (2.30).
Note the use of reference air density 𝜌0 of 2.461 · 10−5 kg ·m−2 · Earth radii−1. Calculating
the final drag acceleration vector p is done via eq. (2.34),

20

p𝐵*−𝑑𝑟𝑎𝑔 =
𝜌

𝜌0
·𝐵* · v2

𝑟𝑒𝑙 (2.34)

where v𝑟𝑒𝑙 is spacecraft’s relative velocity from eq. (2.31), 𝐵* is either taken from an average
of multiple measurements or from eq. (2.33), 𝜌 is the atmospheric density relative to altitude
USSA76 and 𝜌0 again the reference density of 2.461 · 10−5 kg ·m−2 · Earth radii−1 [12].

Gravity of other bodies

One of the other major perturbing forces is the gravitational effect of other bodies through-
out the Solar System, with most notable examples being the gravity of our Moon and
the Sun (and sometimes Jupiter). General rule implies, that the higher the orbit is, the
greater effect will those other gravitational forces have, as Earth’s gravity weakens. This
is especially important for Medium (MEO) and Geostationary Earth orbits (GEO), where
atmospheric drag is negligible to non-existent. Geostationary orbits are especially sensi-
tive as even the smallest of deviations can render orbit no longer stationary. However for
applications in LEO, the effect of other planets often is often omitted.

Furthermore, the gravity of the Moon also affects the Earth itself in the form of solid and
ocean tides, forcing advanced perturbation models to deal with shifts in the Earth’s gravity,
as the centre of mass changes. Whereas ocean tides are well known, as the Moon’s gravity
causes sea levels to rise, solid tides are displacements of solid Earth’s surface, which can
be as high as 20 cm [32]. However the effects exerted on spacecraft are relatively small and
naturally fade with growing distance from Earth.

The gravitational effect of single third-body object can be universally expressed by eq. (2.35),

p3 = 𝜇𝑜 ·
r𝑜 − r𝑠

|𝑟𝑜 − 𝑟𝑠|3
− 𝜇𝑜 ·

r𝑜 − r𝑒

|𝑟𝑜 − 𝑟𝑒|3
(2.35)

where 𝜇𝑜 is the standard gravitational parameter of any celestial object 𝑜, then r𝑜, r𝑠 and r𝑒
are the position vectors for third-body object, affected spacecraft and the Earth respectively,
with 𝑟𝑜, 𝑟𝑠 and 𝑟𝑒 being the magnitudes of the vectors. The first, left part of eq. (2.35)
represents satellite’s gravitational attraction toward the object, whereas the right, second
part subtracts object’s gravitational pull exerted on the Earth, as to the primary body, the
spacecraft orbits. Since in this case the Earth is also origin of our ECI coordinate frame,
setting r𝑒 = {0, 0, 0}, eq. (2.35) can be simplified into eq. (2.36),

p3 = 𝜇𝑜 ·

(︃
r𝑜 − r𝑠

|𝑟𝑜 − 𝑟𝑠|3
−

r𝑜

𝑟3𝑜

)︃
(2.36)

with known variables from eq. (2.35). Each such effect of any third-body object is then
simply added to eq. (2.29).

The general 𝜇𝑜 from eq. (2.36) representing any object, is in this case subsidized by the
gravitational parameters of various bodies, as listed in table 2.2.

21

Body value [km3 · s−2] Body value [km3 · s−2]
Earth 3.986004418 · 105 Mars 4.282837 · 104

Sun 1.32712440018 · 1011 Jupiter 1.26686534 · 108

Moon 4.9028695 · 103 Saturn 3.7931187 · 107

Mercury 2.2032 · 104 Uranus 5.793939 · 106

Venus 3.24859 · 105 Neptune 6.836529 · 106

Table 2.2: Standard gravitational parameters 𝜇 of various bodies.

Earth obliquity

As mentioned in section 2.3, Earth is not perfectly spherical, but rather oblate on the
equator, as a consequence of centrifugal forces of planet, rotating around its polar axis.
Moon’s and Sun’s gravity also played certain role, shaping the difference between polar
and equatorial radii to 21.38 km. This slight deviation significantly affects satellite’s orbits,
as gravitational field varies: both poles have slightly stronger gravity, as they are closer
to the center of mass, whereas higher mass near equators generally increases equatorial
gravitation. Note, that such changes in gravity are symmetrical (zonal). Such effects are
traditionally not expressed mathematically, but rather through observations of satellite’s
movements, forming a set of six dimensionless constants – zonal harmonics 𝐽 (see table 2.3),
that divide Earth into slices by latitude. The higher the subscript number, the smaller the
slices are.

zonal harmonic value zonal harmonic value
𝐽2 1082.63 · 10−6 𝐽5 −0.15 · 10−6

𝐽3 −2.53266 · 10−6 𝐽6 0.54067 · 10−6

𝐽4 −1.61962 · 10−6 𝐽7 0.35236 · 10−6

Table 2.3: List of zonal harmonics 𝐽 .

Note, that 𝐽2 has by far the greatest effect, as others are at least three orders of mag-
nitude smaller. Zonal harmonics are also unique for every planet and affect gravitational
perturbations in changes of orbit’s latitude.

Although effects of Earth’s oblateness are the most notable, gravity can also vary in specific
regions. For such cases, sectorial and tesseral harmonics are introduced. Sectorial divide
the planet by longitude and are caused by general asymmetric mass distribution. On the
other hand, tesseral divide by both latitude and longitude into a grid-like pattern, that
can furthermore represent mountain ranges, ocean trenches or thickness of crust. Note,
that modelling these forces is the matter of specialized perturbation systems with great
accurateness. For example, the reference SGP4 model only utilizes zonal harmonics 𝐽2 to
𝐽4 [25].

As zonal harmonic 𝐽2 is by far the most important, its perturbing gravitational forces can
be expressed by eq. (2.37), eq. (2.38) and eq. (2.39) derived from [13],

22

𝜕Φ

𝜕𝑥
= −

3

2
·
𝐽2 · 𝜇𝑒

𝑟2
·

(︃
𝑅𝑒

𝑟

)︃2

·
𝑥

𝑟
·

⎡⎣5 ·(︃𝑧

𝑟

)︃2

− 1

⎤⎦ (2.37)

𝜕Φ

𝜕𝑦
= −

3

2
·
𝐽2 · 𝜇𝑒

𝑟2
·

(︃
𝑅𝑒

𝑟

)︃2

·
𝑦

𝑟
·

⎡⎣5 ·(︃𝑧

𝑟

)︃2

− 1

⎤⎦ (2.38)

𝜕Φ

𝜕𝑧
= −

3

2
·
𝐽2 · 𝜇𝑒

𝑟2
·

(︃
𝑅𝑒

𝑟

)︃2

·
𝑧

𝑟
·

⎡⎣5 ·(︃𝑧

𝑟

)︃2

− 3

⎤⎦ (2.39)

where effects on 𝑥, 𝑦 and 𝑧 coordinates of familiar perturbation vector p are studied sepa-
rately. Zonal harmonic 𝐽2 from table 2.3 is used alongside Earth’s standard gravitational
parameter 𝜇𝑒, magnitude 𝑟 of spacecraft’s position vector r and Earth’s mean radius 𝑅𝑒.
The Φ here represents general gravitational perturbations of non-spherical Earth. The
eq. (2.37), eq. (2.38) and eq. (2.39) with their respective variables may be shortened into
eq. (2.40) [7],

p𝐽2 =
3

2
·
𝐽2 · 𝜇𝑒 ·𝑅2

𝑒

𝑟4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︃
5 ·

𝑧2

𝑟2
− 1

)︃
𝑥

𝑟(︃
5 ·

𝑧2

𝑟2
− 1

)︃
𝑦

𝑟(︃
5 ·

𝑧2

𝑟2
− 3

)︃
𝑧

𝑟

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.40)

where lines of the matrix represent different solutions for x, y and z coordinates of space-
craft’s position vector r. The resulting perturbation vector p𝐽2 summarizes effects of 𝐽2.
Higher zonal harmonics are, apart for changes in coefficients, calculated similarly and utilize
the same variables as in eq. (2.40). This work also utilizes 𝐽3 and 𝐽4, as defined below in
eq. (2.41) and eq. (2.42). For computing other zonal harmonics, see [26].

p𝐽3 = −
1

2
·
𝐽3 · 𝜇𝑒 ·𝑅3

𝑒

𝑟5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5

(︃
7
𝑧3

𝑟3
− 3

𝑧

𝑟

)︃
𝑥

𝑟

5

(︃
7
𝑧3

𝑟3
− 3

𝑧

𝑟

)︃
𝑦

𝑟

3

(︃
10

𝑧2

𝑟2
−

35

3

𝑧4

𝑟4
− 1

)︃

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.41)

23

p𝐽4 = −
5

8
·
𝐽4 · 𝜇𝑒 ·𝑅4

𝑒

𝑟6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︃
3− 42

𝑧2

𝑟2
+ 63

𝑧4

𝑟4

)︃
𝑥

𝑟(︃
3− 42

𝑧2

𝑟2
+ 63

𝑧4

𝑟4

)︃
𝑦

𝑟

−

(︃
15− 70

𝑧2

𝑟2
+ 63

𝑧4

𝑟4

)︃
𝑧

𝑟

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.42)

Solar radiation pressure

All orbiting objects in our solar system are subject to solar radiation pressure (SRP) –
particles of photons hitting the surfaces of spacecrafts. Although photons are massless, their
energy and momentum are not [7]. At the distance of Earth, the pressure 𝑃𝑠𝑟, depicted in
eq. (2.43) and calculated with Solar constant 𝑆 and speed of light 𝑐 amounts to

𝑃𝑠𝑟 =
𝑆

𝑐
= 4.56 · 10−6 (2.43)

in N ·m−2, or about 4.56𝜇Pa. In contrast with atmospheric drag, which weakens with
altitude, effect of both forces evens out at around 625 km [7]. Medium, geostationary and
higher orbits around the Earth are generally impacted the most.

The direction of SRP is opposite to the vector spacecraft-to-Sun, in direction of travelling
particles. In reality, Earth-to-Sun vector is also commonly used, as the Sun’s parallax is
negligible, even for spacecrafts in high orbits. The SRP naturally doesn’t work, when satel-
lite is behind Earth’s shadow. Acceleration (perturbation) due to SRP can be calculated
via eq. (2.44),

p𝑠𝑟 = −𝑣 ·
r⊙ − r

|𝑟⊙ − 𝑟|3
· 𝑃𝑠𝑟 ·

𝐶𝑟 ·𝐴
𝑚

(2.44)

where 𝑣 is so-called shadow function, being 0 when the spacecraft hides behind the Earth
and 1 if otherwise. Then the first fraction represents vector Spacecraft-to-Sun (often con-
veniently replaced by Earth-to-Sun) and is supplemented with minus indicating opposite
direction. 𝑃𝑠𝑟 from eq. (2.43) is solar pressure. The coefficient of reflectivity 𝐶𝑟 lies be-
tween value 1 for black-coated satellites, absorbing all photons, and 2, being for white-
coated satellites, mirroring photons back, doubling the force. 𝐴 is satellite’s absorbing (or
cross-sectional) area and 𝑚 its total mass.

Note, that the last fraction, containing details about the observed satellite, cannot be easily
deduced. Absorbing area 𝐴 is often simplified to cannonball model [9] of perfect sphere,
however satellite’s mass and colour are usually not publicly available. Simplified general
perturbation models (such as SGP4) do not even model such effects, resulting in various
workarounds with estimating SRP coefficients based on months of TLE data, by Chao,
Campbell [5]. Some special satellites with big absorbing areas employ SRP as a form of
controlled propulsion, called solar sailing [11].

24

Furthermore, as SRP can be reflected from the satellite, so it can from any planet, including
the Earth. This effect is called Earth radiation pressure (ERP) or Earth’s Albedo. Calcu-
lating this phenomena is beyond the scope of this work, as the amount of reflected particles
depends on properties of surfaces, that particles are reflected by. Clouds have excellent
reflecting properties alongside snow, whereas oceans or forests have not [23]. In reality, the
ERP of a specific region is measured and modelled with specialized weather satellites.

Variation of orbital elements

So far, previous chapters covered the effects of various perturbation forces to acceleration
of the spacecraft in ECI frame. As analytical orbit propagation calculates future position
in orbital elements, their variation is to be expected. Calculation is more tricky, as instead
of simple acceleration vector, the effects of drag, SRP or Earth’s obliquity are expressed
through set of equations, each unique to the affected orbital element. Although arithmetical
simulation of this work includes only nodal and apsidal precessions (i.e. effects of Earth’s
obliquity), other perturbative effects are explained in [22].

In an ideal orbit without any disturbances, only the angle mean anomaly 𝑀𝑒 would change,
as the spacecraft changes its position on elliptic orbit. However due to Earth’s obliquity,
the satellite is shifting rapidly. Average differences (after one orbit) of semi-major axis 𝑎,
eccentricity 𝑒 and inclination 𝑖 are equal to zero, meaning, that these parameters don’t
change at all. The only elements that change are mean anomaly 𝑀𝑒, right ascension of
the ascending node (RAAN) Ω and argument of periapsis 𝜔. This is usually referred to as
nodal and apsidal precession respectively.

The changes of RAAN Ω, argument of periapsis 𝜔 and mean anomaly 𝑀𝑒 in predetermined
time step can be expressed via eq. (2.45), eq. (2.46) and eq. (2.47) respectively,

Ω̇𝐽2 = −
3

2
· 𝑛 · 𝐽2 ·

(︃
𝑅𝑒

𝑃

)︃2

· cos 𝑖 (2.45)

𝜔̇𝐽2 = −
3

2
· 𝑛 · 𝐽2 ·

(︃
𝑅𝑒

𝑃

)︃2

·

(︃
2−

5

2
· sin2 𝑖

)︃
(2.46)

𝑀̇𝑒𝐽2 = 𝑛+
3

2
· 𝑛 · 𝐽2 ·

(︃
𝑅𝑒

𝑃

)︃2

·

(︃
1−

3

2
· sin2 𝑖

)︃
·
√︀

1− 𝑒2 (2.47)

where 𝑛 is satellite’s mean motion in rad · s−1, zonal harmonic 𝐽2 is taken from table 2.3,
𝑅𝑒 is equatorial radius of Earth, 𝑖 is inclination and 𝑒 is eccentricity of the trajectory. The
denominator 𝑃 stands for periapsis from eq. (2.5).

25

Perturbations summary

The determination of orbital perturbations is a complex topic, that involves much more
factors, than those outlined in previous chapters. Alongside the mentioned atmospheric
drag, obliquity of planet Earth, lunar gravity with solid and ocean tides or gravity of other
bodies in general, solar radiation pressure and Earth radiation pressure, LEO’s are also
subject to the effects of general relativity or solar activity, alongside the unpredictable
micrometeoroid impacts. Modelling such effects is however beyond the scope of this work.

Finally, the basic numerical approach from eq. (2.28) can be supplemented with

• eq. (2.34) for atmospheric drag (p𝐵*−𝑑𝑟𝑎𝑔),

• eq. (2.36) for third-body gravitational perturbations (p3)

• eq. (2.40) for gravitational effects of oblate Earth (p𝐽2)

• eq. (2.44) for solar radiation pressure, (p𝑠𝑟),

forming a more accurate solution of spacecraft’s acceleration vector a for any given moment
in eq. (2.48).

a = −𝜇𝑒 ·
r

𝑟3
+ p𝐵*−𝑑𝑟𝑎𝑔 + p3 + p𝐽2 + p𝑠𝑟 (2.48)

26

Chapter 3

Design and Implementation

This chapter dives into the technical detail of simulator’s implementation and its design
features. The simulator (referred to as LEOSIM) is a standalone desktop application, which
extracts data from various public databases and simulates movement of object in LEO with
numerical methods. LEOSIM is subdivided into two parts – user interface, written in
language Python, namely using graphical framework PyQt and into the computational
part, written in language C++ for greater efficiency.

As this chapter references source files of LEOSIM, their basic structure of dependencies is
shown in fig. 3.1, with description in table 3.1 for convenience. For greater detail about
source files and various functions, see the attached Doxygen documentation.

main.py

MainWindow.py

RequestHandler.py

CTDataExtractor.py STDataExtractor.py

STQueryLimiter.py

Utils.py Config.py

simView.pySimHandler.py

main.cpp

sim.h
sim.cpp

simFunctions.h
simFunctions.cpp constants.h

test.cpp

mainUI.py

Figure 3.1: Structure of LEOSIM.

27

File Purpose
main.py Entry point of the application

MainWindow.py Connects UI elements of the main window, its functionality
and communication with other modules

RequestHandler.py Module handles and provides common interface for all web
database queries

mainUI.py Module implements the UI, alongside its layout

simView.py Module provides interactive graphical interface in
PyQtGraph

SimHandler.py Module communicates with the simulation model in C++
CTDataExtractor.py Handles communication with the Celestrak database
STDataExtractor.py Handles communication with the Space-Track database
STQueryLimiter.py Implements query limiter for Space-Track API

Utils.py Defines various utility classes, mainly Satellite and Epoch

Config.py Contains base URLs and authentication credentials for
Space-Track database

main.cpp Main simulator file, that handles communication with
Python interface

sim.cpp Transforms specific simulation procedures to user-friendly
form

simFunctions.cpp Implements all conversion and propagation equations
constants.h Provides physical constants for the equations

test.cpp BOOST tests for comparing and validating the model

Table 3.1: Source files with their purpose.

3.1 User Interface Architecture

This chapter briefly summarizes the technical implementation of LEOSIM’s user interface
(UI) and its capabilities. The standalone graphical program is written using the cross-
platform GUI toolkit Qt for Python, namely on version PyQt-61. Layout was designed
in PyQt-6 inbuilt designer app and transformed into Python code by PyQt-6 UI code
generator. The UI is divided into two main parts: the interactive Earth with orbits of
chosen satellites and the part for user inputs. The fig. 3.2, taken from LEOSIM, illustrates
projecting the orbit of the ISS and AISSAT 1.

The table of satellites in the middle is filled with search results from the input field on the
right side. Objects can be imported either via name, NORAD ID, date, group or filename.
Different search methods import objects from different databases, as described in subsequent
section 3.2. This also means, that objects imported in two line element (TLE) format will

1Avaliable from: https://wiki.python.org/moin/PyQt.

28

https://wiki.python.org/moin/PyQt

Figure 3.2: UI of LEOSIM.

miss statistical information and will be marked yellow, whereas complete objects will be
green. Additionally, decayed objects, will be marked as red. Importing custom values from
file is possible. In that case, both TLEs and 3LEs are accepted.

Upon selecting a satellite, its orbital parameters are shown on the left and its future posi-
tions are plotted, forming a single simulated orbit with current position marked as a small
green point. Currently selected satellite has a red orbit, however others can be checked via
the check box, enabling them to stay plotted, with yellow orbits. The table also provides
a menu (two-dot button), which enables filtering based on object type or autocompleting
satellite’s info.

Selecting any satellite automatically fills its detailed info in the left part of the UI. Latitude
and longitude can be found under the simulation tab. The background is white for
illustrative purposes.

Whereas the import tab retrieves data from databases, the simulation tab enables pre-
dicting their movement and the export tab is used for exports. In the simulation mode,
orbits of selected satellites can be propagated by fixed time step.

LEOSIM’s graphical implementation is implemented in the MainWindow.py and mainUi.py
source files.

29

3.2 Obtaining Satellite Data

This chapter describes the means of retrieving publicly available satellite data. Celestrak
and Space-Track databases store TLE values, that represent basic information about object
on LEO. Space-Track can further encode TLEs into XML format and provide additional
details.

Two-line element set (TLE)

One of the ways to represent orbital data is with Two-line element sets (TLE). TLE is
a standardized format from 1970’s that encodes orbital parameters and a reference epoch
(recall section 2.3) of their measurement into two short lines of 69 characters each. It
also provides additional parameters for orbit propagation, such as B* (from section 2.4)
and various statistical data. TLEs are created from measurements (and also using the
SGP4/SDP4 model [12]) by Joint Space Operations Center, which is operated by US Air
Force Space Command. Frequency of observations differ: active spacecrafts or objects
affected by high drag can have their measurements updated several times a day, whereas
space debris in higher orbits are usually updated only once or twice per week, unless there
is a risk of collision with operational satellite [15]. Accuracy of measured TLE is dependant
on object’s altitude, its maneuvers, number of observations, that actually form the position
and various other factors. The error therefore usually ranges from 1 to 2.5 km.

Although the format is largely standardized, some measured parameters, that happened to
be equal to zero, may have been altogether omitted in some historic data. This may cause
problems in the SGP4 models and in various fixed-parsing programs.

TLE’s are designed to be used only with simplified perturbations models (such as SGP4), as
the calculated orbital parameters are stored in a True-Equator Mean-Equinox coordinate
frame (TEME), a subclass of ECI frames. This specific system varies slightly in how it
handles the reference directions of Vernal equinox à (recall fig. 2.3) and equator plane,
which is perpendicular to celestial ephemeris pole. “True” in this context implies, that all
oscillations are accounted for, whereas “Mean” implies, that they are ignored. The original
intent behind TEME was to provide an efficient, if approximate, coordinate system for
various analytical theories [30], which however complicates its practical usage.

The second factor, which significantly limits TLE’s use elsewhere, is that it contains mean
orbital elements, created by removing periodic variations (such as gravity or drag effects)
in a specific way [1]. In order to avoid large errors, these variations must be reconstructed
(by the model) with exactly the same procedures, as when they were removed by the
NORAD [12], when creating TLEs with SGP4 model.

In conjunction with SGP4, TLE’s are intended and commonly used for quick analysis of
potential collision risks, efficient monitoring of debris or for communication with satellites,
using special tracking antennas. Note, that TLE’s are issued only for Earth-orbiting objects
(Moon excluded). Optionally, third line with object’s name might be introduced, as creating
Three-line element (3LE). In such cases, this line (shown below) is put before the other two:

ISS (ZARYA)

however TLE data is usually propagated as follows [6]:

30

1 25544U 98067A 24084.84536422 .00034327 00000-0 61923-3 0 9995
2 25544 51.6409 13.4998 0004450 2.7955 56.5150 15.49418300445462

The first line contains satellite’s identification, international designation, timestamp (epoch),
various statistical information and B* drag value. The second line consists mostly of various
orbital parameters. For detailed overview of the values transmitted in TLE, see appendix A.

The format also features simple modulo check, that lowers the chance of distorted data
being used. The last number in each of the two lines should correspond to modulo 10 of
the sum of character’s ASCII values in each line. This provides 90% detection rate for
randomly distributed errors [30].

Celestrak

celestrak.org is a public sci-technical website with its roots in 1985, which provides
popular science articles as well as professional literature on the topics of satellites in space.
More importantly, it also contains a database of TLE, optionally 3LE data of all tracked
objects. The newest TLE’s of specified catalog number (CATNR) are retrieved directly via
simple HTTP request [16]:

https://celestrak.org/NORAD/elements/gp.php?CATNR=25544&FORMAT=TLE

Requests that return multiple objects can be based on satellite’s names or their affiliation
to certain group (i.e. Starlink). Queries are not limited by rate. Getting historical data
is only partially possible. Communication with the website in LEOSIM is implemented in
the CTDataExtractor.py file.

Space-Track

space-track.org is a public website specialized for providing TLE’s, as well as other
Earth-orbit situational awareness data. The service is operated by U.S. Department of
Defense and tracks more than 27 000 orbiting objects. Each object’s data can be accessed
in TLE, however responses in Extensible Markup Language (XML) format carry additional
data, including type of object (i.e. payload, debris), code of launching country, launch
date, distance of both apsides (recall section 2.2) and more, as shown in appendix B. The
tradeoff is, that XML responses take incomparably more time to process than TLE and are
not suitable for large chunks of objects. Getting archival measurements is however possible.

The queries are formed and accessed through application programming interface (API) with
detailed parameters and filters. Their rate is however limited to 30 queries per minute and
300 requests per hour [28] and has to monitored by the STQueryLimiter.py file. Com-
munication is implemented in the STDataExtractor.py file. Note, that user registration is
compulsory. Accessing the website and authenticating is achieved with a testing account.

31

http://celestrak.org
https://www.space-track.org

Skyfield

Skyfield is a library for Python, which computes positions for the stars, planets, and satel-
lites in orbit around the Earth.2 This work utilizes its API only for queries about the
positions of all 8 planets of our solar system and also the Moon and the Sun. Positions are
returned for given epoch as a 𝑥𝑦𝑧 vector measured from the middle of Solar System, accord-
ing to Barycentric Celestial Reference System (BCRS). Subtracting Earth’s position from
this vector then results in a position relative to Earth. Data from Skyfield is used in orbit
propagation for calculating perturbation forces of third-body objects (recall section 2.4).

Handling requests

As mentioned in section 3.1, satellites in LEOSIM are obtained either by their name,
NORAD ID, group, with general search by date interval, or with filename. Since both
Celestrak and Space-Track websites have unique capabilities, both databases complete the
table of satellites in different ways.

As name and group searches typically return most objects, queries are made in quick TLE
(3LE) format in the Celestrak database. Searches by specific date require archive data and
have to be taken from the Space-Track site. Note, that searches via TLE retrieve only
basic information about imported satellites and are marked as yellow lines. This is however
fully sufficient for orbit propagation. When the Autocomplete satellites option from
the filter menu is checked and user selects any yellow row, request to Space-Track’s API is
sent with the relevant NORAD catalog number. Space-Track then replies in XML format,
completing object’s type, launch date and the country of origin. Line is then marked as
green. Note, that searching by date may return historical objects, that have yet decayed.
In that case, decay date is filled and the satellite is marked as red.

Due to rate limiting, any query sent to Space-Track is logged and assigned a timestamp.
When the logging queue reaches its maximum limit of 30 requests per minute, timestamp
of every new query is compared with the oldest, 30th entry. If both records differ by more
than 60 seconds, the oldest query is removed and the new Space-Track request is handled.
For simplification purposes, the limit of 300 requests per hour is not enforced. Rate limiter
is implemented in the STQueryLimiter.py file, handling of all requests in general can be
found in the RequestHandler.py file.

Additionally, imports of TLEs and 3LEs from text file is also supported. It is important
to mention, that such data must be in specific format and that only either TLEs or 3LEs
under each other will be recognized and properly imported. It is advised to obtain these
lines through queries to one of the databases. File manipulation is implemented directly in
the MainWindow.py file. For reference, the attached 3LE_input_data.txt file contains few
input samples.

2Available from: https://rhodesmill.org/skyfield/.

32

https://rhodesmill.org/skyfield/

3.3 Simulator implementation

The computational part for all calculations regarding coordinate conversions, and orbital
propagation is implemented in separate C++ files and connected to PyQt interface via
SimHandler.py file and the subsequent SimulatorHandler class. This serves as an inter-
step, which automatically compiles and runs the built C++ code as a subprocess. The
compilation process happens only once, when orbit propagation is needed for the first time
(typically when satellite is selected and its future orbit shown). User is notified of important
events on the status bar at the bottom left corner.

Communication with the compiled program happens through command line arguments
and the attached stdout and stderr output pipes. Launching the C++ program first
requires argument with desired operation: either --position, which simply returns the
ECEF cartesian position vector of spacecraft, or --orbit, which returns list of points,
summarizing exactly one forward revolution around the Earth. Necessary arguments for
orbit propagation then follow, including epoch data, orbital parameters, B* and position
of the Sun and the Moon, as well as of every planet of the Solar System. Generally, ECEF
vectors representing current and propagated positions are returned and passed directly into
various PyQt plotting functions. Spacecraft’s latitude and longitude is returned always.

Computational part of the simulator is implemented according to the theory, outlined in
chapter 2. For convenience, the flow graph below highlights all basic principles.

Figure 3.3: Simplified flow graph of the C++ computational part.

33

Figure 3.3 generally summarizes how various procedures interact with each other. The TLE
box at the top symbolizes the entry point to the program. Provided TLE parameters are
loaded into new object of SatOrbit class from sim.h. This object, representing satellite’s
orbit contains various functions for further manipulation – stepping the epoch time, getting
spacecraft’s ECI state vector, its ECEF coordinates, or ECEF position vector. Each of these
procedures requires many intersteps, typical for various coordinate conversions. This class
mainly serves as an interface for very specific functions implemented in simFunctions.h file.

Notable points of the program in fig. 3.3 are underlined. Propagating the orbit happens
numerically with 4th order Runge-Kutta (RK4) method, producing a new state vector
in delta time. After simulation time has been reached, the ECI vector is converted into
familiar (spherical) coordinates of latitude, longitude and height (recall section 2.3) and
occasionally into ECEF cartesian position vector for plotting the points of orbit.

The majority of functions solving single equations and the two main numerical methods,
Euler and RK4, are implemented in the simFunctions.h file. Self-explanatory class defi-
nitions such as PlanetPosition, GMST82 and JulianDate are also implemented here. For
detailed information regarding functions, see the attached Doxygen documentation. File
constants.h with various physics-related constants is also used here.

Euler numerical method

Euler’s method for solving ordinary differential equations (ODE) is functionally related to
the problems of kinematics, as shown in fig. 2.1. Note, that the position vector is propagated
in a straight line by the velocity vector. This simple method leaves room for inaccuracies,
even with small time steps. Figure 3.4 shows the function 𝑦(𝑡), approximated by the dotted
line, where position of the next point is estimated by the position of previous one and a
length of step multiplied by function derivative of previous point.

t

y

y(t)

Figure 3.4: The principle of Euler’s method, as indicated by dotted line.

34

Mathematically, this can be expressed as

𝑦(𝑡+ ℎ) = 𝑦(𝑡) + ℎ · 𝑓(𝑡, 𝑦(𝑡)) (3.1)

where ℎ represents the time step and function 𝑓(𝑡, 𝑦(𝑡)) derivation of 𝑦(𝑡) in the point in
time 𝑡.

Runge-Kutta numerical method

The Runge-Kutta method is similar to the classic Euler method for numerical integration,
but the accumulated errors are much smaller. Runge-Kutta methods have various imple-
mentations, with the most common being 4th order Runge-Kutta method (RK4). The
position in delta time is not determined with a single derivation as in Euler’s method,
but with a combination of 4 separate derivations in inter-steps. Since position is deter-
mined by velocity, which is derived from acceleration, the 4 separate measurements refer to
calculating acceleration in 4 specific points.

Formally, RK4 method can be mathematically expressed via eq. (3.2), eq. (3.3), eq. (3.4)
and eq. (3.5),

𝑘1 = ℎ · 𝑓(𝑡, 𝑦(𝑡)) (3.2)

𝑘2 = ℎ · 𝑓

(︃
𝑡+

ℎ

2
, 𝑦(𝑡) +

𝑘1

2

)︃
(3.3)

𝑘3 = ℎ · 𝑓

(︃
𝑡+

ℎ

2
, 𝑦(𝑡) +

𝑘2

2

)︃
(3.4)

𝑘4 = ℎ · 𝑓(𝑡+ ℎ, 𝑦(𝑡) + 𝑘3) (3.5)

𝑦(𝑡+ ℎ) = 𝑦(𝑡) +
𝑘1

6
+

𝑘2

3
+

𝑘3

3
+

𝑘4

6
(3.6)

where 𝑘1, 𝑘2, 𝑘3 and 𝑘4 represent four intersteps, then 𝑡 is point in time and ℎ fixed time
step.

Implementation of RK4 algorithm can be found in the simFunctions.cpp file. Integrating
the method with the principles of kinematics is tricky, since position and velocity vectors
require solving 2nd order ODE equations. Function 𝑓 is represented by acceleration, which
can be calculated for any position vector, omitting time variable 𝑡 completely.

At the first step 𝑘1, state vector containing position vector r and velocity vector v in
their initial time 𝑡0 is used to calculate the acceleration a (recall eq. (2.48)). Computing
intersteps 𝑘 for both vectors also happens separately, as seen in eq. (3.7). Interstep’s
subscript 𝑉 stands for velocity and 𝑅 for position. Function 𝑓 from eq. (3.2) representing
derivation in initial time 𝑡0 is replaced by the derivatives of position and velocity (recall

35

eq. (2.29)). Note, that a() shows acceleration vector a as a function with its respective
input variables (perturbation elements such as 𝐵* and others omitted for simplicity).

𝑘1𝑉 = ℎ · a(r𝑡0 ,v𝑡0)

𝑘1𝑅 = ℎ · v𝑡0

(3.7)

Similar principles are applied for steps 𝑘2 and 𝑘3 in eq. (3.8) and eq. (3.9), but as observed
in eq. (3.3) and eq. (3.4), derivations are calculated with initial values in 𝑡0 plus half the
results from the first step 𝑘1.

𝑘2𝑉 = ℎ · a

(︃
r𝑡0 +

𝑘1𝑅
2

,v𝑡0 +
𝑘1𝑉
2

)︃

𝑘2𝑅 = ℎ ·

(︃
v𝑡0 +

𝑘1𝑉
2

)︃ (3.8)

𝑘3𝑉 = ℎ · a

(︃
r𝑡0 +

𝑘2𝑅
2

,v𝑡0 +
𝑘2𝑉
2

)︃

𝑘3𝑅 = ℎ ·

(︃
v𝑡0 +

𝑘2𝑉
2

)︃ (3.9)

The last step 𝑘4 in eq. (3.10) simply adds values of step 𝑘3 to the initial vectors.

𝑘4𝑉 = ℎ · a (r𝑡0 + 𝑘3𝑅 ,v𝑡0 + 𝑘3𝑉)

𝑘4𝑅 = ℎ · (v𝑡0 + 𝑘3𝑉)
(3.10)

With initial vectors in 𝑡0 and with eq. (3.7), eq. (3.8), eq. (3.9) and eq. (3.10), the new state
vector in time 𝑡1 is found with eq. (3.11).

v𝑡1 = v𝑡0 +
𝑘1𝑉
6

+
𝑘2𝑉
3

+
𝑘3𝑉
3

+
𝑘4𝑉
6

r𝑡1 = r𝑡0 +
𝑘1𝑅
6

+
𝑘2𝑅
3

+
𝑘3𝑅
3

+
𝑘4𝑅
6

(3.11)

As a sidenote, the orbit propagation is stopped when the spacecraft descends to a preset
height, 90 km by default. At such heights, the drag becomes significant and proper simu-
lation of reentry effects is beyond the scope of this work. Needles to say, predicting where
any object reenters the atmosphere is hard even with modern simulators, as reentry date
is estimated in the 10% of satellite’s remaining lifetime. Satellite designed for 10 years on-
orbit will fall sometime in the 10th year. Analogically, prediction that object is to reenter
within 24 hours is accurate only to 2 hours [17].

36

Analytical propagation of orbital elements

Third and final method is substantially different from procedures described in previous
chapters. This method simply calculates the changes of satellite’s orbital elements over
time as a closed-form solution. Although the notable effects of oblate Earth are accounted
for, other perturbation forces are in this case omitted, resulting in greater inaccuracies
over time. This method is however fast, inexpensive [10] and useful for large quantities
of satellites or where CPU power is limited [25]. Estimation of collision risks with large
number of satellites might be one of the use cases. If any collisions might occur, trajectories
of both satellites are propagated again, through one of the more precise numerical methods.

As mentioned in section 2.4, only the effects of Earth’s obliquity are included, meaning,
that only RAAN Ω, argument of periapsis 𝜔 and mean anomaly 𝑀 change with time and
others stay the same. Their propagation to new time step 𝑡 + 1 is trivial, as implemented
in eq. (3.12), eq. (3.13) and eq. (3.14),

Ω𝑡+1 = Ω𝑡 + Ω̇𝐽2 · 𝑡 (3.12)

𝜔𝑡+1 = 𝜔𝑡 + 𝜔̇𝐽2 · 𝑡 (3.13)

𝑀𝑒𝑡+1 = 𝑀𝑒𝑡 + 𝑀̇𝑒𝐽2 · 𝑡 (3.14)

where Ω𝑡, 𝜔𝑡 and 𝑀𝑒𝑡 are the original values at time 𝑡, to which Ω̇𝐽2 , 𝜔̇𝐽2 and 𝑀̇𝑒𝐽2 from
eq. (2.45), eq. (2.46) and eq. (2.47) are added respectively. The time step 𝑡 can be of any
desired size, without any impact on precision. Setting it to the total simulation time is
recommended as it is the fastest approach.

Naturally, propagated orbital elements can be further converted into other coordinate
frames freely and as described in section 2.3.

3.4 Plotting the results

As seen in fig. 3.2, user interface of LEOSIM includes an interactive part, where satellites
and their orbits are displayed. The interface is implemented in PyQtGraph, a popular GUI
library for scientific graphics in Python.

When any satellite is selected from the table of objects, its orbital (TLE) values are passed
to the C++ code, which can return either satellite’s current position as an ECEF vector, or
list of such vectors, which form a simulated orbit. When C++ handles the simulation, only
a fraction (1 in 100) of ECI positions are converted first to ECEF spherical coordinates
of latitude and longitude, and finally to ECEF position vector, as indicated in fig. 3.3,
which is used to plot the results. The list doesn’t include every ECI position for the sake
of efficiency. Satellite’s current (or simulated) position is shown as a large green dot and
its future orbit is generally plotted as a red line. When satellite is selected, only its next
full orbit is shown. Each individual satellite can be checked, in which case its orbit changes
colour to yellow and stays drawn even after said satellite is deselected. In special cases of

37

decayed satellites, plotted orbit may end prematurely, as the spacecraft descended below
90 km of altitude, a low-boundary threshold of the model.

Working with ECEF vectors instead of ECI vectors has its drawbacks and advantages. The
Earth’s model in PyQtGraph is a modified spherical object, that is fixed in place and does
not rotate. This is ideal for ECEF vectors, that represent spacecraft’s position relative to
fixed Earth, meaning, that positions are plotted directly over the locations of their ground
tracks. Some orbits that start at the poles may however plot as slightly twisted, thanks
to the Earth’s rotation. Using ECI vectors directly would be convenient for visualizations
with rotating Earth and real-time animations.

For implementing planet Earth, LEOSIM utilizes modified source code of class GLImageItem
from PyQtGraph, using it in class GLTexturedSphericalItem. Plotted objects are imple-
mented as SatelliteVisuals class, containing both the green dot representing satellite and
a list of lines, that form the orbit. Complete visuals are then handled by SimulatorView
class, which automatically shows selected and checked satellites and hides all, that were
unselected. LEOSIM’s graphical environment is implemented in the simView.py file.

Figure 3.5: UI of simulation environment.

38

Chapter 4

Simulating Experiments

So far, we have covered the theoretical principles and implementation of the LEOSIM. This
chapter focuses on validating and testing the numerical model through comparison with
reference positions, comparison with future TLE measurements and with the reference
model SGP4. Additionally, outputs of the analytical approach from section 3.3 will be also
compared with reference measurements. It is important to mention, that simulating few
days of satellite’s movements pushes both LEOSIM and SGP4 numerical models to their
limits. In real-world scenarios, common usage case consist of simulating TLE values only to
point in time, when new and precise TLE measurement is made. The reliable positioning
of satellites worldwide for amateurs is ensured through quantity – frequent updates to their
position, rather than quality – a precise simulation [1].

The subject of comparison will be the ECEF spherical coordinates of latitude, longitude
and height only.1 No orbital elements will be compared in this chapter, as LEOSIM would
have to create just the format of orbital parameters, contained within TLEs, a discipline,
that is strongly advised not to do, as such parameters are not created through simple
conversions, nor with primitive equations [15]. Although SGP4 model is commonly used
for their creation, its public python implementation2, does not implement this behaviour
at all.

Examples in this chapter are monitored space-debris in LEO, which are not expected to
perform maneuvers and their trajectory is easily predictable.

4.1 Precision of coordinate conversion

The basic assumption for correct behaviour in subsequent examples is accurate conver-
sion from orbital elements to ECEF coordinates of latitude, longitude and height. Recall
section 2.3, that this is done via converting orbital elements to two-dimensional perifocal
frame, then to ECI state vector around the Earth using 𝑧𝑥𝑧 Euler transformation matrices
and finally to ECEF frame, with the use of reference epoch, that rotates the planet. Since
this approach consists of closed-form equations, the errors are generally low.

1The used distance calculator taken from NOAA, avaliable at: https://www.nhc.noaa.gov/gccalc.shtml.
2Available from https://pypi.org/project/sgp4/.

39

https://www.nhc.noaa.gov/gccalc.shtml
https://pypi.org/project/sgp4/

The table 4.1 shows the results of five tests, that check the accuracy of computed position.
Error values 𝐸 are formally obtained via eq. (4.1),

𝐸 = |𝑅− 𝐶| (4.1)

where the rows containing reference values 𝑅 are subtracted from the calculated values 𝐶.
Error rows are the absolute values of these computations.

All reference values are obtained from two separate and independent public sources34.

Satellite 25544 (ISS ZARYA)
Test 1 2 3 4 5

Ref. latitude 49.878∘ −0.029∘ 51.68∘ −0.008∘ 42.567∘

Calc. latitude 49.895∘ 0.078∘ 51.702∘ 0.078∘ 42.6037∘

Error [deg] 0.017∘ 0.107∘ 0.0217∘ 0.086∘ 0.0357∘

Error [km] 2 km 12 km 2km 10 km 4km

Ref. longitude 159.674∘ 55.448∘ 3.024∘ −109.765∘ −67.373∘

Calc. longitude 159.6717∘ 55.5356∘ 2.9819∘ −109.6804∘ −67.2998∘

Error [deg] 0.0023∘ 0.0876∘ 0.0421∘ 0.0846∘ 0.0732∘

Error [km] 0 km 10 km 5km 9km 8km

Ref. height 424.82 km 416.1 km 424.52 km 416.05 km 420.61 km

Calc. height 431.64 km 415.327 km 431.192 km 415.204 km 426.516 km

Error [km] 6.82 km 0.7728 km 6.6723 km 0.8462 km 5.906 km

Total Error [km] 8.82 km 22.77 km 13.67 km 19.84 km 17.9 km

Table 4.1: Example No.1: Precision of coordinate conversion.

Total error is simply calculated as a sum of all three errors of the three coordinates. Given,
that timestamp of reference measurements was rounded to the nearest second and that ISS
travels at approximately 8 km · 𝑠−1, the total error is well within the limits of TLE error
margins.

3Tracking program created for Smithsonian Air & Space Museum and the Boston Museum of Science,
available from: http://www.isstracker.com/home.

4Tracking program from Dominic Ford, Institute of Astronomy, Cambridge UK; available from: https:
//in-the-sky.org/satmap_worldmap.php

40

http://www.isstracker.com/home
https://in-the-sky.org/satmap_worldmap.php
https://in-the-sky.org/satmap_worldmap.php

4.2 Comparison with reference measurements

This section compares the outputs of numerical and analytical approaches to the reference
measurements. The precision of both approaches is tested with satellite’s position above
the Earth in spherical coordinates of latitude, longitude and height.

Numerical approach

In this approach, first, an initial ECI position is calculated from the original TLE, which
is furthermore propagated and compared to the positions of subsequently measured TLEs.
Since measurements take place on non-regular basis (recall section 3.2), the time interval
between measured reference values can differ highly from few hours to few days. The testing
process is illustrated in fig. 4.1.

original TLE

measured TLE (+6h)

simulated ECI (+6h)

conversion to ECI

conversion to ECEF

comparison

conversion to ECEF

measured TLE (+9h)

simulated ECI (+9h)

conversion to ECI

conversion to ECEF

comparison

conversion to ECEF

measured TLE (+24h)

simulated ECI (+24h)

conversion to ECI

conversion to ECEF

comparison

conversion to ECEF

Figure 4.1: Scheme of the tests with reference values.

Since the measured TLE describes the satellite “as is”, it is important to validate the model
against an object, which does not change its trajectory during the course of measurement.
Space debris or retired satellites are ideal for this role. All tests are written in C++ in the
test.cpp file, using a public BOOST test library [24].

The object used for the following experiments has NORAD ID 58229, with the name “ISS
DEB”. It is probably some type of debree from the ISS, that does not have maneuvering
capabilities and is frequently monitored. For reference, it was measured on 2024-04-13 at
10:50:30.

Errors are obtained as a net values, meaning, that calculated values are just subtracted
from reference without absolute values. Comparison with the reference TLEs using RK4
method with 1 s step yields the results from table 4.2.

As can be observed, simulated orbital parameters deviated rather quickly. This is believed
to be a consequence of custom TLE propagation methods. As mentioned in section 3.2, TLE
stores mean orbital elements, whose periodic variations were removed by SGP4 in a specific
way and need to be introduced similarly, as they were removed. It is strongly advised to
further propagate the elements with SGP family of perturbation models only [1][12][30],
else degraded predictions are to be expected.

41

Epoch — Latitude Longitude Height

Reference 0.0787∘ −122.6578∘ 355.35 km

13.4.24 12:22:06 Calculated 0.4519∘ −122.3611∘ 355.47 km

+1 h 31min Error [degree] −0.3735∘ −0.2967∘ —
Error [km] −42 km −33 km −0.14 km

Reference 0.0787∘ 167.4833∘ 355.13 km

13.4.24 16:56:53 Calculated 1.6271∘ 168.7042∘ 355.63 km

+6 h 6min Error [degree] −1.5485∘ −1.2208∘ —
Error [km] −172 km −136 km −0.57 km

Reference 0.0787∘ 178.2222∘ 354.01 km

14.4.24 15:50:39 Calculated 5.9483∘ −177.1326∘ 356.75 km

+29 h 0min Error [degree] −5.8695∘ −4.6451∘ —
Error [km] −652 km −516 km −2.73 km

Reference 0.0787∘ −124.4275∘ 353.07 km

15.4.24 11:41:04 Calculated 7.7138∘ −118.3599∘ 357.46 km

+48 h 50min Error [degree] −7.6350∘ −6.0676∘ —
Error [km] −848 km −674 km −4.38 km

Table 4.2: Example No.2: Precision of comparison with TLEs.

Analytical approach

In this part, the trajectory of orbit, as defined by orbital elements in the reference TLE,
will be propagated analytically, as described in section 3.3. As mentioned before, propa-
gating perturbation forces is limited and will not reach the desired accuracy of the SGP4
model. However, where the RK4 simulation takes tens of seconds to complete, analytical
propagation is computed instantaneously and in a single step.

The propagated TLEs are first converted to ECI and then to familiar ECEF coordinate
system of latitude, longitude and height. Results from these calculations are compared to
the reference values from table 4.2. Errors are again taken as net values, meaning, that
numbers are not absolute.

As can be seen in table 4.3, this method is paradoxically much more precise, than the
numerical approach from previous section. Although it only covers the effect of Earth’s
oblateness, propagation of orbital elements in TLEs is much simpler, as it does not require
specific methods introduced in a specific order. More surprisingly, this approach is actually
more precise for the first two measurements (first 6 hours), than outputs of the SGP4
model in table 4.4. The dramatically increasing error could be additionally lowered by
implementing other perturbative effects.

42

Epoch — Latitude Longitude Height

Reference 0.0787∘ −122.6578∘ 355.35 km

13.4.24 12:22:06 Calculated 0.043∘ −122.6831∘ 355.41 km

+1 h 31min Error [degree] 0.0357∘ 0.0254∘ —
Error [km] 4 km 3km −0.06 km

Reference 0.0787∘ 167.4833∘ 355.13 km

13.4.24 16:56:53 Calculated 0.0393∘ 167.4541∘ 355.38 km

+6 h 6min Error [degree] 0.0394∘ 0.0292∘ —
Error [km] 4 km 3km −0.2470 km

Reference 0.0787∘ 178.2222∘ 354.01 km

14.4.24 15:50:39 Calculated −0.4445∘ 177.8123∘ 355.23 km

+29 h 0min Error [degree] 0.5232∘ 0.4099∘ —
Error [km] 58 km 46 km −1.2102 km

Reference 0.0787∘ −124.4275∘ 353.07 km

15.4.24 11:41:04 Calculated −1.4256∘ −125.6067∘ 355.08 km

+48 h 50min Error [degree] 1.5044∘ 1.1793∘ —
Error [km] 167 km 131 km −2 km

Table 4.3: Example No.3: Precision of analytical propagation of TLEs.

4.3 Comparison with SGP4 model

This section briefly outlines the history behind the reference SGP4 model, its usage cases
and drawbacks. The numerical trajectories from LEOSIM are then compared to this model.

Simplified General Perturbation model (SGP4)

The SGP4 belongs to a simulation family of Simplified perturbation models, that are devel-
oped since 1960s and have been released for public use in 2006. Originally created for the
now-called United States Space Surveillance Network, the model utilizes official TLE sets
to numerically simulate satellite’s movement in LEO with orbital periods lower than 225
minutes (5 877.5 km in altitude) [20]. For reference, Medium Earth orbits (MEO) typically
start at 2 000 km, up until Geostationary orbits (GEO) at 35 786 km. For orbital periods
above 225 minutes, Simplified Deep Space Perturbation (SDP) models are typically used.
None of the models simulate reentry effects.

The model is nowadays widely used, as TLEs are the only large-scale public source of
satellite’s positions, that is regularly updated and the SGP family of models offers the only
proper way to utilize it. There are however many technical limitations and general issues,
that stem from model’s historic usage (as described in [30]):

• TLEs do not show which SGP model was used to create them. This is problematic,
since the TEME coordinate frame, which is used here, was redefined multiple times

43

in history. To propagate historic data correctly, user has to decide between different
versions of SGP4, or otherwise risk errors in hundreds of kilometers [30].

• Although TLEs are mostly standardized, the model cannot handle its historical vari-
ations with omitted parameters, in cases when they were equal to zero.

• The model uses TEME ECI coordinate frame (recall section 3.2), which presents
difficulties in replicating the model, as its exact operational definition is difficult to
find.

• Analysing data of multiple satellites can be complicated by the concurrent usage of
UT1 and UTC.

Overall, not SGP4 nor TLEs are suitable for a precise orbit estimation [1], but rather for
less demanding usages, such as satellite radiocommunication, where antennas have certain
targeting and tracking tolerances. The model takes into account the effects of atmospheric
drag through B* (recall section 2.4) and the effects of zonal harmonics 𝐽2, 𝐽3 and 𝐽4 for
oblate Earth (recall section 2.4). Other effects, such as third-body gravitational effects,
SRP or ERP are not directly implemented.

Approximate accuracy of the model is as follows: for an orbit of approximately 400 km, the
error ranged between 4 to 10 km after one day, then 10 and 40 km after 3 days, 60 to 300 km
after 7 days and 300 to 1000 km after full two weeks [8]. The accuracy often depends on
various factors, such as Sun’s activity effecting SRP, that are not perturbed.

Comparing results

The object, that is used for direct comparisons is the same as in section 4.2. For table 4.4,
the ECI positions were propagated by the SGP4 model and converted into ECEF frame
of latitude, longitude and height with the help of LEOSIM. Reference positions represent
those of reference TLE measurements, calculated positions are the outputs of the SGP4
model.

Comparison of SGP4 error margins with results from LEOSIM’s model in table 4.2 seem a
bit off. Again, this is believed to be caused by the unpredictability of TLE data in foreign
and custom models, other than from the SGP family [1][12][30]. In the grand overview,
satellite in LEO travelling at 7.8 km · s−1 travels 1,375,920 km in 49 hours and errors in
hundreds of kilometers after this time interval could be summarized as still acceptable for
many applications.

44

Epoch — Latitude Longitude Height

Reference 0.0787∘ −122.6578∘ 355.35 km

13.4.24 12:22:06 Calculated −0.0250∘ −122.7394∘ 356.12 km

+1 h 31min Error [degree] 0.1037∘ 0.0817∘ —
Error [km] 12 km 9km −0.77 km

Reference 0.0787∘ 167.4833∘ 355.14 km

13.4.24 16:56:53 Calculated −0.0107∘ 167.4131∘ 355.97 km

+6 h 6min Error [degree] 0.0894∘ 0.0702∘ —
Error [km] 10 km 8km −0.84 km

Reference 0.0787∘ 178.2222∘ 354.02 km

14.4.24 15:50:39 Calculated −0.0572∘ 178.1129∘ 355.24 km

+29 h 0min Error [degree] 0.1359∘ 0.1093∘ —
Error [km] 15 km 12 km −1.22 km

Reference 0.0787∘ −124.4275∘ 353.08 km

15.4.24 11:41:04 Calculated −0.1886∘ −124.6424∘ 354.61 km

+48 h 50min Error [degree] 0.2674∘ 0.2149∘ —
Error [km] 30 km 24 km −1.53 km

Reference 0.788∘ 2.7943∘ 352.59 km

16.4.24 2:56:39 Calculated −0.3679∘ 2.4368∘ 354.14 km

+64 h 6min Error [degree] 0.4467∘ 0.3575∘ —
Error [km] 50 km 40 km −1.55 km

Reference 0.0787∘ −160.1342∘ 352.03 km

16.4.24 13:37:30 Calculated −0.5185∘ −160.6104∘ 353.80 km

+74 h 46min Error [degree] 0.5972∘ 0.4762∘ —
Error [km] 66 km 53 km −1.77 km

Reference 0.0787∘ 176.5916∘ 351.95 km

16.4.24 15:09:03 Calculated −0.5265∘ 176.1069∘ 353.76 km

+76 h 18min Error [degree] 0.6082∘ 0.4847∘ —
Error [km] 68 km 54 km −1.81 km

Table 4.4: Example No.4: Precision of the SGP4, expanded.

45

Chapter 5

Conclusion

The goal of this thesis was to implement an user-friendly tool with graphical interface,
which retrieves positions of satellites from various public databases and visually propagates
their orbit in time. Secondly, this work successfully serves as an educational and theoretical
material for any space enthusiast, interested in the problematic of coordinate transforma-
tion, trajectory propagation or orbital mechanics in general. Since the Two-line element
sets (TLEs) used here require specific methods and approach, this work also serves as a
reference on how to partially process them. The final section highlights the accuracy of co-
ordinate transformations and further compares propagated positions of the numerical and
analytical approaches to reference measurements and to the reference model SGP4.

This work successfully explained theory and summarized program’s implementation. Pre-
cision of converting TLEs to latitude, longitude and height was excellent with an average
error of 16.6 km. Comparison on numerical approach with reference measurements and
reference model was satisfactory and with greater errors, as expected. Ultimately, this
model did not surpass SGP4’s performance. Additionally, analytical propagation of orbital
elements yielded good results and surpassed SGP4’s performance in the first 6 to 7 hours.

The author has learned, that working with TLEs requires unconventional approach and
that their precise numerical propagation is beyond the scope of this bachelor’s thesis. Many
different implementation paths were explored and tried, which ultimately led to a dead-end.
However, the program serves as a solid foundation for further expansion and the author
is thrilled to incorporate various interesting ideas: expanding analytical orbit propagation,
reentry prediction, orbital maneuvers, garbage-collecting satellites, debree collision analysis
and more, with the intent to create a handy universal program and to provide comprehensive
overview of these procedures to an average space nerd.

46

Bibliography

[1] Aida, S. and Kirschner, M. Accuracy assessment of SGP4 orbit information
conversion into osculating elements. In: 6th European Conference on Space Debris,
Darmstadt, Germany. ESA, April 2013, p. 1–8. Available at:
https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/41/SDC6-paper41.pdf.

[2] Astronomical Applications Department. Julian Date Converter [online]. U.S.
Naval Observatory [cit. 2024-04-09]. Available at:
https://aa.usno.navy.mil/data/JulianDate.

[3] Beggs, J. S. Kinematics. 1st ed. CRC Press, 1983, p. 1. DOI:
https://doi.org/10.1137/1027026. ISBN 978-0891163558. Available at:
https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers.

[4] Capitaine, N., Wallace, P. T. and McCarthy, D. D. Expressions to implement
the IAU 2000 definition of UT1. Astronomy & Astrophysics [online]. EDP Sciences.
2003, vol. 406, no. 3, p. 1149, [cit. 2024-04-09]. DOI:
https://doi.org/10.1051/0004-6361:20030817. Available at:
https://www.aanda.org/articles/aa/abs/2003/30/aa3487/aa3487.html.

[5] Chao, C.-C. G. and Campbell, S. Estimating Solar Radiation Pressure for GEO
Debris. In: Lacoste, H., ed. Fifth European Conference on Space Debris. ESA,
March 2009, vol. 672, p. 1–5. ISBN 978-92-9221-236-0. Available at: https:
//conference.sdo.esoc.esa.int/proceedings/sdc5/paper/115/SDC5-paper115.pdf.

[6] Croitoru, E.-I. and Oancea, G. Satellite tracking using norad two-line element set
format. Scientific Research and Education in the Air Force-AFASES. 2016, vol. 1,
p. 423–431. DOI: https://doi.org/10.19062/2247-3173.2016.18.1.58. Available at:
https://www.afahc.ro/ro/afases/2016/MATH&IT/CROITORU_OANCEA.pdf.

[7] Curtis, H. D. Chapter 12 - Introduction to Orbital Perturbations. In: Curtis,
H. D., ed. Orbital Mechanics for Engineering Students (Third Edition). 3rd ed.
Boston: Butterworth-Heinemann, 2014, p. 651–720. DOI:
https://doi.org/10.1016/B978-0-08-097747-8.00012-8. ISBN 978-0-08-097747-8.
Available at:
https://www.sciencedirect.com/science/article/pii/B9780080977478000128.

[8] Dong, W. and Chang yin, Z. An Accuracy Analysis of the SGP4/SDP4 Model.
Chinese Astronomy and Astrophysics. 2010, vol. 34, no. 1, p. 69–76. DOI:
https://doi.org/10.1016/j.chinastron.2009.12.009. ISSN 0275-1062. Available at:
https://www.sciencedirect.com/science/article/pii/S0275106209001404.

47

https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/41/SDC6-paper41.pdf
https://aa.usno.navy.mil/data/JulianDate
https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers
https://www.aanda.org/articles/aa/abs/2003/30/aa3487/aa3487.html
https://conference.sdo.esoc.esa.int/proceedings/sdc5/paper/115/SDC5-paper115.pdf
https://conference.sdo.esoc.esa.int/proceedings/sdc5/paper/115/SDC5-paper115.pdf
https://www.afahc.ro/ro/afases/2016/MATH&IT/CROITORU_OANCEA.pdf
https://www.sciencedirect.com/science/article/pii/B9780080977478000128
https://www.sciencedirect.com/science/article/pii/S0275106209001404

[9] Farres, A., Puig, A. and Zardaín, L. High-fidelity Modeling and Visualizing of
Solar Radiation Pressure: A Framework for High-fidelity Analysis. In: 20202
AAS/AIAA Astrodynamics Specialist Conference. August 2020. Available at:
http://www.ub.edu/wai/wp-content/uploads/2021/07/AAS-20-481.pdf.

[10] Flores, R., Burhani, B. M. and Fantino, E. A method for accurate and efficient
propagation of satellite orbits: A case study for a Molniya orbit. Alexandria
Engineering Journal [online]. 2021, vol. 60, no. 2, p. 2661–2676. DOI:
https://doi.org/10.1016/j.aej.2020.12.056. ISSN 1110-0168. Available at:
https://www.sciencedirect.com/science/article/pii/S1110016821000016.

[11] Hakima, H., Bazzocchi, M. C. and Almstrom, B. Analysis of Satellite Drag
Coefficients Based on Physical and Orbital Specifications. In: 2022 IEEE Aerospace
Conference (AERO). IEEE, 2022, p. 1–2. DOI:
https://doi.org/10.1109/AERO53065.2022.9843417. ISSN 1095-323X. Available at:
https://ieeexplore.ieee.org/document/9843417.

[12] Hoots, F. R. and Roehrich, R. L. Spacetrack Report No. 3: Models for
Propagation of NORAD Element Sets. U.S. Department of Defense, december 1988.
34 p. Available at: https://celestrak.org/NORAD/documentation/spacetrk.pdf.

[13] Jo, J.-H., Park, I.-K., Choe, N.-M. and Choi, M.-S. The Comparison of the
Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial
Elements), and the Cartesian State Variables in Lagrange Planetary Equations with
J2 Perturbation: Part I. In: Journal of Astronomy and Space Sciences. The Korean
Space Science Society, March 2011, vol. 28, p. 37–54. DOI:
https://doi.org/10.5140/JASS.2011.28.1.037. ISSN 2093-1409. Available at:
https://koreascience.kr/article/JAKO201110441050581.page.

[14] Kelso, T. S. Orbital Coordinate Systems, Part III. Satellite Times [online]. Bob
Grove, WA4PYQ. 1996, vol. 2, no. 3, [cit. 2024-04-09]. ISSN 1077-2278. Available at:
https://www.worldradiohistory.com/Archive-Satellite-Times/Satellite-Times-
1996-01-02.pdf.

[15] Kelso, T. S. More Frequently Asked Questions. Satellite Times [online]. Bob Grove,
WA4PYQ. 1998, vol. 4, no. 5, [cit. 2024-04-09]. ISSN 1077-2278. Available at:
https://www.worldradiohistory.com/Archive-Satellite-Times/Satellite-Times-
1998-03.pdf.

[16] Kelso, T. A New Way to Obtain GP Data (aka TLEs). [online]. CelesTrak. may
2020, [cit. 2024-04-09]. Available at:
https://celestrak.org/NORAD/documentation/gp-data-formats.php.

[17] Kennewell, J. Satellite Orbital Decay Calculations. [online]. IPS Radio & Space
Services, Sydney, Australia. 1999, p. 2, [cit. 2024-04-09]. Available at:
https://www.sws.bom.gov.au/Category/Educational/Space%20Weather/Space%
20Weather%20Effects/Satellite%20Orbital%20Decay%20Calculations.pdf.

[18] NASA. Time Zones and Universal Time [online]. NASA, 2010 [cit. 2024-04-09].
Available at: https://eclipse.gsfc.nasa.gov/SEhelp/TimeZone.html.

48

http://www.ub.edu/wai/wp-content/uploads/2021/07/AAS-20-481.pdf
https://www.sciencedirect.com/science/article/pii/S1110016821000016
https://ieeexplore.ieee.org/document/9843417
https://celestrak.org/NORAD/documentation/spacetrk.pdf
https://koreascience.kr/article/JAKO201110441050581.page
https://www.worldradiohistory.com/Archive-Satellite-Times/Satellite-Times-1996-01-02.pdf
https://www.worldradiohistory.com/Archive-Satellite-Times/Satellite-Times-1996-01-02.pdf
https://www.worldradiohistory.com/Archive-Satellite-Times/Satellite-Times-1998-03.pdf
https://www.worldradiohistory.com/Archive-Satellite-Times/Satellite-Times-1998-03.pdf
https://celestrak.org/NORAD/documentation/gp-data-formats.php
https://www.sws.bom.gov.au/Category/Educational/Space%20Weather/Space%20Weather%20Effects/Satellite%20Orbital%20Decay%20Calculations.pdf
https://www.sws.bom.gov.au/Category/Educational/Space%20Weather/Space%20Weather%20Effects/Satellite%20Orbital%20Decay%20Calculations.pdf
https://eclipse.gsfc.nasa.gov/SEhelp/TimeZone.html

[19] NOAA. U.S. standard atmosphere, 1976. National Oceanic and Atmospheric
Administration, 1976, p. 65–88. Available at: https://www.ngdc.noaa.gov/stp/space-
weather/online-publications/miscellaneous/us-standard-atmosphere-1976/.

[20] Payne, T., Hoots, F., Butkus, A., Slatton, Z. and Nguyen, D. Improvements to
the SGP4 propagator (SGP4-XP). In: 2022 AMOS Technical Conference. Advanced
Maui Optical and Space Surveillance Technologies Conference (AMOS), September
2022, p. 1–10. Available at:
https://amostech.com/TechnicalPapers/2022/Astrodynamics/Payne_2.pdf.

[21] Peale, S. J. Kepler’s laws of planetary motion. [online]. Britannica. [cit.
2024-04-09]. Available at: https://www.britannica.com/science/celestial-
mechanics-physics/Keplers-laws-of-planetary-motion.

[22] Peet, M. M. Lecture 12: Orbital Perturbations [online]. Arizona State University,
march 2023 [cit. 2024-04-09]. Available at:
https://control.asu.edu/Classes/MAE462/462Lecture12.pdf.

[23] Rees, J. Natural Resources: Allocation, Economics and Policy. 1st ed. Routledge,
London, 1985. DOI: https://doi.org/10.4324/9781315112770. ISBN 9781315112770.
Available at: https://www.taylorfrancis.com/books/mono/10.4324/9781315112770.

[24] Rozental, G. Boost Test Library [online]. October 2004 [cit. 2024-04-09]. Available
at: https://www.boost.org/doc/libs/1_32_0/libs/test/doc/index.html.

[25] San Juan, J., Perez, I., Vergara, E., Martín, M., López, R. et al. Hybrid SGP4
propagator based on machine-learning techniques applied to GALILEO-type orbits.
In:. 69th International Astronautical Congress, January 2018, p. 2–6. Available at:
https://www.esa.int/gsp/ACT/doc/MAD/pub/ACT-RPR-MAD-2018-HybridPropagation.pdf.

[26] Schaub, H. and Junkins, J. L. Gravitational Potential Field Models. In: Analytical
Mechanics of Space Systems, Fourth Edition. 4th ed. AIAA, April 2018, p. 621–646.
DOI: https://doi.org/10.2514/5.9781624105210.0621.0646. ISBN 978-1-62410-657-6.
Available at: https://www.researchgate.net/publication/
322605303_Analytical_Mechanics_of_Space_Systems_Fourth_Edition.

[27] Slater, J. A. and Malys, S. WGS 84 — Past, Present and Future. In: Brunner,
F. K., ed. Advances in Positioning and Reference Frames. Springer, Berlin,
Heidelberg, 1998, vol. 118, p. 4 [cit. 2024-04-09]. DOI:
https://doi.org/10.1007/978-3-662-03714-0. ISBN 978-3-662-03714-0. Available at:
https://link.springer.com/chapter/10.1007/978-3-662-03714-0_1.

[28] Space Track. Introduction to the API [online]. [cit. 2024-04-09]. Available at:
https://www.space-track.org/documentation#/api.

[29] Vallado, D. A. 1 - Perturbed Motion. In: Gurfil, P., ed. Butterworth-Heinemann,
2006, vol. 1, p. 7 [cit. 2024-04-09]. Elsevier Astrodynamics Series. DOI:
https://doi.org/10.1016/S1874-9305(07)80003-3. ISSN 1874-9305. Available at:
https://www.sciencedirect.com/science/article/abs/pii/S1874930507800033.

[30] Vallado, D. A., Crawford, P., Hujsak, R. and Kelso, T. S. Revisiting
Spacetrack Report #3: rev 2. In: AIAA-2006-6753-Rev2. AIAA/AAS Astrodynamics

49

https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/
https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/
https://amostech.com/TechnicalPapers/2022/Astrodynamics/Payne_2.pdf
https://www.britannica.com/science/celestial-mechanics-physics/Keplers-laws-of-planetary-motion
https://www.britannica.com/science/celestial-mechanics-physics/Keplers-laws-of-planetary-motion
https://control.asu.edu/Classes/MAE462/462Lecture12.pdf
https://www.taylorfrancis.com/books/mono/10.4324/9781315112770
https://www.boost.org/doc/libs/1_32_0/libs/test/doc/index.html
https://www.esa.int/gsp/ACT/doc/MAD/pub/ACT-RPR-MAD-2018-HybridPropagation.pdf
https://www.researchgate.net/publication/322605303_Analytical_Mechanics_of_Space_Systems_Fourth_Edition
https://www.researchgate.net/publication/322605303_Analytical_Mechanics_of_Space_Systems_Fourth_Edition
https://link.springer.com/chapter/10.1007/978-3-662-03714-0_1
https://www.space-track.org/documentation#/api
https://www.sciencedirect.com/science/article/abs/pii/S1874930507800033

Specialists Conference and Exhibit 2006, p. 5–32. Available at:
https://celestrak.org/publications/aiaa/2006-6753/AIAA-2006-6753-Rev2.pdf.

[31] Zhao, J.-H. Astronomical Times [online]. Center for Astrophysics, Harward
Smithsonian, 1996 [cit. 2024-04-09]. Available at:
https://lweb.cfa.harvard.edu/~jzhao/times.html.

[32] Zheng, Y. Generation of network-based differential corrections for regional GNSS
services. 2007. 78-80 p. Dissertation. Queensland University of Technology. Available
at: https://eprints.qut.edu.au/16359/1/Yi_Zheng_Thesis.pdf.

50

https://celestrak.org/publications/aiaa/2006-6753/AIAA-2006-6753-Rev2.pdf
https://lweb.cfa.harvard.edu/~jzhao/times.html
https://eprints.qut.edu.au/16359/1/Yi_Zheng_Thesis.pdf

Appendix A

Two-line element format

The table A.1 and table A.2 illustrate the format of the TLE sample from section 3.2.

Position: 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Data: 1 2 5 5 4 4 U 9 8 0 6 7 A 2 4 0 8 4 . 8 4 5 3 6 4 2 2
Section: 1 2 3 4 5 6 7 8

Position: 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Data: . 0 0 0 3 4 3 2 7 0 0 0 0 0 – 0 6 1 9 2 3 – 3
Section: 9 10 11

Position: 62 63 64 65 66 67 68 69

Data: 0 9 9 9 5
Section: 12 13 14

Table A.1: 1st line of TLE

Section 1 Line number of Element Data
Section 2 Satellite catalog number (unique number assigned by NORAD)
Section 3 Classification (U – unclassified; C – classified; S – secret)
Section 4 International designation (last two digits of launch year)
Section 5 International designation (launch number of the year)
Section 6 International designation (payload part)
Section 7 Last two digits of Epoch year
Section 8 Epoch day and its fraction
Section 9 First time derivative of Mean motion; also the Ballistic coefficient
Section 10 Second derivative of Mean motion
Section 11 B* drag value (for orbit propagation)
Section 12 Ephemeris type (orbital model that generated the data, nowadays unused)
Section 13 Element set number (increases with each new TLE for this object)
Section 14 Modulo check (adding values and dividing by 10 yields this number)

51

The second line of TLE mainly displays various orbital elements. Note, that true anomaly
𝜃 is replaced by the more convenient mean anomaly 𝑀 .

Position: 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Data: 2 2 5 5 4 4 5 1 . 6 4 0 9 1 3 . 4 9 9 8
Section: 1 2 3 4

Position: 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Data: 0 0 0 4 4 5 0 2 . 7 9 5 5 5 6 . 5 1 5 0
Section: 5 6 7

Position: 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

Data: 1 5 . 4 9 4 1 8 3 0 0 4 4 5 4 6 2
Section: 8 9 10

Table A.2: 2nd line of TLE

Section 1 Line number of Element Data
Section 2 Satellite catalog number (unique number assigned by NORAD)
Section 3 Inclination 𝑖 (in degrees)
Section 4 Right ascension of the ascending node; RAAN Ω (in degrees)
Section 5 Eccentricity 𝑒

Section 6 Argument of periapsis 𝜔 (in degrees)
Section 7 Mean anomaly of elliptical orbit 𝑀𝑒 (in degrees)
Section 8 Mean motion 𝑛 (in orbits per day)
Section 9 Number of elapsed orbits
Section 10 Modulo check (adding values and dividing by 10 yields this number)

52

Appendix B

XML response format

This XML response represents alternative response format to the TLE in appendix A.

<ndm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="https://sanaregistry.org/r/
ndmxml_unqualified/ndmxml-3.0.0-master-3.0.xsd">

<script/>
<omm id="CCSDS_OMM_VERS" version="2.0">

<header>
<COMMENT>GENERATED VIA SPACE-TRACK.ORG API</COMMENT>
<CREATION_DATE>2024-03-24T21:06:15</CREATION_DATE>
<ORIGINATOR>18 SPCS</ORIGINATOR>

</header>
<body>

<segment>
<metadata>

<OBJECT_NAME>ISS (ZARYA)</OBJECT_NAME>
<OBJECT_ID>1998-067A</OBJECT_ID>
<CENTER_NAME>EARTH</CENTER_NAME>
<REF_FRAME>TEME</REF_FRAME>
<TIME_SYSTEM>UTC</TIME_SYSTEM>
<MEAN_ELEMENT_THEORY>SGP4</MEAN_ELEMENT_THEORY>

</metadata>
<data>

<meanElements>
<EPOCH>2024-03-24T20:17:19.468608</EPOCH>
<MEAN_MOTION>15.49418300</MEAN_MOTION>
<ECCENTRICITY>0.00044500</ECCENTRICITY>
<INCLINATION>51.6409</INCLINATION>
<RA_OF_ASC_NODE>13.4998</RA_OF_ASC_NODE>
<ARG_OF_PERICENTER>2.7955</ARG_OF_PERICENTER>
<MEAN_ANOMALY>56.5150</MEAN_ANOMALY>

</meanElements>
<tleParameters>

<EPHEMERIS_TYPE>0</EPHEMERIS_TYPE>
<CLASSIFICATION_TYPE>U</CLASSIFICATION_TYPE>

53

<NORAD_CAT_ID>25544</NORAD_CAT_ID>
<ELEMENT_SET_NO>999</ELEMENT_SET_NO>
<REV_AT_EPOCH>44546</REV_AT_EPOCH>
<BSTAR>0.00061923000000</BSTAR>
<MEAN_MOTION_DOT>0.00034327</MEAN_MOTION_DOT>
<MEAN_MOTION_DDOT>0.0000000000000</MEAN_MOTION_DDOT>

</tleParameters>
<userDefinedParameters>

<USER_DEFINED parameter="SEMIMAJOR_AXIS">6796.564</USER_DEFINED>
<USER_DEFINED parameter="PERIOD">92.938</USER_DEFINED>
<USER_DEFINED parameter="APOAPSIS">421.453</USER_DEFINED>
<USER_DEFINED parameter="PERIAPSIS">415.404</USER_DEFINED>
<USER_DEFINED parameter="OBJECT_TYPE">PAYLOAD</USER_DEFINED>
<USER_DEFINED parameter="RCS_SIZE">LARGE</USER_DEFINED>
<USER_DEFINED parameter="COUNTRY_CODE">ISS</USER_DEFINED>
<USER_DEFINED parameter="LAUNCH_DATE">1998-11-20</USER_DEFINED>
<USER_DEFINED parameter="SITE">TTMTR</USER_DEFINED>
<USER_DEFINED parameter="DECAY_DATE"/>
<USER_DEFINED parameter="FILE">4242354</USER_DEFINED>
<USER_DEFINED parameter="GP_ID">252609161</USER_DEFINED>

</userDefinedParameters>
</data>

</segment>
</body>

</omm>
</ndm>

54

Appendix C

Contents of the included storage
media

This directory tree describes the structure of LEOSIM program on the attached CD disc.

/
program.. included program files

img..images used by the program
earth.jpg................................... image of the surface of Earth

src................................source codes of the program (see table 3.1)
ui...internal file with layout of the ui
3LE_input_data.txt............................demo file with sample inputs

thesis..source codes of the LATEX thesis
doxygen...folder with Doxygen utility files
DOXYGEN.html.........................Doxygen documentation of the source code
README.md............................README manual for program installation
xpospi0k-simulation_environment_for_LEO.pdf..............text of the thesis

55

	Introduction
	Theory of Orbital Mechanics
	Basics of kinematics
	Keplerian elements
	Reference frames and Coordinate transformations
	Orbital perturbations

	Design and Implementation
	User Interface Architecture
	Obtaining Satellite Data
	Simulator implementation
	Plotting the results

	Simulating Experiments
	Precision of coordinate conversion
	Comparison with reference measurements
	Comparison with SGP4 model

	Conclusion
	Bibliography
	Two-line element format
	XML response format
	Contents of the included storage media
	a71db47a-911d-47c8-a4d5-f1c7578ca2b0.pdf
	Introduction
	Theory of Orbital Mechanics
	Basics of kinematics
	Keplerian elements
	Reference frames and Coordinate transformations
	Orbital perturbations

	Design and Implementation
	User Interface Architecture
	Obtaining Satellite Data
	Simulator implementation
	Plotting the results

	Simulating Experiments
	Precision of coordinate conversion
	Comparison with reference measurements
	Comparison with SGP4 model

	Conclusion
	Bibliography
	Two-line element format
	XML response format
	Contents of the included storage media

