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Abstrakt 
Tato diplomová práce se zabývá moderními přístupy detekce klíčových slov a detekce 
frází v řečových datech. V úvodní části je seznámení s problematikou a teoretický popis 
metod pro detekci. Následuje popis reprezentace vstupních datových sad použitých při 
experimentech a evaluaci. Dále jsou uvedeny metody pro detekci klíčových slov defino­
vaných vzorem. Následně jsou popsány evaluační metody a techniky použité pro skórování. 
Po provedení experimentů na datových sadách a po evaluaci jsou diskutovány výsledky. 
V dalším kroku jsou navrženy a poté implementovány moderní postupy vedoucí k vylepšení 
systému pro detekci a opět je provedena evaluace a diskuze dosažených výsledků. V závěrečné 
části je práce zhodnocena a jsou zde navrženy další směry vývoje našeho systému. Příloha 
obsahuje manuál pro používání implementovaných skriptů. 

Abstract 
The aim of the thesis is to get acquainted with modern approach of keyword spotting and 
spoken term detection in speech data. The bases of keyword spotting are described at first. 
The data representation used for experiments and evaluation are introduced. Keyword 
spotting methods where query is provided as an audio example (Query-by-Example) are 
presented. The scoring metrics are described and experiments follow. The results are 
discussed. Further, modern approaches of keyword spotting are suggested and implemented. 
The system with new techniques is evaluated and the discussion of results achieved follows. 
The conclusions are drawn and the discussion of future directions of development is held. 
The Appendix contains user manual for using implemented system. 
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řeči, dynamické programování 
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Chapter 1 

Introduction 

The amount of speech data constantly increases every year. These data are either processed 
in real time or stored for further processing. Devices utilising a speech processing are 
for example cell phones, personal computers and nowadays on-board car navigations and 
controls, security systems or intelligent houses. Therefore, keyword spotting has became 
an important topic in speech processing field. Words of interests, such as voice commands 
or suspect words in secure areas, are detected. It is challenging to investigate modern 
approaches of methods for detecting words in speech. 

The purpose of this thesis is to focus on audio and speech data with low-resource 
conditions. The problem is defined as finding of spoken words or word phrases (or music 
samples as well) in other speech (audio) data without any additional knowledge of the target 
language. The sound quality of speech can be variable. Our task is to implement system 
or improve an existing one to search for user specified speech cut samples. The system 
should detect the segments in speech data similar to user specified speech cuts and return 
useful information of these found detections. The implemented system should be based on 
known algorithms for spoken term detection and further improvement adopted from the 
latest approaches should be done. The performance of the system should be represented in 
a form comparable to other systems dealing with the same task. 

The implemented system will participate into spoken term detection task which is held 
by speech processing community every year. The competition among all participants will 
run. The goal is to search for hundreds of defined speech samples into thousands of speech 
utterances. Different conditions to search speech samples are set. A l l systems will be scored 
by a newly introduced scoring metric. 

The thesis is structured into several essential parts. The first step will be a reflection of 
input data representation. We will need to extract useful features from the raw speech data. 
Further, a deep analysis of methods for described problem will follow. The aim will be to 
exploit techniques for detecting similar segments in speech data using dynamic alignment of 
speech samples. We will compare speech data to each other with different metrics. Further, 
we will reimplement an algorithm suitable to deal with the given issue. The different data 
sets will be exploited for experiments with the system. We will focus on the accuracy of the 
system compared to other systems. At last, the improvement of the system will be made 
and the comparison will follow. 
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Chapter 2 

Bases of keyword spotting and 
Query-by-Example 

This chapter provides description of spoken term detection and keyword spotting methods 
for an audio data, where query is provided as an audio example, called Query-by-Example. 
The utilisation of these techniques on speech data is outlined. The decomposition of the 
spoken term detection system and the description of essential parts follows. Further, the 
different input data representations for the system are detailed. The data sets used in per­
formed experiments are presented. The scoring methods and evaluation metrics exploited 
to score results of developed system are described. The related work containing the adopted 
ideas and algorithms for further improvement of the system is presented. The theory of spo­
ken term detection, keyword spotting, Query-by-Example and scoring metrics is adopted 
from [23] [19] [4]. 

2.1 Spoken Term Detection and keyword spotting 

Spoken Term Detection (STD) is a technique to find a list of terms fast and accurately in 
audio data. Terms are meant as single words or sequences of words and are represented 
in a textual form. This method is often denoted as textual STD. It is assumed to have 
enough text resources and knowledge of the target language to exploit this method. STD 
systems are usually built and dependent on speech recognizers. This is the reason why 
textual STD methods are not suitable for term detection with low resources. On the other 
hand, a demand for development of STD systems for low resource languages or completely 
missing resources (e.g. security field) rises. If it is not possible to train the target language-
specific acoustic models then the system needs to be trained in the language-independent 
way. Especially in the cases where a user has no knowledge of the textual representation 
of the term to search or it is required to enter the term as a voice command. Therefore, 
the Query-by-Example STD technique was proposed [ 13]. In Figure 2.2, our term detection 
system is depicted. 

Keyword spotting (KWS) is a similar method to STD. The difference is that keywords 
consist of a single isolated word. If a phrase containing several words occurs on the input, 
it is still taken as a single object. These systems are usually based on speech recognizers 
(e.g. Acoustic K W S , more in [19]) but that topic is beyond the scope of this thesis. We are 
interested into K W S systems based on other systems that do not understand speech [ ]. 
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Q u e r y - b y - E x a m p l e 
s y s t e m 

> 

O c c u r e n c e s of q u e r y 
in u t t e r a n c e s 

Figure 2.1: Query-by-Example system. User-defined spoken query is searched in a database 
of spoken utterances, providing the user with occurrences of the query. The query can be 
defined by direct input from a microphone or by a region of speech selected in another 
utterance. \ 1. 

2.2 Query-by-Example 

Query-by-Example (QbE) is a method to search an example of an object or at least a part of 
it in some other objects. QbE has been used mostly in applications like sound classification, 
music retrieval or spoken document retrieval. The example of an object to find is called 
query and in our task, it consists of the spoken term to search. The spoken term is a word 
or a word phrase and it is represented as a speech (or music) cut. The user can specify one 
or more cut instances containing the term of interest. This query is then searched in data 
pool (e.g. set of speech utterances) and segments that are similar to the searched query are 
returned. The method relies only on a spoken term example as an input on the contrary 
to a textual input for textual STD. Therefore, it is called Query-by-Example Spoken Term 
Detection (QbE STD). QbE STD is used when not enough resources for training acoustic 
models are available and so it is impossible to use large vocabulary continuous speech recog­
nition (LVCSR) system to conduct textual STD. Hence, usage of L V C S R is impossible for a 
language-independent QbE STD [23]. There are three main approaches to build QbE STD 
systems on: a template matching, a sequential statistical modelling and a lattice matching. 
We are focused on the first approach where we compare input features between themselves. 
This approach exploit the dynamic programming technique called Dynamic Time Warping. 
This method is used to compare speech patterns and confront inconsistencies in time (more 
details in Chapter 3). 

Query 

Signal Feature Features 
extraction 

> 

Ql Scores ̂  
system J 

i k 
Feature 

i k 
extraction Features 

^ Normalizatii 

Utterance 

Threshold 
I 

t 
Filt. rriii£ Term 

detection 
candidates 

Figure 2.2: Block diagram of spoken term detection system based on Query-by-Example [ ]. 
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A scheme of our spoken term detection system is shown in Figure 2.2. The whole process 
of a detection can be separated into several phases. A raw signal enters the system inputs. 
The extractors generate vectors of speech features. The features are then processed by 
Query-by-Example system. The outputs of QbE are records containing a query-utterance 
pair, a starting and ending time of the detection and a confidence score. The score is 
normalized (e.g. by term length or according to scoring metric). The threshold is applied 
to the scores to filter out bad detection and reduce false alarms which is important for the 
scoring. 

2.3 Feature extraction 

A n application of raw audio data as an input to our implemented algorithm would be very in­
efficient so we used phnrec1 [16] tool developed at Brno University of Technology to extract 
speech features. The extractor is based on Hidden Markov Model (HMM)/Art i f ic ia l Neural 
Network (ANN) hybrids and was trained on T I M I T 2 , SpeechDat-E [10] (SD) and Global-
Phone (GP) corpora. We used phoneme-state posteriors (POST) and bottlenecks (BN). 

2.3.1 Phoneme-state posteriors 

The input is raw audio data with speech. Speech is segmented into 25 ms long frames. Mel 
filter banks energies are calculated. For each band, the temporal evolution of energy is 
taken and vectors are split into right and left parts (therefore the system is called L C - R C 
- Left Context/Right Context). Each part is windowed by corresponding half of Hamming 
window. The linear D C T transformation is performed to decorrelate and reduce dimensions. 
The next step is neural networks trained to estimate probability of phonemes for each of 
vectors. The concatenation, the transformation and the normalization of vectors follows. 
The last step comprises the Viterbi decoder to decode the phoneme posteriors [16] [17]. Each 
step of the described system is depicted in Figure 2.3. 

Features dims 
SD CZ POST 138 
SD HU POST 186 
SD RU POST 159 
GP CZ POST 120 
GP EN POST 120 
GP GE POST 126 
GP PO POST 102 
GP RU POST 156 
GP SP POST 102 
GP TU POST 90 
GP VI POST 102 

Table 2.1: List of phoneme-state posterior features and the number of their dimensions 
depending mainly on the number of phonemes for the given language. SD stands for features 
extracted using SpeechDat-E database, GP using GlobalPhone database. 

x h t t p : //speech. f i t . vutbr. cz/software/phoneme-recognizer-based-long-temporal-context 
2https://catalog.ldc.upenn.edu/LDC93Sl 
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Viterbi decoder 

pau hh ae 
I ow pau 

Figure 2.3: Block diagram of the Split Temporal Context system [ ]. 

5 10 15 20 25 30 35 
Frame 

Figure 2.4: Example of 3-state phoneme posterior probabilities for word "something". Each 
frame states the probability in the range from 0.0 to 1.0 for given phonemes. The word 
something was estimated as the sequence of phonemes s - ah - m - th - ih - ng [17]. 
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The final representation of phoneme state features is a sequence of N-dimensional vectors 
containing phoneme-state posterior probabilities. We generated 3-state phoneme posteriors 
(POST) based on different databases and languages. The vectors dimensionality for each 
database and language is listed in Table 2.1. In Figure 2.4, an example of 3-state phoneme 
posterior is depicted. 

2.3.2 Bottlenecks 

The bottleneck (BN) features were extracted by hierarchical neural network. BNs are linear 
outputs (compressed information) of neurons in bottleneck area of A N N topology. It was 
proved that B N features represents the underlying information better than the probabilistic 
features. 

As for phoneme-state posteriors, speech is segmented into frames. Fourier spectrum is 
calculated for each frame. Band limited triangular functions called Mel filter banks are 
applied to get energies. The logarithm of the energies is calculated which corresponds to a 
human ear perception. The sentence mean normalization follows. Five consecutive frames 
are used to add information about a temporal evolution. Hamming window is applied 
followed by linear D C T transformation. The outputs of contextual A N N are stacked on 
each other and this is taken as an input for the second (merging) A N N for every fifth frame. 
The size of B N layer in the second A N N is 30 neurons [21] [5]. Hence, all B N features used 
in this thesis are 30 dimensional vectors. In Figure 2.5, the whole process is depicted. 

Output: 
Bottle-neck features 

Figure 2.5: Block diagram of Bottleneck features extraction [5]. 

2.4 Evaluation and development datasets 

We define four different data sets to test and evaluate implemented spoken term detection 
system. The first data set is GlobalPhone corpus developed with collaboration of Karlsruhe 
Institute of Technology (KIT) to provide real read speech data. The second data set was 
used in MediaEval benchmark in Spoken Web Search (SWS) task in 2012. The third data 
set was used in the same benchmark in SWS task one year later in 2013. The last data 
set was used at MediaEval benchmark where SWS task was renamed to Query-by-Example 
Search on Speech Task in 2014. 
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2.4.1 GlobalPhone 

GlobalPhone (GP) database is a multilingual speech and text database developed at Karl ­
sruhe University at Institute of Technology. This database contains high-quality read speech 
in a large variety of languages which is suitable for the development of speech recognition 
systems in many languages. G P consists of 20 languages3 and was designed to be uniform 
across languages with respect to the amount of data and speech quality. The read text 
for each language was selected from local newspapers and was read by about 100 speakers. 
The text was read by both genders with a variety of age. The speech was microphone 
recorded with the same conditions for all languages and spontaneous effects like stuttering, 
false starts, breathing, hesitation and laughing are included [11] [15]. 

languages CZ E N G E PO R U SP T U V I 
audio format W A V 
sampling rate 8 kHz 
bit depth 16 bit 
channel mono, linear 
queries 59 26 36 42 72 81 66 66 
dev. data 656 503 1071 481 868 510 664 1161 
test, data 687 546 804 480 1179 472 627 1404 
train, data 10994 7138 7959 6854 8877 4713 5319 16270 

Table 2.2: Summary of used languages from GlobalPhone database. 

This database was used to train bottlenecks decoders. Only 8 of 20 languages contained 
in this database was used: namely it is Czech, English, German, Portuguese, Russian, 
Spanish, Turkish and Vietnamese language. The queries and audio content are separated 
for each language. The summary for languages used for evaluation from G P database is in 
Table 2.2. 

2.4.2 Spoken Web Search 2012 

The Spoken Web Search4 (SWS) task is held every year at MediaEval workshop. The task 
involves searching for audio content within audio content using an audio query. This task 
is interesting especially for speech researchers in area of spoken term detection and speech 
processing with low-resource audio. The task requires to build language-independent audio 
search system. 

The 2012 data set consists of two languages. Each language is divided into two parts: 
the first is the set of audio queries, the second is set of audio content. Both sets are 
separated to development and evaluation subsets, which are from the same language. Some 
of the queries overlap partially. Audio ground through files were generated following the 
format defined by NIST STD in 2006. 

The two represented languages are Indian and African. Let us focus on African language 
since Indian one is not used for our evaluation. The African audio data were extracted 
from Lwazi A S R corpus and contains speech from four of eleven different African languages 

3Arabic, Bulgarian, Chinese, Croatian, Czech, French, German, Hausa, Japanese, Korean, Portuguese, 
Polish, Russian, Spanish, Swedish, Tamil, Thai, Turkish, Ukrainian, Vietnamese 

4http://multimediaeval.org/mediaeval2012/sws2012/ 
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language African 
audio format W A V 
sampling rate 8 kHz 
bit depth 16 bit 
channel mono, linear 
dev. queries 100 (25 per language) 
dev. data 1580 (395 per language) 
eval. queries 100 
eval. data 1660 

Table 2.3: Spoken Web Search 2012 data set for African language. 

(isiNdebele, Siswati, Tshivenda, Xitsonga). Audio consists of a combination of read and 
elicited speech collected over a telephone channel. Audio recording artifacts can be found 
in the data [7]. The language summary is in Table 2.3. 

2.4.3 Spoken Web Search 2013 

The Spoken Web Search 2013 task was held in the similar way. The difference is in the 
data sets. The data were expanded on MediaEval 2011 and 2012 SWS tasks by increasing 
the size of data sets and the number of languages (non-native English, Albanian, Czech, 
Basque, Romanian and four African). These languages were recorded in different acoustic 
conditions. The data set is composed of 20 hours of speech and is over 5 times the size of 
2012 database [1]. 

The 2013 data set consists of two parts again: set of queries content and set of audio 
content. The development and evaluation data has each own query content set but audio 
content is the same for both. A basic sets of queries consist of about 500 files each and 
in addition, for some of the queries there are alternative spoken instances to be used in 
extended runs. Both the queries and audio content were scrambled and randomized. The 
summary of SWS 2013 dataset is in Table 3.1. 

languages 9 (combined) 
audio format W A V 
sampling rate 8 kHz 
bit depth 16 bit 
channel mono, linear 
dev. queries 505 (1551 including ext. queries) 
dev. data 10762 (same data as for eval) 
eval. queries 503 (1540 including ext. queries) 
eval. data 10762 (same data as for dev) 

Table 2.4: Spoken Web Search 2013 data set summary. 

5http://multimediaeval.org/mediaeval2013/sws2013/ 
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2.4.4 Query-by-Example Search on Speech Task 2014 

The Query-by-Example Search on Speech Taske (QUESST) data set consists of speech data 
were collected at several institutions. The corpus is composed of 23 hours of speech in 6 
languages (Albanian, Basque, Czech, non-native English, Romanian, Slovak) with various 
number if audio per language. The search utterances were automatically extracted from 
longer recordings and checked manually for unwanted qualities. The queries to be searched 
were recorded manually to avoid previous problems developed from cutting queries from 
utterances. Speakers maintained a normal speech and a clear speaking style. A l l data 
have P C M encoding at 8kHz, 16bits/sample and W A V format. The database has one set 
of utterances for both development and evaluation. The queries are split into two sets for 
each part of the task [2]. The summary of database can be seen in Table 2.5. 

languages 6 
audio format W A V 
sampling rate 8 kHz 
bit depth 16 bit 
channel mono, linear 
dev. queries 560 
dev. data 12 492 
eval. queries 555 
eval. data 12 492 

Table 2.5: Query-by-Example Search on Speech Task 2014 data set summary. 

Unlike the other presented data sets, this database contains three different types of 
queries denoted as Type 1, Type 2 and Type 3. Type 1 of query consists of a spoken term 
that matches exactly a term in an utterance. Type 2 of query is a query with variant 
matching. The query can slightly differ either at the beginning or at the end of the match. 
The minimum length of a query to match was set to 250 ms and non-matching part was 
required to be smaller than the matching part. As an example, the query containing the 
term ^researcher" would match the term ^research" or ^searcher" in an utterance. Type 3 
of query contains a phrase of several terms. To consider a query match, all terms in the 
phrase have to match but not necessarily in the same order as stored in a query or there 
can be a filler (a silence or extraneous terms) between terms of the phrase. For example, 
the phrase ^curious researcher" would match an utterance with the phrase „this researcher 
is really curious" or „the curiousest research". Note that there are no silences or marks 
between the terms of a phrase in a query Type 3 [2]. 

2.5 Scoring metrics 

The proposed system was evaluated for its accuracy. There are two different approaches 
to evaluate the performance of the system. The first one evaluates the position and the 
score of the detection while the other one takes into account only the score regardless the 
position of the detection. The score represents a confidence. The main aspect of the system 
performance is a type and a quality of an input source. 

6http://multimediaeval.org/mediaeval2014/quesst2014/ 
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As one of measurements for our evaluation, we used the metrics defined by NIST S T D 7 

in 2006. Each query match detection has a start time, a end time and a confidence which 
is a value a score) saying sureness of the spoken term detector about the detection of the 
query. A l l detections were scored in the same manner, the higher value of confidence the 
higher probability of correct term detection. The detections are compared with a reference 
transcription and marked as a hit, a miss or a false alarm (see Figure 2.6). The good system 
has maximum number of hits and minimum number of FAs and misses. 

I Reference | | Reference | | Reference | 

1] | 1 * 
HIT A 1 . F A 

F MISS 
1 HIT 1 

time 

Figure 2.6: Examples of HIT, FA (False Alarm) and MISS [19]. 

2.5.1 Term Weighted Value 

Term-weighted Value (TWV) was defined as the primary metric for NIST STD 2006 eval­
uations and was used to measure overall system detection performance. T W V is scalar 
metric designed for comparison of different spoken term detection systems. It assigns pos­
itive value for every correct output and negative value for every incorrect output. The 
requirement a query to be called a hit is relaxed within 0.5 s range from the reference time 
span. If other overlapping detections occur, they are considered as false alarms so only one 
detection to one reference counts. A n interesting fact about T W V is that a miss is much 
more expensive (meant that term score is worse) for less occurring terms than for more 
frequently occurred terms but contrary, false alarm is equally expensive for both more or 
less occurring terms. [19]. 

I 0.5s I 

i— 
HIT 

Reference 0.5s 

FA 

time 

Figure 2.7: Examples of HIT and reference overlap defined by NIST for STD evaluation 
and TWV metric. If two or more detections overlap one reference, only one is considered 
as HIT and the other is considered as FA [19]. 

Miss and false alarm probabilities are calculated for each query, the query specific value 
over all queries are computed and then, by averaging these values, an overall system score 
is obtained. 

The miss error rate (probability of miss) pmiss for a query q and a threshold 9 is defined 
by [11]: 

PmisslQ, 6) = , (2.1) 
Nact{q) 

7http://www.itl.nist.gov/iad/mig/tests/std/ 
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Pmiss 
(9) = average{pmiss(q, 9)}, (2.2) 

where Nmiss(q, 9) is the number of miss errors corresponding to query q and threshold 9, 

Nact(q) is the amount of actual occurrences of query q. 

The false alarm error rate (probability of false alarm) pfa for query q and threshold 9 
is defined as [11]: 

P / a M ) = l v ^ P ( 2 - 3 ) 

Pfa(0) = average{pfa(q, 9)}, (2.4) 

where Nfa(q, 9) is the amount of false alarm errors corresponding to query q and threshold 
9, Nnt{q) is the number of non-target trials. Finally, TWV is defined by [11]: 

TWV{9) = 1 - ( P m i s s ( 9 ) + 0 • Pfa(0)), (2.5) 

where j3 is a weight factor defined by [11]: 

P _ Cfa ' (1 — Ptarget) ^ 

Cmiss ' Ptarget 

where C m i s s > 0 is the cost of miss and Cfa > 0 is the cost of false alarm, ptarget £ [0,1] is 
the prior probability of a target trial. TVFF(#) range falls into the interval [—/?, 1] where 
1 stands for a perfect system, 0 for a system rejecting all the trials and —/3 for the worst 
possible system. 

2.5.2 Actual T W V 

Actual TWV ( A T W V ) is calculated by hard decision for each detection given by a system. 
A T W V can be an extremely unstable performance measure [ ]. The best system score is 
A T W V = 1. Lower value of A T W V means worse accuracy of the system. Note that a score 
can even be a negative number [ ][ ]. Formally [11]: 

ATWV = TWV (9act), (2.7) 

where 9act is a specified hard threshold. 

2.5.3 M a x i m u m T W V 

Maximum TWV ( M T W V ) defines the global upper bound for A T W V , formally [4]: 

MTWV = TWV(9opt), (2.8) 

where 9opt is the global optimal threshold for all queries: 

9opt = a rgmax{TW(#)} (2.9) 
e 
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2.5.4 Upper Bound T W V 

Upper Bound TWV ( U B T W V ) has individual threshold for each query. The ideal term 
threshold value is found to get maximum T W V for each term by the following equation [22]: 

UBTWV = 1 - average{pmiss(q, O^q)) + /? • pfa(q, 9opt(q))}, (2.10) 
g 

where 9opt(q) is the optimal threshold for each query: 

9opt(q) = aigmax{TWV(q,9)} (2.11) 
e 

2.5.5 Normalized cross entropy C n x e 

Normalized cross entropy cost (Cnxe) measures the fraction of information, with regard 
to the ground truth, that is not provided by system scores, assuming that they can be 
interpreted as log-likelihood ratios. The best system SCOrG is Cnxe ^ 0 9-11(1 a non-informative 
(random) system returns Cnxe = 1. System scores Cnxe > 1 indicate severe miscalibration 
of the log-likelihood ratio scores. Cnxe is computed on system scores for a reduced subset 
of all the possible set of trials. Each trial consists of a query q and a segment x. For each 
trial, the ground truth is a True or False depending on whether q actually appears in x or 
not [2] [18]. 

More formally, the empirical cross entropy [11]: 

Cxe = A t J t a r 9 £ L , > ' CuJlln) + I , ••"•'/!:' > ' CuJlln) I . (2.12) 
log2 \ \Ttrue{S)\ 

E g i o g ( ^ ) + 1

r

 P t a r ^ £ Clog(llrt)), (2. 
tertrue(s) 1 f a l s e [ - n teTfalse(s) J 

where Ttrue(S) is the set of target trials, Tfaise(S) is the set of non-target trials, C\oz{llrt) 
the logarithmic cost function. 

The empirical cross entropy called the prior entropy is defined by [11]: 

13) 

Last, the normalized cross entropy defined by [11]: 

2.5.6 M i n u m u m C n x e 

The cross entropy measures both the discrimination between target and non-target trial and 
the calibration. To estimate the calibration loss, a system can be optimally recalibrated 
using a simple reversible transformation, such as [11]: 

lir = 7 • Hr + <y, (2.15) 

where llr are log-likelihood ratios, 7 and 5 are calibration parameters that can be used to 
minimize the normalized cross entropy [11]: 

C™2 = mm{Cnxe}, (2.16) 
7,0 

and the calibration loss is Cnxe — C™x™. 
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2.6 Related work 

We provide a survey of papers and other literary sources the ideas for the system improve­
ment have been taken from. Procedures, methods or algorithms, that are interesting for 
our work, are pointed out. Following sources are considered as the related work: 

Meinard Müller: Information Retrieval for Music as Motion (2007) [8]. In 
this book, the author describes concepts and algorithms for robust and efficient information 
retrieval using two different types of multimedia: waveform-based music data and human 
motion data. Several approaches in music information retrieval are discussed. The author 
focuses on efficient strategies for music synchronization, audio matching, audio structure 
analysis, motion analysis, retrieval and classification. We studied Chapter 4 of this book 
where the well-known method called Dynamic Time Warping (DTW) is described in detail. 
This dynamic programming method is fundamental of our implemented algorithm. 

Javier Tejedor et al.: Comparison of Methods for Language-dependent and 
Language-independent Query-by-Example Spoken Term Detection (2012) [23]. 
In this article, the Query-by-Example (QbE) Spoken Term Detection (STD) is investigated. 
The query is entered as speech data or is spoken by a user. Two different features are used 
for experiments: the phoneme-state posteriors and the bottlenecks. Three QbE systems are 
described: the first one is based on Gaussian Mixture Model/Hidden Markov Model, the 
second is based on D T W and the last on Weighted Finite-State Transducers. The results 
are shown on four different languages. The evaluation shows that D T W system performs 
the best with a language-dependent setup whereas G M M / H M M works the best with a 
language-independent setup which is interesting for cases with a lack of standard resources 
to build A S R system. 

Igor Szöke et al.: B U T SWS 2013 - Massive Parallel Approach (2013) [20]. 
This paper describes QbE system composed of a set of subsystems (called atomic systems) 
where a half of them is based on Acoustic Keyword Spotting (AKWS) and another half 
on D T W . The system is using the phoneme-state posterior features. The unsupervised 
adaptation of the artificial neural network is performed on the target data and features 
are regenerated then. Voice Activity Detection (VAD) is applied on these features which 
rapidly increases the system accuracy. The system results are calibrated by mode nor­
malization (m-norm) to deal with different score distributions. The single atomic system 
exploiting D T W was fundamental for our implemented algorithm and its modification is 
referred as the baseline system in this thesis. 

Luis J . Rodriguez-Fuentes et al.: High-performance Query-by-Example Spo­
ken Term Detection on the SWS 2013 Evaluation (2014) [12]. In this paper, QbE 
system using an iterative D T W with heuristic pruning is presented. The system achieved 
the best performance and was the winning one in Spoken Web Search (SWS) task in Medi-
aEval 2013. The phoneme-state posteriors are used as input features and a distance matrix 
normalization follows. V A D is performed by discarding speech frames where non-speech 
posterior has the highest value. The score is calibrated exploiting a zero-mean and a unit-
variance for each query followed by a majority voting. The results show that the usage of 
multiple examples per query improves the performance of the system. In this thesis, we 
experimented with Voice Activity Detection, the distance matrix normalization, the sum-
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ming of phoneme-states and a concatenation of input features. 

Haipeng Wang et al.: Using Parallel Tokenizers with D T W Matrix Combi­
nation for Low-resource Spoken Term Detection (2013) [26]. This paper presents 
QbE system exploiting parallel subsystems (tokenizers) where each subsystem extracts fea­
tures from raw speech and calculates a distance matrix for input pair query-utterance then. 
Those matrices are derived into a combined distance matrix. D T W is applied to this 
combined matrix. Besides phoneme-state posteriors, G M M and Acoustic Segment Model 
(ASR) are used as input features. The score normalization is performed. The experiments 
show that combining parallel subsystems with different tokenizers outperformed the best 
single subsystem and a derived distance matrix works better when more than 3 subsystems 
are involved. We used the idea of parallel subsystems generating a distance matrix and a 
combination of them described in this paper. 

Haipeng Wang and Tan Lee: The C U H K Spoken Web Search System for 
MediaEval 2013 (2013) [ !5]. In this paper, an improvement of the QbE system from 
previously mentioned paper are described. The different subsystems based on Gaussian 
Component Clustering (GCC) are presented. The second update is a query expansion 
based on the technique called Pitch Synchronous OverLap and Add (PSOLA) . For our 
work, an interesting update is a score normalization employing scaling, exponential func­
tion, mean and variance normalization. 

2.7 Conclusion 

We defined the task of this thesis as searching of a user-defined spoken query in a database 
of spoken utterances. The approaches for detection of a spoken term/keyword based on 
QbE were presented. Our baseline QbE STD system we will use for further evaluations 
was described. We will run several experiments with various setups to evaluate system 
using different speech features described above and findings will be discussed. Since one 
of the databases defines the task where a searched query can contain several words, we 
should focus on this problem during the improvement of the system. The baseline system 
can detect the exact match only. The other improvements from various authors should 
increase the accuracy of the system performing several normalizations, a fusion of an input 
data to derive more information, an elimination of non-speech frames to discard needless 
information, etc. 
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Chapter 3 

Dynamic Time Warping 

Dynamic Time Warping (DTW) is a technique for comparing and finding an optimal align­
ment between two time-dependent sequences of vectors. These sequences are warped in 
time or in speed to match each other. The goal is to find best mapping between these 
sequences by warping one or both of them using dynamic programming approach. D T W 
has been originally used for comparison of speech patterns in automatic speech recogni­
tion systems and applied to confront with time-dependent data with time deformation or 
different speed [8] [9]. 

Figure 3.1: Example of spectrograms for two spoken utterances: "D'abord i l y a eu une 
reunion des ambassadeurs du G8 . " and "Oui, les ambassadeurs sont dans le starting 
block.". The red rectangles mark occurrences of the word "ambassadeurs" [9]. 

Besides spoken term detection, D T W has been successfully used in other areas such as 
data mining, D N A analysis, financial analysis, music and motion analysis and classification 
or hand-written text recognition [<][9]. In Figure 3.1, two spectrograms of spoken utter­
ances are depicted. The similar areas are marked by red rectangles. The task is to detect 
these similar areas automatically with a usage of D T W . Figure 3.2 shows alignment of two 
different one-dimensional signals. Each point is aligned to the closest coincident point from 
the other sequence. 

As mentioned, the objective of D T W is to compare two sequences, find an optimal 
alignment (Figure 3.2) and return useful information (score value, location of the match, 
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time 

Figure 3.2: Warping between two different time series. The blue and the green horizontal 
lines represent two different time series. Each point from one series is optimally aligned 
with one or more points from the other one and vice versa which allow us to compare even 
time series with different duration. The warping is shown by the orange dash-dotted vertical 
lines. Evidently, the warping of series to each other is a non-linear operation [13] [18]. 

warping path shape, etc.) of this alignment. To describe presented warping more formally, 
let us consider an utterance U = {ui,. . . , u^} as a time-dependent sequence of N vectors 
and a query Q = {qi,. . . , qjtf} as a time-dependent sequence of M vectors. A l l vectors 
u G U and q G Q have the same dimensionality K. To compare two different sequences 
of vectors, we need a metric to measure distance between single vectors of these sequences. 
Let us define the distance metric to compare two vectors u and q in general as: 

The distance metrics used in the baseline system were a log-likelihood based on the 
cosine distance and a log-likelihood based on the dot product. 
The log-likelihood based on the cosine distance diogcos is defined by [23]: 

where the expression in parentheses is the cosine similarity. The range of the diogcos is given 
by the interval [0, +oo) where 0 denotes identical vectors. 

The log-likelihood based on the dot product diogdoti is defined as: 

where • represents the dot product. The range of the diogcos lies in the interval [0, +oo) 
where 0 denotes identical vectors. For both distances, the value of the distance between 
vectors is lower if vectors are similar to each other and higher if vectors are variant. 

3.1 Distance matrix 

By calculating distances between all possible query-utterance vectors u G U and q G Q, 
we obtain distance matrix D G M.NxM where each cell D(n,m) of the matrix is defined 
by <i(un,qm) [8]. Figure 3.3 (on the left) depicts the distance matrix for two real-valued 
one-dimensional time series (sequences of real numbers) shown in Figure 3.2. 

d : u x q —>• M. 

(3.3) 
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Figure 3.3: Distance matrix (on the left) for two real-valued sequences from Figure 3.2. 
The Euclidean distance (4.3) was used to measure distances. The darker colors denote 
areas where given vectors are similar to each other and the lighter colors symbolize regions 
of a difference. A cumulative matrix (on the right) corresponds to the distance matrix. 
The white line represents the optimal warping path [13] [18]. 

224 274 324 374 

test [frame 

Figure 3.4: Distance matrix for utterance "—in his presentation— " and for query "present". 
The cosine distance (4.1) was used to measure vector distances. The dark blue area between 
black dotted lines is the match of the query. 

3.2 Cumulative matrix 

Cumulative matrix C accumulates distance values from a distance matrix. Each cell value 
depends on its predecessor cells (horizontal, vertical and diagonal). The predecessor cell 
with the lowest value is taken and accumulated with the current cell. The weight factors 
(wd,Wh,wv) G M 3 serve to favour one of the directions. The standard setup is (1, v 2 ; 1) to 
treat all directions equally. We used the classical setup (1,1,1) to prefer diagonal steps. 
Formally, cell predecessor pred and cumulative matrix C [8]: 

( C(n — 1, m — 1) + Wd • D(n, m) 
C(n - 1, m) + Wh • D(n, m) (3.4) 
C(n, m — 1) + wv • D(n, m) 
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(D(n, m) , if m = 0 

C(n,m — 1) + D(n,m) , i f n = 0 
C(pred(n, m)) + D(n, m) , otherwise 

(3.5) 

m+2 

m+1 

m 

m-1 

m-2 

Figure 3.5: Generation of a cumulative matrix. Possible predecessor cells for the current 
cell in coordinates (n,m) lie in horizontal (n — l , m ) , vertical (n,m — 1) and diagonal 
(n — 1, m — 1) direction. 

test [frame 

Figure 3.6: Cumulative matrix for the distance matrix in Figure 3.4. The dark blue area 
between red dotted lines marks the match of the query. The white line represents the optimal 
warping path. 

Since the query can appear anywhere in the utterance, the accumulation starts from 
the origin point (0, 0) of distance matrix D and can reset in the first row (n, 0) which lies 
in time-dependent axis of the utterance. This is performed by simple copying of the first 
row from distance matrix D to cumulative matrix C . 

In Figure 3.3, a simple cumulative matrix is depicted (on the right). Figure 3.6 shows 
the cumulative matrix for the previous distance matrix. Last, the cumulative matrix is 
usually normalized by length. 

20 



3.3 Length matrix 

Length matrix L stores a path length for each cell and is used for the length normalization. 
During each step of a cumulative matrix calculation, the path length is extended by 1. A l l 
cells in the first row (n,0) are set to 1 due to the fact that a query can start anywhere in 
the utterance (see Figure 3.7). Formally: 

L(n, m) 
1 , if m = 0 
L(pred(n, m)) + 1 , otherwise 

(3.6) 

Figure 3.7: Length matrix for the cumulative matrix in Figure 3.6. Each cell stores the 
length of a path ending in the cell. 

3.4 Starting-point matrix 

Starting-point matrix S saves starting points of paths in each cell to avoid further exhaustive 
computation of paths using a back-tracking. The original starting-point is kept during the 
computation of a cumulative matrix. Except the first row (n, 0) where the frame number 
(a matrix column number) is stored. In case a path starts at some point in the first row of 
the matrix, the frame number (the starting point) is kept and propagated further. 
A calculation of starting-point matrix S is defined by: 

test [frame 

Figure 3.8: Starting-point matrix for the cumulative matrix in Figure 3.6. Each cell stores 
the starting point of a path ending in the cell. 
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3.5 Optimal path search 

Warping path p is defined as a sequence of points (n, m) following a set of constraints and 
has a characteristic shape, a length L and a cumulated distortion (score) dist. Formally [8]: 

P = {Pi, • • • ,PL} = { ( n i , m i ) , . . . , (nL,mL)}, (3.8) 

where (n;,m;) £ [0 : N] x [0 : M] fori £ [1 : L]. A warping path has to satisfy three 
following conditions [8] [9]: 

(i) Boundary condition: 

Pi = (ni, 1) and pi = (112, M), where m , ri2 G [0 : N] (3.9) 

Each path starts in the first row and ends in the last row of matrix C. 

(ii) Monotonicity condition: 

{ (n i ,mi ) , (ri2, m,2), • • •, ( n i , m i ) } —>• n i < ri2 < . . . t i l and m\ <m,2< • • .mi 
(3.10) 

Each path is a monotonic function. 

(iii) Continuity (step size) condition: 

pk - pk+1 € {(0,1), (1, 0), (1,1)} for I € [1 : L - 1] (3.11) 

The step is set to adjacent cells only. A skipping of rows or columns is not allowed. 

The boundary condition warrants that each path crosses the whole cumulative matrix 
so the query is enforced to match full-length. The monotonicity condition does not allow 
the path to get back in time. It is a reflection of the requirement of faithful timing. At last, 
the step size condition says no vector in sequences U and V can be skipped or omitted and 
there is no possible replication in the alignment. A l l three conditions are complied during 
a calculation of a cumulative matrix. 

(a) (b) 
9 
8 
7 
6 
5 
4 
3 
2 
1 

(c) (d) 

> 

f -

I 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Figure 3.9: Illustration of paths of index pairs for some sequence U of length N = 7 and 
some sequence V of length N = 9. (a) Admissible warping path satisfying the conditions 

and (iii). (b) Boundary condition (i) is violated, (c) Monotonicity condition (ii) 
is violated, (d) Step size condition (iii) is violated [8]. 
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The total scorep(XJ, V) of warping path p between sequences U and V with respect to 
distance metric d is defined as [8]: 

L 

scorep(\J, V) = ^ d ( u n , , v m , ) (3.12) 
1=1 

The length normalization of path p with the total cost scorep and length Lp is defined as: 

scorenormp(\J, V) = scorep(\J, V ) / L p (3.13) 

The optimal warping path popt between sequences U and V is a warping path with minimal 
total cost within the cumulate matrix C. Formally [9]: 

Popt = a rgmin{score n o r m p (U, V)} (3.14) 
p 

Note that all distance metrics used in this work have the same meaning: the lower the 
value, the closer the vectors (the score is better). That is the reason for searching paths 
with the lowest score. 

To lower the complexity of finding an optimal path popt, we avoid testing every possible 
warping path p between sequences U and V in every possible ending point. We used 
methods based on dynamic programming to construct matrices presented above which 
allow us to make a searching of paths much simpler. To get several top paths, a distortion 
profile can be used. 

The profiledist stands for the distortion profile of cumulative matrix C represents the 
last row of C and is defined by: 

profiledistc(n) = C(n, M) (3.15) 

224 244 264 284 304 324 344 364 384 

test [frame 

Figure 3.10: Distortion profile displays values of the last row (n, M) from the cumulative 
matrix in Figure 3.6. The intersection of the blue curve and the right red dotted line marks 
the local minimum of distortion profile therefore the path with the best score ends at this 
frame. 

A distortion profile (see Figure 3.10) stores a cumulated distance of the best possible 
path for every frame of an utterance. This cumulated distance equals to the normalized 
score of the optimal warping path ending in given frame (cell of matrix C). As mentioned, 
the lower value of cumulated distance in distortion profile, the better score of the path. 
When searching for paths using a distortion profile, we avoid searching for a path in each 
frame since the location of the best paths is obvious. The end-point of a path is selected from 
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the distortion profile where the local minimum occurs and the starting point corresponds 
to the value of the same cell in the starting-point matrix. Note that we lost the information 
of the path shape, we keep where it starts and ends only. The shape of a path is necessary 
to set global constraints and to control the route of a path. We did not implemented a path 
shape control in our algorithm. The simple solution was to filter out warping paths with 
a slope above half of or below double the query duration. It is a simplification of Itakura 
parallelogram [ ]. The last step is a negation of detection scores so the file containing all 
detections for a given data sets has the opposite scoring manner: the higher score of the 
path, the higher confidence of the detection. 

3.6 Online length normalization 

To normalize accumulated distances according to their length, there are two approaches. 
The offline normalization computes all previously mentioned matrices. During the cumu­
lated matrix computation, it takes into account raw values of the distance matrix in the 
step of predecessor selection. Last, the cumulate matrix is divided by the length matrix. 
A n optimal path search follows. The other approach, the online normalization, performs 
the division by current path length on-the-fly for every matrix cell calculation to decide 
which preceding cell is the best to choose. The division is not saved during the calculation, 
it is performed only to decide the next step. The length normalization is done after all 
matrices are fully computed as for the offline approach. This leads to prefer longer paths 
over shorter ones. 

The normalized matrices slightly vary for each approach and path shapes are variant 
as well. We used the online method for normalizing paths by length in our system. In 
Figure 3.11, the difference between the offline and the online normalized path is depicted. 

Figure 3.11: Comparison of the offline (on the left) and the online (on the right) normal­
ization. The online way returns smoother cumulative matrix. The white line represents the 
back-tracked path. Minor differences between path shapes are visible. 
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3.7 Mode normalization of score 

The mode normalization is performed to normalize score for each query. The different 
queries have variant score distributions depending on the ability of the query to be searched. 
Longer queries are easier to be searched while the shorter ones cause a lot of false alarms. 
The normalization for each query allows us to use a single threshold maximizing given 
scoring metrics. The shape of the distribution has a longer tail with bad matching scores 
and shorter head with good scores. The standard zero mean and unit normalization (4.9) 
does not take into account this information. The mode is the most appearing value in the 
set (the peak of a histogram). We subtract the score value in the mode of a histogram from 
all query scores. The mods of all query histograms are aligned to 0 then. The division by 
standard deviation for scores larger then the mode follows. 

Figure 3.12: Score distribution histograms for several queries (on the left). The distribution 
histograms for the same queries after performing the m-normalization (on the right) [20]. 

3.8 Baseline experiments 

The evaluation of the baseline system was done with the data sets described above. The 
log-likelihood based on the dot product diogdot and the log-likelihood based on the cosine 
distance d i o g c o s were used for measuring distances. 

Features diogcos diogdot 

SD CZ P O S T 0.1319/0.1915 0.1009/0.1788 
SD H U P O S T 0.1196/0.1821 0.0800/0.1557 
SD R U P O S T 0.1571/0.2250 0.1129/0.1985 
G P R U P O S T 0.0268/0.0864 0.0118/0.0603 
G P R U B N 0.0799/0.1578 -

Table 3.1: Results for SWS 2013 development data set. Several features were evaluated with 
the baseline system. The scoring metric was TWV/UBTWV. The complete tables can be 
found in appendices. 
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3.9 Conclusion 

The pattern matching method based on dynamic programming was introduced and de­
scribed formally. The construction of necessary matrices was presented. The standard 
D T W includes a computation of a distance and a cumulative matrices followed by back­
tracking of an optimal path. In our implementation of the baseline system, we modified the 
standard approach. A length and a starting-point matrices were added to relive a computa­
tionally complex back-tracking at the cost of higher memory consumption. A detection of 
an optimal path is much simpler using this approach. On-the-fly normalization that prefers 
longer paths over shorter ones was described. A few experiments were run to get the refer­
ence for a comparison with the improved system later. Note that the result for bottleneck 
features using diogdot is missing. This metric always returns 0.000 and is inadequate for 
bottleneck features. The baseline system was built by Lukas Burget. 

26 



Chapter 4 

M y experiments 

Several improvements of the baseline system based on literary sources listed in Chapter 2 
were made. The most experiments were run on SWS 2013 data set using T W V / U B T W V 
as the scoring metric. In other cases, the data set and scoring metric is notified. 

4.1 Voice Act iv i ty Detection 

To deal with frames (feature vectors) containing a non-speech signal like silence, a breathing 
or a noise, Voice Activity Detection (VAD) is applied. V A D is performed by discarding 
vectors where the non-speech posterior is the highest. The remaining feature vectors holding 
speech are merged together. If the number of remaining vectors is too small, the whole 
signal is discarded. The threshold was set to 10 speech frames. Shorter queries are harder 
to detect and cause a lot of false alarms devaluing an overall system performance. We 
applied V A D on queries only to eliminate silences at the beginning and at the end of speech 
incurred during manual recording of queries [12]. 

1 

k i l l Ik 

1 1 1 

1 

f i t * 
0 5000 10000 15000 r 1 20000 25000 30000 

sample [# 

Figure 4.1: Example of a query audio signal. The grey area marks samples corresponding 
to feature vectors that were recognized as non-speech and these are discarded after applying 
of VAD. 

To detect non-speech frames, we extracted 3 sets of phoneme posteriors with phnrec [16] 
phoneme recognizer using Czech, Hungarian and Russian systems. We experimented with a 
combination of these 3 VADs. The median and the average were performed. In Figure 4.1, 
an example of V A D applying to speech is shown. 
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Features dlogcos dlogcos + V A D 

SD CZ P O S T 0.1319/0.1915 0.2246/0.2744 
SD H U P O S T 0.1196/0.1821 0.2125/0.2995 
SD R U P O S T 0.1371/0.2050 0.2315/0.2765 
G P R U P O S T 0.0268/0.0864 0.1030/0.1906 
G P R U B N 0.0799/0.1578 0.1493/0.2519 

Table 4.1: Results shows that the application of VAD rapidly increases the performance for 
all features. VAD almost doubles the score in most cases. 

Experiments shows that non-speech frames cause a lot of false detections. A query 
containing segments with silence (or noise) matches to silent (noise) segments in an utter­
ance generating needless detections. The application of V A D reduces the number of false 
detections and boosts the score (see Table 4.1). 

Features dcorr dcorr + CZ V A D dcorr + H U V A D dcorr + R U V A D 

SD H U P O S T 0.2202/0.2941 0.4577/0.5417 0.4635/0.5426 0.4567/0.5400 
SD R U P O S T 0.1742/0.2494 0.4348/0.5149 0.4285/0.5114 0.4361/0.5233 

Features dcorr + avg V A D dcorr + rned V A D 
SD CZ P O S T 0.4398/0.5212 0.4398/0.5212 
SD H U P O S T 0.4577/0.5417 0.4577/0.5417 
SD R U P O S T 0.4341/0.5185 0.4341/0.5185 

Table 4.2: Comparison of VADs generated for different languages. The score enhancement 
slightly differs but is still significant for all Czech, Hungarian and Russian VADs. The 
average and the median of these 3 VADs are the same and do not improve the score much. 

After the investigation of different setups for V A D , we found out that VADs based on 
various languages give us almost the same results. The average and the median of these 3 
VADs do not affect the score. From now on, we select Hungarian V A D as the default one 
and it is applied to all of the following experiments. Complete results for all features can 
be found in Table A . l for SWS 2012 and in Table A.2 for SWS 2013. 
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4.2 Distance metrics 

Different metrics 8 for measuring distances between query-utterance vectors were used. 
The goal was to investigate which distance is the most efficient for different input fea­
ture vectors. 

The cosine distance dcos is defined as: 

a? c o s(u,q) = 1 - | u " . ' | q | . ( 4 J ) 

where • represents the dot product and |u| stands for the magnitude of vector u. The range 
of the dcos is given by the interval [0, 2] where 0 denotes identical vectors. 

The Pearson product-moment correlation distance dcorr is defined by: 

C M s ' " F l ¥ l ' ( 4 ' 2 ) 

where u represents the mean value of vector u. The range of the dcorr distance falls into 
the interval [0, 2] where 0 means identical vectors. Evidently, the only difference between 
the dcorr and the dCOs is that the input vectors are mean normalized within the dCOrr-

The Euclidean distance deuc is defined as: 

L 

J > ( 0 - q(*))2, (4.3) 
i=l 

where u(i) is the i-th element of vector u. The range of the deuc lies in the interval [0, +oo) 
where 0 stands for identical vectors. 

deuc(u, q) 
\ 

In addition to these distance metrics, several others were used in experiments without 
significant results (Bray-Curtis, Canberra, Chebyshev, Mahalanobis, Minkowski and the 
squared Euclidean). 

Features dcorr dcos deuc dlogcos dlogcos 

SD CZ POST 0.4398/0.5212 0.3739/0.4583 0.1748/0.2506 0.2975/0.3704 0.2923/0.3862 
SD HU POST 0.4577/0.5417 0.4079/0.4922 0.2056/0.2899 0.3081/0.3905 0.2916/0.3913 
GP RU POST 0.3662/0.4450 0.3336/0.4203 0.1270/0.2063 0.1030/0.1906 0.1087/0.1996 
GP RU BN 0.4193/0.5044 0.4208/0.5050 0.1062/0.1732 0.1522/0.2372 -

Table 4.3: Comparison of different distance metrics. The scoring metric was 
TWV/UBTWV and SWS 2013 dev database. 

The Pearson correlation was considered as the most robust distance metric regardless 
the input features as it gave us good results for all types of features (see Table 4.3). Later 
experiments show that the cosine distance worked better for bottleneck in general and 
the log-likelihood based on the cosine distance gave us the best results for posteriors (in 
QUESST 2014 database, see Table A.3). 

8http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance. 
cdist.html 
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4.3 Principle Component Analysis 

Principle Component Analysis (PCA) is a method converting the data with a correlation 
into a set of linearly uncorrelated data. A covariance matrix stores the covariance between 
vector elements of the input data. Eigenvectors of a covariance matrix defines the coordi­
nate bases where the data are decorrelated. Eigenvalues of a covariance matrix represents 
the variability in each dimension. The decorrelated data have a diagonal covariance matrix. 
A projection of several bases with a high variability can be performed to decrease dimen­
sionality of the data with a low information loss. The transformed data can be optimally 
reconstructed with a low mean square error [3] [16]. 

We analysed all input features and performed P C A on each of the sets to decorrelate 
feature vectors elements. The results can be found on attached D V D . A n example of an 
investigation of adapted bottleneck features is in Figure 4.2. 

0 5 10 15 20 25 
vector component [#] 

Figure 4.2: Histograms for the first 4 out of 30 elements of bottleneck feature vectors with 
adaptation (on the top). The correlation between the first vector element and the following 
ones (in the middle). The covariance matrix for adapted bottleneck features (in the bottom). 
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Features dcorr dcOTT ~T~ P C A. 
G P R U B N 0.3998/0.4829 0.3696/0.4519 

Features dcorr dcorr ~\~ P C A 
SD H U P O S T 55.08/0.518 46.48/0.611 
G P R U B N 51.90/0.539 43.03/0.618 

Table 4.4: PCA transformation of input features does not improve the overall score. Top 
table: SWS 2013 dev set and TWV/UBTWV. Bottom table: QUESST 2014 dev set and 
MTWV/C™™ for Tl query type. 

Since P C A transformation does not bring any interesting results, we do not apply it in 
further experiments. 

4.4 0/1 matrix normalization 

The 0/1 normalization is performed on the distance matrix. This matrix is normalized 
with regard to utterance U . Cell values of the matrix are comprised between 0 and 1. 
Distance matrices have the same range regardless the acoustic condition or the speaker in 
the utterance. Therefore, an optimal path should have a score close to zero. Formally [12]: 

d::r. i(u,q) 
dx(u,q) - dmin(q) 

dmaxiSA) dmin(c\) 

where dx(u, q) is one of the presented distance metrics and: 

4 i « ( q ) = min dx(u, q) 
ueu 

rfmaz(q) = max4(u, q) 
uGU 

(4.4) 

(4.5) 

(4.6) 
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Figure 4.3: Distance matrix calculated using the correlation distance 4.2 (on the left). 
The same distance matrix after 0/1 normalization (on the right). The color contrast shows 
that all cell values are comprised between value 0 and 1. 
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Features dcos dcos + 0/1 n. deuc deuc + 0/1 n. 

G P R U B N 0.4208/0.5050 0.3272/0.4116 0.1062/0.1732 0.0678/0.1427 

Features dcorr dcorr + 0/1 n. 

SD H U P O S T 0.4577/0.5417 0.3770/0.4598 

Table 4.5: 0/1 transformation of input features does not improve the overall score. SWS 
2013 dev set and TWV/UBTWV were used. 

No improvements were achieved by 0/1 normalizing the distance matrix. We do not 
normalize this way in later experiments. 

4.5 Fusion using concatenation of features 

The concatenation of extracted phoneme posteriors or bottlenecks was used as features. The 
vectors were simply stacked on each other to create a large feature vector. In particular, we 
created a concatenation of features from Czech, Hungarian and Czech phoneme decoders 
and all 7 languages for G P decoders. We tried several combinations and ended up fusing 
Czech, Portuguese, Russian and Spanish bottlenecks for QUESST database. 

Features dcorr 

SD H U P O S T (best single) 0.4577/0.5417 
SD fusion P O S T (CZ+HU+RU) 0.4599/0.5439 
G P R U P O S T 0.3662/0.4450 
G P fusion P O S T (71angs) 0.4049/0.4896 
G P R U B N 0.4193/0.5044 
G P fusion B N (71angs) 0.5122/0.5946 

Table 4.6: Fusion of input features improves score in all cases. The scoring metric was 
TWV/UBTWV and SWS 2013 dev database. 

The concatenation of input features works well. A fusion of the best single system with 
some other worse ones improves the score only a little in general. However, fusing several 
average systems enhances the score significantly. 

4.6 Fusion using parallel tokenizers 

The parallel tokenizer system includes several different tokenizers which are expected to 
complement each other. Each tokenizer extract features for input query and utterance and 
computes the distance matrix. Output matrices from all tokenizers are merged into one 
distance matrix then and D T W is performed [26]. The system is depicted in Figure 4.4. 
In our implementation, we used already extracted features from decoders to compute dis­
tance matrices and then these were merged together. 
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Figure 4.4: Parallel tokenizer system [26]. 

Features dcorr 

G P fusion B N (concat) 0.5122/0.5946 
G P fusion B N (parallel) 0.5120/0.5924 

Table 4.7: Fusion using parallel tokenizers yields results similar to the previous approach 
with the concatenation. 

Experiments showed that the concatenation of features and parallel systems returns 
similar score. The concatenation consumes more memory as all feature vectors are read 
simultaneously. The parallel tokenizers are more computationally complex as matrices are 
computed in parallel. We decided to use the concatenation for further evaluations as the 
default one. 

4.7 Summing of phoneme-states 

The decoders returns phoneme-state probabilities of 3 states for each of phoneme units at 
each frame. Adding the probabilities for each unit can be defined formally as [12]: 

Pi(t) = Y/PiAt), (4-7) 
Vs 

where PijS(t) is the probability of state s of unit i at frame t. 

Features dCorr dcorr + S U M 

SD CZ P O S T 0.4398/0.5212 0.3757/0.4568 
SD H U P O S T 0.4577/0.5417 0.4248/0.5068 

Table 4.8: Summing of states used for phoneme-state posteriors. 

Reducing the size of input feature vectors by summing the states probably leads to 
information loss and thus the score decreases. The summing was not used during later 
experiments. 
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4.8 Scaling of score 

Each query match score is normalized by the following formula [ ]: 

scorer, (4.8) 

where score corresponds to cumulated distance from the distance profile and j3 is the scaling 
factor. To calibrate the score distribution for each query, the standard zero mean and unit 
normalization was used: 

scorenorm /Xq 
scorecaUb 

(4.9) 

where /x q stands for mean and crq is a variance of all (or top) scores for query q. 

3 4 5 6 7 
G P CZ P O S T 0.3540 0.3543 0.3537 0.3532 0.3531 

Table 4.9: Results for different scaling factor j3 and the number of top scores = 400. The 
score is MTWV. 

# of top scores 50 100 200 400 800 1600 3200 6400 
G P CZ P O S T 0.3132 0.3423 0.3525 0.3537 0.3544 0.3538 0.3532 0.3524 

Table 4.10: Results for different number of top scores and scaling factor (3 = 5. The score 
is MTWV. 

Experiments shows the highest score was achieved for f3 = 4 and 800 top scores. How­
ever, the scaling does not outperformed the mode normalization so we left the mode as the 
default score normalization. 

4.9 Type 3 of query 

To deal with Type 3 query defined in QUESST database, we divided the matrices into sub-
bands. The searching for a query match was done in each sub-band separately. The number 
of sub-bands we experimented with was set to 2, 3 and 4 and this number follows possible 
number of words in a term. The width of sub-bands is equal and uniform. We expect 
that 2 words in a term are separated somewhere in the middle (which is not guaranteed by 
definition). We search for the single word in each sub-band then. The best detection from 
each sub-band is taken and scores are summed up. If the query contains only one word, the 
best detections from all sub-bands are linked to each other (see Figure 4.5). If the query 
consists of 2 words, each word is found elsewhere but the term is detected successfully. In 
the similar way, the detection works for more than 2 sub-bands. 
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test [frame 

Figure 4.5: Cumulative matrix is split in half and contains two sub-bands. 

Features dcorr + 1 band dcorr + 2 bands d m r r + 3 bands 
SD CZ POST 33.16(51.44/26.88/9.07) 28.89(38.04/19.34/20.58) 23.05(31.41/13.74/18.04) 

Table 4.11: Results for splitting of matrices into sub-bands to enhance search of query Type 
3. The scoring metric is MTWV. The numbers stand for overall score and Type 1/Type 
2/Type 3 scores in parentheses. 

As can be seen in Table 4.11, the overall score is decreasing with the growing number 
of sub-bands. On the other hand, the score for query Type 3 doubles for more than 1 
sub-bands which was our goal of this improvement. The problem is the degradation of 
scores for Type 1 and Type 2 queries. Since this upgrade causes worse score in general, this 
division of matrices was not used during final evaluations. 

4.10 Conclusion 

We described all investigated improvements or upgrades of the baseline system in detail. 
The first was the application of V A D . After experimenting with combinations of different 
VADs, the single V A D based on Hungarian language was chosen. We tried various dis­
tances. The cosine distance was the best for bottleneck features. The log-likelihood of the 
cosine distance worked the best with phoneme posteriors. However, the Pearson correlation 
provided good results for all used features so it was considered the most robust distance 
metric regardless the input. Next upgrade, P C A transformation, did not improve the score. 
Neither worked the normalization of a distance matrix. Both the concatenation and par­
allel tokenizers returned very similar and impressive results. The sum of phoneme states 
provided worse score. The scaling did not outperformed the baseline mode normalization. 
Last, we experimented with Type 3 of query. We improved the score for the given type but 
the overall score decreased. A n investigation of this phenomenon could be a part of future 
research and experiments. 
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Chapter 5 

Evaluation system 

In this chapter, we present the system participating in QUESST task in MediaEval 2014. 
This system was build by Igor Szoke and Lukas Burget and subsystems based on D T W 
were modified by the author of this thesis. The datasets and scoring metrics for evaluation 
are presented. The description of the system follows. The normalization and fusion of score 
is outlined. Last, the results are discussed. This chapter is adopted from [22]. 

5.1 Dataset and scoring metrics 

The QUESST 2014 data set is described in detail in Chapter 2. The primary scoring metric 
used for evaluation was normalized cross entropy Cnxe, the secondary metric was M T W V , 
both presented in Chapter 2. 

Data 

A t o m i c 
s y s t e m 

S u b s y s t e m 

N o r m a l i z a t i o n n o r m n o r m 

Ca l i b r a t i o n c a l i b c a l i b 

Fus ion 

c a l i b 

Fus ion 

D T W D T W D T W 

+ V 1 
n o r m n o r m n o r m 

V y y 
c a l i b c a l i b c a l i b 

O u t p u t d e t e c t i o n s 

Figure 5.1: BUT3 Query-by-Example system. Q means queries as an input, U stands for 
utterances as an input SD means SpeechDat atomic systems where the output are phoneme-
state posteriors, GP stands for GlobalPhone atomic systems where the output are bottleneck 
features [22]. 

Brno University of Technology 
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5.2 System overview 

B U T QbE system is depicted in Figure 5.1. The system consists of P O S T and B N ex­
tractors called atomic system. The extraction is outlined in Chapter 2. We used 7 atomic 
systems: 3x using phoneme-state posteriors, 4x bottleneck features. The phoneme posteri­
ors extractors were trained on SD database using Czech, Hungarian and Russian languages. 
The bottlenecks extractors were trained on G P database using Czech, Portuguese, Russian 
and Spanish languages. 

Two types of subsystems were exploited: first is based on A K W S (more in [19]) and 
the other on D T W . The input of each subsystem is feature vectors and the output is a set 
of detections. 

5.3 Score normalization and calibration 

The mode normalization was applied to normalize scores per query. The very best detection 
was selected for each query-utterance pair. The calibration was performed using the binary 
logistic regression. We used additional information (sideinfo) for the calibration. In addition 
to mode normalized score, the number of phonemes, the log of number of phonemes, the 
number of speech frames, the log of the number of speech frames, the average of log-posterior 
of speech frames obtained from V A D and the LID i-vector score (for more details see [22]). 

5.4 Fusion 

The fusion (concatenation) of features (denoted as 4fusion) is described in Chapter 4. We 
concatenated bottlenecks of 4 G P extractors. 

The other fusion using subsystems output fuses normalized and calibrated scores with 
the binary logistic regression linear classifier. 

5.5 Results 

In Table A.3, a comparison of presented distance metrics on the development dataset is 
shown. The 7 atomic systems for fusion were selected during experiments and adding extra 
systems does not improve overall score significantly. The best single system using features 
from a recognizer trained on Czech language matches Czech and Slovak part of the database 
which explains its highest accuracy. The overall evaluation results are shown in Table 5.1. 
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System ^nxe 1 ^nxe 

B U T 4fusion 
B U T G P C Z B N 
NTU-NPU-I2R 
E H U 
SPL-IT 
C U H K 
IIIT-H 

0.473 / 0.466 
0.536 / 0.528 
0.602 / 0.598 
0.621 / 0.599 
0.659 / 0.508 
0.683 / 0.659 
0.921 / 0.812 

Table 5.1: QUESST 2014 results for the evaluation dataset. The best systems for 6 out of 
15 registered participants are listed. Cnxe and C™" score for each system is presented. The 
winning system was BUT ^fusion system. The single system based on DTW and developed 
by the author (shown in bold) outperformed other participants according to Cnxe metric. 
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Chapter 6 

Conclusions and contribution 

The aim of this thesis was to investigate keyword spotting methods where the query is pro­
vided as an audio example. The requirement was to suggest and implement new techniques 
to improve the QbE system. 

The theoretical part of this thesis focused on outlining the bases of spoken term detection 
and keyword spotting methods. The textual STD was presented and the reasons for usage 
of QbE where the query is entered as a speech sample were explained. The QbE STD 
procedure was split into basic blocks and each block was detailed. 

The data sets used as an input for implemented system were presented. The extractors 
based on artificial neural networks exploited to generate speech features were described. 
We used the phoneme-state posterior probabilities and the bottleneck features. 

The definition of scoring metrics followed. The well-known T W V metric and associated 
A T W V , U B T W V and M T W V were used. The newly introduced metric called normalized 
cross entropy was defined. We found out that M T W V and cross entropy are corresponding 
metrics to each other: both rise or fall in similar rate for different experiments. 

The pattern matching method D T W was described. The algorithm consists of necessary 
matrices used for the standard D T W approach. In addition to these matrices, we used other 
ones to simplify the searching of detections at the cost of higher memory consumption. 
We also modified the way of the length normalization. We run experiments to set the 
reference for further improvement and upgrade of the baseline system. We found out 
that the logarithm based on the dot product did not work for bottleneck features in any 
experiment. 

The practical part of this thesis consists of several modifications of the baseline system 
followed by experimental testing. These modifications were based on the related work. One 
of the best improvements was achieved by applying V A D to discard non-speech fragments 
from speech features. We chose the V A D based on Hungarian language as it gave us the 
best results during experiments in long term. The different distance metric were tested. 
The best score for bottleneck features provided the cosine distance. The best results for 
phoneme-state posteriors yielded the log-likelihood of the cosine distance. The general 
metric was considered the Pearson correlation distance as it provided good results regardless 
the input features. To assess the best features, the posteriors extracted on SD database and 
Hungarian language returned very good results. The bottlenecks extracted on G P database 
and Czech languages performed well. The P C A transformation lead to decrease of score 
as well as the normalization of a distance matrix. The next impressive improvement was 
achieved by the concatenation of input features. We concluded a superiority of bottleneck 
features for this fusion. The other method using parallel tokenizers returns similar results. 
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We chose the first method due to its simple implementation. Several experiments were run 
to deal with the query Type 3 but with no applicable results. From the baseline to the final 
improved system, we achieved big increase of the system performance. 

The implemented system was a part (subsystem) of more complex system participating 
in QUESST evaluations in MediaEval 2014. The whole system using the fusion outper­
formed all the other participants. The single best system designed by the author achieved 
also excellent results and scored the second. 

6.1 Publications 

The results of this work have been presented at Excel@FIT 1 0 2015 Student conference of 
innovations, technologies and science in IT held by Faculty of Information Technology, Brno 
University of Technology [ ]. A printed version of the presented poster ( A l size, in Czech 
language) is attached to this thesis. The overall system description has been published in 
BUT QUESST 2014 System Description paper [21] in MediaEval Q U E S S T 1 1 2014 and a 
bit more detailed version is in Coping with Channel Mismatch in Query-by-Example - BUT 
QUESST 2014 paper [22] in I C A S S P 1 2 2015. 

6.2 Future work 

The future work could include the investigation of Type 2 and Type 3 of query. The task 
is to build a general system which could detect all three types in one run or search for each 
type separately and then combine the results in some clever way. Our approach was not 
adequate. 

The features are the next thing to focus on in the future since the D T W relies on the 
quality of its input. The generation of better features could lead to increase of the system 
performance. 

1 0http://excel, fit. vutbr.cz/ 
n ht tp : / / www.multimediaeval.org/mediaeval2014/quesst2014/  
12http://icassp2015.org/ 
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Appendix A 

Appendices 

A . l D V D contents 

The enclosed D V D contains pdf version of this thesis, latex source files for this thesis, all 
figures used in this thesis, the poster (all in doc folder), results for the input features analysis 
(histograms folder), P C A images (PC A folder), python and shell scripts (scripts folder). 
The directory structure of the D V D is following: 

/ 
+- doc 
I +- s r c _ l a t e x / 
I I +- f i g / 
I +- t h e s i s . p d f 
+- histograms 
+- pea 
+- s c r i p t s 

A.2 Scripts 

The attached scripts are used for D T W search, score normalization and calibration, plotting 
of histograms, matrices, covariance matrices, combination of V A D and many others. Scripts 
have the instructions for use in the header of the file. 
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SWS 2012 dev 
T W V U B T W V 

G P CZ B N + adapt + logcos + vad 0.1794 0.1187 
G P CZ B N + logcos + vad 0.1905 0.1262 
G P CZ P O S T + logdot + vad 0.1644 0.0894 
G P E N B N + adapt + logcos + vad 0.0701 0.0468 
G P E N B N + logcos + vad 0.0878 0.0353 
G P E N P O S T + logdot + vad 0.0417 0.0299 
G P G E B N + adapt + logcos + vad 0.0526 0.0224 
G P G E B N + logcos + vad 0.1169 0.0670 
G P G E P O S T + logdot + vad 0.0253 0.0076 
G P P O B N + adapt + logcos + vad 0.1859 0.1161 
G P P O B N + logcos + vad 0.1829 0.1349 
G P P O P O S T + logdot + vad 0.0794 0.0509 
G P R U B N + adapt + logcos + vad 0.1584 0.0889 
G P R U B N + logcos + vad 0.1611 0.1255 
G P R U P O S T + logdot + vad 0.0372 0.0171 
G P SP B N + adapt + logcos + vad 0.1691 0.1216 
G P SP B N + logcos + vad 0.1552 0.1195 
G P SP P O S T + logdot + vad 0.0944 0.0454 
G P T U B N + adapt + logcos + vad 0.1304 0.0776 
G P T U B N + logcos + vad 0.1089 0.0659 
G P T U P O S T + logdot + vad 0.0536 0.0256 
G P V I B N + adapt + logcos + vad 0.1349 0.0930 
G P V I B N + logcos + vad 0.0875 0.0713 
G P V I P O S T + logdot + vad 0.0776 0.0465 

Table A . l : Results of the baseline system for SWS 2012 data set. 
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SWS 2013 dev SWS 2013 eval 
T W V U B T W V T W V U B T W V 

SD CZ P O S T + logcos + vad 0.2246 0.2744 - -
SD CZ P O S T + logdot + vad 0.2038 0.2946 - -
SD H U P O S T + logcos + vad 0.2125 0.2995 - -
SD H U P O S T + logdot + vad 0.1675 0.2790 - -
SD R U P O S T + logcos + vad 0.2315 0.2765 - -
SD R U P O S T + logdot + vad 0.2500 0.3379 - -
G P CZ B N + adapt + logcos + vad 0.1898 0.2858 0.1250 0.2234 
G P CZ B N + logcos + vad 0.2705 0.3724 0.2099 0.3166 
G P CZ P O S T + logdot + vad 0.3154 0.4170 0.2474 0.3719 
G P E N B N + adapt + logcos + vad 0.0787 0.1905 0.0383 0.1496 
G P E N B N + logcos + vad 0.1164 0.2262 0.0885 0.1928 
G P E N P O S T + logdot + vad 0.1041 0.2212 0.0767 0.1831 
G P G E B N + adapt + logcos + vad 0.0557 0.1623 0.0339 0.1337 
G P G E B N + logcos + vad 0.1179 0.2252 0.0919 0.1839 
G P G E P O S T + logdot + vad 0.0850 0.2081 0.0593 0.1667 
G P P O B N + adapt + logcos + vad 0.2100 0.3094 0.1527 0.2507 
G P P O B N + logcos + vad 0.1770 0.2681 0.1011 0.1908 
G P P O P O S T + logdot + vad 0.1039 0.2259 0.0609 0.1822 
G P R U B N + adapt + logcos + vad 0.1514 0.2507 0.1079 0.2058 
G P R U B N + logcos + vad 0.1493 0.2519 0.0884 0.1943 
G P R U P O S T + logdot + vad 0.0369 0.1442 0.0215 0.1241 
G P SP B N + adapt + logcos + vad 0.1995 0.2980 0.1286 0.2259 
G P SP B N + logcos + vad 0.1508 0.2666 0.0935 0.1941 
G P SP P O S T + logdot + vad 0.1521 0.2697 0.1033 0.2155 
G P T U B N + adapt + logcos + vad 0.1364 0.2413 0.1131 0.2147 
G P T U B N + logcos + vad 0.0971 0.1924 0.0642 0.1573 
G P T U P O S T + logdot + vad 0.0676 0.1680 0.0353 0.1456 
G P V I B N + adapt + logcos + vad 0.1460 0.2404 0.1138 0.2157 
G P V I B N + logcos + vad 0.0854 0.1941 0.0423 0.1402 
G P V I P O S T + logdot + vad 0.1326 0.2299 0.0811 0.1894 

Table A.2: Results of the baseline system for SWS 2013 data set. 
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Approach corr cos euc logcos logdot 
SD CZ P O S T 0.687(0.534/0.761) 

33.35(51.71/28.37) 
0.768(0.633/0.829) 
25.14(40.43/20.07) 

0.852(0.806/0.863) 
11.26(18.23/9.24) 

0.649(0.453/0.724) 
29.51(52.78/23.51) 

0.658(0.460/0.735) 
29.42(52.61/23.72) 

SD H U P O S T 0.646(0.505/0.711) 
37.26(55.36/31.34) 

0.712(0.584/0.767) 
30.37(46.77/26.03) 

0.805(0.731/0.827) 
15.43(25.18/12.16) 

0.679(0.510/0.752) 
28.94(47.85/25.35) 

0.691(0.523/0.765) 
28.96(48.28/24.56) 

SD R U P O S T 0.653(0.509/0.707) 
36.60(54.44/31.77) 

0.706(0.557/0.771) 
31.81(48.47/27.04) 

0.789(0.712/0.820) 
17.87(29.57/14.94) 

0.652(0.495/0.720) 
31.00(51.09/27.73) 

0.662(0.510/0.727) 
30.77(50.13/27.47) 

G P CZ B N 0.593(0.435/0.654) 
42.71(61.32/37.57) 

0.585(0.425/0.651) 
42.30(60.49/38.72) 

0.777(0.672/0.809) 
14.83(28.16/12.14) 

0.722(0.601/0.771) 
24.93(42.07/21.35) 

-

G P P O B N 0.659(0.536/0.709) 
36.17(51.31/30.33) 

0.650(0.522/0.707) 
36.45(52.03/31.20) 

0.882(0.830/0.900) 
4.53(11.19/2.67) 

0.819(0.750/0.847) 
13.43(25.32/11.36) 

-

G P R U B N 0.668(0.533/0.726) 
35.11(51.84/30.45) 

0.658(0.516/0.723) 
35.65(52.98/32.04) 

0.862(0.800/0.882) 
8.53(16.91/7.88) 

0.814(0.726/0.848) 
13.54(26.76/8.61) ; 

G P SP B N 0.673(0.558/0.716) 
35.56(50.28/31.62) 

0.663(0.540/0.715) 
35.33(50.52/31.85) 

0.849(0.773/0.867) 
10.81(19.03/10.42) 

0.822(0.741/0.853) 
12.57(24.74/10.18) 

-

G P C Z + P O + R U + S P B N 
4fusion 

0.586(0.432/0.649) 
44.63(60.99/39.35) 

0.579(0.418/0.652) 
44.75(61.83/40.05) 

0.761(0.671/0.786) 
18.89(32.84/18.44) 

0.713(0.601/0.758) 
25.22(41.04/22.85) _ 

Table A.3: Results of the improved system for QUESST 2014 database. The score in front of parenthesis is score for all queries on dev 
set, the number in parenthesis for Type 1/Type 2 query. The scoring metric stands for C™" (top) and MTWV (bottom). 
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Figure A . l : Split matrices in half were used to search for Type 3 of query. 
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