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ABSTRACT
This bachelor’s thesis focuses on analysis of osteolytic lesions in patients with multi-
ple myeloma. The first step in achieving our goal was to research this disease, its
diagnostic criteria, possible complications and available treatment. The practical part
consisted of a few individual tasks. A statistical analysis was done on a dataset consisting
of CT scans of patients with diagnosed multiple myeloma as well as individuals with no
spinal pathologies. After extracting and reducing the number of features, we completed
an analysis of obtained data. We came to a conclusion that there are features that vary
significantly among the two groups. After analyzing the whole vertebral bodies, analysis
of lesions in follow-up scans was completed, where their volume was analyzed.

KEYWORDS
multiple myeloma, computed tomography, osteolytic lesions, feature extraction, ra-
diomics, statistical analysis

ABSTRAKT
Táto bakalárska práca sa zameriava na analýzu osteolytických lézií u pacientov s mno-
hopočetným myelómom. Prvým krokom k dosiahnutiu nášho cieľa bolo štúdium tohto
ochorenia, jeho diagnostických kritérií, možných komplikácií a dostupnej liečby. Praktická
časť pozostávala z niekoľkých samostatných úloh. Štatistická analýza bola vykonaná
na súbore údajov pozostávajúcom z CT skenov pacientov s diagnostikovaným mnohopo-
četným myelómom, ako aj osôb bez akejkoľvek patológie chrbtice. Po extrakcii a redukcii
počtu príznakov sme dokončili analýzu získaných dát. Dospeli sme k záveru, že existujú
príznaky, ktoré sa medzi týmito dvoma skupinami výrazne líšia. Po analýze celých tiel
stavcov bola vykonaná analýza lézií na kontrolných snímkach, kde bol analyzovaný ich
objem.

KĽÚČOVÉ SLOVÁ
mnohopočetný myelóm, počítačová tomografia, osteolytické lézie, extrakcia príznakov,
rádiomika, štatistická analýza

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz


ROZŠÍRENÝ ABSTRAKT
Táto bakalárska práca sa zaoberá analýzou osteolytických lézií u pacientov s mno-

hopočetným myelómom na CT dátach. Práca pozostáva z teoretickej a praktickej
časti. V teoretickej časti sme sa venovali samotnému ochoreniu, využitiu počítačovej
tomografie pri jej diagnostike a základom rádiomiky. Mnohopočetný myelóm je druh
rakoviny kostnej drene, ktorý postihuje najmä stavce, hrudnú kosť a panvu. Paci-
enti s mnonohopočeným myelómom často trpia neznesiteľnými bolesťami, ktoré sú
jedným z hlavných príznakov ochorenia. Medzi ďalšie prejavy choroby patrí anémia,
hyperkalcémia a tvorba osteolytických lézií. Tieto lézie boli objektom našej analýzy.
Lézie sa na CT obrazoch vyznačujú tmavším zafarbením, čo otvára rôzne možnosti
analýzy daných obrazov. Aj keď medicína ponúka viacero možností zmiernenia
príznakov mnohopočetného myelómu, v súčasnej dobe ide stále o nevyliečiteľnú
chorobu. Pri diagnostike mnohopočetného myelómu sa postupuje podľa presne
určených krokov a neodmysliteľnú úlohu hrajú zobrazovacie systémy ako CT, MRI a
PET/CT. Rádiomika je úzko spätá s lekárskymi zobrazovacími technikami. Ponúka
rôzne prístupy ako získať z obrazových dát informácie, ktoré môže byť pre ľudské
oko neviditeľné, avšak môžu byť rozhodujúcim faktorom pre stanovenie správnej
diagnózy a nastavenie vhodnej liečby.

Praktická čať práce je rozdelená do dvoch celkov. Pred samotnou analýzou bolo
potrebné zozbierať vhodné dáta a upraviť ich pre potreby našej analýzy. Pracov-
ali sme s dvoma rôznymi datasetmi. Prvý dataset obsahoval klinické dáta. Dáta
boli získané z Fakultnej nemocnice Brno, poskytnuté Klinikou radiologie a nukleární
medicíny. V rámci stáže boli dáta anonymizované, aby sa zabezpečila ochrana os-
obných údajov pacientov. Dataset pozostával z dát od desiatich osôb bez patológie
chrbtice a desiatich pacientov s mnohopočetným myelómom. Neskôr boli zozbier-
ané aj dáta niekoľkých pacientov s kontrolnými vyšetreniami, na ktorých je možné
pozorovať vývoj choroby v čase a posudzovať účinnosť liečby. Okrem samotných
CT skenov sme mali k dispozícií rôzne parametrické obrazy a segmentačné masky.
Väčšina skenov boli celotelové CT obrazy, niektoré však obsahovali len skeny krčnej
a hrudnej časti chrbtice.

Druhým použitým datasetom bola verejne dostupná databáza CT skenov bedrovej
časti chrbtice. Dataset pozostával z 185 CT skenov a ich segmentačných masiek
stavcov, ktoré nezahrňovali výbežky ani okosticu. Na rozdiel od klinických dát,
skeny neobsahovali žiadne patológie a pacietni s akoukoľvek anomáliou chrbtice (im-
plantáty, lézie, nádory) boli z datasetu vyradení.

Prvá časť je venovaná analýze tiel postihnutých ako aj zdravých stavcov. Kvôli
výpočetnej náročnosti bolo výhodné si pred samotnou analýzou stavcov jednotlivé
stavce vyextrahovať zo skenov. Takto sme zabezpečili, že namiesto veľkého objemu
dát sme pracovali s menšími celkami, čo bolo časovo výhodnejšie. Na extrakciu



stavcov z obrazov boli použité dva samostatné postupy, ktoré boli nakoniec navzájom
porovnávané. Prvý prístup spočíval v manuálnej extrakcii stavcov použitím ich
priestorových súradníc. Tento postup bol časovo náročný a nevedeli sme zaručiť, že
z obrazu dostaneme presne nami požadovanú časť bez toho, aby sme extrahovali aj
výbežky alebo okosticu.

V druhom prístupe sme na segmentáciu tiel stavcov využili model strojového
učenia založený na nnU-Net modele. Verejne dostupná databáza bola v pomere
80:20 rozdelená na trénovacie a testovacie dáta. Účinnosť modelu bola vyhodnotená
na testovacích dátach s využitím metriky Dice a Housdorffovej vzdialenosti. Na
testovacích dátach sme dosiahli relatívne vysokú presnosť, s mediánovými hodno-
tami Dice 0.980 a Housdorffovej vzdialenosti 2.159. Model bol následne aplikovaný
na klinické dáta a výsledky boli vyhodnotené vizuálne. Pri stavcoch obsahujúcich
anomálie bol pozorovaný pokles presnosti, čo bol predpokladaný výsledok. Správne
segmentované stavce boli použíté pre ďalšiu analýzu.

Ďalším krokom bola štatistická analýza jasových hodnôt stavcov. Účelom bolo
zistiť, či je medzi zdravými a postihnutými stavcami štatisticky významný rozdiel.
V tejto časti sme používali len stavce vysegmentované naučeným modelom stro-
jového učenia. V porovnávaní sme využili okrem konvenčných CT skenov aj dos-
tupné parametrické obrazy, ako sú obrazy s potlačením vápnika a monoenerget-
ické obrazy. Pre lepšiu predstavu bolo zhotovených niekoľko krabicových grafov na
porovnanie zdravých a postihnutých stavcov. V grafoch boli jasne pozorovateľné
rozdiely medzi týmito dvoma skupinami. Využitím štatistického testu bola potvr-
dená štatistická významnosť týchto rozdielov. S vedomím toho, že tieto dve skupiny
sa od seba štatisticky významne líšia, sme pristúpili k ďalšej analýze.

Na získanie rádiomických príznakov bola použitá knižnica Pyradiomics, ktorá je
často využívaná na analýzu medicínskych obrazových dát. Príznaky boli extraho-
vané zo stavcov osôb bez akejkoľvek patológie chrbtice, ako aj zo stavcov pacientov,
ktorým bola choroba v minulosti diagnostikovaná. Za účelom lepšieho porovnania
boli vyselektované stavce s viditeľnými patológiami. Použili sme stavce segmento-
vané oboma použitými prístupmi a porovnali sme, ako sa budú výsledky analýzy
medzi sebou odlišovať.

Na príznakoch bola vykonaná analýza hlavných komponentov, aby sme zistili,
či sa od seba dve skupiny stavcov svojimi príznakmi odlišujú. Vizualizáciou bolo
potvrdené, že náš predpoklad je správny a vytvorili sa dva jasne odlíšiteľné zhluky.
V prípade stavcov segmentovaných pomocou modelu strojového učenia boli zhluky
lepšie ohraničené a v prípade zdravých stavcov sme pozorovali aj rozdiel medzi hrud-
nými a bedrovými stavcami. S využítím random forestu sme boli schopní stanoviť
významnosť jednotlivých príznakov, ktoré by boli využiteľné pri trénovaní klasifiká-
tora. Aj v tejto analýze sme pozorovali rozdielnu váhu príznakov medzi manuálne



extrahovanými stavcami a stavcami segmentovanými modelom strojového učenia.
Posledným celkom praktickej časti bola analýza kontrolných skenov. Pre účely

analýzy boli vybraní dvaja pacienti. Pri oboch pacientoch sme si vyselektovali tri
lézie, ktoré boli dobre ohraničené a pozorovali sme ich zmenu. Skeny boli vytvorené
s odstupom troch mesiacov, čo je pri takýchto pacientoch štandardná doba medzi
kontrolnými vyšetreniami. Prvým krokom bola analýza objemu jednotlivých lézií.
Pri léziách získaných od jedného pacienta sme pozorovali kladnú aj zápornú zmenu
objemu a rôzny percentuálny nárast alebo zmenšenie. Podobný scenár sa opakoval
aj pri léziách extrahovaných zo skenu druhého pacienta. Na základe tohto nemôžeme
spoľahlivo posúdiť účinnosť liečby. Okrem objemu lézií boli analyzované aj zmeny
v priemere a smerodatnej odchylke jasových hodnôt. Podobne ako predtým sme
pozorovali rôzne zmeny u rovnakého pacienta. Okrem skutočnej zmeny objemu
a jasových hodnôt lézií môžu byť zmeny zapríčinené aj nesprávnou segmentáciou
hraničných oblastí. Na záver sme vyhotovili zoznam príznakov s najväčšou per-
centuálnou zmenou medzi prvým a kontrolným skenom.

Veríme, že práca bola spracovaná zrozumiteľne a všetky kroky vedúce k výsled-
kom sú riadne popísané a pochopiteľné. Jednotlivé kroky sú ľahko zreproduko-
vateľné. Analýza obrazov hrá v medicíne významnú rolu a dúfame, že aj táto práca
môže byť spôsobom, ako čitateľovi prilížiť možnosti využitia rádiomických príznakov
pri diagnostike rôznych patológií. Ďalším možným krokom by bolo natrénovanie
klasifikátora na vyhodnotenie stavu stavca na základe našich výsledkov.
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Introduction
Cancer stands as one of leading causes of mortality worldwide. It is often de-
tected through the presentation of symptoms. Its early detection and intervention
is crucial. Multiple myeloma is a type of cancer that starts in the bone marrow,
where blood cells are made. Specifically, it affects a type of cell called plasma cells.
These cells normally help fight infections, but in multiple myeloma, they grow out
of control. This can lead to problems like weak bones, anemia, and trouble fighting
infections. Though it’s a serious condition, treatments like medications, chemother-
apy, and sometimes stem cell transplants can help manage it and improve quality
of life. [1, 2]

Advancements in technology have transformed cancer diagnosis, with radiomics
standing out as an innovative area. This field harnesses sophisticated imaging tech-
nologies such as MRI, CT scans, and PET scans to produce highly detailed body im-
ages. Radiomics goes beyond simple imaging, using complex algorithms and software
to process and evaluate these images. It uncovers hidden patterns or characteristics
that often go unnoticed by humans, enhancing tumor detection and characteriza-
tion. By extracting information from medical images, radiomics offers the potential
to tailor treatments, predict outcomes, and enhance overall cancer management. [3]

This bachelor’s thesis focuses on utilizing radiomics in the statistical analysis
of multiple myeloma lesions on CT scans. We use data from patients being treated
for multiple myeloma as well as individuals with no spinal pathologies. Comparing
these two groups gives us a better insight into what radiomic features are crucial
to consider and which ones are, on the other hand, not important and can be skipped.
In this bachelor’s thesis, we work with two different datasets - a publicly available
dataset and a dataset consisting of clinical data. These CT scans were used to extract
vertebral bodies, which are later used for the analysis itself. Statistical analysis
was performed to explore the differences between healthy and affected vertebrae.
The last part of the thesis deals with follow-up scans where we examine the changes
in the lesions over a period of three months.
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1 Spine anatomy
The human spine, known interchangeably as the vertebral column or backbone, is
composed of small bones known as vertebrae. These vertebrae are named according
to their position along the length of the spinal column. In all, the spine encompasses
33 to 34 vertebrae, which are organized into five groups: [4]

• 7 cervical vertebrae,
• 12 thoracic vertebrae,
• 5 lumbar vertebrae,
• 5 sacral vertebrae fused into 1 sacrum,
• 4 to 5 coccygeal vertebrae fused into 1 coccyx.
Cervical vertebrae serve to support the head and enable its mobility. Thoracic

vertebrae form connections with the ribs, while lumbar vertebrae, the spine’s largest
and most robust bones, lie between the rib cage and the pelvis. The sacrum connects
with the hip bones, and the coccyx, known as the tailbone, marks the vertebral
column’s concluding segment. Additionally, certain muscles of the pelvic floor are
anchored to the coccyx. [4]

Ligaments connect all the vertebrae to create a flexible backbone that offers suf-
ficient support for the entire body. Intervertebral discs separate adjacent vertebrae,
acting as cushions and facilitating movement between them. Moreover, the spine
serves as a protective encasement for the spinal cord housed within the vertebral
canal. A healthy spine has four inherent curves, named after the vertebrae that form
them: thoracic kyphosis, cervical lordosis, lumbar lordosis, and sacral kyphosis. [4]

1.1 Vertebrae anatomy
Vertebrae exhibit variations in shape and size based on their location along the spine.
Despite these variances, they share a largely similar structure. Each vertebra consists
of three components: a body, a vertebral arch, and processes. The body of the ver-
tebra bears the weight of the body, with its size and thickness increasing progres-
sively down the spinal column. Situated in the posterior portion of each vertebra,
the vertebral arch consists of four parts: the right and left pedicles, and the right
and left laminae. The spacious opening between the vertebral arch and body houses
the spinal cord. Additionally, seven processes arise from most of the vertebrae, serv-
ing as vital sites for muscle attachment. These processes also facilitate the formation
of slightly movable joints between adjacent vertebrae [6]. Fig. 1.1 shows the ver-
tebral column from anterior, right lateral and posterior view. Fig. 1.2 shows parts
of a typical vertebrae.
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Fig. 1.1: Vertebral column anatomy [5].

Fig. 1.2: Parts of a typical vertebrae [6].

1.2 Spinal diseases
The term spinal disease refers to a range of conditions or disorders that affect
the backbone. While some spinal diseases garner more recognition than others, they
all cause a level of discomfort to the affected individual. Here, we will highlight a few
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of these conditions, focusing on those most familiar to the general population.

Scoliosis

Scoliosis refers to a sideways curvature of the spine, commonly identified during
adolescence. The cause of most childhood scoliosis is unknown. While certain
instances may begin mildly, the curvature can significantly exacerbate as children
continue to grow. Severe scoliosis cases can result in disability, giving rise to various
medical complications, such as compromised lung function due to reduced chest
space. [7]

Lumbar spinal stenosis

Lumbar spinal stenosis involves the narrowing of the spinal canal in the lower back
region, which results in the compression of nerves extending from the lower back
down to the legs. Stenosis may arise from various factors, including injuries or os-
teoarthritis. Additionally, some individuals may develop spinal stenosis due to con-
genitally narrower spinal canals. [8]

Spinal tumors

Just like any other kind of tumor, the term spinal tumor refers to an abnormal
growth of tissue in the area of the spine. Tumors can exhibit either benign or malig-
nant characteristics. Those originating directly within the spine or spinal cord are
termed primary tumors. Conversely, cancerous tumors elsewhere in the body can
spread to the spine, resulting in secondary tumors. [9]

Bone tumors are categorized into osteoblastic, osteolytic, and mixed types. Os-
teolytic lesions signify an imbalance in bone remodeling, where bone breakdown sur-
passes bone formation. Consequently, bones become fragile and susceptible to patho-
logical fractures. This condition significantly impacts patients’ quality of life, often
accompanied by severe bone pain. On the other hand, osteoblastic lesions develop
due to an excess formation of bone tissues. This leads to bones being very dense
and deformed. In these instances, bone formation happens faster than bone resorp-
tion, causing an abnormal proliferation of the affected bone tissue. [10, 11]
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2 Multiple myeloma

2.1 Overview
Multiple myeloma (MM) is a form of bone marrow cancer and is the most prevalent
cancer affecting the skeletal system. MM triggers the development of osteolytic bone
lesions, areas of compromised bone tissue that weaken the bone and increase fracture
risk. Common symptoms of MM typically involve severe bone pain, hypercalcemia,
spinal cord compression, and pathological fractures. [1]

MM can affect any bone, but the dominant areas of occurrence are bones con-
taining a higher quantity of red marrow. Consequently, bones such as the vertebral
bodies, skull, pelvis, and ribs are particularly susceptible to MM. [1]

2.2 Myeloma bone disease
Multiple myeloma bone disease (MMBD) is characterized by impaired bone forma-
tion and increased bone resorption. One of the causes is that the osteoblast activity
is severely decreased or completely absent and the bone destruction is increased due
to increased osteoclast activity. To make matters worse, bone scans in patients with
MM can often underestimate the severity of the disease and the lesions are extremely
hard to heal. MM bone lesions typically present with a distinctive ’punched-out’
appearance on X-rays. [1]

2.3 Prevalence, presentation and diagnosis
Clinical presentation of MM varies among patients, making it challenging to identify
initially. In addition to this, approximately 11 % of all MM patients are initially
asymptomatic which only makes it easier to miss [1]. In such instances, the disease
is typically diagnosed through routine laboratory tests. However, this approach
may result in delays, potentially leading to treatment initiation when it’s already
too late. Because of this, there are a few criteria when diagnosing MM. Even if
a patient doesn’t exhibit all criteria, or if the presentation is uncertain, prompt
treatment initiation is vital to reduce the risk of end-organ damage. [1]

In nearly all cases, MM is preceded by an asymptomatic premalignant phase
known as monoclonal gammopathy of undetermined significance (MGUS) [12]. MGUS
is present in about 3-4 % of the population above the age of 50. According to [12],
having a BMPC (bone marrow plasma cell percentage) of at least 60 % means that
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the individual has a notably high risk of progression. With this knowledge, the pro-
tocol dictates that these patients should be considered to have multiple myeloma
and offered appropriate treatment. One of the most prevalent initial symptoms is
bone pain, experienced by roughly two-thirds of patients [12].

The vast majority of MM patients are elderly. According to [1] a median age
at diagnosis is 69 and a median age at death is 74. Even though the treatment of MM
has made a long way over the last few years, the disease still remains incurable.

2.4 Diagnosis criteria
As mentioned above, the early diagnosis is crucial in any type of cancer. MM
patients often time present with a set of symptoms, also referred to as CRAB features
(calcemia, renal failure, anemia, bone lesions). [13]

2.4.1 Hypercalcemia

Hypercalcemia in multiple myeloma is caused by bone destruction from osteolytic
tumor lesions. Calcium released from damaged bone tissue enters the extracellular
fluid. Additionally, renal insufficiency, common among MM patients, leads to in-
adequate calcium excretion, resulting in calcium accumulation in the body. Symp-
toms associated with hypercalcemia include nausea, vomiting, confusion, depression,
anorexia, constipation, and eventually coma. In MM patients, hypercalcemia typ-
ically indicates uncontrolled disease or resistance to current therapy, although not
all MM patients experience hypercalcemia. Treatment for hypercalcemia generally
involves hydration and either a bisphosphonate or RANKL inhibitor. Addressing
the underlying cause is crucial, beginning with fluid replenishment followed by ad-
ministration of an anti-hypercalcemic medication. [13]

2.4.2 Renal failure

Renal failure (RF) stands as one of the most prevalent and severe complications asso-
ciated with MM. The destruction of the bone marrow microenvironment leads to ex-
cessive production of monoclonal immunoglobulins. RF may result from an abun-
dance of these immunoglobulins or other factors such as hypercalcemia, infection,
etc.[14]

RF is a medical emergency, which requires measures to be taken as soon as pos-
sible. Because of the severity of the issue and the potential damage it can cause
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to the whole body, various potential mechanisms of RF are usually addressed simul-
taneously. General measures include hydration with urinary alkalization. Chemother-
apy should also be started as soon as possible, however, the drugs used must not
be excreted through the kidneys. Despite implementing these general measures, im-
provement may not always be evident. In such instances, renal replacement therapy
or dialysis may be required. [14]

2.4.3 Anemia

According to [15] around 60-70 % of MM patients have anemia at the time of their
diagnosis and almost all of them will experience it at some point during the course
of the disease. The most common causes of anemia in MM are anemia of chronic dis-
ease, relative erythropoietin deficiency, and myelosuppressive effects of chemother-
apy. Treatment options usually include red blood cell transfusions and recombinant
human erythropoietin. [15]

2.4.4 Bone lesions

In a healthy skeleton, there is a balance between the breakdown of old bone tis-
sue (osteoclasts) and the building of new bone tissue (osteoblasts). MM disrupts
this balance by producing osteoclast-activating factors and inhibiting the formation
of osteoclasts. This leads to uncontrollable breakdown of the bone. As previously
mentioned, multiple myeloma weakens bones, making them more susceptible to frac-
tures. The bones most frequently affected include the spine, pelvis, ribs, skull, and
the long bones of the limbs. Multiple myeloma bone disease can also lead to spinal
cord compression due to pressure exerted on the spinal cord [16]. According to [16],
70 % of MM patients have bone loss in the spine.

The initial stage of lytic lesions is called focal lesions. Focal lesions are abnormal
areas in the bone marrow. These areas signal the development of lytic lesions.
Typically, lytic lesions appear within the subsequent 18-24 months. Even if a patient
exhibits no symptoms, the presence of more than one focal lesion of at least 5 mm
in size on an MRI scan constitutes a myeloma-defining event, and the patient should
be treated for active disease. [16]

Lytic lesions are areas where the bone tissue has been destroyed, leaving a hole
in the bone. Some lytic lesions in specific bones may necessitate surgical interven-
tion to fortify and stabilize the bone. The International Myeloma Working Group
(IMWG) defines the minimal amount of bone damage that requires surgery. The two
requirements are: [16]

• more than one focal lesion, measuring 5 mm or more in size on MRI or
• one or more lytic bone lesions detected on CT scan.
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3 Computed tomography

3.1 Introduction
Wilhelm Röntgen’s discovery of X-rays marked a significant advancement in diagnos-
tic imaging. Despite its undeniable advantages, over time, the limitations of X-ray
technology became increasingly apparent. Early applications of X-rays in imaging
involved positioning an X-ray source opposite a radio-sensitive film, with the subject
placed between them. However, this setup significantly compromised the diagnostic
value of the scan. Information along the projection axis was eliminated, resulting
in the loss of vital details about the subject’s internal structure. [17]

Radon transform, formalized by Johann Radon, offers a means to mathematically
reconstruct a 2D function from an infinite series of projections of that function.
This method enables the extraction of information about the internal structure
of the imaged subject. [17]

The first person to produce an image by using different projection angles was
William Oldendorf in 1963. He came up with a completely new technique of record-
ing the data as the source and the film were rotated around the subject. This innova-
tive approach led to the creation of what is now recognized as a sinogram. However,
Oldendorf’s work did not involve the reconstruction of the sinogram into images.
[17]

Credit for this achievement goes to Godfrey Hounsfield. He was the first one
to implement the reconstruction of the image by using the measured projections
as solutions to linear equations describing the attenuation of a discretized volume
of the scanned body along the path of the beam. The research of the principles
of the CT machine did not stop there. Shortly after the invention of the CT machine
as we know it today, it was discovered that using multiple scanning energies is
also beneficial. By implementing this, the physical properties of the material being
scanned, such as density and atomic number can be obtained. Originally, it was
observed that it is possible to decompose a CT scan into a set of N basis materials,
given that you measure the data at N different energies. When talking about dual-
energy CT, naturally, N = 2. But we can also go higher and increase the number
of different energies. So, if N > 2, we are talking about multi-spectral CT. It was
later found that in reality, you can decompose the image into N + 1 basis materials.
[17]
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3.2 Computed tomography principle
As previously stated, the fundamental principle of CT revolves around photon atten-
uation. When a photon interacts with the subject under examination, two outcomes
are possible: absorption within the medium or scattering away from the original
beam trajectory. Consequently, a beam of photons experiences attenuation as it tra-
verses through a medium. This decrease of energy is characteristic of the medium.
We can describe this using Beer-Lambert law [17]:

𝐼 =
∫︁

𝐼0 (𝐸) 𝑒−
∫︀

𝜇(𝐸,𝑠)𝑑𝑠𝑑𝐸, (3.1)

where I represents the intensity of the photon beam detected by the sensor after it
passes through the imaged subject, I0(E) stands for the original intensity of the beam
at each energy level, µ(E,s) represents the linear attenuation coefficient, indicating
the likelihood of photon interaction per unit distance at a specific energy level,∫︀

ds represents the integral along the path traversed by the photon beam,
∫︀

dE
is the integral across the energy range within which the photon source emits photons.
[17]

The likelihood of photon interaction with matter depends on two things - the ma-
terial the photon passes through and the photon’s energy level. This enables us
to distinguish between materials within a scan. To grasp this concept better, we
should first look into the definition of a HU (Hounsfield unit). [17]

HU is a dimensionless unit used in CT. It expresses the attenuation for the ma-
terial scanned, scaled relative to the difference between the linear attenuation coef-
ficients of water and air. Biological materials usually range anywhere from -700 HU
for a lung to 1800 HU for bone tissue [17]. It is defined as:

𝐻𝑈 = 1000 𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟 − 𝜇𝑎𝑖𝑟

, (3.2)

where µstands for the linear attenuation coefficient of the material, µwater and µair

stand for the linear attenuation of water and air.
As mentioned above, computed tomography measures the transmission of the imag-

ing source at many different angles. This can be achieved either by rotating the sub-
ject or the X-ray tube and detector. This approach produces a set of projection data
per imaging angle. The collection of the data is called a sinogram. A sinogram is
later used to reconstruct a 2-D image. [17]

The practical application of a CT scan follows the principles we’ve previously
outlined. The patient is positioned on a table within the CT machine gantry, where
an X-ray source and detector are situated, facing each other. These components
rotate around the patient, capturing projection data from various angles. After each
rotation, the table moves slightly through the gantry, and another set of projection
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data is acquired. This process is repeated until the desired area of the body has been
scanned. [17]

In technical terms, the CT machine includes several key components, with the three
primary ones being the X-ray tube, the detector, and the collimators. The X-ray
tube functions as the source of photons, while collimators shape the photon beam
to the desired geometry for imaging. Additional filters may be used to eliminate
lower energy photons, which are less diagnostically relevant. [17]

3.3 Dual energy computed tomography
As the name suggests, dual energy computed tomography uses two different X-ray
energy spectra. This allows us to record energy-dependent changes in attenuation.
Different materials exhibit a specific change in attenuation at different energy levels.
This fact allows us to better characterize the examined tissue. The implementation
of different energy spectra can be accomplished through various methods, classified
as either dual-source or single-source dual-energy computed tomography techniques.
Dual source CT uses two detectors and two sources, positioned opposite each other
in corresponding pairs of source-detector setups. This method allows high-energy
and low-energy spectra to be scanned at the same time [18, 19]. A typical setup
for dual source CT is shown in Fig. 3.1.

Fig. 3.1: Dual source CT [18].

Unlike dual-source dual energy CT, single-source approach uses a single pair
source-detector. There are different types of single-source dual energy CT. Proba-
bly the most basic and the easiest to understand uses rapid kVp switching, shown
in Fig. 3.2. The source is capable of rapidly switching between high and low energy.
The sampling frequency can be as fast as 50 microseconds. [18]
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Another possibility is to use a layered detector. In this configuration, the de-
tectors comprise two scintillator layers, each with the highest sensitivity at different
photon energies. During the scan at high energy, the top layer of the detector ab-
sorbs low-energy photons, while the bottom layer absorbs the remaining photons.
It’s worth noting that there are additional methods in dual-energy computed to-
mography that we have not discussed. [18]

Fig. 3.2: Single source CT, using rapid kVp switching [18].

Dual energy computed tomography can be used to acquire so called virtual mo-
noenergetic images, or VMI for short. Virtual Monoenergetic Images (VMI) in Com-
puted Tomography (CT) involve reconstructed images that replicate the anatomical
appearance as though the X-ray beams employed in imaging were of a singular en-
ergy level. The capability of virtual monoenergetic imaging enables clinicians to
produce images as though they were obtained using X-rays with a specific energy
level, commonly known as a "monoenergetic" beam. VMIs have some undeniable
advantages, such as material differentiation, dose reduction, and artifact reduction
[20] [21].

The technique of virtual non-calcium (VNCa) has gained popularity for its capac-
ity to eliminate calcium from anatomical structures, leading to improved evaluation
of various pathological conditions that might be obscured in standard CT scans [22].
Its primary benefit lies in significantly enhancing the image contrast of structures
typically obscured by calcium deposits, such as calcified vessels or bone marrow.
VNCa imaging is effective in portraying a wide range of traumatic, inflammatory,
infiltrative, and degenerative disorders affecting both the spine and the appendic-
ular skeleton. VNCa imaging represents a major advancement in Dual-Energy CT
(DECT), allowing the visualization of conditions and disorders that typically involve
the use of pricier and more time-consuming methods like MRI, PET/CT, or bone
scans [22].
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Another post-processing technique is virtual non-contrast imaging (VNC). Vir-
tual Non-Contrast (VNC) imaging provides a non-invasive option that removes
the necessity for contrast injection while still delivering diagnostically valuable im-
ages. The method utilizes the distinct attenuation characteristics of different tissues
across varied energy spectrums to distinguish and digitally remove the contrast
medium from the captured images. This procedure produces virtual non-contrast
images, portraying the anatomy as though no contrast agent had been administered
[23].
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4 Radiomics in medical imaging
Radiomics is closely tied to medical imaging, offering a quantitative approach to de-
scribing medical images. While medical images may contain information invisible
to the human eye, this data can hold diagnostic significance and frequently serves
as a crucial factor in timely and appropriate patient treatment. [3]

Radiomics aims to enhance the existing data using mathematical analysis. Ac-
cording to the Image Biomarker Standardisation Initiative (IBSI), features can be
categorized into a few classes: intensity based-statistical, intensity histogram-based,
intensity-volume histogram-based, morphological features, local intensity, and tex-
ture matrix-based features. [3]

There are a few important steps that need to be taken in order to get the most
information from medical image data. Every step is an important part of the ra-
diomics pipeline.

4.1 Image segmentation
The first thing that we need to decide on is the region of interest (ROI) in 2-
dimensional data or the volume of interest (VOI) in 3-dimensional data. This basi-
cally specifies the region from which desired features will be extracted and computed.
Image segmentation can be performed manually, semi-automatically, or fully auto-
matically. Despite the widespread use of manual and semi-automatic methods, they
come with inherent drawbacks. Not only are they time-intensive, but they also
introduce observer bias, potentially leading to subsequent issues. [3]

Considering these drawbacks, fully automated image segmentation seems like
the best option. And in many cases it holds true. However, there are instances
where the generalizability of these algorithms is a limitation. This leads to incorrect
results when applying the algorithms to different datasets. [3]

4.2 Feature extraction
Following the initial two stages, we proceed to feature extraction. Features are nu-
merical values utilized to quantify the grayscale level within our designated ROI/VOI.
However, an essential step preceding feature extraction is feature selection. The po-
tential number of features extractable from an image spans from a few to theoreti-
cally limitless. Selecting a higher number of features results in fewer cases in each
group and vice versa. The challenge lies in determining not only the appropriate
number of features but also in excluding redundant and irrelevant ones. According
to [3], some rules define the optimal number of features for a given sample size.

26



However, none of these rules have been properly tested and there is no evidence
in any literature that they work. [3]

There are a few steps that have been performed in several clinical studies and that
proved to be accurate. The first step would be to eliminate any non-reproducible
features. Features that suffer from any observer bias are not informative and it is
best to exclude them right in the beginning. Another step would be to calculate
the correlation coefficients. This should ensure that the features that we are left
with are reproducible and robust. Another thing to keep in mind is that we want
to select the best features for the respective task. This means that we may be left
with many features, but only a few of them might be relevant in reaching our goal.
[3]

4.3 Features used in image processing
Understanding the different classes of radiomic features isn’t mandatory for reading
radiomics research papers or conducting related studies. Nonetheless, understanding
the fundamental principles can assist in interpreting results and selecting features
tailored to specific applications. [24]

Radiomic features can be broadly categorized into statistical features, which
include histogram-based and texture-based attributes; model-based characteristics;
transform-based properties; and shape-based attributes. [24]

Histogram features

The most basic statistical descriptors rely on the overall gray-level histogram and en-
compass gray-level mean, maximum, minimum, variance, and percentiles. As these
features stem from the analysis of individual pixels or voxels, they are referred
to as first-order features. Advanced features encompass skewness and kurtosis. [24]

Texture features

Texture analysis and radiomics help uncover hidden information within images that
the human eye cannot see. It includes features such as absolute gradient, gray-level
co-occurrence matrix, gray-level run-length matrix, and others. Texture analysis
is a helpful tool in the diagnosis and prognosis of cancer. Some would even call it
a "virtual biopsy". [25, 26]
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Model-based features

Model-based analyses seek to interpret spatial gray-level data to define and de-
scribe objects or shapes. A model that generates texture is created and adjusted
to the region of interest. Its calculated parameters are utilized as radiomic features.
For example, the autoregressive model operates on the premise that a pixel’s gray
level depends on the weighted sum of its neighboring pixels: left, top-left, top, and
top-right. [24]

Transform-based features

Transform-based features in radiomics involve manipulating the image data through
various mathematical transformations or operations to extract meaningful informa-
tion. These transformations can include techniques like wavelet transforms, Fourier
transforms, or other mathematical functions applied to the image pixel values.
The resulting transformed data or coefficients can then be used as features to cap-
ture specific characteristics or patterns within the image, aiding in the analysis and
interpretation of medical imaging data for diagnostic or prognostic purposes. [24]

Shape-based features

Geometric attributes known as shape-based features characterize the form of re-
gions of interest. While some features, like 2D and 3D diameters and their ratios,
are straightforward in concept, others involving mesh-based approaches using poly-
gons such as triangles and tetrahedrons add complexity. Features like compactness
and sphericity depict how the shape of a region of interest deviates from that of a
circle (in 2D) or a sphere (in 3D). [24]

4.4 Feature reduction
After implementing feature extraction methods, we are usually left with a large
number of features, not all of them being relevant to reach our goal. There are a few
approaches that are useful in selecting only the most relevant set of features. Let’s
take a brief look at some of them.

Feature selection using statistical tests

If we want to talk about statistical tests, it is best to make some terms clear, that
will help our understanding:
Null hypothesis - This hypothesis asserts that there is no significant difference
between the sample and population, or among different populations, represented as
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H0. [27]
Alternate hypothesis - The alternative hypothesis represents the statement that
contradicts the null hypothesis. It’s symbolized as H1. [27]
Critical value - It marks a point on the test statistic scale where we reject the null
hypothesis. The higher the critical value, the less likely it is that two samples belong
to the same distribution. [27]
p-value - The p-value, short for "probability value", denotes the probability of a re-
sult occurring solely by chance. In hypothesis testing, it aids in either supporting
or rejecting the null hypothesis. A lower p-value indicates stronger evidence for re-
jecting the null hypothesis. [27]

Now that we have set a foundation of basic understanding, we can better un-
derstand how statistical testing works. A statistical test serves as a method to
decide if a random variable follows the null or alternative hypothesis. It essentially
shows us whether there are notable distinctions between a sample or multiple sam-
ples and a population. Descriptive statistics such as mean, median, mode, range, or
standard deviation are used for this purpose, with the mean often being the preferred
metric. After running the statistical test, it provides a numeric outcome, which is
then compared against the p-value. If the obtained value surpasses the p-value, the
null hypothesis is accepted; otherwise, it is rejected. [27]

There are many statistical tests to be chosen from, but we will go over only a few
of them.
Correlation test - A correlation test evaluates the extent of connection between
variables, bearing in mind that this assessment necessitates variables to be contin-
uous. Several techniques are available for conducting correlation tests, including
Covariance, Pearson correlation coefficient, Spearman rank correlation coefficient,
among others. [27]
Z-test - A Z-test examines whether the means of two given samples are from
the same distributions, but it’s not applicable for sample sizes below 30. A Z-
test can be either a one-sample Z-test or a two-sample Z-test. The One-Sample
Z-test determines whether the sample mean significantly deviates from a known or
hypothesized population mean. Conversely, the two-sample Z-test compares two
independent variables. [27]
T-test - Similar to the Z-test, a t-test compares the means of two provided samples,
but it’s employed particularly when the sample size is less than 30. The t-test works
on the premise of a normal distribution within the sample and can be employed
as either a one-sample or a two-sample test. [27]

Data visualization can be a helpful tool in feature reduction as well. However, it
helps to reduce the number of dimensions using statistical tests beforehand. Once
the data’s dimensionality has been decreased using statistical tests, the step of data
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visualization becomes highly significant. [24]

Principal component analysis

Principal component analysis (PCA), stands as a highly effective technique within
feature compression. Classified as a biometric technique, it falls under the statistical
domain in this field. Its core objective is to reduce extensive spatial dimensions
into more compact and manageable spaces. [28]

Introduced by the renowned mathematician Karl Pearson in 1901, PCA finds
utility in predictive modeling, particularly in face recognition, and in exploratory
data analysis systems. Acknowledged as a genuine eigenvector-based multivariate
analysis, PCA is considered to be the most streamlined method in this domain.
Its purpose centers on reducing the dimensions of transformed data by employing
fundamental components to reach a compressed representation resembling shadow-
like images, thereby presenting a condensed yet informative depiction of the original
data. [28]

PCA excels in discerning data variations by unveiling their underlying composi-
tion. The quantity of original variables, like face images, often matches or surpasses
the number employed in PCA transformations. [28]

Random forest classifier

A random forest is a machine learning technique that combines multiple decision
trees to perform tasks like classification or regression. Instead of relying on a single
tree, it creates an ensemble of trees, each trained on different subsets of the data and
features. By allowing individual trees to vote or contribute predictions, the random
forest produces more accurate and robust results, especially in handling complex
datasets with noise and high dimensionality. This method is widely used across
various fields due to its effectiveness in making predictions and its ability to reduce
overfitting compared to single decision trees. [29]
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5 Current trends in feature extraction meth-
ods

As talked about previously, many different features can be extracted from an image.
This fact leads to different researchers and research groups choosing different paths,
which can lead to different results and can give us an insight into how feature
extraction works. Let’s take a brief look at their approaches.

When it comes to tumor imaging methods, magnetic resonance imaging (MRI) is
considered to be one of the most effective. MRI images have high contrast properties
that are very much appreciated in tumor imaging [30].

Various authors used features extracted from MRI to detect malignant tumors
and the stage of the cancer. There are different strategies proposed by different
authors. Reedy et al. in their study use MRI images to detect bone cancer [31].
First of all, they remove the noise from the image [31]. Later, they used mean pixel
intensity to predict the stage of the cancer. [31]

Sinthia and Sujatha take a different approach [32]. They focus on edge recogni-
tion. Using Sobel edge identification, they are able to distinguish the tumor zone.
[32]

Similarly to this manner, Asuntha et al. also implement edge detection [33].
However, they go a step further and extract more features that are used to identify
bone cancer [33].

Avula et al. use mean pixel power to distinguish the malignant growth from MRI
images. This mean intensity value is crucial for distinguishing between cancerous
and non-cancerous areas. Based on experiments conducted with 400 images, they
have found that the mean intensity values indicative of malignant tumors typically
range from 234 to 250 [34].

As mentioned in [35], feature extraction can also be used to distinguish between
malignant and benign growths. For this purpose, the authors used texture features
together with K-means clustering algorithm.

Paper written by Ashish Sharma et al. combines feature extraction with a clas-
sification model [36]. They state that the textures of cancerous bones differ from
the healthy ones and the pixel of the cancerous bone is more scattered. They perform
an experiment that leads to the realization that texture features are not sufficient
to achieve their goal. Based on their findings they combine the texture features
with skewness and entropy. The value of entropy is much lower in the cancerous
region compared to healthy tissue. [36]

However, as we read in MRI is not the only medical imaging technique that uses
the principles of radiomics. The authors of [36] focus on detecting bone cancer
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through a machine learning model that relies on feature extraction from X-ray im-
ages. In their study, they discovered that using support vector machine (SVM),
the GLCM (gray-level co-occurence matrix) texture features by themselves are not
enough to classify bone cancer. Thus, additional features were used to detect
and categorize cancerous bones, such as histogram of oriented gradients (HOG)
features. HOG assesses pixel shape and orientation within local image cells, aiding
in the identification of cancerous regions. The experiment revealed that integrat-
ing the HOG feature with the GLCM texture feature resulted in an accuracy score
of 92.68 %, surpassing the 87.80 % achieved without the HOG feature. [36]

The authors of [37] discuss the importance of radiomics in oncology, focusing
on spine surgery. They mention the undeniable advantages that radiomics of-
fers in detecting pathologies and treatment prediction. However, they are aware
of the limitations radiomics face, such as reproducibility, model overfitting, and
class imbalances. Many of these setbacks can be solved with a good understanding
of the available dataset. They come to a conclusion that in the field of personalized
medicine, spinal radiomics presents clinicians with a promising tool for decision-
making. Yet, it’s crucial to undertake additional validation on high-quality datasets
before integrating these models into clinical practice. Similar to many machine
learning applications, future efforts in spinal radiomics are necessary to enhance
the transparency of these algorithms. This will enable better clinical integration
and the creation of innovative clinical insights. [37]
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6 Available datasets

6.1 Publicly available dataset
The LumVBCanSeg dataset [38], a publicly available collection focused on Lum-
bar Vertebral Body Cancellous Bone Segmentation, was utilized for both train-
ing and testing purposes. This extensive dataset comprises 185 lumbar CT scans
obtained from various CT scanners, including those manufactured by Philips and
Siemens. All scans were sourced from ShengJing Hospital of China Medical Univer-
sity. The dataset intentionally excludes cases involving vertebral fractures, metal
implants, bone tumors, and foreign materials. To ensure consistency, all data un-
derwent resampling to achieve an isotropic resolution of 1×1×1 mm. In addition
to the CT scans, the dataset includes corresponding segmentation masks. Annota-
tions cover the bodies of five lumbar vertebrae, L1 to L5, and are sequentially labeled
from 1 to 5 [38]. As seen in Fig. 6.1, the mask does not include the periostenum
and processes.

Fig. 6.1: An example of lumbar CT scan with the corresponding segmentation mask
from publicly available dataset.
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6.2 Clinical data
In order to collect clinical data, we completed an internship at The University Hos-
pital Brno (Clinic of radiology and nuclear medicine). The data was gathered from
patients being treated for multiple myeloma. Data was anonymized to make it us-
able for the purposes we intended. For the bachelor’s thesis, we worked with a
dataset of 20 patients - 10 individuals with no spinal pathologies and 10 patients
with multiple myeloma. Out of the healthy patients, 5 have a full body scan and 5
only have scans of their thoracic spine. This will be important for our tasks later on.
In addition to these scans, we have acquired scans of 5 MM patients who have one
follow-up scan available. The follow-up scans will be later used for volume analysis
of the lesions.

Data were acquired following approval from the Ethics Committee, under the ap-
plication registration number NU23J-08-00027. All patients gave their consent after
being informed. The data were acquired utilizing the Philips Healthcare IQon spec-
tral CT system in collaboration with The University Hospital Brno, Clinic of radi-
ology and nuclear medicine. The scanning parameters included a peak tube voltage
of 100 kV, tube current of 10 mA, matrix size of 512 × 512, and a slice thickness
of 0.9 mm using a sharp reconstruction kernel and hybrid iterative reconstruction
technique (iDose4, set to level 4). Scans of the myeloma patients covered the region
from the head to the knee. The scans were examined using a dedicated workstation
(Intellispace Portal version 12.1; Philips Healthcare) by two independent readers,
with at least one being board certified. Patients were diagnosed with MM based
on elevated monoclonal immunoglobulin in the blood and an increased plasma cell
count in the bone marrow.

Before completing feature reduction, we wanted to become more familiar with
the dataset. For this purpose, we used the Medical Imaging Interaction Toolkit
(MITK) workbench for data visualization. MITK [39] is an open-source software
framework specifically designed for developing interactive medical image processing
applications. MITK provides a platform that facilitates the visualization, analysis,
and processing of medical image data.

Parametrical images

For each patient, there are a few different scans. First of all, we have conventional
CT scans, which are available in both NIfTI and DICOM data formats. We decided
to work with NIfTI files which proved to be easier to work with. Then, for each pa-
tient, we have three virtual monoenergetic images, acquired at 40 keV, 80 keV, and
120 keV. Lastly, we have images with calcium suppression. These images are avail-
able with different levels of calcium suppression (25%, 50%, 75%, 100%). Having
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this much information gives us extensive possibilities for data analysis. Examples
of parametrical images are shown in Fig. 6.2.

(a) (b) (c)

Fig. 6.2: Example of parametrical images, MM patient, (a) - conventional CT, (b)
- 50 % calcium suppression, (c) - virtual monoenergetic image at 120 keV.

Spine labels and lesion labels

Adding to CT images, the dataset also contains spine labels from different segmenta-
tion algorithms, for both healthy individuals and MM patients. Used segmentation
algorithms are further discussed in [40]. Each of these labels has a unique ID that
makes it easy to extract only one vertebra. Using MITK workbench, we can vi-
sualize the data which gives me a better understanding of its nature and helps
with future analysis. In multiple myeloma patients, each lesion has an assigned ID,

35



where the segmentation masks were corrected by a radiologist, to ensure correct
segmentation. Both spine and lesion labels are shown in Fig. 6.3.

(a) (b)

Fig. 6.3: Example of spine labels (a) and lesion labels (b).

Examples of problematic patients

Even though most of the scans and respective segmentation were accurate, there
were a few individuals that may cause problems later down the path in our analysis.
Because of this, we have decided to only use the scans which were of good quality
and the segmentation seems to be done correctly.

One of the myeloma patients has a spine implant. In Fig. 6.4, we can see that
the implant shows much more than the other structures. This can lead to inaccurate
features. This is why these vertebrae were excluded from further analysis.

Another example would be patients with vertebrae so affected by MM that they
literally seem to be falling apart, their structure is very damaged. As we can see
in Fig. 6.4, some of the vertebrae appear very thin and are almost non-existent.
These were also excluded and not used in our analysis.
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(a) (b)

Fig. 6.4: Example of problematic vertebrae, (a) - metallic implant, (b) - damaged
vertebrae.
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7 Analysis of vertebrae

7.1 Dataset preparation
Before doing any analysis, the first step was to prepare the dataset. Even though we
have more than enough data, working with whole-body scans is time-consuming and
computationally demanding. Because of this, we extracted only the regions which
will be later used to extract features. Because the goal was to analyze only the
vertebral bodies without processes, the vertebrae had to be extracted accordingly.
There were two approaches that we took, each one offering some advantages while
also having some imperfections.

7.1.1 Manual extraction

The first approach was to manually extract only the body of the vertebrae. This was
not only time-consuming but also unreproducible. The extraction was accomplished
by forming a bounding box around the vertebral body and extracting it.

The problem was that the processes were hard not to be included in the bounding
box. It was almost impossible to ensure that each vertebra has the same amount
of processes extracted with them, or not have any portion of it at all. Another issue
might be that the periostenum appears at higher intensity and this may also cause
an error. Even though we are aware of these issues and the errors they can cause,
we still decided to go ahead and continue our tasks. Fig. 7.1 shows an example
of manually extracted vertebrae, with partially extracted processes.

(a) (b) (c)

Fig. 7.1: Vertebra extracted with processes, (a) axial view, (b) coronal view, (c)
sagittal view.

After extracting these vertebrae, we started noticing these irregularities. We
tried to only use the vertebrae that were extracted correctly. However, even when
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they are selected correctly, we can’t ensure that all of them were extracted with the same
portion of processes.

7.1.2 Using nnU-Net deep learning model

nnU-Net [41] model was trained for segmentation of trabecular tissue of the lumbar
spine. In contrast with manually extracting the vertebral bodies, using nnU-Net
model for segmentation method only segments the trabecular part of the vertebrae
and does not include any part of the processes. This means that we do not have
to take into account human error when extracting the vertebrae. The model was
trained on the publicly available dataset LumVBCanSeg [38]. Its accuracy was
calculated using the Dice coefficient and Hausdorff distance. Later, it was tested
on our clinical data.

Model implementation

nnU-Net represents an automated semantic segmentation technique crafted to adapt
to a wide array of datasets. This implies that, even in the absence of specialized
knowledge, the model can be effortlessly trained and applied across various ap-
plications. It particularly excels in semantic segmentation, showcasing proficiency
in processing both 2D and 3D images across diverse input modalities and chan-
nels. Its adaptive nature extends to accommodating variations in voxel spacings
and anisotropies, demonstrating resilient performance even in cases with substantial
class imbalances. nnU-Net employs supervised learning, necessitating the submis-
sion of a set of training cases tailored to the specific application. [42]

As previously stated, the training dataset only contains CT scans of the lumbar
region. Consequently, to align with the desired outcomes, the data from the clinical
dataset had to undergo cropping to achieve the intended size. This involved creating
a bounding box with the specified dimensions. Fig. 7.2 shows the original data after
being cropped, showing both spine without any pathologies and multiple myeloma
lesions.

The dataset was divided in 80:20 ratio, with 80 % of the dataset being used
for training, leaving the 20 % for testing purposes. This means that we got 143
scans in the training set and 37 scans were used for testing purposes. The optimal
architecture and learning parameters for nnU-Net were automatically determined.
The configuration was specified as 3D full resolution, with an initial learning rate
of 0.01 that gradually decreased during training. The batch size was set to 2, patch
size was 128×128×128 px, featuring a kernel size of 3×3×3.

A total of 1000 learning epochs were carried out. Planning and testing was done
on a school computer CUDA 2 with following parameters:
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• graphics card: Nvidia Titan Xp
• processor: Intel Xeon E5-2603v4
• RAM: 64 GB
• operating system: Linux Ubuntu 22.04

Training of the model took place on a dedicated computer at the Metacenter, using
the codes from [43].

(a) (b)

Fig. 7.2: Scans after being cropped, (a) - no spinal pathologies, (b) - MM patient.

The lumbar spine segmentation was assessed using the Dice coefficient [44],
a metric employed to measure the similarity between two sets. This coefficient
can be computed for binary or multilabel classification. In our scenario, we opted
for the multilabel approach due to the nature of the available data. The result is
determined using the following formula:

𝐷𝑖𝑐𝑒(𝑃, 𝑇 ) = 1
𝑁

𝑁∑︁
𝑖=1

2 |𝑃𝑖 ∩ 𝑇𝑖|
|𝑃𝑖| + |𝑇𝑖|

, (7.1)

where P stands for predicted values, T represents the ground truth and 𝑖 is
an index of the 𝑁 th vertebrae. The final dice score ranges between 0 and 1 and has
no unit.

The Hausdorff distance [45] serves as a metric to evaluate the similarity be-
tween two sets of points within a specified metric space. This distance is computed
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by identifying the maximum distance from any point in one set to the nearest point
in the other set. It functions as an indicator of dissimilarity or mismatch between
the two sets and finds applications in various fields such as computer vision, image
analysis, pattern recognition, and shape matching. Additionally, it can be applied
in either binary or multilabel form. In the assessment of our model, the multilabel
Hausdorff distance was employed:

𝐻𝐷(𝐴, 𝐵) = max(max
𝑎∈𝐴

min
𝑏∈𝐵

𝑑(𝑎, 𝑏), max
𝑏∈𝐵

min
𝑎∈𝐴

𝑑(𝑎, 𝑏)[𝑝𝑥], (7.2)

where 𝐻𝐷(𝐴, 𝐵) represents the Hausdorff distance of sets 𝐴 and 𝐵, the symbol
𝑚𝑎𝑥 represents the maximum, the symbol 𝑚𝑖𝑛 represents the minimum, 𝑑(𝑎, 𝑏)
represents the distance of point 𝑎 and point 𝑏, where it can be for example the L2
norm, the symbol 𝑎 ∈ 𝐴 indicates that the variable 𝑎 takes values from the set 𝐴 and
the symbol 𝑏 ∈ 𝐵 indicates that the variable 𝑏 takes values from the set 𝐵. In our
case, we calculated the HDs for each vertebral mask separately and then calculated
their average value to evaluate the success of the segmentation model.

Results

The performance of the trained model was assessed using the testing database, com-
prising 37 images. After a brief examination of the outcomes, it can be concluded
that the model demonstrated satisfactory performance. Table 7.1 provides a sum-
mary of the computed metrics. Further inspection of the results revealed a few
outliers, characterized by significant differences in both metrics compared to the re-
mainder of the testing dataset.

Metric Dice coefficient Hausdorff distance
Minimum value 0.526 1.166
Maximum value 0.986 173.816

Mean 0.949 26.189
Median 0.980 2.159

Standard deviation 0.103 48.527

Tab. 7.1: Calculated metrics.

Fig. 7.3 depicts the outcomes through box-and-whisker plots. It is evident that
other than a few outliers, the model exhibited satisfactory performance. To enhance
visualization, the six most prominent outliers were excluded.

After using the neural network on our clinical data, we received segmentation
masks for the lumbar portion of the spine for each patient that had whole body CT
scan available. This made it easier to select vertebra for our analysis.
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(a) (b)

Fig. 7.3: Box-and-whisker plots showing the results, (a) - Dice coefficient, (b) -
Hausdorff distance.

Fig. 7.4 shows us two results of the segmentation on the testing dataset. The failed
segmentation shows that instead of 5 lumbar vertebrae, 6 vertebrae were segmented,
including one thoracic vertebra, and that two of the vertebrae were assigned the same
label.

The model was then applied on the clinical data. The results were evaluated
visually. However, because the neural network was only trained using healthy indi-
viduals, and scans containing any abnormalities were omitted, we saw much more
accurate results with the healthy vertebrae. When it came to MM patients, we saw
a decline in the accuracy of the neural network. In the examples below we can see
examples of incorrect vertebrae segmentation in MM patients. The segmentation
inaccurately captured vertebrae with anomalies, mostly from MM patients, while
the healthy vertebrae were segmented correctly, see Fig. 7.5 and Fig. 7.6.
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(a) (b)

Fig. 7.4: Results of the segmentation by nnU-Net on the testing dataset, (a) -
successful segmentation, (b) - failed segmentation.

(a) (b) (c)

Fig. 7.5: Incorrect segmentation examples from clinical dataset.
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(a) (b)

Fig. 7.6: Correct segmentation examples from clinical dataset.

7.2 Statistical analysis
In this part of the thesis, we perform basic statistical analysis. We use the lumbar
vertebrae segmented using nnU-Net. Statistical features (mean, median, standard
deviation) were extracted from the trabecular part of the vertebral body. These
features were compared between conventional CT images and different parametri-
cal images. The results were visualized using box-and-whisker plots. An example
of the available parametrical images using only the lumbar part of the spine is shown
in Fig. 7.7 and Fig. 7.8.
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(a) (b) (c)

Fig. 7.7: Example of different types of images, no spinal pathologies, (a) - con-
ventional CT, (b) calcium suppress at 25 %, (c) - virtual monoenergetic image at
40 keV.
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(a) (b) (c)

Fig. 7.8: Example of different types of images, multiple myeloma patient, (a) -
conventional CT, (b) calcium suppress at 25 %, (c) - virtual monoenergetic image
at 40 keV.

Before moving on to comparing chosen statistical metrics, the values of the whole
vertebrae were compared. Conventional CT, images with 25 % calcium suppression
and virtual monoenergetic images acquired at 40 keV were selected for the com-
parison. Three healthy and three affected vertebrae were chosen from conventional
CT scans as well as parametrical images. The results are visualized in Fig. 7.9,
Fig. 7.10, Fig. 7.11. We can see that, as expected, there is a difference between the
two groups. All outliers were omitted for better visualization. The vertebrae were
selected from two patients, one without MM and one who was previously diagnosed
with MM.
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Fig. 7.9: Comparison of healthy and affected vertebrae, lumbar vertebrae, conven-
tional CT scan.

Fig. 7.10: Comparison of healthy and affected vertebrae, lumbar vertebrae, 25 %
calcium suppression.
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Fig. 7.11: Comparison of healthy and affected vertebrae, lumbar vertebrae, virtual
monoenergetic image at 40 keV.

After the initial analysis, 10 healthy and 10 affected vertebrae were selected
from the scans using the nnU-Net segmentation. Mean, median, and standard devi-
ation were extracted from each one of them. All the metrics were compared between
the pairs selected from the same type of image. Results were again visualized using
box-and-whisker plots.

(a) (b) (c)

Fig. 7.12: Box-and-whisker plots showing the difference in mean, (a) - conventional
CT image, (b) - CT image with 25% calcium suppression, (c) - virtual monoenergetic
image at 40keV.

48



In Fig. 7.12 we see the comparison of mean values among all types of available
scans. There is a clear difference between healthy and affected vertebrae in all three
cases.

(a) (b) (c)

Fig. 7.13: Box-and-whisker plots showing the difference in median, (a) - conventional
CT image, (b) - CT image with 25% calcium suppression, (c) - virtual monoenergetic
image at 40keV.

Fig. 7.13 visualizes the differences between the two groups using median values.
Just like in Fig. 7.12, there are clear differences and the two groups do not overlap.

(a) (b) (c)

Fig. 7.14: Box-and-whisker plots showing the difference in median, (a) - conventional
CT image, (b) - CT image with 25% calcium suppression, (c) - virtual monoenergetic
image at 40keV.

Fig. 7.14 visualizes the differences in standard deviation in healthy and affected
vertebrae. Unlike in comparing mean and median values, we see that the two groups
significantly overlap, which means that the values are similar.

After comparing the box-and-whisker plots between scans with no spinal patholo-
gies and MM patients, slight differences are visible, which was expected. However,

49



to test whether the differences are statistically significant, further analysis is neces-
sary. To test it, the Mann-Whitney U test was performed to determine if there is a
statistically significant difference between the two groups. Mann Whitney U test is
a non-parametric statistical. The assumptions for this test are that the two groups
of data must be continuous, the groups have no relation to each other, the data
is not normally distributed and the sample size is usually more than 5 [46]. This
suited our case. The parameters of the statistical test were:

• 𝐻0: There is no difference in the values between healthy and affected vertebrae.
• 𝐻𝑎: The values between the two groups are different.
• p-value = 0.05.

The statistical test was done nine times, to compare all the pairs of respective statis-
tical values. In eight cases, the p-value was less than 0.05, which meant that the null
hypothesis was rejected. In the case of comparing the standard deviation of virtual
monoenergetic images, the p-value was 0.3447. That meant that the null hypothesis
could not be rejected. Taking into account that in a vast majority of cases, the null
hypothesis was rejected, we can safely say that, overall, there is a statistically sig-
nificant difference between the two groups.

Metric Conventional CT Calcium suppression VMI
Mean 0.0002 0.0006 0.0002

Median 0.0002 0.0006 0.0004
Standard deviation 0.0376 0.0211 0.3447

Tab. 7.2: p-value of performed statistical tests, testing the statistical significance
of HU of healthy and affected vertebrae.

7.3 Feature analysis
In the first part of the thesis we focused on comparing healthy vertebral bodies
with vertebral bodies affected by MM. This was accomplished by extracting ra-
diomic features from the vertebrae that were extracted before. Pyradiomics was
used for this task [47]. Pyradiomics is a Python package designed for extracting a
large array of quantitative imaging features from medical images. It’s particularly
used in the field of radiomics, which involves the extraction and analysis of a vast
number of quantitative imaging features from medical images, such as MRI, CT
scans, or PET scans. These features can include shape, intensity, texture, and
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more, providing a comprehensive characterization of regions within these images.
[47]

Pyradiomics provides a framework to standardize the extraction of these fea-
tures, allowing researchers and clinicians to analyze and interpret medical images
more quantitatively and systematically. It’s often used in research related to tu-
mor characterization, treatment response assessment, and disease prognosis, among
other medical applications. [47]

Using Pyradiomics, we extracted radiomic features from all the respective ver-
tebrae. This left us with an overwhelming volume of features. However, not all
of them would be useful for reaching our goal.

7.3.1 Manually extracted dataset

First of all, we decided to use PCA and visualize the result to see, whether there
would be two unique clusters forming. For this part of our thesis, only the conven-
tional CT scans were used. Before completing PCA, the data had to be standardized
to ensure the same variance among in each variable. PCA is very sensitive to large
differences between the variances of variables, as large variances will dominate over
the variables with smaller ranges [48]. As seen in Fig. 7.15, even though there are
a few outliers that differ from the rest of the dataset, there is a difference between
the features of the healthy and the affected vertebrae. This led us to believe that
there has to be a set of features that are significant when deciding whether the
vertebra contains lesions or not.
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Fig. 7.15: PCA result visualization, manually segmented vertebrae, healthy - purple,
MM patients - yellow.

Vertebrae vary in shape and size according to their position in the spine. In the
next step, PCA was performed containing precisely selected vertebrae, so that
the dataset would contain 5 healthy thoracic and 5 healthy lumbar vertebrae and
5 thoracic and 5 lumbar vertebrae affected by multiple myeloma. The point of this
was to explore whether we would get four different clusters forming, one for each
group. That would mean that the values of the features are not only influenced
by whether the vertebra is healthy or not, but also by its position in the spine.
Cervical vertebrae were not included in the analysis. Because of their shape and
size, it was difficult to correctly extract them from the images, which could lead
to incorrect results.

As seen in Fig. 7.16, both groups of healthy vertebrae can be clearly distin-
guished. On the other hand, both types of vertebrae that were affected by MM
are grouped together, without any clear difference.

Vertebrae extracted using nnU-Net

Using the output from the neural network, we were able to perform an analysis of ver-
tebral bodies again, using more accurate data. While segmenting the vertebral body
manually was prone to error, this time we are sure that the segmentation does not
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Fig. 7.16: PCA result visualization of different types of vertebrae, red - affected lum-
bar vertebrae, orange - affected thoracic vertebrae, blue - healthy thoracic vertebrae,
green - healthy lumbar vertebrae.

involve vertebral processes, which can lead to different results than what we got be-
fore. The segmentation also filters out periosteum which we were not able to achieve
manually. We performed the same analysis as we did before, with the manually ex-
tracted vertebral bodies. First of all, PCA was used to ensure that there are two
clusters forming of healthy and affected vertebrae. Fig. 7.17 shows the outcomes of
PCA.
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Fig. 7.17: PCA result visualization, segmentation done by nnU-Net, healthy - pur-
ple, MM patients - yellow.

7.3.2 Feature importance

Following the initial analysis, where we confirmed that there are differences in the val-
ues of features between vertebrae affected by MM and vertebrae without any patholo-
gies, we looked deeper into feature reduction. After using Pyradiomcs, we were left
with more than 100 features. The number had to be reduced to continue our analy-
sis. This meant eliminating correlated or otherwise unnecessary features. There are
many ways to reduce the number of features, with each one of them having its pros
and cons. We explored a few statistical tests and correlation analysis. This proved
to work, but not to an extent we were hoping for. We were still left with too many
features which made working with them unnecessarily slow and confusing at times.

After doing more research we came across a random forest classifier. In a random
forest model, feature importance refers to a technique used to determine the rele-
vance or contribution of each feature (or variable) in making predictions. It helps
in understanding which features have the most significant impact on the model’s ac-
curacy or output. This evaluation helps in pinpointing the most influential features
for prediction, potentially aiding in feature selection, enhancing model efficiency,
and offering insights into which factors carry more weight in the model’s decisions
[49]. We set the limit at 0.03 which means we were left with 15 most significant
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features. As we can see in Fig. 7.18, two features carry the most significant amount
of information.

Fig. 7.18: Feature importance, manually extracted dataset, 15 features.

After performing the same analysis on lumbar vertebrae extracted using masks
from nnU-Net, the results were visualized in Fig. 7.19. Just like in the dataset
before, 15 most significant features were displayed.

Fig. 7.19: Feature importance, lumbar vertebrae. 15 features.

After comparing Fig. 7.18 and Fig. 7.19, we see that there are a few differences.
First of all, the features are different among the two datasets. Only 3 out of the 15
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features are the same. Secondly, the importance of the features also varies. While
in the dataset containing lumbar vertebrae the most significant features have an im-
portance of approximately 0.11, in the manually extracted dataset it was only 0.07.
This also means that there is a difference between the two datasets.

56



8 Analysis of lesions in follow-up scans
Besides the dataset mentioned, some of the patients were scanned multiple times
during the course of their treatment. These scans are also available to us. This
allows us to look at how the lesions change over time and how or if this corre-
lates with the extracted radiomic features. We do not know whether the patient’s
condition is improving or declining. However, we can use the metadata from the
DICOM files to see how much time has passed between the two scans. Only two
patients were used for this analysis and three lesions were analyzed per patient.
We tried to choose lesions that were correctly marked in the original scan as well
as the follow-up scan, and that maintained their integrity, meaning that the lesion
did not divide into multiple pieces. According to [50], MM patients should have
check-up appointments every one to three months and should continue for the life
of the patient.

In the first case, the time between the scans was approximately three months,
which falls in the recommended range. Volume analysis was performed to better
understand how the size of the lesions changed between the scans. We can see
that despite the lesions being chosen from the same patient, not all of them grew.
Tab. 8.1 summarizes the change in the lesion volume over time. In Fig. 8.1 we see
the comparison of the same lesion in the first and second scans. Even though there
is not a massive difference visible, in Tab. 8.1 (Lesion A), we see that the lesion has
grown significantly.

Scan 1 - volume [mm3] Scan 2 - volume [mm3] Difference [%]
Lesion A 302.980 502.497 65.852
Lesion B 74.757 87.082 16.487
Lesion C 136.117 125.818 -7.566

Tab. 8.1: Volume analysis, first patient.

However, the change was not significant. This can mean that the lesion is not
correctly segmented in the second scan, or that the patient is responding to the treat-
ment. We can only speculate what has caused this change.
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(a) (b) (c) (d)

Fig. 8.1: Comparison of lesion A, first patient, virtual monoenergetic image
at 40 keV, (a) - first scan, (b) - first scan with segmentation mask, (c) - second
scan, (d) - second scan, segmentation mask.

Scan 1 Scan 2
Mean (standard deviation) Mean (standard deviation)

Lesion A -3.143 (56.697) -6.555 (43.769)
Lesion B 34.186 (55.986) 31.229 (46.124)
Lesion C -65.0 (22.011) -41.118 (13.987)

Tab. 8.2: Difference in mean and standard deviation between two scans
from the same patient, conventional CT scan.

Tab. 8.2 summarizes the change in mean and standard deviation of the bright-
ness values of lesions from both scans. We can see that in all three cases, there
was either a positive or a negative change. The results can mean a few things.
A smaller standard deviation can mean that the area is more uniform and that the
brightness values of the pixels are more alike that in the first scan, either brighter
or darker. The change in mean values could be interpreted as change in the shade
of the analyzed volume. Darker areas can mean that the disease is progressing,
brighter areas can represent the formation of new bone tissue. However, because
the periostenum appears brighter than the rest of the bone, change in mean val-
ues can be caused by incorrect segmentation of the lesion, where the mask includes
a portion of periostenum. These inconsistencies make it more difficult to correctly
interpret the results.

After analyzing the volume, the next step was to analyze how the features
changed. Percentage increase or decrease was calculated for the two most changed
features. The results were summarized in Tab. 8.3.

The same analysis was performed on another patient. Just like in the previous
case, the time between the scans was approximately three months. Lesions were cho-
sen based on the same criteria as before. In 8.4 we see the results of volume analysis
of the lesions from the second patient. Tab. 8.4 shows the differences in volume and
we can see that the change in volume was not significant.
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Maximum increase Maximum decrease
Lesion A original firstorder skewness original glcm cluster prominence
Lesion B original gldm large dependence low gray level emphasis original glszm large area high gray level emphasis
Lesion C original shape flatness original glcm cluster shade

Tab. 8.3: Feature analysis, first patient.

Scan 1 - volume [mm3] Scan 2 - volume [mm3] Difference [%]
Lesion A 554.370 751.526 35.564
Lesion B 851.834 999.199 17.300
Lesion C 172.460 159.646 -7.430

Tab. 8.4: Volume analysis, second patient.

Scan 1 Scan 2
Mean (standard deviation) Mean (standard deviation)

Lesion A 27.062 (73.198) 17.044 (69.648)
Lesion B 23.185 (69.323) 23.333 (73.831)
Lesion C 64.267 (48.977) 61.682 (58.780)

Tab. 8.5: Difference in mean and standard deviation between two scans
from the same patient, conventional CT scan.

Maximum increase Maximum decrease
Lesion A original gldm large dependence low gray level emphasis original shape maximum 2D diameter column
Lesion B original glcm cluster shade original glszm large area high gray level emphasis
Lesion C original firstorder skewness original glcm cluster shade

Tab. 8.6: Feature analysis, second patient.

For better understanding, we should look at what each of the features means
[47]:

• original firstorder skewness - quantifies the degree of asymmetry in the distri-
bution of values relative to the mean,

• original glcm cluster prominence - assesses the skewness and asymmetry within
the GLCM. Elevated values suggest greater asymmetry around the mean,
whereas lower values indicate a concentration around the mean with reduced
fluctuation,

• original gldm large dependence low gray level emphasis - measures the ratio
within the image of smaller-sized zones with lower gray-level values in their
joint distribution,

• original glszm large area high gray level emphasis - assesses the percentage
within the image of smaller-sized zones with elevated gray-level values in their
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joint distribution,
• original shape flatness - illustrates the correlation between the largest and small-

est principal components within the shape of the ROI,
• original glcm cluster shade - quantifies both the skewness and uniformity

of the GLCM. Elevated cluster shade values indicate increased asymmetry
around the mean,

• original shape maximum 2D diameter column - refers to the maximum pairwise
Euclidean distance among vertices of the tumor surface mesh within the row-
slice (typically coronal) plane.

We can see that some of the features are occurring more than once. However, the fea-
tures are not the same among the two groups of lesions, those that grew and those
that shrunk. This can be caused by a number of different factors. The most prob-
able one is that the lesions were not marked correctly by their masks. This means
that even thought the lesion may have grown, some pixels were left out of the masks
which caused that it seems that the lesion shrunk. We can only speculate what
would happen if the lesions were marked correctly. Based on our analysis, we can
not make a reliable conclusion.
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Conclusion
This thesis aimed to analyze osteolytic lesions in multiple myeloma patients. Be-
fore completing the analysis, it was crucial to study the disease itself to get a better
understanding of the problem. We looked at the causes, prevalence and diagnostics
criteria. Next, we explored the role of computed tomography in diagnosing MM.
After completing the theoretical part of the thesis, patient data was collected dur-
ing an internship at University Hospital Brno at the Clinic of radiology and nuclear
medicine. During the internship, data was anonymized so it would be suitable to use
for the purposes we intended.

The practical part was divided into a few individual subsections. The first part
dealt with analyzing the whole vertebral bodies. The first step was a statistical
analysis of the vertebrae. Using box-and-whisker plots to visualize the results showed
a clear difference in statistical features between the two groups. A statistical test
was used to prove that the differences are statistically significant. This knowledge,
that there is a difference, was set as the foundation for the subsequent analysis.

The next comparison was based on the extracted radiomic features. Two ap-
proaches of extraction were taken. At first, the vertebrae were extracted manually
using bounding boxes. This proved to have a few disadvantages. The biggest one
was that we could not always extract the vertebrae without any portion of the pro-
cesses. PCA was completed to ensure that there are two clusters forming to prove
that there is a difference between the healthy and affected vertebrae.

After the initial analysis, a different approach to extraction was taken. To ensure
that only the trabecular part of the vertebrae was segmented. nnU-Net was trained
for this purpose. The network was trained and tested on a publicly available dataset
containing only the lumbar part of the spine. The accuracy of the trained model was
evaluated using the Dice coefficient and Hausdorff distance. For the Dice coefficient,
the median was 0.980, the mean value was 0.949 and the standard deviation was
0.103. The Hausdorff distance has reached the median value 2.159, the mean value
of 26.189 and the standard deviation of 48.527. Looking at the final values we can
say that except for a few outliers, the model has performed well on the testing
dataset.

The trained model was then applied to clinical data, which was prepared before-
hand to only include the lumbar spine. We saw that the clinical data was segmented
correctly, except for a few vertebrae containing inconsistencies, such as osteolytic
lesions and metallic implants, which were not included in the training database.
Same as with the manually extracted dataset, PCA was performed. PCA showed
two clusters with smaller dispersion than before.

Both databases that were created were used to explore feature importance values.
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Knowing which features were the most important when deciding whether the verte-
brae are healthy or affected could be later used to train a classifier that would divide
the vertebrae into two classes. After applying random forest, we were able to visu-
alize the importance of each individual feature. However, for better understanding,
only 15 features with the highest importance were visualized. By comparing the two
datasets, we saw a clear difference in the importance of each feature. This supports
our hypothesis, that the manual extraction could introduce an error further down
the road, even more.

After completing the previous part of analyzing the vertebral bodies, we used
the available follow-up scans to see how the volume of the lesions changes over
time. The volume of the lesions was analyzed in two patients with follow-up scans
to see whether the volume increased or decreased in between the scans. Three
lesions were analyzed per patient. We saw that even if the lesions were extracted
from the same scan, some of them grew and some of them shrunk. The rate at
which the volume changed also varied. Besides analyzing the volume of the lesions,
we looked at features that increased or decreased the most. These features were also
different among the patients.
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Symbols and abbreviations
BMPC bone marrrow plasma-cell percentage

CT computed tomography

DICOM Digital Imaging and Communications in Medicine

GLCM gray level co-occurence matrix

HOG histogram of oriented gradients

HU Hounsfield unit

IBSI Image Biomarker Standardisation Iniciative

IMWG International Myeloma Working Group

MGUS monoclonal gammopathy of undetermined significance

MITK Medical Imaging Interaction Toolkit

MM Multiple myeloma

MMBD Multiple myeloma bone disease

MRI magnetic resonance imaging

NIFTI Neuroimaging Informatics Technology Iniciative

OCL osteoclast

PCA principal component analysis

RF renal failure

ROI region of interest

SVM support vector machine

VMI virtual monoenergetic image

VOI volume of interest
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A List of electronic attachments
The electronic appendix contains Python scripts used for data preprocessing and
analysis. The learned nnU-Net model is due to its size available in the Zenodo
repository https://doi.org/10.5281/zenodo.11245116.

/...................................................................root directory
bachelor_python_codes.......python codes used for preprocessing and analysis
nnU-Net.txt...........commands used for nnU-Net planning and preprocessing
package_versions.txt...............................versions of used packages
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