
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FUZZ TESTING OF REST API
FUZZ TESTOVÁNÍ REST API

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

Be. PATRIK SEGEDY

Ing. VIKTOR MALÍK

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Master's Thesis Specification |||||||||||||||||||||||||
23094

Student: Segedy Patrik, Be.
Programme: Information Technology Field of study: Information Technology Security
Title: Fuzz Testing of REST API
Category: Software analysis and testing
Assignment:

1. Get acquainted with means of REST API specification and with fuzz testing. Study methods
for automatic test case generation and for computing dependencies among API calls.

2. Design an algorithm for automatic computation of REST API call dependencies and for test
case generation with respect to the obtained dependencies.

3. Implement the proposed algorithm as a console application
4. Test the created tool on at least two REST API specifications. Choose REST API of public

open-source project and of projects withing the Red Hat company.
5. Evaluate bugs found during the testing.
6. Write the final text of the Master's in English.

Recommended literature:
• Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, Renwei Zhang.: Fuzz testing in

practice: Obstacles and solutions.
• McNally, R.; Yiu, K.; Grove, D.; et al.: Fuzzing: The State of the Art. Technical Report DSTO-

TN-1043. Defence Science and Technology Organisation. Edinburgh, South Australia 5111,
Australia. 2012.

• Oficiální stránky projektu AFL: http://lcamtuf.coredump.cx/afl/
• Fielding, Roy Thomas (2000). "Chapter 5: Representational State Transfer (REST)".

Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).
University of California, Irvine.

Requirements for the semestral defence:
• Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malik Viktor, Ing.
Consultant: Kouřim Martin, Be , RedHatCZ
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: October 31,2019

Master's Thesis Specification/23094/2019/xseged00 Page 1/1

http://lcamtuf.coredump.cx/afl/
https://www.fit.vut.cz/study/theses/

Abstract
This thesis is dealing with fuzz testing of R E S T A P I . After presenting state-of-the-art of
fuzzing and assessing the current research regarding R E S T A P I fuzz testing, we design and
implement our R E S T A P I fuzzer. The proposed fuzzer infers dependencies of A P I calls
defined in an OpenAPI specification and makes the fuzzing stateful. One of the features is
minimization of the number of successive 404 responses while maintaining exploration of a
deeper state space of a tested application. To solve the exploration vs. exploitation problem,
we used the ordering of dependencies maximizing the probability of obtaining a needed input
values and determining of fuzzability of a required parameters. The implementation is an
enhancement of the Schemathesis project that is using the Hypothesis library to randomly
generate inputs. Our fuzzer is evaluated against the Red Hat Insights application, finding
32 bugs. Amid them, one bug is reproducible only by a stateful set of steps.

Abstrakt
Táto práca sa zaoberá fuzz testovaním R E S T A P I . Po prezentovaní prehľadu techník použí
vaných pri fuzz testovaní a posúdení aktuálnych nástrojov a výskumu zameraného na R E S T
A P I fuzz testovanie, sme pristúpili k návrhu a implementácii nášho R E S T A P I fuzzeru.
Základom nášho riešenia je odvodzovanie závislostí z OpenAPI formátu popisu R E S T A P I ,
umožňujúce stavové testovanie aplikácie. Náš fuzzer minimalizuje počet po sebe nasledu
júcich 404 odpovedí od aplikácie a testuje aplikáciu viac do hĺbky Problém prehľadávania
dostupných stavov aplikácie je riešený pomocou usporiadania závislostí tak, aby sa max
imalizovala pravdepodobnosť získania potrebných vstupných dát pre povinné parametre,
v kombinácii s rozhodovaním, ktoré povinné parametre môžu využívať aj náhodne gen
erované hodnoty. Implementácia je rozšírením Schemathesis projektu, ktorý generuje vs
tupy za pomoci Hypothesis knižnice. Implementovaný fuzzer je použitý na testovanie Red
Hat Insights aplikácie, kde našiel 32 chýb, z čoho jednu chybu je možné reprodukovať len
za pomoci stavového testovania.

Keywords
fuzz testing, fuzzing, fuzzer, R E S T A P I , testing, test generation, inferring dependencies,
stateful testing, property based testing, Hypothesis, JSON Schema, OpenAPI, Swagger,
Schemathesis

Kľúčové slová
fuzz testovanie, fuzzing, fuzzer, R E S T A P I , testovanie, generovanie testov, získavanie závis
lostí, stavové testovanie, Hypothesis, JSON Schema, OpenAPI, Swagger, Schemathesis

Reference
S E G E D Y , Patrik. Fuzz Testing of REST API. Brno, 2020. Master's thesis. Brno University
of Technology, Faculty of Information Technology. Supervisor Ing. Viktor Malik

Rozšírený abstrakt
Testovanie pomocou generovania nečakaných, nevalidných alebo náhodných vstupných dát
je známe pod pojmom fuzz testovanie. Fuzz testovanie je jednou z najviac úspešných
techník pre hľadanie softvérových zraniteľností a vyvíja sa každým rokom od jeho vzniku
v osemdesiatich rokoch dvadsiateho storočia. V dnešnej dobe existuje mnoho výnimočných
nástrojov na fuzz testovanie. Niektoré využívajú mutovanie vstupných dát, iné sledujú
pokryté cesty v zdrojovom kóde pomocou genetických algoritmov. Ich spoločným cieľom je
vytvoriť testy odhaľujúce čo najviac zraniteľností za pomoci zvyšovania pokrytia programu
testami. Ako prvé vznikli nástroje pre fuzz testovanie konzolových aplikácií, neskôr sa k
nim pridali nástroje testujúce sieťové protokoly prostredníctvom vytvorenia ich gramatiky.
Nakoniec vznikli white-box prístupy využívajúce inštrumentáciu zdrojového kódu počas
testovania programu.

Avšak, oblasť fuzz testovania R E S T A P I zatiaľ nebola dostatočne preskúmaná. Samozre
jme, nástroje pre testovanie webu by mohli byť použité, ale vo svojom návrhu nezo
hľadňujú špecifiká pre R E S T A P I . V súčasnosti sa rozvíja trend vytvrania aplikácii ako
mikroslužieb. Každá mikroslužba má vlastné A P I pre komunikáciu s ostatnými službami
alebo s užívateľom aplikácie. S rastúcim počtom závislých mikroslužieb sa testovanie týchto
mikroslužieb stáva komplikovaným. Tieto služby zvyčajne využívajú R E S T A P I pre komu
nikáciu a musí byť zaručené, že každý prístupový bod aplikácie sa správa podľa očakávaní
užívateľa a je zabezpečený. R E S T A P I sú často špecifikované jedným z existujúcich for
mátov pre popis R E S T A P I , ktoré zjednodušujú ich vytváranie, údržbu a z pohľadu fuzz
testovania, umožňujú automatické vytvorenie testov na základe špecifikácie. Nedostatočný
výskum v oblasti fuzz testovania R E S T A P I spojený s veľkým počtom nájdených chýb po
mocou bežného fuzz testovania nám ukazuje potenciál pre zlepšenie algoritmov generujúcich
testy pre R E S T A P I .

Viacero nástrojov testujúcich R E S T A P I zdieľa jednu nevýhodu. Testujú zhodnosť
špecifikácie a výstupu aplikácie, ale nevytvárajú testy s nevalidným vstupom.

Naša práca vytvára nástroj špecifický pre fuzz testovanie R E S T A P I . Základom nášho
riešenia je odvodzovanie závislostí z OpenAPI formátu popisu R E S T A P I , umožňujúce
stavové testovanie aplikácie. Náš fuzzer minimalizuje počet po sebe nasledujúcich 404
odpovedí od aplikácie a testuje aplikáciu viac do hĺbky Problém prehľadávania dostup
ných stavov aplikácie je riešený pomocou usporiadania závislostí tak, aby sa maximalizo
vala pravdepodobnosť získania potrebných vstupných dát pre povinné parametre. Výhodou
našej implementácie je taktiež možnosť rozhodnutia, ktoré povinné parametre môžu využí
vať aj náhodne generované hodnoty. Fuzzer je implementovaný v jazyku Python, ako
rozšírenie nástroja Schemathesis, ktorý pre generovanie vstupných hodnôt využíva knižnicu
Hypothesis.

Schopnosti implementovaného fuzzeru boli vyhodnotené na službe Red Hat Insights, kde
náš fuzzer bol schopný objaviť 32 nových chýb, pričom jedna z chýb bolo reprodukovateľná
práve za pomoci stavového testovania.

Fuzz Testing of R E S T A P I

Declaration
I hereby declare that this master's theses was prepared as an original work by the author
under the supervision of Ing. Viktor Malik. The supplementary information was provided
by Be. Martin Kouřim. I have listed all the literary sources, publications and other sources,
which were used during the preparation of this thesis.

Patrik Segedy
June 3, 2020

Acknowledgements
I would like to thank to Ing. Viktor Malik for his very valuable recommendations on how to
write a thesis and his exhaustive text corrections and ideas how to improve the presentation
of the thesis. I want to thank to Be. Martin Kouřim for his technical leadership and the
introduction to fuzz testing. Also, I like to thank to Red Hat company for the opportunity
to work on this assignment. Last, but not least, I want to thank to my family for supporting
me throughout my whole academic studies.

Contents

1 Introduction 3

2 Fuzz testing 5
2.1 Terminology 5
2.2 Basic Taxonomy of Fuzzers 6

2.2.1 Black-box Fuzzer 7
2.2.2 White-box Fuzzer 7
2.2.3 Grey-box Fuzzer 7

2.3 Fuzz Testing Overview 7
2.3.1 Grammar-based Fuzzing 7
2.3.2 Coverage-guided Fuzzing 9
2.3.3 New Fuzz Testing Utilization 10

2.4 Vulnerabilities Found by Fuzzing 10
2.4.1 Shellshock 11
2.4.2 Heart bleed 11
2.4.3 Statistics of Current Fuzzers 12

2.5 Anatomy of a Fuzzer 13
2.5.1 Preprocess 14
2.5.2 Scheduling 15
2.5.3 Input Generation 16
2.5.4 Evaluation 17
2.5.5 Configuration Updating 18
2.5.6 Fuzzer Quality 19

3 R E S T A P I Fuzzing 20
3.1 R E S T A P I 20

3.1.1 Description Specification 21
3.1.2 Security 23

3.2 Assessment of the Current State of R E S T A P I Fuzzing 25
3.2.1 Related Work 25
3.2.2 Existing Tools 26

4 Design of R E S T A P I Fuzzer 28
4.1 Running example 28
4.2 High Level Design 29
4.3 Parsing Open A P I 31
4.4 Inferring Dependencies 32
4.5 Creating Test Cases 33

1

4.5.1 Scheduling 33
4.5.2 Input Generation 35
4.5.3 Configuration Updating 36

4.6 Test Evaluation 37

5 Implementation 38
5.1 Preprocess 38
5.2 Scheduling 39
5.3 Input generation 40
5.4 Execution and Evaluation 40
5.5 Configuration Updating 41

6 Evaluation 43
6.1 Evaluations of Proposed Features 43

6.1.1 Skipping 404s 43
6.1.2 Sorting Dependencies 44
6.1.3 Using Examples from the Specification 45
6.1.4 Combination of Random and Stateful Testing 46
6.1.5 Conclusion of Experiments 47

6.2 Fuzzing the Testing Application 47
6.3 Fuzzing Real-world R E S T APIs 48

6.3.1 Testing Red Hat Insights 49
6.3.2 Testing Gitlab A P I 51

6.3.3 Conclusion 51

7 Conclusion 53

Bibliography 54

A Attached Files 58

B Usage 59

C Running Testing Application 61

2

Chapter 1

Introduction

Testing by generating unexpected, invalid, or random input data, also known as fuzzing,
is one of the leading techniques in discovering software vulnerabilities. Fuzz testing is
evolving every year since the first experiments in the 1980s. Nowadays, awesome fuzzing
frameworks exist, capable of using mutation to create new test cases, watching code paths
and employing genetic algorithms during testing to maximize coverage of a tested program,
and, ultimately, finding security vulnerabilities caused either by programming flaws or by
design issues. Over the years, fuzzing frameworks for various use cases were developed, from
tools for testing command-line applications with random inputs, grammar-based network
protocols fuzzers, to white-box fuzzers instrumenting target programs. However, the area
of R E S T A P I fuzz testing is not as deeply researched as others.

Why would one want to have tools that are specific to R E S T API? In these days, there
is a trend to create web services following microservice architecture. Every microservice
has its own A P I for communication with other microservices that makes integration testing
of the whole service complicated, especially with the increasing number of dependent mi
croservices. These services are usually utilizing R E S T A P I for communication and it must
be assured that each endpoint is doing what it is supposed to and that it is secure. R E S T
APIs are commonly specified using some description format that makes it easy to create
fully automated test cases based on A P I specification. The lack of the research in R E S T
A P I fuzzing and the number of bugs found by fuzzing in different applications gives us an
opportunity to come up with a better test generation algorithms and to fulfill its potential
by finding interesting bugs.

Many tools for testing R E S T A P I are using only the expected inputs to test the con
formance of the application to its R E S T A P I specification. The goal of this thesis is to
create a tool that will test also negative cases using fuzzing. This will be achieved by infer
ring dependencies between R E S T resources and by injecting expected inputs acquired from
the specification, while avoiding generation of tests that are making requests with invalid
combination of dependencies. This way, a small set of meaningful tests is created, that will
explore a large portion of code paths.

The content of this thesis consists of a general description of fuzz testing in Chap
ter 2. This chapter contains terminology, definitions, and overview of fuzz testing methods,
including the basic taxonomy of fuzzers. Later, basic workflow and building blocks of a
general fuzzer are presented, and the importance of fuzz testing is demonstrated by vulner
abilities and numerous bugs found by commonly used fuzzers. Chapter 3 is dedicated to
R E S T A P I Fuzzing. This chapter starts with the definition of the Representational State
Transfer (REST) architectural style with its constraints. This is followed by specification

3

of formats used to describe R E S T A P I and the security problems of applications using the
R E S T approach. At the end of the chapter, the current publications about R E S T A P I test
generation are discussed and some tools for testing R E S T A P I are presented. Chapter 4
explains design of the R E S T A P I fuzzer. It also defines a running example that will be
used in the subsequent text explaining the design and implementation details. The pro
posed design of the fuzzer is implemented in Chapter 5 by modifying the Schemathesis tool.
Finally, the implemented tool is evaluated against our testing application having a stateful
bug, several experiments are conducted to justify implementation details, and the fuzzer is
used to find bugs in Red Hat Insights in Chapter 6.

4

Chapter 2

Fuzz testing

Fuzzing, at a high level, refers to the technique of running a program with generated unex
pected, invalid, or random input data that may be syntactically or semantically incorrect.
The program is then monitored for failures, such as failing assertions of correct behavior,
exceptions, and memory leaks. Fuzzing is widely used by malicious attackers to generate
exploits, as well as by defenders for penetration testing in an attempt to discover vulnerabil
ities faster than attackers do. Numbers of prominent vendors such as Adobe, Cisco, Google,
or Microsoft use fuzzing in their software development process to secure the software. Se
curity auditors and open-source developers have recently also started to employ fuzzing to
measure software security to assure end-users that the provided software is secure [26].

The term fuzz was born in Madison in the Fall of 1988 by professor Barton Miller
during one dark and stormy night. That night, Professor Miller was logged on to the Unix
system in his office via a dial-up connection. A Heavy rain created noise interfering with
the professor's ability to type sensible commands to the shell and programs. That was not
surprising, however, what did surprise him was that the noise seemed to cause programs
to crash. To make a systematic scientific investigation to understand the problem and the
cause, the professor suggested a new course project in the course on Advanced Operating
Systems at the University of Wisconsin, but to describe the project, it was needed to give
this kind of testing a name. Professor Miller settled on the term „fuzz" because he wanted
a name that would evoke the feeling of unstructured, random data [32]. The goal of the
project itself was to evaluate robustness of various Unix utilities, given an unpredictable
input. The first part of the project was to build a fuzz generator, the program that will
create a stream of random characters, and the second part was to use the fuzz generator
to attack as many utilities as possible. The results of this project were alarming. The best
group of students succeeded well beyond professors' expectations. On seven Unix variants,
they crashed between 25-33% of the utility programs [28].

2.1 Terminology

Fuzzing community is very vibrant. The literature contains a number of fuzzers and the
number of fuzzing studies appearing at major security conferences is increasing, and also
GitHub hosts over a thousand public repositories about fuzzing. Wi th such a popularity,
systematization problems arise. Some fuzzers lack documentation and it is easy to lose
track of the design decision, while others are using different terms to describe the same
technique or a similar term for different techniques. For example, A F L fuzzer uses the term

5

„test case minimization" for reducing the size of a crashing input, the same technique is
called „test case reduction" in the funfuzz fuzzer, but the B F F fuzzer has a similar-sounding
technique called „crash minimization" that is not related to reducing the input size. Such
fragmentation makes it difficult to discover fuzzing knowledge and may decelerate progress
in fuzzing research [26].

For this reason, we now introduce the terminology unified by 2019's article by Manes et
al. [26] in relation to Program Under Test (PUT) which we will use throughout this thesis

Fuzzing is an execution of the P U T using input (s) sampled from an input space (the „fuzz
input space") that protrudes the expected input space of the P U T [26].

Authors of a survey unifying terminology made three following remarks [26]:

• It is not necessary that the fuzz input space contains the expected input space.
It is sufficient when the fuzz input space contains an input not present in the
expected input space.

• Fuzzing, in practice, runs for many iterations.

• The sampling process is not necessarily randomized.

Fuzz Testing is the use of fuzzing to test if the P U T violates a correctness policy [26].

Historically, fuzz testing has been used mainly to find security vulnerabilities. Nowa
days, it is also used to find non-security bugs [26].

A Fuzzer is a program that performs fuzz testing on the P U T [26].

Fuzz Campaign is a specific execution of a fuzzer on the P U T with a specific correctness
policy [26].

A Violation of the specified correctness policy is achieved by finding bugs by running
the P U T through a fuzz campaign. A n example of a policy violation is crashing the
P U T by the test case [26].

A Bug Oracle is a program, perhaps a part of a fuzzer, that determines whether a given
execution of the P U T violates a specific correctness policy [26].

Fuzz Configuration of a fuzz algorithm comprises the parameter value(s) that control(s)
the fuzz algorithm [26].

Fuzz configuration is a broad term. It depends on the type of the fuzz algorithm since
the fuzz algorithm may depend on some parameters beyond the P U T . Each concrete
setting of the parameters is a fuzz configuration [26].

2.2 Basic Taxonomy of Fuzzers

Fuzzers can be categorized into three groups based on how much information about the
P U T is gathered in each fuzz run. In traditional software testing, we distinguish two types
of testing, black-box, and white-box. The classification of fuzzers is slightly different, it has
three types of fuzzers. These three groups are called black-box, grey-box, and white box
fuzzers. We will look more into techniques used in all three groups of fuzzing in Section 2.5.2.

6

2.2.1 Black-box Fuzzer

In software testing, the term black-box is commonly used and denotes techniques that do
not see the internals of the P U T . In fuzzing, a black-box fuzzer observes only input/output
of the P U T . Fuzzers take the structural information about inputs into account to generate
meaningful test cases [26]. Black-box fuzzer uses predefined rules to randomly mutate a
given valid seed to create slightly malformed but still valid input [24].

2.2.2 White-box Fuzzer

White box fuzzing uses information about the internal logic of a target program to generate
test cases. Unlike black-box fuzzer, white-box fuzzer starts execution by gathering symbolic
constraints at all conditional statements. The fuzzer combines symbolic constraints to form
a path constraint. One of the constraints is then negated and new path constraint is solved.
This creates new test cases that explore different execution paths of a program [24].. Due to
exploring the state space, dynamic symbolic execution, and satisfiability solving, white-box
fuzzers have typically much higher overhead than black-box fuzzers [26].

2.2.3 Grey-box Fuzzer

A middle-ground approach is called grey-box fuzzing. These fuzzers obtain some internal
information about the P U T or its executions. Unlike white-box fuzzers, they do not reason
about the full semantics of the program, instead, grey-box fuzzers gather approximated,
imperfect information about the program by utilizing lightweight static analysis or dynamic
code coverage information [26]. Grey-box fuzzers can obtain code coverage of the target
program at runtime and use this information in following adjustments of mutation strategies
to create new test cases [24].

2.3 Fuzz Testing Overview

The term fuzzing was introduced in 1988, but it wasn't the beginning, the big bang of
fuzzing. Software engineers used methods similar to fuzzing since the 1980s, but it wasn't
called fuzzing back in the days. According to Fuzzing for Software Security Testing and
Quality Assurance by Takanen et al. [32], software testing for security and reliability was
not widely spread, and it looked like nobody cared about software quality, since the concept
of an attacker was unknown. In Figure 2.1, we can see the milestones of fuzzing evolution.

Fuzz testing is still a vital and popular topic amongst researchers even after more
than thirty years of research and development. As a demonstration of fuzzing popularity,
Figure 2.2 shows the number of publications over years in the fuzz testing domain.

Fuzzing can be divided into two types. A n older and a simpler type of fuzzing is fuzzing
based on a grammar. A newer approach is to use code coverage information to guide the
generation of test cases. In the rest of this section, we present the most popular and used
approaches to both types of fuzzing, including the latest published academic papers.

2.3.1 Grammar-based Fuzzing

In the begging, researchers tried to find exploitable security holes by generating random
inputs for command-line options with the Fuzz tool. Although it sounds naive, its ability
to discover bugs was impressive. The Fuzz tool testing strategy was searching for undefined

7

- PROTOS, SPIKE
- Grey-box

- Grammar-based
- Network protocols

Easy to create own fuzzer

- S A G E
- Coverage-guided fuzzing

- White-box
- Symbolic execution

- Dynamic test generation

- The term "Fuzz"
- Black-box fuzzing

Random input generators

- File format fuzzing
- Grammar-based
- Mutation-based

Command-line utilities,
web browser fuzzing

- AFL, Angora, OSS-Fuzz
- White-box, grey-box,

black-box
- Genetic algorithms

Mutation-based, coverage-
guided, cloud-based

Figure 2.1: Fuzzing evolution

states by a random walk through the state space [32]. It was an overly simplistic, pure
black-box approach, but we have to keep in mind that the concept of fuzzing was unheard
of at the time [31].

The first modern fuzzer was a set of fuzzing test suites created by analyzing proto
col specification, called P R O T O S project. In contrast with the Fuzz, P R O T O S is a nice
example of mixing white box and black box testing [31] [32].

Another tool marking a significant milestone in fuzzing history was named S P I K E .
Mostly, because it allowed users to easily create their own fuzzers. It was the more
advanced, open-source fuzzer intended for network-enabled applications. It has the ability
to describe variable-length data blocks, generate random data, but is also bundled with a
library of values that will likely produce faults [31].

After fuzz testing command-line utilities, network protocols, and web browsers, file
fuzzing came into vogue in 2004. Wi th file format vulnerabilities another milestone was
marked and mutation-based fuzzing widened. Files turned out to be suitable for mu
tation testing since they can be mutated and the target application can be monitored for
faults.

While the grammar for the S P I K E was based on the network protocol specification,
grammar for file fuzzers followed the tested file format. [31].

Grammar-based methods are still researched. Since the majority of existing fuzzing
methods do not take the structure of inputs for the target program into account. Authors of
Grammar-based Fuzzing [30] came with a new method based on B N F grammar. Every rule
of the grammar is designed as an universal pushdown automata, which allows generating
B N F compatible data. Authors claim they were able to increase code coverage significantly.

Interestingly, members of the P R O T O S team launched a company named Codenomi-
con [31]. Their researchers, as well as the others, were the ones who discovered the infamous

8

Published publications about "fuzz testing" in IEEE Xplore
database

100

year

Figure 2.2: Fuzzing research

Heart bleed bug [34]. We cover more details about this and other bugs found by fuzzing in
Section 2.4.

2.3.2 Coverage-guided Fuzzing

Traditionally, fuzzers have been very dependant on the input samples or on the provided
grammar [32]. Patrice Godefroid et al. [18] came with an alternative approach to tradi
tional fuzzers and developed the S A G E (Scalable Automated Guided Execution) fuzzer.
Algorithm of S A G E was inspired by advances in symbolic execution and dynamic
test generation.The authors called this new approach the White-box fuzzing [18].
S A G E had a remarkable impact on Microsoft products since it found many issues thanks
to a combination of program analysis, testing verification, model checking, and automated
theorem-proving techniques [19]. Since S A G E , many new fuzzers and proofs-of-concept
started to use evolutionary and genetic algorithms in combination with code coverage to
defeat traditional fuzzers [32].

Numerous other frameworks and fuzzers for various use cases emerged. Rather than
talking about dead and forgotten applications and fuzzers for surpassed technologies like
ActiveX, let us move forward to a more recent history and the presence. The release of the
American Fuzzy Lop (A F L) 1 fuzzer by Michal Zalewski meant a major leap in the usability
of advanced fuzzing tools. A F L is a security-oriented fuzzer, leveraging compile-time code
instrumentation combined with genetic algorithms to discover untested, new code paths.
It was not the first usage of such techniques, however, A F L was the first tool combining it
into an easy-to-use tool to be used without the need of in-depth technical understanding.
L L V M libFuzzer is similar to A F L with focus on performance testing and fuzzing of libraries.

1American Fuzzy Lop - https://github.com/google/AFL

9

https://github.com/google/AFL

Since then, fuzz testing is time-consuming and exhausting finding of uncovered paths in
code, because of that, new cloud-based fuzzing services emerged. Examples are, Google's
ClusterFuzz 2, a cloud-based fuzzing infrastructure for fuzzing security-critical compo
nents of Chromium web browser3, later used as a backend for OSS-Fuzz 1 targeting open-
source software0, or Microsoft's first commercial cloud-based fuzzing service, Microsoft Se
curity Risk Detector 6. Wi th scaling capabilities of cloud infrastructure, these cloud-based
fuzzing services are able to use coverage guided fuzzers executed in parallel [32].

Current research is focused on improving fuzzing speed by solving path constraints
without symbolic execution like Angora [10]. Transforming the target program to remove
sanity checks like T-Fuzz [29]. Increasing efficiency by utilizing static and dynamic analysis
of the program to create branch predictions [35]. Some researchers are improving A F L
functionality by modifying internal data structures to reduce hash table collisions [17],
others use Markov chain model to guide the fuzzing [5] or Markov decision process to
formalize fuzzing as a reinforcement learning problem [6] [23].

2.3.3 New Fuzz Testing Utilization

Fuzzing is not only used to find vulnerabilities in computer programs and utilities but also in
other sectors of cybersecurity. One example could be the Fuze [9] project aiming at fuzzing
smart contracts and support fuzz testing of decentralized applications. Another example is
a research on fuzz testing in the automotive industry. Computational complexity within a
connected car, especially with the advent of autonomous vehicles is increasing. Researchers
experimented with fuzz testing against a target vehicle's C A N bus to demonstrate that the
fuzz testing has a part to play as one of the many security tests that a vehicle's systems
need before series production [16].

2.4 Vulnerabilities Found by Fuzzing

Vulnerabilities can be introduced in various phases of the Software Development Life Cycle
(SDLC) shown in Figure 2.3, in design, implementation, and deployment phase. Issues orig
inated in the design phase are fundamental defects that are difficult to fix. Implementation
defects are the most common and they are usually caused by bad practices or mistakes in
the implementation of the product. Lastly, deployment issues are caused by incorrect and
not secure configuration of deployed product, often caused by bad documentation on how
to deploy product securely. By analyzing these phases with regards to experience about
known mistakes, we observe that implementation flaws prevail. More than 70% of security
vulnerabilities are caused by programming flaws, about 20% are caused by bad design, and
less than 10% are configuration issues causing not secure deployment [32].

Fuzzing is able to find issues in all the phases, but since the programming faults are the
most common, fuzzing will find most issues caused by poor implementation or bad practices.
However, deployment security flaws, such as making a management A P I accessible without
authorization, or some design problems can be also found by fuzz testing.

2 ClusterFuzz - https://github.com/google/clusterfuzz
3ClusterFuzz announcement - https://blog.chromium.org/2012/04/fuzzing-for-security.html
4OSS-Fuzz - https://github.com/google/oss-fuzz
5 OSS-Fuzz announcement -

https : //testing.googleblog.com/2016/ 12/announcing-oss-fuzz-continuous-fuzzing.html
6Microsoft Security Risk Detector - https://www.microsoft.com/en-us/security-risk-detection/

10

https://github.com/google/clusterfuzz
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://github.com/google/oss-fuzz
http://ing.googleblog.com/2016/
https://www.microsoft.com/en-us/security-risk-detection/

Figure 2.3: Software Development Life Cycle

In this section, we present some of the most infamous C V E s and security issues that
were directly found by fuzzing, or whose discovery was made possible thanks to fuzz testing.

These cases demonstrate usefulness and practical applicability of fuzz testing.

2.4.1 Shellshock

Shellshock is a family of vulnerabilities related to a bug called Backdoor (CVE-2014-6271).
The Shellshock bug affects G N U Bash, a very popular Unix shell. It is a vulnerability in
Bash functionality that evaluates environment variables passed to it from another environ
ment. A n attacker could use this feature to execute shell commands before restrictions to
the environment have been applied. This leads to privilege escalation vulnerability' Most
of the vulnerabilities, in the Shellshock Family were found by the A F L fuzzer.8

2.4.2 Heartbleed

Another serious vulnerability found with the help of fuzzing is Heartbleed 9. It is a bug in
the OpenSSL implementation of transport layer security protocols T L S / D T L S heartbeat
extension. A heartbeat service is used to check whether the server on the other end is
still alive. It works on a simple principle. A client would send the message containing a
keyword and its length, and the server should reply the keyword back if it is still alive.
The Heartbleed bug was exploited by sending a specially crafted message where the length
of the keyword was actually bigger than the keyword itself. The consequence is that the
server would reply with the provided keyword concatenated with other information from
memory. The explanation can be seen in Figure 2.4. Heartbleed security vulnerability was

7Shellshock Red Hat bugzilla - https://bugzilla.redhat.com/show_bug.cgi?id=1141597
8Shellshock found by A F L - https://lcamtuf.blogspot.com/2014/09/quick-notes-about-bash-bug-

its-impact.html
9Heartbleed - http://heartbleed.com/

11

https://bugzilla.redhat.com/show_bug.cgi?id=1141597
https://lcamtuf.blogspot.com/2014/09/quick-notes-about-bash-bug-
http://heartbleed.com/

found by researchers from Codenomicon and Google by compiling the OpenSSL library
with a memory sanitizer, to notice an out-of-bound memory access occurrence, followed by
fuzzing [34]. Later on, it was described by Hanno Bock how the Heartbleed bug could have
been found by A F L . 1 0

o Is server alive?

Send:
{'msg': 'hello', 'length': 5}

•O

Yes, server is alive

O
Are you still alive?

Reply:
{'msg': 'hello', 'length': 5}

I
Send:

{'msg': 'hello', 'length': 10}

J Yes, server is alive

Reply:
{'msg': 'hello2h5G5',

length: 10}

I
o

Figure 2.4: Heartbleed illustration

2.4.3 Statistics of Current Fuzzers

Looking at the list of notable vulnerabilities and other uniquely interesting bugs that were
found by A F L , fuzzing is very successful in finding bugs. A F L found numerous bugs in
161 products, projects or libraries. To name a few, it found vulnerabilities in web servers
as Apache httpd or nginx, Mozilla Firefox or Apple Safari web browsers, mobile operating
systems Android and iOS, various open-source libraries as well as in OpenBSD or iOS
kernel. 1 1

Cloud-based fuzzing services are also very successful, as of December 2019, OSS-Fuzz
found more than 15,000 bugs in 200 open-source projects. 1 2

The use of fuzzing as a part of S D L C is proactive and makes it easier to find zero-day
flaws before product release. Security or vulnerability scanners are reactive tools that fail to
do that because they are based on knowledge of previously found vulnerabilities. Reactive

10

How Heartbleed could have been found - https://blog.hboeck.de/archives/868-How-Heartbleed-

couldve-been-found.html
n A F L - http://lcamtuf.coredump.cx/afl/
1 2OSS-Fuzz bug tracking - https://bugs.chromium.org/p/oss-fuzz/issues/list?can=l&q=-status°/,

3AWontFix'/„2CDuplicate+- Infra

12

https://blog.hboeck.de/archives/868-How-Heartbleed-
http://lcamtuf.coredump.cx/afl/
https://bugs.chromium.org/p/oss-fuzz/issues/list?can=l&q=-status�/

tools are testing only widely used products from major vendors, however, with fuzz testing
it is possible to test any process, service, device, or system for security flaws regardless
interfaces it uses [32].

2.5 Anatomy of a Fuzzer

In this section, we present a general structure of a fuzzer. Typically a fuzzer's anatomy
consists of several phases whose implementation may vary based on the target application
and on the format of the data that is fuzzed.

1

Identify inputs ^^^^H

Generate fuzzed data 1

D Execute fuzzed data

Monitor for exceptions J

Determine exploitability

Figure 2.5: Fuzzing phases

Based on the Fuzzing—Brute Force Vulnerability discovery book [31], fuzzing can be
divided into the following six basic phases, also seen in Figure 2.5:

1. Identify target. First, it is neccessary to identify the target application to select
an appropriate fuzzing approach. It is different to fuzz an internally developed ap
plication during a security audit, and a third-party application in order to discover
vulnerabilities. Moreover, the target is not neccessarily an entire application, it can
be a specific file or a library within the application.

2. Identify inputs. The crucial part for the success of fuzzing is enumerating input
vectors. Some input vectors might be obvious, others are subtler. It must be kept
in mind that anything sent from the client to the target should be considered an
input vector, including headers, file names, environmental variables, etc.. Exploitable
vulnerabilities are commonly caused by application accepting malicious user input
without sanitizing it.

3. Generate fuzzed data, or in other words, create fuzz configuration. Once the input
vectors are known, fuzz data must be generated. Multiple strategies can be used such
as using predetermined values or random data, mutating existing data, or generating
data dynamically. The strategy depends on the target and the data format. The
generation should be an automated process.

13

def fuzz(self, fuzz_configs: List [Config], time_limit: int) ->Set[Bug]:

"""General fuzzer."""

bugs ={}

remove redundant configurations, instrument the PUT

fuzz_configs =self.preprocess(fuzz_configs)

run fuzzing until time_limit

or if there are no more paths to discover

while self.time_elapsed <time_limit and self.cont(fuzz_configs):

select a fuzz configuration for the current iteration

conf =self.schedule(fuzz_configs, time_elapsed, time_limit)

generate test cases from fuzz configuration

tests =self.input_gen(conf)

execute test cases

collect bugs and gather information about test runs

new_bugs, exec_info =self.input_eval(conf, tests, self.bug_oracle)

update fuzz configurations based on the result of test runs

fuzz_configs =config_update(fuzz_configs, conf, exec_info)

bugs.update(new_bugs)

return bugs

Listing 2.1: Algorithm of a general fuzzer

4. Execute fuzzed data. This step depends on the previous one. Fuzzed data are
executed by sending a data packet to the target, opening a file, or launching the
target process. It has to be automated, otherwise, the process is not a fuzzing.

5. Monitor for exceptions. A n often overlooked step, that is a vital part of fuzzing.
Imagine transmitting 10,000 fuzz packets to a target web server, causing the server
to crash. A l l the work would be useless if we were not able to pinpoint the packet
responsible for the crash.

6. Determine exploitability. It might be necessary to determine if the found bug can
be exploited. Determining exploitability requires specialized security knowledge and
it is usually performed by someone other than the person conducting the fuzzing and
it depends on the goals of the audit.

To describe a generic fuzzer more in detail, we use an the example of a generic fuzzer
algorithm based on the algorithm from a survey The Art, Science, and Engineering of
Fuzzing [26] seen in Listing 2.1. Description of methods used for each part of the algorithm
is provided in the following subsections.

2.5.1 Preprocess

The first step of some fuzzers is to prepare the main loop of the algorithm in Listing 2.1
by modifying the initial set of fuzz configurations. The goal of such preprocessing is to
instrument the P U T and to remove potentially redundant configurations, to generate driver
applications, or to prepare a model for future input generation [26].

14

Instrumentation

The amount of collected information during P U T instrumentation distinguishes the type
of the fuzzer between black, white, or grey-box fuzzer. Program instrumentation can hap
pen in preprocess phase for static instrumentation, or during input_eval phase, if the
instrumentation is dynamic [26].

A benefit of static instrumentation is less runtime overhead since it is performed at
compile-time, before runtime. However, it is not suitable for programs that rely on multi
ple libraries. These libraries have to be instrumented and recompiled separately. Dynamic
instrumentation's downside is higher overhead than static instrumentation, but it has the
advantage of easily instrumenting dynamically linked libraries thanks to doing the instru
mentation at runtime. Generally, a fuzzer can support both the static and the dynamic
instrumentation [26].

Seed Selection and Trimming

Some parameters of fuzz configurations, for example, seeds for mutation-based fuzzers, can
have infinite domains. Imagine fuzzing of an M P 3 player that accepts M P 3 files as input.
The number of valid M P 3 files is unbounded, and therefore it is hard to select a seed used
for fuzzing. This problem is known as the seed selection problem. A common approach
to address this problem is a method for finding a minimal set of seeds that maximizes a
coverage metric (i.e. node coverage), called minset. Minset of some fuzzers, like A F L , is
based on branch coverage, while others compute coverage based on the number of executed
instructions, branches, and unique basic blocks. Adding longer executions to the minset
can help discover performance issues or denial of service vulnerabilities. This step is part
of the conf ig_update [26] phase.

To consume less memory and to ensure higher throughput, some fuzzers attempt to
reduce the size of the seed prior to fuzzing. This method is called seed trimming and can
happen prior to fuzzing loop in preprocess or during conf ig_update. Seed trimming
can be implemented as iteratively removing a portion of the seed when the modified seed
achieves the same coverage [26].

Generating a Driver Application

Sometimes, it is difficult to directly fuzz the target. In these cases, it makes sense to prepare
a driver for fuzzing. This is performed once at the begging of the fuzz campaign and it
is largely manual process. Fuzzing a library is one example when a driver application is
needed. The driver program is calling functions in the library, thus the library can be
fuzzed. This approach is used by kernel fuzzers or IoT fuzzers [26].

2.5.2 Scheduling

Selecting a fuzz configuration for the next fuzz iteration is called scheduling. It highly
depends on the type of the fuzzer, and its goal is to analyze the available information about
the configurations and pick one that more likely leads to the most favorable outcome, as
finding bugs or increasing the coverage. Advanced fuzzers use innovative scheduling al
gorithms which are a major factor for their success. Every scheduling algorithm has to
solve exploration vs. exploitation conflict. Exploration is spending more time on gathering
more accurate information on configuration to inform future decisions, while exploitation

15

is spending time on fuzzing the configurations that are believed to lead to better outcomes.
This problem is called Fuzz Configuration Scheduling (FCS) Problem. In algo
rithm 2.1, schedule function selects the next configuration based on fuzz configurations,
elapsed time and remaining time [26].

Black-box FCS Algorithms

The only information an FCS algorithm gets from a black-box fuzzer is the outcome of
a configuration, number of bugs and crashes, and the time spent on configuration. The
number of unique crashes in a fixed amount of time can be increased by favoring con
figurations with higher success (number of unique crashes/runs) probability. Common
strategy for coping with exploration vs. exploitation problem is applying multi-armed ban
dit1^1 algorithm to fuzzing. Another improvement is in normalizing the success probability
by the time spent in it to prefer faster configurations, and not running a fixed number of
fuzz runs, but limit a fuzz iteration to a fixed amount of time to further deprioritize slower
configurations [26].

Grey-box FCS Algorithms

A n FCS algorithm for grey-box fuzzer can choose to use from a richer set of configura
tion information, such as coverage information. Many fuzzers use evolutionary algorithms
(EA) to maintain a population of configurations with their fitness value. Offspring of fit
configuration is produced using transformations such as mutation and recombination. A
fuzzer maintains a circular queue of configurations from which it selects the next fastest
configuration with the smallest input that has the highest coverage [26].

2.5.3 Input Generation

One of the most influential design decisions in a fuzzer is the input generation technique
that controls the content of a test case and triggers bugs. Input generation is defined by
the input_gen function of algorithm in Listing 2.1. In this section, we describe Generation-
based (model-based) fuzzers that produce test cases based on a given model, and Mutation-
based (model-less) fuzzers producing test cases by mutating a given seed input.

Generation-based Fuzzers

Generation-based fuzzers are fuzzers that generate test cases based on a given model describ
ing the inputs or executions that the P U T may accept. Three types of models exists [26]:

• Predefined Model. Some fuzzers use a model configured by the user, using some
kind of template, grammar, or network protocol specification provided by the user.
Other model-based fuzzers can target a specific language or grammar. These fuzzers
have built-in model based on target language.

• Inferred Model. Only a few fuzzers utilize the technique of inferring the model
rather than relying on a predefined or user-provided model. Some fuzzers infer
the model during the preprocess phase, focusing to generate semantically valid
inputs. Others are trying to update their model after each fuzz iteration during
config_update.

13

Multi-armed bandit - https://en.wikipedia.org/wiki/Multi-armed_bandit

16

https://en.wikipedia.org/wiki/Multi-armed_bandit

• Encoder Model. This model is used to test decoder programs that parse a certain
file format. New test cases are created by mutating the encoder program to produce
test cases that are slightly malformed.

Mutation-based Fuzzers

Generating test cases randomly is not efficient for some applications. Imagine fuzzing M P 3
files, it is extremely unlikely that random testing will generate a valid M P 3 file. Because
of that, inputs for model-less mutation-based fuzzers are seed-based. A seed is typically a
well-structured input accepted by the P U T . By mutating the seed, it is possible to generate
a test case that is accepted by the P U T , but contains abnormal values triggering crashes
of the P U T . Variety of methods used to mutate seeds exist and [26] describes the following
as the most common ones:

• Bit-Flipping. A number of flipped bits can be fixed, random, or user-configurable
called mutation ratio. Flipping K random bits in A-b i t seed is described by mutation
ratio of K/N.

• Arithmetic Mutation. This mutation operation considers a selected byte sequence
as an integer. The byte sequence is then mutated by performing a simple arithmetic
operation on that value.

• Block-based Mutation. Block is a sequence of bytes of a seed. Block mutation can
consist of inserting a randomly generated block into a random position, deleting a
randomly selected block from a seed, or randomly permuting the order of a sequence
of blocks.

• Dictionary-based Mutation. A n example of dictionary-based mutation is usage
of a predefined set {0, -1 ,1} when mutating integers, these values have significant
semantic meaning for mutation.

White-box Fuzzers

White-box fuzzers can be either model-based or model-less, traditional dynamic execution
does not require a model, while some symbolic executors leverage grammar-based input
models to guide symbolic execution. Symbolic execution is slower than grey-box or black-
box fuzzers as it instruments and analyzes every instruction of the P U T . A common strategy
to cope with the high time complexity is to specify uninteresting parts of code. Guided
symbolic executors involve a costly program analysis followed by a test case generation with
guidance from the analysis. Other white-box fuzzers patch the P U T to bypass validators.
Once they find a test case causing a crash, they try to reconstruct the failure on the original
P U T with symbolic execution [26].

2.5.4 Evaluation

Input evaluation is a process of deciding what to do with the resulting execution, if we hit
a bug, program crash, and which bugs are related. For example getting segmentation fault
is a program issue that is easily trapped by a fuzzer, however, other types of memory bugs,
such as stack buffer overflow can cause invalid result without a program crash.

17

In this section we present the most common techniques for test run evaluation. Bug
oracle serves as an adviser for automatic bug type detection. Detected bugs then need to
be analyzed.

Bug Oracles

Researchers have proposed a variety of efficient program transformations to detect unsafe
program behaviors, called sanitizers. Sanitizers can be used to detect use-after-free vul
nerabilities, capture cross-site scripting (XSS) and SQL injection vulnerabilities, or other
information leaks [26].

Triage

Triage, based on [26], is a process of analyzing and reporting test cases that result in
vulnerabilities. It is separated into three steps:

1. Deduplication, is a process of pruning test a case that triggers the same bug as a
different test case did. The ideal state after deduplication is to have a single test case
per unique bug.

2. Prioritization is a process of ranking or grouping test cases resulting in bugs ac
cording to their severity and uniqueness. In the context of memory vulnerabilities,
prioritization is often called exploitability of a crash. Informally, it describes the
likelihood of practical exploit development.

3. Minimization of test cases is a part of triage identifying the portion of a violating
test case that triggers a vulnerability. The goal is to produce a test case that is smaller
and simpler but still hitting the original issue.

2.5.5 Configuration Updating

The conf ig_update function's behavior is different for black-box, grey-box, and white-box
fuzzers. Black-box fuzzers typically leave the configuration set unmodified, as they are only
evaluating a bug oracle. In contrast, grey and white-box fuzzers typically have a complex
conf ig_update function [26].

Evolutionary Seed Pool Update

The concept of Evolutionary Algorithm (EA), a heuristic-based approach involving biology-
inspired evolution mechanisms, such as mutation, recombination, and selection, forms the
bases of many grey-box fuzzers. Most EA-based fuzzers use node or branch coverage as
the fitness function to add a new configuration to the set of configurations. If a new node
or branch is discovered, a new test case is added to the seed poll. Common strategies
are to refine the fitness function to detect more granular indicators of improvements, or to
measure the fraction of conditions that are met when branch conditions are evaluated [26].

Maintaining a Minset

The risk of creating too many configurations rises with the ability to create new fuzz
configurations. Solution to this problem is to maintain a minset—a minimal set of test
cases that maximizes a coverage metric, similarly as it is used during the preprocess
phase [26].

18

2.5.6 Fuzzer Quality

Quality of a fuzzer can be determined by numerous different metrics and it depends on the
concrete use case why fuzzing was conducted. Metrics of quality can be:

• Speed. Possibly one of the most important factors. Intuitively, more test cases per
second, more scenarios tested, more bugs found.

• Vulnerabilities found. Some fuzzers may be slower but still can find more bugs
thanks to advanced test case generation.

• Code coverage. How much of a program was tested during fuzzing.

• Test case minimization. Fuzzers that report minimal and unique test cases for
unique bugs are better.

• Crash categorizing. A person conducting fuzzing has immediate information on
which bugs have higher severity and what type of bugs are found.

A good fuzzer should satisfy all the factors mentioned above. It should be reasonably quick,
while intelligent enough to generate not trivial test cases able to find vulnerabilities. The
fuzzer should test as many code lines as possible and report minimal and unique test cases
categorized by exploitability of found vulnerabilities.

19

Chapter 3

R E S T A P I Fuzzing

Fuzzers for the H T T P protocol exists and are used, but to fuzz test a R E S T A P I , it is
better to have a more REST-specific fuzzer to do the job. The most popular fuzzers, like
A F L , are not suitable for fuzz testing of a service that may run as multiple communica-
tiong microservices, especially it is not possible to test one microservice without data from
another. This is one of the reasons why fuzz testing of Web APIs and especially R E S T
APIs is a complex task [4]. For testing such services we can use black-box grammar-based
fuzzing based on R E S T A P I specification formats. In fact, it is nothing new and many ap
proaches for specification-based test case generation exists, but mostly for S O A P web APIs
relying on Web Services Description Language (WSDL) documents. On the other hand,
research targeting R E S T A P I fuzzing is rather limited despite the fact that its potential
of discovering new vulnerabilities in R E S T APIs is high, observing the success of popular
fuzzers used for other applications.

In the following sections, we describe R E S T A P I and look at how the A P I can be
specified and documented. We won't miss a security point of view of R E S T A P I and
outline which security issues can be found by fuzzing. In the end of this chapter, we assess
the current research regarding R E S T A P I fuzzing and look into some tools for testing and
their suitability for fuzz testing.

3.1 R E S T A P I

Representational State Transfer (REST) is the name of a description of the Web's
architectural style. The key abstraction of information in R E S T is a resource. The resource
is any information that can be named: a document, a temporal service, or a collection of
other resources. R E S T is composed of the following constraints [14]:

• Client-Server. The Web is a client-server based system. Portability of the user
interface across multiple platforms and the scalability is improved. The separation
also allows the components to evolve separately.

• Uniform Interface. The interactions between clients, servers, and network-based
intermediaries depend on uniform interfaces. It has four constraints:

— Identification of resources. Every resource should be addressed by unique iden
tifier, such as U R L For example, http://example.com is a unique identifier for a
specific website's root resource.

20

http://example.com

— Manipulation of resources through representations. The same resource can be
represented to different clients in different ways. For example, a document can
be represented as a JSON to an automated program, and as an H T M L to a web
browser.

— Self-descriptive messages. The desired state of a resource can be represented
within a client's request message. The current state of the resource can be
represented within the response message. These messages may include metadata
for additional details regarding the resource state.

— Hypermedia as the engine of application state (HATEOAS). Links to related
resources are included in resource state representation. For example, it is a link
to another item in a collection, or more specifically, to the next page of results.
This approach allows to traverse information.

• Layered System. This constraint enables intermediaries, such as proxies, to be
transparently deployed between the server and the client.

• Cache. Caching can help in reducing client-perceived latency by cacheability of each
response's data.

• Stateless. A web server is not required to memorize the state of its client applications.
This trade-off is a key to the scalability of the Web's architectural style.

• Code-On-Demand. It enables web servers to temporarily transfer executable pro
grams to clients. This constraint is optional.

R E S T A P I is a Web A P I (application programming interface) conforming to the R E S T
and consisting of an assembly of interlinked resources. A web service utilizing a R E S T A P I
is called RESTful and the set of resources is known as the REST API's resource model [27].

Uniform Resource Identifiers (URIs) are used to address resources of R E S T APIs. The
definition for a URI must conform syntax defined by R F C 3986 [3].

R E S T A P I is using H T T P methods and H T T P response status codes to inform the
client about the result of the called A P I . Numerous guidelines on how to use the H T T P
methods exist and some of them are presented in the following subsection. However, all
of these guidelines must comply with H T T P standard [15]. The safe GET method should
not change the state of the resource and idempotent GET, PUT, and DELETE methods should
result in the same state change of the resource when applied multiple times to a resource.

In this thesis we distinguish terms endpoint and resource. The term endpoint de
scribes H T T P method and URI used to make a request. For example, GET /systems/{id},
while {id} is a path parameter. The term resource is a named information returned by the
endpoint, for example, a J S O N document describing a system with the attribute id=42
returned by the endpoint GET /systems/42.

3.1.1 Description Specification

To provide a specification and documentation of a R E S T API 's endpoints and resources to
a user, we can utilize many different technologies. Ideal example of a general specification
is JSON Schema 1. A n example of more specific, and nowadays widely used descriprion
format is OpenAPI 2 . Such specifications contain information about URI's of the resources,

1 JSON Schema - https://json-schema.org/
2

0penAPI - https://swagger.io/specification/

21

https://json-schema.org/
https://swagger.io/specification/

which H T T P methods are accepted by different endpoints, what is the expected input for
an A P I call, and what will be the output, including the status code. Generally, these tools
do not define only syntax of the A P I , but also the semantics of each resource. Authors of
the description standards usually come up with time- and experience-proved guidelines for
creating R E S T A P I .

Naturally, a description of the A P I is not used only to be readable by users, but mainly
by computers. If the specification itself is machine-readable, it gives us the ability not only
to show the information nicely to the user, but, for example, to generate clients based on
the specification or even to generate part of the server handling the A P I interface with
automatic input validation. In this thesis, we focus on generating test cases based on the
specification of R E S T A P I .

JSON Schema can be used for R E S T A P I specification, however, there exist other
languages to describe R E S T A P I , too. Sorted by their popularity measured by stars on
GitHub, OpenAPI is by far the most popular specification for R E S T A P I with more than
16 thousand stargazers. This is the reason why so many frameworks and tools simplifying
development of applications described by OpenAPI specification exists. Another popular
specification with lots of tooling, called A P I Blueprint, has almost half of the OpenAPI's
popularity, with 7.8 thousands stars. The last complex specification with a number of tools
easing the whole A P I design lifecycle is the R A M L specification (3.6 thousand stars).

J S O N Schema

JSON has been widely adopted by H T T P servers for automated APIs. To enhance the pro
cessing of JSON documents in a RESTful manner, a comprehensive standard for description
of any JSON data, called J S O N Schema was proposed. The drafts include JSON Schema
Language [7] and JSON Schema defined media type application/schema+json [33] to as
sert what a JSON document must look like and how to interact with it. It is necessary to
mention that JSON Schema is still in a work in progress Internet-Draft state.

OpenAPI

OpenAPI is a broadly adopted industry standard for describing modern APIs. It defines
a programming language-agnostic interface description for R E S T APIs allowing humans
and computers to discover capabilities of a service. The OpenAPI specification does not
require a specific, design-first development process. Data models (schemas) and data types
are based on an extended subset of JSON Schema specification.

The specification allows users to describe an entire A P I , including:

• Available endpoints and operations on each endpoint

• Operation parameters input and output for each operation

• Authentication methods

• Contact information, license, terms of use, and other information

The format of the specification can be either JSON or Y A M L , while Y A M L is recom
mended. However, it must meet some additional constraints:

• Tags must be allowed by JSON Schema ruleset.

• Keys used in Y A M L maps must be limited to a scalar string.

22

A P I Blueprint

A P I Blueprint'^ language is based on the Markdown format. Thanks to this format, it
might be the easiest for newcomers to understand. It is created for quick prototyping and
modeling of APIs or for describing already deployed APIs.

To ease the A P I design lifecycle and encourage dialogue and collaboration between
project stakeholders, A P I Blueprint comes with many useful tools 4. Some tools, such as
plugins to popular code editors, are developed to simplify writing of a blueprint, others
create a mock server that implements the A P I Blueprint specification, record H T T P com
munication in the A P I Blueprint format, generate A P I Blueprint from request specs, render
H T M L documentation, or ensure that A P I documentation is not outdated by testing the
server if it reacts according to the specification.

R A M L

R E S T F u l A P I Modeling Language (R A M L) is a YAML-based, human-readable language
used for specification of R E S T A P I . R A M L ' s great advantage is the ability to document
APIs that do not adhere to all R E S T constraints. While OpenAPI is better suited for
creating a specification of an existing A P I , R A M L is focused to make the whole A P I lifecycle
easy, from design to sharing.

Different tooling exists for APIs specified by R A M L . It includes tools that can visualize
what an A P I looks like, tools for prototyping, or frameworks for rapid development of
applications that expose R A M L A P I . There are also tools to verify A P I documentation
written in R A M L format against its back-end implementation and tools to create H T M L
documentation from R A M L specification.

3.1.2 Security

In order to make an A P I secure, it is necessary to think about many areas that could be
vulnerable. The Open Web Application Security Project(OWASP) Foundation 0 provides
best practices on how to make a R E S T A P I secure. In the following text of this section, we
describe security guidelines from OWASPs ' R E S T Security Cheat Sheet [25] with regard to
the ability of fuzz testing to find related issues.

Access Control

Access control at each A P I endpoint is needed for non-public R E S T services, to avoid
problems with unauthorized use of R E S T endpoints that allow changing database entries.

OWASP's suggestion is that the access control decision should be taken locally by
R E S T endpoints to minimize latency and reduce coupling between services, and access
tokens should be issued by a centralized Identity Provider.

Fuzzing can be used to test various endpoints that should be used only by authorized
users, in particular, it can test that it is not possible to use these endpoints without autho
rization.

3 A P I Blueprint - https://github.com/apiaryio/api-blueprint
4 A P I Blueprint tools - https://apiblueprint.org/tools.html
5The Open Web Application Security Project (OWASP) - https://owasp.org/

23

https://github.com/apiaryio/api-blueprint
https://apiblueprint.org/tools.html
https://owasp.org/

Restrict H T T P Methods

A suggestion is to create a whitelist of permitted H T T P methods, for example GET, POST,
PUT and reject all requests not matching the whitelisted H T T P methods with the response
code 405 Method not allowed. It is also needed to verify that the caller is authorized to use
the incoming H T T P method on the resource collection, action, and record.

Not using whitelists may result in usage of an H T T P method that should have been
disabled, causing an unexpected behavior, such as, deleting a resource. This should be
caught by fuzz testing of the endpoints with different H T T P methods.

Input Validation

Input validation issues are probably the most common issues found by fuzzing. Due to
insufficient validation, some inputs may cause server crash or information leakage.

OWASP defines the following rules to deal with input validation:

• Do not trust input parameters/objects.

• Validate an input length, range, format, and type of the input.

• Use strong types like numbers, booleans, dates, times, or fixed data ranges in A P I
parameters to achieve an implicit input validation.

• Constrain string inputs with regular expressions.

• Reject unexpected or illegal content.

• Make use of validation/sanitation libraries or frameworks in your specific language.

• Define an appropriate request size limit and reject requests exceeding the limit with
H T T P response status 413 Request Entity Too Large.

• Consider logging input validation failures. Assume that someone who is performing
hundreds of failed input validations per second is up to no good.

• Have a look at the input validation cheat sheet for a comprehensive explanation.

• Use a secure parser for parsing the incoming messages. If you are using X M L , make
sure to use a parser that is not vulnerable to X X E and similar attacks.

Validate Content Types

The request and the response body should match the intended content type in the header.
Misinterpretation at the consumer/producer will cause confusion for a user and it can lead
to code injection/execution.

The solution is to document all supported content types in A P I , reject requests contain
ing unexpected or missing content types. X M L content types should use an appropriate
X M L parser to avoid X X E .

Fuzzing focused on trying to send different content with different content types should
find issues leading to code injection/execution.

24

Management Endpoints Exposure

Management endpoints are endpoints used for maintenance of an application, and usually,
their use is not intended for a regular user. Recommendations for securing management
endpoints are following:

• Avoid exposing management endpoints via Internet.

• If management endpoints must be accessible via the Internet, make sure that users
must use a strong authentication mechanism, for example, multi-factor authentica
tion.

• Expose management endpoints via different H T T P ports or hosts preferably on a
restricted subnet.

• Restrict access to these endpoints by firewall rules or use of access control lists.

To test that management endpoints are secure, we can utilize fuzzing. If management
endpoints are exposed via Internet, fuzzing should find these endpoints and use them for
management of the service.

3.2 Assessment of the Current State of R E S T A P I Fuzzing

In this section we closely look at the current research of R E S T A P I fuzz testing and how
the approaches differ. Some open-source and commercial tools offering automated R E S T
A P I test generation exists, but the most of them have a problem that they only do testing
using correct data to verify that documentation is not outdated, but they lack the negative
testing that might uncover security problems [12].

3.2.1 Related Work

Even though fuzz testing of R E S T A P I is not deeply researched, we can find different
approaches to test generation. Some authors follow black-box approach relying on manual
definition of a model, others are trying to generate tests using a white-box approach utilizing
search algorithms.

Chakrabarti and Kumar [8] proposed an approach to test the R E S T A P I in their tool
called Test-the-REST. It is a black-box, specification-based testing that relies on test case
definition in X M L format that has to be written manually. The manual model definition
is the main downside of their proposal, despite that, they were able to find a lot of bugs
on a daily basis. Another model-driven approach was proposed by Fertig et al. [13]. They
were influenced by Chakrabarti and they also created an approach with the need of manual
model definition using Domain Specific Language (DSL), but with less knowledge about
testing. It required to define R E S T resources using DSL. A similar approach was used
by Earle et al. [11]. They created a library to generate test cases from a JSON Schema
characterized data enabling QuickCheck 6 state machine to generate different JSON data. A
web service is tested by following the links in the JSON Schema. Again, this is an approach
that needs manual model definition.

In contrast to the previously mentioned proposals, Arcuri [1] came with a fully auto
mated approach that uses search algorithms to white-box test the A P I relying on OpenAPI

6QuickCheck - https://hackage.haskell.org/package/QuickCheck

25

https://hackage.haskell.org/package/QuickCheck

specification. While this is a very powerful tool, it has a downside of the need for full access
to the code to generate tests.

On the other hand, other authors proposed fully automated black-box tools. The ap
proach of Ed-douibi et al. [12] consist of four steps. First, they extract an OpenAPI model
from the definition document, by processing the J S O N (or Y A M L) file. The second step is
very valuable for future test generation. From an OpenAPI model, they extract parameter
examples and use them later as the input data for test cases. Thanks to this step, they
do not have a lot of generated date that results in 404 response code due to accessing not
existing resources. Then, they create a TestSuite model and, finally, transform the Test-
Suite model into an executable JUnit code. Unlike others, they generated nominal tests
validating the definition document, as well as fault-based tests. Sadly, in their proposal,
they are not mentioning bug triage, deduplication, prioritization and minimization of test
cases.

Subjectively, one of the best papers researching R E S T A P I fuzzing was proposed only
recently by Atlidakis and Polishchuk in collaboration with fuzzing veteran Patrice Gode-
froid [2]. They introduced the first stateful R E S T A P I fuzzer. The process of fuzzing is
similar to Ed-douibi's approach. The main difference is an automatic dependency infer-
rence among request types and a dynamic generation of tests guided by feedback from
service responses. The authors showed necessary techniques for effective stateful fuzzing by
experimenting with different strategies for searching the large search space combined with
dependency inferring and dynamic feedback avoiding dependency combinations refused by
the service. After testing they did not forget to use bucketization scheme to cluster similar
bugs and avoid redundancy.

Inspired by Atlidakis and QuickCheck, Karlsson et al. created a tool called Quick-
R E S T [22]. It is generating stateful tests based on an OpenAPI specification by using
Clojure Extensible Data Notatation' format. However, their tool is just a proof-of-concept,
set of scripts [21] written in Clojure, tested against Gi t lab 8 A P I .

3.2.2 Existing Tools

For different specification format, different testing tools exist. If we want to automate
testing of A P I Blueprint specified A P I , we can use Apiary 9 . For R A M L format, we can
use Abao 1 0 . Ready A P I 1 1 can be used for OpenAPI format. Tools like Dredd 1 2 or A P I
Fortress 1 3 support more specification formats and they can be used with all mentioned A P I
formats. However, all of these tools share a common drawback, they are primarily created
to test that the application complies with the schema and they are not generating negative
tests.

One tool overcoming this drawback and testing the R E S T A P I defined by OpenAPI
format is Schemathesis1 1. It automatically generates test cases based on OpenAPI speci
fication. After parsing the schema and inferring the data types, the Hypothesis 1 5 project

7 Extensible Data Notation (EDN)—https://github.com/edn-format/edn
8Gitlab - https://about.gitlab.com/
9Apiary - ht tps: / /apiary. io/

1 0 Abao - https://github.com/cybertk/abao
1 1Ready API - https://smartbear.com/product/ready-api/overview/
1 2Dredd - https://dredd.org/en/latest/
1 3 A P I Fortress - https://apifortress.com/
14Schemathesis - https://github.com/kiwicom/schemathesis
15Hypothesis - https://hypothesis.readthedocs.io/en/latest/

26

https://github.com/edn-format/edn
https://about.gitlab.com/
https://apiary.io/
https://github.com/cybertk/abao
https://smartbear.com/product/ready-api/overview/
https://dredd.org/en/latest/
https://apifortress.com/
https://github.com/kiwicom/schemathesis
https://hypothesis.readthedocs.io/en/latest/

is used to generate test data based on the data type of fuzzable parameters. Test data
generated by Hypothesis consist of valid inputs and invalid inputs and, thanks to this,
Schemathesis is generating also negative test cases. Hypothesis is also used to evaluate re
sults and find minimal falsifying input. Schemathesis is rapidly developing open-source tool
that is gaining popularity, however, at the time of writing this thesis, it lacks opportunities
such as specifying the valid input (e.g. id of a resource) which leads to creating a lot of test
cases resulting in 404 response code, or stateful dependency-based testing.

27

Chapter 4

Design of R E S T A P I Fuzzer

Knowing the usage, specifics, limitations, and possible security issues of R E S T A P I , we can
tailor fuzzer design to the R E S T A P I testing needs. Design of our proposed R E S T A P I
fuzzer follows algorithm of a general fuzzer shown in Listing 2.1 with modification specific
to R E S T A P I testing. Our main goal is to solve the problem of not exercising deeper
states of the tested application that occurs because the generated invalid data have to be
valid enough to pass application's input sanitizing. The solution is in creating a stateful
fuzzer that will gather the inputs needed for required parameters of a tested endpoint. We
demostrate the proposed design of our stateful R E S T A P I fuzzer on endpoints of a testing
application thath is introduced in detail in Section 4.1.

In Section 4.2 we discuss a high level design of the R E S T A P I fuzzer. The rest of the
sections describe every phase of the fuzzer in more detail. A n exception is the Execute
phase, which is not described, since it only features execution of test cases and provides
feedback for scheduling and configuration update algorithms.

4.1 Running example

During the design, implementation, and evaluation phases of the thesis, we demonstrate
the proposed concepts on a testing application. The testing application contains one, in
tentionally created stateful bug. The application has three endpoints as seen in Figure 4.1.

GET /systems

PATCH /systems

GET /systems/lid}

Figure 4.1: Test application

The purpose of the testing application is to list systems, their attributes, and to change
system's display name and Fully Qualified Domain Name (FQDN), fqdn attribute.

The endpoint GET /systems lists all systems and their attributes. In a stateful test
ing, it will be used to obtain the required i d parameter needed by other endpoints. The

28

GET /systems/{id} endpoint returns the F Q D N of a system specified by its i d . Finally,
the endpoint causing the stateful bug is the PATCH /systems endpoint modifying a system
resource. It is used to change system's name and f qdn attributes of the resource specified
by the i d parameter.

The bug is caused by a typo while modifying in-memory database, changing fqdn pa
rameter to fqnd. Even though the PATCH /systems is causing an issue, it will return
200 status code. The problem appears, when GET /systems/{id} wants to access the
incorrectly modified resource. Thus, the issue can be found only by a stateful testing.

4.2 High Level Design

Many tools and researches for testing R E S T APIs discussed in Section 3.2 have one common
downside. They are testing that the application conforms to its schema by creating valid
inputs for the application but they are not testing invalid inputs for the input schema. This
is the first issue that we want to address with our proposal—testing invalid inputs. The
next issue of the existing tools is that none of them is trying to get the valid input for
some of the required input parameters. This leads to a lot of inputs rejected by the service.
Some researchers have focused on this problem and their solution is in using example
values specified by the endpoint's input schema [12] or by finding endpoints providing
necessary inputs [2]. Example values are good for using real strings or integers accepted
by the service, but if the required input is the id of the resource, an example value is not
necessarily an id of an existing resource and the request will be rejected by the service.
Dependency inference is a better solution in this case, and therefore we combine these
two approaches. Another problem tightly connected to the previous one in R E S T A P I
testing is the exploration of deeper states of the application which can be also solved by
inferring dependencies and chaining tests of endpoints. Th last observed problem is
connected with using input values from dependencies. We do not always want to use all the
gathered values. Some parameters may be optional and some required parameters can be
fuzzed while the request is still accepted by the service. Fuzzing parameters not resulting
in rejection of the request can be another improvement in R E S T A P I testing.

To clearly illustrate the problems consider extending the testing application by the
endpoint shown in 4.1. The endpoint is changing the Fully Qualified Domain Name (FQDN)
of a resource. It has two required parameters, the system's id and the wanted fqdn. The
system's name can be derived from its F Q D N , but the user can specify some other name
for the system, thus a name parameter is optional. If we are going to generate values for all
required parameters, we will always get 404 H T T P status code for accessing non existing
endpoint, since the id format is more complex than a single number. Using the example from
the schema won't almost certainly mean any difference, because the example id won't exist.
Getting the real system id from other endpoint will finally result in 200 status response,
but we might have used valid inputs for both fqdn and name parameters and therefore not
testing anything at all. Generating values for the required fqdn parameter and creating
requests with an omitted or a generated name parameter will result in a better testing of
the endpoint. Finally, if we want to examine the application deeper, we can execute tests
on endpoints using the same resource to test possible scenarios and detect how the tested
endpoint reacts to possible changes made to the resource. Doing these steps is our key how
to properly test a R E S T A P I .

The first change that narrows down the general algorithm is that our fuzzer is a black-
box fuzzer. The expected use of the fuzzer is in Software as a Service environment, where

29

' /systems/{id}':
parameters:

—name: id
required: true
example: 03708698-7921-Ilea-b755-48a4720be785

body_parameters:
—name: fqdn

required: true
—name: name

required: false

Listing 4.1: Endpoint for problems illustration

the application consists of multiple micro-services, and we are going to test their public
A P I . This is the reason, why we cannot collect any data about the tested application nei
ther by static or dynamic code analysis. The preprocess phase won't contain any P U T
instrumentation or generation of a driver application. Its main goal is to determine necces-
sary information by parsing the R E S T A P I specification. After this phase the fuzzer knows
all endpoints of the application, their input parameters, data types of these parameters as
well as responses of the endpoints. Basically, the preprocess phase prepares a model of the
application for future input generation. We cover this phase of the general fuzzer algorithm
in sections 4.3 and 4.4.

Scheduling, input generation, evaluation and configuration updating are next steps that
need a specific design for stateful testing of R E S T A P I . In the scheduling phase, we need
to solve exploration vs. exploitation problem. We have to decide which endpoints we want
to test, in which order they should be tested, how many tests should be performed on a
single endpoint, and whether to continue with the testing of the current endpoint, move
to the next one, or return to an already tested endpoint. Since our fuzzer is a black-box
fuzzer, the only information guiding the scheduling algorithm is the outcome of the current
configuration. The outcome consists of the H T T P status code of the A P I call, the endpoint
response, the time spent in the test, the number of crashes, and the stateful information
gathered from outcomes of the previous tests.

Once we know which endpoint is to be tested, we need to generate inputs for the fuzz
configuration. Our approach can be considered as a generation-based fuzzer with a
model inferred from schema of the application during the preprocess phase. Model based
generation will create an input schema for the tested endpoint and the values for data in
the schema are generated based on their data type.

After the execution of a fuzz configuration, we need to evaluate and test the outcome
and update the configuration set. While most of the black-box fuzzers leave configuration
set unmodified and they are only evaluating the bug oracle, we modify the generation model
based on the outcome of the previous test. The model is modified after each fuzz config
uration to create better and more relevant inputs for the following tests. The evaluation
phase deals with detecting test failure based on H T T P status code and endpoint response
as well as on minimization of test cases and their deduplication.

A simplified overview of the proposed stateful R E S T A P I fuzzer is displayed in Fig
ure 4.2.

We discuss the design of the scheduling, input generation, and configuration updating
phases of our fuzzer further in Section 4.5. The Evaluation phase of the R E S T A P I fuzzer,

30

Parse OpenAPI

Endpoints, methods, input/output schemes,
data types, example values

Infer dependencies

Endpoints accessing same resources or
having required values in response

Generate tests

Dependency aware, chain tests, based on
dynamic feedback

Execute

Exploration vs. exploitation problem, provide
feedback

Evaluate

Determine if it is a bug, deduplicate and
minimize test cases, provide feedback

Figure 4.2: Stateful R E S T A P I fuzzer design

dealing with test minimization, deduplication, and failure detection is addressed in Sec
tion 4.6.

4.3 Parsing OpenAPI

The first task of a black-box fuzzer is to obtain a model of the application for future input
generation. In case of the R E S T A P I , the model will contain list of available endpoints, their
input parameters and output schema. Due to the large popularity of OpenAPI specification
description format and its vast usage among other formats, we have decided to support APIs
described by OpenAPI and its predecessor, the Swagger format. A n example of endpoint
definition by OpenAPI schema is shown in Listing 4.2 From the schema above, we can
process all the necessary data needed for creating a testing model. The model will consist
of schemas for each endpoint. The process of obtaining the data from the schema is further
described in following the subsections.

Processing endpoint's schema is quite simple and straightforward task thanks to the
way the endpoint is defined in OpenAPI. Firstly, we need to save the same endpoint entry
with different H T T P methods as separate endpoints. That said, GET /systems/{id} and
POST /systems/{id} endpoints will be treated separately. For every endpoint we can then
store multiple values:

• Base U R L for application's endpoint

• Input schema for path parameters

31

' /systems/{id}':
get:

deprecated: true
description: Get a FQDN of a system
parameters:

—name: id
description: System id
required: true
schema:

type: string
in: path
x-example: 03708698-7921-Ilea-b755-48a4720be785

responses:
'200':

description: OK
content:

application/j son:
schema:

type: object
properties:

id:
type: string

fqdn:
type: string

Listing 4.2: Endpoint definition in OpenAPI schema

• Input schema for request body

• Input schema for form data

• Input schema for query parameters

• Schema for input with example values

• Response schema

• List of parameters in response

• List of parameters that are required

Storing these values for every single endpoint is necessary for obtaining a list of depen
dent endpoints and for the subsequent test cases creation.

4.4 Inferring Dependencies

Before we start with inferring dependencies from an A P I schema, we have to determine
what should be considered as a dependency of a tested endpoint. In the first place, the
dependency is a value for a parameter required by the endpoint's schema. Thus, it is
a knowledge needed to make an A P I call accpeted by the tested service. Therefore, a
dependency can be found in the response of other endpoints described by the A P I schema.
However, endpoints providing information that is needed for by some following endpoint

32

are not the only endpoints that could change the behavior of the tested endpoint. We have
to also focus on endpoints accessing the same resource as the tested endpoint.

Wi th respect to the above, in order to get dependencies of an endpoint, we need to
create a list of dependent endpoints consisting of:

• Endpoints returning one of the required parameters for the tested endpoint in their
response schema.

• Endpoints having the same required parameters as the tested endpoint.

To get an insight what are the dependencies for the endpoint GET Vsystems/{id]-'
specified by the example schema in Listing 4.2 of our testing application, let us show
the example of dependency inference. First, we obtain the required parameters from the
schema. There is only one required parameter, called id, denoting the system's UUID.
This parameter is found only in a response of the GET /systems endpoint, hence the GET
/systems endpoint is our first dependent endpoint for the requirement id. There is one
other endpoint in the list of application's endpoints and we see that the PATCH /systems
endpoint has the parameter id as a requirement for its request body, thus it can affect
the tested endpoint since it modifies the same resource. The list of dependent endpoints
therefore consists of GET /systems and PATCH /systems endpoints.

4.5 Creating Test Cases

Test cases creation is an abstraction of multiple phases of the general fuzzer algorithm shown
in Listing 2.1 (in particular of scheduling, of input generation, and of configuration update).
During the scheduling phase, we select a fuzz configuration for the current iteration and
solve the exploration vs. exploitation problem while relying on the output of the preprocess
phase and on the current state. The input generation phase generates scheduled tests,
schema of JSON input, as well as values for each parameter in the generated schema.
Then, after execution of the test case, we need to update all fuzz configurations and store
the current state for future test generation.

4.5.1 Scheduling

Black-box fuzzer does not have a very rich set of configuration information that can be used
for scheduling. The absence of metrics such as code-coverage leaves us only with information
that the fuzz configuration scheduling algorithm gets from the fuzzer configuration outcome,
the number of crashes, or the time spent on configuration. These are the information that
we have to rely on when solving the exploration vs. exploitation problem.

The exploration vs. exploitation problem is commonly known as multi-armed bandit
problem. In case of R E S T A P I testing, the problem can be considered as restless multi-
armed bandit, because executing tests against one endpoint can affect different endpoints.
For example, one endpoint call can modify or delete a resource and the following endpoint
call may result in a failure or can be rejected by the services as the resource does not
exist anymore. Restless multi-armed bandit problem is known to be PSPACE-Hard [20].
However, we are not going to find an optimal solution of the problem, but we are going to
apply the known constraints of R E S T A P I testing with regard to the total test duration.
The goal is to test deeper states of the P U T by testing various combinations of endpoints,
while maximizing the number of meaningful tests for a single endpoint. Our exploration
vs. exploitation problem can be broken down into the following problems:

33

1. The order of endpoints to be tested.

2. The decision whether to continue with the current endpoint testing or to move to
another endpoint tests.

The order of test cases. First of all, we need to clarify which endpoints should be
tested. We are creating a stateful fuzzer, therefore, we want to primarily test all endpoints
having some dependencies. However, we also want to test endpoints that do not need any
input data from other endpoints. Before determining the order of the tested endpoints, we
need to explain types of endpoint that we have:

• A Target endpoint is an endpoint defined in the A P I specification that we want to
primarily test.

• A Dependent endpoint is an endpoint providing example values for required parame
ters of the target endpoint or an endpoint modifying a common resource.

The target and the dependent endpoints belong to two categories of endpoints:

• Endpoints without dependencies. These endpoints do not depend on any other end-
point and are not modifying resources accessed by other endpoints. Outputs from
these endpoints can be useful as input for endpoints tested later on and they can be
tested right away. A n example of such endpoint is an endpoint listing ids of resources.

• Endpoints with dependencies. These are the endpoints having required parameters.
The endpoint cannot be tested alone, thus we create a set of dependent endpoints
which should be tested prior to the endpoint itself.

Wi th respect to the above, a single test case must specify the following information:

• a single target endpoint e that is primarily tested,

• a set of dependent endpoints of e,

• a schema of the input, and

• values of input parameters (which are the input parameters of e and the input pa
rameters of the dependent endpoints).

Every target endpoint has its own set of dependent endpoints and they are tested prior
to the target endpoint. Testing dependent endpoints has two objectives. The first one
is to get valid inputs for the target endpoint, so that the A P I call to the endpoint won't
be rejected. The second purpose of dependent endpoints is to create a test scenario to
test deeper state of the application. The order of of testing of dependent endpoints could
be random, however, we want to maximize the number of obtained required values and
thus we prioritize dependent endpoints providing more values of required parameters in
their response. In addition, we prioritize endpoints having less required parameters to
avoid getting too many 404s for a dependency in the early phase of the test run. The
exact algorithm that we use for ordering of tests of dependent endpoints is presented in
Section 5.2.

Based on the information described above, we are executing tests for a single target
endpoint defined in the A P I schema in the following order:

34

1. Dependent endpoints. Execute tests against an ordered set of dependent endpoints
of the target endpoint, gather example values for required parameters or modify the
tested resource.

2. Target endpoint. Test the target endpoint with values obtained from the depen
dencies. If the target endpoint does not have any dependencies or if there are no
obtained values, endpoint will be tested either with the example values from schema
(if they are defined) or with randomly generated (fuzzed) data.

Testing dependencies of dependent endpoints can result in an exponential number of
tests, thus we test only direct dependencies. Moreover, we save all parameters that are
required by some endpoint. Due to this, it may happen that a target endpoint tested
later is tested more thoroughly than one tested earlier. Later tested endpoints have higher
probability of having the values of required parameters saved in test run state. The same
situation occurs for dependent endpoints for a single target endpoint since our ordering
algorithm does not consider transitive dependencies and therefore it does not produce a
total ordering. To achieve a uniform coverage of all endpoints, we can solve this problem by
randomizing the order of the target endpoints among test runs and of dependent endpoints
for a single target endpoint.

The decision whether to continue with the current endpoint is made based
on multiple variables. For example, it depends on the reason why the current endpoint is
tested, since testing of dependencies is different from testing a target endpoint.

The first factor is a limit of the number of tests created for every endpoint. We use
fixed number of fuzz runs in combination with deprioritization of slower configurations.
Every response to A P I call has to be fast enough so that it does not result in 504 „Gateway
timeout" H T T P status code. The gateway timeout will naturally work as a fixed amount of
time for a test run that will deprioritize slower configurations. After exhausting the fixed
number of test runs, we move to testing of the next scheduled endpoint. If the generation
of input is too slow, we as well continue with the next endpoint.

The difference between the decision for dependent endpoints and the target endpoints
is the number of successive 404s. We want to skip tests of dependency if we hit a threshold
of successive responses with 404 H T T P status code. The threshold is used for dependent
endpoints since they serve, in the first place, as endpoints providing values of the required
parameters for the target endpoints. Hitting one 404 may be caused by an incorrect,
randomly generated input, on the other hand, multiple 404s mean that the endpoint is
rejected by the service and it is not going to provide any needed data. Therefore, we
can skip the testing of the dependent endpoint before reaching the limit of fuzz runs and
continue with the next dependency or with the target endpoint. On the other hand, hitting
the 404 threshold for the target endpoint usually means that we do not have correct values
of required parameters. Still, we want to continue with testing of this endpoint using
randomly generated inputs to possibly find inputs resulting in a failure (since this is the
main goal of fuzz testing).

4.5.2 Input Generation

Input will be generated just before execution of the test. This means that we can generate
input based on feedback from the previous test runs. A generated input consists of two
parts: the schema of input and the input for parameters inside the schema.

35

First, we generate the schema of the desired input. Generating schema is necessary
because we do not want to include all possible path parameters, body parameters, and
query parameters in every request. We need to create an input JSON that will consist of a
subset of all possible parameters. For example, GET /systems can have a query parameter
name that will show only systems with matching name, and a query parameter uuid filtering
systems by UUID. Next, we want to test all possible combinations of these parameters. We
need to consider three types of input parameters:

• Optional fuzzable parameter is a parameter defined as optional in the A P I spec
ification. The value for this parameter will be always randomly generated and the
parameter does not have to be used in an A P I call.

• Required fuzzable parameter is a parameter required by the A P I specification which
won't cause a rejection by the service with a randomly generated input value. A n
example is PATCH /systems and its required fqdn parameter. A randomly generated
value will successfully change the fqdn attribute of the tested system.

• Required non-fuzzable parameter is a required parameter by the A P I specification
and generated value for such parameter will most probably result in the 404 status
code. A n example is the id parameter of the GET /systems/{id} of the testing
application. Without the id value obtained from dependencies, the request will be
rejected by the service.

The next step is generation of input values based on input data types from the input
schema. Inputs will be generated randomly trying multiple values of the desired data type
for the parameter, as well as invalid data type input. This is the phase where, finally,
data gathered from dependencies will be used. If the parameter is a required non-fuzzable
parameter, a value from a dependency will be used.

While generating the input schema, we need to think about which parameters can be
fuzzed and which, if they are fuzzed, could result in rejection by the service. Both name
and uuid query parameters of GET /systems can be omitted, and later on they can use
a generated value and the request will be still accepted by the service. On the other
hand, situation for PATCH /systems may be different. It can have multiple required body
parameters, e.g. name and uuid. Even though the name parameter is a required parameter
and it has to be present in the generated schema, the input value for the name parameter
can be generated and the input will be accepted. On the other hand, a generated or an
invalid input for the uuid parameter will be always rejected by the service. We automate the
process of classifying parameters by maintaining a so-called confidence score of a parameter.
Higher confidence means that the required parameter is required non-fuzzable parameter.
The confidence score is further described in the following Section 4.5.3 as it is computed
after a test execution, during the update of the model.

4.5.3 Configuration Updating

After execution of a single test, we want to assess its result and potentially update the
model for a better input generation for following tests. We collect the state of the executed
test, its status code alongside with the values from the JSON output that can be used as
inputs for required parameters for different endpoints.

Stateful information will be reflected in the model, hence the following input generation
phase will use values for required parameters obtained from the dependencies instead of

36

randomly generating these values. It as well solves our problem with fuzzability of the
required parameters. If the endpoint test with generated required parameter results in too
many 404s, we can for sure say that the parameter is required non-fuzzable and can not
be fuzzed. However, if the randomly generated value for a parameter is accepted by the
service, then the parameter is very probably required fuzzable. A request to an endpoint
with required fuzzable parameter resulting in 404 status code is caused by the endpoint
having another parameter that is required non-fuzzable when the value for the required non-
fuzzable parameter is invalid. This information is passed to input generation algorithm to
properly generate schema and the data for the next A P I call.

Fuzzability of a required parameter is determined by the confidence score of the pa
rameter. Confidence is higher with the increasing number of 404 responses and decreasing
with 2xx status of the responses. Once the confidence reaches a configurable threshold, the
parameter is considered as required non-fuzzable and its value is never randomly generated
but obtained from the dependencies.

4.6 Test Evaluation

The detection if the result is a bug is fairly straightforward for a black-box fuzzer. There
are two types of bugs detectable by a black-box fuzzer. Either the request takes too long
or the H T T P status code of the response is 5xx. However, some status codes such as 503
Service unavailable might not be caused by the bug, but the service can be under scheduled
maintenance. The only 5xx issue that we can be sure about is the 500 Internal server error
status code that is caused by user input, because client errors should be handled by 4xx
codes.

We provide the failing example as a minimized test case. If multiple tests for the
same endpoint fail with the 500 status code, we minimize test CctS6 ctS follows. First,
we create the minimal subset of the parameters used in failing tests. Then, we get a
minimal, more readable, values of these parameters from the failing tests. The last step is to
provide information about the previously tested endpoints. We provide a list of dependency
endpoints executed before the failed test. Even if some previous target endpoint test could
have changed the tested resource resulting in failure of the current test, this endpoint is
then a part of dependencies of the current test too, and therefore it occurs in the endpoint'
dependency list. This is the reason why we store only dependent endpoints and not target
endpoints in the list of previously tested endpoints.

The same failures can be found during testing of multiple target endpoints, or even
during the testing of their dependencies. To deduplicate such failures, we report only those
having the same parameters and the shortest list of previously tested endpoints.

37

Chapter 5

Implementation

This chapter further describes how the designed features are implemented. We explain
decisions made during the preprocessing phase, how we gather requirements for endpoints,
and how we infer their dependencies. Next, we follow up with implementation details of
selecting the current fuzz configuration. Then, we move over to input generation specific
to the R E S T A P I fuzzer followed by the execution and evaluation of the test. Finally,
we present details of how the configuration is updated, i.e. how we update the application
model for better input generation in the following iterations.

Instead of implementing a R E S T A P I fuzzer from scratch, we decided to extend the
Schemathesis project, an open-source tool for R E S T A P I testing. Schemathesis is written
in Python and generates test cases from an OpenAPI/Swagger specification. For test gener
ation, it utilizes property-based testing library named Hypothesis1. Hypothesis-jsonschema2

is used for creation of a Hypothesis strategy that generates data matching a provided
JSON Schema. The tests are executed by the pytest framework. Schemathesis allows us
to run tests from its command line interface or using the parametrization of a pytest test.
Schemathesis is gaining its popularity and is already used for fuzz testing capabilities in
Red Hat's Insights Q A internal framework and for testing Red Hat Insights services at
http://cloud.redhat.com. Another reason for extending Schemathesis is that it already
contains processing of OpenAPI specification and generating of test data, and therefore we
may concentrate on adding a functionality for stateful testing.

Our implementation is extending Schemathesis by adding a stateful testing functionality.
To create stateful tests, we need to modify every part of the Schemathesis, i.e. schema
processing, models representing endpoints and test results, generation of tests, pytest and
CLI runner, and failure reporting. These changes are discussed in the following sections
organized as phases of a general fuzzer algorithm shown in Listing 2.1. The result of our
implementation is a pull request3 to Schemathesis GitHub repository.

5.1 Preprocess

Preprocessing in Schemathesis is based on conversion of an OpenAPI/Swagger specification
into a JSON Schema needed by Hypothesis-jsonschema for input generation. Then, models
for schema (class BaseSchema) and endpoint (class Endpoint) are created. BaseSchema

hypothesis - https://hypothesis.readthedocs.io/en/latest/
2

Hypothesis-jsonschema - https://github.com/Zac-HD/hypothesis-jsonschema
3

Schemathesis stateful testing pull request - https://github.com/kiwicom/schemathesis/pull/520

38

http://cloud.redhat.com
https://hypothesis.readthedocs.io/en/latest/
https://github.com/Zac-HD/hypothesis-jsonschema
https://github.com/kiwicom/schemathesis/pull/520

contains basic information from the JSON Schema such as the base U R L or the raw JSON
Schema with methods for obtaining all endpoints and later all tests for the schema. The
Endpoint class holds information about a single endpoint, namely its path, method, defi
nition and parameters.

In order to allow statefulness, we need to extend the Endpoint attributes by adding
parameters tat can be modified in the future. Also, we added properties for obtaining a
set of required parameters (requirements), a list of endpoints having a subset of required
parameters in their set of requirements, and a hash table of dependencies consisting of a
name of the required parameter and of a list of endpoints providing the required value.

The BaseSchema class was extended with state attribute, which is an instance of the
State class consisting of attributes such as the previous result, the requirements and the
number of successive 404 status codes. The Requirements attribute will be updated with
every successful response, therefore it is implemented as a hash table where the key is the
name of the required parameter and the value is an instance of the Requirement class.
The Requirement class has a list of values for the required parameter and a confidence
if the requirement is required non-fuzzable and the request will be rejected if it does not
provide correct value. We will discuss fuzzability based on the confidence attribute further
in Section 5.3.

5.2 Scheduling

Scheduling algorithm follows the design described in Section 4.5. However, due to usage
of Schemathesis, we are limited to generate test cases endpoint-wise. We can only execute
tests for a single endpoint and then continue to another one. The approach of Schemathesis
does not allow to alternate tests of multiple endpoints.

The BaseSchema class is responsible for generating all tests in g e t _ a l l _ t e s t s generator.
Test generation works as follows.

1. Iterate over all endpoints

2. Get all dependencies for the currently tested endpoint, extend the set of dependencies
by endpoints having a subset of the tested endpoint's requirements.

3. Sort these dependencies by two keys. The first key sorts dependencies ascending by the
number of required values, second key sorts them descending by the dependency count.
Thanks to the sorting, dependency having the least number of required parameters
and providing values for a longest number of other endpoints is used first.

4. Yield test case for the current dependency

5. After all dependencies are tested, yield test case for the target endpoint with example
values for required parameters obtained from the dependencies.

The decision whether to continue with the testing of current endpoint or to continue
with another is made after the execution. We monitor the H T T P status codes reported by
each test and when the number of successive 404 status codes for a single endpoint hits a
threshold, we continue to the next endpoint. This is handled by the C L I runner. If the user
wants to achieve the same functionality by executing tests from pytest, he can easily create
his own counter for successive cases or use update_case and _should_skip_case from
schemathesis.runner.impl.core. The usefulness of this approach for test scheduling is
demonstrated on code coverage of a tested application in Chapter 6.

39

5.3 Input generation

Input generation is implemented using hypothesis-jsonschema library. As it is evident from
its name, it uses JSON Schema to generate a Hypothesis search strategy. The hypothesis
search strategy is an object describing how to generate certain kind of input values. In our
case, it generates the Case object containing basic parameters to make a H T T P request
including the input needed by the service. It can generate inputs with different parameters
and corresponding random values. For illustration, take a look at the request body schema
in Listing 5.1 and the generated Schemathesis Case in Listing 5.2. Schemathesis generated
random Unicode string inputs for all required parameters in the request body, left out a
optional parameter, and added one extra, randomly generated parameter that is not defined
in the schema.

i
"properties": {

"fqdn": {

"type": "string"

},
"id": {

"type": "string"

},
"name": {

"type": "string"

}

},
"required": [

"id" ,

"fqdn"

] ,
"type": "object"

}

Listing 5.1: Request body schema

Case(

endpoint=Endpoint(

path='/systems',

method='PATCH',

base_url='http://localhost:8080',

),
path_parameters=None,

headers=None,

cookies=None,

query=None,

body={

'fqdn': '\x06\U0004bdd9\xl2',

'id': " ,

'\xl3\U0009985d': [True],

},

form data=None

Listing 5.2: Schemathesis Case

To achieve stateful generation of inputs based on previous tests, we need to modify the
input schema and generate values based on the modified definition. Modification can be
done in two ways, it depends whether we want to fuzz parameter values or not. Typically,
we want to fuzz all optional fuzzable parameters and we need to determine fuzzability for
required parameters. Fuzzability of parameters depends on the confidence score of the
requirement. This is further discussed in Section 5.5. A n example of a modified schema is
shown in Listing 5.3 and the corresponding generated stateful Case is shown in Listing 5.4.

The i d parameter is required non-fuzzable and its value was selected from the output of
the previous endpoint. The value of a required fuzzable parameter fqdn was randomly gener
ated, and in the next test, the value can be selected from the enum. The optional parameter
name was generated randomly. The generated Case is then executed and evaluated.

5.4 Execution and Evaluation

A generated and scheduled test is represented by a Case object. The object can be executed
by two different runners—either by pytest or by the C L I runner. Both options will store

40

http://localhost:8080'
file://'/x06/U0004bdd9/xl2'
file://'/xl3/U0009985d'

the test result in a TestResult object, consisting of performed checks, error codes, and of
a list of dependent endpoints executed prior the current test.

Apart from executing the test itself and storing the test result, the test executor is
responsible for skipping tests and for running the configuration update phase. In order to
minimize tests which are rejected by the service, we introduced skipping of tests resulting
in too many 404s. Naturally, we skip only dependency tests, as we want to test the target
endpoints thoroughly. Tests for an endpoint are skipped once they hit a threshold for
successive 404 count. The threshold limit is set to five successive 404 responses for the
same endpoint and is determined experimentally. Comparison of different threshold limits
is shown in Section 6.1.1.

As mentioned earlier in the Design chapter, the test is evaluated as a failure when the
A P I call returns 5xx H T T P status code or the request times out.

Test minimization and deduplication is primarily handled by the Hypothesis library, it
deduplicates and mimimizes a test case by finding common parameters used in a test and
minimizes the generated data types. To deduplicate potential failures found by stateful and
non stateful tests, we prefer stateful result with a shortest list of previous tests.

i
"properties": {

"fqdn": {

"oneOf": [

{"type": "string"},

{"enum": ["sysl.fuzz.com"]

}

]

1,
"id": {

"type": "string",

"enum": [

"4dlb0da2-957a-llea"

"e0803fce-9564-llea",

]

1,
"name": {

"type": "string"

1,
}
"required": ["id", "fqdn"],

"type": "object"

}

Listing 5.3: Stateful input schema

Case(

endpoint=Endpoint(

path='/systems',

method='PATCH',

app=None,

base_url='http://localhost:8080',

path_parameters=None,

headers=None,

cookies=None,

),
path_parameters=None,

headers=None,

cookies=None,

query=None,

body={

'fqdn': '\x06\U0004bdd9\xl2',

'id': '4dlb0da2-957a-llea',

'name': ',\U0003a5d2\x0f\xl6'

},

form_data=None

)

Listing 5.4: Stateful Schemathesis Case

5.5 Configuration Updating

Configuration updating is updating the test model, definitions of input schemas and the
state of the test run. Update of the test run's state in this phase modifies requirements
inside the State.

Requirements update is needed to add new values for the required parameter and re
quirement's confidence. Confidence is rising exponentially if the request is rejected, thus
the requirement seems to be required non-fuzzable. Otherwise, if the request returns 2xx

41

http://sysl.fuzz.com
http://localhost:8080'
file://'/x06/U0004bdd9/xl2'

@attr.s

class Requirement:

confidence: int =attr.ib(default=0)

©property

def is_fuzzable(self)

return self.confidence <CONFIDENCE_THRESHOLD:

inside the test runner

i f requirement.is_fuzzable:

if response.status_code in SUCCESS_STATUSES:

requirement.confidence 11=1

i f response.status_code ==404:

requirement.confidence +=5

requirement.confidence *=2

Listing 5.5: Confidence of a requirement

H T T P status code and the requirement is fuzzable, we will further decrease its confidence
to retain the fuzzability of the requirement. Once the requirement becomes not fuzzable it
stays required non-fuzzable. The confidence decision is presented in Listing 5.5. The values
affecting confidence increase and decrease were determined experimentally.

Once we have values for requirements, we can update the model. The model update is
an update of the input schema of an endpoint where the fuzzability of required parameters
is decided based on their confidence level. The modification is in adding an enum property
to the schema. This property ensures that the values will be selected from the enumeration.
For fuzzable parameters, we add a choice to generate data based on the data type or to use
a value from an enumeration by using JSON Schema oneOf keyword for combining multiple
schemas. Listing 5.6 displays what the modification of the schema would look like.

initial schema

"id": {

"type": "string"

}

schema with stateful values not fuzzable

"id": {

"type": "string",

"enum": ["4dlb0da2-957a-llea-bb37-0242acl30002"]

}

schema with stateful values fuzzable

"id": {

"oneOf": [

{"type": "string"},

{

"type": "string",

"enum": ["4dlb0da2-957a-llea-bb37-0242acl30002"]

}

]

Listing 5.6: Schema modification

42

Chapter 6

Evaluation

We evaluated the implemented fuzzer against multiple services of Red Hat Insights found at
https://cloud.redhat.com, Vulnerability Management as a Service (VMaaS) 2 , also made
by Red Hat, and our testing application. In this chapter, we present the performed experi
ments and their results. The first set of experiments, presented in Section 6.1 evaluate the
effect of proposed features and support reasoning behind our implementation decisions. We
evaluate influence of the proposed features (such as skipping 404s or depenedency sorting)
on different metrics such as the number of discovered bugs or the code coverage. After
wards, we evaluate the fuzzer with settings obtained from the previous experiments on our
testing application (Section 6.2. Finally, we perform fuzz testing of real-world R E S T APIs
and present the bugs found in the tested applications in Section 6.3.

6.1 Evaluations of Proposed Features

We conducted several experiments to increase the quality of the implemented fuzzer. We
tried multiple features and their effect on code coverage or on the number of tests. Then,
the experiments were compared to Schemathesis results without stateful testing and a
combination of stateful and basic testing. Experiments were performed locally using docker-
compose and mocked dependent services of VMaaS and Vulnerability Insights A P I . We
collected code coverage, found bugs, and count of executed tests. Conclusion of conducted
experiments is discussed in Section 6.1.5.

6.1.1 Skipping 404s

First, we need to test what we can gain from skipping requests after reaching the threshold
of successive 404 responses. We performed this experiment on Vulnerability application,
only, since the VMaaS's A P I is that it does not return the 404 H T T P status code when the
resource does not exist. Instead it returns a 200 response with an empty JSON. Supple
mentary to the experiment on Vulnerability application, we conducted the same experiment
on our testing application to illustrate greater impact on code coverage. Table 6.1 below
shows the total time of the test run, code coverage, and the number of performed tests
with different threshold values for successive 404 responses for Vulnerability application

1Red Hat Insights documentation -
https://access.redhat.com/documentation/en-us/red_hat_insights

2 VMaaS - https://github.com/RedHatInsights/vmaas/

43

https://cloud.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_insights
https://github.com/RedHatInsights/vmaas/

and Table 6.2 for our testing application with an extra measurement—number of found
bugs.

Threshold # of tests Test time Coverage
None 27161 131.67s 71%

20 1000 87.84s 71%
10 988 82.53s 71%
5 984 82.22s 71%
1 980 81.66s 70%

Table 6.1: Skipping 404s on Vulnerability Insights

From the experiment on Vulnerability Insights, we can see that skipping tests for de
pendencies which result in successive 404s makex sense in terms of decreasing a number of
tests and test time while maintaining the same level of code coverage. The experiment was
performed against an application running locally (using docker-compose) with database
synced from pre-production Red Hat Insights environment. The test time against a de
ployed application would be increased by tens of milliseconds per test, making the a bigger
gap in test time with different threshold values. Skipping endpoint tests after a single 404
response results in decrease in only 1% of code coverage. To demonstrate how different it
can be on another application, we performed the experiment on our testing application.
Results can be seen in Table 6.2.

Threshold # of tests Test time Coverage # of bugs
None 307 7.58s 95% 1

5 304 5.39s 95% 1
1 205 10.65s 86% 0

Table 6.2: Skipping 404s on testing application

Code coverage of testing application dropped by 9% when we skipped endpoint test
after the first 404 response. More importantly, this test run did not trigger the stateful
bug in the application. Initially, it used an incorrect example value (system id) from the
schema specification, thus the test of a dependent endpoint resulted in 404 response, and
it did not provide correct example value for the target endpoint. This is also responsible
for the increased test time. Testing with threshold=l executed a lot of tests against
target endpoints resulting in 404s. On the other hand, higher threshold resulted in getting
correct required parameters and a quick failure of target endpoints. Hypothesis stops
testing when it finds same failures in endpoint's test case. Based on this experiment, we
decided to skip testing of dependent endpoints after reaching 5 successive 404 responses for
a single endpoint, which gives us opportunity to find correct values of required non-fuzzable
parameters without trying too many A P I calls.

6.1.2 Sorting Dependencies

The next feature that we tested is the order of tests for dependency endpoints. We compared
a randomly shuffled set of dependencies with an ordered set. Dependencies are sorted
by two keys, ascending by the number of required values and descending by dependency
count. This approach is prioritizing dependencies having less required parameters and
dependencies providing more required values for other endpoints. Comparison can be seen

44

in Table 6.3 based on the number of tests, code coverage, and the number of found bugs.
Experiment is conducted against the Vulnerability Insights application. We used stateful
approach only, with 150 generated examples per endpoint.

of tests Coverage # of bugs
Sorted 4500 80% 1

Shuffled 4300 78% 2

Table 6.3: Sorting dependencies

Sorted dependencies explored slightly bigger portion of the application code. Finding
one less bug compared to shuffled dependencies is not a big problem. We have to keep
in mind that inputs are randomly generated, and most probably, it triggered one more
bug because it tested endpoint with generated input instead of using the obtained value.
The most important metric for this experiment is the code coverage that is higher for
the sorted set of dependencies. A l l in all, sorting of dependencies seems to be a better
option and we can still combine stateful testing with generating random inputs for required
fuzzable parameters to trigger bugs caused by random input. This is explained further in
Section 6.1.4.

6.1.3 Using Examples from the Specification

There are cases when we are unable to obtain required values from dependencies. Then,
we have two options:

• Test the target endpoint with random inputs.

• Use an example values defined in schema specification.

Both options were tested and compared by the number of tests, code coverage, and the
number of bugs on the Vulnerability and VMaaS services. Results are shown in Table 6.4
for Vulnerability and in Table 6.5 for VMaaS.

of tests Coverage # of bugs
Random 4500 80% 1

Examples 1400 70% 0

Table 6.4: Using example/random values for required parameters on Vulnerability as an
fallback to stateful value

of tests Coverage of bugs
Random 15000 67% 0

Examples 15000 72% 0

Table 6.5: Using example/random values for required parameters on VMaaS as an fallback
to stateful value

As we can see, the results are contradictory. Obtaining examples from schema as a fall
back when we are unable to find the required value, decreases the coverage of Vulnerability,
but it increases the coverage of VMaaS. One of the reasons is that the specification of Vul
nerability contains non-existing system identifiers. If the identifier of a system is not found

45

in the dependencies, one specified in the schema is used, but it is always invalid (since the
identifiers are genereted when a system is uploaded to the service). Thus, it leads to a 404
response. Required parameters of VMaaS endpoints consists mostly of C V E 3 id, erratum 1

id, or R P M package's N E V R A (Name Epoch Version Release Architecture)''. A l l of these
identifiers, issued by Red Hat, are always present in the VMaaS database, thus the example
values in the schema are valid. Our goal is to explore deeper states of the application, so
generally, we would want to use every possible chance to obtain the required value, even
the one from the specification. The bug in Vulnerability is found thanks to a randomly
generated input. A better solution to find this bug is to use a combination of stateful and
random testing.

6.1.4 Combination of Random and Stateful Testing

As we have mentioned in the previous experiments, a combination of stateful and ran
dom testing should increase code coverage and find more bugs. To back up our idea, we
conducted an experiment combining a stateful and a random testing on the Vulnerability
Insights and VMaaS applications. For stateful and random testing, we used 150 Hypothesis
examples and for a combination of both approaches, we decreased the number of examples
to 100, to create roughly the same number of tests. Tables 6.6 and 6.7 show the collected
number of tests, code coverage, and the number of bugs for Vulnerability and VMaaS,
respectively.

Before the experiment itself, let us illustrate the combination of both approaches on
our testing application. In the example, we use two endpoints, GET /systems/{id} and
its dependency GET /systems. Our focus is to test GET /systems/{id}. Using the state
ful approach, we test the endpoint using the id value obtained from dependency com
bined with randomly generated query parameter. One of the tests could look like GET
/systems/9afd-12aa?query=". On the other hand, random test can test the endpoint
GET /systems/{id} with a randomly generated value, such as GET /systems/%00. Both
options can find different bugs, but usually, stateful testing won't find the bug found by the
random testing because it will use the value from dependency. Random testing won't find
the stateful bug if the format of the required parameter is as complicated as in our case.
Therefore, a combination of both techniques should provide better results.

of tests Coverage # of bugs
Random 2500 78% 6
Stateful 4500 80% 1

Combination 4400 82% 5

Table 6.6: Combination of random and stateful testing of Vulnerability

From the Vulnerability results, we see that the combination of both approaches explores
the biggest portion of application source code. However, it finds one less bug than random
testing. Although, we have to notice that inputs are randomly generated and different test
runs may trigger different bugs. Combination of random and stateful testing of VMaaS
does not provide any improvement. This is mainly caused by the specification of VMaaS
A P I response. For example, some endpoints require a nevra parameter, but none of the

3Common Vulnerabilities and Exposures - https://www.redhat.com/en/topics/security/what-is-cve
4Red Hat Errata - https://access.redhat.com/articles/2130961
5 R P M - https : //rpm.org/

46

https://www.redhat.com/en/topics/security/what-is-cve
https://access.redhat.com/articles/2130961

of tests Coverage # of bugs
Random 2400 65% 0
Stateful 15000 72% 0

Combination 17000 72% 0

Table 6.7: Combination of random and stateful testing of VMaaS

endpoints provide this value named as nevra. The values are rather returned as the N E V R A
of the exact package inside the package_list value. Thus, a lot of required parameters
are already randomly generated and we do not see any improvement by using combination
of both techniques for VMaaS.

6.1.5 Conclusion of Experiments

From the experiments above, we can see that fuzzing of each application is specific. Our goal
is to create a tool as general as possible, thus, we decided to combine stateful and random
testing since it explores more statements of the tested application. Random testing is
hitting bugs triggered by randomly generated inputs, making it a necessary supplement of
stateful tests.

We can also see that sorted dependencies slightly increases code coverage, thus we used
it in our fuzzer as well.

Using example values defined in the schema as a fallback when no required value is found
can, on the other hand, even decrease code coverage. The reason is that if the example value
is invalid, the fuzzer may result in a loop of 404 responses. A n example of an invalid value
in the A P I specification is the system id that does not exist in the application. However, in
terms of avoiding the 404 status code, any value is better than the generated one. That can
be seen by a higher increase in code coverage for VMaaS than a decrease in coverage for
Vulnerability, making the example value fallback a better option in terms of universality of
the fuzzer.

Skipping dependency testing after hitting a threshold of successive 404 responses is also
useful to decrease the number of tests and the time of testing while exploring the same
code.

Stateful fuzzing is very dependent on specification correctness and consistency. A n
incorrect schema will halt the entire testing, invalid example values can poison obtained
required values, and inconsistent naming of parameters can spoil dependency inference.

6.2 Fuzzing the Testing Applicat ion

With respect to the experiments concluded above, we tested our implementation of stateful
R E S T A P I fuzzer on the testing application that contains a fault seen only when tested
statefully. The fault is a typo introduced in the PATCH /systems endpoint. To hit the
fault, a user needs to use the correct value for the required non-fuzzable parameter i d . The
faulty code is shown in Listing 6.1. The comparison between testing of the applicattion
with Schemathesis 1.2.0 and with our implementation can be found in Table 6.8.

As seen in Table 6.8, stateful testing hit the bug that testing with Schemathesis 1.2.0
did not. The reason is that our solution found valid identifiers of systems which were used
in the following A P I calls. Specifically, it did not find the bug by just providing a correct
required non-fuzzable parameter value, but by accessing a deeper state of the application.

47

def patch_system(body):

"""Modify system's name."""

system_id =body.get("id")

name =body.get("name")

fqdn =body.get("fqdn")

i f not SYSTEMS.get(system_id):

return {"error": f"System '-Csystem_id}' not found."}, 404

change system's attribute fqdn to fqnd

SYSTEMS [system_id] =-["name" : name, "fqnd": fqdn}

return {"updated": system_id}, 200

Listing 6.1: The fault in testing application

of tests Test time Coverage # of bugs
Schemathesis 1.2.0 201 7.58s 86% 0

Stateful 304 5.39s 95% 1
Combination 413 12.47s 100% 1

Table 6.8: Fuzzing of testing application

A n improved exploration of the application state space is also supported by increase of code
coverage. The testing sequence causing a bug was the following:

1. GET /systems to obtain identifiers of systems. It is a dependency of the target
GET /systems{id]- endpoint, providing a valid value for i d required non-fuzzable
parameter.

2. PATCH /systems to modify a system resource. The resource is modified by the faulty
method shown in Listing 6.1. The requests against this endpoint pass, as it correctly
returns the 200 status code.

3. GET /systems{id} to recently modified resource, found by GET /systems
and modified by PATCH /systems. Because PATCH /systems modifies in-memory
database incorrectly, the A P I call to this endpoint results in 500 Internal Server
Error.

The issue is not possible to find without using stateful data and it is also not reproducible
without knowledge of previously tested endpoints. Combination of random and stateful
testing provides better results even if it takes longer which underlines the results presented
in Section 6.1.4.

6.3 Fuzzing Real-world R E S T A P I s

After experimental evaluation of implemented features and determining the optimal pa
rameters of our fuzzer, we move to testing real-world R E S T APIs. First, we test Red Hat
Insights services of https://cloud.redhat.com in pre-production OpenShift Dedicated 6

environment and present the bugs found in respective applications. Then, we compare our
fuzzer to QuickREST [22], a proof-of-concept tool tested against Gitlab A P I .

6OpenShift Dedicated - https://www.openshift.com/products/dedicated/

18

https://cloud.redhat.com
https://www.openshift.com/products/dedicated/

6.3.1 Testing Red Hat Insights

In this section, we summarize discovered bugs in the pre-production environment of https:
//cloud.redhat.com. We deployed our fuzzer to test the same environment as Red Hat
Insights to reduce the latency of A P I calls and decreasing the test time. A combination
of stateful and random fuzz testing was used to test seven applications in total, namely,
Advisor, Compliance, Drift, Inventory, Patch, Remediations, and Vulnerability. A l l these
applications were tested using 100 Hypothesis examples per endpoint.

Before we move to the testing of the Red Hat Insights application, we need to deploy
the fuzzer to the same environment as the tested application to minimize latency. Initially,
we wanted to deploy the fuzzer alongside a tested application in the ephemeral environ
ment in OpenShift. However, we struggled with the deployment of applications due to
occasional problems with their deployment. Instead, we decided to test applications in the
pre-production environment. To increase the speed of requests, we deployed a Schemathesis
container to the same OpenShift Dedicated cluster.

Advisor The first tested application was Advisor. Advisor is a service evaluating sys
tems against a set of rules. During the testing, our fuzzer executed 8000 tests, found
7 bugs and 3 other issues. Two endpoints, GET /system/uuid/reports/ and DELETE
/api / i n s i g h t s / v l / a c k / { r u l e _ i d] - / , are not sanitizing input values for required param
eters. Resulting in 500 Internal Server Error if uuid=0 or rule_id='°/oOO

,

. Other bugs
were found after using incorrect values for query parameters, such as rule_id= [0\x00)]
or display_name= , \x00) for 5 other endpoints.

One interesting bug was found thanks to our stateful extension in GET /rule/{rule_id]-

endpoint. If a user provides a valid r u l e _ i d parameter and an invalid value for tags
query, it will result in 500 status code. Interesting part is that it happen only if GET
/ack/{rule_id> return 404. The lack of acknowledgement for a rule was caused by previ
ously deleting the acknowledgement by DELETE /ack/{rule_id> endpoint.

Other issues found in Advisor seem to be intermittent and not reproducible. Even the
fuzzer marked these examples as flaky. They were, according to Hypothesis, unreliable. The
exact output is

 M
F a l s i f i e d on the f i r s t c a l l but did not on a subsequent one".

Compliance Next, we tested the Compliance service. It is assessing the system's com
pliance to OpenSCAP' security policy. Our fuzzer executed 300 tests and found 9 bugs.
Found bugs are very similar to these in Advisor service. Two are caused by the lack of
path parameters sanitization, triggered by i.d.= '°/,00'. Others are caused by missing sani-
tization of query parameters, specifically of the l i m i t query parameters used for limiting
the number of returned data. The parameter expects an integer value and results in 500
status code when a boolean value is used. It affects 7 endpoints.

We have also seen some flakiness. Some endpoints exceeded 500ms request timeout, but
they responded quicker on the subsequent request. We have noticed one strange situation
when id=" was considered a valid requirement. It is caused by Compliance having endpoints
GET / p r o f i l e s / { i d } and GET / p r o f i l e s / . Using empty string for i d parameter was
considered as making a request to GET / p r o f i l e s / . Thus, it returned 200 status code,
some data in JSON as well, and we marked the requirement as a valid example.

7OpenSCAP - https://www.open-scap.org/

49

http://redhat.com
https://www.open-scap.org/

D r i f t Service comparing multiple systems is called Drift. Only 200 tests were generated
and we hit one bug. If the request body of POST /comparison_report is empty, it returns
500 H T T P status code.

Inventory Another tested service was Inventory. This is the service which all other
services depend on. It stores all uploaded systems to Red Hat Insights. Despite running
more than 3600 tests, we found just 2 bugs. One is due to the pagination of responses—
when a user requests a non-existing page by providing a big integer value, it results in an
error. Another error is found for a particular request body shown in Listing 6.2 generated
by an input schema of the POST /hosts endpoint.

[

{

'account': '',

'reporter': '',

'stale_timestamp': '2000-01-OlTOO:00:00Z',

'': -9223372036854775809

}

]

Listing 6.2: Inventory service bug - request body

It is necessary to mention that all required non-fuzzable parameters used generated
values. The cause is lying within the service specification of required h o s t _ i d _ l i s t pa
rameter of the type string. In the specification, it is described as a comma separated list
of host IDs. Other endpoints return identifiers of hosts as i d , but the fuzzer cannot know
that the identifiers should be concatenated with comma delimiter to create a valid value
for h o s t _ i d _ l i s t parameter.

Patch The service used for patching systems by applying needed Red Hat Product Advi
sories is called Patch. We found the same kind of issues as in the previous services caused by
sanitizing of path parameters. Using

 ,

yoOO
)

 for inventory_id or advisory_id parameters,
triggers Internal Server Error. It affects 5 endpoints during the test run of 1000 test cases.

Remediations Patching is handled by the Remediations service by creating Ansible play-
book for the affected systems. We found two bugs in 3100 tests. Both are caused by
providing a floating point number instead of an integer for o f f s e t query parameter of the
GET /remediations and GET /remediations/{id}/playbook_runs endpoints.

Vulnerability Finally, we have tested the Vulnerability service that is reporting C V E s
and provides mitigation plans for affected systems. As seen in previous sections, Vulnera
bility was tested by 4500 tests and it resulted in 6 errors. A l l of the bugs are caused by an
insufficient sanitizing of path parameters. Internal Server Error is triggered by providing
'°/„00' as a value for cve_id or inventory_id parameters.

However, we see a similar problem as in Inventory. One parameter, cve_id, is not
returned by any endpoint and inventory_id is returned only by other endpoint having
cve_id as a required non-fuzzable path parameter. Luckily, cve_id example in schema was
a C V E affecting some systems, hence we obtained a required non-fuzzable inventory_id

parameter value.
8

Ansible playbook - https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html

50

https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html

6.3.2 Testing Gitlab A P I

Authors of QuickREST [22] were able to find some issues in Gitlab A P I . We have followed
their steps and tried to reproduce the same issues. It is necessary to note that QuickREST
is a proof-of-concept tool and not a production-ready tool by any means.

First, we set up the vulnerable Gitlab version based on their reproducer steps found
in [21]. Then, we executed their experiments and after a few test runs, we hit the bug
mentioned in their scripts.

Sadly, Gitlab is not providing the A P I specification in the OpenAPI format. Instead,
the documentation can be found in a human-readable format in their A P I documentation9.
In order to run experiments, authors of QuickREST created a subset of Gitlab A P I defined
in OpenAPI 2.0 (Swagger) format manually.

To reproduce the Gitlab stateful bug, we used the same OpenAPI specification as the
authors of QuickREST. However, we didn't find any issues. The reason is the way reproduce
the bug. The bug is a deadlock in Gitlab and it is reproducible by alternating two requests
very quickly. Our tool is unable to make such a test run, since we are making requests
endpoint-wise, thus we are first executing all tests for the dependent endpoints and then
tests for the target endpoint. QuickREST is able to trigger this bug not only by the ability
to create test cases with alternated endpoint tests but mainly thanks to the definition of
Gitlab A P I input schema for this experiment. When we tried to run the same QuickREST
experiment script against a schema extended with another endpoint, the script did not find
the bug.

6.3.3 Conclusion

A l l in all, our fuzzer found 32 bugs in 7 services. A l l bugs are caused by insufficient input
validation, triggered by Unicode, special strings, or different data types. One bug was
found exclusively by stateful testing. The fuzzer needed to use a valid path parameter
and a generated query parameter for a resource returning 404 by different A P I call, the
reproducer can be seen in Listing 6.3. Luckily for Red Hat Insights, we did not find any
stateful bug caused by improperly modified resource or a race condition.

GET: /api/insights/vl/rule/{rule_id}/systems/

1. Received a response with 5xx status code: 500

Previous endpoints:

1. GET: /api/insights/vl/rule/

2. GET: /api/insights/vl/ack/-[rule_id}/

3. DELETE: /api/insights/vl/ack/{rule_id}/

Check :not_a_server_error

Path parameters :-['rule_id' : ' amd_sme_enabled I AMD_SME_ENABLED'}

Query :{'tags': [' '] }

Run this Python code to reproduce this failure:

requests.get(

f "{base_url]-/api/insights/vl/rule/amd_sme_enabled I AMD_SME_ENABLED/systems/" ,

params=-['tags' : ['']}

)

Listing 6.3: Stateful bug output

9Gitlab API Docs - https://docs.gitlab.com/ee/api/README.html

51

https://docs.gitlab.com/ee/api/README.html

By testing Red Hat Insights services, we noticed how crucial the schema specification
is for successful fuzzing. In the first place, a specification must be in a valid OpenAPI or
Swagger format. For stateful testing, a schema has to be consistent, so that the required
parameters can be found in responses. When the required parameter cannot be obtained
from dependencies, it is nice to have OpenAPI features implemented by an application, like
enumeration of accepted values 1 0 or regular expression pattern 1 1 for the ability to generate
an example accepted by the service.

OpenAPI Enums - https://swagger.io/docs/specification/data-models/enums/
1 1 0penAPI Pattern - https: //swagger.io/docs/specif ication/data-models/data-types/#pattern

52

https://swagger.io/docs/specification/data-models/enums/

Chapter 7

Conclusion

In this thesis, we presented an approach to stateful fuzzing by inferring dependencies of
R E S T A P I endpoints. The result is a pull request extending the Schemathesis project
by adding capabilities for stateful testing. Schemathesis is internally used by the Insights
QE team for fuzz testing of Red Hat Insights services. Once the pull request is merged,
Schemathesis will become, to our best knowledge, the first production-ready tool for state
ful fuzzing of R E S T A P I . Our designed fuzzer is minimizing 404 H T T P status responses
since we are using inferred inputs for required parameters. Using the values from previous
tests also allows us to create different testing scenarios and to explore deeper states of the
application. Moreover, skipping dependencies returning 404 status codes helps to further
decrease the number of rejected requests and minimize the number of executed tests. De
pendency skipping with ordering of dependencies maximizes the probability of obtaining a
correct input value for a required parameter. Furthermore, modification of an input schema
determining a fuzzability of required parameters contributes to our solution of exploration
vs. exploitation problem.

During testing of the fuzzer on the Red Hat Insights application, we found 32 bugs.
In particular, we found one stateful bug that needs to execute A P I calls against three
dependent endpoints before triggering the issue in the target endpoint. To reproduce this
bug, it is necessary to obtain a set of valid parameter values. Then, proceed with finding
the value from the set that has a certain property (rule acknowledgement). Subsequently,
the fuzzer deletes the property of the resource, and finally, it tests the target endpoint with
a valid parameter value to previously inferred resource and a randomly generated
query parameter.

One of the possible improvements of our project can be in the order of test execution.
Right now, we are executing tests endpoint-wise, but, as testing on the Gitlab A P I showed
us, it would be useful to alternate endpoints and do not execute the whole test set for an
endpoint at once. A possibility of mutation of obtained values for optional fuzzed or required
fuzzed parameters may create inputs accepted by the service while being problematic to
handle. Finally, adding a white-box capability to guide test creation by so far untested
code paths can be great for the tool's universality.

53

Bibliography

[1] A R C U R I , A . RESTful A P I Automated Test Case Generation. In: 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS). July
2017, p. 9-20. ISBN 978-1-5386-0592-9.

[2] A T L I D A K I S , V . , G O D E F R O I D , P. and P O L I S H C H U K , M . RES Tier: Stateful R E S T A P I
Fuzzing. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). May 2019, p. 748-758. ISSN 0270-5257.

[3] B E R N E R S L E E , T., F I E L D I N G , R. T. and M A S I N T E R , L . M . Uniform Resource
Identifier (URI): Generic Syntax [RFC 3986]. R F C Editor, January 2005. Available
at: https ://rf c-editor.org/rfc/rfc3986.txt.

[4] B O Z K U R T , M . , H A R M A N , M . and H A S S O U N , Y . Testing & Verification In
Service-Oriented Architecture: A Survey. Software Testing, Verification and
Reliability. June 2013, vol. 23.

[5] B Ö H M E , M . , P H A M , V . and R O Y C H O U D H U R Y , A . Coverage-Based Greybox Fuzzing
as Markov Chain. IEEE Transactions on Software Engineering. May 2019, vol. 45,
no. 5, p. 489-506. ISSN 2326-3881.

[6] B Ö T T I N G E R , K . , G O D E F R O I D , P. and S I N G H , R. Deep Reinforcement Fuzzing.
In: 2018 IEEE Security and Privacy Workshops (SPW). May 2018, p. 116-122.

[7] C A R I O N , U . JSON Schema Language. Internet-Draft draft-json-schema-language-02.
Internet Engineering Task Force, July 2019. [cit. 2019-12-06]. Work in Progress.
Available at:
https://datatracker.ietf .org/doc/html/draft-j son-schema-language-02.

[8] C H A K R A B A R T I , S. K . and K U M A R , P. Test-the-REST: A n Approach to Testing
RESTful Web-Services. In: 2009 Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns. I E E E , Nov 2009, p. 302-308.
Available at: http://ieeexplore.ieee.org/document/5359602/. ISBN
978-1-4244-5166-1.

[9] C H A N , W. K . and J I A N G , B . Fuse: A n Architecture for Smart Contract Fuzz Testing
Service. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC). Dec
2018, p. 707-708. ISSN 1530-1362.

[10] C H E N , P. and C H E N , H . Angora: Efficient Fuzzing by Principled Search. In: 2018
IEEE Symposium on Security and Privacy (SP). May 2018, p. 711-725. ISSN
2375-1207.

54

http://c-editor.org/rfc/rfc3986.txt
https://datatracker.ietf
http://ieeexplore.ieee.org/document/5359602/

[11] E A R L E , C. B. , F R E D L U N D , L . Äke, H E R R A N Z Angel and M A R I N O , J . Jsongen.
In: Proceedings of the Thirteenth ACM SIGPLAN workshop on Erlang - Erlang '14-
New York, New York, USA: A C M Press, 2014, p. 33-41. Available at:
http://dl.acm.org/citation.cfm?doid=2633448.2633454. ISBN 9781450330381.

[12] E D D O U I B I , H . , C A N O V A S I Z Q U I E R D O , J . and C A B O T , J . Automatic Generation of
Test Cases for R E S T APIs: A Specification-Based Approach. October 2018,
p. 181-190.

[13] F E R T I G , T. and B R A U N , P. Model-driven Testing of RESTful APIs. In: Proceedings
of the 24th International Conference on World Wide Web - WWW '15 Companion.
New York, New York, USA: A C M Press, 2015, p. 1497-1502. Available at:
http://dl.acm.org/citation.cfm?doid=2740908.2743045. ISBN 9781450334730.

[14] F I E L D I N G , R. T. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation. University of California, Irvine, 2000. Available
at: http: //www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[15] F I E L D I N G , R. T. and R E S C H K E , J . Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content [RFC 7231]. R F C Editor, June 2014. Available at:
https: //rf c-editor.org/rfc/rfc7231.txt.

[16] F O W L E R , D . S., B R Y A N S , J. , S H A I K H , S. A . and W O O D E R S O N , P. Fuzz Testing for
Automotive Cyber-Security. In: 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W). June 2018,
p. 239-246. ISSN 2325-6664.

[17] G A N , S., Z H A N G , C , Q I N , X . , T u , X . , L i , K . et al. C o l l A F L : Path Sensitive Fuzzing.
In: 2018 IEEE Symposium on Security and Privacy (SP). May 2018, p. 679-696.
ISSN 2375-1207.

[18] G O D E F R O I D , P., L E V I N , M . Y . and M O L N A R , D . Automated Whitebox Fuzz Testing.
In:. November 2008. Available at: https://www.microsoft.com/en-us/research/
publication/automated-whitebox-fuzz-testing/.

[19] G O D E F R O I D , P., L E V I N , M . Y . and M O L N A R , D . S A G E : Whitebox Fuzzing for
Security Testing. Queue. New York, N Y , USA: A C M . January 2012, vol. 10, no. 1,
p. 20:20-20:27. Available at: http://doi.acm.org/10.1145/2090147.2094081. ISSN
1542-7730.

[20] G U H A , S., M U N A G A L A , K . and S H I , P. Approximation Algorithms for Restless
Bandit Problems. CoRR. 2007, abs/0711.3861. Available at:
http://arxiv.org/abs/0711.3861.

[21] K A R L S S O N , S., C A U S E V I C , A . and S U N D M A R K , D . QuickREST replication packages
[online]. GitHub [cit. 2020-05-27]. Available at:
https: //github.com/zclj/replication-packages/tree/master/ICST-2020.

[22] K A R L S S O N , S., C A U S E V I C , A . and S U N D M A R K , D . QuickREST: Property-based Test
Generation of OpenAPI-Described RESTful APIs. 2019.

55

http://dl.acm.org/citation.cfm?doid=2633448.2633454
http://dl.acm.org/citation.cfm?doid=2740908.2743045
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://c-editor.org/rfc/rfc7231.txt
https://www.microsoft.com/en-us/research/
http://doi.acm.org/10.1145/2090147.2094081
http://arxiv.org/abs/0711.3861

[23] K U Z N E T S O V , A . , Y E R O M I N , Y . , S H A P O V A L , O., C H E R N O V , K . , P O P O V A , M . et al.

Automated Software Vulnerability Testing Using Deep Learning Methods. In: 2019
IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON).
July 2019, p. 837-841.

[24] L I A N G , H . , P E I , X . , J I A , X . , S H E N , W . and Z H A N G , J . Fuzzing: State of the Art .
IEEE Transactions on Reliability. Sep. 2018, vol. 67, no. 3, p. 1199-1218. ISSN
1558-1721.

[25] M A N I C O , J . and S A A D , E . REST Security [online]. OWASP Cheat Sheet Series, 2019
[cit. 2019-12-06]. Available at:
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html.

[26] M A N E S , V . J . M . , H A N , H . , H A N , C , C H A , S. K . , E G E L E , M . et al. The Art , Science,
and Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering.
2019, p. 1-1. Available at: https://ieeexplore.ieee.org/document/8863940/. ISSN
2326-3881.

[27] M A S S E , M . REST API design rulebook. Sebastopol, C A : O'Reilly, 2012. ISBN
978-1-449-31050-9.

[28] M I L L E R , B . P., F R E D R I K S E N , L . and So, B . A n Empirical Study of the Reliability of
U N I X Utilities. Commun. ACM. New York, N Y , USA: A C M . december 1990,
vol. 33, no. 12, p. 32-44. Available at: http://doi.acm.org/10.1145/96267.96279.
ISSN 0001-0782.

[29] P E N G , H . , S H O S H I T A I S H V I L I , Y . and P A Y E R , M . T - F U Z Z : Fuzzing by Program

Transformation. In: 2018 IEEE Symposium on Security and Privacy (SP). May 2018,
p. 697-710. ISSN 2375-1207.

[30] S A R G S Y A N , S., K U R M A N G A L E E V , S., M E H R A B Y A N , M . , M I S H E C H K I N , M . ,

G H U K A S Y A N , T. et al. Grammar-Based Fuzzing. In: 2018 Ivannikov Memorial
Workshop (IVMEM). May 2018, p. 32-35.

[31] S U T T O N , M . , G R E E N E , A . and A M I N I , P. Fuzzing: brute force vulnerabilty discovery.
Upper Saddle River, N J : Addison-Wesley, 2007. ISBN 9780321446114.

[32] T A K A N E N , A . , D E M O T T , J. , M I L L E R , C. and K E T T U N E N , A . Fuzzing for software

security testing and quality assurance. Second editionth ed. Norwood, M A : Artech
House, 2018. ISBN 9781608078509.

[33] W R I G H T , A . , A N D R E W S , H . , H U T T O N , B . and D E N N I S , G . JSON Schema: A Media
Type for Describing JSON Documents. Internet-Draft
draft-handrews-json-schema-02. Internet Engineering Task Force, September 2019.
[cit. 2019-12-06]. Work in Progress. Available at:
https://datatracker. ietf.org/doc/html/draft-handrews-json-schema-02.

[34] Z E L L E R , A . , G O P I N A T H , R., B Ö H M E , M . , F R Ä S E R , G . and H O L L E R , C. Fuzzing:
Breaking Things with Random Inputs. In: The Fuzzing Book [online]. Saarland
University, 2019 [cit. 2019-06-21]. Available at:
https: //www.fuzzingbook.org/html/Fuzzer.html.

56

https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://ieeexplore.ieee.org/document/8863940/
http://doi.acm.org/10.1145/96267.96279
https://datatracker
http://ietf.org/doc/html/draft-handrews-json-
http://www.fuzzingbook.org/html/Fuzzer.html

Z H A O , J . and P A N G , L . Automated Fuzz Generators for High-Coverage Tests Based
on Program Branch Predications. In: 2018 IEEE Third International Conference on
Data Science in Cyberspace (DSC). June 2018, p. 514-520.

57

Appendix A

Attached Files

Directory tree of the attached media is the following:

• schemathesis - Git repository of Schemathesis project. Our enhancement is found
in stateful branch.

• stateful app - Source code of testing application used in the thesis.

• text - Thesis in pdf format and DT£]Xsource files.

58

Appendix B

Usage

The Schemathesis can be executed by either C L I or pytest runner and the application can
be installed using Poetry1 as follows:

cd schemathesis

git checkout stateful

python3 -m pip i n s t a l l poetry

poetry i n s t a l l

switch to a virtual environment with installed schemathesis

poetry shell

Listing B . l : Schemathesis installation

Command Line Interface Schemathesis tests cases are executed using the schemathesis
command:

schemathesis run https://example.com/api/swagger.json

Listing B.2: Running schemathesis

If an application requires authorization then one can use -auth option for Basic Auth
and -header to specify custom headers to be sent with each request.

CLI supports passing options to hypothesis. settings, prefixed with -hypothesis-.
For example set the number of generated examples:

schemathesis run —hypothesis-max-examples=1000 https://example.com/api/swagger.j son

Listing B.3: Schemathesis - max hypothesis examples

To minimize the number of 404 errors and ability to catch issues caused by other end-
points accessing/modifying the same resource, one can run stateful tests by passing C L I
option -stateful.

schemathesis run — s t a t e f u l https://example.com/api/swagger.json

Listing B.4: Schemathesis - C L I stateful tests

1

Poetry - https://python-poetry.org/

59

https://example.com/api/swagger.json
https://example.com/api/swagger.j
https://example.com/api/swagger.json
https://python-poetry.org/

Pytest If you would like to run stateful tests, you need to provide stateful=True pa
rameter either in schema preparation step

schema =schemathesis.from_uri("http://0.0.0.0:8080/swagger.json", stateful=True)

Listing B.5: Schemathesis - stateful schema definition

or parametrize tests with

Oschema.parametrize(stateful=True)

def test_no_server_errors(case):

Listing B.6: Schemathesis - statef tests

For stateful test you also need to update the current state based on the actual test result.
A n example of a stateful test could look as follows:

import schemathesis

schema =schemathesis.from_uri("http://0.0.0.0:8080/swagger.j son")

Oschema.parametrize(stateful=True)

def test_no_server_errors(case):

response =case.call()

Update state - gather examples for required properties of endpoints

schemathesis.update_state(case, response)

You could use built-in checks

case.validate_response(response)

Or assert the response manually

assert response.status_code <500

Listing B.7: Schemathesis - stateful test test_api.py

Finally, you can run the tests using:

pytest test_api.py

Listing B.8: Schemathesis - test execution using pytest

A more comprehensive documentation can be found at https: //github.com/kiwicom/
schemathesis (except for stateful options).

60

http://0.0.0.0:8080/swagger.json
http://0.0.0.0:8080/swagger.j

Appendix C

Running Testing Applicat ion

Testing application containing example of stateful bug is written in Python depending on
Connexion framework. To install it, you can make use of Python's v i r t u a l e n v as follows:

cd stateful_app

python3 -m venv .venv

source .venv/bin/activate

pip i n s t a l l -r requirements.txt

Listing C . l : Stateful bug output

Run the application using python -m main. Application will be running on http:
//localhost:8080/. The OpenAPI specification in JSON format can be found at http:
//localhost:8080/openapi.json and the generated Swagger UI at h t t p : / / l o c a l h o s t :
8080/ui.

61

http://localhost

