

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Management

Diploma Thesis

Agile Methods in Project Management

Petr Hradil

© 2010 CULS

! ! !

In this place, please insert

the Diploma Thesis Assignment.

(The original goes into one thesis

and the copy into the other)

! ! !

Declaration

I declare that I have worked on my diploma thesis titled Agile Methods in Project

Management by myself and I have used only the sources mentioned at the end of the

thesis.

In Prague on date 4/9/2010

Petr Hradil

Acknowledgement

I would like to thank name of the supervisor and all other persons, for their

advice and support during my work on this Thesis.

Agilní metody v projektovém řízení

Agile Methods in Project Management

Souhrn
Summary in the Czech language (approximately 15 lines)

Klíčová slova:
Keywords in the Czech language (approximately 10)

Summary
English version of the Summary

Keywords:
Keywords in English language (approximately 10)

Contents

1 Introduction ... 1

2 Objectives of Thesis and Metodology .. 3

3 Literature Overview ... 4

3.1 Software Development - Introduction .. 4

3.2 Empirical Process Control .. 4

3.3 Complexity ... 7

3.4 Scrum Method ... 9

3.4.1 The Scrum Introduction .. 10

3.4.2 The Skeleton and Heart of Scrum ... 13

3.4.3 Scrum Roles .. 15

3.5 Scrum Method Describtion... 16

3.5.1 Sprint Plannig Meeting .. 16

3.5.2 Daily Scrum Meeting .. 17

3.5.3 The Sprint .. 19

3.5.4 Sprint Review Meeting .. 21

3.5.5 The Sprint Retrospective Meeting ... 22

3.5.6 Product Backlog .. 23

3.5.7 Sprint Backlog ... 25

3.6 Extreme Programming ... 26

3.6.1 XP Introduction ... 27

3.6.2 XP Values.. 28

3.6.3 The Rhythm of an XP Project ... 29

3.6.4 Core Practices .. 31

3.6.5 Whole Team .. 32

3.6.6 Planning Game .. 32

3.6.7 Customer Tests .. 33

3.6.8 Small Releases .. 34

3.6.9 Simple Design ... 34

3.6.10 Pair Programming ... 34

3.6.11 Test-Driven Development ... 35

3.6.12 Design Improvement ... 36

3.6.13 Continuous Integration .. 36

3.6.14 Collective Code Ownership... 37

3.6.15 Coding Standard .. 37

3.6.16 Metaphor ... 38

3.7 Other Common Practices of XP ... 38

3.7.1 Open Workspace ... 38

3.7.2 Retrospectives ... 39

3.7.3 Self-Directed Teams .. 39

3.7.4 Customer Team ... 39

3.8 Getting Started with XP.. 41

3.8.1 Adaptations ... 42

4 Survey... 45

4.1 Methodology .. 45

4.1.1 Fisher´s Exact Test .. 45

4.1.2 Cramer´s V Test .. 47

4.2 Data collection ... 50

4.3 General Variables .. 50

4.4 Describtive statistics of the survey ... 52

4.4.1 Method used .. 52

4.4.2 Size of a team .. 53

4.4.3 Location... 54

4.4.4 Size in months ... 55

4.5 Success Atributes ... 56

4.5.1 Quality ... 56

4.5.2 Time .. 58

4.5.3 Scope ... 59

4.5.4 Cost ... 60

4.6 Crosstab analysis ... 61

4.6.1 Method used * Quality .. 61

4.6.2 Method used * Time .. 63

4.6.3 Method Used * Scope ... 64

4.6.4 Method used * Cost ... 65

4.6.5 Size of a team * Quality .. 67

4.6.6 Size of a team * Time .. 68

4.6.7 Size of a team * Scope .. 69

4.6.8 Size of a team * Cost ... 71

4.7 Success Factors Statistics .. 72

5 Case Study ... 75

5.1 Organization .. 75

5.2 Team ... 75

5.3 Product ... 75

5.4 Communication ... 76

5.5 Product Development .. 76

5.6 Project Management ... 76

5.7 Change Management .. 76

5.8 Implementation.. 77

5.9 Testing .. 77

5.10 Summary .. 77

6 Recommendations ... 78

7 Conclusions .. 79

8 Bibliography .. 81

9 Supplements... 1

9.1 Success Factors Statistics .. 1

1

1 Introduction

Traditional project management is a discipline of planning, organizing and

managing resources. A project is an endeavor that has to fulfill in given

timeframe it´s task within the required time, quality, scope and cost. Traditional

project management is driven by a central point. In the beginning of the project

the initial plan is set and the project team tries it´s best to fulfill the requirements.

Among the most frequent traditional methods that are used to control and

manage the project we can name Gantt charts, Critical Path Method (CPM) and

Program Evaluation and Review Technique (PERT). Gantt chart was firstly

designed by Henry Laurence Gantt around years 1910 and 1915. It is to

interesting to mention that he was not probably the first. The first reported tool of

this kind is a harmonogram developed by Karol Adamiecki. Critical Path Method

(CPM) and Program Evaluation and Review Technique (PERT) were developed

in the 1950s under the DuPont Corporation (CPM) and US Navy (PERT).

These methods were used essentially in construction and plant development for

number of years. In the turn of the millennium new methods were introduced.

These methods mainly deal with the decentralization of control and commitment

to the team with regard of communication with the customer. Agile methods

were firstly presented in Agile Manifesto. The word agile can be defined as ―1)

marked by ready ability to move with quick easy grace or 2) having a quick

resourceful and adaptable character‖ (1). ―Core to Agile software development is

the use of light-but-sufficient rules of project behaviour and the use human and

communication-oriented rules‖ (2).

Adaptive way and to have close cooperation with the customer with high level of

changing the scope are main attributes of Agile Project Management. Thus, it is

2

possible to react to changes by the changing business environment and at the

same time maintain effectiveness and efficiency. Generally, the emphasis is put

on tacit knowledge and sharing via constant face to face communication.

This paper explains two main Agile methods used in Project Management.

First, the SCRUM, iterative and incremental framework of agile project

management, developed by Hirotaka Takeuchi and Ikimuro Nonaka in 1986.

They compared new product development with rugby match where the whole

team tries to go to the distance as a unit, passing the ball back and forth. Lately,

the Ken Schwaber and Easel Corporation firstly called the method Scrum.

Second, the Extreme Programming (XP), essentially methodology focused on

software development projects. The XP advocates constant level of ―releases‖ in

very short development cycles. It is well-known because it uses pair

programming (when two programmes sitting side-by-side working on one task).

The survey among 32 professionals was conducted. The questionnaire rate of

return was about 30 percent. Population covers mainly Central Europen region.

The emphasis concentrated mainly on the success perception. Success factors

were defined as time, scope, quality and cost.

Futhermore, the paper contains the case study of the project led by agile method.

The main goal of the project was to develop the solution for ―Datové schránky‖,

Czech proprietary system of delivering information from government agencies to

the enterprises in order to speed up the communication.

3

2 Objectives of Thesis and Metodology

The objective of this paper is about to explain two most frequent Agile methods

in Project Management. Iterative SCRUM and more software development

focused Extreme Programming (XP). The aim is explain different aspects of

these methods.

Moreover, there is a lack of academic research on this topis in other areas than

USA. Some analyses can be found but most of the articles and books about agile

project management discuss are written by the inventors and promoting their own

and mainly covers the projects going in North America and Western Europe.

This paper contains a survey conducted in the area of Central Europe, answering

various questions with regards to success perception of the project.

In order to answer the objectives of the paper a literature review was conducted.

Concerning the discussion and results of the survey basic statistical methods such

as mean were conducted. Furthermore, the crosstab analysis was used in order to

find our relations. The Fisher´s Exact test was used to determine whether there is

or is not a statiticly significant difference in variables. In order to be able to say

the power of relation Cramer´s V is computed. Statistical software SPPSS 17 was

used.

4

3 Literature Overview

3.1 Software Development - Introduction

Software development is a complex endeavor. Of course, this news isn’t very

surprising because the universe is full of complexity. Most complexities we don’t

know about, and others we are content to leave unexamined. Some like the

complex process by which pressure turns coal into diamonds take care of

themselves. Others for example, commuting to work every day can tolerate some

imprecision. However, it is impossible to ignore complexity in software

development. Its results are ephemeral, consisting merely of signals that control

machines. The software development process is entirely intellectual, and all of its

intermediate products are marginal representations of the thoughts involved. The

materials that we use to create the end product are extremely volatile: user

requirements for a program the users have yet to see, the interoperation of other

programs’ signals with the program in question, and the interaction of the most

complex organisms on the planet: people. (2)

3.2 Empirical Process Control

Complex problems are those that behave unpredictably. Not only are these

problems unpredictable, but even the ways in which they will prove

unpredictable are impossible to predict. To put that another way, a statistical

sample of the operation of these processes will never yield meaningful insight

into their underlying mathematical model, and attempts to create a sample can

only be made by summarizing their operation to such a degree of coarseness as to

be irrelevant to those trying to understand or manage these processes.

Much of our society is based on processes that work only because their degree of

imprecision is acceptable. Wheels wobble, cylinders shake, and brakes jitter, but

5

this all occurs at a level that doesn’t meaningfully impede our use of a car. When

we build cars, we fit parts together with a degree of precision fit for their

intended purpose. We can manage many processes because the accuracy of the

results is limited by our physical perceptions. For example, when I build a

cabinet, I need only cut and join the materials with enough precision to make

them acceptable to the human eye; if I were aiming only for functionality, I could

be far less precise.

What happens when we are building something that requires a degree of

precision higher than that obtainable through averaging? What happens if any

process that we devise for building cars is too imprecise for our customers, and

we need to increase the level of precision? In those cases, we have to guide the

process step by step, ensuring that the process converges on an acceptable degree

of precision. In cases where convergence doesn’t occur, we have to make

adaptations to bring the process back into the range of acceptable precision

levels. Laying out a process that repeatably will produce acceptable quality

output is called defined process control. When defined process control cannot be

achieved because of the complexity of the intermediate activities, something

called empirical process control has to be employed.

It is typical to adopt the defined (theoretical) modeling approach when the

underlying mechanisms by which a process operates are reasonably well

understood. When the process is too complicated for the defined approach, the

empirical approach is the appropriate choice.

—B. A. Ogunnaike and W. H. Ray,

Process Dynamics, Modeling, and Control

We use defined processes whenever possible because with them we can crank up

unattended production to such a quantity that the output can be priced as a

6

commodity. However, if the commodity is of such unacceptable quality as to be

unusable, the rework is too great to make the price acceptable, or the cost of

unacceptably low yields is too high, we have to turn to and accept the higher

costs of empirical process control. In the long run, making successful products

the first time using empirical process control turns out to be much cheaper than

reworking unsuccessful products using defined process control. There are three

legs that hold up every implementation of empirical process control: visibility,

inspection, and adaptation. Visibility means that those aspects of the process that

affect the outcome must be visible to those controlling the process. Not only

must these aspects be visible, but what is visible must also be true. There is no

room for deceiving appearances in empirical process control. What does it mean,

for example, when someone says that certain functionality is labeled ―done‖? In

software development, asserting that functionality is done might lead someone to

assume that it is cleanly coded, refactored, unittested, built, and acceptance-

tested. Someone else might assume that the code has only been built. It doesn’t

matter whether it is visible that this functionality is done if no one can agree what

the word ―done‖ means.

The second leg is inspection. The various aspects of the process must be

inspected frequently enough that unacceptable variances in the process can be

detected. The frequency of inspection has to take into consideration that

processes are changed by the very act of inspection. Interestingly, the required

frequency of inspection often exceeds the tolerance to inspection of the process.

Fortunately, this isn’t usually true in software development. The other factor in

inspection is the inspector, who must possess the skills to assess what he or she is

inspecting.

The third leg of empirical process control is adaptation. If the inspector

determines from the inspection that one or more aspects of the process are

7

outside acceptable limits and that the resulting product will be unacceptable, the

inspector must adjust the process or the material being processed. The adjustment

must be made as quickly as possible to minimize further deviation.

Let’s take code review as an example of an empirical process control. The code

is reviewed against coding standards and industry best practices. Everyone

involved in the review fully and mutually understands these standards and best

practices. The code review occurs whenever someone feels that a section of code

or code representing a piece of functionality is complete. The most experienced

developers review the code, and their comments and suggestions lead to the

developer adjusting his or her code. (3)

3.3 Complexity

Anything can be complex. When complex things interact, the level of complexity

goes through the roof. I’ve limited my enumeration of complexity in software

development to the three most significant dimensions: requirements, technology,

and people.

It is possible to have simple software requirements. A single customer who is the

only person who will use the system can spend enough time with the developer

that the two can agree exactly what to build. Assuming that this customer dies

immediately after imparting his or her requirements, the requirements will

remain constant, and there will be no changes, revisions, or last- minute

modifications. More commonly, there are many stakeholders (those with an

interest in the software and how it works) who have different needs and whose

needs frequently change and are difficult to articulate. In most cases, these

customers only really start to understand what they want when they are provided

with someone else’s impression of what they want. Theirs are complex

8

requirements because their requirements are not only ambiguous, but also

constantly changing.

Simple technology exists, but it is rarely used in software development. One

might define software development projects as the application of advanced, often

unreliable technology to solve business problems and achieve competitive

advantage. To compound the complexity of technology, more than one piece is

usually employed, and the interfaces of the many are far more complex than the

complexity within any single piece.

In Figure 1, the vertical axis traces requirements complexity, and the horizontal

axis traces technology complexity. The intersection of these two kinds of

complexity defines the total level of complexity of the project. Almost all of

today’s software development projects are complex. Those that are chaotic are

unworkable, and some of their complexities must be resolved before work can

progress.

Figure 1 - Complexity assessment graph (3)

9

The third dimension of complexity is the people developing the software. They

all have different skills, intelligence levels, experience, viewpoints, attitudes, and

prejudices. Every morning, each wakes up in a different mood than the day

before, depending on his or her sleep, health, weather, neighbors, and families.

These people then start to work together, and the complexity level goes through

the roof. (3)

3.4 Scrum Method

The more complex the system, the more likely it is that central control systems

will break down. This is the reason companies decentralize and governments

deregulate relinquishing control to independent agents is a time- honored

approach to dealing with complexity. Scrum travels this well-trodden path by

moving control from a central scheduling and dispatching authority to the

individual teams doing the work. The more complex the project, the more

necessary it becomes to delegate decision making to independent agents who are

close to the work.

Scrum turns small teams into managers of their own fate. We know that when we

are responsible for choosing our own driving route from Prague to Brno, we will

find a way to get there. We will detour around construction and avoid rush hour

traffic jams, making decisions on the fly, adapting to the independent decisions

of all of the other drivers out there. Similarly, Scrum Teams accept a challenge

and then figure out how to meet that challenge, detouring around roadblocks in

creative ways that could not be planned by a central control and dispatching

center.

Common sense is a combination of experience, training, humility, wit, and

intelligence. People employing Scrum apply common sense every time they find

the work is veering off the path leading to the desired results. Yet most of us are

10

so used to using prescriptive processes—those that say ―do this, then do that, and

then do this‖ that we have learned to disregard our common sense and instead

await instructions.

Most people responsible for managing projects have been taught a deterministic

approach to project management that uses detailed plans, Gantt charts, and work

schedules. Scrum is the exact opposite. Unlike these tools, which practically fight

against a project’s natural momentum, Scrum shows management how to guide a

project along its optimal course, which unfolds as the project proceeds. It is well

known that traveling along a learning curve starts from a point where you have to

think everything through step by step and ends at a point where you can perform

the work in question unconsciously. This is particularly true of Scrum because

those steeped in traditional management practices have to unlearn many of them.

(3)

3.4.1 The Scrum Introduction

A Scrum project starts with a vision of the system to be developed. The vision

might be vague at first, perhaps stated in market terms rather than system terms,

but it will become clearer as the project moves forward. The Product Owner is

responsible to those funding the project for delivering the vision in a manner that

maximizes their ROI. The Product Owner formulates a plan for doing so that

includes a Product Backlog. The Product Backlog is a list of functional and

nonfunctional requirements that, when turned into functionality, will deliver this

vision. The Product Backlog is prioritized so that the items most likely to

generate value are top priority and is divided into proposed releases. The

prioritized Product Backlog is a starting point, and the contents, priorities, and

grouping of the Product Backlog into releases usually changes the moment the

project starts—as should be expected. Changes in the Product Backlog reflect

11

changing business requirements and how quickly or slowly the Team can

transform Product Backlog into functionality. (4)

All work is done in Sprints. Each Sprint is an iteration of 30 consecutive calendar

days. Each Sprint is initiated with a Sprint planning meeting, where the Product

Owner and Team get together to collaborate about what will be done for the next

Sprint. Selecting from the highest priority Product Backlog, the Product Owner

tells the Team what is desired, and the Team tells the Product Owner how much

of what is desired it believes it can turn into functionality over the next Sprint.

Sprint planning meetings cannot last longer than eight hours that is, they are

time-boxed to avoid too much hand-wringing about what is possible. The goal is

to get to work, not to think about working.

The Sprint planning meeting has two parts. The first four hours are spent with the

Product Owner presenting the highest priority Product Backlog to the Team. The

Team questions him or her about the content, purpose, meaning, and intentions of

the Product Backlog. When the Team knows enough, but before the first four

hours elapses, the Team selects as much Product Backlog as it believes it can

turn into a completed increment of potentially shippable product functionality by

the end of the Sprint. The Team commits to the Product Owner that it will do its

best. During the second four hours of the Sprint planning meeting, the Team

plans out the Sprint. Because the Team is responsible for managing its own work,

it needs a tentative plan to start the Sprint. The tasks that compose this plan are

placed in a Sprint Backlog; the tasks in the Sprint Backlog emerge as the Sprint

evolves. At the start of the second four-hour period of the Sprint planning

meeting, the Sprint has started, and the clock is ticking toward the 30-day Sprint

time-box.

12

Every day, the team gets together for a 15-minute meeting called a Daily Scrum.

At the Daily Scrum, each Team member answers three questions: What have you

done on this project since the last Daily Scrum meeting? What do you plan on

doing on this project between now and the next Daily Scrum meeting? What

impediments stand in the way of you meeting your commitments to this Sprint

and this project? The purpose of the meeting is to synchronize the work of all

Team members daily and to schedule any meetings that the Team needs to

forward its progress.

At the end of the Sprint, a Sprint review meeting is held. This is a four-hour,

time-boxed meeting at which the Team presents what was developed during the

Sprint to the Product Owner and any other stakeholders who want to attend. This

informal meeting at which the functionality is presented is intended to bring

people together and help them collaboratively determined what the Team should

do next. After the Sprint review and prior to the next Sprint planning meeting,

the ScrumMaster holds a Sprint retrospective meeting with the Team. At this

three-hour, time-boxed meeting, the ScrumMaster encourages the Team to

revise, within the Scrum process framework and practices, its development

process to make it more effective and enjoyable for the next Sprint. Together, the

Sprint planning meeting, the Daily Scrum, the Sprint review, and the Sprint

retrospective constitute the empirical inspection and adaptation practices of

Scrum. Take a look at Figure 2 to see a diagram of the Scrum process.

13

Figure 2 -Scrum Process (3)

3.4.2 The Skeleton and Heart of Scrum

Scrum hangs all of its practices on an iterative, incremental process skeleton.

Scrum’s skeleton is shown in Figure 3. The lower circle represents an iteration of

development activities that occur one after another. The output of each iteration

is an increment of product. The upper circle represents the daily inspection that

occurs during the iteration, in which the individual team members meet to inspect

each others’ activities and make appropriate adaptations. Driving the iteration is

a list of requirements. This cycle repeats until the project is no longer funded.

14

Figure 3 - Scrum skeleton (3)

The skeleton operates this way: At the start of an iteration, the team reviews what

it must do. It then selects what it believes it can turn into an increment of

potentially shippable functionality by the end of the iteration. The team is then

left alone to make its best effort for the rest of the iteration. At the end of the

iteration, the team presents the increment of functionality it built so that the

stakeholders can inspect the functionality and timely adaptations to the project

can be made.

The heart of Scrum lies in the iteration. The team takes a look at the

requirements, considers the available technology, and evaluates its own skills and

capabilities. It then collectively determines how to build the functionality,

modifying its approach daily as it encounters new complexities, difficulties, and

surprises. The team figures out what needs to be done and selects the best way to

do it. This creative process is the heart of the Scrum’s productivity. (5)

15

3.4.3 Scrum Roles

There are only three Scrum roles: the Product Owner, the Team, and the

ScrumMaster. All management responsibilities in a project are divided among

these three roles. The Product Owner is responsible for representing the interests

of everyone with a stake in the project and its resulting system. The Product

Owner achieves initial and ongoing funding for the project by creating the

project’s initial overall requirements, return on investment (ROI) objectives, and

release plans. The list of requirements is called the Product Backlog. The Product

Owner is responsible for using the Product Backlog to ensure that the most

valuable functionality is produced first and built upon; this is achieved by

frequently prioritizing the Product Backlog to queue up the most valuable

requirements for the next iteration. The Team is responsible for developing

functionality. Teams are self-managing, self-organizing, and cross-functional,

and they are responsible for figuring out how to turn Product Backlog into an

increment of functionality within an iteration and managing their own work to do

so. Team members are collectively responsible for the success of each iteration

and of the project as a whole. The ScrumMaster is responsible for the Scrum

process, for teaching Scrum to everyone involved in the project, for

implementing Scrum so that it fits within an organization’s culture and still

delivers the expected benefits, and for ensuring that everyone follows Scrum

rules and practices.

The people who fill these roles are those who have committed to the project.

Others might be interested in the project, but they aren’t on the hook. Scrum

makes a clear distinction between these two groups and ensures that those who

are responsible for the project have the authority to do what is necessary for its

success and that those who aren’t responsible can’t interfere unnecesarily. (3)

16

3.5 Scrum Method Describtion

3.5.1 Sprint Plannig Meeting

The Sprint planning meeting is time-boxed to 8 hours and consists of two

segments that are time-boxed to 4 hours each. The first segment is for selecting

Product Backlog; the second segment is for preparing a Sprint Backlog.

 The attendees are the ScrumMaster, the Product Owner, and the Team.

Additional parties can be invited by any of these people to provide

additional business domain or technology domain information and advice,

but they are dismissed after this information is provided. There are no

chickens as observers.

 The Product Owner must prepare the Product Backlog prior to the

meeting. In the absence of either the Product Owner or the Product

Backlog, the ScrumMaster is required to construct an adequate Product

Backlog prior to the meeting and to stand in for the Product Owner.

 The goal of the first segment, or first 4 hours, is for the Team to select

those Product Backlog items that it believes it can commit to turning into

an increment of potentially shippable product functionality. The Team will

demonstrate this functionality to the Product Owner and stakeholders at

the Sprint review meeting at the end of the Sprint.

 The Team can make suggestions, but the decision of what Product

Backlog can constitute the Sprint is the responsibility of the Product

Owner.

 The Team is responsible for determining how much of the Product

Backlog that the Product Owner wants worked on the Team will attempt

to do during the Sprint.

17

 Time-boxing the first segment to 4 hours means that this is all of the time

that is available for analyzing the Product Backlog. Further analysis must

be performed during the Sprint. Large-grained, high-priority Product

Backlog with imprecise estimates might not be thoroughly understood

during this part of the Sprint planning meeting and might result in the

Team not being able to complete all of the Product Backlog that it selects.

 The second segment of the Sprint Planning meeting occurs immediately

after the first segment and is also time-boxed to 4 hours.

 The Product Owner must be available to the Team during the second

segment to answer questions that the Team might have about the Product

Backlog.

 It is up to the Team, acting solely on its own and without any direction

from outside the Team, to figure out during the second segment how it

will turn the selected Product Backlog into an increment of potentially

shippable product functionality. No one else is allowed to do anything but

observe or answer questions seeking further information.

 The output of the second segment of the Sprint planning meeting is a list,

called the Sprint Backlog, of tasks, task estimates, and assignments that

will start the Team on the work of developing the functionality. The task

list might not be complete, but it must be complete enough to reflect

mutual commitment on the part of all Team members and to carry them

through the first part of the Sprint, while the Team devises more tasks in

the Sprint Backlog. (6)

3.5.2 Daily Scrum Meeting

The Daily Scrum meeting is time-boxed to 15 minutes regardless of the number

of Team members.

18

 Hold the Daily Scrum in the same place at the same time every work day.

The Daily Scrum is best held first thing in the day so that the first thing

Team members do on arriving at work is think of what they did the day

before and what they plan to do today.

 All Team members are required to attend. If for some reason a Team

member can’t attend in person, the absent member must either attend by

telephone or by having another Team member report on the absent

member’s status.

 Team members must be prompt. The ScrumMaster starts the meeting at

the appointed time, regardless of who is present. Any members who are

late pay $1 to the ScrumMaster immediately.

 The ScrumMaster begins the meeting by starting with the person

immediately to his or her left and proceeding counterclockwise around the

room until everyone has reported.

 Each Team member should respond to three questions only:

o What have you done since the last Daily Scrum regarding this

project?

o What will you do between now and the next Daily Scrum meeting

regarding this project?

o What impedes you from performing your work as effectively as

possible?

 Team members should not digress beyond answering these three questions

into issues, designs, discussion of problems, or gossip. The ScrumMaster

is responsible for moving the reporting along briskly, from person to

person.

19

 During the Daily Scrum, only one person talks at a time. That person is

the one who is reporting his or her status. Everyone else listens. There are

no side conversations.

 When a Team member reports something that is of interest to other Team

members or needs the assistance of other Team members, any Team

member can immediately arrange for all interested parties to get together

after the Daily Scrum to set up a meeting.

 Chickens are not allowed to talk, make observations, make faces, or

otherwise make their presence in the Daily Scrum meeting obtrusive.

 Chickens stand on the periphery of the Team so as not to interfere with the

meeting.

 If too many chickens attend the meeting, the ScrumMaster can limit

attendance so that the meeting can remain orderly and focused.

 Chickens are not allowed to talk with Team members after the meeting for

clarification or to provide advice or instructions.

 Pigs or chickens who cannot or will not conform to the above rules can be

excluded from the meeting (chickens) or removed from the Team (pigs).

(3)

3.5.3 The Sprint

The Sprint is time-boxed to 30 consecutive calendar days. Aside from other

factors, this is the amount of time required for a Team to build something of

significant interest to the Product Owner and stakeholders and bring it to a state

where it is potentially shippable. This is also the maximum time that can be

allocated without the Team doing so much work that it requires artifacts and

documentation to support its thought processes. It is also the maximum time that

20

most stakeholders will wait without losing interest in the Team’s progress and

without losing their belief that the Team is doing something meaningful for them.

 The Team can seek outside advice, help, information, and support during

the Sprint.

 No one can provide advice, instructions, commentary, or direction to the

Team during the Sprint. The Team is utterly self-managing.

 The Team commits to Product Backlog during the Sprint planning

meeting. No one is allowed to change this Product Backlog during the

Sprint. The Product Backlog is frozen until the end of the Sprint.

 If the Sprint proves to be not viable, the ScrumMaster can abnormally

terminate the Sprint and initiate a new Sprint planning meeting to initiate

the next Sprint. The ScrumMaster can make this change of his or her own

accord or as requested by the Team or the Product Owner. The Sprint can

prove to be not viable if the technology proves unworkable, if the business

conditions change so that the Sprint will not be of value to the business, or

if the Team is interfered with during the Sprint by anyone outside the

Team.

 If the Team feels itself unable to complete all of the committed Product

Backlog during the Sprint, it can consult with the Product Owner on

which items to remove from the current Sprint. If so many items require

removal that the Sprint has lost its value and meaning, the ScrumMaster

can abnormally terminate the Sprint, as previously stated.

If the Team determines that it can address more Product Backlog during the

Sprint than it selected during the Sprint planning meeting, it can consult with the

Product Owner on which additional Product Backlog items can be added to the

Sprint. (3)

21

3.5.4 Sprint Review Meeting

The Sprint review meeting is time-boxed to 4 hours.

 The Team should not spend more than 1 hour preparing for the Sprint

review.

 The purpose of the Sprint review is for the Team to present to the Product

Owner and stakeholders functionality that is done. Although the meaning

of ―done‖ can vary from organization to organization, it usually means

that the functionality is completely engineered and could be potentially

shipped or implemented. If ―done‖ has another meaning, make sure that

the Product Owner and stakeholders understand it.

 Functionality that isn’t ―done‖ cannot be presented.

 Artifacts that aren’t functionality cannot be presented except when used in

support of understanding the demonstrated functionality. Artifacts cannot

be shown as work products, and their use must be minimized to avoid

confusing stakeholders or requiring them to understand how systems

development works.

 Functionality should be presented on the Team member workstations and

executed from the server closest to production—usually a quality

assurance (QA) environment server.

 The Sprint review starts with a Team member presenting the Sprint goal,

the Product Backlog committed to, and the Product Backlog completed.

Different Team members can then discuss what went well and what didn’t

go well in the Sprint.

 The majority of the Sprint review is spent with Team members presenting

functionality, answering stakeholder questions regarding the presentation,

and noting changes that are desired.

22

 At the end of the presentations, the stakeholders are polled, one by one, to

get their impressions, any desired changes, and the priority of these

changes.

 The Product Owner discusses with the stakeholders and the Team

potential rearrangement of the Product Backlog based on the feedback.

 Stakeholders are free to voice any comments, observations, or criticisms

regarding the increment of potentially shippable product functionality

between presentations.

 Stakeholders can identify functionality that wasn’t delivered or wasn’t

delivered as expected and request that such functionality be placed in the

Product Backlog for prioritization.

 Stakeholders can identify any new functionality that occurs to them as

they view the presentation and request that the functionality be added to

the Product Backlog for prioritization.

 The ScrumMaster should attempt to determine the number of people who

expect to attend the Sprint review meeting and set up the meeting to

accommodate them.

 At the end of the Sprint review, the ScrumMaster announces the place and

date of the next Sprint review to the Product Owner and all stakeholders.

(3)

3.5.5 The Sprint Retrospective Meeting

The Sprint retrospective meeting is time-boxed to 3 hours.

 It is attended only by the Team, the ScrumMaster, and the Product Owner.

The Product Owner is optional.

 Start the meeting by having all Team members answer two questions:

23

o What went well during the last Sprint?

o What could be improved in the next Sprint?

 The ScrumMaster writes down the Team’s answers in summary form.

 The Team prioritizes in which order it wants to talk about the potential

improvements.

 The ScrumMaster is not at this meeting to provide answers, but to

facilitate the Team’s search for better ways for the Scrum process to work

for it.

 Actionable items that can be added to the next Sprint should be devised as

high-priority nonfunctional Product Backlog. Retrospectives that don’t

result in change are sterile and frustrating. (3)

3.5.6 Product Backlog

The requirements for the system or product being developed by the project(s) are

listed in the Product Backlog. The Product Owner is responsible for the contents,

prioritization, and availability of the Product Backlog. The Product Backlog is

never complete, and the Product Backlog used in the project plan is merely an

initial estimate of the requirements. The Product Backlog evolves as the product

and the environment in which it will be used evolves. The Product Backlog is

dynamic; management constantly changes it to identify what the product needs to

be appropriate, competitive, and useful. As long as a product exists, the Product

Backlog also exists.

24

Figure 4 - Product Backlog (3)

The first four columns are the Product Backlog item name, the initial estimate,

the complexity factor, and the adjusted estimate. The complexity factor increases

the estimate due to project characteristics that reduce the productivity of the

Team. The remaining columns represent the Sprints during which the Product

Backlog is developed. When the Product Backlog is first thought of and entered,

its estimated work is placed into the column of the Sprint that is going on at that

time. The developers devised most of the backlog items shown before starting

this project.

A burndown chart shows the amount of work remaining across time. The

burndown chart is an excellent way of visualizing the correlation between the

amount of work remaining at any point in time and the progress of the project

25

Team(s) in reducing this work. The intersection of a trend line for work

remaining and the horizontal axis indicates the most probable completion of

work at that point in time. This allows me to ―what if‖ the project by adding and

removing functionality from the release to get a more acceptable date or extend

the date to include more functionality. The burndown chart is the collision of

reality (work done and how fast it’s being done) with what is planned, or hoped

for. (7)

Figure 5 - Burndown Chart (6)

3.5.7 Sprint Backlog

The Sprint Backlog defines the work, or tasks, that a Team defines for turning

the Product Backlog it selected for that Sprint into an increment of potentially

shippable product functionality. The Team compiles an initial list of these tasks

in the second part of the Sprint planning meeting. Tasks should be divided so that

each takes roughly 4 to 16 hours to finish. Tasks longer than 4 to 16 hours are

considered mere placeholders for tasks that haven’t yet been appropriately

defined. Only the Team can change the Sprint Backlog. The Sprint Backlog is a

highly visible, real-time picture of the work that the Team plans to accomplish

during the Sprint. An example Sprint Backlog is shown in Figure 1-6. The rows

represent Sprint Backlog tasks; the columns represent the 30 days in the Sprint.

mk:@MSITStore:c:/Documents%20and%20Settings/PetrH/Dokumenty/diplomka/Agile%20Project%20Management%20with%20Scrum.chm::/8392final/LiB0011.html#figure.Lib8

26

Once a task is defined, the estimated number of hours remaining to complete the

task is placed in the intersection of the task and the Sprint day by the person

working on the task.

Figure 6 - Sprint Backlog (3)

3.6 Extreme Programming

Extreme Programming (XP) is the most widely used agile methodology. XP

shares the values espoused by the Agile Manifesto for Software Development but

goes further to specify a simple set of practices. Whereas many popular

methodologies try to answer the question ―What are all of the practices I might

ever need on a software project?,‖ XP simply asks, ―What is the simplest set of

27

practices I could possibly need and what do I need to do to limit my needs to

those practices?‖ The significance of this difference cannot be understated. The

most frequent critique of XP is that it is too simple to work beyond a narrow set

of project criteria. Yet, the set of known successes with XP continues to stretch

the breadth of projects applicable for XP. It would seem that the parameters that

we use to determine what methods are appropriate for what project are still

inadequate. To many, XP is a set of 12 interdependent software development

practices. Used together, these practices have had much success, initially with

small teams, working on projects with high degrees of change. However, the

more one works with XP, the more it is apparent that the practices do not capture

the essence of XP. As with the heavier methods, some teams have great success

with the XP practices, some less so. Some larger teams have greater success than

smaller ones. Some teams with legacy code have success; others do not. There is

something more than just the practices that enables teams to succeed with XP.

This extra attribute of XP is XP Values.

3.6.1 XP Introduction

Extreme Programming is a discipline of software development based on values

of simplicity, communication, feedback, and courage. It works by bringing the

whole team together in the presence of simple practices, with enough feedback to

enable the team to see where they are and to tune the practices to their unique

situation. In XP, every contributor to the project is a member of the ―Whole

Team,‖ a single business/ development/testing team that handles all aspects of

the development. Central to the team is the ―Customer,‖ one or more business

representatives who sit with the team and work with them daily. XP teams use a

simple form of planning and tracking to decide what to do next and to predict

when any desired feature set will be delivered. Focused on business value, the

team produces the software in a series of small, fully integrated releases that pass

28

all the tests that the Customer has defined. The core XP practices for the above

are called Whole Team, Planning Game, Small Releases, and Acceptance Tests.

There are specific recommendations for all of these, which are briefly discussed

here and as the chapter progresses. Extreme Programmers work together in pairs

and as a group, with simple design and obsessively tested code, improving the

design continually to keep it always just right for the current needs. The core XP

practices here are Pair Programming, Simple Design, Test-Driven Development,

and Design Improvement. The XP team keeps the system integrated and running

all the time. The programmers write all production code in pairs, and all work

together all the time. (8)

3.6.2 XP Values

The XP Values are Communication, Simplicity, Feedback, and Courage. The

essence [of XP] truly is simple. Be together with your customer and fellow

programmers, and talk to each other. Use simple design and programming

practices, and simple methods of planning, tracking, and reporting. Test your

program and your practices, using feedback to steer the project. Working

together this way gives the team courage. These values guide our actions on the

project. The practices leverage these values to remove complexity from the

process. The impact of the XP Values is significant and unique. XP remains the

only methodology that is explicit in its values and practices. This combination

gives specific guidance not only on what (the practices) to do on a project, but

also on how to react (defer to the values) when the practices do not seem to be

working or are not sufficient. Most methods are specific on practices, some

specify principles, but few combine both. For example, CMMI describes Key

Practice Areas (KPAs) but does not articulate a set of values or principles. RUP

provides guiding principles, such as Develop Iteratively, but does not include

values that give guidance beyond the software development practices.

29

Organization On a project using XP, there are two explicit roles or teams

defined: the Customer and the Programmer. In keeping with the value of

simplicity, most of the XP literature describes the customer as a single person

who can represent the requirements, acceptance criteria, and business value for

the project. In practice, it is a team of people that communicates with one voice

with the Programming Team. As such, this role is also referred to as the

Customer Team. This chapter uses the term ―Customer‖ to describe the role,

whether acted on by an individual or a team.The Programmer is a member of the

Programming Team that implements the XP Customer Team’s requirements.

Again, the convention will be to use the term ―Programmer‖ to describe an

individual or the team. On all but the smallest projects, there will also be a

Management Team that allocates resources for the teams, manages the alignment

of the project to the goals of the business, and removes any obstacles impeding

the team’s progress. Extreme Programming does not specify management

practices. XP attempts to simplify management by empowering the Customer

and Programmer to make most of the decisions regarding the project. Often, XP

teams are described as self-managing. As projects grow in size and complexity,

more management is typically required to coordinate the efforts of different

teams. Many of the other emerging agile methodologies are focusing more

attention on management practices, such as Scrum, Lean Development and

Extreme Project Management. (8)

3.6.3 The Rhythm of an XP Project

 An XP project proceeds in iterations of two weeks in length. Each iteration

delivers fully developed and tested software that meets the most valuable small

set of the full project’s requirements. Figure 4 shows the primary activities of the

Customer and Programmer during the initial iterations of a project. The project

30

proceeds in a steady rhythm of delivering more functionality. The Customer

determines at what point in time the full system can be released and deployed.

Figure 7 - The Rhythm of an XP Project (8)

31

Figure 8 - XP Practices and the Circle of Life (8)

3.6.4 Core Practices

There are 12 core practices that define XP. Teams new to XP should focus on

using and developing skills with these practices. Over time, as the team matures

in its use of XP, it will continue to check its proficiency with these practices, but

will also tailor the practices to the project needs. XP teams are encouraged to use

feedback from their project to adapt, add, and eliminate practices as needed. A

number of other practices are popular on XP teams and some of these are

described later. The practices can be described as a cycle of activities (see Figure

5). The inner circle describes the tight cycle of the Programmers. The outer loop

describes the planning cycle that occurs between the Customers and

Programmers. The middle loop shows practices that help the team communicate

and coordinate the delivery of quality software. (9)

32

3.6.5 Whole Team

All the contributors to an XP project sit together as members of one team. This

team must include a business representative — the Customer — who provides

the requirements, sets the priorities, and steers the project. It is best if the

Customer or one of her aides is a real end user who knows the domain and what

is needed. The team will, of course, have programmers. The team will typically

include testers, who help the Customer define the customer acceptance tests.

Analysts may serve as helpers to the Customer, helping to define the

requirements. There is commonly a coach who helps the team stay on track and

facilitates the process. There may be a manager, providing resources, handling

external communication, and coordinating activities. None of these roles is

necessarily the exclusive property of just one individual. Everyone on an XP

team contributes in any way that he or she can. The best teams have no

specialists, only general contributors with special skills. (8)

3.6.6 Planning Game

XP planning addresses two key questions in software development: predicting

what will be accomplished by the due date, and determining what to do next. The

emphasis is on steering the project — which is quite straightforward — rather

than on exact prediction of what will be needed and how long it will take —

which is quite difficult. There are two key planning steps in XP: 1. Release

planning is a practice where the Customer presents the desired features to the

programmers, and the programmers estimate their difficulty. With the cost

estimates in hand, and with knowledge of the importance of the features, the

Customer lays out a plan for the project. Initial release plans are necessarily

imprecise; neither the priorities nor the estimates are truly solid, and until the

team begins to work, we will not know just how fast they will go. Even the first

33

release plan is accurate enough for decision making, however, and XP teams

revise the release plan regularly. 2. Iteration planning is the practice whereby the

team is given direction every couple of weeks. XP teams build software in

twoweek ―iterations,‖ delivering running, useful software at the end of each

iteration. During Iteration Planning, the Customer presents the features desired

for the next two weeks. The programmers break them down into tasks and

estimate their cost (at a finer level of detail than in Release Planning). Based on

the amount of work accomplished in the previous iteration, the team signs up for

what will be undertaken in the current iteration. These planning steps are very

simple yet they provide very good information and excellent steering control in

the hands of the Customer. Every couple of weeks, the amount of progress is

entirely visible. There is no ―90 percent done‖ in XP: a feature story was

completed, or it was not. This focus on visibility results in a nice little paradox.

On the one hand, with so much visibility, the Customer is in a position to cancel

the project if progress is not sufficient. On the other hand, progress is so visible,

and the ability to decide what will be done next is so complete, that XP projects

tend to deliver more of what is needed, with less pressure and stress.

3.6.7 Customer Tests

As part of presenting each desired feature, the XP Customer defines one or more

automated acceptance tests to show that the feature is working. The team builds

these tests and uses them to prove to themselves, and to the customers, that the

feature is implemented correctly. Automation is important because in the press of

time, manual tests are skipped. That is like turning off your lights when the night

gets darkest. The best XP teams treat their customer tests the same way they do

programmer tests: once the test runs, the team keeps it running correctly

thereafter. This means that the system only improves, always notching forward,

and never backsliding. (10)

34

3.6.8 Small Releases

XP teams practice small releases in two important ways. First, the team releases

running, tested software, delivering business value chosen by the Customer, with

every iteration. The Customer can use this software for any purpose, either for

evaluation or even for release to end users (which is highly recommended). The

most important aspect is that the software is visible, and given to the customer at

the end of every iteration. This keeps everything open and tangible. Second, XP

teams also release software to their end users frequently. XP Web projects

release as often as daily, inhouse projects monthly or more frequently. Even

shrink-wrapped products are shipped as often as quarterly. It might seem

impossible to create good versions this often but XP teams are doing it all the

time. (8)

3.6.9 Simple Design

XP teams build software to a simple design. They start simple, and through

programmer testing and design improvement, they keep it that way. An XP team

keeps the design exactly suited for the current functionality of the system. There

is no wasted motion, and the software is always ready for what is next. Design in

XP is neither a one-time thing nor an up-front thing, but it is an all-the-time

thing. There are design steps in release planning and iteration planning, plus

teams engage in quick design sessions and design revisions through refactoring,

throughout the course of the entire project. In an incremental, iterative process

like Extreme Programming, good design is essential.

3.6.10 Pair Programming

In XP, two programmers, sitting side by side at the same machine, build all

production software. This practice ensures that all production code is reviewed

by at least one other programmer, resulting in better design, better testing, and

35

better code. It may seem inefficient to have two programmers doing ―one

programmer’s job,‖ but the reverse is true. Research on pair programming shows

that pairing produces better code in about the same time as programmers working

singly. That is right: two heads really are better than one! It does take some

practice to do well, and you need to do it well for a few weeks to see the results.

Most programmers who learn pair programming prefer it, so we highly

recommend it to all teams. Pairing, in addition to providing better code and tests,

also serves to communicate knowledge throughout the team. As pairs switch,

everyone gets the benefits of everyone’s specialized knowledge. Programmers

learn, their skills improve, and they become move valuable to the team and to the

company. Pairing, even on its own outside of XP, is a big win for everyone. (8)

3.6.11 Test-Driven Development

XP is obsessed with feedback; and in software development, good feedback

requires good testing. XP teams practice ―test-driven development,‖ working in

very short cycles of adding a test, then making it work. Almost effortlessly,

teams produce code with nearly 100 percent test coverage, which is a great step

forward in most shops. It is not enough to write tests; you have to run them.

Here, too, XP is extreme. These ―programmer tests,‖ or ―unit tests,‖ are all

collected together, and every time any programmer releases any code to the

repository (and pairs typically release twice a day or more), every single one of

the programmer tests must run correctly. One hundred percent, all the time! This

means that programmers get immediate feedback on how they are doing.

Additionally, these tests provide invaluable support as the software design is

improved.

36

3.6.12 Design Improvement

XP focuses on delivering business value in every iteration. To accomplish this

over the course of the whole project, the software must be well designed. The

alternative would be to slow down and ultimately get stuck. So, XP uses a

process of continuous design improvement called ―refactoring.‖ The refactoring

process focuses on the removal of duplication (a sure sign of poor design), and

on increasing the ―cohesion‖ of the code while lowering the ―coupling.‖ High

cohesion and low coupling have been recognized as the hallmarks of well-

designed code for at least 30 years. The result is that XP teams start with a good,

simple design, and always have a good, simple design for the software. This lets

them sustain their development speed and, in fact, generally increase speed as the

project goes forward. Refactoring is, of course, strongly supported by

comprehensive testing that ensures that as the design evolves, nothing is broken.

Thus, the customer tests and programmer tests are a critical enabling factor. The

XP practices support each other: they are stronger together than separately.

3.6.13 Continuous Integration

XP teams keep the system fully integrated at all times. We say that daily builds

are for wimps; XP teams build multiple times per day. (One XP team of 40

people builds at least eight or ten times per day!) The benefit of this practice can

be seen by thinking back on projects you may have heard about, where the build

process was weekly or less frequently and usually led to ―integration hell,‖ where

everything broke and no one knew why. Infrequent integration leads to serious

problems on a software project. First of all, although integration is critical to

shipping good working code, the team is not practiced at it, and often it is

delegated to people who are not familiar with the whole system. Second,

infrequently integrated code is often or usually buggy code. Problems creep in at

37

integration time that are not detected by any of the testing that takes place on a

nonintegrated system. Third a weak integration process leads to long code

freezes. Code freezes mean that you have long time periods when the

programmers could be working on important shippable features, but that those

features must be held back.This weakens your position in the market or with your

end users. (8)

3.6.14 Collective Code Ownership

On an XP project, any pair of programmers can improve any code at anytime.

This means that all code gets the benefit of many people’s attention, which

increases code quality and reduces defects. There is another important benefit as

well: when code is owned by individuals, required features are often put in the

wrong place as one programmer discovers that he needs a feature somewhere in

code that he does not own.The owner is too busy to do it, so the programmer puts

the feature in his own code, where it does not belong. This leads to ugly, hard-to-

maintain code, full of duplication and with low (bad) cohesion. Collective

ownership could be a problem if people worked blindly on code they do not

understand. XP avoids these problems through two key techniques: (1) the

programmer tests catch mistakes, and (2) pair programming, which means that

the best way to work on unfamiliar code is to pair with the expert. In addition to

ensuring good modifications when needed, this practice spreads knowledge

throughout the team.

3.6.15 Coding Standard

XP teams follow a common coding standard so that all the code in the system

looks as if a single — very competent — individual wrote it. The specifics of the

standard are not important; what is important is that all the code looks familiar, in

support of collective ownership.

38

3.6.16 Metaphor

XP teams develop a common vision of how the program works, which we call

the ―metaphor.‖ At its best, the metaphor is a simple, evocative description of

how the program works, such as ―this program works like a hive of bees, going

out for pollen and bringing it back to the hive‖ as a description for an agent-

based information retrieval system. Sometimes, a sufficiently poetic metaphor

does not arise. In any case, with or without vivid imagery, XP teams use a

common system of names to be sure that everyone understands how the system

works and where to look to find functionality or to find the right place to put the

functionality that is about to be added. (11)

3.7 Other Common Practices of XP

The core practices of XP do not specify all of the activities that are required to

deliver a software project. As teams use XP, many find that other practices aid in

their success, in some cases as significantly as some of the core practices. The

following are some other practices commonly used by successful XP teams.

3.7.1 Open Workspace

To maximize communication among the Whole Team, the team works together

in an―open workspace.‖ This is a large room, with tables in the center that can

typically seat two to four pairs of developers. By sitting together, all team

members can establish instant communication when needed for the project.

Teams establish their own rules concerning their space to ensure that everyone

can work effectively. The walls of the ―open workspace‖ are used to display

information about the project. This will include big, visible charts of metrics such

as passing acceptance tests and team productivity. There may be designs drawn

39

on whiteboards. Project status will be displayed so that any participant or

stakeholder of the project can always see progress. (8)

3.7.2 Retrospectives

The XP practices provide feedback to the team as to the quality of the code and

its alignment to the Customers’ needs. The team also needs feedback on how it is

performing. Is it following the practices with discipline? Are there adaptations to

the practices that would benefit the team? The practice commonly used for this is

the Retrospective. After each iteration, the team does a short reflection on what

went well during the iteration and what should be improved in the next iteration.

After a release of the product, a more in-depth Retrospective is performed on the

whole project.

3.7.3 Self-Directed Teams

A practice that is common among most of the agile methods is self-directed

teams. The best people to make decisions about the project are those closest to

the details, as long as they have an understanding of the overall goals of the

project. Open communication allows team members to have the information

required to make decisions. Managers are part of the communication loop but not

bottlenecks in the decision-making flow.

3.7.4 Customer Team

As XP is used on projects with more complex requirements, a team performs the

Customer function. For larger or more complex projects, the Customer team may

even exceed the Programming team in size. Some of the challenges faced by the

Customer team include communicating with and balancing the needs of multiple

stakeholders, allocating resources to the appropriate projects or features, and

providing sufficient feedback to ensure that the requirements implemented

40

achieve the stakeholders’ goals. The specific Customer team practices are still

emerging in the agile community. The practices are guided by the same values as

the other XP practices. (8)

Probably the most commonly debated question regarding XP is whether it can be

used successfully on a particular type of project. Experience is proving that, as

with other approaches to software development, the limitations often include the

characteristics of the project, the people on the team, and the organization in

which they work. To evaluate whether the XP practices can help a team achieve

greater success on their project, consideration must be given to the project

characteristics, the people on the team, and the cultures of the organizations

involved in the project. The XP Values can be used as a template to test the fit of

XP to a project, team, and organization. Simply evaluate the degree to which

each value is currently held by the team and the organization.

Communication. Does the team communicate constantly and effectively? Does

this communication extend to the customer? Is the team’s software readable and

understandable (i.e., is it easy for Programmers to communicate with the code)?

Simplicity. Is the team comfortable with simple solutions? Can the team

implement, without a complete design, the system prior to coding? Is the team

comfortable with some ambiguity as to the exact requirements and designs? Can

the team adapt often to changing requirements? Is the team working new code or

code that is well designed and refactored? Feedback. Can the team get feedback

on its tasks and deliverables often? Does the team accept feedback

constructively? When there are problems, does the team focus on the process to

identify root causes (rather than the people)? How often does the team integrate,

build, and test the complete software system? Courage. Does the organization

41

encourage individuals to not fear failure? Are individuals and teams encouraged

to show initiative and make decisions for their projects? Are organizational

boundaries easily crossed to solve problems on the project? Typically, the greater

the degree to which the team can answer these questions affirmatively, the fewer

changes will be required and the easier it is for the team and organization to

adopt XP. Some Specific project and team guidelines for getting started are

provided next.

3.8 Getting Started with XP

When selecting an initial project on which to try XP, one must consider the

challenges of using the new practices. New practices introduce risk to a project.

Care must be taken to select an initial project that is not burdened by all of the

most difficult obstacles to using XP, but does address enough typical obstacles so

that the success of the initial project can provide the basis for expanding to the

rest of the organization. Although most initial XP projects are not this fortunate,

ideally, the initial project will have many of the following characteristics:

 ❚ Primarily new code versus legacy updates

 ❚ An identified and available source of requirements and feedback

 ❚ Delivers important business value and has management visibility

 ❚ Uses an OO language/environment

 ❚ Is typical of the projects the organization will be doing in the future

 ❚ Has a co-located team in an open workspace

 ❚ Can be delivered to the end user incrementally with a new stage once

in at least every four to six weeks

42

In selecting the initial XP Project Team, the main attribute of the team members

should be a strong commitment to delivering the project and achieving its goals

using the new practices. Some healthy skepticism about XP is acceptable as long

as the team members are willing to use the practices and let data and experience

from the project guide any adaptations. The team ideally will have a few

technical leaders familiar with other projects in the organization, but it is not

desirable to have a team full of the most senior people. XP is a collaborative

approach to development and, as such, the initial project will benefit from

members with strong ―soft‖ skills who prefer collaborative work environments.

Beyond these characteristics, the team should be representative of teams that the

organization will use in the future. The simplest way to reduce risk on an initial

project is maximize the skill of the team as quickly as possible. This can be

achieved through recruiting team members that are already skilled in XP,

training, or experienced coaching for an inexperienced team. (8)

3.8.1 Adaptations

As teams begin adopting the XP practices, numerous obstacles and constraints

must be confronted. The team may have trouble gaining access to the Customer

every day. The team may have trouble co-locating to an open workspace. The

team may be so large that communicating without formal documentation is not

feasible. How do we adjust? Must we abandon XP? The XP Values guide teams

in solving these process problems with their projects. The Courage value guides

us to aggressively confront and remove any obstacles that would add steps,

artifacts, or complexity to the process. This often means letting common sense

outweigh bureaucracy. For example, teams sometimes do not feel empowered to

change the physical work environment to have an open workspace (i.e., change

the cubicles). Often, a little courage, negotiating, and a power screwdriver will

remove this obstacle. Some teams struggle to have a customer sitting with the

43

team. The programmers develop from a requirements document and have never

spoken to the customer. Although the thought of having a customer present is

desirable, the logistics can seem impossible, particularly if the best person to sit

with the team does not live near the team or is constantly traveling. Often, with a

slight reorganization and a modified communication infrastructure, a customer

can be identified who can sit with the team on a frequent basis. Of course,

courage can only take us so far. There will be constraints that interfere with our

ability to implement the practices as described. A common example is legacy

code. Many teams work with large code bases that do not have tests and are in

dire need of design improvement. We want to aggressively move to the state

where all of the code has passing tests, is understandable, and is well designed.

The initial attempt is to rapidly get the code up to our new standard. Can we toss

it and rewrite it? Would it really be that expensive and timeconsuming to fix it?

Is there other, cleaner code available with which we can replace it? Very often,

the answers are No, Yes, and No, respectively, leaving team members no choice

but to live with the smelly code and improve as they can. XP Values give the

team a helpful, simple tool to deal with this difficult, yet inevitable challenge.

The constraint that causes a practice to be modified or abandoned is reviewed

against each of the XP Values, using the following question: How will the

influence of this XP Value be diminished as a result? In the case of our

untestable legacy code, a quick brainstorming session by the team might yield the

ideas in the Impact column of Table 3. The team discusses ways to adapt the

process that is guided by the values, yielding something similar to the Adaptation

Alternatives column. Each alternative that the team considers is checked for its

alignment to the values.A misaligned example, an alternative that states ―all

legacy code changes must be approved by a Change Control Board (CCB) prior

to implementation,‖ may be viable, but it is not simple to implement. It reduces

44

the frequency of feedback while we wait for the CCB to meet, and takes

empowerment away from the programmers, thus reducing their Courage. Other

alternatives that address the constraint and that align closer to the XP Values are

preferred. Using this simple technique, teams adapt the XP Practices to their

project and team needs. The importance of starting with Courage cannot be

overstated. Many teams have been able to achieve a level of simplicity in their

practices beyond what was thought possible. Although this may appear to

introduce risk, Retrospectives after each iteration mitigate that risk by helping the

team understand where additional adaptations are required. (8)

45

4 Survey

A survey study was conducted among target population of professionals with

experience with agile project management. This study employed web survey to

gather data.

4.1 Methodology

The methodology is based on by A survey study of critical success factors in

agile software projects. (12) Basic statistical methods such as frenquencies and

crosstab statistics are used to come up with a conclusion. According to the fact

that there was only 32 valid responses, the Fisher´s Exact test is used to test

dependency on selected variables. Moreover, the Cramer´s V is used to

determine the strength of dependency.

4.1.1 Fisher´s Exact Test

Fisher's exact test is a statistical test used to determine if there are nonrandom

associations between two categorical variables.

Let there exist two such variables and , with and observed states,

respectively. Now form an matrix in which the entries represent the

number of observations in which and . Calculate the row and column

sums and , respectively, and the total sum

(1)

of the matrix. Then calculate the conditional probability of getting the actual

matrix given the particular row and column sums, given by

(2)

http://mathworld.wolfram.com/StatisticalTest.html
http://mathworld.wolfram.com/CategoricalVariable.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/ConditionalProbability.html

46

which is a multivariate generalization of the hypergeometric probability function.

Now find all possible matrices of nonnegative integers consistent with the row

and column sums and . For each one, calculate the associated conditional

probability using (2), where the sum of these probabilities must be 1.

To compute the P-value of the test, the tables must then be ordered by some

criterion that measures dependence, and those tables that represent equal or

greater deviation from independence than the observed table are the ones whose

probabilities are added together. There are a variety of criteria that can be used to

measure dependence. In the case, which is the one Fisher looked at when he

developed the exact test, either the Pearson chi-square or the difference in

proportions (which are equivalent) is typically used. Other measures of

association, such as the likelihood-ratio-test, -squared, or any of the other

measures typically used for association in contingency tables, can also be used.

The test is most commonly applied to matrices, and is computationally

unwieldy for large or . For tables larger than , the difference in

proportion can no longer be used, but the other measures mentioned above

remain applicable (and in practice, the Pearson statistic is most often used to

order the tables). In the case of the matrix, the P-value of the test can be

simply computed by the sum of all -values which are .

For an example application of the test, let be a journal, say

either Mathematics Magazine or Science, and let be the number of articles on

the topics of mathematics and biology appearing in a given issue of one of these

journals. If Mathematics Magazine has five articles on math and one on biology,

andScience has none on math and four on biology, then the relevant matrix

would be

http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/NonnegativeInteger.html
http://mathworld.wolfram.com/ConditionalProbability.html
http://mathworld.wolfram.com/ConditionalProbability.html
http://mathworld.wolfram.com/FishersExactTest.html#eqn2
http://mathworld.wolfram.com/P-Value.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/P-Value.html

47

(3)

Computing gives

(4)

and the other possible matrices and their s are

(5)

(6)

(7)

(8)

which indeed sum to 1, as required. The sum of -values less than or equal

to is then 0.0476 which, because it is less than 0.05, issignificant.

Therefore, in this case, there would be a statistically significant association

between the journal and type of article appearing. (13)

4.1.2 Cramer´s V Test

Cramer's V is a statistic measuring the strength of association or dependency

between two (nominal) categorical variables in a contingency table.

Setup. Suppose and are two categorical variables that are to be analyzed

in a some experimental or observational data with the following information:

 has distinct categories or classes, labeled ,

http://mathworld.wolfram.com/Significance.html
http://myyn.org/m/article/statistic/
http://myyn.org/m/article/data-types-in-statistics/
http://myyn.org/m/article/contingency-table/

48

 has distinct categories, labeled ,

 pairs of observations are taken, where belongs to one of the

 categories in and belongs to one of the categories in .

Form a contingency table such that Cell contains the count

 of occurrences of Category in and Category in :

Note that .

Definition. Suppose that the null hypothesis is that and

 are independent random variables. Based on the table and the null hypothesis,

the chi-squared statistic can be computed. Then, Cramer's V is defined to be

http://myyn.org/m/article/data-types-in-statistics/
http://myyn.org/m/article/set/
http://myyn.org/m/article/word/
http://myyn.org/m/article/hypothesis-testing/
http://myyn.org/m/article/independent/
http://myyn.org/m/article/random-variable/
http://myyn.org/m/article/chi-squared-statistic/

49

Of course, in order for to make sense, each categorical variable must have at

least 2 categories.

Remarks.

. The closer is to 0, the smaller the association between the

categorical variables and . On the other hand, being close to 1 is an

indication of a strong association between and . If ,

then .

When comparing more than two categorical variables, it is customary to set up

a square matrix, where cell represents the Cramer's V between the

th variable and the th variable. If there are variables, there are

 Cramer's V's to calculate, since, for any discrete random variables and

, and . Consequently,

this matrix is symmetric. If one of the categorical variables is dichotomous,

(either or), Cramer's V is equal to the phi statistic (), which is

defined to be

Cramer's V is named after the Swedish mathematician and statistician Harald

Cramér, who sought to make statistics mathematically rigorous, much like

Kolmogorov's axiomatization of probability theory. Cramér also made

http://myyn.org/m/article/strong-monomorphism/
http://myyn.org/m/article/square-matrix/
http://myyn.org/m/article/variable/
http://myyn.org/m/article/random-variable/
http://myyn.org/m/article/matrix/
http://myyn.org/m/article/symmetric-matrix/
http://myyn.org/m/article/data-types-in-statistics/

50

contributions to number theory, probability theory, and actuarial mathematics

widely used by the insurance industry. (14)

4.2 Data collection

A web survey with Likert scale questionnaires and demographic information

collection was distributed to the target population. There were three sections in

the survey.

The first section was on demographic data, which included both the respondent’s

demographic information as well as the agile project information.

The second section was on success factors. To measure importance of success

factors, a 5-point Likert scale was used to reflect the level of perception of the

question by the respondent.

The third section was on perception of success, and again, to measure perception

of success of agile projects, a 5-point Likert scale was used to reflect the level of

perception of the question by the respondent.

4.3 General Variables

The survey asked for four general variables:

 Method of the project management used

o Extreme Programming

o SCRUM

o FDD

o Other

 Project Location

o West Europe

o Central Europe

http://myyn.org/m/article/number-theory/

51

o East Europe

 Number of team members in a project

o <3

o 3<6

o 6<12

o 12<50

o More

 Duration of a project

o 1<3

o 3<6

o 6<12

o 12<24

o more

52

4.4 Describtive statistics of the survey

There is describtive statistics of the survey below. Frequency tables and pie charts were

computed.

4.4.1 Method used

Frequency Percent Valid Percent

Cumulative

Percent

Valid XP 12 37,5 37,5 37,5

Scrum 8 25,0 25,0 62,5

FDD 6 18,8 18,8 81,3

Other 6 18,8 18,8 100,0

Total 32 100,0 100,0

Figure 9 - Method Used

As seen XP programming and Scrum used more than half of the respondes of this

survey.

53

4.4.2 Size of a team

Frequency Percent Valid Percent

Cumulative

Percent

Valid <3 12 37,5 37,5 37,5

3<6 18 56,3 56,3 93,8

12<50 2 6,3 6,3 100,0

Total 32 100,0 100,0

Figure 10 - Size of a Team

The team of the projects consisted almost in all cases of up to 6 people.

According to this the survey is considering small projects mainly.

54

4.4.3 Location

Frequency Percent Valid Percent

Cumulative

Percent

Valid West EU 4 12,5 12,5 12,5

CEE 27 84,4 84,4 96,9

EEU 1 3,1 3,1 100,0

Total 32 100,0 100,0

Figure 11 - Location

The projects were held mainly in Cental and Eastern Europe.

55

4.4.4 Size in months

Frequency Percent Valid Percent

Cumulative

Percent

Valid 1<3 3 9,4 9,4 9,4

3<6 12 37,5 37,5 46,9

6<12 11 34,4 34,4 81,3

12<24 4 12,5 12,5 93,8

<24 2 6,3 6,3 100,0

Total 32 100,0 100,0

Figure 12 - Size in Months

Majority of the projects have duration below one year. This can be seen as

consistent according to the number of people involven see Size of a Team chart.

56

4.5 Success Atributes

According to the methodology used in A survey study of critical success factors

in agile software projects (12) there are four success attributes. All of them

shows the success perception of the responder in particular dimension by 5-point

Likert scale.

1. Quality (delivering good product or project outcome)

2. Scope (meeting all requirements andobjectives)

3. Time (delivering on time)

4. Cost (delivering within estimated cost and effort)

4.5.1 Quality

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 9 28,1 28,1 28,1

3 19 59,4 59,4 87,5

4 4 12,5 12,5 100,0

Total 32 100,0 100,0

57

Figure 13 - Quality

According to the level of quality of the final product of the project, the quality was

considered as average and below average in the survey.

58

4.5.2 Time

 Frequency Percent Valid Percent Cumulative Percent

Valid 1 4 12,5 12,5 12,5

2 14 43,8 43,8 56,3

3 9 28,1 28,1 84,4

4 5 15,6 15,6 100,0

Total 32 100,0 100,0

Figure 14 - Time

Only approximately a quarter of all projects met the criterium time above the level of

average. Most of the projects have a problem of delivering a product on time.

59

4.5.3 Scope

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 4 12,5 12,5 12,5

3 19 59,4 59,4 71,9

4 9 28,1 28,1 100,0

Total 32 100,0 100,0

Figure 15 - Scope

A scope of the project was considered successful as average and above the average by

the respondents.

60

4.5.4 Cost

Frequency Percent Valid Percent

Cumulative

Percent

Valid 3 5 15,6 15,6 15,6

4 13 40,6 40,6 56,3

5 14 43,8 43,8 100,0

Total 32 100,0 100,0

Figure 16 – Cost

The criterion of Cost was met significantly more than any other in a survey,

almost 50 % of respondents stated that they met the cost of their projects.

61

4.6 Crosstab analysis

The contingency tables were computed in SPSS version 17 in order to see

dependencies of basic evident information of the projects and success perception

factors. The aim is to try to find some statisticly significant evidence whether for

instance method used in a project has an impact on the success.

4.6.1 Method used * Quality

H0: Method that was used in a project is independent on the success perception of

the Quality of the project.

HA: Quality of the project depends on the method used during the project.

The estimation is that agile method that is chosen will have an influence on the

quality of a project.

Crosstab

Count

 Quality

Total 2 3 4

Method used XP 2 8 2 12

Scrum 0 6 2 8

FDD 3 3 0 6

Other 4 2 0 6

Total 9 19 4 32

Chi-Square Tests

62

Value df

Asymp. Sig. (2-

sided)

Exact Sig. (2-

sided)

Pearson Chi-Square 10,877
a
 6 ,092 ,087

Likelihood Ratio 13,503 6 ,036 ,065

Fisher's Exact Test 9,628 ,080

N of Valid Cases 32

a. 11 cells (91,7%) have expected count less than 5. The minimum expected count is

,75.

Symmetric Measures

 Value Approx. Sig. Exact Sig.

Nominal by Nominal Phi ,583 ,092 ,087

Cramer's V ,412 ,092 ,087

N of Valid Cases 32

Conclusion: Null hypothesis is not possible to reject on the significance level α = 0.05.

According to Fisher´s Exact test both variables are independend.

Result: Method that was used in a project is independent on the success perception of

the Quality of the project.

63

4.6.2 Method used * Time

H0: Method that was used in a project is independent on the success perception of

delivering the project on time.

HA: Delivering project on time depends on the method used during the project.

The estimation is that agile method that is chosen will have an influence on the delivery

time of the project.

Crosstab

Count

 Time

Total 1 2 3 4

Method used XP 2 2 7 1 12

Scrum 0 2 2 4 8

FDD 0 6 0 0 6

Other 2 4 0 0 6

Total 4 14 9 5 32

Chi-Square Tests

Value df

Asymp. Sig. (2-

sided)

Exact Sig. (2-

sided)

Pearson Chi-Square 27,344
a
 9 ,001 ,001

Likelihood Ratio 30,055 9 ,000 ,001

Fisher's Exact Test 21,056 ,001

N of Valid Cases 32

a. 15 cells (93,8%) have expected count less than 5. The minimum expected count is

,75.

Symmetric Measures

 Value Approx. Sig. Exact Sig.

Nominal by Nominal Phi ,924 ,001 ,001

64

Cramer's V ,534 ,001 ,001

N of Valid Cases 32

Conclusion: Null hypothesis is rejected on significance level 0.05. According to

Fisher´s Exact test both variables are dependend. Cramer´s V statistic shows

strong strength of dependence between Method and timeframe of a project.

4.6.3 Method Used * Scope

H0: Method that was used in a project is independent on meeting scope of the project.

HA: Meeting scope of the project depends on the method used during the project.

The estimation is that agile method that is chosen will have an influence on the meeting

scope of the project.

Crosstab

Count

 Scop

Total 2 3 4

Method used XP 2 8 2 12

Scrum 2 6 0 8

FDD 0 3 3 6

Other 0 2 4 6

Total 4 19 9 32

Chi-Square Tests

Value df

Asymp. Sig. (2-

sided)

Exact Sig. (2-

sided)

Pearson Chi-Square 10,877
a
 6 ,092 ,087

Likelihood Ratio 13,503 6 ,036 ,065

65

Fisher's Exact Test 9,628 ,080

N of Valid Cases 32

a. 11 cells (91,7%) have expected count less than 5. The minimum expected count is

,75.

Symmetric Measures

 Value Approx. Sig. Exact Sig.

Nominal by Nominal Phi ,583 ,092 ,087

Cramer's V ,412 ,092 ,087

N of Valid Cases 32

Conclusion: Null hypothesis is not possible to reject on the significance level α = 0.05.

According to Fisher´s Exact test both variables are independend.

4.6.4 Method used * Cost

H0: Method that was used in a project is independent on the success perception of

meeting cost of the project.

HA: Cost of the project depends on the method used during the project.

The estimation is that agile method that is chosen will have an influence on the meeting

cost of the project.

Crosstab

Count

 Cost

Total 3 4 5

Method used XP 0 4 8 12

Scrum 0 2 6 8

66

FDD 3 3 0 6

Other 2 4 0 6

Total 5 13 14 32

Chi-Square Tests

Value df

Asymp. Sig. (2-

sided)

Exact Sig. (2-

sided)

Pearson Chi-Square 19,112
a
 6 ,004 ,003

Likelihood Ratio 24,901 6 ,000 ,001

Fisher's Exact Test 17,933 ,001

N of Valid Cases 32

a. 11 cells (91,7%) have expected count less than 5. The minimum expected count is

,94.

Symmetric Measures

 Value Approx. Sig. Exact Sig.

Nominal by Nominal Phi ,773 ,004 ,003

Cramer's V ,546 ,004 ,003

N of Valid Cases 32

Conclusion: Null hypothesis is rejected on significance level 0.05. According to

Fisher´s Exact test both variables are dependend. Cramer´s V statistic shows

rather strong strength of dependence between Method and meeting cost of a

project.

67

4.6.5 Size of a team * Quality

H0: Size of a team that was used in a project is independent on the success perception of

Quality of the project.

HA: Quality of the project depends on the size of the team working on the project.

The estimation is that size of a team that is chosen will have an influence on the quality

of a project.

Crosstab

Count

 Quality

Total 2 3 4

Size of a team <3 2 7 3 12

3<6 6 11 1 18

12<50 1 1 0 2

Total 9 19 4 32

Chi-Square Tests

Value df

Asymp. Sig. (2-

sided)

Exact Sig. (2-

sided)

Pearson Chi-Square 3,559
a
 4 ,469 ,514

Likelihood Ratio 3,676 4 ,452 ,554

Fisher's Exact Test 3,690 ,498

N of Valid Cases 32

a. 6 cells (66,7%) have expected count less than 5. The minimum expected count is ,25.

Symmetric Measures

 Value Approx. Sig. Exact Sig.

68

Nominal by Nominal Phi ,334 ,469 ,514

Cramer's V ,236 ,469 ,514

N of Valid Cases 32

Conclusion: It is not possible to reject null hypothesis on the significance level

0.05. According to Fisher´s Exact test both variables are independend.

4.6.6 Size of a team * Time

H0: Size of a team that was used in a project is independent on the success perception of

meeting timeframe of the project.

HA: Timeframe of the project depends on the size of the team working on the project.

The estimation is that size of a team that is chosen will have an influence on delivering

project ont time.

Crosstab

Count

 Time

Total 1 2 3 4

Size of a team <3 0 6 5 1 12

3<6 3 8 3 4 18

12<50 1 0 1 0 2

Total 4 14 9 5 32

Chi-Square Tests

Value df

Asymp. Sig. (2-

sided)

Exact Sig. (2-

sided)

Pearson Chi-Square 8,169
a
 6 ,226 ,209

69

Likelihood Ratio 9,855 6 ,131 ,174

Fisher's Exact Test 7,739 ,208

N of Valid Cases 32

a. 9 cells (75,0%) have expected count less than 5. The minimum expected count is ,25.

Symmetric Measures

 Value Approx. Sig. Exact Sig.

Nominal by Nominal Phi ,505 ,226 ,209

Cramer's V ,357 ,226 ,209

N of Valid Cases 32

Conclusion: It is not possible to reject null hypothesis on the significance level

0.05. According to Fisher´s Exact test both variables are independend.

4.6.7 Size of a team * Scope

H0: Size of a team that was used in a project is independent on the success perception of

the scope of the project.

HA: Meeting proper scope of the project depends on the size of the team working on the

project.

The estimation is that size of a team that is chosen will have an influence on delivering

project meeting all requirements and objectives.

Crosstab

Count

 Scop

Total 2 3 4

Size of a team <3 3 7 2 12

70

3<6 1 11 6 18

12<50 0 1 1 2

Total 4 19 9 32

Chi-Square Tests

Value df

Asymp. Sig. (2-

sided)

Exact Sig. (2-

sided)

Pearson Chi-Square 3,559
a
 4 ,469 ,514

Likelihood Ratio 3,676 4 ,452 ,554

Fisher's Exact Test 3,690 ,498

N of Valid Cases 32

a. 6 cells (66,7%) have expected count less than 5. The minimum expected count is ,25.

Symmetric Measures

 Value Approx. Sig. Exact Sig.

Nominal by Nominal Phi ,334 ,469 ,514

Cramer's V ,236 ,469 ,514

N of Valid Cases 32

Conclusion: It is not possible to reject null hypothesis on the significance level

0.05. According to Fisher´s Exact test both variables are independend.

71

4.6.8 Size of a team * Cost

H0: Size of a team that was used in a project is independent and has nothing to do with

the success perception of delivering project within estimated cost.

HA: Meeting estimated cost of the project depends on the size of the team working on

the project.

The estimation is that size of a team that is chosen will have an influence on delivering

project meeting estimated cost.

Crosstab

Count

 Cost

Total 3 4 5

Size of a team <3 2 4 6 12

3<6 3 8 7 18

12<50 0 1 1 2

Total 5 13 14 32

Chi-Square Tests

Value df

Asymp. Sig. (2-

sided)

Exact Sig. (2-

sided)

Pearson Chi-Square ,821
a
 4 ,936 ,957

Likelihood Ratio 1,136 4 ,888 ,957

Fisher's Exact Test 1,257 ,957

N of Valid Cases 32

a. 6 cells (66,7%) have expected count less than 5. The minimum expected count is ,31.

Symmetric Measures

72

 Value Approx. Sig. Exact Sig.

Nominal by Nominal Phi ,160 ,936 ,957

Cramer's V ,113 ,936 ,957

N of Valid Cases 32

Conclusion: It is not possible to reject null hypothesis on the significance level

0.05. According to Fisher´s Exact test both variables are independend. There is

no connection within these two variables.

4.7 Success Factors Statistics

There was 20 questions in the survey to determine success factors of agile project

management. These questions were divided into 4 groups. The goal was to

determine, whether there is a difference between groups in success perception of

the agile project. 5-point Likert scale was used in a survey.

List of questions:

Perception (scale 1-5)

Category Question

Organization 1. Strong executive support

 2. Committed sponsor or manager

 3. Cooperative organizational culture instead of hierarchal

 4. Oral culture placing high value on face-to-face communication

 5. Organizations where agile methodology is universally accepted

People 6. Team members with high competence and expertise

 7. Team members with great motivation

 8. Managers knowledgeable in agile process

 9. Good customer relationship

 10. Reward system appropriate for agile

Process 11. Following agile-oriented project management process

 12. Strong communication focus with daily face-to-face meetings

 13. Honoring regular working schedule – no overtime

 14. Strong customer commitment and presence

 15. Customer having full authority

73

Technical 16. Well-defined coding standards up front

 17. Pursuing simple design

 18. Right amount of documentation

 19. Regular delivery of software

 20. Delivering most important features first

Descriptive Statistics

 N Mean Std. Deviation Minimum Maximum

Perception 20 3,1690 ,91056 1,47 4,41

Kruskal-Wallis Test

The Kruskal-Wallis Test was used to determine if there is a statistical difference in

median of these groups. The simple average was used to compute average value in each

question.

Ranks

 Group N Mean Rank

Perception 1 5 5,40

2 5 18,00

3 5 10,60

4 5 8,00

Total 20

Test Statistics
a,b

 Perception

Chi-Square 12,684

Df 3

74

Asymp. Sig. ,005

a. Kruskal Wallis Test

b. Grouping Variable: Group

Ho: There is no statisticly significant difference in median between groups.

Ha: There are at least two groups that are statisticly different in media.

Result: According to Kruscal-Wallis test the null hypothesis is rejected on the

significance level 0,05, there is difference in means between at least two groups

of questions.

Neményi method was used to distinguish between which groups is the difference.

Neményi Critical Value = 93,4

 People Process Technical

Organization 181,5 87,6 54,3

People 76,4 130

Process 56,3

As we can see there is statisticly significant difference mostly between people.

To conclude, we can summarize that respondes state that the people are critical

factor of success perception of the agile project management. Generally, the

result was expected, people are the most difficult to manage and have a lot of

uncertainty.

75

5 Case Study

This case study is conducted to study a software development project inside a

company. First, the organization will be described, second the product and

project management. The analysis based on agile framework will be conducted.

5.1 Organization

The case study is about a venture of an organization. The goal of the venture was

not just to deliver a software but also a marketing strategy or to take care about

legal issues. This was viewed by the managers of the parent company is rather

special and very uncommon for their style of managing daily issues. Parent

company provided help with some resources. Like facilities, hardware, software,

marketing material and mainly financial resources.

5.2 Team

The team consisted of 5 people. One person was a Project Leader, second

managed product lunch activites. There were also 3 software developers.

5.3 Product

The final product was a Microsoft .NET based connector to proprietary Czech

solution of delivering letters electronically – ―Datové schránky‖. There were two

main possible distributing channels. First, you could download the connector ―as

is‖ and implement it by your own IT department. Second, there was a possibility

to order the complete solution with implementation services delivered by parent

company.

76

5.4 Communication

All of the team members worked with each other before. The team was working

in an open workspace, so communication was very easy to start. Weekly

meetings were held. Instead of writing documents and emails, the team members

started to implement the discussed issues right away.

Besides face-to-face communication mobile phones and Skype was often used

when working homeoffice.

5.5 Product Development

The team started the product development from scratch, and they did not have

any formal, documented process to follow. A project plan was set according to

the external market requirements. From 1.11.2009 there should be a start of the

―Datové schránky‖ so they must to fulfill the date of delivery the Connector. The

working methods of team members arose from the previous projects they had

before, thus they had an unwritten, implicit process model based on their tacit

knowledge to follow instead of a formal process.

5.6 Project Management

The business decision of develepoment of the project was done. Rough estimate

about the budget and the schedule for the project was stated. The main goal was

to fulfill the date of delivery at the beginning of the November 2009.

5.7 Change Management

No special requirements management software system was used. Intead, excel-

sheets fro capturing and communication requirements throught the project was

used. These excel-sheets were cisculated among the involved stakeholdes one at

77

a time, and they added new requirements and feature proposals to the file. Then it

was sent to the next stakeholder and finally back to the venture team.

5.8 Implementation

Firstly, the prototype wan developed. Functionality came along as the

development work went on. A new build of the product was finished in the end

of eash iteration round.

5.9 Testing

Usability checks and systems test were made for the procuct in different phases

of product development. Usability checking did another deparment of the parent

corporation.

5.10 Summary

As the case analysis reveals, the values and principles of Agile methods were

imperceptible. This confirms that the development of the project is very much

based on practices and ways or methods of working that experienced people have

from the past. Those practices arise from tacic knowledge and intuition if the

circumstances are favourable.

78

6 Recommendations

In spite of the fact that the agile approach was required from the management of

the enterprise the agile approach was not delivered. SCRUM method could be

used effectively. The requirements from the external environment, mainly from

the Česká pošta, s.p. (Czech Post) were changing vastly. Furthermore, the parent

company changed few time the specification of their systems where the

Connector shoud be used.

Traditional and intuitive approcha should have come to behind. It could be better

to use for such a project on of the Agile Methods, SCRUM should have been

considered. The iteration and incremental framework should be used rather that

intuitive principles.

Finally, there was no system or clear defined process of change management. On

the market there is a lot of software providing such functionality. Some of them

are even uner Open Source Licence.

79

7 Conclusions

The first goal of this thesis was to explain two mainly used method of Agile

Project Management. In the beginning the complexity issues was discussed.

Dimensions of complexity were defined. Because of the complexity the

decentralization of control and commitment is required these days. The

traditional methods of project management do not satisty the fast changing

environment. As a response the Agile methods arrised after the year 2000.

The SCRUM method was described first. The process consisting of several parts

were described. The SCRUM is nothing more that emphasis on communication

and usage fo common sense.

Second, the Extreme Programming method was described. This method is mainly

used for software development.

The survey among professionals with experience with Agile project management

was conducted with emphasis on the perception of the success of their projects.

Success attributes were defined as time, scope, cost and quality. The 5 point

Likert scale was used to measure. As the research shown the project had the level

of Quality seen from the responders on the average and below the average. The

attribute Time as considered below average. Interestingly almost all the projects

examined met Cost criterium. The scope of the project was reached on average

and above the average.

Furthermore, the crosstab analysis was used to be able to say whether there is a

statistical significant difference among methods that was used in a projects and

success factors (time, scope, quality, cost) as well as the size of the project team

and success factors. The method comparing to time and method comparing to

cost shows statisticly significant difference. We can sum up that method used in

the project has a significant impact on the success of the project.

80

Next, the success factors analysis was held. Using statistics there was proven the

estimation that the people have significant impact on the success of the project.

The case study was conducted and several recommendations were made.

As a proposition for extend of the paper all possible methods not just SCRUM

and XP should be described. Similary all these methods could be used it the

analogous survey. Comparing these methods with regard to the success of

projects could be a vast simplification for every project manager to decide which

method he or she should use.

81

8 Bibliography

1. Merriam-Webster. WWWebster Dictionary and Thesaurus . [Online] 2002.

[Citace: 05. 01 2010.] http://www.m-w.com/home.htm.

2. Highsmith, Jim. What is Agile Software Development. [PDF] Flagstaff :

Cutter Consorcium, 2003.

3. Schwaber, Ken. Agile Project Management with Scrum. Washington :

Microsoft Press, 2003. 0-7356-1993-X.

4. Cohn, Mike. Introducing an Agile Process to an Organization. [PDF] s.l. :

IEEE, 2003.

5. Dyba, Tore a Dingsøyr, Torgeir. Empirical studies of agile software

development: A systematic review. [PDF] Trondheim, Norway : SINTEF ICT,

2008.

6. Škoda, Ondřej. Agilní metodiky vývoje SW - Diplomová práce. Brno :

Masarykova Univerzita, Fakulta Informatiky, 2009.

7. Nerur, Shridhar a VenuGopal, Balijepally. Theoretical Reflections on

AGILE DEVELOPMENT METHODOLOGIES. [PDF] místo neznámé :

Communications of the ACM, 2007.

8. Lindstrom, Lowell and Jeffries, Ron. Extreme Programming and Agile

Software Development Methodologies. [PDF] s.l. : Information Systems

Management Summer, 2004.

9. Abrahamssona, Pekka, a další. New Directions on Agile Methods: A

Comparative Analysis. [PDF] Oulu : Technical Research Center of Finland, VTT

Electronics, 2003.

82

10. Krasteva, Iva. Adopting an Agile Methodology — Why It Did Not Work.

[PDF] Sofia : Sofia University, 2004.

11. Cohen, David, Lindvall, Mikael a Costa, Patricia. Agile Software

Development. [PDF] Maryland : The University of Maryland, 2003.

12. Tsun Chow, Dac-Buu Cao. A survey study of critical success factors in

agile software projects. [PDF] Minneapolis : The Journal of Systems and

Software, 2008.

13. Weisstein, Eric. Fisher's Exact Test. MathWorld. [Online] A Wolfram Web

Resource., 2008. [Citace: 12. 01 2010.]

http://mathworld.wolfram.com/FishersExactTest.html.

14. Cramer´s V. Cramer´s V. [Online] 2008. [Citace: 1. 02 2010.]

http://myyn.org/m/article/cramers-v/.

15. Helena Holmström, Brian Fitzgerald, Pär J. Ågerfalk, and Eoin Ó.

Conchúir. Agile Practices Reduce Distance in Global Software Development.

[PDF] místo neznámé : Information Systems Management, 2006.

16. Cohn, Michael. Agile Estimating an Planning. [PDF] s.l. : Prentice Hall,

2006.

17. Tekinerdoğan, Bedir, a další. Aspect-Oriented Requirements Engineering

and Architecture Design. [PDF] Lancaster : Early Aspects, 2004.

18. Kalermo, Jonna and Rissanen, Jenni. Agile Software Development. [PDF]

Jyvaskyla : University of Jyvaskyla, 2002.

19. Paasivaara, Maria, Durasiewicz, Sandra a Lassenius, Casper. Using

Scrum in a Globally Distributed Project: A Case Study. [PDF] Helsinky :

Software Business and Engineering Institute, Helsinki University of Technology,

2008.

83

20. Vymětal, David. Information systems projects in companies and their

implementation. [PDF] Karviná : Silezian Univerzity in Opava, School of

Business, 2008.

1

9 Supplements

9.1 Success Factors Statistics

Statistics

1. Strong executive

support

2. Committed

sponsor or

manager

3. Cooperative

organizational

culture instead of

hierarchal

4. Oral culture

placing high

value on face-to-

face

communication

N Valid 32 32 32 32

Missing 0 0 0 0

 Mean 1,91 1,47 2,94 3,53

Std. Error of Mean ,164 ,090 ,179 ,090

Median 2,00 1,00 2,00 4,00

Mode 2 1 2 4

Std. Deviation ,928 ,507 1,014 ,507

Variance ,862 ,257 1,028 ,257

Skewness ,969 ,131 ,131 -,131

Std. Error of

Skewness

,414 ,414 ,414 ,414

Kurtosis ,378 -2,119 -2,119 -2,119

Std. Error of

Kurtosis

,809 ,809 ,809 ,809

Minimum 1 1 2 3

Maximum 4 2 4 4

Sum 61 47 94 113

2

Per

cent

iles

25 1,00 1,00 2,00 3,00

50 2,00 1,00 2,00 4,00

75 2,00 2,00 4,00 4,00

Statistics

 5. Organizations

where agile

methodology is

universally

accepted

7. Facility with

proper agile-style

work

environment

8. Reward

system

appropriate for

agile

9. Team

members with

high competence

and expertise

N Valid 32 32 32 32

Missing 0 0 0 0

 Mean 1,63 3,00 2,00 3,41

Std. Error of Mean ,117 ,000 ,000 ,167

Median 2,00 3,00 2,00 3,00

Mode 1 3 2 3

Std. Deviation ,660 ,000 ,000 ,946

Variance ,435 ,000 ,000 ,894

Skewness ,584 ,288

Std. Error of Skewness ,414 ,414 ,414 ,414

Kurtosis -,570 -,709

Std. Error of Kurtosis ,809 ,809 ,809 ,809

Minimum 1 3 2 2

Maximum 3 3 2 5

Sum 52 96 64 109

3

Pe

rc

en

til

es

25 1,00 3,00 2,00 3,00

50 2,00 3,00 2,00 3,00

75 2,00 3,00 2,00 4,00

Statistics

10. Team

members with

great motivation

11. Managers

knowledgeable in

agile process

12. Good

customer

relationship

13. Following

agile-oriented

project

management

process

N Valid 32 32 32 32

Missing 0 0 0 0

 Mean 4,28 4,41 3,47 3,75

Std. Error

of Mean

,197 ,190 ,180 ,119

Median 5,00 5,00 4,00 4,00

Mode 5 5 4 4

Std.

Deviation

1,114 1,073 1,016 ,672

Variance 1,241 1,152 1,031 ,452

Skewness -1,050 -1,410 -1,093 -2,381

Std. Error

of

Skewness

,414 ,414 ,414 ,414

Kurtosis -,619 ,317 ,576 3,909

Std. Error

of Kurtosis

,809 ,809 ,809 ,809

4

Minimum 2 2 1 2

Maximum 5 5 5 4

Sum 137 141 111 120

Perce

ntiles

25 3,00 3,50 3,00 4,00

50 5,00 5,00 4,00 4,00

75 5,00 5,00 4,00 4,00

Statistics

 14. Strong

communication

focus with daily

face-to-face

meetings

15. Honoring

regular working

schedule – no

overtime

16. Strong

customer

commitment and

presence

17. Customer

having full

authority

N Valid 32 32 32 32

Missing 0 0 0 0

 Mean 3,78 2,94 2,72 3,06

Std. Error

of Mean

,184 ,179 ,136 ,179

Median 4,00 2,00 3,00 4,00

Mode 4 2 2 4

Std.

Deviation

1,039 1,014 ,772 1,014

Variance 1,080 1,028 ,596 1,028

Skewness -,635 ,131 ,546 -,131

Std. Error

of

Skewness

,414 ,414 ,414 ,414

5

Kurtosis -,653 -2,119 -1,081 -2,119

Std. Error

of

Kurtosis

,809 ,809 ,809 ,809

Minimum 2 2 2 2

Maximum 5 4 4 4

Sum 121 94 87 98

Percentiles 25 3,00 2,00 2,00 2,00

50 4,00 2,00 3,00 4,00

75 4,75 4,00 3,00 4,00

Statistics

 18. Well-defined

coding standards

up front

19. Pursuing

simple design

20. Right amount

of documentation

N Valid 32 32 32

Missing 0 0 0

 Mean 3,16 2,94 1,72

Std. Error

of Mean

,128 ,179 ,112

Median 3,00 2,00 2,00

Mode 3 2 2

Std.

Deviation

,723 1,014 ,634

Variance ,523 1,028 ,402

Skewness -,248 ,131 ,301

6

Std. Error

of

Skewness

,414 ,414 ,414

Kurtosis -,981 -2,119 -,556

Std. Error

of Kurtosis

,809 ,809 ,809

Minimum 2 2 1

Maximum 4 4 3

Sum 101 94 55

Percentiles 25 3,00 2,00 1,00

50 3,00 2,00 2,00

75 4,00 4,00 2,00

Frequency Table

1. Strong executive support

Frequency Percent Valid Percent

Cumulative

Percent

Valid 1 12 37,5 37,5 37,5

2 14 43,8 43,8 81,3

3 3 9,4 9,4 90,6

4 3 9,4 9,4 100,0

Total 32 100,0 100,0

7

2. Committed sponsor or manager

Frequency Percent Valid Percent

Cumulative

Percent

Valid 1 17 53,1 53,1 53,1

2 15 46,9 46,9 100,0

Total 32 100,0 100,0

3. Cooperative organizational culture instead of hierarchal

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 17 53,1 53,1 53,1

4 15 46,9 46,9 100,0

Total 32 100,0 100,0

4. Oral culture placing high value on face-to-face communication

Frequency Percent Valid Percent

Cumulative

Percent

Valid 3 15 46,9 46,9 46,9

4 17 53,1 53,1 100,0

Total 32 100,0 100,0

8

5. Organizations where agile methodology is universally accepted

Frequency Percent Valid Percent

Cumulative

Percent

Valid 1 15 46,9 46,9 46,9

2 14 43,8 43,8 90,6

3 3 9,4 9,4 100,0

Total 32 100,0 100,0

7. Facility with proper agile-style work environment

Frequency Percent Valid Percent

Cumulative

Percent

Valid 3 32 100,0 100,0 100,0

8. Reward system appropriate for agile

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 32 100,0 100,0 100,0

9. Team members with high competence and expertise

9

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 5 15,6 15,6 15,6

3 14 43,8 43,8 59,4

4 8 25,0 25,0 84,4

5 5 15,6 15,6 100,0

Total 32 100,0 100,0

10. Team members with great motivation

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 3 9,4 9,4 9,4

3 7 21,9 21,9 31,3

5 22 68,8 68,8 100,0

Total 32 100,0 100,0

11. Managers knowledgeable in agile process

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 3 9,4 9,4 9,4

3 5 15,6 15,6 25,0

10

5 24 75,0 75,0 100,0

Total 32 100,0 100,0

12. Good customer relationship

Frequency Percent Valid Percent

Cumulative

Percent

Valid 1 2 6,3 6,3 6,3

2 4 12,5 12,5 18,8

3 5 15,6 15,6 34,4

4 19 59,4 59,4 93,8

5 2 6,3 6,3 100,0

Total 32 100,0 100,0

13. Following agile-oriented project management process

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 4 12,5 12,5 12,5

4 28 87,5 87,5 100,0

Total 32 100,0 100,0

11

14. Strong communication focus with daily face-to-face meetings

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 6 18,8 18,8 18,8

3 3 9,4 9,4 28,1

4 15 46,9 46,9 75,0

5 8 25,0 25,0 100,0

Total 32 100,0 100,0

15. Honoring regular working schedule – no overtime

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 17 53,1 53,1 53,1

4 15 46,9 46,9 100,0

Total 32 100,0 100,0

16. Strong customer commitment and presence

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 15 46,9 46,9 46,9

3 11 34,4 34,4 81,3

12

4 6 18,8 18,8 100,0

Total 32 100,0 100,0

17. Customer having full authority

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 15 46,9 46,9 46,9

4 17 53,1 53,1 100,0

Total 32 100,0 100,0

18. Well-defined coding standards up front

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 6 18,8 18,8 18,8

3 15 46,9 46,9 65,6

4 11 34,4 34,4 100,0

Total 32 100,0 100,0

19. Pursuing simple design

13

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 17 53,1 53,1 53,1

4 15 46,9 46,9 100,0

Total 32 100,0 100,0

20. Right amount of documentation

Frequency Percent Valid Percent

Cumulative

Percent

Valid 1 12 37,5 37,5 37,5

2 17 53,1 53,1 90,6

3 3 9,4 9,4 100,0

Total 32 100,0 100,0

