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Abstrakt 
Cílem t é t o p r á c e je n á v r h a implementace síťové mon i to rovac í sondy založené na konceptu 
t o k ů . M o n i t o r o v á n í je rozdě leno na hardwarovou čás t , k t e r á je s c h o p n á z p r a c o v á v a t data 
na vysokých rychlostech, a na softwarovou čás t , k t e r á zabezpeču je vysokou kapacitu p a m ě t i 
p o t ř e b n o u pro uchován í t o k ů . P r á c e zahrnuje t a k é ana lýzu a simulace, k t e r é ukazuj í , 
že tento koncept poskytuje mnoho v ý h o d oprot i č is tě so f twarovým řešen ím. N a v r ž e n á 
sonda pracuje s p o u ž i t í m h a r d w a r o v é h o akce le rá to ru , poskytuje vysoký výkon a umožňu je 
uživatel i definovat svoji v l a s tn í s t rukturu z á z n a m u pro m o n i t o r o v á n í , č ímž zabezpeču je 
vysokou flexibi l i tu. S y s t é m by l i m p l e m e n t o v á n a d ů k l a d n ě o t e s t o v á n m o n i t o r o v á n í m uni­
verz i tn í s í tě . Je proto p ř i p r a v e n pro d l o u h o d o b é p o u ž i t í za úče lem m o n i t o r o v á n í provozu, 
klasifikace p ro toko lů , detekce anomál i í a ú t o k ů a mnoha j i ných a s p e k t ů sít í . 

Abstract 
This thesis deals w i th design and implementat ion of a flow based moni tor ing probe. The 
monitor ing task performed by the probe is divided into hardware layer, which is capable 
of measurement at high packet rates, and software layer, which provides large memory for 
flow storage. Analys is done in the work shows that this concept offers many advantages 
when compared to software based flow moni tor ing applications. The probe is designed to 
be used wi th a hardware accelerator card and offers high flexibili ty and performance by a 
way of user defined moni tor ing process. The designed system has been implemented and 
thoroughly tested and is ready for deployment for tasks such as operational monitoring, 
network traffic classification, anomalies and attacks detection and many others. 
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Chapter 1 

Introduction 

Internet has currently become a widespread means of communicat ion. Number of users and 
throughput of communicat ion l inks are quickly growing as the system becomes ubiquitous. 
W i t h the ongoing pace of networking growth and spread, a network moni tor ing infrastruc­
ture has become a necessity, requiring devices which collect information about the state 
of a network. Moreover, because it is a dynamic system, variety of means are needed to 
capture information about communicat ion between end nodes or other active parts. 

Network moni tor ing has thus been essential way to keep a network functional and pro­
vide administrators w i th knowledge about its state. 

Moni to r ing can be s imply defined as a means of collecting data about the state of a 
network for purpose of analyzing its behavior, l imi t ing unwanted communicat ion, detecting 
traffic anomalies, malicious behavior or attacks. There are several ways to accomplish this 
task. One of them is to insert data into traffic deliberately and monitor the behavior of 
network nodes as the data passes through the network. Such type is called active moni­
toring. Ac t ive measurement can provide useful insight into the structure of network and 
can help trace a source of problem in case part of the network fails. However its usage is 
fairly l imi ted, because it does not provide insight into data structures and communicat ion 
between entities inside the network. 

Passive monitoring, on the other hand, gathers information about information flow 
through a network, by means of capturing data and analyzing it . Aga in , there are several 
ways of how to collect this information. One of the simplest is only storage of packet traces 
into some media. W h i l e it does not require any significant amount of work from a user, 
w i th high rate networks, system throughput l imits the usage of such system. Moreover, long 
lasting traces require significant amount of storage space. The issue may be solved by means 
of compression. O n l y a relevant information about the traffic is stored and further analyzed. 
Beside classical compression, which does not provide feasible compression rates, another 
approach might be used. It is based on a notion of communicat ion between two entities on 
a network. A s is widely known, network devices are addressed at several levels, ranging from 
l ink layer giving address to endpoint devices wi th in local network, to transport layer, where 
the processes are distinguished. Addressing is the fundamental concept of the Internet and 
can be used to dist inguish communicat ion flows between network devices. The not ion of 
flow has been developed as a Netflow protocol [6], i n which the flow is defined as a set 
of packets passing a measurement point, possessing some measurable common properties. 
These properties are generally IP source and destination addresses, U D P or T C P source and 
destination ports and a transport layer protocol type. Thus, this basic definition is behind 
the collection of data and their classification wi th respect to communicat ing entities. A m o n g 
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the common properties, each flow also carries statist ical or other user defined information 
about the data flowing between two nodes of a communicat ion channel. 

The way of passive network measurement and the notion of flow is the fundamental 
concept of this thesis. F l o w can be further generalized wi th respect to the emerging I P F I X 
standard [8] based on Netflow protocol version 9. It defines a flow not statically as Netflow 
version 5, but fundamentally as a set of packets passing and observation point of a monitor­
ing device, which share some common properties. The standard defines a l l these possible 
properties and their extensions and the infrastructure of an I P F I X compliant monitor. 

The main a im of this thesis is to design and implement an I P F I X compliant monitor ing 
device which can handle high-rate networks and provide as much information about the 
traffic flowing through them and passing a measurement point where the device is connected. 
The target network rates are 10 G b / s and more, depending on underlying hardware l imits 
and character of their network interfaces. One of the goals is to provide flow statistical 
data without packet loss, which, i n many cases is crucial for upper layers of a flow based 
monitor ing system. W h i l e the system must be tuned up for high rate networks, it is 
essential for it to be user-configurable as much as possible. The reasons for it are diverse: 
not only I P F I X defines a whole range of possible flow indicators 1 and it is extensible, 
but administrators may want to define their own monitor ing process, which is completely 
different from what I P F I X offers. Thus, a great emphasis should be put on flexibil i ty of 
the design and implementat ion of such moni tor ing appliance. 

There are several ways on how to design and implement a flow moni tor ing probe and 
several working devices already exist that can collect flow data and even mainta in and 
provide useful analysis of these flow traces. One of the fundamental and starting point is 
the Netflow capabil i ty i n Cisco routers. Since a router is a switching point i n the network, 
it might be feasible to provide flow collection and their export to other devices. Cisco IOS 
operating systems therefore offer the capabil i ty of Netflow export. However, as the rates of 
network links approach 10 G b / s , these routers are no longer able to handle incoming traffic 
and therefore sampling must be used. Usage of sampling is basically tolerable, but there 
are situations where it is not feasible, namely i n attacks or anomalies detection. Also such 
simple application as usage based pr ic ing also tries to avoid sampling, because when used, 
difficult and possibly incorrect traffic reconstruction must be performed on the statist ical 
data, which might not be accurate and thus fair to the provider's customers. 

Also , purely software and hardware based flow moni tor ing devices exist, bo th types 
having their strengths and weaknesses. Software offers a short design and implementat ion 
cycle, can be easily maintained and reprogrammed and thus is appropriate for prototyping 
and basic usage. However when dealing w i t h rate beyond 10 G b / s , purely software based 
probes might not be able to process the traffic, especially w i th short packets or i n case of 
attacks or network anomalies. For this purpose, hardware acceleration might be necessary 
which is able to process data at high packet rates. The upper software layer is then respon­
sible only for flow export and configuration, as it is not a t ime cr i t ical task. Indeed, there 
exist many flow monitor ing probes capable of high speed processing, among Cisco devices, 
nProbe [11] may be given as an example of a software based probe and the F l o w M o n probe 
[46] as an example of a pure hardware based probe. 

A l though for high-speed networks it might seem appropriate to put whole monitor ing 
process into hardware and use a software part only for configuration, it causes several 
difficulties. F i r s t l y the design and implementat ion phase are very long, because mostly the 

1 Packet header field used to distinguish between flows. 
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available algorithms are suitable rather for software implementations and not for hardware. 
A good example might be a double l inked list used in [46] for flow maintenance which 
is perfectly suitable i n software implementations, but causes many difficulties w i th design 
and implementat ion i n hardware. Secondly, such system is very l i t t le extensible and also 
difficult to maintain, possibly incuring several t ime penalties for developers. 

In this thesis, it was opted for a compromise and the two previously mentioned layers, 
hardware and software, are used jo in t ly i n order to keep the hardware part simple, yet s t i l l 
providing enough performance to handle high packet rates. The system is based on a two 
level aggregation, i n which the hardware part preaggregates data at high-speeds, and the 
software layer handles the remaining data flow to provide as much information compression 
as possible, a l l without packet loss i f possible. 

The structure of the thesis is organized as follows. Chapter 2 provides basic knowledge 
of the network layered structure. The current fundamental concept is a layered structure 
wi th T C P / I P networking model . The chapter describes a l l four layers of the model and 
presents protocol data units definitions to the reader. In Chapter 3, network measurement 
principles are described, d iv id ing the means of moni tor ing into passive and active measure­
ment. The most important part for this thesis provides an overview of flow based monitor ing 
standards, Netflow and I P F I X . B o t h chapters are a basic background knowledge necessary 
to understand the purpose of flow monitoring. Chapter 4 presents a generic monitor ing 
process architecture and describes its basic blocks, a l l necessary for proper functionality: 
packet capturing and preprocessing part, flow lookup mechanism, flow update process and 
flow maintenance. 

In order to derive necessary level of complexity of hardware and software layer, Chapter 
5 describes an analysis of an existing software probe along wi th indexing algorithms from 
Chapter 4. A profiling method is used to assess the l imits of a highly opt imized pure 
software solution and max ima l packet rate is derived from the profiling results. These 
results serve as a basis in estimation of requirements on the hardware part. To keep the 
hardware as simple as possible, the l imits on hardware aggregation are estimated i n order 
to assess i f it is possible to sufficiently preaggregate data into flows, in order not to overload 
the higher, software part. 

Chapter 6 is a description of the designed architecture on a system level. It should 
also be noted, that only the hardware part has been considered i n this thesis, without the 
actual software layer (except the design generator), which is the a im of another work [44]. 
Chapter 7 presents implementat ion details and a few testing results of the implemented 
device. F ina l ly , Chapter 8 is the conclusion of the thesis. 
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Chapter 2 

Networking background 

W h e n creating a monitor ing device, it is essential to be familiar w i th underlying principles 
in the network domain. For network monitoring, the process of communicat ion between two 
end-nodes is of the main interest and measurement devices gather as much information as 
possible about their interaction. Several protocols i n the T C P / I P stack have been designed 
and implemented and there exist protocols intended for collecting such information as well. 
Therefore, ma in aspects of network communicat ion are discussed in next sections, w i th 
emphasis on the widely used T C P / I P model and network monitor ing protocols. 

2.1 T C P / I P networking model 

The T C P / I P model is a specification for network protocols used i n computer communica­
t ion. It is derived from the I S O / O S I reference model, but does not provide such a strict 
layered model . The main architectural principles are end-to-end principle, i.e. the most of 
the network intelligence is concentrated in devices at the end of the network and the core 
focuses on speed and simplicity. The other one is the robustness principle, which states 
that a system must produce well-formed datagrams, but must accept any datagram that it 
can interpret [33]. 

The protocol suite is designed w i t h a layered architecture, forming a communicat ion 
abstraction. E a c h layer uses interface from the lower one and provides interface for the 
upper one. Th is technique ensures that higher layers do not need to consider details about 
the underlying architecture (for instance the type of transfer medium used). R F C 1122 
[2] defines four layers, i l lustrated in Figure 2.1, together w i th the I S O / O S I model . Next 
sections discuss this topic i n more detail , considering also the most important protocols for 
each layer. 

2 .1.1 L i n k L a y e r 

L i n k layer defines communicat ion procedures over a local network, to which a host is con­
nected. It spans the physical and l ink layer of the I S O / O S I model and is used to provide 
abstraction of the hardware to upper layers. Hosts on this layer are generally referred to 
as nodes, that communicate over a specific link. L i n k layer can only span a specific local 
network, i n comparison for example to the network layer, where protocol data unit ( P D U ) 
is delivered from source to destination end-node across several connected networks. 

A link-layer protocol defines the format of P D U , which can be different depending on 
the specific protocol used. Here we are mainly interested i n the Ethernet II format, the 
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Figure 2.1: T C P / I P and I S O / O S I comparison. 

most widely deployed. The frame format is described i n the following text and i l lustrated 
in Figure 2.2: 

• Destination and source MAC address define the nodes' identification on the l ink 

• 16 bits long Type/Length field identifies the upper layer protocol. This can be 0x0800 
for an IP datagram, 0x0806 for an A R P packet, 0x8100 for an I E E E 802.1Q V L A N 
frame or even 0x8847 for M P L S labeled frames (unicast). Note that this field also 
distinguishes between 802.3 frame and Ethernet II frame: for Ethernet II this field 
must be greater than 1536. 

• The next part is the payload data and it must be between 46 and 1500 bytes. If the 
data is shorter it must be filled w i th a padding to meet the range criterion. 

• The last section, 4 bytes long C R C checksum provides for error detection i n the frame. 

00 17 42 65 78 7b 
Source M A C address 

00 17 42 66 3b 8a 
Dest. M A C address 

08 00 
Type/Len 

IP, Arp, ... 
Payload 

02 05 08 0a 
C R C Checksum 

M A C header 
14 B 

Data 
46 - 1500 B 4 B 

Figure 2.2: Ethernet II frame format 

W h e n moni tor ing 802.1 Q networks, the frame structure described above is modified by a 
V L A N tag. A s stated i n [40], the purpose of tagging allows a) segregation of frames assigned 
to different V L A N s b) to convey prior i ty w i th the frame when using I E E E 802 L A N media 
access control methods that provide no inherent pr ior i ty capability. It is inserted between 
the source M A C address and the T y p e / L e n g t h field of the frame. For moni tor ing network 
state and communicat ion the V L A N I D field which identifies different collision domains 
wi th in one segment might be interesting. 

W h e n the worst case is considered, i.e. the shortest l ink frames, w i th preamble (8 bytes) 
and inter-frame gap (96 bit t imes/12 bytes) lengths added, it accounts for 672 bits i n total . 
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Ethernet type Frame time [ns] Packet rate [Mpps] 

1 G b / s 672 1.488 
10 G b / s 67.2 14.88 
40 G b / s 16.8 59.52 
100 G b / s 6.72 148.8 

Table 2.1: Frame times and packet rates for 1-100 G b / s Ethernet 

The t ime needed to process one frame (datagram) would therefore be approximately 1400 
clock cycles on a 2 G H z processor. It is apparent that on 10 Gbps rates the t ime for 
one packet processing is getting seriously low and w i t h emerging 40 and 100 G b Ethernet 
standards (Table 2.1) parallel izing the process of packet handling w i l l be necessary. 

2.1.2 Internet layer 

Accord ing to [20] this can be also referred to as Network layer. Its purpose is to move 
packets between end-nodes, possibly across several connected networks. If we restrict the 
description to the packet-switched schema (vs. circuit switched), the two ma in operations 
are: 

• Path determination. It ensures that correct pa th is found for the packet to be deliv­
ered. A t the sender's side the packet is stamped by the receiver's address and must 
be preserved throughout the path. 

• Packet forwarding, which determines an address of the next-hop node for the data to 
be properly delivered to recipient. 

Internet layer defines three protocols used [2]: I P [33], I C M P [32] and I G M P [10]. 
The most important , IP, w i l l be described here, as it defines end-to-end communicat ion 
mechanisms which are required for the proper monitor ing activity. It implements two 
basic functions: addressing and fragmentation and is often characterized as the best-effort 
system, i.e. there is no guarantee that the communicat ion w i l l be reliable or that the user 
gets specific amount of resources reserved for the delivery of datagrams to mainta in quali ty 
of service. 

IP protocol is currently defined for two versions, IP version 4 (IPv4) and I P version 6 
(IPv6), bo th depicted i n Figure 2.3. IPv4 header contains following fields: 

• Version field discriminates between the versions of the protocol, as stated above. 

• Internet Header Length ( IHL) is the length of the header, i n 32 bit words. 

• Type of Service ( T O S ) is for traffic differentiation. 

• Total Length is the lengths of datagram, i n octets. 

• Identification, Flags and Fragment Offset fields provide for the datagram reassembling 

• Time to Live ( T T L ) value defines the m a x i m u m number of t ime the datagram is 
allowed to remain i n the network. 

• Protocol field defines the next level protocol carried i n the data por t ion of the data­
gram. 
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31 0 31 

Ver. IHL ToS Total Length 

Identification Flags Fragm. offset 

TTL Protocol Header Checksum 

Source Address 

Destination Address 

Options Padding 

Ver. Traf. Class Flow Label 

Payload Length Next Header Hop Limit 

Source Address 

Destination Address 

IPv4 IPv6 

Figure 2.3: IP version 4 and 6 datagram format. 

• Header Checksum 

• Source Address and Destination Address of end-hosts. 

IPv6 emerged in response to the possible exhaustion of network addresses and the fast 
growing of routing tables. The IP new generation (IPng) has been designed [3] and the 
protocol simplified i n comparison to the former version. The header (without any extension 
headers) is defined as follows: 

• Version 

• Flow Label is used by a host to identify datagrams that are to be treated specially by 
routers. 

• Payload Length, in octets 

• Next Header, is the same as Protocol field i n IPv4. 

• Hop limit is equivalent to the T T L field. 

• Source Address and Destination Address are equivalent to IPv4 , except the length of 
the field is 128 bits. 

We can see in Figure 2.3 that the header structure is fixed without any options. Embedding 
some specific information into the IPv6 header can be done by specifying Extension Headers 
(discussed i n more detai l i n [3]). 

2.1.3 T r a n s p o r t layer 

The purpose of the transport layer is to ensure logical communicat ion between application 
processes running on different hosts. Th is is i n contrast w i th the network layer, where the 
pr imary a im is best-effort delivery of data between end-hosts. 

There are two protocols available for the applicat ion layer, distinguishable by the type 
of the service they provide. The first one, UDP is connectionless and provides no guarantee 
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Source Port Destination Port 

Length Checksum 

Figure 2.4: U D P segment format 

0 31 

Source Port Destination Port 

Sequence Number 

Acknowledgment number 

DOffset Reserved/Flags Window 

Checksum Urgent Pointer 

Options Padding 

Figure 2.5: T C P segment format 

that the data w i l l be delivered. The other one, connection-oriented TCP provides reliable 
data transfer w i t h congestion control. We w i l l keep here a convention from [20] and w i l l 
refer to the protocol data unit for the transport layer as a segment, for both T C P and U D P . 

M a i n a im of U D P [31] is to provide a procedure for an applicat ion processes w i t h a 
min imum protocol overhead. Therefore the segment structure (Figure 2.4) is fairly simple. 
It contains only 16 bit Source and Destination Port, 16 bit Length and Checksum fields, 
followed by data octets. U D P does not ensure any reliable delivery of messages, nor any 
in-order delivery or retransmission and thus its main use is for applications, where data loss 
does not cause their fatal failure. 

T C P , on the other hand, provides reliable, end-to-end connectivity between processes 
[34]. It assumes that the underlying services are potential ly unreliable and thus is very 
robust. The resources to ensure this service are a) Basic Data Transfer for duplex trans­
mission between end-processes b) Reliability to recover from data damage c) Flow Control 
for the receiver to control amount of data sent by the sender d) Multiplexing to allow pro­
cesses at a single host to share the connection e) Precedence and Security to be indicated 
by users of the connection. 

Complete description of the T C P segment format is in Figure 2.5. O n l y the most 
important fields w i l l be described here: 

• Source and Destination Port numbers identify processes at a single host 

• Sequence Number is the sequence number of the first data octet present in the segment 

• Acknowledgment Number is the value of the next sequence number the sender of the 
segment is expecting to receive. This is in conjunction wi th the ACK flag and provides 
for in-order data delivery or indicates to the opposite end-process that the data might 
have been lost. 

• Control Bits are necessary for the communicat ion mechanisms used by T C P . The bits 
may be monitored i n the form of aggregate statistics. 

• Window field is the number of data octets the sender of the segment is able to accept. 

• Checksum field provides for error detection. 

2.1.4 A p p l i c a t i o n layer 

The top level of the T C P / I P model is a direct interface to applications. Compared to 
I S O / O S I , it spans the Session, Presentation and App l i ca t i on layers. It defines higher-level 
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protocols for the applications' communicat ion. Examples of such protocols are F i l e Transfer 
Pro toco l ( F T P ) or Hyper Text Transfer P ro toco l ( H T T P S ) . 

Basically, applications communicate v ia application protocols conforming to the client-
server model . A server listens on the specific address, determined by a pair of IP ad-
dress:Port. W h e n the client needs to communicate w i th server, it initiates connection 
based upon underlying layers' protocols. B o t h T C P and U D P may be used, depending on 
the requirements for rel iabi l i ty of the communicat ion. 
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Chapter 3 

Network measurement 

In the previous chapter we have seen that network traffic contains a lot of important in ­
formation, which is necessary for functionality and performance of today's infrastructure. 
Determining the state of the network and of connected devices might be crucial for keeping 
the whole system i n consistent state. Thus, measurement can be defined as a periodic 
act ivi ty of determining the state of the nodes in the network and collecting information 
about the communicat ion of nodes in i t . Several means of gathering and analyzing the 
information that can be extracted from the network w i l l be discussed in this chapter. 

3.1 Active network measurement 

Act ive measurement provides end-to-end performance evaluation. A n end-device sends 
packet probes and while the packets traverse through the network to reach the destination 
host, the behavior of active devices is saved or analyzed. 

One of the uses of active packet probes is in delay estimation and topology scanning. 
The well-known tools for such estimation include, among any others, ping or traceroute. 
Another aspect is the bandwidth estimation, which might be important , for instance, to 
ensure Qual i ty of Service (QoS). Several tools can be named: iperf tool [43] for T C P / U D P 
throughput, SProbe [39] for end-to-end bandwidth estimation and many others. 

W h i l e active measurement provides useful insight into the bandwidth and topology 
organization, it does not gather information about the actual traffic that flows in the net­
work. Therefore its usage i n this thesis is fairly l imi ted and it has been included only for 
completeness. 

3.2 Passive network measurement 

Passive measurement does not alter traffic by insertion of any data into the network. A 
monitor ing device rather collects observed packets and stores them or maintains statistics 
database about them. Collected information may be then further analyzed. We w i l l now 
discuss three basic categories of passive measurement techniques used. 

Packet measurement provides fine-grained information about the state of the network. 
Packets are s imply copied and stored for further analysis or the stream is monitored on-line. 
A l though packet traces provide m a x i m u m amount of information they are very demanding 
i n terms of consumed resources for packets storage and require monitor ing device to cope 
wi th the ever-increasing rates of high speed links. 
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Managed device 

Figure 3.1: Network management infrastructure 

Even if we exploit the fact, that the protocol header information is stored at the begin­
ning of packets, the amount of data is enormous: an one hour trace of the first 64 bytes 
of each I P datagram would count for 18 Gbytes on a one Gigabi t Ethernet l ink. Therefore 
packet monitor ing is infeasible for any long-term storage. 

The other way how to collect information about network state is the Network Manage­
ment Infrastructure. A l though its pr imary interest is managing network entities, several 
properties can be exploited for network measurement. A s shown in Figure 3.1, an infrastruc­
ture is comprised of several pr inc ipal components: The managing entity is an application 
that controls the process of collecting, analyzing and displaying the management informa­
t ion. It also provides user interface for the network administrator. A managed device is 
s imply a node on the network that is being managed by the managing entity. The network 
management protocol determines communicat ion protocol between the two mentioned en­
tities. F ina l ly , a process called network management agent runs at the managed device. It 
communicates w i th the managing entity and executes actions on its behalf. 

Each managed entity collects statistics about its state and stores it i n a v i r tua l database, 
so called Management Information Base ( M I B ) . M I B database is hierarchical and its objects 
are defined by the A S N . l notat ion. It is comprised of several distinct M I B modules. M I B - I I 
[25] defines the base for management of T C P / I P - b a s e d Internets and thus can be exploited 
for network measurement. 

To communicate information from M I B to the managing entity, a Simple Network M a n ­
agement Pro toco l ( S N M P ) [5] may be used. The way for M I B objects transmission is v i a 
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GetRequest P D U , which gets a value of one or more object instances, or GetNextRequest, 
that gets a value of next object instance in a list or table. 

M I B and S N M P provides a way for collection of coarse-grained statistics about the 
network state. Unfortunately, no specific information contained i n the packets' network 
headers is retained and thus the usage is very l imi ted for any extensive globally-scoped 
measurement. 

A fair compromise between amount of data in packet measurement and information loss 
in M I B s is flow based measurement. Unl ike M I B - I I , where data are aggregated per interface 
(IP group for instance), in flow monitor ing data are aggregated per flow. Since flow based 
measurement is one of the objects of this thesis, it w i l l be further described in next chapter. 

3.3 Flow based measurement 

The most important term is, indeed, a flow. We w i l l use the definition from [37]: A flow 
is defined as a set of packets passing an observation point i n a network during a certain 
t ime interval. Packets of the same flow have common properties, which are defined as the 
result of applying a function to the values of: a) one or more header fields (for instance 
source IP address), b) one or more characteristics of the packet itself (number of M P L S 
labels, . . . ) , or c) one or more fields derived from packet treatment (for instance next hop 
IP address, . . . ) . This definition covers the range from a flow consisting of several packets 
to a flow consisting of just a single packet. The common properties which dist inguish flows 
are referred to as Flow Keys. 

A generic architecture for flow measurement requires several other terms to be defined. 
A n Observation Point is a locat ion in the network, where IP packets are observed. It might 
s imply be an ingress interface of a network switching device, its mirrored port, tap, etc. 
Observed packets are processed by Metering Process, which includes several algorithms 
essential for: 

• Packet header capturing and t imestamping 

• App l i ca t ion of sampling 

• F low lookup, update and maintenance 

The product of metering process is a data structure, Flow Record, that carries information 
about IP flows. 

Meter ing process might have a complicated architecture, w i th a mixture of various types 
of algorithms. Since it is a root of a measurement device, these algorithms w i l l be analyzed 
i n Chapter 4. 

Exporting Process captures created flow records and sends them to one ore more Col­
lecting processes. These are then stored for further processing. 

The objects defined above constitute a flow measurement architecture. Further, export­
ing and collecting processes are hosted by devices, called Exporter and Collector respec­
tively. A n example of such architecture, based on monitor ing probe, is in Figure 3.2. The 
router i n the figure provides Internet connection to the local area network and a mirror 
connection for measurement device (a probe) that consists of metering and export ing pro­
cess. F low records are then transmit ted to one or more collectors. A flow records exchange 
process between exporter and collector is held by a communicat ion protocol (a collector is 
usually device remote to exporter). The two most used are Cisco NetFlow and IPFIX. 
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Figure 3.2: A n example of flow measurement architecture. 

3.3.1 N e t F l o w 

Cisco Ne tF low [6] is a protocol for I P flow exchange between exporter and collector. A l ­
though proprietary, it is open and thus not l imi ted to Cisco devices. N e t F l o w itself defines 
the format of flow records encapsulation and the means of their transmission from exporter 
to collector. There are several version of the protocol, starting up from N e t F l o w version 1 
to version 9. O n top of that stands Flexible Ne tF low, which defines a user configurable 
infrastructure for traffic measurement. 

A flow i n the N e t F l o w protocol is defined as a unidirect ional set of packets sharing the 
following values: 

• Source and destination IP address 

• Source and destination U D P or T C P port 

• IP protocol value 

• Ingress interface 

• IP type of service field 

These values are referred to as Flow Keys and they together define an unique identifier for 
a flow record. The identifier, together w i th the aggregate data (total bytes, packets, etc.), 
comprise the flow record. 

Netflow version 5 is the most widely used protocol variant for flow record transmission. 
The datagram format is depicted i n Figure 3.3. The first part is the Ne tF low header, 
specifying the version of the protocol (with addi t ional system information data), followed 
by one or more data sets (in case of version 5 these are flow records). The actual record 
format is fixed and contains flow key values together w i th aggregated data. 

Ne tF low version 9 [6, 7] addresses flexibility issues wi th earlier protocol versions. The 
datagram format is not restricted by version 5 definitions, but is user definable. Thus, the 
basic format in Figure 3.3 has been extended to a more universal one (Figure 3.4). The 
header of the datagram is followed by one or more FlowSets. Each FlowSet has an identifier 
associated w i t h it and it defines the type of data set. The category is one of the following: 

15 



T C P U D P NetF low F l o w F l o w F l o w 
header header header record record record 

Figure 3.3: Ne tF low version 5 datagram format. 

• Template FlowSet defines the structure of the actual flow record t ransmit ted from 
exporter. It is an essential part of N e t F l o w version 9, because it allows collector to 
process F low Records without necessarily knowing the interpretation of a l l da ta in 
the flow record. 

• Data FlowSet carries actual values of a F low Record. The structure must have been 
defined by the appropriate Template FlowSet , before the data transmission has been 
init iated. 

• Options Template FlowSet does not supply information about I P flows but rather 
information about the measurement process itself (for instance an interface sampling 
rate). 

Packet Template Data 
Options 

Template 

FlowSet 

Data 

Header FlowSet FlowSet 

Options 

Template 

FlowSet 
FlowSet 

Figure 3.4: N e t F l o w version 9 datagram format 

A single Ne tF low version 9 datagram may contain a l l of the three mentioned FlowSet 
variants (Figure 3.4), or just a single chunk of D a t a FlowSets for flow records exchange. 

3.3.2 I P F I X 

Al though N e t F l o w is open, it is a proprietary protocol. Thus, an effort is being made to cre­
ate a standardized version for flow exchange. I P F l o w Information Expo r t ( I P F I X ) defines 
not only the communicat ion protocol between exporter and collector, but also requirements 
on the whole monitor ing infrastructure, starting wi th monitor ing process and ending wi th 
collector. A l though not yet standardized, the I P F I X Work ing group has created a set of 
documents describing requirements and information models for IP flow creation and export. 

Requirements for IP F l o w Information Expo r t [37] document builds upon specification 
of possible applications requiring I P F I X . The requirements for the monitor ing infrastructure 
are then derived to meet the selected criteria. These are the following: 

• A metering process must be able to dist inguish flows according to several criteria, that 
include interface number, IP header field, transport header fields, or M P L S labels. 

• Requirements for the metering process. These include sampling ability, protection 
against resources exhaustion, proper packet t imestamping and flow management 

• Requirements for the export ing process. These include the specification of information 
model (e.g. what data are exported), da ta model (e.g. how data are represented in 
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flow records), means of data transfer from exporter to collector and other essential 
information. 

• Requirements on configuration of metering and export ing process. 

In [35] an information model for I P F I X is defined. A l l possible elements of the I P F I X 
protocol are described here. Information elements are grouped into several sections, w i th 
the most important pointed out here: 

• I P header fields 

• Transport header fields 

• Sub-IP header fields. These may include l ink layer fields or fields between l ink and 
IP layer (e.g. M P L S ) . 

• Per -F low counters and M i n / M a x flow properties 

• Timestamp information 

Another essential document [8] deals w i th the specification of I P F I X protocol for data 
exchange. One of the key parts of the document is the P D U format. It is based upon 
Ne tF low version 9. Because a l l necessary information has been wri t ten i n Section 3.3.1, the 
I P F I X format w i l l not be described here i n detail . [8] determines transport layer protocols 
for the data exchange as well . S C T P [42] or T C P may be used for transmission over 
congestion-susceptible l inks. U D P may also be implemented. 

3.3.3 A p p l i c a t i o n s of flow measurement 

W h e n dealing wi th high-speed and large-scaled networks, traffic moni tor ing and manage­
ment is essential for administrators or providers. F l o w measurement provides useful insight 
into the state of the network and may be directly used for planning, detection of anomalies 
or may be a basis for further, higher level analysis of collected data. [36] and [12] define 
these basic applications of traffic flow measurement: 

• Usage-based accounting is one of the key means for Internet Service Providers (ISPs) 
to charge customers for byte usage. User can be charged based on IP address or traffic 
type (higher-level protocols, T C P / U D P ports) and on t ime or volume of the traffic. 

• Traffic engineering is a process of controll ing how traffic flows through one's network 
in order to optimize resource ut i l iza t ion and network performance [47]. The key 
objectives might be min imiza t ion of packet loss and delay, maximiza t ion of throughput 
and uniform resource ut i l iza t ion [1]. One of the ways to simplify this task is to provide 
traffic information by flow measurement. 

• F low measurement may be used as a basis for attacks or intrusion detection. A n o m a ­
lies on network, indicated by flows may show intrusive attempts for port scanning, 
denial of service attacks (DoS), distr ibuted DoS , etc. 

• Current T C P / I P model provides only l imi ted means of QoS (IP ToS field). Using 
flows, traffic can be analyzed and differentiated per flow to ensure min ima l require­
ments on delay, j i t ter or packet loss. 
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• For Heavy hitters or Application and User profiling flow measurement may be ex­
ploited. Mon i to r ing dominant components i n their network, administrators may plan 
new topologies or topology changes, determine the most used applications or investi­
gate corporate pol icy or security violations. 
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Chapter 4 

High-speed monitoring principles 
and algorithms 

W h e n dealing wi th smal l L o c a l A r e a Networks ( L A N s ) w i th rates below 1 Gbps , the time 
needed to process one packet is sufficiently large for software solutions. A s the data is 
aggregated into backbone connections w i t h rates far beyond 1 Gbps (which is common in 
current nat ional or international networks), moni tor ing devices are much more resource-
demanding. One way to overcome this growth is to deploy a scalable solution. It might be 
a set of distr ibuted monitors that operate at the edges of the network instead at its core. 
However, this might not be the right solution, because requirements on maintenance and 
manageability of such architecture may degrade its advantages. 

If distr ibuted solution of simpler but slower monitors is not desirable or even not pos­
sible, when approaching 10 Gbps rates, parallel architectures must be exploited. This 
chapter deals w i th algorithms and principles for I P traffic flow measurement on high-speed 
networks. If we adopt terminology from Section 3.3, and use I P F I X I E T F draft [38] for 
generic architecture description we can derive three most important components that make 
up measurement architecture: 

• Meter ing process 

• Expo r t i ng process 

• Col lect ing process. 

In this chapter we w i l l focus on the metering process of such architecture and describe 
in detai l what algorithms and techniques may be used to achieve best performance at 
reasonable cost of resources. Since we want to focus on parallel processing, emphasis w i l l 
be given on hardware implementations of such algorithms. Note that exporter and collector 
side, i.e. the process of capturing flow records from the metering process, their wrapping 
into specified export protocol, followed-up by their storage and analysis, are beyond the 
scope of this document and are not discussed here. 

Figure 4.1 shows a generic configuration for a metering process. W h e n packet enters the 
system it is firstly preprocessed and necessary information is extracted that is needed to 
lookup flow that this packet belongs to. This is dealt w i th i n Section 4.1. Ex t rac ted packet 
headers then enter the component that finds corresponding flow i n flow cache, updates it 
w i th the newly arrived information and stores back to memory (section 4.2). Concurrently, 
another process runs, that maintains the state of a l l flow records held in memory (Section 
4.4). 
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Figure 4.1: Generic metering process architecture. 

4.1 Packet capturing 

Packets entering the system v ia ingress interface are at first preprocessed. Useful properties 
might be derived, such as interface number, packet length, t imestamp and added to the 
packet header. Moreover, for measurement, not whole packets need be processed. Instead, 
protocol header fields and/or part of the payload could be extracted and sent for further 
processing. 

Another aspect is the reduction of the amount of data entering the system, performed 
by input sampling or filtering. F i l t e r ing might be useful when a specific type of traffic is of 
user's interest. If it is known, rules may be set and a filter preprocessor created to reduce 
traffic load. Since filtering is not the pr imary interest of flow measurement, we w i l l rather 
describe several sampling techniques in detail . 

4.1.1 S a m p l i n g 

W h e n it is not possible to use filtering, because the type of the data of interest is not known, 
sampling may be used. This is especially true in network measurement, because traffic mix 
is unknown and variable. There are two main reasons for sampling to be employed: 

• A monitor ing device cannot properly handle the worst case scenario, when an over­
whelming amount of data enters the system. In this case, instead of packet loss, 
which cannot be properly controlled, rather a controlled mechanism is desirable, where 
packet rate is systematically lowered by sampling and sampling parameters can be 
reported by the metering process. 

• The other reason is protection. Let 's consider a simple example: DoS attack. Each 
incoming packet creates new flow record that occupies space in flow cache. Device 
resources may quickly get exhausted, therefore there is a need to reduce amount of 
packets entering moni tor ing system. This may be accomplished by changing proper­
ties of flow definition, but i f it is not possible, sampling must come into play. Note 
that immediate flow expirat ion would not help i n this case, because exporter and 
collector side would s t i l l be overloaded. 

W h e n defining sampling parameters, a trigger mechanism must be selected that deter­
mines how objects are selected for processing [12]. Count-dr iven triggers use an increasing 
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sequence of counts in : n = 0 ,1 ,2 , • • •, where in denotes object that is sampled. Conversely 
t ime-driven triggers use sequence of times Tn : n = 0,1,2, • • each r n denoting t ime at which 
a sample is accepted. in and r n are defined by parameters of the sampling process. These 
can be defined in several ways, we w i l l describe here the simplest ones: 

• Deterministic sampling is the simplest form, where measurements are separated by 
a fixed interval of t ime 1 , defining the sampling ratio. A n example is in Figure 4.2. 
Sampling rate is 1/3 and therefore packets 0, 3, 6, 9 , . . . w i l l be accepted. A l though 
this type is very simple to implement, one of its serious drawbacks is periodicity. If 
the traffic observes periodic behavior w i th period close to that of sampling process, 
there is a possibil i ty that this behavior w i l l be only par t ia l ly observed by monitor ing 
process. A g a i n , an example is shown in Figure 4.2. The sampling ratio is 1/3. Selected 
packets are marked w i t h arrows, other packets are discarded. The shaded ones, for 
instance, may represent a malicious traffic, which in ideal case won't be observed at 
a l l . Th is si tuation is probably not possible i n real traffic mixes, but i f sampling rate 
is very smal l (1/100 for example) malicious behavior could be par t ia l ly hidden. 

I I I I 
0 1 2 3 4 5 6 7 8 9 10 11 

Figure 4.2: Determinist ic sampling wi th period 1:3. 

• Uniform random sampling2 is another fairly straightforward technique. E a c h packet is 
sampled wi th probabil i ty p = 1/N determined by sampling rate (Figure 4.3). A n im­
plementation is simple: use an uniform random number generator w i th range < 0,1 > 
to generate a value N. If N < p, accept incoming packet, otherwise discard i t . Hard ­
ware implementat ion would be similar, except that integer values could be used. 

I l l J 
0 1 2 3 4 5 6 7 8 9 10 11 

Figure 4.3: Uni form random sampling wi th period 1:3. 

R a n d o m sampling has better properties than deterministic, because it is not pre­
dictable i n advance and is recommended i n cases i f it br ing advantage over some 
more sophisticated types [29]. It is thus desirable to use it i n monitor ing devices, 
because of fairly simple implementat ion and good statistical properties. 

4.2 Flow lookup 

After the packet has been preprocessed, a corresponding flow must be picked up and up­
dated. If the flow does not exist yet, it must be created. A s described i n Chapter 3.3 a 

1 T i m e in this case can as well be in means of packets. 
2 A l s o referred to as Geometric Sampling. See [29] for more details. 
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flow is defined by properties that are shared among a set of monitored packets, termed flow 
keys. These can be one of the following: 

• packet header fields 

• properties of a packet itself (e.g. number of M P L S labels, etc.) 

• field derived from packet treatment (e.g. next hop IP address, . . . ) 

K e y fields uniquely identify a record and a function that maps them to an actual flow record 
pointer value must be identified. 

4.2.1 N a i v e i n d e x i n g 

The simplest case, when a flow identifier (flow ID) direct ly maps to flow record pointer is 
not feasible, because an enormous amount of reserved memory must have been used. For 
example, and IPv6 N e t F l o w record key fields might be over 300 bits long. Mask ing out 
a por t ion of the raw identifier might not be desirable as well, because such an identifier 
produces a lot of collisions (e.g. two different flows have the same identifier). Moreover, 
i n such implementations, possible attacker could exploit reduced variabi l i ty of flow IDs to 
modify the traffic i n order to attack moni tor ing device. Therefore flow lookup must be 
more sophisticated and concurrently preserve the s implic i ty of direct addressing. 

One option is to implement lookup based on hash tables. We w i l l present and compare 
three types: the simplest hash table, called here simple naive hash table ( S N H T ) , then 
naive hash table ( N H T ) and fast hash table ( F H T , Section 4.2.2). The two latter terms are 
adopted from [41]. 

The realization of S N H T would be based on a table of flow records T and a hash function 
h (Figure 4.4). If a raw flow identifier is presented, a corresponding flow / is picked up 
from memory, i.e. / = T{h{x)). Three possibilities may happen: 

1. A flow is not val id and thus new i tem must be created 

2. A flow is val id but its key fields do not match the packet ones, i.e. collision occurred. 
Received packet must either be discarded, or the current flow replaced by a new one. 

3. A flow is val id and its key fields match the packet ones. The flow is then updated. 

In N H T , h{x) is a pointer to the list of items (figure 4.5). G iven h{x) for a part icular 
x, the list is sequentially searched to make the definite lookup decision. In case of match 
the flow is updated, otherwise new i tem must be created. 

B o t h cases, however are not generally collision free, because when a map h : A —> B, 
where \A\ > \B\, is applied, at least two elements from A must map onto the same element 
in B. Even i f the collision probabil i ty could be kept low when using whole hash output 
space 3 , it would require several Gigabytes of memory to implement such functions. 

4.2.2 E n h a n c e d index ing a l g o r i t h m 

Another hash-table based algori thm might be used in flow lookup, that on average is faster 
than N H T . We w i l l refer to it as a Fast Hash Table ( F H T ) [41]. 

3 I n [26] for instance, authors use M M H hash function [16] wi th low collision probability if its 32 bit 
output is used as an index. 
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Figure 4.4: Direct hash indexing. Figure 4.5: Hash table based indexing. 

Firs t ly , Bloom filter must be described, which forms the core of F H T . B l o o m filter is a 
hash-based data structure to store a set of items compactly. G iven an i tem x it computes k 
hash functions: hi(x),h,2(x), • • -hk{x). These functions are an address into b i tmap of size 
m. W h e n inserting and i tem into the structure, a l l k bits, computed from x, are set to 1 
(assuming that the b i tmap has been set to zero before first insertion). A n i tem lookup is 
performed i n similar manner: For x, h\(x) through hk{x) are computed and k bits picked 
out from the bi tmap. If a l l of them are set, an i tem is present in the structure. A minor 
drawback is that false positives may occur. B u t i f unique identification is stored w i t h an 
i tem (such as that stored i n flow record), false positives can be detected and the i tem 
rejected i n lookup process. 

A more important drawback of this structure is that items cannot be removed. Therefore 
in [13] Counting Bloom filter has been proposed. The b i tmap in basic structure is replaced 
wi th a set of counters. E a c h t ime an i tem is added into the structure, a l l of k counters 
addressed by hash functions are incremented. Delet ion of an i tem is the reverse operation. 
Aga in , an i tem is present, i f a l l k addressed counters are non-zero. 

We can now proceed to describe F H T . A n array of m counters is maintained, where 
each counter is associated wi th a bucket i n the hash-table (bucket is composed of a list of 
items). Insertion procedure computes k hash functions over an input i tem and increments 
al l k counters indexed by the hash values. Then , the i tem (if it is not i n the table yet) is 
stored k times into lists associated wi th the indexed counters. The insertion operation is 
i l lustrated in Figure 4.6. Four items, x, y, z, w were inserted. Each k = 3 times. 

The speedup of the algori thm over N H T comes from the search operation. After 
hi(x), h,2(x), • • • hk(x) have been computed the algori thm has k counter values, that de­
termine size of the list for buckets associated wi th them. If a l l counters are non-zero, 
bucket associated wi th the counter w i th smallest value is sequentially traversed to find the 
searched i tem. If the hash table is stored i n an off-chip (and hence slow) memory, the time 
to traverse the list may be crucial for the throughput of this algori thm. In [41] it has been 
shown that probabil i ty of a list in the F H T being filled to j items is much less than in 
classic N H T algori thm and thus on average the list-search t ime is shorter. 

23 



Hash table 

Figure 4.6: Fast Hash Table insertion procedure. 

4.2.3 C o m p a r i s o n 

A l l three methods may be used depending on circumstances of specific applicat ion. The 
S N H T case is the easiest one to implement, because it requires only one hash function 
and its result is s imply a pointer to the memory of flows. The t ime to access an i tem in 
the table might be less than i n N H T , because a bucket always contains only one i tem (or 
none). However, the S N H T solution w i l l produce more collisions. The F H T algori thm is 
more efficient than N H T i n terms of access time, but its one serious drawback is memory 
requirements. The space needed to store n items would be kn w i t h k hash functions. Thus, 
careful evaluation of conditions must be done to choose a proper algori thm for flow lookup. 

4.3 Flow update 

After the lookup operation is finished flow update starts. If the requested flow is present in 
flow cache, information i n packet header (e.g. packet and byte counts, T C P flags, flow end-
timestamp, etc.) are aggregated into the flow. It is then stored back to memory. Dur ing 
the update, several conditions must be resolved: 

• Dur ing aggregation, one or more fields i n flow record might overflow. Proper action 
should be defined, either by a user or i n advance at design phase, what action w i l l be 
applied i n such situation. 

• In some cases a flow record state must be checked for certain conditions (for instance 
to check active timeout, Section 4.4) and i f they are met a proper action taken. One of 
the actions might be to release the record from flow cache and export it to a collector. 

• If the flow lookup algori thm does not resolve collisions, flow update component must 
be able to detect when two flows map onto same data i tem i n flow cache. Otherwise 
monitoring w i l l get disrupted. 

If the lookup procedure d id not find a flow that belongs to the processed packet, new flow 
must be created and filled w i th flow keys and in i t i a l aggregate data. 
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Again , the flow update procedure must be as fast as possible to meet the packet time 
budget, so it might be feasible to be hardware-implemented. 

4.4 Flow maintenance 

Beside processing discussed i n previous sections another process must be implemented that 
runs concurrently and maintains the state of flow records stored i n memory. It periodical ly 
checks for flows that either do not observe packets for a long t ime or flows that s imply 
last too long. If it detects such flows, it must release them in order to make space for the 
new ones. If such maintenance procedure would not be implemented i n monitor ing system, 
these flows would s imply stay in flow cache unt i l the device would be stopped or at least 
un t i l they would be replaced by new ones. 

Fol lowing situations can be recognized when dealing wi th flow activity: 

• N o packets have been observed for a flow for a specified t ime interval, called inactive 
timeout. After the timeout has expired for a part icular flow, the system should release 
and report it to the collector side for further analysis. 

• To avoid ever-lasting flows, active timeout is used, which is in contrast w i th the 
previous one. If the flow record is active for a t ime interval defined by active timeout, 
a monitor ing device is supposed to report it to collector. 

• Flows may also be expired when the device has not enough resources to store new 
flow records [38]. 

• Another si tuation may occur, i f the flow is terminated w i t h an explicit notice. For 
instance T C P flows may be terminated by the F I N control bit. 

It is straightforward to implement active timeout checking i f each packet entering the 
system carries its (unique) t imestamp. Then the flow record could contain the t imestamp 
of the first packet (start of the flow) and w i t h each packet arr iving, its t imestamp would 
be compared to the one stored i n the record. A l l other "activi ty enforced" checks can be 
performed this way, because they can s imply be included i n the flow update process. 

In the case of active timeout, the extra information present i n the flow is not so much 
redundant, because it is used to determine the start and durat ion of the flow. However, 
to check for inact iv i ty of flows, a periodic act ivi ty must run i n the background and store 
information about the flows' state as well . Such process must consume extra resources (of 
the chosen platform): extra memory to store the state of the flows and extra processor cycles 
to perform the periodic inact iv i ty checks. In any case, implementing the timeout mechanism 
is crucial for a correct moni tor ing device's functionality and so cannot be neglected. 

Fol lowing [26], we can describe several types of inactive-flows selection heuristics. One of 
the most efficient is the Least Recently Used (LRU) strategy. This technique can efficiently 
be implemented using a double-linked list. Each i tem in the list holds a pointer to a flow 
record in the memory. For each packet that arrives into the system and has been classified, 
i.e. the flow pointer has been determined, the list is accessed and the i tem rebounded into 
the beginning of the list. Thus, the most recently updated items are at the start of the list, 
whereas the oldest ones are i n its t a i l . Determining timed-out flows s imply requires scanning 
the list from its end and comparing the last update t ime wi th the current t ime (assuming 
that the flow record contains the t imestamp of the last packet or other s imilar data). The 
L R U implementat ion requires addi t ional data to be stored for each record. Namely, two list 
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pointers and the t imestamp of last update. If a l l these components are four bytes in size, 
and the system capacity is N flow records, an overhead of 12N bytes must be accounted 
for. If we estimate the necessary cache capacity of the system to half mi l l ion records, 
the overhead of the double-linked list implementat ion is approximately 6 Megabytes. Th is 
amount of data is probably not significant in software implementations. B u t as can be seen 
later i n the target platform description (Section 5.4), for hardware implementations, where 
the capacities of memories are substantially l imi ted, keeping memory requirements low may 
affect the system significantly both i n its cost and its throughput. 

The L R U algori thm requires a k ind of sorting which is realized as a double l ink list. 
Another approach is cyclic check. Every i tem i n the monitor ing system has a t imestamp 
of its last update stored wi th i t . The check periodical ly proceeds through the items, and 
checks for inact iv i ty of the i tem. If it reaches certain, user defined level, the i tem is removed 
from the memory. 
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Chapter 5 

Analysis 

In order to determine requirements on throughput of a hardware accelerated monitor ing 
system, this chapter presents results of several s imulation experiments. Two aspects were 
considered: profiling of a commercial , highly opt imized software moni tor ing probe and 
aggregation factor of basic indexing algorithms described in Chapter 4. B o t h factors are 
very hard, i f not impossible to derive analytically, therefore thorough software simulations 
have been carried out to estimate them. The description and results are presented in 
Sections 5.1 and 5.2. 

A s part of the analysis, Section 5.3 brings discussion on the variabi l i ty of the resulting 
system. The monitor ing device must be designed in such a way that a user be allowed to 
change the monitor ing process as quickly and as flexible as possible. The section introduces 
several possible applications which require flexible moni tor ing process. 

The target platform wi th its characteristics and l imitat ions w i l l be introduced as part 
of this chapter as well . A l though the system should be targeted at this platform, the whole 
system is fairly hardware independent and therefore should be easily ported to different 
hardware acceleration devices. The platform is described i n Section 5.4. Moreover the 
requirements on the hardware accelerated process are addressed i n Section 5.5. 

5.1 SW probe profiling 

This section describes an analysis of a commercial software flow monitor ing probe i n order 
to estimate the max ima l packet rate this probe is capable to process. The results presented 
here can be extrapolated to a characteristics of a secondary flow aggregator engine used 
as the software part of the moni tor ing applicat ion (see Figure 5.6). F r o m the results, the 
min imum aggregation factor can be derived as well and this value may serve as an indicator 
of how much the hardware part of the system must be tuned in order to process the desired 
ingress data flow without packet loss. 

The probe used i n the profiling was a highly opt imized applicat ion developed by the 
I N V E A - T E C H company [17]. The applicat ion follows the generic flow moni tor ing system 
architecture defined i n Chapter 4 and its basic par t i t ioning is in Figure 5.1. W h e n a packet 
enters network interface, it is copied to main memory and then handled by the application. 
Note that the kernel processing is bypassed in this configuration i n order to improve the 
incoming packet rate. The packet is then preprocessed by the Header Extraction part, 
which extracts desired protocol header fields. The flow key fields are then hashed to form a 
unique flow identifier. The rest is an aggregation mechanism that handles (i) flow lookup, 
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Figure 5.1: I N V E A - T E C H F l o w moni tor ing application. 

(ii) flow update and (iii) flow maintenance. The last three parts are merged into one i n this 
configuration. The a im is to gather profiling data for each part in order to estimate the 
l imits of such system. 

A local university campus was monitored for the measurement. The l ink was loaded 
on average wi th 4.1 G b / s and 668,000 packets/s. F r o m the performed measurements the 
max ima l packet rate the system is able to process can be derived. However, the measured 
program contains profiling information which poses a significant penalty on the system 
performance. Therefore, the C P U load measurement has been done for a non-profiled 
version as well . Figure 5.2 summarizes the profiling information. It shows that for this 
packet rate, the profiled version loaded the C P U at 32 %, while the non-profiled version 
caused more than four times less load. The load difference is the profiling overhead of the 
system. We w i l l therefore use the non-profiled version to derive the max ima l packet rate 
one can reach using the measured application. 

Flow Update 47.4% 

P a c / s bits / s Capture Pro toco l P roc . F l o w update C P U load 
Profi led Non-profiled 

668,211 4.1 G b / s 9.1 % 34 % 47.4 % 32 % 10 % 

Figure 5.2: Software probe load on Intel(R) Xeon(R) 3075 (64b), 2 .66GHz, 4096 K B L 2 
cache, 2048 M B R A M . 
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If the system load would scale linearly, w i th 668,211 packets per second having 10 % 
C P U load, the packet rate would scale to 6.6 mi l l ion packets per second. However such 
assumption cannot be made, because C P U load generally depends on many factors and 
is mainly l imi ted by an on-chip cache. Also , the number of flows per second entering the 
system increases wi th increasing interface speeds and therefore might cause more severe 
cache misses during software processing. 

To properly estimate the rate of C P U load wi th respect to input throughput would 
require measurements based on higher packet rate than i n the traffic used for profiling. 
However such live packet channel was not available and using synthetic traffic generator 
is not appropriate for this task 1 . Thus the m a x i m u m packet rate w i l l be only roughly 
estimated to the half of l inearly extrapolated value, 3.3 mi l l ion packets per second. 

In the next, it is assumed that the moni tor ing process consists of a two layered sys­
tem. The data is firstly preaggregated i n hardware and flow records are then exported and 
processed by the software layer. The results gathered from the software probe profiling 
from Figure 5.2 show that the protocol parsing part consumes around 34 % of C P U load. 
However, W h e n the software system works as a secondary aggregator only, this can be elim­
inated. Therefore, the software aggregator performance can be approximated to 3.3/0.67 
mi l l ion packets per second which is around 5 mi l l ion packets per second. 

The estimated 5 mi l l ion packets per second can be doubled when using two C P U s , when 
two independent L 2 caches are considered. Thus, w i th such configuration, an estimation of 
10 mi l l ion packets per second can be reached for software solutions. 

5.2 Real traffic simulations 

The goal of a flow monitor ing system is to achieve m a x i m u m packet aggregation wi th 
respect to a chosen aggregation scheme, i.e. selection of flow key fields. The l imitat ions on 
an aggregation scheme may by crucial , because even i f the hardware probe would be able 
to process high rate data without packet loss, i f it is designed poorly, it might overwhelm 
the software part (secondary aggregator, collector or other analyzer). 

It is supposed there are three most influential factors w i th respect to the aggregation 
achieved: 

1. F low record definition, which can be defined i n a lot of variations and is total ly i n the 
hands of user. It is the most influential part but unfortunately cannot be predicted by 
the designer. The flow record type defines the coarseness of information received by 
the user. The more fine-grained it is, the more load is enforced upon the monitor ing 
device. 

2. Size of the flow cache. In real t ime traffic, there are normal ly several tens of thou­
sands of flows per second, which fill the average flow cache i n less than few seconds. 
Therefore, the larger flow cache, the bigger aggregation factor can be achieved. 

3. F low indexing type, which might be either a simple direct-hash addressing, an index 
sequential hash table or any other more sophisticated approach. However it should be 
noted, that the more the approach is refined, usually the bigger resources it consumes, 
mainly i n terms of on-chip memories or computat ion resources. 

X A synthetic traffic generator should reflect specific traffic mix, packet length, burstiness and flow distri­
bution of live traffic. It is therefore very difficult to simulate such behavior. 
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Sample Packets Bytes Flows Aggregation Durat ion 

10 G b / s 197 M 161,533 M 11,366,428 17.36 120 s 
Per second 1.644 M / s 10.768 G b / s 94,720 N / A N / A 

20 G b / s 386 M 305,976 M 22,606,386 17.09 120 s 
Per second 3.219 M / s 20.399 G b / s 188,306 N / A N / A 

Table 5.1: Trace used for offline analysis. 

The a im of this section is to analyze live traffic traces w i t h respect to properties (2) and 
(3). The traces were obtained from the C A I D A organization [4]. 

5.2.1 Packet traces 

We w i l l start w i th the traces description. Two use cases were defined to test the two selected 
indexing algorithms: one two minute 10 G b / s and one sixty second 20 G b / s fully loaded 
l ink. Because the OC192 C A I D A links were not fully ut i l ized, several independent traces 
were merged into one, to form the desired data rate. 

The traces statistics are arranged i n Table 5.1. Fi rs t ly , let's have a closer look at the 
amount of packets and the amount of aggregated flows i n both samples. We shall define the 
flow as a five-tuple: source and destination IP address, source and destination transport 
port, and transport layer protocol. Us ing this definition the m a x i m u m aggregation, as 
defined by Equa t ion 5.1 is approximately 17 for both samples. This is the packet aggregation 
l imi t that can be achieved if the flow cache would be sufficiently large to hold a l l flows in 
the sample. Also it should be noted that the average packet length i n these samples is 
approximately 700 bytes. Therefore, the m a x i m u m byte aggregation 2 is much larger for 
live traffic. 

In the measurements, however, it is assumed that the average packet length is much 
shorter. Then the aggregation factor defines the worst case. If the hardware accelerated part 
of moni tor ing system is able to preprocess data i n order to meet the software l imitat ions, 
no packet loss w i l l occur. F i n d i n g out how much aggregation can be achieved wi th respect 
to the m a x i m u m aggregation factor, given by the trace characteristics, is the a im of the 
next two subsections. 

5.2.2 D i r e c t hash index ing 

The scheme from Section 4.2 w i l l be considered as direct hash indexing case. The hash 
computed from flow fields is s imply used as an address into the flow record memory. The 
flow identifier is stored together w i th the record to identify possible collisions. Such scheme 
does not require any overhead except for the flow identifier that occupies extra space in 
flow cache. 

For this type of indexing, there was only one experiment parameter, size of flow record 
memory. The range was chosen wi th respect to the flow record size, which was defined 
to be 64 bytes or 32 bytes. W i t h 32 bytes, the m a x i m u m amount of flow records kept in 
memory is 524,288. The simulat ion results are presented i n Table 5.2. 

The aggregation factor i n the Table has been computed as the to ta l number of packets 
in the trace, d ivided by the number of collisions. Because the flow cache capacity is far 

2 T o t a l amount of bytes divided by total number of bytes in a flow record. 
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smaller than the overall number of flows i n the sample, the flows left i n the cache were 
neglected and therefore were not included i n the result. 

F rom the Table, first th ing that may be noticed is that direct hash indexing does not 
aggregate traffic very well and causes a lot of collisions. It is therefore necessary to post-
process the collided flows in a much larger cache in software. For our 20 G b / s aggregated 
C A I D A traffic and flow cache capacity for 256,000 flow records, the aggregation factor is 
approximately 3.722. 

10 G b / s 20 G b / s 
M e m o r y size Collisions Aggregation Collisions Aggregation 

[flows] 

128 K 54,376,648 3.628 132,472,541 2.916 
256 K 41,028,431 4.809 103,810,544 3.722 
512 K 30,228,336 6.527 77,936,084 4.957 
1024 K 22,154,411 8.906 57,475,216 6.722 

Table 5.2: Direct hash scheme aggregation rate for a sample traffic. 

5.2.3 H a s h table i n d e x i n g 

The direct indexing scheme is very simple, but produces a lot of collisions. Therefore, 
simulations wi th an index-sequential a lgori thm were also carried out i n order to assess how 
a proper hash table behaves i n a flow monitor ing situation. 

The hash table is defined as in Section 4.5. We won't consider here a B l o o m filter based 
hash table, because its implementat ion is too difficult to be implemented i n hardware. The 
table is arranged into buckets, each bucket containing a l inked list of flow records. A bucket 
is addressed directly, whereas a list is scanned sequentially, or i n some circumstances, can 
be also scanned associatively. 

Two table subtypes are defined i n the simulations, according to the v i c t i m selection 
policy, i.e. when a bucket reaches its m a x i m u m list capacity, and a new i tem is to be 
inserted into the table, a v i c t i m must be selected: a L R U pol icy and a random selection. 
These two are compared. 

Furthermore, a m a x i m u m list size might be selected. Several experiments have been 
done wi th respect to the max ima l list size. The results presented here are for a list size of 
8 items (flow records). 

F rom the results i n Table 5.3, it immediately follows that random v i c t i m selection policy 
is comparable to L R U policy. Surprisingly, i n this case the random selection performs better 
than L R U . Because L R U i n this context does not br ing any aggregation improvement, we 
can conclude, that it would not be the right solution for this task. 

W h a t is more important , is that reasonable aggregation factors are emerging only wi th 
much bigger flow cache capacities than C O M B O v 2 platform offers (with a 64 byte context 
it is 256 K flow records). Reasonable aggregation factors are starting at approximately a 
cache for mi l l ion flow records. However, w i t h smaller cache sizes, the table s t i l l provides 
good aggregation. 

Moreover, when comparing direct addressing w i t h hash table at cache capacity of 256 K 
records, we conclude that w i t h this policy, hash table does not offer significant improve­
ments. 
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L R U R a n d o m 
M e m o r y size [flows] Collisions Aggregation Collisions Aggregation 

128 K 114330424 3.379 109526729 3.527 
256 K 81434376 4.744 77009140 5.017 
512 K 51489245 7.503 49840992 7.751 
1024 K 35386052 10.92 34754818 11.12 
2048 K 27144750 N / A 26988569 N / A 
4096 K 21378229 N / A 21432908 N / A 
8192 K 15267378 N / A 15339458 N / A 

Table 5.3: Hash table aggregation rate for a 20 G b / s traffic sample. The first column is 
the to ta l memory capacity. L i s t size has been set to m a x i m u m 8 items. Note that starting 
from 2048K flow memory capacity, no aggregation is i n the table. The memory capacity 
was too large to estimate the aggregation factor from this sample. 

5.3 Variability 

In this section, flexibility aspects of a monitor ing probe w i l l be discussed. K n o w i n g how 
much such system needs to be configurable is very important for proper system design and 
implementation. 

Several export protocols have been described in Section 3.3, defining what data the 
monitor ing system is required to extract from packet headers and what statist ical data are 
gathered for each flow existent in the network. W h i l e Netflow version 5 has a predefined 
structure and it cannot be changed, it provides only l imi ted means of monitoring, measuring 
number of packets and bytes accumulated during the lifetime of a flow. 

A l though Netflow version 5 protocol is the most suitable for e.g. usage-based accounting, 
detecting heavy hitters and other similar application, some moni tor ing applications require 
slightly different flow record structure. I P F I X draft thus defines a more extensible flow 
definition, derived from Netflow version 9. Here, the flow is defined i n a same way as in 
Section 3.3 so the flow key fields do not s tr ict ly have to be I P addresses or transport layer 
ports as i n the classical definition of Netflow. R F C 5102 [35] describes an information model 
for I P F I X , i.e. definitions of elements which may be put into a flow record. It defines a 
wide variety of packet header elements, from sublP, through IP, to transport header fields. 
Stat is t ical flow properties, m i n i m u m or m a x i m u m or per flow counters can also be ut i l ized 
to form a flow. Thus, the notion of flow might not s tr ict ly be l imi ted to Netflow version 5 
description. 

Short name Long name 

me an _I A T 
var J A T 
var_data_ip 
SYN_pkts_sent 
FIN_pkts_sent 
max_segm_size 

M e a n value of packet inter-arrival t ime 
Variance of packet inter-arrival t ime 
Variance of packet I P length 
Number of S Y N packets sent 
Number of S Y N packets sent 
M a x i m u m segments size for connection 

Table 5.4: Some of the discriminators that are usable for flow-based classification. F u l l list 
can be found in [27]. 
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Another vote for flexibili ty is network traffic classification. Moore i n [27] defines 248 
discriminators usable i n flow-based classification. Table 5.4 shows a sample of them. Most 
of the classificators exploit byte or packet counts and a variety of their mean and variance 
values. Another useful property might be the mean or variance of inter-packet arr ival times 
for flows, which might carry information about the traffic dynamics. These discrimina­
tors have been successfully ut i l ized i n [28] for Internet traffic classification using Bayesian 
techniques. 

In [14] a port-based technique using m a x i m u m entropy estimation has been developed 
in order to detect network anomalies. The traffic is classified by port numbers into several 
classes and for each of these classes a base dis t r ibut ion (acquired off-line) is compared to 
an on-line dis t r ibut ion to analyze for anomaly. 

Several other approaches require flow-based statistics i n order to classify traffic by size, 
duration, burstiness and rate. A n example of a five-tuple approach is i n [19]. In [21] flows 
are characterized according the four aforementioned properties. W h i l e size, durat ion and 
rate can be obtained from simple per-flow packet counters, to classify bursty flows, an inter-
packet arr ival t ime must be stored (defined as train burstiness i n the paper). Inter-packet 
arr ival t ime is a special property that is not considered i n I P F I X . 

To sum up this short survey, many applications require specialized information which 
is not included i n Netflow version 5 flow record definition. Several other examples can be 
found that exploit many I P F I X definitions and which require information beyond I P F I X 
to be included i n flow record (e.g. inter-packet arr ival t ime). It can therefore be suggested 
that a flow monitor ing device should be able to aggregate any user-defined information by 
a generic algori thm, possibly being user-customized as well . It is thus necessary to design 
the hardware accelerated moni tor ing probe as a flexible device which can benefit from the 
advantages of underlying hardware. 

5.4 Target platform 

5.4.1 H a r d w a r e 

The main platform for this design is the family of C O M B O v 2 cards developed by the 
Liberouter project [23]. C O M B O v 2 cards family consists of a mother card, used as the data 
processing part and a so called interface card, which defines type of network connection. 
The are two variants, depending on the interface card: 

• C O M B O I - 1 0 G 2 interface card wi th two 10 G b X F P cages. Th is is the main platform 
for the probe architecture. 

• C O M B O I - 1 G 4 interface card w i t h four 1 G b / s S F P cages used for Gigabi t Ethernet 
connection. A l though the design is pr imar i ly targeted for 10 G b / s l inks (or more), 
this type of network connection may also be used. 

The C O M B O - L X T mother card (Figure 5.3) contains hardware components necessary 
for high speed network processing. Because these components define the l imits of what 
hardware accelerator is capable of, they w i l l be briefly described i n the following text. The 
card consists of: 

• Powerful X i l i n x V i r t ex5 F P G A (starting wi th L X T 5 0 T and up to L X 1 5 5 T ) 

• Four L o w Speed Connectors w i t h throuthput up to 8 G b / s 
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Figure 5.3: C O M B O - L X T mother card without an interface card. 

• T w o H i g h Speed Connectors w i th throughput up to 28 G b / s 

• Two Q D R - I I memories w i t h full-duplex throughput of 8 G b / s and 8 M B capacity. 
W h e n using both memories in parallel to ta l data throughput of 16 G b / s can be 
achieved. 

• S O D I M M connector for D D R 2 memory. Optional ly , the card can be equipped wi th 
low latency high-speed R L D R A M memories w i th capacity up to 844 Mbi t s . 

• 8-lane PCI-Express connector which provides throughput to the software of up to 16 
G b / s . 

5.4.2 H a r d w a r e abs trac t ion layer 

In addi t ion to the C O M B O hardware the so called N e t C O P E platform [24] is available. It 
offers an abstraction layer for the developer of high-intensive network applications. It also 
ensures at least par t ia l por tabi l i ty of such applications. These can be then independent of 
network interfaces or the ways of data transfer into software part of the application. The 
platform is intended to fulfill the needs for quick application prototyping for a hardware-
software co-design developer. 

The platform follows a layered architecture and consists of several parts (Figures 5.4 and 
5.5). The hardware part includes a hardware abstraction layer. W i t h network applications 
as its ma in target it provides an unified network interface to a user. The part responsible 
for this is the I / O Blocks part. It parses incoming data stream from the interfaces and 
passes packets to an application core for further processing. After the processing stage 
is done, the resultant data is either passed to the software layer, by means of fast D M A 
transfer, or back to the I / O block to enter the egress interface. The application core is user 
programmed and it should be noted that it is completely unaware of the machinery behind 
Inpu t /Outpu t or D M A transmission. 

Figure 5.5 shows the layered structure of the platform. Incoming data enters software 
through a P C I (or any other supported) bus and is handled by the kernel driver. It then 
passes data to an actual software application that is responsible for further processing. 
The transfer process between F P G A and back is therefore fully transparent. O n l y platform-
defined protocols and interfaces must followed to keep the system working. 
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Figure 5.4: N e t C O P E block structure. Figure 5.5: N e t C O P E layers. 

5.5 Processing throughput requirements 

The hardware accelerator card cannot be used as a standalone application in most cases: 
it must be plugged into a P C . Therefore it is natural to divide the metering process into 
two independent sub-processes. The hardware accelerated part preaggregates data from 
ingress interface and creates pr imary flow records. These are not directly exported but 
rather processed by the software layer. Figure 5.6 shows brief outline of such architecture. 

Flow 
Memory 

I 
COMBO 

FPGA 
sw 

Aggregator 

Figure 5.6: Implementation-independent flow measurement. 

Note that it fits to our target platform introduced in section 5.4. The F P G A part is the 
N e t C O P E application core and software aggregator is the N e t C O P E software application. 

Let 's now define parameters of this generic system. Firs t ly , it should be noted that it 
is a data flow architecture. The data enters the system at an ingress interface, enters the 
hardware processing part where it is processed flows through a P C I bus where it enters the 
software processing part. T h e n it is exported to a remote collector or directly processed by 
the host computer. The hardware part also contains a lateral channel, external memory. 

Following Figure 5.6, denote T a component or channel data rate (throughput). Tj„ 
stands for the ingress interface throughput. It is obtained by summing up al l input inter­
faces' data rates. Thw stands for the worst case hardware acceleration part data ra te 3 and 
Tmem is the max ima l memory data rate. For the P C part Tbus is the P C I throughput and 
Tswa is the data rate for the software aggregation part. 

3 In this case it is assumed that the external memory throughput is infinite. 
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A b b r . Description A b b r . Description 
T 
J- in 

Input throughput Rin Input packet rate 
Hardware aggregator throughput Rhwa Hardware aggregator rate 

T 
mem 

Ondboard memory throughput Rmem Onboard memory context rate 

Thus P C I bus throughput Rhus P C I bus flow rate 
Tswa Software aggregator throughput Rswa Software aggregator flow rate 

s P Packet size 

Sc Context size 

SF 
F l o w record size 

Table 5.5: Throughput and rates for the analysis of a generic flow processing system 

Similarly, a P ro toco l D a t a Uni t ( P D U ) rate of a component or channel is denoted R. 
It then follows that Rpdu = SpDU' w n e r e Spdu is the P D U size. For interface data 
stream (Tj„), Sp w i l l denote size of packet; for the memory channel, Sc stands for size of 
context 4 , Sf stands for size of a flow record. The defined symbols are arranged i n Table 
5.5. The aggregation factor can then be defined as the number of received packets divided 
by the number of packets produced by the aggregation unit (hardware or software), per 
t ime interval: 

A = p - . (5.1) 

In order to process incoming traffic without packet loss, the hardware processing part 
must (a) provide at least m in ima l aggregation not to overwhelm the software aggregator 
and (b) must be able to handle incoming traffic, i.e. Thwa > T%n- Because the hardware 
processor architecture is not known yet, let's assume that it is able to process Tj„ without 
packet loss and generates Rhw = \Rin how records per second. In order not to overload 
the software part it must hold that 

Rhw = ~^Rin < Rsw-, (5-2) 

where Rsw = mm(Rswa, ^ s - ) . Rsw is the l imi t of software processing, which can be either 
the software aggregator or bus throughput. R s w a is given and it is the max ima l number 
of flow records which may be processed by the software. Bus flow rate depends on its 
throughput and flow record size. Solving for A i n equation 5.2 gives the min ima l aggregation 
rate 

Because the size of flow record may differ from the size of packet, the requirement can be 
rewritten as 

A > ^ . (5.3) 
J-sw >->P 

Similarly, hardware processing l imi ta t ion , dependent on the memory throughput can be 
derived. If the memory must hold Sc bytes of context for each flow and its bidirectional 
throughput is Tmem, it can handle Rmem = T g ^ m contexts per second. In the worst case, 
for each packet, one read and subsequently one write operation is triggered. In order to 

4 W e wil l refer to the term context as part of a flow record that must be updated for each packet. Other 
flow record items, such as flow keys are static and thus do not change with each packet. 
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Packet Size 
84 100 300 700 800 

16 84 100 300 700 800 
Context 32 42 50 150 350 400 

Size 64 21 25 75 175 200 
128 10.5 12.5 37.5 87.5 100 

Table 5.6: M a x i m a l ingress throughput l imi ted by memory (16 G b / s ) . 

handle an incoming packet rate (Figure 5.6) without loss, it must hold that Rmem > Rin 
and therefore 

Tin — Tmem— . (5-4) 
Sc 

To sum up, Equa t ion 5.3 sets the min ima l aggregation factor for the hardware design, 
i n order not to overwhelm the software part. Equa t ion 5.4 sets the input throughput l imi t 
imposed by the onboard memory. B o t h cases assume that a hardware processing mechanism 
used is able to process incoming data without any packet loss. 

5.6 Discussion 

We w i l l now summarize the information gathered i n this chapter. Firs t ly , the onboard 
memory l imi ta t ion w i l l be derived from Section 5.5. The onboard memories considered on 
the C O M B O v 2 platform have throughput of 16 G b / s (in both directions). Accord ing to 
Equa t ion 5.4, the worst case condit ion l imits the input throughput to 

1 in -1 mem a ; 
Sc 

where Sp is size of packet at the ingress interface and Sc is size of contexts stored in 
memory. Table 5.6 shows l imits for various context and packet sizes. T w o possibilities are 
the most important ones: One wi th the context size of 32 bytes and the shortest packet size, 
defined by the I E E E 802.3 standard as 84 bytes 5 . This selection l imits input throughput 
to 42 G b / s , which is sufficient for the a im of this thesis. W i t h doubling the context, the 
available channel capacity is 21 G b / s , that is, the half. F r o m this we can conclude, that 
the onboard memory throughput is not a l imi ta t ion for up to 40 G b / s flow monitoring. 

Let us now consider the min ima l aggregation factor defined i n Section 5.3. We w i l l 
now derive throughput l imi ta t ion w i t h respect to software layer capabilities and the results 
gathered from the simulations of a live traffic sample. The m i n i m u m aggregation that the 
hardware part must provide is 

Tin Sp 
Tsw S p 

For a 20 G b i t / s case, w i th 96 bytes flow record size, the filled equation gives 

A > 7.68 Sp • ( 5 - 5 j 

The software processing l imi t has been estimated to 7.68 G b / s . 

The standard defines the minimum frame size as 64 bytes, but 8 bytes of preamble and Start Frame 
Delimiter, together wi th 12 bytes inter-frame gap must be considered. 
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The exponential line i n graph i n Figure 5.7 shows the m i n i m u m aggregation required in 
order to process a l l incoming packets without loss. Also , bo th aggregation measurements 
are considered i n the graph: the direct indexing algori thm and hash table. These are 
depicted as constant lines according to the s imulat ion results from Section 5.2. 

The direct indexing algori thm, wi th an aggregation factor of 3.7, preprocesses the in ­
coming traffic sufficiently enough to be handled by the software part, starting from 67 bytes 
long packets. Hash table performs even better and therefore provides the same functional­
ity. F r o m the results we can conclude, that s imply using direct hash indexing for 20 G b / s 
networks, the two-layered hardware-software solution can measure network without packet 
loss even on shortest packets 6 . 

One should also note the area in Figure below a min ima l aggregation of one. This value 
defines the region, where a software solution without any hardware preaggregation is able 
to process data without packet loss. In this case, it is estimated, that software measurement 
probe would be able to process 20 G b / s traffic without packet loss i f an average packet rate 
would be more than 250 bytes. The hardware preprocessing would just require s tr ipping 
the date off payload and sending packet headers into software for further processing. 

200 250 
Packet size 

Figure 5.7: M i n i m u m aggregation for a 20 G b / s fully loaded network, depending on av­
erage packet size. The exponential line shows min ima l aggregation according to formula 
7 68Gb% IT^ • * ^ z e °f ^ o w n a s been set to 96 bytes, software l imi t has been set to 7.68 G b / s 
(10 M p a c k e t s / s x (96 x 8) bits per packet). 

6Shortest packets are considered as 84 bytes, according to I E E E 802.3 standard. 64 Bytes is the frame 
contents, 8 bytes preamble and start frame delimiter, 12 bytes is the inter-frame gap. 
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Chapter 6 

Architecture 

This chapter introduces the hardware accelerated architecture for flow monitoring. The 
analysis i n the previous chapter showed l imitat ions mainly of software probes, which in ­
troduce significant packet loss when dealing wi th rates at or beyond 10 G b / s . Therefore 
hardware solution is necessary i n order to accelerate this high speed monitor ing. The 
following points shortly summarize the results from Chapter 5: 

• The theoretical l imits of a current pure software solution are approximately at 10 
mi l l ion packets per second. Such solution barely manages to monitor a fully loaded 10 
G b / s l ink. If monitor ing i n both directions of such configuration would be necessary, 
it would not suffice and serious packet loss would occur. However one advantage of 
S W solutions is that a very large memory can be allocated i n order to hold as much 
flow records as possible in order to achieve reasonable aggregation factor, defined by 
a traffic mix. 

• Hardware platforms have very l imi ted resources i n terms of flow cache size, but on 
the other hand the speed of processing is very high. Thus, very smal l aggregation can 
be achieved when compared to software solutions. 

• The requirements on the flow aggregation structure are very diverse. Not only due to 
I P F I X definitions, but also because every application that performs as a collecting de­
vice might require its own flow record definition. Therefore the monitor ing application 
must not only be hardware accelerated, but also meet different user demands. 

It is therefore necessary to combine both solutions i n a system that is able to preprocess 
data at high rates, but on the other hand, provides a reasonably large flow storage to 
achieve max ima l aggregation and w i t h m a x i m u m flexibi l i ty Figure 6.1 shows the basic 
concept. Incoming data is handled by the hardware part which preaggregates it sufficiently 
enough for the software aggregator to be able to handle the incoming traffic flow. Whi l e 
both hardware and software parts must cooperate tightly, the task of this thesis is only 
design of the hardware accelerator part. 

The system-level architecture proposed here is a high-level pipelined system. E a c h stage 
processes its incoming chunk of data and passes the result to the next one. The architecture 
is based on the N e t C O P E platform (Section 5.4.1) that provides and abstraction layer both 
from the side of ingress interface and software layer. Note that because the probe is passive, 
there is no egress interface. 

The previous chapter identified that when dealing wi th high packet rates, bo th the P C I 
bus and processor become a bottleneck in flow monitoring. Because the most cr i t ica l part 
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Figure 6.1: M a i n concept of hardware accelerated flow moni tor ing targeted at 10 to 40 
G b / s . 

is the flow update, w i th almost 60 % system load under a worst condit ion, the architecture 
was chosen to include also the aggregation process 1 . 

W h e n a packet enters the system core (the part str ipped off the N e t C O P E layer), it 
is first preprocessed by a Header Field Extraction block. The packet's header fields are 
analyzed and proper information extracted into an unified data structure which is passed 
on to the next processing stages. This unified structure (Unified Header, U H ) contains flow 
keys and data necessary for flow aggregation. A hash identifier is computed from the key 
fields in the next block. It is then appended to the U H and passed on. The result of this 
preprocessing stage is data ready for aggregation, in its most compressed form. The most 
important part is the one that aggregates data. It must decide which flow to pick up from 
a memory, or which flow to reject when the memory is full , and provide the aggregation 
process. The last part in the system is the inactive management part, which ensures that 
short-lived flows are exported as soon as possible. 

To meet the design cri teria almost every part of the system is configurable. However, the 
system is not a general purpose F P G A based processor, because such structure would be too 
slow and consume much more resources i n the chip. The system characteristics are defined 
at compile t ime and a fixed F P G A configuration is then created. In case there is a need to 
quickly change the functionality of the system, several variants must be precompiled. 

The system design is also targeted for code reusage. A s much as it is possible, I P 
cores are used for the architecture implementat ion and their design is also taken into ac­
count. Th is chapter also presents some improvements of the IP cores used i n order to boost 
processing rate. 

6.1 Data structures 

The components described i n previous section exchange data between themselves. In this 
section, we w i l l describe the structure of this data, as it is necessary for further architecture 

1 I n real traffic without anomalies, this might not be necessary, because as the analysis shows, real 10 - 40 
Gb / s traffic contains very low packet rates when compared to the link protocol maximum. 
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Figure 6.2: Fi rmware of the proposed flow monitor ing probe. 

description and to define the software interface. 
Three fundamental structures are defined (Figure 6.3): 

• Unified header carries protocol header fields that are necessary for flow processing. It 
contains fields extracted from the packets' protocol headers. The structure is passed 
throughout the system unt i l processed i n the flow processing unit . 

• Flow record fully describes one flow unit , where statist ical data are aggregated. It 
contains (i) flow key fields and (ii) aggregated statist ical data. Figure 6.3b shows 
an example of a flow record for the Netflow version 5 protocol. The shaded fields 
are flow identifiers, which do not change during the flow lifetime. These are therefore 
immediately exported to software because are not necessary to be stored in an onboard 
memory. 

• Flow context is a por t ion of flow record stored i n onboard memory, together w i t h a 
64 bit hash identifier. In fact, it is a flow record i n which flow key fields are replaced 
wi th a hash. In the Figure, context is formed by remaining, unshaded elements. 

Accord ing to this definition, software layer therefore receives two kinds of data: a flow key 
identifiers and after a flow has been exported from the onboard memory, it receives the 
flow context as well . Th is way the onboard memory capacity can be fully ut i l ized to hold 
as much flows as possible. 

6.2 Packet capturing and preprocessing 

6.2.1 Packet d a t a preprocess ing 

The task of header field extraction block is to parse the incoming packet flow, decode the 
protocol structure present i n the packet header fields and extract appropriate information 
from the data flow. The extracted data is then packed to an unified structure that is 
processed by subsequent blocks. 
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Figure 6.3: Unified header structure and flow record/context structure. 

There are several options how to choose the best processor. Firs t ly , a general purpose 
processor implementat ion can be created or an IP core used. Possible candidates could be 
a X i l i n x Microblaze or Picoblaze processor [48] or a R I S C Header F i e l d Ex t rac to r processor 
( H F E ) developed by the Liberouter project [23]. A l though such used components are on-
the-fly programmable, they posses several disadvantages. The Picoblaze processor is 8-bit 
wide and wi th 100 M I P S it is not possible to achieve high throughput. The 32-bit wide 
icroblaze on the other hand contains a 32x32 bit general purpose registers, a fixed point 
mult ipl ier and divider and F P U . Therefore such approach is a waste of resources which 
w i l l never be used on the chip. The H F E processor is a specially designed 16-bit processor 
for hardware stream applications, however its throughput is insufficient for high speed 
processing (see Table 6.1). 

In order to speed-up processing, an application specific processing engines must be used. 
Two solutions w i l l be described here: HandelC-based Header field extractor (HFE-C) and 
XML-based header field extractor (HFE-X). 

H F E - C is a processor wri t ten in handelC and specially designed for network applications. 
It follows a macro-based approach, where each protocol is defined by a handelC macro. The 
processor is fully configurable v i a a handelC include configuration file. The throughput of 
the processor is much higher than a general purpose R I S C processor already considered. 
A n interesting comparison between H F E - C , R I S C H F E and Microblaze can be found i n [9]. 

H F E - X is another generic extraction engine developed at the Liberouter project [30]. It 
is highly configurable and can process data at nearly 10 G b / s per extraction component. 
Therefore it might serve as one of the first candidates i n the proposed monitor ing system. 

Table 6.1 summarizes main characteristics of extraction engines that were considered 
for this task. It is clear that general processors such as Microblaze or H F E have insufficient 
properties for moni tor ing at 10 G b / s . Even the H F E - X cannot handle fully loaded 10 G b / s 
l i n k 2 and so a l l functionality must be parallelized in order to achieve reasonable throughput. 
One can read from the table that the most cost-effective solution could be a conjunction of 
two 32-bit H F E - X , running on 156.25 M H z clock. 

2 I t must be noted that the results are for one specific configuration of components. The result for other 
configurations are not presented here for brevity. 
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Processor D a t a wid th 

[b] 

Frequency 
[MHz] 

Throughput 
[Mb/s] 

L U T s B R A M s M b p s / L U T 

Microblaze 32 200.00 83 N / A N / A N / A 
H F E 16 100.00 782 N / A N / A N / A 
H F E - C 16 156.25 2,400 1600 1 1.5 
H F E - X 32 156.25 5,000 1276 1 3.9 
H F E - X 64 100.00 6,400 2665 3 2.4 

Table 6.1: Avai lable extraction engines. The resources are considered for X i l i n x V i r t e x 5 
architecture. 

6.2.2 H a s h i n g uni t 

The next processing stage is the hash generation. It receives unified header created by 
the extraction engine and generates a 64b hash. It then serves as an identifier and for 
indexing purpose i n the flow lookup process. The hash is computed from the key fields 
of the flow (these must be present i n the unified header). For the hash computat ion to 
be maximal ly resource-saving, no key fields extraction is performed. Rather the non-key 
port ion of incoming unified header is masked out, so these fields do not influence the 
resulting hash value. The block structure of the component, which is fairly simple, is in 
Figure 6.4. 

mask 

UH header 
path 

DI 

Masking 
logic 

raw duta path 

Data 
FIFO 

key word 
hashing 

Hash 
Engine 

hash 

Hash insert 

flow identifier 
insertion 

DO 

Figure 6.4: Hash generation firmware block. 

Because the key fields selection is user configurable and is defined i n the flow record 
structure, this hash generation component must reflect this. Th is is accomplished by a 
special mask vector preloaded or precompiled into the component. 

6.3 Flow lookup 

The most important and hardest task of the system is how to pick up a correct flow for a 
packet and update the flow record. The lookup scheme is defined by indexing algorithms, 
which were dealt w i t h i n Chapter 4. T w o fundamental approaches can be used: 
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• The first one is a direct flow addressing based on the computed hash function. For 
each packet a hash is computed and part of the value used as an address into the 
flow memory. The advantage of such scheme is that it is very simple to implement 
and does not consume much resources on the chip. O n the other hand, direct hash 
addressing suffers from a lot of collisions and therefore does not uti l ize the flow record 
memory fully. 

• The other, more effective approach is to use a hash table. A por t ion of the computed 
hash serves as an address into the table. A bucket picked up by the address contains 
a list of flow records, which are then sequentially traversed i n order to select the right 
i tem. The advantage is that the flow record memory is fully ut i l ized, however the 
system throughput might suffer, because for each packet, several flow records must 
be read from the memory. 

The simulations show that for a typica l 10 G b / s network 3 an approximate aggregation 
of 1:5 can be achieved wi th direct indexing (for more information please confer Chapter 5). 
Th is value defines the worst case, i.e. packets carry m i n i m u m amount of data. In such a 
case, software load would be approximately 4 G b / s . The flow record rate would therefore 
be at most 6 mi l l ion flows per second. 

Accord ing to the result obtained by testing a current software solutions and taking into 
account the preprocessed nature of flow records entering software part, we can conclude 
that the proposed double-layered joint hardware-software system w i l l i n the worst case 
conditions be able to process full-duplex 10 G b / s traffic without packet loss. However, 
care must be taken when assessing the capabilities of this system. A s discussed i n Section 
5.5, flow context s ize 4 , full flow record size and hardware l imitat ions must be taken into 
account, because the flow record structure is user defined. 

The indexing and flow dis t r ibut ion part is based on F lowContex t [18], also developed 
by the Liberouter project. The block structure is i n Figure 6.5. F lowContex t is a generic 
system for stateful packet processing and therefore perfectly fits the flow monitor ing task. 
The input to the system are analyzed packet headers i n a form of unified headers. Par t of 
it is the unique flow identifier, which is used as an address to the context memory. There 
are two main components of this system, we w i l l describe their functionality briefly: 

• Context Manager maintains memory integrity i n the system. Because the processing 
path might have long latency, therefore two copies of a context may be present in the 
system: one copy i n the external memory, the other i n the processing unit . Context 
Manager must recognize the most up-to-date posit ion of a context and issue or not a 
proper external memory request. 

The other task of this part is to balance the load wi th in several processing units 
(PUs) , which w i l l be described later on. The load balancing is accomplished by fast 
on-chip associative memories. 

• Endpoint unit provides an interface to the processing part. It is by means of a random 
access memory. 

The interfaces of F lowContex t are set to handle both incoming packet headers and the 
packet payload. However, i n this thesis it is assumed that no payload processing is done. 

3 T h i s gives 20 G b / s in case of both directions monitoring. 
4 T h e portion of flow record size stored in on-chip memory. This is usually the record stripped of flow 

key fields. Flow key fields are replaced by a 64 bit flow ID to avoid collisions. 
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Figure 6.5: F low context architecture. Figure courtesy of M a r t i n Kosek, [18] 

Let 's now have a closer look at the endpoint component. Its structure is i n Figure 6.6. 
Here, the context, headers and payload memories have random access. F r o m the Figure at 
can be seen, that the most loaded part is the context memory. In a worst case, it must 
(i) receive a context, (ii) provide the read and write interface for the processing unit and 
(ii) send context to a context manager to mainta in context integrity. Thus, the context 
memory requires two read and two write ports, a l l independent of each other. However, 
bui lding such memory might not be possible because it might use a lot more resources than 
necessary. If only a two port R A M is used for context memory, it is not possible to util ize 
the bus fully and so the performance would suffer. 
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Figure 6.6: F lowContex t endpoint block structure. Figure courtesy of M a r t i n Kosek. 

This model, however, can be optimized, under some assumptions. Fi rs t ly , we w i l l assume 
that the processing part (see Section 6.4) is designed to fully pipeline an incoming flow of 
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headers and contexts. The other assumption is that the processing latency is lower than 
the context write latency from Figure 6.6. Then we can derive an endpoint model i n Figure 
6.7. Note that there are no header and context memories. If the processing unit is not a 
bottleneck of the system, these are not necessary. Another th ing is that the context memory 
has been moved just after the processing pipeline and form a feedback loop to the pipeline 
input. Th is is necessary in order to handle flow bursts. A l so the writeback part is no longer 
connected to the context memory, but the writeback data is in parallel transferred into the 
binding unit (Figure 6.5). 

Header data 

Context data MX 

Processing 
Unit 

Context 
Memory 

Writeback data 

Figure 6.7: Opt imized endpoint model, to fully util ize context and header buses. 

6.4 Flow update 

The flow update task is handled by a flow Processing Unit (PU) a specially designed arith­
metic and logic unit ( A L U ) to meet the flow update process characteristics: high throughput 
and stream processing. Because we want the system to be fully user-configurable, a P U 
must also be able to handle user flow record definition. 

The header and context structure used is as defined i n Section 6.1: context is a data 
structure stripped off flow fields, w i th a unique hash stored w i t h each record to detect 
memory collisions. We can describe the functionality of a P U i n the flow chart i n Figure 
6.8. The processing starts w i t h reading both context and header (and optionally packet 
pay load) and checking for collisions. In case of collision the old context is exported to 
software, together w i th flow keys of a new context. The keys are not stored in the memory 
as discussed previously, but instead a hash is stored. Another case is i f the packet is 
the context's first, then the default values are provided. Subsequently, the actual update 
operations are executed and the updated context checked for overflow. Accordingly, the 
overflow flag is stored in the context and it is saved into the memory of updated contexts 
and also a writeback request sent to the context manager. 

A s the processing core, and automated generator of processing elements for F P G A [22] 
has been chosen. It provides the functionality needed for this task, is highly configurable and 
targeted at high-rate applications. The selected component is a general purpose processor, 
that is unaware of our flow processing task, although care has been taken to design it for 
this monitor ing probe. In order to tune its performance, these amendments are proposed: 
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Figure 6.9: F l o w Processing Un i t interface. 

• In order to reduce the amount of context stored i n an onboard memory, the component 
must be aware of different flow record and flow context structures. 

• After an update, when an overflow is detected, the context is not immediately ex­
ported to software, but is rather stored back wi th a forced collision flag. W h e n the 
context is read out once again, it forces a collision and its export. Th is action s impl i ­
fies expirat ion policy and saves chip resources. It does not ha rm performance i n any 
way as well . 

B o t h amendments are derived from the opt imized F lowContex t endpoint structure (Sec­
t ion 6.7) where a flow burstiness must be taken into account. 

6.5 Inactive timeout management 

The purpose of inactive timeout i n this context is to identify flows which have not been 
updated for a specified amount of t ime. Inactive flow records are then transferred to the 
software part. F r o m the implementat ion point of view, keeping an act ivi ty state for records 
might be accomplished i n several ways. However, the proposed algori thm for this task 
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in the view that the system contains only direct indexing, tries to be as cost effective as 
possible. 

Cyclic 
scanner *• Delete 
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Figure 6.10: Inactive timeout management. 

The algori thm uses an on-chip memory to keep the act ivi ty vector in (Figure 6.10). For 
each record in the flow cache, two bits are stored i n the memory: a val id bit and an act ivi ty 
bit . There is also an one-to-one mapping between the address spaces of act ivi ty memory 
and flow cache. The component consists of two parts: 

• Activity refresher, that sets both the val id and act ivi ty bits for each incoming packet. 

• Inactivity cyclic scanner traverses periodical ly the act ivi ty memory and checks i f a 
record has its act ivi ty bit set. If yes, it unsets it; i f not it schedules the record for an 
export to the software and clears the val idi ty bit. 

The system starts w i th in i t ia l iz ing its memory wi th a l l flow records inval id which correctly 
corresponds to an empty flow cache; then the traversal starts. 

This algori thm is fairly simple, but introduces a significant error when large timeout 
values are used. In fact, w i t h timeout set to T seconds wi th traversal period ^ , the real 
inactive timeout value w i l l be i n range The worst case si tuation leads to an act ivi ty 
bit being set by an incoming packet, and then immediately reset by the scanner, which w i l l 
then free the i tem in next round. Thus, the i tem would be exported after seconds of 
inact ivi ty instead of T. In our case, however, such error is acceptable. 

6.6 Flexible flow record definition 

6.6.1 R e c o r d def ini t ion files 

One of the design requirements of the probe is to handle the diverse configuration needs. 
Therefore, as already stated, almost every components is user-configurable. This configu­
rat ion is done during compile time. 

A user defines his own moni tor ing process by defining the specific configuration of 
the system's components. To provide a user interface a X M L definition schema has been 
created. This idea is not new and has already been proposed i n prior work [45]. Because 
the definition itself is not the main a im of this thesis, the X M L structure w i l l be only briefly 
defined here. F u l l definition of the configuration file can be found i n [45]. 

The configuration file contains a l l necessary information for the system to be able to 
derive configuration for a l l its components. Its structure defines (i) Unified Header, (ii) flow 
record and (iii) context update operations (Figure 6.11). 
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Figure 6.11: The probe configuration structure. 

6.6.2 D e s i g n generator 

The part of the probe configuration process is a software generator. Its a im is to parse input 
X M L files and distribute the monitor ing process definition among configurable components. 

The structure of the generation engine is in Figure 6.12. The program reads and parses 
X M L description files, checks them for errors and generates these outputs: 

• For the H F E component a configuration include file is generated. Then the handelC 
compiler is run and an implementat ion created, which w i l l be used i n the synthesis 
process. 

• A mask for the Hash Generator component is created i n the component properly 
configured to reflect flow key fields that enter the hashing process. 

• Implementation files for F l o w Processing Uni t . 

The generated codes are then used i n a synthesis process which outputs bi tstream config­
urat ion loadable into F P G A . 
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Figure 6.12: F i rmware generator program structure. 
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Chapter 7 

Implementation and results 

This chapter presents an implementat ion of the designed architecture. Because the actual 
prototype platform is not the C O M B O version 2 family of cards, the specific hardware 
features are firstly described. Then a brief description of the system is given. 

The implemented functionality of the design has been thoroughly tested at the local 
university network so the whole system is prepared for long lasting sustained measurement. 
In the final section, the throughput of the system is presented. 

7.1 Implementation 

7.1.1 H a r d w a r e p l a t f o r m 

In this Section a prototype architecture w i l l be presented. A l l components described so far 
have been implemented in V H D L langauage, suitable for hardware description. 

It has been defined that the target platform be a C O M B O version 2 family of cards. 
However, dur ing the implementat ion phase, the hardware was not yet available. In or­
der to bu i ld and run the prototype, C O M B 0 6 X family was chosen, which is a previous 
development version. 

The C O M B 0 6 X family is similar to the one described in Section 5.4. It consists of a 
mother and interface card, the mother card contains the core of the system, while the latter 
one provides a specific network interface connection. B o t h cards contain a X i l i n x Vi r tex- I I 
P ro F P G A , which can be ut i l ized for processing. A t last, the cards are connected v i a a 
64 bit data interface, running at 100 M H z . The mother card also contains three S S R A M 
memories w i th 32 b i t /100 M H z interface. 

Because the card is equipped wi th N e t C O P E platform, which handles low level ingress 
network processing (packet and C R C check, etc.) and data transmission to software, the im­
plementation is very much hardware-independent. The created implementat ion can there­
fore be very easily transferred to any hardware support ing the N e t C O P E platform. 

7.1.2 M o n i t o r i n g part 

Figure 7.1 depicts implemented architecture. The processing is d ivided among both cards. 
The extract ion part takes place at the interface card and produces Unified Header. These 
are then transported v i a the 64b inter-card connection into the mother card, where the 
rest of the processing pipeline is located. For the implementation, the H F E - C processor 
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has been selected, because it s t i l l offers satisfactory throughput at reasonable cost. Eight 
H F E - C units were used for the extraction task. 

XFP2 

NetCOPE _ 
input buffers 

HFE 
Block 

IOS 

C O M B 0 6 X 

64 Hash 
Generator 

Flow State 
Manager 

64b interconnection bus 

Flow 
Context 

Block 

S S R A M S S R A M 

( N e t C O P E 
S W interface 

Figure 7.1: System prototype on the C O M B 0 6 X and X F P 2 card. 

A s the flow cache, two S R A M memories are used i n this configuration. The memories 
are used i n parallel and offer a total of 6.4 G b / s throughput i n one direction. Because 
the read and write operations must share the same bus 1 , the resulting throughput must be 
divided by two, resulting i n 3.2 G b / s . 

The th i rd S R A M memory is occupied by the inactive timeout manager, which must 
keep state of each flow. 

The flow update part (flow context block) has two processing units instantiated, because 
the memory l imits the max ima l throughput of the system, the selected number is sufficient 
for this configuration. Since the architecture has been implemented as a scalable system, 
the number of processing elements can be set by user, according to his specific needs. 

7.1.3 F u n c t i o n a l i t y 

This thesis deals w i th the hardware part of a whole monitor ing system, comprising the 
hardware and software aggregation layer and the collecting device. The ma in a im is to 
divide the processing load between these two layers in order to be able to handle high 
packet-rate traffic. Because the second aggregation layer is not ready to be used yet, 
the probe functionality has been tested without this layer. A l though such setup without 
secondary aggregator certainly produces a lot of collisions because of a smal l capacity of 
the flow cache, it s t i l l provides sufficient aggregation level. 

The probe has been monitor ing sustained 10 G b / s interface at the Masaryk ' s university 
local network for two weeks without intervention. The probe has been set up according to 
Figure 7.2. A tapped traffic enters the hardware accelerated moni tor ing part where pr imary 
aggregation takes place. The data is then transferred to the host P C and is immediately 
exported to a remote collector. In this setup, a nfdump collecting device has been used to 
store the data and a nfsen web interface for visualizat ion. N F D U M P is a set of free network 
flow processing tools [15]. 

The results of the probe were compared wi th a stable version of another measurement 
device which output is considered reliable. Th is test scenario showed that 

• the implemented device is stable and is ready for a long-term deployment, measuring 

X\X is the limitation imposed by the memory. 
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Visualise 

Figure 7.2: Probe functionality test setup. 

w i t h Netflow version 5 flow record definition (although any other record structure 
may be configured): 

• the probe is capable of a high-rate processing, l imi ted only by the underlying platform 
used. The tested throughput l imitat ions are discussed i n Section 7.2. 

7.2 Throughput 

In order to derive performance of the implemented moni tor ing probe a measurement has 
been carried out using a generator of synthetic network traffic. The generator is capable of 
sending a user defined packet flow wi th rates of up to 10 G b / s per interface. 

The probe has been set up to save 64 bytes of context for each flow and the flow record 
size was also 64 bytes. The onboard memory can therefore hold up to 128,000 simultaneous 
flows, although the real number w i l l be less than that because of collisions. For the context 
update part, two F low Processing Un i t s were used. 

The measurement comprises sending a specified amount of flows to be processed which 
is the parameter of the test. For each flow count, the throughput is measured as the number 
of packets sent, d ivided by number of packets processed. The traffic generator has been set 
up to generate packets w i th shortest possible length (64 bytes, comprising Ethernet frame 
wi th C R C checksum) wi th highest available rate. Thus, the worst case has been measured. 
The packets lost at ingress interface of the probe are those discarded due to probe overload, 
or error packets. Because no error packets were observed during the test, the measurement 
may be considered accurate. 

The graph i n Figure 7.3 shows throughput of the probe depending on number of si­
multaneous flows generated. The graph contains two distinct regions: the first one shows 
a m i l d peak wi th flow count less than approximately 100 flows. The peak throughput is 
around 4.2 G b / s which is currently a l imi ta t ion of the two F P U s used. This behavior, 
which suggests that for smal l number of flows, the throughput is sl ightly bigger than for 
the rest of the graph. Th i s is probably caused due to the fact that the F lowContex t system 
contains a smal l high-throughput memory located in Endpoin t Components. Th is cache 
memory therefore bypasses S R A M reads and writes and provides higher throughput, which 
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in this case is l imi ted only by the throughput of F P U components. F r o m the results it can 
be derived that the raw throughput of one F P U is around 2.1 G b / s i n this configuration. 

5 

Figure 7.3: Throughput dependent on number of flows sent. Synthetic traffic generator has 
been used. Size of context was 64 bytes. Shortest packets were sent at full 10 G b / s rate. 

W h e n reaching 100 simultaneous flows and more, the system's throughput stabilizes 
at around 3.7 G b / s , which can be considered the l imi t of the S R A M onboard memory. 
Recal l that although the S R A M throughput has been estimated to 3.2 G b / s an actual 
measured value is higher because for each packet, and inter-frame gap and preamble must 
be accounted for, which utilizes the l ink only at 76 % at shortest packets. 

A l though the test shows that the probe achieves higher throughput for smal l number 
of flows, such measurement is probably irrelevant for live-traffic measurement, w i th several 
tens of thousands of simultaneous flows per second. Therefore the region at the right hand 
side of the graph must be considered as an accurate and usable measurement result. 

One other th ing should be noted when regarding the variabi l i ty of the context size. 
The measurement in this case is strongly dependent on the context size stored i n memory, 
because the t ime needed to read and write a context is crucial for the throughput of the 
probe. Thus, w i th a 32 bytes long context, the throughput could be effectively doubled. 
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Chapter 8 

Conclusion 

This thesis dealt w i th a design and implementat ion of a high-speed network monitor ing 
probe. The probe performs a so called flow-based monitoring, a measurement technique 
based on a notion of communicat ion between two end-nodes i n a network, and gathers sta­
t is t ical information about packets passing a measurement point and classified to belong to 
certain flow. The main aims of the thesis, i.e. analysis of principles behind flow monitoring, 
design of the probe, and its implementation, have been accomplished. The result of the 
work is a fully functional device. Moreover, the device has been tested at a local university 
backbone network, w i t h peak rates of up to 5 G b / s . The testing shows that the probe is 
capable of providing a long-term measurement without packet loss on a 10 G b / s network. 

Most flow-based monitor ing probes are based on Netflow protocol, support ing its several 
versions. Whereas Netflow version 5 defines a static flow record, Netflow version 9 is a step 
forward i n that it allows a user defined flow record specification and is thus more flexible. 
Since it is very important to follow widely used standards, the approach i n this thesis takes 
I P F I X as its fundamental information elements fields definition. I P F I X is an emerging 
standard based upon Netflow version 9, but it is open and allows for user proprietary 
extensions and thus is more flexible than Netflow. 

Because a moni tor ing process might not necessarily be based on a classical five-tuple 
description (source and destination IP address, source and destination port, protocol), 
one of the main aims was to design the probe as a flexible device. A user is allowed to 
define his own moni tor ing process v i a a sophisticated X M L - b a s e d flow record description. 
The specification can be then used for an automatic generation process of the hardware 
accelerator. The whole process is automatic and requires only that the user provides the 
description. 

Another important aspect of the design is capabil i ty of high-speed processing. Pure 
software implementations are not able to perform moni tor ing without packet loss at high 
packet rates. Moreover, w i th rates of more than 10 G b / s the system bus becomes bottleneck 
as well . Thus, this thesis also focuses on a hardware accelerated architecture. The hardware 
part performs first stage aggregation and produces intermediate flow records, which are then 
further aggregated into complete flow information ready to be analyzed or stored. The 
hardware part is fairly simple and cannot provide full aggregation. However the system 
does not suffer from packet losses and the software part can s t i l l provide nearly ideal post-
aggregation i n the second stage. 

The resulting system thus combines support for three widespread export protocols: 
Netflow version 5 and 9 and I P F I X , allows high flexibility through the possibil i ty of a user 
defined flow record structure and provides moni tor ing of high-speed networks, start ing at 
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10 G b / s . 
The results obtained from extensive probe testing show that the probe is capable of 

processing up to 5.5 mi l l ion packets per second without any loss. A l though the performance 
does not reach 10 G b / s at shortest packets, the l imi ta t ion is not in the system's design, 
but i n the hardware platform used. If using the target, C O M B O v 2 platform, the probe w i l l 
be able to process up to 40 G b / s traffic without packet loss, provided a 32 bits long flow 
context would be selected. 

The applicabil i ty of the probe in networking is diverse. One of the simplest applications 
is operational moni tor ing and usage based b i l l ing . Usage based b i l l ing may require the 
probe be capable of high rate data processing to provide accurate pricing for customers. 
Sampling might i n this case require difficult reconstruction algorithms to ensure the pricing 
data is accurate. 

Recently, network traffic classification becomes one of the pr imary interests for admin­
istrators as well as academic community. It as been mainly due to the fact, that many 
applications use dynamic port al location and therefore the basic port-based classification 
techniques are no longer applicable. However, t radi t ional intrusion detection systems and 
classificators might not work as well, as network traffic is becoming increasingly encrypted 
and thus only the I P and transport layer information is visible. Flow-based monitor ing 
in this case provides a useful source of information because it is capable of incorporating 
almost any data or t iming information mined out from data representing part icular flow. 
C o m m o n applications include traffic classification, w i th Voice over I P and similar being 
recently especially interesting. Some other examples may be anomalies detection, intru­
sion detection and DoS-based attacks. Moni to r ing of a l l these activities has one property 
in common - a need for high-speed data processing and flexibility of the moni tor ing de­
vice. The solution presented in this thesis offers both, thus possibly easing work of many 
developers and researchers. 
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Appendix A 

Probe configurability and 
supported fields 

A s has been already discussed, one of the aims of the monitor ing probe is configurability: 
it must meet specific requirements of a user. Thus, dur ing the design and implementat ion 
phase, a l l components that must deal w i t h the Unified Header and flow record structures 
have been implemented as configurable. 

The specific definitions of flow record structure, protocol header fields and operations 
on these fields are derived from the I P F I X emerging standard. R F C 5102 [35] defines the 
so called IPFIX information elements, which are the basis for flow record field names. 

The following table provides list of supported I P F I X information elements i n current 
implementation. F u l l list of elements may be found in [35]. 

Also note, that some columns of the table are empty, which is not an error, but an 
indicator that the field w i th an empty column cannot be used as an i tem of that column, 
i.e. the field cannot be used in flow record or unified header. 

Flow Record Fie ld Name Unified Header Name 
ip Version uh_ip Version 
sourceIPv4Address uh_sourceIPv4Address 
sourceIPv6Address uh_sourceIPv6Address 
dest inationIPv4Address uh_destinationIPv4Address 
dest inationIPv6Address uh_destinationIPv6Address 
i p T T L u h _ i p T T L 
protocolldentifier uh_protocolIdentifier 
nextHeaderIPv6 uh_nextHeaderIPv6 
ipDiffServCodePoint uh_ipDiffServCodePoint 
ipPrecedence uh_ipPrecedence 
ipClassOfService uh_ipClassOfService 
flowLabelIPv6 uh _flowL ab e l l P v6 
fragmentldentification uh_fragmentIdentification 
fragmentOffset uh_fragment Offset 
fragmentFlags uh .fragment Flags 
ipHeaderLength uh_ipHeaderLength 
ipv4 IHL Use ipHeaderLength instead 

IP Header Fields 
Continued on next page ... 
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Flow Record Fie ld Name Unified Header Name 
to ta lLengthIPv4 
ipTota lLength 
p a y l o a d L e n g t h l P v ö 

Use ipTota lLength instead 
uh_ipTotalLength 
Use ipTota lLength instead 

Transport Header Fields 
source TransportPort 
dest inationTransportPort 
udpSourcePort 
udpDest inat ionPort 
udpMessageLength 
tcpSourcePort 
tcpDest inat ionPort 
tcpSequenceNumber 
tcpAcknowledgementNumber 
tcpWindowSize 
tcpWindowScale 
tcpUrgentPointer 
tcpHeaderLength 
i cmpTypeCodeIPv4 
i cmpTypeIPv4 
i cmpCodeIPv4 
i cmpTypeCodeIPv6 
i cmpTypeIPv6 
i cmpCodeIPv6 
igmpType 

uh_sourceTransportPort 
uh_destination TransportPort 
Use sourceTransportPort instead 
Use dest inat ionTransportPort instead 
uh_udpMessageLength 
Use sourceTransportPort instead 
Use dest inat ionTransportPort instead 
uh_tcpSequenceNumber 
uh. tcpAcknowledgementNumber 
uh_tcpWindowSize 
uh_tcpWindowScale 
uh_tcpUrgentPointer 
uh_tcpHeaderLength 
Use i cmpTypeCode IPv4IPv6 instead 
Use i cmpTypeCode IPv4IPv6 instead 
Use i cmpTypeCode IPv4IPv6 instead 
Use i cmpTypeCode IPv4IPv6 instead 
Use i cmpTypeCode IPv4IPv6 instead 
Use i cmpTypeCode IPv4IPv6 instead 
uh_igmpType 

Sub-IP Header Fields 
sourceMacAddress 
v l an id 
dest inat ionMacAddress 
m p l s T o p L a b e l T T L 
mpl sTopLabe lExp 
mplsTopLabelStackSect ion 
mplsLabelStackSection2 
mplsLabelStackSection3 
mplsLabelStackSection4 
mplsLabelStackSection5 
mplsLabelStackSection6 
mplsLabelStackSection7 
mplsLabelStackSection8 
mplsLabelStackSection9 
mplsLabelStackSect ionlO 

uh_sourceMacAddress 
u h . v l a n l d 
uh_destinationMacAddress 
uh . m p l s T o p L a b e l T T L 
uh_mplsTopLabelExp 
uh_mplsTopLabelStackSection 
uh_mplsLabelStackSection2 
uh_mplsLabelStackSection3 
uh_mplsLabelStackSection4 
uh_mplsLabelStackSection5 
uh_mplsLabelStackSection6 
uh_mplsLabelStackSection7 
uh_mplsLabelStackSection8 
uh_mplsLabelStackSection9 
uh_mplsLabelStackSectionlO 

M i n / M a x Flow Properties 
min imumlpTota lLeng th 
max imumlpTota lLeng th 
m i n i m u m T T L 
m a x i m u m T T L 

IP Header Fields 
Continued on next page ... 
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Flow Record Fie ld Name Unified Header Name 
ipv40pt ions 
ipv6ExtensionHeaders 
t cpCont ro lBi t s 
tcpOptions 

Flow Timestamps 
flowSt art Microseconds 
flowEndMicroseconds 

Per Flow Counters 
octetTotalCount 
octetTotalSumOfSquares 
packet Tota lCount 
tcpSynTota lCount 
t cpF inTo ta lCoun t 
tcpRst Tot a lCount 
t cpPsh Tota lCount 
t cpAckTota lCoun t 
t cpUrgTota lCount 

Moreover the flow record description defines several other fields, not part of I P F I X . 
These fields are either compressed IPv4 and I P V 6 packet properties merged into one flow 
record field or other special definitions which are not part of I P F I X , e.g. t iming character­
istics of a flow. 

Flow Record Fie ld Name Unified Header Name 
IPv4 and IPv6 Merged Fields 

sourceIpv4Ipv6Address 
destinationIpv4Ipv6Address 
i cmpTypeCode IPv4IPv6 
mplsTopLabel IPv4IPv6Address 

uh_sourceIpv4Ipv6Address 
uh_destinationIpv4Ipv6Address 
uh_icmpTypeCodeIPv4IPv6 
uh_mplsTopLabelIPv4IPv6Address 

Interval fields 
minimumlnterva l 
maximumlnterva l 
int er valTot alS urn 
intervalTotalSumOfSquares 
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Appendix B 

CD medium 

This electronic attachment contains al l source codes for the hardware accelerated design of 
the probe and D T g X source codes of this thesis. The C D can be found at the back side of 
the document. 

65 


