
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í 

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA 
ÚSTAV POČÍTAČOVÉ GRAFIKY A M U L T I M É D I Í 

HIGH DYNAMIC RANGE RENDERING 
OF VIRTUAL 3D SCENES 
ZOBRAZOVÁNÍ VIRTUÁLNÍCH 3D SCÉN S VYSOKÝM DYNAMICKÝM ROZSAHEM 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR 
AUTOR PRÁCE 

SUPERVISOR 
VEDOUCÍ PRÁCE 

VADÍM GONCEARENCO 

I n g . JAN PEČIVA, P h . D . 

BRNO 2024 



T BRNO FACULTY 
UNIVERSITY OF INFORMATION 
OF TECHNOLOGY TECHNOLOGY 

Bachelor's Thesis Assignment 
Institut: 
Student: 
Programme: 
Title: 
Category: 
Academic year: 

Assignment: 

Department of Computer Graphics and Multimedia (DCGM) 
Goncearenco Vadim 
Information Technology 

High dynamic range rendering of virtual 3D scenes 
Computer Graphics 
2023/24 

153645 

1. Get familiar with high dynamic range (HDR) rendering of 3D scenes and with associated 
technologies. 

2. Design Vulkan-based demonstration application utilizing selected methods from the area of HDR 
rendering. 

3. Implement the application and demonstrate its capabilities on appropriate graphic scenes. 
4. Discuss your results and possible future development. Compare visual quality when using HDR and 

when not using it. 
5. Publish you work on internet. Consider making your code available under one of open-source 

licenses. 

Literature: 
• follow the instructions of the supervisor 

Requirements for the semestral defence: 
Application prototype. 

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/ 

Supervisor: 
Head of Department: 
Beginning of work: 

Pečiva Jan, Ing., Ph.D. 
Černocký Jan, prof. Dr. Ing. 
1.11.2023 

Submission deadline: 9.5.2024 
Approval date: 10.11.2023 

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno 

https://www.fit.vut.cz/study/theses/


Abstract 
This bachelor's thesis covers the topic of High Dynamic Range (HDR), specifically various 
H D R techniques that are widely used in the field of computer graphics. Additionally, it 
covers the Vulkan A P I and its application for H D R rendering of virtual 3D scenes. The prac­
tical part of this thesis is a 3D rendering application, which purpose is to demonstrate the 
practical implementation of the described H D R techniques, such as global tone mapping op­
erators (photographic, filmic and ACES-based), dynamic eye adaptation, spatially-variant 
tone mapping based on bilateral filter, exposure fusion, and an advanced bloom effect. 

Abstrakt 
Tato bakalářská práce je zaměřena na téma Vysokého Dynamického Rozsahu (HDR), konkrétně 
různých H D R technik, které jsou široce používány v oblasti počítačové grafiky. Navíc se 
zabývá Vulkan A P I a jeho aplikací pro H D R vykreslováni virtuálních 3D scén. Praktická 
část této práce je aplikace pro renderování 3D scén, jejímž účelem je demonstrovat prak­
tickou implementaci popsaných H D R technik, jako jsou globální operátory mapování tónu 
(fotografické, filmové a založené na A C E S ) , lokální operátor mapování tónu založený na 
bilaterálním filtru, dynamická adaptace oka, exposure fusion a pokročilý bloom efekt. 

Keywords 
High dynamic range, HDR, tone mapping, exposure, eye adaptation, bilateral filter, expo­
sure fusion, bloom, image processing, image filtering, 3D rendering, 3D scene, C++, Vulkan 
A P I . 

Klíčová slova 
Vysoký dynamický rozsah, HDR, mapování tónů, expozice, adaptace oka, bilaterální filtr, 
exposure fusion, bloom, zpracování obrazu, filtrování obrazu, 3D renderování, 3D scéna, 
C++, Vulkan A P I . 

Reference 
G O N C E A R E N C O , Vadim. High dynamic range rendering of virtual 3D scenes. Brno, 
2024. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. 
Supervisor Ing. Jan Pečiva, Ph.D. 



Rozšířený abstrakt 
Tato bakalářská práce se zabývá tématem High Dynamic Range (HDR), což je klíčová 
technologie v oblasti počítačové grafiky, která pomáhá překonávat omezení tradičních metod 
renderování t ím, že věrně zachycuje a reprodukuje složitosti světla a barev. 

Práce zkoumá různé metody běžně používané v této oblasti a ukazuje, jak mohou být 
využity k H D R renderování virtuálních 3D scén. Praktickým cílem je vyvinout aplikaci 
pro 3D renderování, která demonstruje implementaci popsaných H D R technik, konkrétně: 
globální operátory mapování tónu (fotografické, filmové a založené na ACES), dynamickou 
adaptaci oka, prostorové variabilní mapování tónu využívající bilaterální filtr, exposure fu-
sion, a pokročilý bloom efekt. Každá jednotlivá technika je pak zhodnocena z hlediska 
vizuální kvality a efektivnosti. 

Protože H D R monitory nejsou stále příliš běžné v dnešní době, začal jsem svým výzkumem 
zkoumáním metod mapování H D R obrázků na Standardní Dynamický Rozsah, který lze zo­
brazit prakticky na jakémkoli zařízení. To lze dosáhnout pomocí operátorů mapování tónu. 
Jednodušší operátory jsou globální (nebo uniformní), což jsou v podstatě pouze matemat­
ické funkce, které jsou aplikovány stejným způsobem pro barvu každého pixelu obrázku. 
Takové operátory mohou být efektivní a snadně implementovatelné, ale nemusí stačit k 
dosažení lepší a realističtější vizuální kvality obrázku. 

Mým dalším krokem ve výzkumu bylo najít více sofistikované řešení problému, a proto 
jsem začal zkoumat oblast lokálních (nebo prostorově variabilních) operátorů mapování 
tónu. Tyto jsou obvykle náročnější na výkon a určitě obtížnější k integrování do ren-
derovacího pipeline, protože jejich implementace často zahrnuje několik post-processing 
kroků k dosažení požadovaného výsledku. Nicméně takové operátory se v posledních 20 — 25 
letech staly stále populárnějšími, protože výkon osobních počítačů se významně zvýšil. V 
této práci jsem se rozhodl prozkoumat jeden z nich, který jsem zjistil, že je relativně efek­
tivní a dostatečně jednoduchý k integrování do ukázkové aplikace. Tento operátor byl 
vynalezen v roce 2002 a je založen na bilaterálním filtru, který je také popsán v této práci. 

Kromě toho jsem se v této práci zabýval i tématem dynamické adaptace oka. Proces 
adaptace oka lze simulovat výpočtem průměrné luminance scény {pomocí histogramu lumi-
nance) a následným upravením luminance následujícího snímku na základě vypočítaného 
průměru a uplynulého času pomocí funkce inverzního exponentu. 

Při dalším zkoumání oblasti H D R jsem narazil na novější a složitější techniku nazvanou 
exposure fusion. Tato technika dokáže produkovat působivé vizuální výsledky, které jsou 
jedni z nejlepšich, z pohledu zachování zobrazitelného rozsahu jasu. Funguje tak, že smísí 
různé úrovně expozice stejného obrázku na základě několika vah, které jsou spočítány pro 
každý pixel. Obrázky jsou míchány na různých prostorových frekvencích, což umožňuje 
plynulé přechody mezi různě osvětlenými částmi obrázku a zároveň se vyhýbá "halo" arti-
faktům. 

Výzkumná část této práce je zakončena implementací bloom efektu. Jsou zde zkon­
trolovány a porovnány dva přístupy k tomuto efektu, přičemž ten pozdější (z roku 2014) je 
realističtější a vizuálně přitažlivější. Realističtější přístup je poté implementován v ukázkové 
aplikaci. 

Praktickým výsledkem této práce je ukázková aplikace pro 3D renderování vytvořená 
pomocí grafického A P I Vulkán a programovacího jazyka C++. Umožňuje uživateli načítat 
různé 3D scény a H D R skyboxy k posouzení různých H D R post-processing efektů. Efekty 
lze libovolně zapínat /vypínat a kombinovat. 

Při posuzování jednotlivých implementovaných H D R technik jsem dospěl k závěru, že 
exposure fusion poskytuje nejlepší vizuální výsledky ve srovnání s ostatními metodami 



mapování tónu. Avšak vyžaduje větší výpočetní výkon a správné nastavení individuálních 
úrovní expozice pro každou scénu. Efekt adaptace oka obecně funguje podle očekávání, 
avšak obvykle vyžaduje nějaké předchozí nastavení (například nastavení min a max lumi-
nance pro histogram, mezí histogramu atd.). Efekt květu produkuje velmi dobré a relativně 
realistické vizuální výsledky, ale má drobnou vadu, a to "stair-step" artefakty, které mohou 
být viditelné při nižším rozlišení. Řešením tohoto problému může být změna nebo vylepšení 
metody, vzorkování textur během procesu upsampling nebo downsampling. 



High dynamic range rendering of v i r tual 3D scenes 

Declaration 
I hereby declare that this Bachelor's thesis was prepared as an original work by the author 
under the supervision of Mr. Ing. Jan Pečiva Ph.D. I have listed all the literary sources, 
publications and other sources, which were used during the preparation of this thesis. 

Vadim Goncearenco 
May 3, 2024 

Acknowledgements 
I would like to express thanks to my supervisor Mr. Ing. Jan Pečiva Ph.D. especially for 
his willingness to help, patience, and for his substantive professional advice, which greatly 
assisted me in the preparation of this thesis. 



Contents 

1 Introduction 4 

2 State of the art 5 
2.1 About High Dynamic Range 5 
2.2 Global tone mapping operators 6 
2.3 Exposure and automatic eye adaptation 14 
2.4 Local tone mapping using bilateral filter 18 
2.5 Fusing differently exposed images into one 23 
2.6 Bloom 26 

3 Implementation 31 
3.1 V u l k a n A P I 31 
3.2 Program structure 32 
3.3 Initialization of Vulkan A P I 33 
3.4 Scene loading 40 
3.5 Rendering of a scene 42 
3.6 Post-processing effects 45 
3.7 User interface and navigation 57 

3.8 Limitations and possible improvements 59 

4 Experiments 61 

5 Summary 63 

Bibliography 64 

A Published repository 67 

B Copyright attribution 68 

C Contents of the attached storage medium 69 

1 



List of Figures 

2.1 Illustration of dynamic range of Human Visual System and different output 
devices 5 

2.2 Same image with different key value. Top left to bottom right: 0.09, 0.18, 
0.36, 0.72 7 

2.3 Result of applying Reinhard's global operator (Equation 2.4). Input (left) 
vs. output (right) 8 

2.4 Result of equation 2.2 (left) vs. applying both equation 2.2 then 2.3 (right). 8 
2.5 Result of equation 2.4 with Lwhite = 2.0 (left) vs. Lwhue = 6.0 (right). . . . 9 
2.6 Example of Kodak film characteristic curves 9 
2.7 Three parts of an "S"-like filmic curve 10 
2.8 Graph of John Hable's Uncharted 2 tone mapping operator 11 
2.9 Uncharted2 filmic (top) vs. linear (bottom) mapping. Exposure ranging 

from - 4 to +4 EV steps 12 
2.10 CIE 1931 R G B color space. Gamut comparisons 13 
2.11 Graph of Krzysztof Narkowicz's A C E S filmic tone mapping operator 14 
2.12 Comparison of Exposure Value and Luminance scale 15 
2.13 Exponential decay function 1 — e T with r = 2.2 16 
2.14 Schematic illustration of Gaussian blur executed with a split kernel 19 
2.15 Example of Gaussian filtering with different a (left to right: 4, 8, 16, 32). Top 

row shows the Gaussian kernel function and bottom row the result obtained 
by the corresponding Gaussian blur filtering. Wi th high values of a edges 
are lost because of pixel averaging 19 

2.16 Schematic illustration of a Bilateral filter 20 
2.17 From left to right: low-frequency layer, high-frequency layer and color layer. 22 
2.18 Comparison of Chiu et al. 1993 operator result (left) vs. Durand and Dorsey 

2002 (right) 22 
2.19 Schematic illustration of Exposure Fusion technique from original paper. . . 24 
2.20 Results of Exposure Fusion technique as demonstrated in original paper. . . 24 
2.21 Results of naive bloom implementation 28 
2.22 The process of downsampling and upsampling of the H D R image 28 
2.23 Comparison of downsampling filters as shown in presentation by Jorge Jimenez. 29 
2.24 Result of a more advanced bloom implementation as presented by Alexander 

Christensen 30 

3.1 Diagram of vulkan-hdr-demo structure 33 
3.2 Diagram of vulkan-hdr-demo initialization 34 
3.3 Six sides of an H D R skybox 41 
3.4 Execution flow of Engine:: Run () function 43 

2 



3.5 Interaction scheme of PostFX stage 46 
3.6 Execution scheme of post-processing effects 47 
3.7 Original image (left) vs. applied Photographic (Erik Reinhard) tone mapping 

(right) 48 
3.8 Original image (left) vs. applied Uncharted2 (John Hable) tone mapping 

(right) 48 
3.9 Original image (left) vs. applied ACES (Krzysztof Narkowicz) tone mapping 

(right) 49 
3.10 Original image (left) vs. applied Bilateral (Durand and Dorsey) tone map­

ping (right). Wi th enabled bloom effect 50 
3.11 Original image (left) vs. applied Bilateral (Durand and Dorsey) tone map­

ping (right). No bloom effect 50 
3.12 Original image (left) vs. applied Exposure Fusion (right). Wi th enabled 

bloom effect 51 
3.13 Original image (left) vs. applied Exposure Fusion (right). Bloom effect 

disabled 52 
3.14 Results of bloom effect implementation demonstrated on various H D R sky-

boxes. Original image (left), final tone-mapped image (right) 53 
3.15 Stair-like artifacts in my implementation of the bloom effect 54 
3.16 Approaching highly lit (top) and shadow Ml CB. (bottom) from far to close 

distance 55 
3.17 Real-time UI plots of eye adaptation window (top) and luminance histogram 

(bottom) 56 
3.18 Breakdown of vulkan-hdr-demo application UI 58 
3.19 Attachment viewer window in vulkan-hdr-demo application 59 

A . l Screenshot of vulkan-hdr-demo GitHub public repository page 67 

3 



Chapter 1 

Introduction 

In the domain of computer graphics, there has always been the urge to achieve better and 
more realistic visual experience. High Dynamic Range (HDR) is a revolutionary technol­
ogy that helps to overcome the limitations of traditional rendering methods by faithfully 
capturing and reproducing the complexities of light and color. It is achieved thanks to a 
broader spectrum of luminance levels and color gamuts, which provides unparalleled realism 
and depth to the final image. 

This thesis is focused on deeper understanding of H D R concept and describe the main 
H D R techniques that are used for rendering of virtual 3D scenes, as well as describing the 
ways to implement them. 

Chapter 2 serves as an in-depth overview of different concepts from the domain of High 
Dynamic Range. It is a theoretical summary that aims to provide a comprehensive under­
standing of the subject and explore relevant computer graphics techniques. The chapter 
begins with an overview of the H D R concept. It then reviews several approaches to global 
tone mapping operators, followed by a discussion of exposure and the process of automatic 
eye adaptation. Subsequently, the study examines two local tone mapping techniques: one 
utilizing a bilateral filter and the other employing exposure fusion. Finally, the chapter 
concludes with a section on the bloom effect, where two approaches to its implementation 
are reviewed. 

In Chapter 3 the implementation of demo application is described. It starts with an 
overview of Vulkan A P I and continues with the application structure. However, the main 
focus of this chapter is the implementation of H D R techniques that were described earlier. 
This chapter also contains the assessment of visual results of the implemented techniques, 
which includes visual comparison and subjective opinion. 

Chapter 4 contains a description of conducted testing of the application. It contains 
the description of characteristics of testing devices and compares performance of individual 
techniques on each device. 

4 



Chapter 2 

State of the art 

2.1 About High Dynamic Range 
The term dynamic range is mainly used in the domain of signal processing in relation to 
image, video, or audio. In the context of images, dynamic range refers to the difference of 
brightness between the darkest and the lightest color that is present in an image. 

Logically, in the real world, the dynamic range is essentially unlimited, but our eyes can 
perceive only a limited range of real-world brightness. The overall range of light intensity 
that our eye can perceive was estimated to be roughly between 10~ 6 to 10 8cd/m 2. However, 
the range we can perceive at any moment in time measures about 5 orders of magnitude 
(105 e.g. between 10 2 and 10 7). This is due to the fact that our eyes need time to adapt to 
certain lighting conditions, which takes some time [4]. 

Speaking about other ways to capture the world image, contemporary digital cameras 
for example have a dynamic range of just about 3 orders of magnitude. Conventional LCDs 
have a dynamic range of about 2 to 3 orders of magnitude while prototype H D R displays 
measure 4 to 5 orders [4]. 

Overall Human Eye 
Adaptation 

Human Instantaneous 
Luminance Vision Range 

10 8 (cd/m2) 

14 Orders of Magnitude 

Variable Range 

current oonsumer — — 
Cameras' Luminance Range 

Three Orders 

Conventional Consumer Displays' 
Luminance Range (Up to = 500 cd/m2) 

HDR Prototype Displays' Luminance 
Range (Up to 10,000 cd/m2) 

Figure 2.1: Illustration of dynamic range of Human Visual System and different output 
devices. 

Image taken from [4]. 

5 



2.1.1 Tone mapping 

Considering the limited availability of H D R displays on the market which still have a fairly 
limited dynamic range, there is a clear need for a way to compress the high dynamic 
range of an H D R photograph or a rendered H D R scene to a lower dynamic range for 
display purposes. This can be achieved through the use of tone mapping operators, which 
are essentially mathematical functions that are used to map a wider range of values to a 
narrower one. 

There are several categories of tone mapping operators that were developed, these are: 
global operators, local operators, frequency operators, and gradient operators. Global op­
erators apply compression on all image pixels uniformly, while in the case of local operators 
range compression for a given pixel depends on the surrounding pixels. Frequency operators 
compress the spatial frequency of the image and gradient operators compress the gradient 
image [30]. 

The two major categories of global and local operators will be further discussed in the 
following chapters. 

2.2 Global tone mapping operators 

2.2.1 Photographic tone mapping 

Arguably the most commonly cited tone mapping operator is the one introduced in 2002 by 
Reinhard et al. in their paper [29]. This operator is noted for its computational efficiency, 
widespread application across various contexts, and especially its suitability for real-time 
rendering. While the aforementioned paper presents both global and local operators, our 
focus will be on the global variant. 

This tone reproduction operator draws from proven techniques in the field of photog­
raphy and aims to achieve realistic image representation. It does not strive for perfect 
imitation of the actual photographic process but rather builds upon the so-called zone 
system described by Ansel Adams in the 1980s [2]. 

Initially in the paper an operator is presented which enables the user to set (or rather 
shift) the dynamic range of an image based on its key value 1 . Illustration of key value 
variation in an image as presented in the paper by Reinhard et al. can be seen on Figure 
2.2. 

The operator consists of two steps. 
First, the term Lw is computed, which represents an approximation to the key of the 

image. 

Lw = ^ e x p I J2^g(S + Lw(x,y))\ (2.1) 

Where Lw(x,y) is the luminance of the pixel (x,y), N is the total number of pixels in 
the image and 5 is a small value to avoid the singularity of log(0) in case completely black 
pixels are present in the image 2. 

l rThe key of a scene represents an average measure of its subjective brightness. 
2 The logarithmic average is used instead of arithmetic average to account for a nonlinear response to a 

linear increase in luminance. 

I.i 



Then, using the estimated key value, every pixel of the image is mapped to middle-grey^ 
(0.18 on a scale from zero to one). This is done through the equation: 

L(x,y) = -^Lw(x,y) (2.2) 

where L(x,y) is a scaled luminance and a = 0.18. The user can map the image to 
different values of a, depending on whether the image is supposed to have a low or high 
key value. Typically, a would vary from 0.18 up to 0.36 and 0.72 (high key) or vary down 
to 0.09, and 0.045 (low key). 

The main problem with this operator is that many scenes have predominantly a normal 
dynamic range, with a few high-luminance regions near highlights or in the sky, so it is 
not desirable to shift all the luminance values by an equal amount. It is mentioned that 
this can be mitigated with an "s "-shaped curve operator like the ones traditionally used in 
photography or film. Such an operator would compress both the high and low luminance 
values, but instead further in the paper a different approach is chosen, which instead aims 
to only compress the high luminances: 

This formula is guaranteed to bring all luminances within displayable range. For the 
case when it is not desirable, an extended operator is presented, that allows high luminances 
to burn out in a controllable fashion: 

'Middle gray is a tone that is perceptually about halfway between black and white. 

7 



where Lwhite is the smallest luminance that will be mapped to pure white. This function 
acts as a blend between Equation 2.2 and a linear function. If Lwhite value is set to 
the maximum luminance in the scene or higher, no burn-out will occur. If it is set to 
infinity, then the function reverts to Equation 2.2. By default, Lmhite should be equal to 
the maximum luminance in the scene. Result of applying this equation can be seen on 
Figure 2.3. 

Figure 2.3: Result of applying Reinhard's global operator (Equation 2.4). Input (left) vs. 
output (right). 

Image taken from [29] 

Authors claim that compression provided by this operator is sufficient for most H D R 
scenes, but in case of very high dynamic range, important detail may still be lost. Further 
more sophisticated approaches are proposed in the same paper, including a local(spatially-
varying) tone mapping operator that imitates dodging-and-burning 1 technique from pho­
tography, but those are out of scope of this chapter. 

To visualize individual equations I have plotted them on Figure 2.4 and Figure 2.5. 

Figure 2.4: Result of equation 2.2 (left) vs. applying both equation 2.2 then 2.3 (right). 

4 A technique used to alter the exposure of certain areas of a photograph. 



Figure 2.5: Result of equation 2.4 with Lmhite = 2.0 (left) vs. L^ite = 6.0 (right). 

2.2.2 Fi lmic tone mapping 

Filmic tone mapping operators that are used in computer graphics field were for the most 
part inspired by the photosensitive characteristics of photographic film. These character­
istics are also referred to as sensitometric curves or density curves. A n example of such 
curve can be seen on Figure 2.6. 

Tone mapping operators that mimic density curves of photographic films aim to achieve 
highly contrasted images with deep black tones and produce visually appealing scenes rem­
iniscent of those created in the film industry. 

The images generated by these operators have captivated computer graphics profession­
als due to their visual appeal, making various operators of this kind favorites among video 
game developers. 

KODAK VISION 
Premier Color Print Film 2393 
CHARACTERISTIC CURVES 

6.0 

5.0 

> 4 0 

H tn 

| 3.0 

2.0 

1,0 

0.0 

-1.0 0.0 1.0 2.0 3.0 
LOG EXPOSURE (lux-seconds) 

Figure 2.6: Example of Kodak film characteristic curves. 
Image taken from [14] 

9 



The first mention of a filmic tone mapping operator (TMO) being used in the video 
game industry is attributed to Haarm-Pieter Duiker who presented it in the year 2006 [10] 
at Electronic Arts °. 

However, several years later a more elaborated filmic T M O was presented by John Hable 
in the year 2010 [14] during his GDCe talk. He developed this operator during his work on 
the game Uncharted 2 at Naughty Dog game company. 

The operator developed by John Hable has the form of an "S"-like curve with three 
distinct parts: toe, linear phase and shoulder (viz. Figure 2.7) 

Figure 2.7: Three parts of an "S"-like filmic curve. 

The operator has the following formula: 

_ x(Ax + CB) + DE E 
t { X ) ~ x{Ax + B) + DF F { 2 - b ) 

Where x is the original pixel value of an H D R image, f(x) is the compressed pixel value, 
and parameters A through F are adjustable coefficients determining the configuration of 
the three distinct parts of the curve. 

The meanings of individual parameters £1X6 ctS follows: 

• A - shoulder strength, indicates the sharpness of transition from linear phase to the 
shoulder. 

• B - determines the strength of the linear phase. 

• C - defines the slope of the curve in the linear part. 

• D - toe strength (steepness of the toe phase). 

• E , F - numerator and denominator of the toe. Their ratio determines the toe angle. 
5 Electronic Arts Inc. (EA) is an American video game company founded in 1982 that played a pioneering 

role in the early game industry. 
6 Game Developers Conference (GDC) is an annual event for video game developers, featuring a variety 

of game-related tutorials and lectures presented by industry professionals. 

10 



The last step is to divide the newly obtained value by compressed white point value 
(W). 

For all the described parameters Hable presents the following default configuration: A 
= 0.22, B = 0.30, C = 0.10, D = 0.20, E = 0.01, F = 0.30, and W = 11.2. 

The resulting graph of the T M O can be seen on Figure 2.8. As we can see from the 
graph author decided to minimize the toe angle which results in almost linear increase in 
intensity of darker tones. At the same time more prominent Shoulder part of the curve 
results in a smooth and dampened increase in brightness of highlights. For the purpose of 
better visualization Figure 2.9 contains images of Hable's operator applied inside Uncharted 
2 game. 

1.0 

Input pixel value 

Figure 2.8: Graph of John Hable's Uncharted 2 tone mapping operator. 

To conclude, it is worth mentioning that this operator has since became widely adopted 
in the video game industry and even used in such big titles as GTA V [7] and Doom (2016) 
[8]. 

11 



Figure 2.9: Uncharted2 filmic (top) vs. linear (bottom) mapping. Exposure ranging from 
- 4 to +4 EV steps. 

Images taken from [14] 

2.2.3 A C E S tone mapping 

Traditional motion picture workflow was fixed for the most part and relied on the film neg­
atives and their fixed display properties. However, with the advent of digital technologies, 
many different media became available for acquiring and presenting the image content. 

Source material can come from one or several of the dozens of available capture formats, 
while the produced digital content may need to be played in theaters, as well as on SDR 
(Standard Dynamic Range) and H D R TVs, mobile devices or even V R headsets. A l l of 
these output devices have different range of displayable colors, otherwise named as gamut, 
which is essentially a subset of a perceivable color space {CIE 1931 ). Figure 2.10 shows 
comparison of R G B gamut of different display formats. 

Another issue is that during post-production nowadays the image needs to come through 
various post-processing stages that each might require a conversion to a different color 
format. Without a proper standard to guide the various color format conversions the 
quality of the image would be lost [19]. 

This is where A C E S comes to the resque. Academy Color Encoding System (ACES) 
began its development in 2004 as an image encoding system that provides color accurate 
workflow for the motion picture industry (i.e. digital films, video games etc.). As a large 
color space, A C E S preserves high image quality until the final conversion to the viewing 
formats. 

The fundamental components of A C E S are [1]: 

• Preservation of the available exposure and color range of digital cameras and film 
negatives, ensuring seamless integration throughout the production pipeline. 

• Consistent and predictable display of images across a diverse array of display devices. 

• Archive-ready digital image file format along with accompanying metadata. 
7 CIE 1931 is the color space denned in 1931, which quantifies human color perception based on a 

standardized model of the human visual system. 
8 https: //en. wikipedia.org/wiki/Rec._2020 

12 

http://wikipedia.org/wiki/Rec._2020


13 



Krzysztof Narkowicz in his blog article [22] introduced a tone mapping operator based 
on A C E S . He developed a filmic curve based on the data sampled from A C E S Output 
Transform. 

According to Wikipedia 9 , Output Transform is the mapping from scene-reffered col-
orimetry to the output-referred colorimetry of a specific device or family of devices. 

The tone mapping curve can be seen on Figure 2.11. 

Input pixel value 

Figure 2.11: Graph of Krzysztof Narkowicz's A C E S filmic tone mapping operator. 
For better visibility X-axis is in log space. 

2.3 Exposure and automatic eye adaptation 

Many global tone mapping algorithms map the input values to a log-like curve, which, as 
a result, makes all intensely bright values to be "squeezed" into a narrow range close to 1 
(where 1 is the maximum displayable luminance). This ensures that the H D R values are 
mapped to an SDR range of e.g. 0 to 1, but if the image contains big regions of extremely 
bright values the details are still lost, or at best the contrast is lacking. 

One solution to this problem is rather simple and lies in shifting the original values by 
some chosen offset. But, because in a High Dynamic Range the values it allows for can vary 
drastically (typically only limited by numeric precision), choosing a certain "raw" offset can 
be tedious or unintuitive. For this reason, it is useful to look at the concept of exposure. 

2.3.1 Exposure 

The term exposure is a base-2 logarithmic scale that comes from the domain of photography, 
where it was originally used to determine how much a brightness must be increased or 
decreased to reveal the details of a scene. Similarly as decibel became a unit for measuring 
sound pressure, exposure has become a unit of measurement for luminance. 

9

https: //en.wikipedia.org/wiki/Academy_Color_Encoding_System 

14 

http://wikipedia.org/wiki/Academy_Color_Encoding_Syst


In photography exposure is known as a function of shutter speed 1 0 and aperture 1 1 

which are camera settings that essentially determine the amount of light that gets captured 
by the camera. 

Thus, the exposure value can be defined as: 

EV = log2 — (2.7) 

where N is the aperture and t is shutter speed. 
But in case where a realistic camera implementation is redundant, this equation may 

be of no use. 
However, unless implementing a physically based camera system ([15]), where various 

real camera settings are used to determine the brightness of a scene, this equation is not 
needed. 

Because exposure uses a logarithmic scale with a base of 2, each step in EV (Exposure 
Value) corresponds to a doubling or halving of luminance. For example, +1 E V is twice as 
bright as 0 E V , and +2 E V is four times as bright. 

One of the advantages of using E V is that it aligns with our perceptual response to light, 
which also has a logarithmic nature. This essentially means that the difference between +1 
and +2 E V appears the same as the difference between 0 and +1 E V to our eyes. 

A n E V of 0 represents a luminance of 0.125 cd/m2, which is not zero light but rather the 
level of ambient light in a dimly lit room. When a scene is darker than that, its luminance 
can be represented with negative E V values (e.g. —1 E V , —2 E V , etc.). A schematic 
illustration of exposure values can be seen on Figure 2.12. 

-Inf -tr -1 0 +1 +2 -tr +inf 
EV 

(steps) 

Luminance 
, ,. 2, 0 9-75 0,125 0,250 0,500 Inf 

Figure 2.12: Comparison of Exposure Value and Luminance scale. 

Another benefit of using exposure values when interacting with H D R colors is the con­
venience of representing a wide range of luminances. Editing light values in EVs is way 
more practical than, for example, values between 1 and 1, 000, 000. 

This subsection has been adopted from [28] and [9]. 

2.3.2 Dynamic exposure 

We can make use of exposure to alternate the brightness of an image to allow for a more 
uniform mapping of color values to SDR. But in real-time applications, it is not possible to 
manually set the exposure value every frame, so there is a need for some automatic way of 
setting exposure. 

The challenge lies in defining what exposure settings are optimal for the current frame. 
Choosing to prioritize sunlight, shadows, or trying to find a balance in between. This is why 

10Shutter speed is the length of time that the shutter of a camera remains open, allowing light to pass 
through the lens and onto the camera's sensor or film. 

1 1 Aperture is the opening in a camera lens through which light passes to reach the camera's sensor or film. 

15 



sometimes more explicit exposure settings over automatic ones are preferred. It is indeed 
possible to set exposure explicitly even in dynamic lighting conditions by using some kind of 
triggers or post-process volumes 1 2 placed around the scene. But for example, in computer 
games with dynamic levels, expansive open worlds, significant lighting variations, or situ­
ations where time constraints prevent manual tweaking of exposure volumes an automatic 
exposure adaptation mechanism is more suitable and easier to work with [23]. 

A n appealing automatic exposure behavior can be achieved by mimicking the human 
visual system. The process of human eye adaptation can be modeled using an exponential 
decay function (viz. Figure 2.13): 

Lnew = L + {Lavg-L)-{l-e-^) (2.8) 

Where Lnew is the new pixel luminance, L is luminance in the previous frame, Lavg is 
the average luminance, T is the discrete time step between frames, and r is the constant 
describing the speed of the adaptation [20]. 

1.0 

0.8 

0.6 

0.4 

0.2 

o.o 
0 2 4 6 8 10 

Time 

Figure 2.13: Exponential decay function 1 — e " with r = 2.2. 

The key term of the automatic exposure equation is the average luminance. It is usually 
calculated as a geometric mean, which is equivalent to calculating the arithmetic average 
of a logarithmic luminance. As described in [13], to calculate the average luminance there 
are generally two approaches. 

• Luminance downsampling: successively downsampling the frame image until a 1 x 1 
log luminance buffer is obtained. 

• Luminance histogram: creating a luminance histogram with a certain resolution (num­
ber of bins) from the frame image. 

According to Alex Tardif ([32]), the main problem with using downsampling to find the 
average luminance is that extremely bright and dark pixels have a disproportionate impact 
on the resulting average. These pixels can heavily influence the downsampling results, 
which can negatively affect the quality of tone mapping. While this technique may work 
adequately in many cases and the results can be limited to a desired range, when it fails, 
the flaws become apparent and the visual outcome is unappealing. 

12Post-process volumes are 3D shapes (e.g. boxes or spheres) used in computer graphics to apply specific 
visual effects or alterations to a scene or portion of a scene. 

16 



Further in this chapter, only the histogram approach will be discussed, as this is the 
one that I ended up implementing. 

Following is the pseudocode algorithm of the automatic exposure using luminance his­
togram. I have summarized the algorithm in 3 distinct steps based on the articles by Bruno 
Opsenica [24] and Krzysztof Narkowicz [23]. 

First step is demonstrated in Algorithm 1. It is executed over each pixel in the image. 
Histogram Hist is an array of a size R. Each bin of the histogram is filled with number of 
pixels that have the corresponding luminance value. It is important to note though that 
logarithmic luminance is used, as it closely resembles E V steps, described earlier 2.3. There 
is also Lmin and Lmax values that specify the E V range that is covered by the histogram 
resolution. 

Algorithm 1: F I L L L U M I N A N C E H I S T O G R A M 

Input: RGB values of original H D R image, empty histogram Hist, histogram 
resolution R, min log luminance L m i n , max log luminance L m a x , value 
close to zero e 

Output: F i l l ed histogram Hist 

i: L = dot(RGB, 0.2125, 0.7154, 0.0721) # Calculate luminance 
2: if L < e 
3: | Bin = 0 # Lum close to zero gets into bin 0 
4: else 

Lioq — c l a m p ( i ? 2 ^ | _ ~ , L " ' i ° , 0,1) # Get log luminance into range 0 -
" -'-'max -'-"min 

1 
Bin = Li0g • (R — 1) + 1 # Map range 0 - 1 to histogram resolution 

Hist[Bin] += 1 # Increment the corresponding bin 
return Hist 
Next step is the Algorithm 2 which is calculating the average luminance. After the 

histogram is filled, finding the average luminance is as easy as calculating arithmetic average 
of the bins. 

5: 

Algorithm 2: C A L C U L A T E A V E R A G E L U M I N A N C E 

Input: F i l l ed histogram Hist, histogram resolution R, min log luminance Lmin, 
max log luminance L m a x 

Output: Average luminance Lavg 

i: Sum = 0 # I n i t i a l i z e the sum 
2: TV = 0 # I n i t i a l i z e the to ta l number of pixels 
3: for i = 0 to R-l 

4i 
5: 

Sum += Hist[i] 
N += 1 

Sum 
6: Aiog = — # Calculate arithmetic average of bin indices 

A T A[0q • (Lmax ^-'min) „ . . . . , _ _ 
7: ALiog = — # Map bin index to log lum 

R — 1 
8: Lavg = 2ALl°o # Convert average luminance to l inear 
9: return Lavg 

17 



Last step deserves some particular attention. Algorithm 3 starts with applying temporal 
adaptation to the average luminance. To make exposure change gradually, thus simulating 
the human visual system behavior, the aforementioned Equation 2.8 is calculated. 

Then on the line 2 the image key is calculated according to empiric formula presented 
by Krawczyk et al. [20]. The key value and average luminance are further used to calculate 
exposure coefficient that every pixel of the image is multiplied by. 

Algorithm 3: A P P L Y E X P O S U R E A D A P T A T I O N 

Input: RGB values of original H D R image, average luminance of current frame 
Lavg, average luminance of previous frame LPavg, time passed since last 
frame A t , adaptation speed r 

Output: R'G'B' values of exposed image 

i : A = Lavg + (Lavg — LPavg) • eAt'T # Temporal adaptation 
1 . 0 3 - 2 

2: Key = — r # Get empiric image key 
log(A + 1) + 2 

r-. Key 
3: K = —— # Calculate exposure coefficient 

A 
4 : R'G'B' = RGB • E # Apply exposure 
5: return R'G'B' 

2.4 Local tone mapping using bilateral filter 

Throughout my studies of local tone mapping operators I have found an operator that is 
efficient and easy to implement. It was initially introduced in the year 2002 by Fredo Durand 
and Julie Dorsey [11] from Laboratory for Computer Science, Massachusetts Institute of 
Technology. As mentioned in the original paper this operator's purpose is to preserve as 
much detail as possible but at the cost of reducing overall image contrast. Its central idea 
is using the bilateral filter to split the image into two layers: base layer and detail layer, 
perform certain adjustments and combine the layers together. 

But before diving into details it is important to describe what a Gaussian filter is, 
because bilateral filter implementation is based on it. 

2.4.1 Gaussian filter 

The Gaussian filter (or Gaussian blur) is a type of image-blurring filter that utilizes a 
Gaussian function, which also represents the normal distribution in statistics, to calculate 
the transformation for each pixel in the image. Values from this distribution are used to 
construct a convolution matrix that is then applied to the original image. 

Each pixel's new value is determined by taking a weighted average of its surrounding 
pixels. The original pixel's value carries the highest weight, as it is at the peak of Gaussian 
function, while neighboring pixels receive smaller weights as their distance from the original 
pixel increases. Due to the use of Gaussian distribution, Gaussian blur achieves a blur effect 
that preserves boundaries and edges better than, for example, the box filter 1 3 . 

To calculate the coefficients for the Gaussian blur kernel typically the following formula 
is used, which corresponds to a two-dimensional Gaussian function (Equation 2.9): 

1 3 Box filter (box blur) is a primitive filter with a square or rectangular kernel used to blur an image. 

18 



G(x,y) 
2na2 exp 

x2 + y2 

2a2 
(2.9) 

Where x and y are the distances from the origin (at (0,0)) in the horizontal and vertical 
axes respectively, and a is the standard deviation of Gaussian distribution. 

Equation 2.10 is an example of a 5 x 5 Gaussian kernel computed with spacial sigma 
(a) value of 1: 

" 0.0029 0.0131 0.0215 0.0131 0.0029 
0.0131 0.0585 0.0965 0.0585 0.0131 
0.0215 0.0965 0.1592 0.0965 0.0215 (2.10) 
0.0131 0.0585 0.0965 0.0585 0.0131 
0.0029 0.0131 0.0215 0.0131 0.0029 

It is worth noting that the Gaussian blur is a separable filter and thus, can be applied 
by sequentially convolving with two separate kernels (horizontal and vertical). 

Figure 2.14: Schematic illustration of Gaussian blur executed with a split kernel. 

Figure 2.15: Example of Gaussian filtering with different a (left to right: 4, 8, 16, 32). 
Top row shows the Gaussian kernel function and bottom row the result obtained by the 
corresponding Gaussian blur filtering. Wi th high values of a edges are lost because of pixel 
averaging. 

Images taken from [26]. 

This subsection is based on the following sources: [26] and [38]. 

19 



2.4.2 Bilateral filter 

Gaussian filter is enough to achieve a uniform blur over the whole image, which can be 
useful in many cases. But if it is also necessary to preserve certain details, some kind of 
edge-aware1'1 approach would be more suitable. Bilateral filter was initially developed for 
these purposes. 

Bilateral filter was first introduced by Tomasi et al. in 1998 [33]. It blurs the image 
similarly to Gaussian blur but preserves much more details. Detail preservation is achieved 
because bilateral filter operates not just on spacial difference of surrounding pixels but also 
on their colors. Color difference, though, is multiplied by a negative weight which results 
in blurring that is weaker at the edges where this difference is big. 

spatial weight range weight 

multiplication of range 
and spatial weights 

Figure 2.16: Schematic illustration of a Bilateral filter. 
Image taken from [26] 

Both the spatial and range kernel are often calculated using a Gaussian filter. 
To compute the coefficients of a kernel for Bilateral filter this formula can be used: 

R , , ( *2+y2 | | / c - / (a: ,2/) | | 2 > \ , 9 1 1 . B(X,y) = e x P { - — j j (2.11) 

Where 

• B{x, y) is the coefficient at position x and y in kernel. 

• Ic is the value of a pixel located at the kernel center. 

• I(x, y) is the value of the current pixel. 
1 4 An edge in this context means a certain region of the image, where color varies rapidly (i.e. goes from 

bright to dark across the distance of only several pixels). 

20 



• u_ is a spatial sigma 1 5 that essentially is an inverse weight for the distance from pixel 
(x, y) to center. 

• ar is a range sigma that acts as an inverse weight for intensity difference between 
pixel I(x, y) and Ic. 

Then each coefficient must be normalized by dividing with the total sum of the coeffi­
cients. 

{ , V ) ~Ex,yB(x,y) ( 2 - 1 2 ) 

It is probably worth mentioning that bilateral filter is not a convolution, so its kernel 
cannot be separated into two like Gaussian one (viz. Figure 2.14), which makes it sig­
nificantly less efficient. However, an optimization for bilateral filter exists which was also 
presented in the following paper [11]. 

2.4.3 The tone mapping operator 

As was mentioned at the beginning of this section the idea of the tone mapping operator 
proposed by Durand and Dorsey is based on splitting the image into low and high frequency 
information. To avoid any confusion, the term frequency here can be understood as the ratio 
of pixel intensity change to the change of pixel coordinates. 

The approach of splitting the image into low and high frequency was earlier taken by 
Chiu et al. in 1993 [5]. Their work was inspired by what is known in photography and 
image processing as unsharp masking 1 6 . They tried blurring the image with several filters 
including a Gaussian one. Then this blurred image was inverted and multiplied with initial 
image. However, the result was far from perfect, because of the clear halos that were visible 
around bright regions. To mitigate the halo problem, an edge-preserving filter, like Bilateral 
filter can be used instead of Gaussian filter. 

I have summarized the algorithm by Durand and Dorsey in the form of the pseudocode 
presented in Algorithm 4. Individual algorithm's steps were to some extent based on [18]. 

In step 3 and step 8 value of 255 is used to expand the 0 — 1 luminance range so that we 
can get rid of fractional values without loosing too much of the darker tones. It is important 
to get rid of fractions to avoid getting negative values out of logarithm. 

In the original paper it is mentioned that calculations were done on log luminance 
values because it then corresponds directly to contrast and apparently because human 
visual system response to light is logarithmic in its nature. 

On the Figure 2.17 there are three layers of initial image. Low- and high-frequency 
layers were obtained by splitting the image using the bilateral filter. The algorithm used to 
obtain these images is not exactly known, but should be similar to what I have summarized 
in Algorithm 4 

The result of the operator can be seen on Figure 2.18. If we compare the output of Chiu 
et al. operator published in 1993 and Durand and Dorsey operator from 2002 we can see 
that the latter has almost no visible halos around shapes. As already mentioned this was 
achieved mainly due to making use of the bilateral filter. 

5 a is the standard deviation of the Gaussian distribution. 
16 Unsharp masking is a popular image sharpening technique, that enhances contrast by subtracting the 

blurred version of the image from the original and then adding the difference back to the original image. 

21 



Algorithm 4: D U R A N D Sz D O R S E Y L O C A L T O N E M A P P I N G 

Input: RGB values of original H D R image, base offset o and scale s 
Output: R'G'B' values of tone-mapped image 

i : Compute luminance: L = RGB • (0.2125,0.7154,0.0721) 
2: Compute chrominance: C = 
3: Convert luminance to log space: L = log<i{L • 255 + 1) 
4: Compute low frequency (base): B = Bilateral(L) 
5: Compute high frequency (detail): D = L — B 
6: Modify base: B' = (B - o) • s 
7-. Compute new luminance: V = B' + D 

L1 

8: Convert new luminance back to linear space: L' = * 25~ ' 
9: Compute tone-mapped image: R'G'B1 = V • C 

io: return R'G'B' 

Figure 2.17: From left to right: low-frequency layer, high-frequency layer and color layer. 
Images taken from [12]. 

Figure 2.18: Comparison of Chiu et al. 1993 operator result (left) vs. Durand and Dorsey 
2002 (right). 

Images taken from [12]. 

22 



2.5 Fusing differently exposed images into one 

There is a particularly interesting technique that I have found throughout my studies, 
which is named Exposure Fusion. I have decided to implement it, so it is important to first 
describe it in detail in this chapter. 

Exposure Fusion was originally proposed by Mertens et al. in their paper [21] as an 
alternative method for creating an SDR image using a bracketed exposure sequence17. 

The main idea of this technique is to fuse (combine) several differently exposed versions 
of the same image into the final one, that would contain as many details as possible. The 
images are combined on a per-pixel basis, which means that a certain metric is used to 
decide from which version of the image the pixel value would be picked. Typically, 3 to 
4 differently exposed versions are enough to achieve good result. These images can be 
obtained by taking photos of a real scene with different exposure or in case of rendering 
an artificial scene by setting exposure manually or defining some rule according to which it 
will be set for every image. 

To clarify, the details are preserved because e.g. for the shadows zone we pick the 
pixels from the highly exposed image, while in case of the highlights part the pixels from 
underexposed version are preferred. This way we are left with the image where all the details 
are clearly visible, no matter in which brightness region they are located. This process of 
"picking" the right pixel is controlled by the weight map. The weight for every pixel is 
based on three metrics: contrast, saturation and so-called "exposedness" (viz. Algorithm 
5). 

But as mentioned in original paper simply blending the images based on per-pixel weight 
does not produce plausible results. Disturbing seams appear when weights' variation is 
quick. It could be possible to smooth the sharp weight map with the help of a Gaussian filter, 
but this results in undesirable halos, and spills the information across object boundaries 
[21]. 

Further, in the paper a more sophisticated approach was proposed which is to blend 
the images separately on different frequency levels. This is achieved by utilizing a structure 
called Gaussian pyramid, which is a mipmap 1 8 , where each subsequent mip level contains a 
blended version of a previous one. Then a so-called Laplacian pyramid structure is used to 
separate out the details of different frequencies from the images. And only then the fusion 
process begins in the form of blending the Laplacian pyramids separately on each level. 
This final Laplacian pyramid which arose from combining all Laplacian pyramids together 
based on the weight maps is then collapsed (summed up) in a certain way resulting in the 
final (fused) image. 

For schematic illustration of the technique see Figure 2.19. The individual steps of the 
technique can be summarized like that: 

1. Create several differently exposed versions of the image. 

2. Compute weight maps for each of them based on "exposedness", saturation and con­
trast. 

17 Bracketed exposure sequence is a series of photographs taken at different exposure settings, typically 
varying the exposure time and aperture. 

1 8 Mipmap is a set of precomputed, progressively smaller versions of an original texture image. Each level 
in the mipmap has half the resolution of the previous level. Typically used to improve rendering quality 
and performance for objects that appear at varying distances from the camera. 

23 



Input Images Image - Lapiacian Pyramid Weight Map - Gaussian Pyramid 

Figure 2.19: Schematic illustration of Exposure Fusion technique from original paper. 
Image courtesy of Mertens et al. [21]. 

3. Sequentially blur and downsample each image and its weight map to obtain a Gaussian 
pyramid for the image and its weight map separately. 

4. For each image: substract a lower level of image's Gaussian pyramid from higher one 
to obtain every level of the corresponding Lapiacian pyramid. 

5. Blend Lapiacian pyramids of all images into one on per-level basis based on the 
corresponding Gaussian pyramids of weight maps. 

6. Collapse (sum up) the obtained blended Lapiacian pyramid to get the final image. 

The results of this technique as presented in original paper can be seen on Figure 2.20. 

(a) Differently-exposed images and their weights. (b) Fused image. 

Figure 2.20: Results of Exposure Fusion technique as demonstrated in original paper. 
Image courtesy of Mertens et al. [21]. 

I have summarized this technique in the form of pseudocode in Algorithm 5 and A l ­
gorithm 6. The equations and individual steps of this summary were based on an article 
by Charles Hessel [16], where you find a deep dive into Exposure Fusion implementation 
details with various explanation and all necessary equations. 

24 



Algorithm 5: Exposure Fusion: functions 

function contrast (z) 

foreach p in i 
p = p- (0.2125,0.7154,0.0721) / * convert to grayscale * / 

return i * K L a p i a c i a n /* convolve with laplacian kernel (2.13) * / 

5: function saturation(p) 

6: foreach p in i 

return i 

1 E L i [Pc \TLiPc) / * standard deviation * / 

9: function exposedness (p, a) 

10: 

11: 

12: 

13 

14 

15 

16 

17 

18 

foreach p in i 

P = Ilc=i e x P 
return i 

n L t e x P ( - ^ ) 

function downsample(iftjSseT.) 

^bigger — ^bigger * ^-BurtiiAdelson 

for h = 0 to height(ibigger)/^ 

for w = 0 to width(ibigger)/2 
i[h,w] = i b i 9 9 e r [ 2 / i , 2 w ] 

return £ 

/ * gaussian distance from gray * / 

/ * kernel from Equation 2 .14 * / 

/ * leave every second pixel * / 

19: function Upsample (.1 smaller) 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

for / i = 0 to height(ismaUer) 
fOTW = 0 tO width{WsmaUer) 

i[2h,2w] = 4 x ismaiier[h, w] /* multiply by 4 to normalize * / 

i = i * K B u r t k A d e l s 0 n / * kernel from Equation 2 .14 * / 

return i 

function gaussianPyramid(z) 
G° = i /* level zero is the or ig inal image * / 

for I = 1 tO Novels - 1 
Gl = downsampleCG*-1) 

return G 

25 

file:///TLiPc


Algorithm 6: E X P O S U R E F U S I O N 

Input: 
Output: 

i: for i = 0 to K 

10 

11 

12 

13 

14 

15 

16 

images 

- contrast (Jj)W c x saturation(Jj)W a x expos edness(Jj)1 

0 to N, images 

I wz 

for i -

W > ~ E i L i We 
GJj = gaussianPyramid(Jj) 

GWj = gaussianPyramidClVj) 
£^Nieveis — l _ QjNieveis — 1 

for / = 0 to AWzs - 2 
L- = GJ? - upsample ( G / Í + 1 ) 

for I = 0 tO Novels - 1 

/ * normalize weight * / 

/ * gaussian pyramid of image * / 

/ * gaussian pyramid of weight * / 

/ * highest laplacian mip * / 

/ * upsample and subtract * / 

for i 

I Ü  

for I = 

0 to N, images 

-I 
•'blended 

blended + = X GW\ 

Nieveis - 2 to 0 

+= upsample (L i+i 
blended-1 

I final TO 
blended 

/ * apply weight and add * / 

/ * collapse pyramid * / 
/ * the sum remains in leve l zero * / 

return / final 

Khapl a 
0 1 0 
1 - 4 1 
0 1 0 

(2.13) 

K Burt&Adel 

0.0025 0.0125 0.02 0.0125 0.0025 
0.0125 0.0625 0.1 0.0625 0.0125 
0.02 0.1 0.16 0.1 0.02 

0.0125 0.0625 0.1 0.0625 0.0125 
0.0025 0.0125 0.02 0.0125 0.0025 

(2.14) 

2.6 Bloom 

Bloom is a technique used to enhance the perception of brightness in visual content. It 
overcomes the limitations of monitors' intensity range by creating a glowing effect around 
bright light sources and illuminated areas. This effect gives viewers the illusion of intense 
brightness, enhances the lighting in a scene, and makes the scene feel more dramatic. 

This post-processing effect works best when combined with H D R rendering. Indeed, 
bloom and H D R are so closely related that in people's minds for many years they were often 
perceived as the same thing. Although it is possible to implement bloom with standard 
SDR 8-bit precision framebuffers, H D R rendering greatly enhances its effectiveness [34]. 

26 



The main reason why a bloom effect can give the scene such a vibrant and realistic 
look is because this effect naturally occurs everywhere in our world. There are two known 
reasons for why it appears both in biological and digital media 1 9 : 

• Appearance of bloom in our eyes stems from the inherent limitation of real-world 
lenses to achieve perfect focus. Even an ideal lens blends incoming images with 
the so-called Airy disk, a diffraction pattern from light passing through a circular 
aperture of a pupil. These imperfections are usually unnoticeable, but intense light 
sources reveal them, causing the bright light to extend unnaturally. 

• In the case of digital cameras bloom arises from an excess of charge within photodiodes 
- light-sensitive components in the camera's image sensor. When intense light hits a 
photodiode, the stored charge can spill over to neighboring pixels, forming a halo-like 
outcome known as "charge bleeding." 

In computer graphics, the effect of bloom is often simulated by utilizing Gaussian blur 
(viz. Section 2.4.1) in some way (as will be demonstrated further). 

2.6.1 Naive implementation 

One way to implement bloom is to render the lit scene as usual and extract two images: the 
H D R image itself and the image(texture) containing only the highlights (very bright regions 
of the image). The highlights texture is then blurred, multiplied with some constant and 
combined with original H D R scene image. Joey de Vries describes this naive bloom effect 
implementation in his article on LearnOpenGL 2 0 [34]. I have summarized this approach in 
the form of pseudocode in Algorithm 7. 

Algorithm 7: N A I V E B L O O M A L G O R I T H M 
Input: RGB values of original H D R image, threshold t, bloom weight w 
Output: R'G'B' values of resulting image 

i : Compute luminance: L = RGB • (0.2125,0.7154,0.0721) 
2: A p p l y luminance threshold: if L >= t then B = RGB else B = (0, 0, 0) 
3: A p p l y Gaussian blur to thresholded image: B = Gaussian(B) 
4: Combine bloom and original image: R'G'B' = RGB + B • w 
5: return R'G'B' 

As we can see from Figure 2.21 the results of this simple approach are not realistic 
enough. Just one blur pass for the highlights generally does not produce plausible results. 
It would probably be possible to achieve better results with more blur passes with different 
radii (kernel sizes) the results of which would be mixed by individual weights. But more 
blur passes over the initial (potentially high) resolution is a big performance overhead. So 
a more sophisticated approach was developed. 

The following two points were adopted from 
https: //en.wikipedia.org/wiki/Bloom_(shader_ef f ect). 

20LearnOpenGL is a popular online resource for learning computer graphics programming with a focus on 
OpenGL. 

27 



(a) Original image. (b) Thresholded and blurred (c) Final image with bloom 
image. applied. 

Figure 2.21: Results of naive bloom implementation. 
Image courtesy of Joey de Vries [34]. 

2.6.2 A more realistic approach 

In the year 2014 at SIGGRAPH 2 1 a new approach for a more realistic bloom effect was 
presented by Jorge Jimenez [17]. The approach has a few key points: 

• Original image is not thresholded. The benefit of this is that in a non-thresholded 
H D R image bloom will only be strong where light intensity is indeed high, but will 
still be, to some extent, present even in darkest regions, which is similar to how it is 
in the case of human perception. 

• Bloom is computed on multiple mip levels. That means that the image will be blurred 
and then downsampled to a lower resolution (which can be considered as a single oper­
ation). The downsampling procedure is performed until the smallest mip level is filled. 
After that, starting with the lowest resolution the image is recursively upsampled and 
combined. 

H D R image of a scene. 
Initial resolution: 1920x1080 

Upsample (5) Blur and 
and mix upsample 

Figure 2.22: The process of downsampling and upsampling of the H D R image. 

The downsampling-upsampling approach makes the bloom much smoother because blur 
being applied at a lower resolution effectively has a bigger radius, so in the end we get 

2 1 SIGGRAPH is a leading annual conference in computer graphics and interactive techniques, showcasing 
the latest advancements in these fields through presentations and discussions. 

28 



the image that is blurred at different scales. However, the use of mipmaps has its pitfalls 
because the lower the resolution goes, the coarser the blur becomes, so if the blur was 
initially not smooth enough or had an unsuitable kernel, stair-step artifacts22 may become 
visible. In the aforementioned presentation, it's stated that simple bilinear filtering 2 3 for 
downsampling or upsampling produces low-quality results, specifically due to the presence 
of such artifacts. 

So a better filtering method was proposed: 

• For downsampling: take 13 bilinear samples around the current pixel and averaging 
them out based on specified weights. Given the colors in Figure 2.23c the weights are 
0.125 for yellow, green, blue, and purple individually and 0.5 for red. 

— £ >— — £ >— 
c s t s f 

— £ >— — £ >— ) 

( 
V • V 

t 
~i p -

A 
- 6 
a t 

) 

—C >— —i >— 

J 
( 

Q 
•» 

9 
t 

) 

—C >— —i >— \ j ) 
V V y - -A -< y -

(a) One bilinear (b) Four bilinear (c) Thirteen bilinear 
sample. samples. samples. 
(Bad). (Better but with some (Good enough), 

artifacts ). 

Figure 2.23: Comparison of downsampling filters as shown in presentation by Jorge 
Jimenez. 

Images based on [17]. 

For upsampling: use a so-called tent filter with a 3 x 3 kernel (viz. Equation 2.15). 

1 
16 

(2.15) 

I have summarized this approach in Algorithm 8. 
Figure 2.24 demonstrates the result of this bloom technique implemented by Alexander 

Christensen [61. 

Stair-step artifacts are visual artifacts that appear as jagged or stair-stepped edges in computer-
generated images, typically due to the problem, known as aliasing. 

2 3 Bilinear filtering is a filtering method that works by calculating the weighted average of the four sur­
rounding texels, with closer texels contributing more to the final color value. 

29 



Algorithm 8: C O D : A D V A N C E D W A R F A R E B L O O M 

Input: RGB values of original H D R image, bloom weight (intensity) w, bloom 
mipmap pyramid Bloom, number of mip levels N, downsampling filter 
DFilter, upsampling filter UFilter 

Output: R'G'B' values of resulting image 

i : Copy original image to mip level 0: Bloom[0] = RGB 
2: Downsample: for i — 1; i < N, ++i 
3: | Bloom[i] = D Filter (Bloom[i — 1]) 
4: Upsample and add: for i = N-2; i >= 0, —i 
5: | Bloom[i + 1] = Bloom[i + 1] + U Filter (Bloom[i\) 
6: Linearly interpolate between original image and bloom: 

R'G'B' = mix(RGB, Bloom[0}, w) 
7: return R'G'B' 

Figure 2.24: Result of a more advanced bloom implementation as presented by Alexander 
Christensen. 

Image taken from [6]. 

30 



Chapter 3 

Implementation 

The practical part of this thesis is a program written in C++ programming language 
(version C++20). 

• In the following sections I will refer to this program by the title vulkan-hdr-demo. 

One of the key points of this thesis is to utilize Vulkan graphics A P I , so it is important 
to at least briefly introduce what is Vulkan A P I and what are its key differences compared 
to other APIs like DirectX or OpenGL. 

3.1 Vulkan API 

Earlier when graphic APIs like OpenGL were invented, did not provide such performance 
and such features as nowadays. This promoted the development of a state-based A P I with 
relatively simple interface like OpenGL. As the time passed by, interaction with OpenGL 
became restrictive and cumbersome when trying to achieve maximum performance or utiliz­
ing cutting-edge features. The industry was in need of a more modern and robust A P I that 
would account for all the new features and technologies. Thus, Vulkan A P I was invented 
in year 2016 by Khronos Group. 

The idea behind Vulkan was to minimize driver overhead to allow for full control over 
processing power and memory resources. The key difference of Vulkan is that it shifts 
many of the functionalities and duties that were traditionally handled by drivers onto 
the application itself. This puts a lot more responsibility on the application developer, 
which has to explicitly implement different low-level concepts like memory management, 
synchronization, presentation of images to screen etc. [31]. 

The following sections do not aim to serve as a Vulkan A P I guide or tutorial, but I 
have tried to include in them a brief description of each Vulkan concept in question. For a 
detailed and thorough information about Vulkan A P I it is advised to follow various guides 
available on the web. Some of the resources that I have used to learn Vulkan A P I and to 
write Section 3.3 are [3], [37] and [25]. 

l rThe program vulkan-hdr-demo is available as a GitHub repository, located at: https://github.com/ 
VileDeg/vulkan-hdr-demo. 

31 

https://github.com/


3.2 Program structure 

Although the program is written in 0 + + language its design is not exactly object-oriented. 
This was a conscious decision to avoid unnecessary complications when designing various 
abstractions because this project has been developed within a long period of time by a 
person who is new to Vulkan (me). Also, at the beginning the functionality of the final 
program was not known, so it would be close to impossible to come up with suitable ab­
stractions to fit the future needs. The complexity of Vulkan A P I itself was also a significant 
reason not to choose a purely object-oriented approach. 

The general vulkan-hdr-demo structure is as follows (also viz. Figure 3.1): 

1. Creation and initialization of the window with G L F W 2 library. 

2. Initialization of Vulkan A P I . This is a relatively long and complex part which deserves 
more attention. Section 3.3 describes in detail the initialization process. 

3. Loading of a demo scene. Since the purpose of vulkan-hdr-demo is to demonstrate 
various H D R techniques by rendering a 3D scene, this part includes importing a 
3D model with diffuse textures 3 and bump maps 4 . It also includes loading an 
H D R skybox texture which will allow to better demonstrate the implemented H D R 
rendering techniques. The process of scene loading is described in detail in section 
3.4. 

4. Initialization of user interface (UI). In this part ImGui 5 library is initialized, necessary 
font textures are loaded and registered, and also the necessary steps are done that 
will allow the rendered image to be correctly displayed in the viewport. The user 
interface itself is described with illustration in Section 3.7. 

5. Main program loop. It consists of listening to user input and other window events, 
rendering of the scene frame-by-frame and updating the user interface. The process 
of scene rendering is described in detail in Section 3.5. 

6. Program exit and correct cleanup of all allocated resources. 

2 GLFW is an open source, multi-platform windowing library, https://www.glfw.org/. 
3Diffuse texture is a texture applied to a 3D model to give it just a base color without additional details. 
4 Bump map is a grayscale texture, that creates the illusion of depth by simulating surface details. 
5Dear ImGui is a popular immediate-mode GUI library for C++, https://github.com/ocornut/imgui. 

32 

https://www.glfw.org/
https://github.com/ocornut/imgui


Create GLFW 
window 

Init Vulkan API 

Load a demo scene Init Ul 

Listen to window 
events and run the 

render loop 

Quit the program 
and clean up all 
used resources 

Figure 3.1: Diagram of vulkan-hdr-demo structure. 

3.3 Initialization of Vulkan API 

Vulkan is an explicit A P I that requires a verbose initialization process which includes 
various steps such as: loading extensions, selecting the G P U and creating objects such as 
Vklnstance, VkDevice etc. for further use withing Vulkan commands. 

Unlike OpenGL, Vulkan does not have global state, so it is necessary to include relevant 
objects into each A P I function call. The initialization scheme on Figure 3.2 illustrates the 
process of initialization. Individual arrows indicate which objects are needed to create other 
objects. 

At the start of the program Engine: : Init () is called, which in term sequentially calls 
all the functions that create and initialize Vulkan A P I objects needed for rendering. 

33 



GLFW 
window 

— r z z 

Create pipelines 

Graphics 
pipelines 

Compute 
pipelines 

Instance 

Window 
surface 

r v 

Physical 
device 

> > 

Logical device 

> > 

Swapchain 

Prepare renderpasses 

Swapchain 
pass 

Viewport pass 

VMA allocator 

Shadow pass 

Create per-frame data 

Command 
buffers 

Synchronization 
primitives 

Descriptor 
sets 

Figure 3.2: Diagram of vulkan-hdr-demo initialization. 

34 



3.3.1 Instance 

At the core of Vulkan is the object named instance (Vklnstance). It represents a Vulkan 
A P I context that holds all the global state. It allows to enable any necessary extensions 
(such as VK_KHR_surface which is needed to present images on screen). 

After initializing G L F W window, Engine: :createlnstance() is called which creates 
a Vulkan instance, enables all necessary instance-level extensions and validation layers (if 
compiled in debug mode). 

3.3.2 Physical device 

Usually the next necessary step after creating instance is picking a physical device. Vulkan 
requires the user to explicitly choose a certain physical device (GPU) that will be used for 
all processing. VkPhysicalDevice is the object representing a G P U , and it allows the user 
to query its features, memory size, and available extensions. 

Commands in Vulkan A P I need to always be sent to a queue which belongs to a certain 
family that is presented by a chosen device. So when choosing a G P U user should check 
whether the device has at least one queue family that supports required type of operations 
(e.g. graphics or compute). 

vulkan-hdr-demo does not have any special requirement for a G P U , except the support 
for graphics and compute operations (VK_QUEUE_GRAPHICS_BIT and VK_QUEUE_COMPUTE_-
BIT). Graphics operations involve rendering the scene through vertex and fragment shaders 
while compute operations are needed for all post-processing as it exclusively utilizes compute 
shaders. Most modern GPUs should have no problem supporting these types of operations. 

Engine: :pickPhysicalDevice() function queries the list of available GPUs and iter­
ates through it to find the most suitable one. It ranks every device with a score based on 
different parameters like whether it is an integrated or dedicated G P U , whether it supports 
all required extensions and has the necessary queue families. Then it picks the best fitting 
device based on the score. This approach was borrowed from my supervisor's tutorial [27]. 

3.3.3 Logical device 

Next step is creating a Vulkan object called a logical device (VkDevice), usually just referred 
to as "device". If a physical device is a representation of the actual G P U and its capabilities, 
the logical device can be considered an actual G P U driver along with its configurations. 
Most of Vulkan commands from this step on will take the VkDevice as an argument because 
they will relate to a specific device that was selected and initialized. The concept of logical 
device allows for use of multiple GPUs at once. For every G P U a device is created, and 
then it is possible for each device to have a specific subset of extensions enabled and process 
specific commands while communicating of sharing tasks with other devices. 

Engine: :createLogicalDevice() checks the support of all required device features 
and creates the logical device. From the newly created logical device the aforementioned 
queue families are fetched using vkGetDeviceQueue function. 

3.3.4 Swapchain 

Swapchain (VkSwapchainKHR 6 ) is the Vulkan object that is necessary to present images 
to the screen. Presenting images is technically optional, because Vulkan can be used with 

6KHR postfix indicated that the object is part of a Vulkan extension ratified by Khronos. 

35 



GPUs that do not have any output device connected, so swapchain is not a part of the core 
Vulkan A P I , instead it is part of a device extension VK_KHR_swapchain. 

Swapchain functions as a queue of images awaiting display on the screen. Its primary 
objective is to coordinate the presentation of images with the screen's refresh rate. Applica­
tion obtains one of the images to draw on it and subsequently places it back into the queue. 
The specific mechanics of the queue and the criteria for displaying an image vary based on 
the configuration of the swapchain. Generally the number of images in swapchain is set to 
be 2 or 3 for double-buffer or triple-buffer rendering respectively, however this number is 
limited by the minimum number supported by the G P U . 

Function Engine: :createSwapchainO queries the swapchain properties available for 
current device, chooses the surface image format, color space and present mode. This 
functioned tries to always pick the best and most suitable image format & color space pair 
from the list of supported ones. Thus, if the connected display device supports some H D R 
format, this format gets the priority over the SDR ones. Table 3.1 shows the list of image 
format & color space pairs that vulkan-hdr-demo supports. Priority drops from top to 
bottom. 

VkFormat VkColorSpaceKHR 

VK_..._A2B10G10R10_UN0RM_PACK32 VK_..._HDR10_ST2084_EXT 

VK_....UNDEFINED VK_..._DISPLAY_P3_N0NLINEAR_EXT 

VK_....UNDEFINED VK_..._DCI_P3_N0NLINEAR_EXT 

VK_..._R16G16B16A16_SFL0AT VK_..._EXTENDED_SRGB_LINEAR_EXT 

VK_..._A2B10G10R10_UN0RM_PACK32 VK_ . . . _BT2020_LINEAR_EXT 
VK_..._R8G8B8A8_SRGB VK_..._SRGB_NONLINEAR_KHR 

Table 3.1: Main supported swapchain image format & color space tuples in vulkan-hdr-
demo. 

HDR color spaces are in bold, SDR color spaces with wider gamut are emphasized. 
VK_FORMAT_UNDEFINED means any format is accepted. 

The present mode is chosen to be VK_PRESENT_MODE_MAILBOX_KHR 7 . It uses a list of 
images, and while one of them is being displayed on the screen, the scene will be continuously 
rendered to the others in the list. Whenever it is time to display an image, the most recent 
one is selected. This is the mode normally used for applications that use tripple-buffering 
which is true for vulkan-hdr-demo. 

At the end of the function vkGetSwapchainlmagesKHR is called to get the images 
(Vklmage) from the swapchain. Vklmage can be interpreted as a handle to an actual resource 
on the G P U , so it does not need to be created by the user. The acquired Vklmage objects 
are later used to create VklmageView and VkFramebuf f er objects needed for rendering. 

One thing to mention is that because swapchain also creates the associated images, 
user needs to specify current window dimensions when creating it. For that reason it has 
to be recreated every time a window is resized. Because all window input in vulkan-
hdr-demo is handled by GLFW library, the occurence of window resize is reported by a 
callback assigned via glfwSetFramebufferSizeCallbackO. Once the window is resized 

7More about presentation modes can be found in Khronos registry: https://registry.khronos.org/ 
vulkan/specs/1.3-extensions/man/html/VkPr esentModeKHR.html. 

36 

https://registry.khronos.org/


and this callback gets executed it calls Engine: :recreateSwapchain() function that frees 
the previous swapchain resources and creates a new one with updated window dimensions. 

3.3.5 Renderpasses 

At this point a renderpass needs to be created. Concept of a renderpass is exclusive to 
Vulkan. Its main purpose is to provide the driver with more information about the state of 
the images being rendered to allow for potential optimizations. A renderpass encapsulates 
the execution of graphics commands (compute ones can be executed without a renderpass). 
VkRenderPass object contains information about attachments (VkAttachment), which are 
basically the images being rendered to. 

There is an object closely connected to a renderpass: a framebuffer (VkFramebuf f er). 
The concept of a framebuffer as a rendering target is not a Vulkan innovation. Framebuffer 
is present in other APIs like OpenGL. But in Vulkan a framebuffer is created with regard 
to a specific renderpass which was generally the source of frequent questions from the user 
community. 

Setting up renderpasses and framebuffers can be a tedious process, especially when there 
are multiple rendering steps. This is mainly because renderpass consits of subpasses which 
are responsible for image layout transitions and synchronization. This further complicates 
the logic of the program and to keep all the synchronization in order an application usually 
has no other way left than to use something like a scene graph 8 to automatically resolve all 
the necessary layout transitions and memory barriers operations when creating a renderpass. 

These complications that are actually not guaranteed to bring any performance benefit 
on a regular (non-tiled) G P U had induced Khronos Group 9 to release the VK_KHR_dy-
namic_rendering extension that removes the need to use VkRenderpass and VkFrame-
buffer objects completely 1 0 . Furthermore, starting from Vulkan 1.3 this extensions is 
now part of the core A P I . 

Originally I was developing vulkan-hdr-demo without this extension but as soon as 
the program got more complicated in terms of synchronization I decided to enable this 
extension which allowed me to reduce and simplify the initialization code. So currently 
while recording command buffer vkCmdBeginRenderingKHR command is used to begin 
rendering which simply takes as input VklmageView objects. 

3.3.6 Pipelines 

The Vulkan pipeline object is a fundamental concept in Vulkan A P I that represents the 
complete G P U configuration for drawing and computational operations. It defines how 
graphics or compute data is processed and transformed by the G P U . 

A VkPipeline object consists of several configuration structures that define various as­
pects of the rendering process, including shader stages, vertex input, rasterization settings, 
multisampling, color blending, and more. 

Implementation of Engine: :createPipelines() function that creates all graphics and 
compute pipelines is contained in pipelines. cpp module. There are three graphics pipelines: 

8 A scene graph is a hierarchical data structure commonly used to organize and manage the objects within 
a 3D scene by representing the relationship between objects and their transformations. 

9 The Khronos Group, Inc. is an open, non-profit, consortium developing and maintaining interoperability 
standards for computer graphics and machine learning, https://www.khronos.org/. 

10Announcement of VK_KHR_dynamic_rendering in Khronos blog: https://www.khronos.org/blog/ 
streamlining-render-passes. 

37 

https://www.khronos.org/
https://www.khronos.org/blog/


for scene objects (main model and sphere model of light sources), for skybox and for shadow 
pass (rendering of shadows to the cubemap). Compute pipelines on the other hand are nu­
merous. It is not even enough to create a single pipeline per a post-processing effect because 
most of them include several stages each of which is a separate shader. And sometimes even 
if the same shader is used for several stages, the input data bound through descriptors is 
different for each stage, so it still requires creating a separate pipeline. 

The shaders are written in GLSL (OpenGL Shading Language), which is a high-level 
shader language with a C-like syntax. The code is them compiled into SPIR-V (Standard 
Portable Intermediate Representation), an intermediate language for graphics and parallel 
computing. The compilation is done using an open source command line tool maintained 
by Google named glslc. For convenience during development I created a python script 
that compiles all the shaders that are located in assets/shaders/src folder. This script 
is called every time a project is built. This is achieved through CMake 1 1 custom target 
dependency. 

The compiled shaders for each pipeline are read as binary to create shader modules. A l l 
other configuration data structures are set as well and supplied for pipeline creation. 

3.3.7 Descriptor sets 

Descriptor sets define how resources are bound to shader stages during rendering and com­
pute operations. They are organized by descriptor set layouts and allocated from a de­
scriptor pool. Each descriptor set consists of descriptor bindings that represent specific 
resources accessed by a shader. During operations, a descriptor set is bound to a pipeline 
layout, allowing the shader to access the specified resources. 

The function Engine: :createFrameDataO creates all descriptor sets along with com­
mand buffers and synchronization primitives. A l l these objects are created together in this 
function because a separate copy of them all is needed per each frame in flight 1 2 , so in case 
of vulkan-hdr-demo 3 copies of them is created in this function. If there was only a single 
command buffer and single group of descriptor sets, program would need to wait until these 
resources are no longer in use thus disallowing to supply multiple frames for rendering at 
once. This is also true for Uniform Buffers 1 3 and Shader Storage Buffers 1 4 which are 
created in the same function. They are used in specific shaders and are thus supplied to 
specific descriptor sets. 

Managing descriptor sets is a crucial part of any Vulkan application because this process 
gets incredibly complicated as soon as more shaders and pipelines get involved. Manually 
creating all descriptor sets is definitely far from optimal, so implementing some kind of 
automatization for this task is very important. 

I borrowed the abstraction from Victor Blanco's Vulkan Guide [3], and it proved to be 
enough for the needs of vulkan-hdr-demo. 

The interface of descriptor set creation is defined in vk_descriptors. cpp module. It 
includes 3 classes: 

1 1 CMake is a popular open source build automation software for building C and C++ applications. 
12 Frame in flight is a frame that is currently being rendered to or presented to the screen. 
1 3 Uniform Buffer Object (UBO) is a G P U buffer that stores read-only data, which is constant across 

multiple shader invocations. 
14Shader Storage Buffer Object (SSBO) is a G P U buffer that allows a shader to perform both read and 

write operations with its data. As a result, the data may not remain constant across multiple invocations. 

38 



• DescriptorAllocator is the class that handles descriptor set allocation. It creates 
a new descriptor pool when the first set is created and then the subsequent sets are 
allocated from the same pool. When the pool has not sets left to allocate a new pool 
is automatically created. On cleanup the allocator destroys all the pools which also 
results in all the allocated sets being destroyed. 

• DescriptorLayoutCache is the class that contains all the created descriptor lay­
outs. Layouts are created and added to the cache by create_descriptor_layout () 
method. When the method is called, it searches through the std: :unordered_map 
cache of layouts to check if there is one with the same bindings and returns it if there 
is one. Main purpose of this class is to avoid creating duplicate layouts. 

• DescriptorBuilder is the central class of the abstraction. The process of creating a 
descriptor set comes down to calling the Build method which takes DescriptorAl­
locator and DescriptorLayoutCache classes as parameters. Then for every binding 
that is present in the shader either bind_buf fer () or bind_image () is called to sup­
ply all the necessary data needed to create a VkDescriptorSetLayoutBinding and 
a VkWriteDescriptorSet and store them into lists. After that the creation process 
is finalized with a call to build () method which creates (or retrieves) a layout with 
create_descriptor_layout () using the supplied bindings data, allocates the set 
and updates it with supplied VkWriteDescriptorSet objects. 

For the most part the code was taken as-is, only the two functions were added by me: 
bind_image_empty () used to postpone the image descriptor writing for later and bind_-
image_array() to bind a whole array of image descriptors at once, which is useful for 
mipmap pyramids used in a couple of post-processing techniques. 

3.3.8 Command buffers and synchronization primitives 

Command buffers in Vulkan are data structures that store a sequence of commands that are 
sent to the G P U for execution. They act as containers for commands that instruct the G P U 
on how to perform various operations, such as drawing objects, performing computations 
or updating buffers. 

In Vulkan semaphores are binary signaling mechanisms that are used for synchronization 
between certain G P U operations. A n operation can either wait at a semaphore or signal 
it. Every operation that is waiting at the semaphore will not start execution until the 
semaphore is signaled which will happen when a certain operation ends. 

Fences, however, are used for GPU to CPU synchronization. Using a fence the program 
can tell when a certain operation or set of operations have finished execution on G P U . 

The aforementioned Engine: :createFrameDataO function creates a single command 
pool per frame from which a command buffer is allocated. Then there are two types of 
synchronization primitives that are created: two semaphores and a fence. 

• First semaphore (imageAvailableSemaphore) will be signaled when an image finishes 
being presented and the vkQueueSubmit () function will wait at this semaphore to 
submit the image rendering commands for execution. This is done to ensure that 
rendering to a particular swapchain image does not start before this image has finished 
being presented on screen. 

39 



• Second semaphore (renderFinishedSemaphore) is the opposite of the first one. It 
will be signaled when the frame is completely rendered and vkQueuePresentKHRO 
will wait for that point in time to supply the frame for presentation on screen. 

• A single fence, (inFlightFence) is used to tell when all previously submitted com­
mands for the current frame finish execution to only then begin next command buffer 
recording. 

Same as for the previously mentioned resources it is important to have separate copies 
of these synchronization objects per frame in flight to ensure that synchronization is always 
related to a specific frame. 

3.4 Scene loading 

The application allows loading and saving different scenes containing a sample OBJ model. 
There is a number of scenes that already come together with the program in the GitHub 
repository at relative path: assets/scenes. 

The scenes are stored in JSON format which is known to be lightweight and human-
readable. This lets the user conveniently modify any settings of a saved scene or easily 
create a new scene. 

The library utilized for JSON parsing is JSON for Modern C++ 1 5 by nlohmann. This 
library is very easy to integrate and has minimalistic and intuitive object-oriented A P I . 

A scene save file contains: 

• Light properties: enabled/disabled, light intensity and position. There is a total of 
4 lights in a scene, any of them can be disabled or configured. The light parame­
ters can be set through user interface(y'\z. Section 3.7) which allows for additional 
customization of the scene's visual appearance. 

• Main model properties: name, position and scale. Not all models have an appropriate 
size when loaded and are often misplaced. To achieve better visual experience, the 
aforementioned properties are provided for customization on the user side. 

• Skybox texture name. Skybox cubemaps 1 6 are always stored in H D R format to allow 
for correct demonstration of implemented post-processing techniques. A l l skybox 
textures are stored at the path assets/images/skybox/ in their individual folders. 

The scene loading process starts right after Vulkan initialization and can be summarized 
in the following steps: 

• Parse the .json save file. 

• Import all models from their . obj files. This includes: loading the main (sample) 
model using the path contained in the save file, loading sphere model that is used to 
display light sources and a cube model to render the skybox on. 

• Load skybox texture and execute all the necessary initialization steps to enable skybox 
rendering. 

The user is also able to load and save a scene at runtime. 
15 JSON for Modern C++: https://github.com/nlohmann/json 
16 Cubemap is texture, that consists of six square images, each corresponding to one face of a cube. 

40 

https://github.com/nlohmann/json


3.4.1 Mode l import 

The scene models are stored in .obj format and are located at the relative path asset­
s/models. The tinyobjloader1' library is used to parse the .obj file and extract all the 
necessary information about the model. Information about vertices and normals (optional) 
is contained in .obj file, while materials that correspond to certain vertex groups are de­
scribed in .mtl file. 

To be able to render models that consist of multiple materials, each model contains a 
list of meshes that all have their own material parameters that will be supplied to G P U 
when rendering starts. 

Engine: :loadModelFromObj () function first calls tinyobj : :LoadObj that parses the 
.obj and .mtl files into library's internal data format, which is represented by several data 
structures: tinyobj::attrib_t, tinyobj::shape_t, tinyobj::material_t. 

These structures are then processes to extract all the necessary information about ver­
tices, normals and materials. For each distinct material that has a diffuse and/or bump 
texture the textures are loaded using stb

1 8

 library. 
Other material properties like ambient, diffuse and specular color are stored as param­

eters for each mesh. 

3.4.2 H D R skybox loading 

Each scene is loaded along with an HDR skybox, which name is specified in . json scene 
file. The individual skybox cubemaps are located at the path assets/images/skybox 

in individual named folders. Each cubemap is loaded as 6 separate .hdr images, each 
corresponding to a side of the cube, where (n|p) (x|y|z) .hdr is the name of the specific 
side (viz. Figure 3.3). 

Top (+Y) 
py.hdr 

Left (-X) 
nx.hdr 

Front (+Z) 
pz.hdr 

Right (+X) 
px.hdr 

Back (-Z) 
nz.hdr 

Bottom (-Y) 
ny.hdr 

Figure 3.3: Six sides of an HDR skybox. 

The implementation of the skybox loading process is based on Sascha Willems' Vulkan 
cubemap demo (source code located at: https://github.com/SaschaWillems/Vulkan/ 

17tinyobjloader: https: //github.com/tinyobjloader/tinyobjloader 
18stb: https : //github.com/nothings/stb 

41 

https://github.com/SaschaWillems/Vulkan/


blob/master/examples/texturecubemap/texturecubemap.cpp). A l l cubemaps were down­
loaded from Poly Haven website (https://polyhaven.com/). 

3.5 Rendering of a scene 

After Vulkan initialization is finished and a scene is loaded the render loop starts which 
is contained in Engine:: Run () function. A l l the functions that execute the rendering 
operations are defined in draw.cpp module. The main one is Engine: :drawFrame() that 
contains all the logic of drawing a frame to the screen. 

The logic of this function is schematically illustrated on Figure 3.4. The stage Record 
command buffer is the one where all the rendering operations are listed. This stage is 
represented by the Engine: :recordCommandBuffer() function. 

Essentially the whole rendering process consists of several stages or, so-called, passes. 

42 

http://polyhaven.com/


while not WINDOW SHOULD CLOSE 

Draw frame 

1 t 
i 

I 

vkAcquireNextlmageKHR(...) 

Acquire next 
image 

Fence 

Record 
command 

buffer 

Semaphores 

Submit 
command buffer 

to queue 

O 
wait Fence 

("Image in flight") 

-wait-
Semaphore 

("Image available") 

'-signal-
Semaphore 

("Render finished") 

Semaphore -signal-

± 
Present image to 

queue 

Figure 3.4: Execution flow of Engine: :Run() function. 

43 



3.5.1 Shadow Pass 

This is where all the objects' shadows are rendered. A cubemap array is used to store 
omnidirectional shadow map per each light source. For every side of the light source (Up, 
Down, Right, Forward etc.) all objects are rendered with the corresponding projection 
matrix, and the depth buffer is stored to the specific side (layer) of the cubemap. 

The implementation of shadow mapping technique is well known and probably doesn't 
need another explanation especially as it isn't related to the objective of this thesis. I have 
decided to implement shadows because I believe it allows to better demonstrate any H D R 
effect, otherwise the contrast of the scene would probably be unrealistic. 

The sources that I have based my implementation of the shadow mapping on are [36] 
and [35]. 

3.5.2 Viewport Pass 

A l l objects of the scene are rendered in this pass. I have named it viewport pass because 
it renders the content that will be displayed in the viewport{y'\z. UI Section 3.7), and the 
rendered image will have the resolution of the viewport. 

The objects are rendered in Engine: :drawObjects() function. It loops through every 
mesh of every model and loads the required parameters to G P U according to the mesh 
material. 

The data for material is sent through push constants, these include mesh indices that 
are used to index the SSBO that contains all the materials data. This SSBO is loaded to 
G P U beforehand by Engine: :loadDataToGPU() function along with other buffers. 

There is also a U B O that contains scene parameters, including camera position, shadow 
parameters and all parameters of light sources. There are 4 light sources in the scene that 
the user can move and configure through user interface. 

H D R Skybox is rendered last, after all objects. 
Viewport pass uses Phong lighting model19 to light up the scene taking into consideration 

the shadow map produced by the previous pass. For the materials that have bump textures, 
bump effect is applied. 

3.5.3 P o s t F X Pass 

Depending on which post-processing effects are currently enabled, this pass will execute 
them in the correct order. User has the ability to turn individual effects on and off through 
UI. More about all the effects that are implemented will be written in the following Sec­
tion 3.6. That section will also include the description of various abstractions that were 
implemented to support the correct execution of multiple effects, enabling and disabling 
them. 

3.5.4 Swapchain Pass 

This is the last pass that is necessary only because of the presence of user interface. I have 
named it swapchain pass because it outputs the image with the resolution of the swapchain 
(i.e. resolution of the window itself). It executes all rendering commands that are provided 

19 Phong reflection model is an empirical model of local illumination that describes rough and shiny surfaces 
with the combination of diffuse and specular reflection. 

44 



by ImGui to render the interface. ImGui takes the viewport texture (the one rendered as 
a result of viewport pass) and combines it with the rest of UI to produce the final image. 

3.6 Post-processing effects 

This chapter will finally introduce to the reader the implementation of H D R techniques 
that were described in the State of the art chapter (2). 

A l l H D R techniques in vulkan-hdr-demo are implemented as shaders to make use of 
modern G P U capabilities. These techniques are essentially post-processing effects, so I 
have decided to exclusively use compute shaders 2 0 to implement them. There is a couple 
of reasons for that: 

• They prove to be efficient for image processing tasks such as filtering, luminance 
computation, sampling etc. 

• In Vulkan A P I compute shaders are easier to integrate into the rendering pipeline than 
fragment shaders 2 1 , which cannot be executed without a vertex shader. Fragment 
shaders would also require the user to create a renderpass, bind vertex buffers etc. 

Given that vulkan-hdr-demo allows the user to turn individual effects on/off and com­
bine them freely, it was necessary to come up with a suitable abstraction that would allow 
that functionality. 

3.6.1 P o s t F X abstractions 

Because every post-processing effect requires invocation of multiple shaders, each effect is 
split into so-called stages (PostFXStage) that encapsulate a certain shader. The map of 
stages is contained in the class named PostFX, which is the cental point of post-processing 
abstraction layer. Each stage in the map is indexed by a string key which starts with 
the prefix of the effect this stage is part of. PostFX class also contains the maps for 
attachments (Attachment) and mipmap attachments (AttachmentPyramid). Attachments 
are essentially the render targets or sources for individual shaders that get executed as part 
of a post-processing effect. This means that each PostFXStage has a certain number of 
attachments that it interacts with. When a stage is executed, the attachments it requires 
need to be bound to be accessible from the shader. 

Usually a shader would only require a single image per attachment (i.e. an input image 
or output image). However, certain more sophisticated techniques like Exposure Fusion 
(Section 2.5) or Bloom (Section 2.6) require whole mip chains as attachments, because some 
of their shaders may be executed sequentially over mips of different sizes, for example, in 
case of downsampling or upsampling. This is why I have decided to add AttachmentPyramid 
type, which provides a uniform interface for the whole image pyramid (mipmap). Figure 
3.5 shows an example scheme of post-processing effect stages and their attachments. 

As already mentioned in the Section 3.5, post-processing effects are executed after the 
scene is rendered as their input is the rendered image of a 3D scene. Depending on which 
effects are currently enabled, its stages get sequentially executed. For every stage: 

2 0 Compute shader is a programmable stage in modern GPUs that allows for execution of general-purpose 
parallel computing tasks. 

2 1 Fragment shader is a programmable stage of graphics pipeline responsible for computing the color and 
other attributes for individual pixels on the screen. 

45 



Figure 3.5: Interaction scheme of PostFX stage. 

• The pipeline is bound, which enables the use of the corresponding shader. 

• The necessary image attachments are bound to descriptor sets and the descriptor sets 
are updated which transfers the updated memory to G P U . This step is optional as 
it only needs to be done if some of the attachments have changed. Practically, for 
performance reasons this step is only executed once during initialization because for 
each stage the attachments do not change. 

• Descriptor sets are bound to the pipeline to make their updated memory available in 
the shader. 

• The compute shader operation is dispatched (executed). 

This functionality is implemented in methods of PostFXStage class. Figure 3.6 illus­
trates the process of execution. Usually, because input for a stage is the output from 
the previous stage, a memory barrier is needed to ensure correct memory synchronization 
between individual stages. 

46 



Post-processing Effect 

PostFX Stage 

Bind 
Pipeline 

Update 
descriptor 

sets 

Bind 
Descriptor 

Sets 

> 

Dispatch 

J Memory ' 
( barrier : 

PostFX Stage 

Bind 
Pipeline 

Update 
descriptor 

sets 

Bind 
Descriptor 

Sets 

> 

Dispatch 

Post-processing Effect i 

• • • 

Figure 3.6: Execution scheme of post-processing effects. 

47 



3.6.2 Uniform tone mapping operators 

The following figures show comparison of individual global tone mapping operators against 
the original clamped H D R image. A l l the images have bloom effect applied, because this 
allows to better demonstrate each of the effects. 

The assessment of individual operator is subjective, and the reader is free to decide 
which of the operators he finds the most visually appealing. I will try to evaluate them 
from my point of view. 

Figure 3.7: Original image (left) vs. applied Photographic (Erik Reinhard) tone mapping 
(right). 

On the Figure 3.7 we can see the effect of Reinhard's photographic operator that was 
described in Subsection 2.2.1. We can see that it allows the viewer to see a big portion 
of the overexposed outdoor area (on the skybox). It, however, gives the image a bit of a 
"washed out" look. 

Figure 3.8: Original image (left) vs. applied Uncharted2 (John Hable) tone mapping (right). 

18 



Uncharted 2 filmic operator by John Hable that was described in Subsection 2.2.2 is 
shown on the Figure 3.8. At the first glance, it is hard to spot any difference between 
Reinhard's operator and this one, but by taking a closer look, it is possible to see, that 
this operator produces a bit more colorful and rich image, because it doesn't compress 
the brighter values so much. However, as a result, slightly more details are lost in the 
overexposed area on the skybox. 

Figure 3.9: Original image (left) vs. applied ACES (Krzysztof Narkowicz) tone mapping 
(right). 

Figure 3.9 demonstrates the ACES-based operator by Krzysztof Narkowicz (Subsection 
2.2.3). It provides even less compression of the highlights region, which can be desired if 
our intention is to produce an impression of a highly lit outdoor scene. 

The differences between the demonstrated operators are subtle, and their visual im­
pression depends on many factors, including the selected skybox, light intensities in the 3D 
scene, lighting conditions in the room around the viewer etc. 

Implementation of all global operators can be found inside the GLSL shader shader-

s/src/incl/tone_mapping.glsl. 

3.6.3 Bilateral filter tone mapping 

Figures 3.10 and 3.11 show the results of bilateral filter tone mapping by Durand and 
Dorsey, which was described in Section 2.4. 

We can see that this relatively simple spatially-variant tone mapping operator allows 
to extract a lot of details from the image. It is possible to see the highly exposed outdoor 
region on the skybox, while also seeing a lot of details in the darker regions. Unfortunately, 
as a result of this operator some color values become oversaturated. 

The user can configure the following parameters: 

• Base offset - a variable that is added to the pixel values of the base layer. 

• Base scale - a variable that the base layer is multiplied with (after the offset). 

• Bilateral radius - the radius of bilateral filter (in pixels). Increasing this parameter 
can negatively impact performance!. 

49 



Figure 3.10: Original image (left) vs. applied Bilateral (Durand and Dorsey) tone mapping 
(right). Wi th enabled bloom effect. 

(Base scale = 0.3, base offset = 14, bilateral filter radius = 5). 

Figure 3.11: Original image (left) vs. applied Bilateral (Durand and Dorsey) tone mapping 
(right). No bloom effect. 

(Base scale = 0.3, base offset = 14, bilateral filter radius = 5). 

50 



• Range sigma - the sigma used for value difference in bilateral filter. Normally shouldn't 
be modified. 

The spacial sigma is automatically set to 2% of the viewport size. 
Because this operator requires several subsequent image processing operations the imple­

mentation is split between multiple compute shaders that can be found at the path: shader-
s/src/ltm_durand_*. comp. There are several preprocessor macros defined in shaders/in-
cl/def s .glsl that modify the implementation of the operator. Most of them are inactive 
and are only there for historical reasons. 

3.6.4 Exposure fusion 

This effect was arguably the most hard to implement. It consists of multiple stages, which 
include recursive downsampling and upsampling of mip maps. 

Figure 3.12 demonstrated the effect applied with bloom turned on. We can see that 
the extremely exposed outdoor region on the skybox becomes clearly visible, but it is 
surrounded by a relatively big halo. 

It is for the reader to decide whether the halo effect looks realistic or not, considering 
the enabled bloom effect, but I would rather call it a technical limitation of this method. 
Specifically, the amount of exposure levels used in my implementation seems to not be 
enough for this particular case. I have used only 3 exposure levels, the so-called shadows 
exposure (for the darker regions), normal exposure (normal brightness of the input image) 
and highlights exposure (for the brighter regions of the image). Introducing more levels 
would produce a better visual quality but would be much less performant and harder to 
implement. 

The halo could also potentially be decreased by tweaking the parameters of the bloom 
effect. 

Figure 3.12: Original image (left) vs. applied Exposure Fusion (right). Wi th enabled bloom 
effect. 

Shadows exposure: 2.0, Highlights exposure: -5.5. 

If we take a look at Figure 3.13, where bloom effect is disabled, we can see that there 
is almost no halo visible (only slightly around the outdoor region of the skybox) and the 

51 



amount of details preserved in the image is truly impressive. However, to achieve a good 
result it is necessary to set the exposure levels accordingly, which can be a bit of a problem 
in case this effect is used in a dynamic real-time rendering application. It could be a goal for 
the future research to find a way to make the effect look right in any dynamic environment. 

Figure 3.13: Original image (left) vs. applied Exposure Fusion (right). Bloom effect dis­
abled. 

Shadows exposure: 2.0, Highlights exposure: -5.5. 

There are several parameters that user can alter: 

• Shadows exposure - the exposure level of the darker region of the image. 

• Highlights exposure - the exposure that is to be applied to the brighter regions. 

• Exposedness weight sigma - defines the weight of the exposedness criterion. For more 
details see Section 2.5. 

Individual shaders can be found at the path shaders/src/ltm_fusion_*. comp. 

3.6.5 Bloom effect 

Out of two variants of bloom effect described in Subsection 2.6.2, I have implemented the 
more realistic one in my application, following all the individual stages of the algorithm. 

Figure 3.14 demonstrates the result of my implementation of the bloom effect in com­
parison with original unmodified image. It makes little sense to use such effect without 
tone mapping so the images with enabled bloom are also tone mapped with ACES-based 
global operator (was described in Subsection 2.2.3). 

From my point of view, the effect seems relatively realistic. The bright regions of the 
image are covered with a smooth bloom halo which makes them naturally blend with the 
surroundings. 

There is just a single parameter that the user is able to set for this effect: 

• Bloom weight - multiplier for the bloom layer that is combined with the original image. 
It defines bloom intensity/brightness. 

52 



Figure 3.14: Results of bloom effect implementation demonstrated on various H D R 
skyboxes. Original image (left), final tone-mapped image (right). 

Bloom weight =0.3, number of bloom mips = 7. 
Tone mapping used for final image: ACES Narkowitz (viz. Section 2.2.3) 

53 



My implementation of the effect has a minor flaw, which is the presence of subtle stair­
like artifacts around the brightest regions of the image (demonstrated on Figure 3.15). 

Figure 3.15: Stair-like artifacts in my implementation of the bloom effect. 
Artifacts become visible around the brightest regions. 

Even though I have used the proposed sampling method of 13 bilinear samples for down-
sampling and tent filter for upsampling, the artifacts are still visible. I am not entirely sure 
what is the cause of this problem, but I suspect this might be because I have implemented 
the bilinear sampling manually. This is because the image object (image2D in GLSL) does 
not support subpixel sampling (i.e. it can only load/store at integer pixel coordinates). I 
have chosen to sample from the image object in all compute shaders, because unlike sam-
pler2D it allows for both read and write operations on the image, thus, it is also easier to 
integrate it into the compute pipeline. If I had used sampler2D, I would have to add a lot 
of image layout transitions between read and write access and also the shader code would 
probably become more complicated. 

The bloom shaders are located at the path shaders/src/bloom_*.comp, the shader 
code for various sampling methods can be found in shaders/incl/sampling.glsl. 

3.6.6 Dynamic exposure mechanism 

It is hard to demonstrate the process of dynamic exposure adaptation by taking images of 
the scene, but Figure 3.16 tries to somehow show the adaptation process. 

As described in Subsection 2.3.2, first the luminance histogram is computed, then the 
histogram is summed up and averaged to get the average luminance of the image and finally 
the eye adaptation coefficient is calculated based on the average luminance. This coefficient 
is used to shift the overall luminance of the scene. 

The individual parameters of eye adaptation, that are controlled by the user are: 

• Minimal/maximal log2 luminance - specify the range of luminance values in the his­
togram. When calculating the bin index for the input luminance, the input luminance 
is converted to log2 space and mapped to the \MINl0g2 — MAXlog2] range. 

• Lower/upper luminance histogram bounds - allow to skip some percentage of the dark­
est or brightest pixels, to make the effect generally smoother. The percentage that 
should be skipped may vary depending on the scene and artistic preferences. 

• Histogram bin index weight - the weight that the histogram bin index is multiplied 
with at the stage of average luminance computation. The higher this weight is, the 

54 

file:///MINl0g2


Figure 3.16: Approaching highly lit area (top) and shadow area (bottom) from far to close 
distance. 

The image darkens as the camera gets closer to the bright area and gets brighter when 
approaching the area in shadows. 

55 



brighter the image will be in general, but also when it is higher than 1, brighter 
regions of the image will have bigger influence than darker ones. This parameter was 
not described in the original implementation of eye adaptation technique and was 
added by me because it provides more options for configuration to achieve a more 
prominent visual effect. It is left for the user to decide whether to use this parameter 
or not. 

The mentioned parameters are supplied to G P U through special Shader Storage Buffer 
Object (SSBO) and a Uniform Buffer (UBO) for read-only data. 

Figure 3.17 shows the UI plots that I have added both for debugging purposes and for 
visualization of the adaptation process. 

T Adaptation Window 

Adaptation tine coefficient 

Figure 3.17: Real-time UI plots of eye adaptation window (top) and luminance histogram 
(bottom). 

Both graphs are plotted in real-time. 

A l l 3 stages of exposure adaptation are implemented on G P U as compute shaders. 
The individual shaders can be found at the path: shaders/src/expadp_*.comp. The only 
operation that was implemented on C P U is the calculation of time coefficient used in inverse 
exponent function. It was done to speed up performance and to avoid loading time delta 
(time elapsed since last frame) to G P U . 

3.6.7 G a m m a settings 

Since it is unknown which format & color space combination will be chosen for the swapchain 
on the user's device, it makes sense to allow the user to choose gamma settings manually. 
The user is presented with 3 options: 

• Off (0) - no gamma correction is applied. This is the default option. 

56 



• On (2.2) - applies gamma of 2.2, which is a relatively close approximation to E O T F 
2 2 of sRGB space. 

• Inverse ( ^ ) - inverse gamma (approximate sRGB O E T F 2 3 ). 

By default, it is assumed that both the format and color space are non-linear, so there 
is no need to manually add any gamma correction. However, it can potentially happen 
that only a linear H D R color space is supported, so the user is able to change the gamma 
settings to achieve better visual outcome. 

Because there is a discrepancy between the format of ImGui color values and the non­
linear color spaces that are preferred for the swapchain, I have decided to modify ImGui 
vertex shader source code to make the colors look right on sRGB render target. I have sim­
ply added a conversion from sRGB to linear space for the input color values (viz. Listing 
3.1). 

vec4 sRGBtoLinear(vec4 sRGB) { 

bvec3 cutoff = lessThan(sRGB.rgb, vec3(0.04045)); 

vec3 higher = pow((sRGB.rgb + vec3(0.055)) / 

vec3(1.055), vec3(2.4)); 

vec3 lower = sRGB.rgb / vec3(12.92); 

return vec4(mix(higher, lower, cutoff), sRGB.a); 

} 

Listing 3.1: sRGB to linear conversion 

3.7 User interface and navigation 

To implement the user interface in my demo application (vulkan-hdr-demo) I have decided 
to use Dear ImGui, an easy to integrate, immediate-mode graphical user interface library. 

The application provides a complex user interface with separable windows, which can 
be accessed through the menu bar. The user has multiple options for configuration of 
individual effects and scene parameters. Figure 3.18 shows the breakdown of individual UI 
windows. 

The user is able to: 

• Freely move around the rendered 3D scene using W, A, S, D keys and rotate the 
camera using mouse movement. 

• Assess the visual quality and efficiency of individual post-processing effects by toggling 
them on and off with the help of PostFX Pipeline window. 

• Modify and configure scene settings using Scene window. This includes enabling/dis­
abling shadows, setting shadow quality, moving main model and modifying camera 
field of view. 

22Electro-Optical Transfer Function (EOTF) defines how brightness values in the digital domain are 
mapped to the brightness levels that are actually displayed on the screen. 

2 3 Optical-Electronic Transfer Function (OETF) is the inverse process of EOTF, converting an optical 
signal into digital visual data. 

57 



Figure 3.18: Breakdown of vulkan-hdr-demo application UI. 

• Tweak lighting settings, which includes moving individual light sources, setting their 
intensity and light radius, or turning them on and off. This can be done through the 
Lighting window. 

• Take a screenshot of the viewport. This can be particulary useful, because it allows 
to later compare the results of different effects, or to analyze the imagess using some 
other software. 

• View individual image attachments in real-time in the Attachment viewer window to 
get a better understanding of how individual effects are implemented. This visualiza­
tion capability can also be extended relatively easily in case new effects are added to 
the application. The Attachment viewer is can be seen on Figure 3.19. 

A l l windows can be closed and reopened through the Menu bar. 
UI code is contained in u i .h and u i . cpp files. In case the user would like to add new 

H D R effects, it would be relatively easy to extend the UI to display various parameters of 
a newly added effect. 

58 



Figure 3.19: Attachment viewer window in vulkan-hdr-demo application. 

3.8 Limitations and possible improvements 

I was working on this thesis in a restricted time interval and without much previous knowl­
edge in computer graphics field, so, obviously, this work may have various flaws and limi­
tations. 

Following is the list of flaws of this thesis that I think would be great to fix and improve­
ments that could serve as the next steps in further research on this topic. The individual 
points are ordered descending by priority: 

1. Implement Physical Based Rendering (PBR) pipeline in the application instead of 
Phong lighting model. P B R has become a de facto standard for the rendering pipeline 
in all modern rendering engines. I believe it would also make any H D R effects look 
more natural, especially the Bloom effect. 

2. F ix stair-like artifacts in Bloom effect implementation (viz. Subsection 3.6.5). 

3. Find a way to improve Exposure Fusion effect performance and add more exposure 
levels to increase visual quality. Currently, this effect is probably too taxing in terms 
of performance to be used at runtime, for example, in a video game. However, adding 
more exposure levels would further decrease performance, so it can be a complicated 
problem to find a compromise in this case. 

4. Try interconnecting dynamic exposure with Exposure Fusion. For example, by setting 
exposure levels based on the current average exposure in the scene. It would require 
some trial and error to figure out if it makes sense to try connecting these effects like 
that, but in the end it may lead to great visual results. 

5. Improve dynamic exposure mechanism by automatically setting the bounds for min/-
max luminance. It could be achieved by adding a shader stage at the beginning 

59 



that would calculate min and max luminance in the rendered image. These calcu­
lated bounds would be used in further stages to correctly position the luminance 
histogram. 

6. Implement environment lighting with H D R skybox. Look for a method to add some 
kind of environment lighting using H D R skybox in the application. It would benefit 
the realism of the scene and would allow to better demonstrate various H D R effects. 

7. Refactor and improve application design. Designing a Vulkan application can be a 
very challenging task, and because I was completely new to Vulkan, it is understand­
able that the design, that I came up with is far from perfect. If someone wanted to 
extend my application, it would be a good idea to rethink the design. 

8. Conduct more testing on various devices with monitors that have H D R support. 
During the testing of my application I only had access to one device with a single 
H D R monitor. It would be great to test the application on other HDR-supporting 
devices to see if certain effects play well with H D R display. 

9. Make UI more intuitive and allow for more customization of the scene. E . g. allow 
the user to add other models to the scene at runtime to test H D R effects on different 
scene setups. 

60 



Chapter 4 

Experiments 

Application was tested on 2 devices with different technical parameters. Specifications of 
individual test setups are listed in Table 4.1. Second computer also has a monitor with 
H D R support connected. 

Device G P U C P U Monitor OS 

D l Nvidia GTX1650 Intel Core i7 9750H D E L L P2422H Win 10 
D2 Nvidia R T X 4090 A M D Ryzen 9 7950X3D DELL AW2723DF Win 10 

Table 4.1: Specifications of testing device setups. 
Name of the monitor with HDR support is emphasized. 

Table 4.2 and Table 4.3 contain list of format & color space combinations that were 
supported during testing on test setup Dl and D2 respectively. Additionally, it contains 
the combination that was chosen by the application in the case of each device. 

VkFormat VkColorSpaceKHR 

VK_F0RMAT_B8G8R8A8_UN0RM VK_C0L0R_SPACE_SRGB_N0NLINEAR_KHR 

VK_F0RMAT_A2B10G10R10_UN0RM_PACK32 VK_C0L0R_SPACE_SRGB_N0NLINEAR_KHR 

VK_F0RMAT_B8G8R8A8_SRGB VK_C0L0R_SPACE_SRGB_N0NLINEAR_KHR 

Selected tuple 

VK_F0RMAT_B8G8R8A8_SRGB VK_C0L0R_SPACE_SRGB_N0NLINEAR_KHR 

Table 4.2: Available image format & color space combinations on test setup Dl. 

We can see that on device Dl a typical SDR color space (VK_C0L0R_SPACE_SRGB_-
N0NLINEAR_KHR) was chosen, because this device does not support any H D R formats. 

In the case of test device D2, the selected color space is VK_C0L0R_SPACE_HDR10_-
ST2084_EXT, which is an H D R color space, defined by ITU-R Recommendation BT.2100. 
It uses the perceptual quantizer (PQ) transfer function, that replaces the SDR gamma curve, 
which allows representing luminance level in the range 0.0001 to 10000 cd/m2{nits). 

Table 4.4 contains estimated performance on different testing device setups. Perfor­
mance is listed as Frames per second (FPS), which indicates how many times per second 
the application was able to update the content of the window (i.e. to render the scene 
and redraw the UI). FPS was measured for the interval of 15 seconds, while rapidly moving 
around the scene to ensure that the measurement is not restricted to a specific camera view. 

61 



VkFormat VkColorSpaceKHR 

VK_F0RMAT_B8G8R8A8_UN0RM VK_COLOR_SPACE_SRGB_NONLINEAR_KHR 

VK_F0RMAT_B8G8R8A8_SRGB VK_COLOR_SPACE_SRGB_NONLINEAR_KHR 

VK_F0RMAT_R8G8B8A8_UN0RM VK_COLOR_SPACE_SRGB_NONLINEAR_KHR 

VK_F0RMAT_R8G8B8A8_SRGB VK_COLOR_SPACE_SRGB_NONLINEAR_KHR 

VK_F0RMAT_R16G16B16A16_SFL0AT VK_..._EXTENDED_SRGB_LINEAR_EXT 

VK_F0RMAT_A2B10G10R10_UN0RM_PACK32 VK_C0L0R_SPACE_HDR10_ST2084_EXT 

VK_F0RMAT_A2B10G10R10_UN0RM_PACK32 VK_COLOR_SPACE_SRGB_NONLINEAR_KHR 

Selected tuple 
VK_F0RMAT_A2B10G10R10_UN0RM_PACK32 VK_C0L0R_SPACE_HDR10_ST2084_EXT 

Table 4.3: Available image format & color space combinations on test setup D2. 

F P S 
Effect D l D2 

No effect 185.26 1040.33 
Global T M O 178.33 1027.6 
Eye Adaptation 165.60 982.4 
Bilateral T M O 153.06 937.133 
Bloom 140.33 883.333 
Exposure Fusion 109.13 819.0 

Table 4.4: Performance of individual effects on different test setups. 

From the table it is clear that global tone mapping operators are the most efficient in 
terms of performance, next by efficiency is the eye adaptation, which is also expected as this 
effect doesn't require any complex computations. Bilateral filter tone mapping, however, is 
less efficient, most likely because of bilateral filter itself, which is doing a lot of computations 
(especially if bigger radius is set). Next comes the bloom effect, which is expected to be 
hard on performance, because the downsampling, upsampling and blur is executed for each 
mip level. And by far the most performance-heavy effect is exposure fusion because of how 
many processing stages it requires to achieve the result. 

There is no doubt that there is room for optimizations for every effect, but it would 
require more proficiency and time for experiments. 

62 



Chapter 5 

Summary 

The main goal of this thesis was to describe and demonstrate an extensive range of tech­
niques that can be used to enhance visual quality of 3D virtual environment rendered in 
High Dynamic Range. Before starting to implement various methods of H D R rendering it 
was necessary to conduct an extensive study. This study is thoroughly described in the first 
half of the thesis, starting with the general understanding of H D R concept and continuing 
with different methods of H D R processing. 

The study contains description and illustrations of global tone mapping operators, fol­
lowed by a discussion of exposure and automatic eye adaptation mechanism. Subsequently, 
two local tone mapping techniques were examined: one utilizing a bilateral filter and the 
other employing exposure fusion. The theoretical part is concluded with a section about 
the bloom effect. 

Prior to starting work on the demonstrational application it was necessary to study 
Vulkan A P I , which was a time-consuming and complicated process. During the development 
of the application, the challenge arose which was to come up with a robust structural layer 
around Vulkan A P I that would allow for selection and configuration of multiple H D R 
post-processing effects. Another challenge was to utilize the computational capabilities of 
modern GPUs for implementation of H D R post-processing effects, which involved writing 
an extensive amount of compute shaders. 

The resulting application should be viewed as a 3D rendering engine that can be used 
for exploring different H D R techniques. The application can be extended relatively easily 
by implementing, for example, another post-processing effect. Extensive UI would allow the 
user to display any parameters of their newly added effect, for example, for debug purpses. 

My work, obviously, doesn't come without limitations. There are still many improve­
ments that I have left out due to time restrictions or general lack of extensive experience 
in the topic. First, it would be a great improvement to incorporate the Physically Based 
Rendering (PBR) rendering pipeline as it is the standard of modern 3D rendering engines. 
In the context of further studies on the topic of H D R it would be useful to explore the 
ways to improve performance and visual quality of exposure fusion effect, specifically in the 
context of real-time rendering. As the general aim of further work on this topic I would call 
finding a way of interconnecting all the described H D R effects in a single complete pipeline 
to achieve a realistic visual appearance of the scene under different lighting conditions. 
Specifically that would require improving and correctly configure the eye adaptation effect 
and to connect it seamlessly with the bloom and tone mapping techniques. 

63 



Bibliography 

[1] ACES. Academy of Motion Picture Arts and Sciences online. December 2014. 
Available at: https://www.oscaxs.org/science-technology/sci-tech-projects/aces. 
[cit. 2024-05-03]. 

[2] A D A M S , A . and B A K E R , R. The Ansel Adams Photography Series. Little, Brown 
andCompany, 1983. 

[3] B L A N C O , V . Vulkan Guide online. 2020. Available at: //www.vkguide.dev/. [cit. 
2023- 07-09]. 

[4] B O I T A R D , R.; P O U R A Z A D , M . T.; N A S I O P O U L O S , P. and S L E V I N S K Y , J . Demystifying 
High-Dynamic-Range Technology: A new evolution in digital media. IEEE Consumer 
Electronics Magazine, October 2015, vol. 4, no. 4, p. 72-86. ISSN 2162-2256. 

[5] C H I U , K . ; H E R F , IVL; S H I R L E Y , P.; S W A M Y , S.; W A N G , C. et al. Spatially nonuniform 
scaling functions for high contrast images. In: Graphics Interface. Canadian 
Information Processing Society, 1993, p. 245-245. 

[6] C H R I S T E N S E N , A . LearnOpenGL: Guest Articles: Physically Based Bloom online. 
2022. Available at: 
https://learnopengl.com/Guest-Articles/2022/Phys.-Based-Bloom. [cit. 2023-24-08]. 

[7] C O U R R E G E S , A . GTA V - Graphics Study online. November 2015. Available at: 
http://www.adriancourreges.com/blog/2015/ll/02/gta-v-graphics-study/, [cit. 
2024- 17-02]. 

[8] C O U R R E G E S , A . DOOM (2016) - Graphics Study online. September 2016. Available 
at: http: //www.adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/, 

[cit. 2024-17-02]. 

[9] C o x , S. Exposure Value (EV) Explained - Plus EV Charts online. December 2019. 
Available at: https://photographylife.com/exposure-value. [cit. 2023-01-09]. 

[10] D U I K E R , H.-P. and B O R S H U K O V , G . Filmic Tonemapping and Color In Games 
online. 2006. Available at: 
http://duikerresearch.com/2015/09/filmic-tonemapping-ea-2006/. [cit. 2024-17-02]. 

[11] D U R A N D , F . and D O R S E Y , J . Fast bilateral filtering for the display of 
high-dynamic-range images. In: Proceedings of the 29th annual conference on 
Computer graphics and interactive techniques. New York, N Y , USA: Association for 
Computing Machinery, July 2002, p. 257-266. S I G G R A P H '02. ISBN 
9781581135213. Available at: https://doi.org/10.1145/566570.566574. 

64 

https://www.oscaxs.org/science-technology/sci-tech-projects/aces
http://www.vkguide.dev/
https://learnopengl.com/Guest-Articles/2022/Phys.-Based-Bloom
http://www.adriancourreges.com/blog/2015/ll/02/gta-v-graphics-study/
http://www.adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/
https://photographylife.com/exposure-value
http://duikerresearch.com/2015/09/filmic-tonemapping-ea-2006/
https://doi.org/10.1145/566570.566574


[12] D U R A N D , F . and D O R S E Y , J . Fast Bilateral Filtering for the Display of 
High-Dynamic-Range Images: Presentation Slides online. 2002. Available at: 
https://people.csail.mit.edu/fredo/PUBLI/Siggraph2002/BilateralSlides.pdf. [cit. 
2023- 21-08]. 

[13] G U Y , R . and A G O P I A N , M . Physically Based Rendering in Filament online. Available 
at: https://google.github.io/filament/Filament.html. [cit. 2023-01-09]. 

[14] H A B L E , J . Uncharted 2: HDR Lighting online. 2010. Available at: 
https://gdcvault.com/play/1012459/Uncharted-2-HDR. [cit. 2024-17-02]. 

[15] H E N N E S S Y , P. Implementing a Physically Based Camera: Understanding Exposure 
online. November 2014. Available at: https://placeholderart.wordpress.com/2014/ 

11/16/implementing-a-physically-based-camera-understanding-exposure/. [cit. 
2024- 19-02]. 

[16] H E S S E L , C. A n Implementation of the Exposure Fusion Algorithm. Image Processing 
On Line, november 2018, vol. 8, p. 369-387. ISSN 2105-1232. Available at: 
https://www.ipol.im/pub/art/2018/230/. 

[17] J I M E N E Z , J . Next Generation Post Processing in Call of Duty: Advanced Warfare 
online. September 2014. Available at: https://www.iryoku.com/next-generation-
post-processing- in-call-of-duty-advanced-warfare. [cit. 2023-24-08]. 

[18] J O O M A , N . CS129: Computational Photography: Project 5 online. Available at: 
https://cs.brown.edu/courses/csl29/results/proj5/njooma/. [cit. 2023-22-08]. 

[19] K E L L Y , C. The Essential Guide to Color Spaces online. February 2020. Available at: 
https://blog.frame.io/2020/02/03/color-spaces-101/. [cit. 2024-06-03]. 

[20] K R A W C Z Y K , G.; M Y S Z K O W S K I , K . and S E I D E L , H . - P . Perceptual effects in real-time 
tone mapping. In: Proceedings of the 21st Spring Conference on Computer Graphics. 
New York, N Y , USA: Association for Computing Machinery, May 2005, p. 195-202. 
S C C G '05. ISBN 9781595932044. Available at: 
https://doi.org/10.1145/1090122.1090154. 

[21] M E R T E N S , T . ; K A U T Z , J . and V A N R E E T H , F . Exposure Fusion. In: 15th Pacific 
Conference on Computer Graphics and Applications (PG'07). October 2007, 
p. 382-390. ISSN 1550-4085. ISSN: 1550-4085. 

[22] N A R K O W I C Z , K . ACES Filmic Tone Mapping Curve online. January 2016. Available 
at: 
https://knarkowicz. wordpress.com/2016/01/06/aces-filmic-tone-mapping-curve/, 

[cit. 2024-05-03]. 

[23] N A R K O W I C Z , K . Automatic Exposure online. January 2016. Available at: 
https: //knarkowicz.wordpress.com/2016/01/09/automatic-exposure/, [cit. 
2023-29-08]. 

[24] O P S E N I C A , B . Automatic Exposure Using a Luminance Histogram online. Apr i l 2019. 
Available at: https://bruop.github.io/exposure/. [cit. 2023-29-08]. 

65 

https://people.csail.mit.edu/fredo/PUBLI/Siggraph2002/BilateralSlides.pdf
https://google.github.io/filament/Filament.html
https://gdcvault.com/play/1012459/Uncharted-2-HDR
https://placeholderart.wordpress.com/2014/
https://www.ipol.im/pub/art/2018/230/
https://www.iryoku.com/next-generation-
https://cs.brown.edu/courses/csl29/results/proj5/njooma/
https://blog.frame.io/2020/02/03/color-spaces-101/
https://doi.org/10.1145/1090122.1090154
https://knarkowicz
http://wordpress.com/2016/01/06/aces-filmic-
http://wordpress.com/2016/01/09/automatic-
https://bruop.github.io/exposure/


[25] O V E R V O O R D E , A . Vulkán Tutorial online. 2016. Available at: 
https://vulkan-tutorial.com/. [cit. 2023-07-09]. 

[26] P A R I S , S. A gentle introduction to bilateral filtering and its applications. In: ACM 
SIGGRAPH 2007 courses. New York, N Y , USA: Association for Computing 
Machinery, August 2007, p. 3-es. S I G G R A P H '07. ISBN 9781450318235. Available 
at: https://doi.org/10.1145/1281500.1281604. 

[27] P E Č I V A , J . Seriál Tutoriál Vulkán online. July 2021. ISSN 1212-8309. Available at: 
https://www.root.cz/serialy/tutorial-vulkan/. [cit. 2023-08-09]. 

[28] R E E D , N . Artist-Friendly HDR With Exposure Values online. June 2014. Available 
at: https : //www.reedbeta.com/blog/artist-f riendly-hdr-with-exposure-values/, 

[cit. 2023-29-08]. 

[29] R E I N H A R D , E . ; S T A R K , M . ; S H I R L E Y , P. and F E R W E R D A , J . Photographic tone 
reproduction for digital images. ACM Transactions on Graphics, July 2002, vol. 21, 
no. 3, p. 267-276. ISSN 0730-0301. Available at: 
https://dl.acm.org/doi/10.1145/566654.566575. 

[30] S A L I H , Y . ; M D E S A , W . bt.; M A L I K , A . S. and S A A D , N . Tone mapping of H D R 
images: A review. In: 2012 4th International Conference on Intelligent and Advanced 
Systems (ICIAS2012). June 2012, vol. 1, p. 368-373. 

[31] S E L L E R S , G . and K E S S E N I C H , J . Vulkan Programming Guide: The Official Guide to 
Learning Vulkan. 1st editionth ed. Boston: Addison-Wesley Professional, October 
2016. ISBN 9780134464541. 

[32] T A R D I F , A . Adaptive Exposure from Luminance Histograms online. Available at: 
https: //www.alextardif.com/HistogramLuminance.html. [cit. 2023-01-09]. 

[33] T O M A S I , C. and M A N D U C H I , R. Bilateral filtering for gray and color images. 
In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 
January 1998, p. 839-846. 

[34] V R I E S , J . de. LearnOpenGL: Advanced Lighting: Bloom online. 2014. Available at: 
https://learnopengl.com/Advanced-Lighting/Bloom, [cit. 2023-24-08]. 

[35] V R I E S , J . de. LearnOpenGL: Advanced Lighting: Shadows: Point Shadows online. 
2014. Available at: 
https://learnopengl.com/Advanced-Lighting/Shadows/Point-Shadows, [cit. 
2024-07-04]. 

[36] W I L L E M S , S. Vulkan Examples: texturecubemap online. Available at: 
https: //github.com/SaschaWillems/Vulkan/blob/master/examples/texturecubemap/ 

texturecubemap.cpp. [cit. 2024-07-04]. 

[37] W I L L E M S , S. Vulkan Examples online. 2023. Available at: 
https://www.saschawillems.de/creations/vulkan-examples/, [cit. 2023-08-09]. 

[38] W R O N S K I , B . Separate your filters! Separability, SVD and low-rank approximation of 
2D image processing filters online. February 2020. Available at: 
https: //bartwronski. com/2020/02/03/separate-your-f ilters-svd- and-low-rank-

approximation-of-image-filters/. [cit. 2024-07-04]. 

66 

https://vulkan-tutorial.com/
https://doi.org/10.1145/1281500.1281604
https://www.root.cz/serialy/tutorial-vulkan/
http://www.reedbeta.com/blog/artist-f
https://dl.acm.org/doi/10.1145/566654.566575
http://www.alextardif.com/HistogramLuminance.html
https://learnopengl.com/Advanced-Lighting/Bloom
https://learnopengl.com/Advanced-Lighting/Shadows/Point-Shadows
https://www.saschawillems.de/creations/vulkan-examples/


Appendix A 

Published repository 

Repository containing the demo application (vulkan-hdr-demo) is public and accessible 
on the internet at: https://github.com/VileDeg/vulkan-hdr-demo/tree/master. It is 
public and accessible to anyone under MIT license. Figure A . l contains a screenshot of 
vulkan-hdr-demo GitHub public repository page. 

The repository is also accessible under Vulkan FIT organization: https: //github.com/ 
Vulkan-FIT/vulkan-hdr-demo. 

Figure A . l : Screenshot of vulkan-hdr-demo GitHub public repository page. 

67 

https://github.com/VileDeg/vulkan-hdr-demo/tree/master


Appendix B 

Copyright attribution 

Following is the list of files and folders of vulkan-hdr-demo application that may contain 
copyrighted material. The files/folders are listed along with the source of copyrighted 
material. 

• external/ - folder contains external libraries along with their license files. 

• assets/ - folder contains downloaded resources along with the license files. 

• src/assets. cpp - may contain parts of code from https://github.com/vblanco20-

1/vulkan-guide (MIT license). 

• src/initialization.cpp - may contain parts of code from https://github.com/ 

pc-john/VulkanTutorial/ (MIT license). 

• src/memory. cpp - may contain parts of code from https: //github.com/SaschaWillems/ 

Vulkan/tree/master/examples/dynamicuniformbuffer (MIT license). 

• src/model_loader. cpp - may contain parts of code from https: //github.com/tinyobj loader/ 

tinyobjloader (MIT license). 

• src/swapchain.cpp - may contain parts of code from external/imgui/imgui_-

impl_vulkan.h (MIT license). 

• src/types.h - may contain parts of code from https://github.com/vblanco20-l/ 

vulkan-guide (MIT license). 

• src/vk_descriptors .h/cpp - is based on https: //github.com/vblanco20-1/vulkan -
guide (MIT license). 

• src/vk_initializers .h/cpp - is based on https: //github.com/vblanco20-l/vulkan -
guide (MIT license). 

• src/vk_utils.h/cpp - is based on https://github.com/SaschaWillems/Vulkan/ 
blob/master/base/VulkanTools.cpp (MIT license). 

The demo application itself (vulkan-hdr-demo) is licensed under MIT license (https: 
//opensource.org/license/mit). 

68 

https://github.com/vblanco20-
https://github.com/
https://github.com/vblanco20-l/
https://github.com/SaschaWillems/Vulkan/


Appendix C 

Contents of the attached storage 
medium 

• assest/ - Assets required for vulkan-hdr-demo to run. 

• docs/ - Thesis and documentation: 

— xgonceOO-vk-hdr.pdf- This bachelor's thesis document. 

— src/ - Sources required to build this bachelor's thesis document (xgonceOO-vk-
hdr.pdf). 

• external/ - External source used to build vulkan-hdr-demo. 

• libs/ - External libraries for vulkan-hdr-demo. E.g. Vulkan lib (in case not found 
on current device). 

• linux-build/vkdemo - Linux executable of vulkan-hdr-demo. 

• scripts/ - Scripts that may be useful for building the project and other tasks. 

• src/ - Source code of the demo application (vulkan-hdr-demo). 

• CMakeLists.txt - CMake file used to configure project for vulkan-hdr-demo. 

• imgui. ini - ImGUI's . ini configuration file. 

• LICENSE.txt - License of vulkan-hdr-demo. 

• README.md - R E A D M E . m d file with description of vulkan-hdr-demo and build & 
run instructions. 

• vkdemo.exe - Windows executable of vulkan-hdr-demo. 

69 


