
VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A

VISUAL DESIGN OF ONTOLOGIES FOR SEMANTIC
WEB

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S T H E S I S

AUTOR PRÁCE JIŘÍ PROCHÁZKA
A U T H O R

B R N O 2012

VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A

VIZUÁLNÍ NÁVRH ONTOLOGIÍ PRO SÉMANTICKÝ
WEB
V I S U A L D E S I G N O F O N T O L O G I E S F O R S E M A N T I C W E B

BAKALÁŘSKÁ PRAČE
B A C H E L O R ' S T H E S I S

AUTOR PRÁCE JIŘÍ PROCHÁZKA
A U T H O R

VEDOUCÍ PRÁCE Ing. SVATOPLUK ŠPERKA
S U P E R V I S O R

B R N O 2012

Abstrakt
Tato p r á c e popisuje n á v r h a implementaci v izuá ln ího editoru ontológií pro S é m a n t i c ý web,
založený na R D F modelu, sous t řed íc í se na p ř e h l e d n o u k o m p a k t n í vizual izaci ontológi í ,
jejich se lekt ivní zobrazen í z různých a s p e k t ů , a jejich tvorbu s rozš i ř i te lnos t í v nab ídce
ontologických j a z y k ů .

Abstract
This thesis describes design and implementat ion of a visual ontology editor for the Semantic
Web, based on the R D F model, focusing on compact ontology visualizat ion, selective views
of them from various aspects and their creation support ing extensible number of ontology
languages.

Klíčová slova
Séman t i cký web, ontológie , vizualizace, R D F , editor

Keywords
Semantic web, ontology, visualization, R D F , editor

Citace
J i ř í P r o c h á z k a : V i s u a l Design of Ontologies for Semantic Web, b a k a l á ř s k á p ráce , Brno , F I T
V U T v B r n ě , 2012

Visual Design of Ontologies for Semantic Web

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing.
Svatopluka Šperky. U v e d l jsem všechny l i t e rá rn í prameny a publikace, ze k t e rých jsem
čerpal .

J i ř í P r o c h á z k a
M a y 13, 2012

Poděkování
T í m t o bych chtě l p o d ě k o v a t m é m u v e d o u c í m u p r á c e panu Ing. Svatopluku Šperkovi za jeho
cenné rady, t rpě l ivos t a dostupnost.

© Jiř í P r o c h á z k a , 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Semantic W e b and Ontologies 4
2.1 R D F 4
2.2 Ontologies 5

2.2.1 Ontology Languages 6

3 Ontology Engineering 7
3.1 G r a p h Drawing 7

3.1.1 Layout Algor i thms 7
3.2 Ex i s t ing V i s u a l Ontology Edi tors 8

3.2.1 Protege 8
3.2.2 C o G u i 10
3.2.3 C O E 11
3.2.4 A l t o v a S e m a n t i c W o r k s ® 11
3.2.5 T o p B r a i d C o m p o s e r ™ 12

4 Appl icat ion Design 14
4.1 Node Aggregation 15
4.2 Lenses 16
4.3 Templates 17

5 Implementation 18
5.1 Implementation Language and Used Libraries 18

5.1.1 Qt 18
5.1.2 Redland R D F Libraries 19
5.1.3 O G D F 19

5.2 User Interface and Funct ional i ty 20
5.3 Code Overview 22

5.4 Lens and Template Definitions 23

6 Evaluat ion and Future W o r k 25

7 Conclusion 27

Bibl iography 28

A C D Contents 30

1

B M a n u a l 31

C Example Ontology 32

D Lens Ontology 34

E Template Ontology 36

2

Chapter 1

Introduction

A s the t ime and advances in computer science and engineering progressed, computers con
secutively gained computat ional power and storage options expanded so far that it became
possible to not to merely process and store data, but also metadata. Semantic Web aims
to enable better integration and combinat ion of data and metadata, i n a way suitable for
machine interpretation, as a part of W o r l d W i d e Web (including private parts of i t) . Aside
from standardization of common formats, a big part of that is definition and management
of meaning of data — semantics. F r o m Ar t i f i c i a l Intelligence and its field of symbolic
knowledge representation and conceptual modeling of Software Engineering stems defini
t ion of ontologies which serve as explicit conceptual knowledge models that make domain
knowledge available to information systems. []

Ontologies find use in wide breadth of applications i n areas like biology, chemistry,
engineering or software management, health care, e-government and others. The i r incor
porat ion of taxonomical information makes ontologies suitable for graphical presentation,
given their hierarchical nature, which isn't ut i l ized by ontology authoring/edi t ing tools
much.

In this thesis I explore the current state of art of ontology editors w i t h some visualizat ion
capabilities and I present my proof-of-concept design and implementation, which aims to
surpass the existing alternatives, i n terms of offering superior way of edit ing Semantic Web
ontologies i n visual graph-based environment, w i th extensibili ty i n mind .

In chapter 2 more information about Semantic Web and introduct ion to its technologies,
including ontologies and ontology languages, is provided. Chapter 3 explores ontology
engineering, their visual izat ion and evaluates existing visual edit ing tools. In chapter 4
the design of developed ontology editor is explained, together w i t h its core features. The
implementation is described i n chapter 5. Chapter 6 evaluates the editor and contains
suggestions for improvement and further development, and in conclusion i n chapter 7 whole
work is evaluated, including my personal experience w i t h the project and its potential
impact and future.

3

Chapter 2

Semantic Web and Ontologies

The Semantic Web is not a separate Web but an extension of the current one, i n which
information is given well-defined meaning, better enabling computers and people to work
in cooperation. [3]

The web of today consists mostly of web pages and services meant for human con
sumption. If there is machine readable content, it is usually i n form of documents and
A P I s w i th various syntax and semantics, often proprietary and wi th l i t t le or no effort for
standardization. Such efforts more or less fall under the flag of Semantic Web. The W o r l d
W i d e Web Consor t ium (W 3 C) wi th its set of standards of Semantic Web like R D F , O W L
etc. is leading the efforts. The more machine readable data is available on the web, the
more tasks which today require user interaction can be automated, resulting i n more in
telligent applications and autonomous agents. The idea of knowledge bases for automated
reasoning isn't new — bui ld ing on volumes of Ar t i f i c i a l Intelligence research, the idea of
Semantic Web embraces properties of W o r l d W i d e Web of working wi th dynamic growing
set of incomplete, par t ia l ly inconsistent data w i th varying availability. [3]

2.1 RDF

For Semantic Web to be successful on a scale similar to the W W W is to use language which
is universal and agnostic enough to be generally useful for description of anything, which
is a role of R D F (Resource Descr ipt ion Language) — R D F is used for representation of
information about Web resources (metadata of a Web page/document) or by generalizing
the concept of a „ W e b resource", R D F can also be used to represent information about
things that can be identified on the Web, even when they cannot be directly retrieved on
the Web. [9]

One of most important aspects is using U R I s (Uniform Resource Identifiers) [] as iden
tifiers of references of overwhelming majori ty of described things, so they are referenceable
on the whole web, significantly simplifying their management.

Another important aspect is syntax agnosticism. A l though first drafts were based on
X M L syntax, R D F isn't s tr ict ly said a language but a data model w i th various exchangeable
serializations available, among them X M L - b a s e d , J S O N - b a s e d or others, such as Turt le ,
which is a popular, human friendly syntax. []

In R D F information is expressed using triples, consisting of subject, predicate and object,
where predicate identifiers a relationship between things represented by subject and object,
like a simple form of sentence in natural language (also it can be said that triples are

4

describing a resource wi th its properties and values, which sparks s imilar i ty w i th E n t i t y -
At t r ibu te -Va lue model of information systems).
A set of triples is called an RDF graph, where the meaning of the graph is conjunction
(logical A N D) of its triples.
Subject and object are called RDF nodes, since very intuit ive representation of the R D F
model is a directed graph, explained in section 3.1.
Directed graph is a set of nodes connected by edges w i th a direction (set of ordered pairs
of nodes).
Values of subject, predicate and object are RDF terms. URI reference, blank node or RDF
literal are types which terms can take, however R D F places restrictions on various terms:
predicate has to be a U R I reference, subject a U R I reference or blank node and object any
of the three.
A U R I reference or l i teral i n subject or object posit ion identify what that R D F node
represents. A blank node is an R D F node that is not a U R I reference or a l i teral and can
be used as a reference, but without an intrinsic name (which l imits the nodes reusability in
other R D F graphs).
Literals are used to identify direct values such as numbers and dates by means of a lexical
representation. A n y t h i n g represented by a l i teral could also be represented by a U R I , but
it is often more convenient or intuit ive to use literals.
Literals may be p la in or typed — a pla in l i teral is a string combined wi th an optional
language tag. They may be used for p la in text in a natural language and are self-denoting.
A typed l i teral is a string combined wi th a datatype U R I . It denotes the member of the
identified datatype's value space obtained by applying the lexical - to-value mapping to the
l i teral string. R D F doesn't have any set of datatypes of its own, but allows to use any by
referring to them by U R I and suggests to use some datatypes of X M L Schema. [4]

2.2 Ontologies

An ontology is a specification of a conceptualization. [] Ontologies exist for explicit formal
representation of knowledge i n information systems which i n past have been impl ic i t , known
only to the designers and users of the information system — human agents. Tha t didn ' t
allow for data to be automatical ly reasoned about, using reasoning or rule engines imple
menting the ontology inference rules, which is one important feature of ontologies. Other
feature is knowledge of classification schemes, like taxonomies. Classification schemes are
hierarchical structures of classes, which are types or kinds of things, or different grouping
of the classes. Taxonomies are classification schemes wi th more focus on nomenclature.
Usual ly ontology languages provide the inference rules for their objects, so rarely ontology
designer has to define them additionally. The term ontology has roots i n philosophy, its
branch of metaphysics, where it is concerned wi th the fundamental nature of existence, clas
sification of things — their types. The philosophical meaning isn't so far disconnected from
the meaning i n computer science, however we l imi t ourselves only to part icular domains for
each ontology.

Further explained aspects of ontologies are formality, explicitness, consensus, conceptu
a l l y and domain specificity [6]:

• Formal i ty — Ontology is expressed using ontology language, which ensures it is w e l l -
defined and machine-processable.

5

• Explici tness — Ontology features explicit knowledge to be known to the machines,
which cannot infer impl ic i t knowledge deemed by humans as common sense.

• Consensus — Development of ontology is accompanied by a process of reaching con
sensus among the target user group on the shared conceptualization which it repre
sents.

• Conceptual i ty — Ontology specifies knowledge i n conceptual way, such as the concepts
intui t ively make sense to humans.

• Doma in Specificity — Ontology is l imi ted to part icular domain of interest, w i th de
sired detail .

2.2.1 O n t o l o g y Languages

Ontologies are defined i n ontology languages, most common of them on Semantic Web are
briefly described below.

R D F S

R D F Schema [] describes itself as R D F ' s vocabulary description language. In context of
R D F , vocabularies are understood as ontologies, albeit usually less strict, because R D F S
doesn't provide vocabulary for describing existence or cardinali ty constrains of properties.
It serves for bui ld ing of hierarchies of classes and properties. It allows axiomatizat ion only
in form of domain and range restrictions besides subclassing and typing. In particular,
R D F S does not exhibit the feature of expressing exclusion or negation of any form, which
renders it as a semantically rather lightweight formalism. []

O W L

O W L Web Ontology Language [12] is a W 3 C endorsed ontology language, w i th strong ties
to R D F S , w i th semantics based on Descript ion Logic . Recently its revision called O W L 2
was released. O W L defines three variants — O W L Li t e and O W L D L are tai lored to easy
implementation wi th basic functionality and strict Descript ion Logic subset w i th eligible
computat ional properties for reasoning engines, while the O W L F u l l language has some
of the constrains relaxed, useful for database and knowledge representation systems also
allowing unrestricted mix ing wi th R D F S . Beside features of R D F S it provide means to con
struct classes by logical conjunction, disjunction, negation or use universal and existential
restriction or other features like transit ivity, functionality or inversion of properties.

S K O S

Simple Knowledge Organizat ion System [1] is an ontology for knowledge organization sys
tems, such as thesauri, taxonomies and other classification schemes, which itself is an onto-
logical data, thus S K O S , while lightweight, is pract ical ly an ontology language. It is used
for labeling of concepts, grouping them, organizing i n informal hierarchies or expressing
their association.

6

Chapter 3

Ontology Engineering

Ontology editors and development environments exist to make ontology creation and man
agement more effective. W h i l e lot of overall usabil i ty depends on subjective aspects of user
interface, making it difficult to evaluate, I w i l l describe several aspects, which positively
influence quali ty of an ontology engineering tool:

• Speed of navigation i n the ontology

• Accessibi l i ty of often used constructs of the ontology language

• Integration of reasoning engines, ontology matching tools

There are various ontology engineering methodologies, which ideally the editors should be
compatible wi th , however they are out of scope of this thesis.

3.1 Graph Drawing

For i n visual ontology edit ing environment graph drawing algorithms are employed. The
theory w i l l be briefly explained in this section. Graphs are mathematical concepts consisting
of nodes and edges representing the relations between them. Graphs can be directed or
undirected, depending i f edges are directional. Another property of graph is whether it is
cyclic or acyclic, which depends in presence of cycles i n graph. Disconnected graph can be
divided in mult iple disjoint sets of nodes which have no path between any of their nodes.
A graph is bipart i te i f its nodes can be divided i n two disjoint sets such that there are no
edges between nodes of each set. P lanar graphs can be drawn i n such way that no edges
intersect. [5]

In our case of ontology visualizat ion we w i l l be working wi th directed graphs, acyclic i f
representing hierarchies only.

3.1.1 L a y o u t A l g o r i t h m s

Layout algorithms serve posit ioning graph elements, there exist many various algorithms,
suitable for different purposes. They usually consist of node posit ion and edge routing
(bending edge curves), often to minimize intersecting. Fol lowing algorithms are useful for
visual izat ion of ontologies:

7

Force—directed layout

Analogies of physical systems are employed for force-directed layouting, such as polar and
parallel magnetic fields, gravity, or springs as graph edges. The algori thm rearrange nodes
for certain number of iterations, computing the physical system.

Hierarchical layout

Hierarchical layouts have nodes distr ibuted i n several layers. Algor i thms based on famous
Sugiyama [] approach consist of several phases. F i rs t nodes are distr ibuted i n layers by
ranking and edges making graphs cyclic are removed, then each layer is arranged and finally
whole graph is positioned from the layers, including edge routing.

Orthogonal layout

Orthogonal layouts are different i n obvious way of having al l edges running either horizon
ta l ly or vert ically w i th 90° corners. These algorithms are often aimed on min imiz ing edge
crossing, and some are based on min ima l network flow algorithms, which create a directed
graph wi th edges wi th capacity and flow, like for example water pipe systems, exploring
various paths of the system in search of one w i t h the most desirable properties.

3.2 Existing Visual Ontology Editors

I w i l l describe several existing visual ontology editors and development environments, con
centrating on their visualizat ion and visual edit ing capabilities. For this purpose I define a
simple ontology which I w i l l show in various editors:
Man is a person. Woman is a person. Parent is a person who has at least one child who
is a person. Father is a person and a parent. Mother is a person and a parent. Having a
child is a relationship between a parent and a person, and also means having influenced it,
which is a relationship between 2 people. One cannot have himself as a child nor his child
can have him as a child.

Serialization of the ontology i n Turt le syntax can be found i n appendix C .

3.2.1 Pro tege

Protege [17] is a major ontology development environment w i th large community of users
and developers. It is wri t ten i n Java using Swing user interface framework, extensible
through a plugin framework, featuring advanced features such as extensive reasoning sup
port. For Semantic Web is relevant its version P r o t e g e - O W L . W h i l e edit ing in Protege is
done i n mostly i n non-visua l way as shown on figure 3.2, one of the provided plugins is
O W L V i z , which provides visual izat ion. However this visual izat ion only serves to view and
navigate the O W L class hierarchy, no editing through the visual izat ion is possible and it
only serves as navigational and overview tool i l lustrated by figure 3.1. The tested version
was 4.1.0.

8

File Edit View Reasoner Tools Refactor Window Help

<p c> <5> Anonymous-3

' Oata Propert ies [Ind iv idua ls ~\ QWLViz \ OL O u e r y - ^ OntoGraf

Active Ontology

8
t owhThing

* ex: Person
• ex: Man

ä ©ex: Father
y ©ex:Parent

© ex: Father
[©ex: Mother

* ex: Woman
ex: Mother

Object Proper t ies

OWLViz: ex: Person

A ! v i a l O J a J x \ m \ @ @ a H=]
J A s s e r t e d model f" Inferred model

owhThing

Q ex:Person)

is-a is-a ^ Js-a

ex:Woman ex: Parent (ex:Man)

v . a / i s - a

(ex:Mnther) (ex:Father j

No Reasoner set. Select a reasoner f rom the Reasoner menu @ Show Inferences

Figure 3.1: Example ontology visual izat ion i n Protege

File Edit V iew R e a s o n e r T o o l s Re fac to r Window Help

o c > 1 <3> A n o n y m o u s - 3 - l l - l 1
Data P rope r t i e s Indiv iduals ' OWLViz f DL Q u e r y f O n t o G r a f |

r Act ive On to logy Ent i t ies C l a s s e s Object P rope r t i e s

Class hierarchy (inferred)

Class hierarchy

C l a s s h ie ra rchy : e x F a t h e r u H H H

• •owhTh ing
• - t e x : Person

• • e x : Man
ex: Father

y @ex: Parent
i < ex: Father

ex: Mother
••••••ex: Woman

'•• ©ex : Mother

^ Annotat ions ^ U s a g e |

• . J- ,!TH IiiIzIdIbI

Descr ip t i on : ex: Father

Equivalent classes C j

ex: Man
and ex: Parent

© G O

Superclasses

ex: Man © o o
©ex: Parent © o o

Inherited anonymous classes

ex:hasChild some ex: Person © o o

M e m b e r s

K e y s 0

Disjoint classes

Disjoint union of

No R e a s o n e r se t . S e l e c t a r e a s o n e r f r o m the R e a s o n e r m e n u @ S h o w In fe rences

Figure 3.2: E d i t i n g of the example ontology i n Protege

9

3.2.2 C o G u i

C o G u i [14] is a graph-based visual tool for bui ld ing Conceptual g raph 1 [] knowledge bases,
wri t ten in Java. C o G u i enables editing of R D F S / O W L ontologies, but it also focuses on
other areas, like bui ld ing of rules and queries. Its supported ontology expressivity is quite
small , allowing only simple ontology creation, but it features editable both class hierarchy
graph (figure 3.3) and property hierarchy graph (figure 3.4). It supports both hierarchical
layout and force directed layout. Support of only basic ontology language features makes
its visual izat ion features appropriate, even for larger graphs, however it l imits the tools
uti l i ty. The tested version was 1.5b0.

File Edit V iew G r a p h R e a s o n i n g l o o l s Help

[| a S 9 t ^ É 3£ ^ V o c ^ G R ' (l F V , Cogui Solver | v English [en!
H i "

• C o n c e p t ty. .

| : : I B I 1
ŕ h 7 rdfs:Resöurce

K evFath- i -
v ex: Parent

ex:Father
e*:Mothei

•c ex:Woman

B a n n e d t ypes

C o G u i

^ ^ Á'J 0 £

selected: 1 I 23

[m C o G u i ~ ^ p c o n c e p t t y p e h ie rarchy f~

[R-TS'-iltT^D Errors p C o n s o l s /

• Errors _ n

[~](ln g raph ^Desc r ip t i on

| ÍP Cont ro l C o G u i D o c u m e n t is cor rec t

Figure 3.3: Example ontology class hierarchy i n C o G u i

File Edit V iew G r a p h R e a s o n i n g Tools Help

I j ^ P C I Ä I . Í ^ V o c ^ G R CoquiSoluer | V [f t j f c C% 3» | ^ fljj ^ | S English [en] | ^] |

• Project] • V o c a b u l a r y \ • re lat ion t y p e h ie rarchy _ • X

r • Re la t ion ty. . . r - n
i: W

S

is

1
C

on
ce

pt
s S7 rdf:Property[Resource ,F

rdf:first[Resource .He
rdf:rest(Resource .Re
owl:equivalentClass[R
owl:intersectionOf[Re
ouvl:onProperty(Resou

Q o rn e Va 1 u e s FropJ

j^quivalentClas^

y t jntersectionQj

*:hasChild[Parent

0

1
(Proper

X ~ \ (TnfluenteSKl (JasChikJ

r \

p-

1
(onProperW

1 selected: 1 (17 normal 108:134
iu i / • concep t t/|:~ h k r . h r I v , J • re lat ion t y p e h ierarchy /

r • Errors _ •

vi
d
i

| -] | l n g raph [Descr ip t ion

\9 Cont ro l C o G u i D o c u m e n t is cor rect

1 L>j|| Resul t =J • Errors p C o n s o l e /

CoGui

Figure 3.4: Example ontology property hierarchy in C o G u i

1 Conceptual graphs are a formalism allowing to graphically express meaning based on first-order logic.

10

http://hkr.hr

3.2.3 C O E

C O E (Concept-map Ontology Environment) [] is an ontology editor based on concept
map software CmapTools . The tool is entirely visual , being a modification of a concept map
editor. The ontology edit ing features are a set of conventions how to create the concept
map, supplemented by autocomplete feature hint ing user the possible constructs. Together
wi th concept clustering of the ontology, as seen on figure 3.5, it enables quite user friendly
ontology creation, although some problems and confusion may arise from the editor being
pr imar i ly a concept map editor. C O E supports O W L and automatic layouting of the graph
using both hierarchical and force directed algorithms. The tested version was 5.0.03.

3.2.4 Altova S e m a n t i c W o r k s ®

A l t o v a S e m a n t i c W o r k s ® [13] is a commercial R D F and O W L editor. It supports interesting
and unique visual editing features, as can be seen on figure 3.6. However its visualizat ion
is specific to each ontology class or property, allowing on editing of it and those directly
related, switching resetting the view. This is very l imi t ing , but coupled w i t h its non-visua l
editing features it makes a viable ontology editor.

11

S Eile Edit View RDF/OWL lools Window Help

j • ď H I S I " ^ I & ifti B I W i f t e ; [ŠTIl QWLFuii j . I B- & \ •> \ s \[¥]f

I 4 (£) ® © ~i & g _ ! O • I psi I n~ s™ = B ! t ••- g I B .

Ml urn:examples:Man

in n:exam|jles:Person

1—l̂ .uri: »m»xani|>les:Persoii |j| ^urí um:exani|>les:iiifluenceil

Text R D F / O W L

^ family, rdfxrnl [Qfamil^-protege.rdfxml

Overview • X Errors

This onto logy is w e l l - f o r m e d .

SemanticWorks v2012 rel. 2 sp1 Registered to Jiri Procházka (Brno University of Technology) ®1998-2012 Altova GmbH

Figure 3.6: Example ontology i n A l t o v a SemanticWorks

3.2.5 TopBraid C o m p o s e r ™

T o p B r a i d C o m p o s e r ™ [20] is a commercial development environment for ontologies and
other Semantic Web data, based on Java Eclipse, supports also advanced features like
reasoning integration, data querying and inference rules. F r o m visual izat ion capabilities it
offers two views: Diagram view, to be seen on figure 3.7, shows ontology i n fashion similar
to U M L class diagrams enabling basic editing, while for advanced O W L features one has
to use non-v isua l interface; G r a p h view, shown on figure 3.8, displays the ontology as raw
R D F graph of triples, allowing even less edit ing. B o t h views in i t ia l ly show l imi ted parts of
the ontology (Graph view even just the one node) and user has opt ion to expand the set
of shown nodes. Unfortunately similar to SemanticWorks the views are not persistent, so
when user switches between active classes/properties on the left tree list, the view resets.
This clearly suggest the visual izat ion features are designed to be for overview purpose and
not main work. The tested version was Standard E d i t i o n 3.6.0.

12

File Edit Navigate Project Model Inference Resource Window Help

J O - i = i J & E i J t j J " & - • • 1 © l e K : P e r s o n ^ ^

TopBraid [Q Resource TopBraid [Q Resource

Classes £3 Properties

• W owl: Thing (1)

Q - O ex: Person (1)

ex:Man

ex:Falher

et<:Parent (1)

exFa lher

0 ex:Mother

ex:Wornan

0 ex:Mother

0 owl:Nothing

rdfProperti" [93)

- 0 oiAiLAnnotationPropertii

9 owLDatatypeProperty (2)

[*] family, ttl £3

• & Editing Tools

! Select

i E 3 Create class

I $ AddsubC lassO l

Add association

Form | Diagram J Graph | Form Layout | Source C o d e |

eg car 3 1 * # I <? m | y m • I <a o. | 3

^influenced :en:Pers

eH :has Child :eH:Persori

lEnpand incoming connection:

Figure 3.7: D iag ram view of T o p B r a i d Composer

Figure 3.8: G r a p h view of T o p B r a i d Composer

13

Chapter 4

Application Design

The design of the application is in part focused on addressing the shortcomings I observed
in the existing ontology editors I explored:

• L i m i t i n g visualizat ion capabilities only to overview and navigation functions

• Not allowing displaying of complete information of an ontology in visualizat ion

• Resett ing the visualizat ion view when navigating the ontology

The other part of the design focus is guided by the beneficial user interface aspects of
ontology engineering tools, as described i n the beginning of the chapter 3, however since
the purpose of the work is to bu i ld an innovative proof of concept ontology editor for
Semantic Web, I decided to omit already well explored features, such as reasoning engine
support. Instead I chose a design pursuing extensibility, and I developed concepts described
in section below. The most important aspect of the application's extensibili ty is the choice
of making the R D F model the data model of the editor. This means that by working in
the editor, user is essentially edit ing a R D F graph. Aside from this being a logical choice,
since the purpose of editor is authoring of ontologies for Semantic Web, it allows the editor
to support dynamic number of ontology languages, which have a mapping to R D F , which
al l of those I described have. A s a byproduct the applicat ion can be used not only as an
ontology editor, but also as an R D F editor. How the example ontology looks as visualized
R D F graph is depicted on figure 4.1.

14

Figure 4.1: Example ontology as R D F graph

4.1 Node Aggregation

Because raw visual izat ion of R D F graph is unsuitable to ontology editing, I developed two
features which would simplify and clarify the visual izat ion. One of them is node aggregation.
Node aggregation is a feature consisting of aggregating certain relations of the R D F graph
in the nodes of the graph of visual izat ion. Example ontology, w i th node aggregating of
R D F triples, where the object is of l i teral type, or the predicate is rdf :type, can be seen
on figure 4.2. Th is allows to remove the aggregated relations from the graph, making it
sparser. Resul t ing structure of node wi th aggregation is a tree, since the R D F nodes in
object posit ion can also have relations which are to be aggregated. Some loop detection
is necessary to do, i n order not to get into infinite loop, but about that in chapter 5.
W h a t relations are to be aggregated is a question regarding the second feature of graph
simplification and is described in the next section.

15

exi inf luenced
rdfitype rdf:Property

^_rdfs isubPropertyOf

rdfs:Ka_nge
rdfs idomain

exihasChi ld
rdfitype owliObjectProperty
rdfitype owl: I rreflexive Property
rdfitype owl A s y m m e t r i c Property
rdfitype rdf:Property

owlionProperty

rdfs isubClassOf

ex:Man
rdfitype owliClass
rdfitype rdfsiClass

t
rdfs isubClassOf

exiFather >
rdfitype owliClass
rdfitype rdfsiClass

owli intersectionOf

ex iPerson
rdfitype owliClass
rdfitype rdfsiClass

rd fs isubc lass

: r l336181340T18353r680
rdfitype owliRestriction

subClassOf

ex: Pa rent
rdfitype owliClass

- rdfitype rdfsiClass

exiWoman
rdfitype owliClass
rdfitype rdfsiClass

rdfs isubClassOf
rdfs isubClassOf

: r l 336181340 r l 8353 r677
rdfifirst ex iMan

rdfitype owliClass
rdfitype rdfsiClass

-ex iMother
rdfitype owliClass
rdfitype rdfsiClass

owli intersectionOf

: r l 33618134u r l8353 r679
rdfifirst ex iWoman

rdfitype owliClass
rdfitype rdfsiClass

rdf: re st

: r l 336181340 r l 8353 r676
rdfifirst ex: Pa rent

rdfitype owliClass
rdfitype rdfsiClass

rdf: rest
+

-rdf irest rdfinil df irest-

r l 3 3 6 1 8 1 3 4 0 r l 8 3 5 3 r 6 7 8
rdfifirst exiParent

rdfitype owliClass
rdfitype rdfsiClass

Figure 4.2: Example ontology wi th node aggregation of rdf: type relation

4.2 Lenses

Lenses are a feature enabling user to choose a part icular specialized view of the graph,
consisting of filtering of the graph and settings of node aggregation. The filtering consists
of either blacklist ing or whitel is t ing of relation types (defined by R D F predicate) which
prunes the triples shown i n the graph itself. Example of that can be seen i n figure 4.3,
which shows the usabil i ty of this feature, allowing user to easily switch between views
of part icular aspects of an ontology, such as class hierarchy in this case. F r o m existing
ontology editors I tried, similar effect was achieved by support ing just one filtered view of
the ontology (like class hierarchy), which of course is not acceptable for fully visual editors.

16

r d f s i s u b C l a s s Q f

e x i W o m a n
rdf i type owl iC lass
rdf i type rd f s iC lass

*\
r d f s i s u b C l a s s Q f

e x i P e r s o n
rdf i type
rdf i type

ow l iC lass
rd f s iC lass

1 \
f rd fs isub C l a s s O f r

ex : Pa rent
rdf i type
rdf i type

ow l iC lass
rd f s iC lass

r d f s i s u b C l a s s Q f

r d f s i s u b C l a s s Q f

e x i M o t h e r
rdf i type owl iC lass
rdf i type rd f s iC lass

r d f s i s u b C l a s s O f

e x i M a n
rdf i type ow l iC lass
rdf i type rd f s iC lass

r d f s i s u b C l a s s Q f

ex iFa the r
rdf i type owl iC lass
rdf i type rd f s iC lass

Figure 4.3: Class hierarchy lens view of the example ontology

4.3 Templates

Feature responsible for most of the edit ing functionality and accessibility of ontology lan
guage constructs are templates. Templates are R D F graph snippets of usually smal l size,
which are inserted into the edited graph. Example showing a template for O W L universal
quantification property restriction can be seen i n figure 4.4. A node from the graph snip
pet can be marked to be replaced by currently selected node in the edited graph. In the
example template that is the node <urn:grasp :class>. A d d i t i o n a l information bundled
wi th template description is specification of template contextuali ty — templates are often
used for constructs which can be said that belong to a different construct, it is s imilar
to member function ownership i n object-oriented programming. The example construct,
O W L property restriction, is t ied to O W L class. This contextuali ty allows to arrange of
the list of available templates into more useful data structure for presentation and filter out
the templates which are not relevant to the selected node.

< u r n : g r a s p : c l a s s >

ow l i equ i va len tC lass

: r l 3 3 6 2 6 4 2 1 0 r l 4 5 2 0 r l 2 0 6
rdf i type owl iRest r ic t ion

ow l i onPrope r t y
ow l ia l lVa luesFrom •Lal lVal i

< u r n : g r a s p : c l a s s 2 >
< u r n : g r a s p : p r o p e r t y >

rdf i type rd f iP roper ty
rd f i type ow l iOb jec tP rope r t y

Figure 4.4: Example template for O W L universal quantification property restriction

17

Chapter 5

Implementation

5.1 Implementation Language and Used Libraries
For implementat ion I have chosen the programming language C + + , for availabil i ty of wide
range of libraries, performance reasons and its familiarity. There were other, more dy
namic, contestant languages (mainly Python) i n which could have made the process of
implementation faster, however I decided that due to probably necessary implementat ion
of missing features i n libraries, it would probably not help from aspect of code base size,
neither complexity of implementat ion and considerable performance would be lost, which
for large R D F graphs, that the more extensive ontologies are, is desirable.

In following subsections I describe the libraries I chose to use. W h i l e deciding, aside the
usabili ty for the given purpose, I evaluated their cross-platform support and compat ibi l i ty
w i th open source code, which are both properties which I wanted the application to embrace.

5.1.1 Q t

Qt [18] is a mature and very extensive mult ipla t form C + + framework, focused on develop
ment of applications w i th r ich graphical user interface (G U I) . Large part of it is different
implementation of por t ion of C + + Standard Template L ib ra ry and wi th heavy use of macros
it extends C + + , requiring the code to be processed wi th its M e t a Object Compi le r tool .
M O C enables important features of Qt to work and have simple syntax, like signal and slot
framework which facilitates simple communicat ion between Qt objects. Widgets , which are
the user interface objects, like for example labels or buttons, can be organized i n layouts
(such as horizontal , vertical, gr id etc.), which posit ion and resize the widgets contained in
them, to best use the available space. F r o m now on, I w i l l refer to these layouts as widget
layouts, to avoid confusion w i t h graph layout algorithms.

W h i l e normal G U I widgets Qt are based on raster graphics (pixel based), Q t features a
Graphics V i e w framework which is to be used for two-dimensional vector graphics, using
floating-point numbers for coordinates, which is very convenient for graph visualizat ion and
obvious choice for an ontology editor. Graphics V i e w framework enables to implement fea
tures such as zooming and export to Scalable Vector Graphics format (S V G) very easily. Q t
provides a mode l /v iew framework, which is a simplified version of M o d e l - V i e w - C o n t r o l l e r
pattern, organizing code into models, for data management, and views, for rendering and
user interaction, which is also used by the Graphics V i e w framework. Graphics V i e w frame
work reimplements its own versions of widgets, widget layouts, i n classes QGraphicsWidget,
QGraphicsLayout respectively, however the dist inct ion between them and their regular

18

versions (QWidget and QLayout) are not interesting for the purpose of describing the ap
plicat ion, so I w i l l not disambiguate them and refer to them al l as widgets and widget
layouts.

G T K + is an alternative cross-platform G U I library, wri t ten i n C , however w i t h bindings
available for C + + and other languages. I chose Q t because of its mature Graphics V i e w
framework and based on my previous experiments w i th both Qt and G T K + , Qt suit ing me
more in many aspects, especially i n being a C + + framework.

5.1.2 Redland R D F Libraries

Redland [19] is a collection of C libraries for working wi th R D F data. Redland comprises
three libraries:

• Redland l ibrdf — the core library, defining structures for basic R D F concepts, func
tions for their manipulat ion, and storage backend, for storing R D F graphs i n memory
or Oracle Berkeley D B , relational databases (M y S Q L , Pos tgreSQL, S Q L i t e) , triple-
stores (OpenLink Vir toso) , files or web resources.

• Raptor — implements parsing and serialization of various syntaxes of R D F .

• Rasqal — allows querying R D F data w i th S P A R Q L and R D Q L query languages. It
isn't used by the ontology editor implementation.

Redland is a C l ibrary but it follows conventions which make its design object oriented.
In course of the implementat ion I made C + + wrappers for parts of the library, and im
plemented addi t ional functions for U R I pr int ing to the Raptor library, which I submitted
upstream to the project and w i l l be available i n the next release of the official dis t r ibut ion.

5.1.3 O G D F

Open G r a p h Drawing Framework [16] is a C + + l ibrary of graph layout algorithms and
other graph algorithms. Or ig ina l ly I wanted to use Graphviz for graph layout algorithms,
however O G D F offers nice C + + interface, where no serialization to strings and parsing of
them is required, like for Graphviz C library, which, aside from being easier to implement,
would slow down already very computat ional ly intensive part of the applicat ion. F r o m the
l ibrary the layout algorithms used are hierarchic Sugiyama algori thm and force-directed
Fast Mul t i po l e Mul t i l eve l M e t h o d (F M M M) layout algori thm.

19

5.2 User Interface and Functionality

The user interface, as can be seen in figure 5.1, is d ivided in several parts: the menu, the
graph view, layout window and the prefix window. The layout and prefix windows are
detachable or can be moved to any side of the graph view which is the main widget of the
application.

File Edit View Lens

Z o o m :

ex:influenced
rdfsxange ex:Person

rdf:type owkclass
rdf:type rdfsiClass

rdfsidomain exiPerson
rdfitype rdfiProperty

rdfs:subPropertyOf

exihasChild
rdfsirange ex:Person

rdfitype owliClass
rdfitype rdfsiClass

rdfsidomain exiParent
rdfitype owliClass
rdfitype rdfsiClass

rdfitype owliObjectProperty
rdfitype owl: I rrefl exi ve Pro p e rty
rdfitype |owl:AsymmetricProperty
rdfitype rdt:Property

Layout properties IŠI IEI

Sugiyama Layout

Node Distance: 40.00

Layer Distance: 55,00

13 Flip vertically

|7) Apply Layout

Prefixes IŠI IEI

Prefix URI I

[rdf http ://www.w3 .org...

xsd http ://www.w3 .org...

foaf http:/ /xmlns.com,,.

dcterms http://purl.org/dc/,.,

Figure 5.1: User interface of the applicat ion

Prefix window is for edit ing U R I prefixes, which allow shortened form of U R I to be
viewed, replacing beginning of an U R I wi th corresponding the prefix (if any) followed by
a colon and the rest of the U R I . Prefixes are well known i n concept, sometimes also called
as namespaces, or the prefixed U R I s as QNames or C U R I E s , and are used in various R D F
syntaxes, such as Turt le . The implementat ion used is from Raptor library, and the functions
for the U R I prefixing outside of convoluted serializer code are what I had to addit ional ly
implement.

Layout window allows user to apply one of the graph layout algorithms to the graph
view. The layout selection is independent of lenses, because lenses are for filtering of the
graph view and the posit ioning is left to a user, which is arguably for the best, since user
might posit ion the nodes himself (by dragging them), and then switch freely between the
lens views. For Sugiyama layout the configuration consists of the distance between the
nodes on each layer, the distance between the layers and an option to flip vert ical ly the
graph positions, which is useful i f user wants to view hierarchies using properties such as
rdf s: subClassOf or rdf s: subPropertyOf i n natural way — most abstract concepts being
on top. For F M M M layout it consists just of the unit edge length which by increasing can
be used to avoid node overlapping of large graphs.

20

http://www.w3
http://www.w3
http://xmlns.com
http://purl.org/dc/

B o t h prefix and layout windows can be re-opened i f closed, from the view menu, which
apart of that contains a checkbox for toggling vis ibi l i ty of nodes which have no edge towards
or from them, because they were filtered out. Hav ing them visible is useful when editing
the ontology, but not for general overview, thus it isn't enabled on any of the screenshots.
The lens menu contains list of available lenses to switch to and an option to reload the list,
since lenses are specified as R D F data, which can be edited by the editor itself, allowing
user to define a new lens when necessary.

The applicat ion reads and saves ontologies (or any other R D F graphs) i n Turt le R D F
serialization. B y nature of Turt le serialization this also includes prefix information. A d
di t ional ly the application saves information about node posit ioning and active lens i n a
way which is ignored by standard Turt le parsers, as explained i n chapter 5. Th is ensures
compat ibi l i ty of the used syntax in both ways — the application reads any well-formed
Turt le files and standard Turt le parsers read ontologies saved by the editor, omi t t ing the
information which are relevant only to the editor.

W h e n the applicat ion is launched, the default file is loaded. Th i s is an empty R D F
graph wi th some useful prefixes predefined, however one can very easily change the default
R D F graph, because it is just a file like any other edited ontology.

Most edit ing is done through the context menu, which is most often invoked by r igh t -
cl icking. The editor supports some pr imit ive R D F graph operations: add/remove relation
and remove node, however most effective is to use templates which as well can be inserted
to the graph from the context menu. W h e n user doesn't have selected any node or an edge,
the editor offers a l l templates, regardless of their contextual information. The implemented
contextuality of templates are associated R D F S / O W L classes. So contextual menu when
having selected a node w i l l show only templates which have associated class of which is
the selected node. For example, as shown on figure 5.2, ex:Mother is a rdfs:Class and
owl:Class, so only templates for those 2 classes are shown.

ex:Person
rdf:type owkClass
rdf:type rdfs:Class

T
rdfsisubClassOf rdfsisubClassOf rdfsisubClassOf

exiWoman
rdf:type owkClass
rdfitype rdfs:Class

ex:Pa rent
rdfitype owkClass
rdfitype rdfs:Class

rdfs:subClassOf rdfsisubClassOf rdfs:subclass0f

ex:Man
rdfitype owkClass
rdfitype rdfsiClass

rdfsisubClassOf

exiFather
rdfitype owkClass
rdfitype rdfsiClass

Add Relation
Remove Node

exiFather
rdfitype owkClass
rdfitype rdfsiClass

Insert Template > owkClass Templates >
rdfsiClass Templates > [\

Figure 5.2: Contextua l templates for a class

The other part of edit ing is invoked by double-cl icking on a node or an edge and consists
of editing the nodes as R D F nodes and edges as R D F predicates — one can „ r e n a m e " them,
however it is imprecise to ca l l it that. It is changing of what the R D F node or predicate
is, whether U R I reference, blank node or a l i teral , w i th in the l imits of the R D F model of
course. Templates are inserted wi th temporary placeholders which are to be edited this way,

21

to bu i ld an ontology. Because a l l editing is happening on the R D F graph, the graph view is
redrawn and possibly new relations are displayed, get aggregated in nodes or disappear by
being filtered out. U t i l i t y of this approach is that i n large graphs user doesn't have to know
where the node he wants to refer to is, he just edits the placeholder value to correspond to
the referred node. It is arguable how good this approach is compared to more t radi t ional
approach like connecting nodes by dragging, however I decided to concentrate on innovative
features, so i f the editor development would move past proof-of-concept, it would be best
to support bo th ways.

Last notable feature is search. Search is the one option of the edit menu, offering easy
forward and backward search of either nodes, or edges, scrolling the found element into the
view.

5.3 Code Overview

The applicat ion is using Berkeley D B backend of Red land for storing its data, saved in
files maindb-* also including a persistent incrementing counter which is used for generating
unique identifiers. In main.cpp the R D F libraries and MainWindow are ini t ial ized, and
QApplication is started.

MainWindow is a QMainWindow subclass, implementing the main window U I , loading of
templates and lenses. Qt offers option to bu i ld G U I s using its tool Qt Designer, which is
suitable for less dynamic G U I widgets, which was used for MainWindow and also for the
R D F node edit dialog and the search dialog.

GraphView is a QGraphicsView subclass which manages the opened Graphs, zoom,
search functions and U I for opening graphs.

Graph is possibly the most important class of the editor, subclass of QGraphicsScene, it
is a class representing both the model of the GraphView, but also the R D F graph (which is in
Redland vocabulary called context, but I w i l l use the standard name). It handles refreshing
of the graph when the R D F graph was changed by method contextChangedO and the
mechanics of opening and saving the R D F graph. Graph contains dict ionary container for
positions of nodes of graph, key being hash of their corresponding R D F node. These hashes
of R D F nodes are used as identifiers in the edited ontology files, because serialization and
parsing of R D F nodes themselves would be too complicated, especially i n case of R D F
nodes of l i teral type, possibly wi th various whitespace characters, requiring lot of escaping.
Hashing of blank nodes is special case, since Red land assigns random label to blank nodes,
which would make their hash value different every time. So every Graph has a hash value
translat ion dict ionary which assigns value of the number of blank nodes which already are
in the Graph to every new blank node, incrementing the count. This provides blank nodes
wi th usable hash based identifiers, i f the parser w i l l parse the blank nodes i n same order,
which isn't guaranteed, but is often the case.

The rdf namespace contains a l l C + + Redland wrapper code and other functions used
for manipulat ion of the R D F graph.

GraphNode and GraphEdge are classes representing nodes and edges on the Graph, bo th
are subclasses of QGraphicsWidget, and implement mainly drawing functions and manage
pointers to each other (GraphNodes sets of in /ou t edges, GraphEdges f rom/to nodes), while
processing move events and forwarding double-cl ick and context menu events to subclasses
of GraphicsLabel — GraphicsNodeLabel and GraphicsPropertyLabel — which they own
and which contain the R D F node and triple respectively, which they represent, and they
manage opening of the edit dialog and context menu. GraphicsLabel is just a relatively

22

simple label widget (subclass of QGraphicsWidget), which the Graphics V i e w framework
didn' t provide.

Node aggregation is composed of two classes GraphAggregNode and
GraphAggregProperty, which are subclasses of QGraphicsLinearLayout, acting as hori
zontal and vert ical layouts respectively, as drafted i n figure 5.3. Aggregation is created by a
cal l to recursive method GraphNode: :genAggregLevel(GraphicsNodeLabel *subjNode,
QGraphicsLinearLayout *aggregProps), w i th nodes label and vert ical layout for aggre
gation as arguments. GraphNode has a property aggregStatements_, which is a set of R D F
triples, in which are collected those which already were aggregated, so the code doesn't enter
infinite loop, or generate redundant structures.

ex:John

rdfitype
ex:Person

rdfitype

rdfitype
rdfsiClass

rdfitype

foaf:name
"John"

Figure 5.3: Draft of layout composit ion in node aggregation

The rest of the code is quite straightforward, has no significant points of interest and
requires no further explanation.

5.4 Lens and Template Definitions

Lenses and Templates are described in R D F files l e n s . t t l and templates.ttl. I w i l l
briefly describe how they are defined, full specification of Lens and Template ontologies is
in appendix.

Example lens definition can be seen in figure 5.4. The lens lens: PropertyHierarchy
is in same namespace (using same prefix) as lens ontology, but that is fine, unless it con
flicts w i th existing terms. Its type lens:Lens states, that it actually is a lens, other
types lens:WhitelistProperties and lens :NotAggregateLiterals state, that triples
wi th properties specified by relation of lens: property w i l l be displayed i n the graph
and that triples w i th R D F l i teral nodes in object posit ion w i l l not be aggregated into
the node of R D F node in subject posit ion of the triple. The only other option is to use
lens:BlacklistProperties instead of whitel is t ing it shows a l l triples by default, unless
they are blacklisted or aggregated into a node, which is done by defining the property of
triples to aggregate, by relation wi th predicate lens: aggregatedProperty.

23

ens:PropertyHierarchy|
lens iaggregatedProper ty vs : term_status
lens iaggregatedProper ty rdfsi label
lens iaggregatedProper ty rd fs icomment
lens iaggregatedProper ty rdfs idomain
lens iaggregatedProper ty rdfsirange
lens iaggregatedProper ty rdfitype
lensiproperty rdfsisubPropertyOf
rdfitype lens iNotAggregateLi tera ls
rdfitype lensiWhitel istPropert ies
rdfitype lensiLens

Figure 5.4: Example of lens definition

A s shown on example template definition i n figure 5.5, templates are of R D F type
t: Template and their name is specified by t:name property. A s the information i n
templates . t t l is about the templates, not the content of templates, we need to point
to the content w i t h a trpath property, specifying path relative to the editor executable.
Proper ty t: variable is used for marking a R D F node which is to be replaced wi th selected
R D F node, i f any is selected. Lastly, using property t: class is stated what R D F S / O W L
class the template belongs to contextually.

t ipropRexist
rdf i type t iTemplate
t ivar iable <urn :g rasp :c lass>
t ipa th " . . / templates/propRexist . t t l "
t i n a m e "Property Restrict ion - Existent ial Quant i f icat ion (OWL)"

t i c lass t i c lass t i c lass

Figure 5.5: Example of template definition (cropped graph)

24

Chapter 6

Evaluation and Future Work

The implemented ontology editor is definitely viable ontology authoring tool , and the ex
tensibil i ty it offers allows it to extend its support of ontology languages easily, however it
is noticeable that it is mainly an experimental proof-of-concept application, missing lot of
features which are required for comfortable work. Indicative of the v iabi l i ty of the editor is
that the lens and template ontologies (appendix D and E) were created using i t . Anyway,
to achieve state of full-featured ontology editor w i th friendly user interface, implementat ion
of following features seems necessary:

• Drag and drop relation creating between nodes (with some modifier key pressed).

• Copy and paste, including whole nodes w i t h a l l aggregated triples.

• Selection of mult iple nodes and edges.

• Undo/ redo .

• A t least import and export to other R D F syntaxes, and ontology language syntaxes.

• Reasoning engine integration. F i l t e r ing out certain actions, like insertion of part icular
template, which would lead to inconsistent ontology.

• E x t e n d template contextuali ty to arbi trary triple patterns. Ex tend ing template defi
ni t ion to allow deleting whole inserted templates.

• Choice of storage backends.

• E d i t i n g of R D F graphs of triplestore using S P A R Q L and web resources.

There are some more advanced features which deserve a mention, which would greatly
increase the applications value and even further the state of art of visual ontology editing.
One of them is advanced graph layout algorithms. Ontology editors would certainly benefit
from dynamic graph layout algorithms, which are designed to change as l i t t le as possible
when smal l part of the graph is modified. Other graph layout algori thm innovation could be
combining properties of mult iple algorithms, such as layout class and property hierarchies
using hierarchic layout, then posit ion the rest of the nodes around them using for example
force-directed layout algori thm. I have searched for a graph layout l ibrary allowing this,
however I was unsuccessful and design and implementat ion of such algorithms is itself a
large enough topic for a thesis itself.

25

Another area to be explored is visual edit ing of mult iple R D F graphs in one graph view.
It is difficult to outline any obvious ways to manage that, but working w i t h mult iple R D F
graphs and provenance is at tracting lot of interest i n Semantic Web community, and as well
for ontology edit ing it is relevant — metadata as the node positions and the active lens
could be saved as R D F data in separate R D F graph where metadata for the ontology R D F
graph would reside, similar to how it is already now wi th the templates of the implemented
ontology editor, however spreading al l this related data among so many files is somewhat
inconvenient.

Perhaps even developing support of semi-automated ontology mapping would be a
worthy endeavor, which could help user to better define his ontology terms, by navigating
existing ontologies and being offered to map his terms, even i f the ontologies would have
served only as informative examples.

The project was developed on instal lat ion of A r c h L i n u x dis t r ibut ion of L i n u x operating
system, however the code and a l l the libraries are cross-platform, so compilat ion on other
platforms should be possible, however it was not tested.

26

Chapter 7

Conclusion

The purpose of this project — to create an innovative proof-of-concept visual ontology
editor for Semantic Web — has been accomplished. W h i l e the editor is lacking in user
interface comfort, it implements new features which address shortcomings of the existing
ontology editors w i th visual izat ion capabilities, and presents new alternative ways of ontol
ogy authoring, well t ied to the technologies of Semantic Web. Ed i to r is currently suitable
for edit ing and navigation of R D F S and O W L ontologies, however by the virtue of its exten
sibi l i ty i n this aspect it can be wi th ease made to support other ontology languages which
are mapped to R D F . B y choosing R D F as base model of the editor, I have traded quali ty
of support of one ontology language I could have chosen, for the extensibili ty and flexibil
ity, because implementat ion of some advanced features proved to be very t ime consuming,
which could have been different if most of the flexibil i ty was sacrificed.

The process of development of the application consisted of designing a relatively large
application i n C + + , implementing complex G U I elements using Q t toolkit and features for
creation of ontologies i n Semantic Web ontology languages. I worked together w i t h Dave
Beckett, the creator of Red land R D F Libraries , on minor extension of his Raptor l ibrary
and my patches were accepted into the main source code tree.

The results of the project are beneficial to the other visual ontology editing tools, which
could incorporate ideas and features I described and explored, regardless i f the project itself
is developed further. A l l the core ideas — node aggregation, templates and lenses — are
for consideration.

27

Bibliography

[1] Bechhofer, S.; Mi les , A . : S K O S Simple Knowledge Organizat ion System Reference,
[online], 2009-08-18 [cit. 2012-05-08].
U R L http:/ /www.w3.org/TR/2009/REC-skos-reference-20090818/

[2] Berners-Lee, T. ; F ie ld ing , R . ; Masinter , L . : Uni fo rm Resource Identifier (URI) :
Generic Syntax. R F C 3986 (Standard), Jan. 2005 [cit. 2012-05-08], [online].
U R L h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 9 8 6 . t x t

[3] Berners-Lee, T. ; Hendler, J . ; Lassi la , O. : The Semantic Web. Scientific American,
2001 [cit. 2012-05-08], [online].
U R L h t t p : / / w w w . s c i e n t i f i c a m e r i c a n . c o m / a r t i c l e . c f m ? i d = t h e - s e m a n t i c - w e b

[4] Car ro l l , J . J . ; K l y n e , G . : Resource Descr ipt ion Framework (R D F) : Concepts and
Abst rac t Syntax, [online], 2004-02-10 [cit. 2012-05-08].
U R L ht tp: / /www.w3.org/TR /2004/REC-rdf-concepts-20040210/

[5] Dieh l , S.: Visualization Basics. Springer B e r l i n Heidelberg, 2007, I S B N
978-3-540-46505-8, 15-33 pp.
U R L h t t p : / / d x . d o i . o r g / 1 0 . 1 0 0 7 / 9 7 8 - 3 - 5 4 0-46505-8_ 2

[6] G r i m m , S.; Abecker, A . ; Volker, J . ; et al . : Ontologies and the Semantic Web.
Springer B e r l i n Heidelberg, 2011, I S B N 978-3-540-92913-0, 507-579 pp.
U R L h t t p : / / d x . d o i . o r g / 1 0 . 1 0 0 7 / 9 7 8 - 3 - 5 4 0 - 9 2 9 1 3 - 0 _ 1 3

[7] Gruber , T . R . : A Translat ion Approach to Portable Ontology Specifications.
Knowledge Acquisition, vol . 5, no. 2, 1993 [cit. 2012-05-08]: pp. 199-220, [online].
U R L h t t p : / / t o m g r u b e r . o r g / w r i t i n g / o n t o l i n g u a - k a j - 1 9 9 3 . h t m

[8] Guha , R . V . ; Brickley, D . : R D F Vocabulary Descr ipt ion Language 1.0: R D F Schema,
[online], 2004-02-10 [cit. 2012-05-08].
U R L http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[9] M i l l e r , E . ; Mano la , F . : R D F Pr imer , [online], 2004-02-10 [cit. 2012-05-08].
U R L http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[10] Sowa, J . F . : Conceptual graphs for a data base interface. IBM J. Res. Dev., vol . 20,
no. 4, J u l . 1976: pp. 336-357, I S S N 0018-8646, doi:10.1147/rd.204.0336.
U R L h t t p : / / d x . d o i . o r g / 1 0 . 1 1 4 7 / r d . 2 0 4 . 0 3 3 6

[11] Sugiyama, K . ; Tagawa, S.; Toda, M . : Methods for V i s u a l Understanding of
Hierarchical System Structures. IEEE Transactions On Systems Man And
Cybernetics, vol . 11, no. 2, 1981: pp. 109-125.

28

http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.ietf.org/rfc/rfc3986.txt
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://dx.doi.org/10.1007/978-3-540-46505-8_2
http://dx.doi.org/10.1007/978-3-540-92913-0_13
http://tomgruber.org/writing/ontolingua-kaj-1993.htm
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://dx.doi.org/10.1147/rd.204.0336

[12] O W L 2 Web Ontology Language Document Overview, [online], 2009-10-29 [cit.
2012-05-08].
U R L h t t p : / / w w w . w 3 .org / T R / o w l 2 -overview/

[13] A l t o v a Semantic W o r k s ® , [online], [cit. 2012-05-08].
U R L h t t p : / / w w w . a l t o v a . c o m / s e m a n t i c w o r k s . h t m l

[14] C o G u i . [online], [cit. 2012-05-08].
U R L h t tp : / /www2.lirmm . f r/cogui/

[15] Concept-map Ontology Environment , [online], [cit. 2012-05-08].
U R L h t t p : / / w w w . i h m c . u s / g r o u p s /coe/

[16] Open G r a p h Drawing Framework, [online], [cit. 2012-05-08].
U R L h t t p : / / w w w . o g d f.net / d o k u . p h p

[17] Protege Ontology Edi to r , [online], [cit. 2012-05-08].
U R L h t t p : //protege. Stanford. edu/

[18] Q t Framework, [online], [cit. 2012-05-08].
U R L h t t p : / / q t . n o k i a . com/

[19] Red land R D F Libraries , [online], [cit. 2012-05-08].
U R L h t t p : / / l i b r d f . org/

[20] T o p B r a i d C o m p o s e r ™ , [online], [cit. 2012-05-08].
U R L ht tp : / /www.topquadrant .com/products /TB_Composer.html

29

http://www.w3.org/TR/owl2-overview/
http://www.altova.com/semanticworks.html
http://www2.lirmm.fr/cogui/
http://www.ihmc.us/groups/coe/
http://www.ogdf.net/doku.php
http://www.topquadrant.com/products/TB_Composer.html

Appendix A

C D Contents

• Source code wi th makefile: /application/

• B u i l d instructions and other information: /README.txt

• License information: /LICENSE.txt

• Doxygen generated documentation: /docs/

• Bachelor 's thesis i n P D F format: /projekt.pdf

• Source code of the thesis: /tex/

• Example ontology in Turt le R D F syntax: / f a m i l y . t t l

• Lens ontology in Turt le R D F syntax: /lensOntology.ttl

• Template ontology in Turt le R D F syntax: /templateOntology.ttl

30

Appendix B

Manual

Appl i ca t ion is run wi th no special arguments, everything is controlled through the G U I as
described i n the thesis. B u i l d instructions, including required dependencies, are specified
in the README.txt file.

A s can be seen on figure B . l , the G U I is very simple. Its elements are described i n the
thesis.

File Edit View Lens

Z o o m :

ex:influenced
rdfs:range ex:Person

rd f l ype owkclass
rdf:type rdfs:Class

rdfs:domain ex:Person
rdf:type rdf:Property

rdfs:subPropertyOf

exihasChild
rdfsirange ex:Person

rdf:type owl:Class
rdfitype rdfsiClass

rdfsidomain ex:Parent
rdfitype owkclass
rdfitype rdfsiClass

rdfitype owliObjectProperty
rdfitype owl:IrreflexiveProperty
rdfitype |owl:Asymmetri c P ro p erty
rdfitype rdf:Property

Layout properties El S

Sugiyama Layout

Node Distance: 40,00

Layer Distance: 55.00

0 Flip horizontally

|7) Apply Layout

Prefixes El Is

Prefix URI -
|rdf http ://www. w3 .org...

xsd http ://www. w3, o rg,., _

foaf http ://xmlns. com, , .

J dcterms http://purl.org/dc/,.,

•CD ® 0

Figure B . l : User interface of the application

31

http://purl.org/dc/

Appendix C

Example Ontology

Example ontology i n Turt le R D F syntax:

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns*> .
Oprefix xsd: <http://www.w3.org/2001/XMLSchema*> .
Oprefix r d f s : <http://www.w3.org/2000/01/rdf-schema*> .
Oprefix owl: <http://www.w3.org/2002/07/owl*> .
Oprefix ex: <urn:examples:> .

ex:Father
a rdfs:Class, owl:Class ;
rdfs:subClassOf ex:Man, ex
owl:intersectionOf (ex:Man

ex:Man
a rdfs:Class, owl:Class ;
rdfs:subClassOf ex:Person .

ex:Mother
a rdfs:Class, owl:Class ;
rdfs:subClassOf ex:Parent, ex:Woman ;
owl:intersectionOf (ex:Woman ex:Parent) .

ex:Parent
a rdfs:Class, owl:Class ;
rdfs:subClassOf ex:Person ;
owl:equivalentClass [

a owl:Restriction ;
owl:onProperty ex:hasChild ;
owl:someValuesFrom ex:Person] .

ex:Person
a rdfs:Class, owl:Class .

ex:Woman
a rdfs:Class, owl:Class ;
rdfs:subClassOf ex:Person .

ex:hasChild
a rdf:Property, owl:AsymmetricProperty, owl:IrreflexiveProperty,

owl:0bjectProperty ;

:Parent ;
ex:Parent) .

32

http://www.w3.org/1999/02/22-rdf-syntax-ns*
http://www.w3.org/2001/XMLSchema*
http://www.w3.org/2000/01/rdf-schema*
http://www.w3.org/2002/07/owl*

rdf s:domain ex:Parent ;
rdfs:range ex:Person ;
rdfs:subPropertyOf ex:influenced .

ex:influenced
a rdf:Property ;
rdfs:domain ex:Person ;
rdfs:range ex:Person .

33

Appendix D

Lens Ontology

Lens ontology i n Turt le R D F syntax:

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns*> .
Oprefix xsd: <http://www.w3.org/2001/XMLSchema*> .
Oprefix r d f s : <http://www.w3.org/2000/01/rdf-schema*> .
Oprefix owl: <http://www.w3.org/2002/07/owl*> .
Oprefix lens: <http://mud.ez/sw/ed#lens/> .

lens:Lens
a rdfs:Class, owl:Class ;
rdfs:comment "Class of lens." .

lens:BlacklistProperties
a rdfs:Class, owl:Class ;
rdfs:comment "Class of lens, which don't show rel a t i o n s with

s p e c i f i e d properties i n the graph view." ;
rdfs:subClassOf lens:Lens .

lens:WhitelistProperties
a rdfs:Class, owl:Class ;
rdfs:comment "Class of lens, which show only r e l a t i o n s with

s p e c i f i e d properties i n the graph view." ;
rdfs:subClassOf lens:Lens .

[]
a owl:AHDisjointClasses ;
owl:members (lens:BlacklistProperties lens:WhitelistProperties) .

lens:property
a rdf:Property, owl:ObjectProperty ;
rdfs:comment "Property for specifying properties for

w h i t e l i s t i n g / b l a c k l i s t i n g . " ;
rdfs:domain lens:Lens ;
rdfs:range rdf:Property .

lens:NotAggregateLiterals
a rdfs:Class, owl:Class ;
rdfs:comment "Class of lens, which don't aggregate r e l a t i o n s with

l i t e r a l objects i n graph nodes as i s usual." ;
rdfs:subClassOf lens:Lens .

34

http://www.w3.org/1999/02/22-rdf-syntax-ns*
http://www.w3.org/2001/XMLSchema*
http://www.w3.org/2000/01/rdf-schema*
http://www.w3.org/2002/07/owl*
http://mud.ez/sw/ed%23lens/

lens:aggregatedProperty
a rdf:Property, owl:ObjectProperty ;
rdfs:comment "Property for specifying properties for aggregating i n

graph nodes." ;
rdfs:domain lens:Lens ;
rdfs:range rdf:Property .

35

Appendix E

Template Ontology

Template ontology i n Turt le R D F syntax:

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns*> .
Oprefix xsd: <http://www.w3.org/2001/XMLSchema*> .
Oprefix r d f s : <http://www.w3.org/2000/01/rdf-schema*> .
Oprefix owl: <http://www.w3.org/2002/07/owl*> .
Oprefix t : <http://mud.ez/sw/ed#templates/> .

t:Template
a rdfs:Class, owl:Class ;
rdfs:comment "Class of templates." .

t:cl a s s
a rdf:Property, owl:ObjectProperty ;
rdfs:comment "Property for specifying a class to which the template

belongs to, as a means of c l a s s i f y i n g i t i n the menu for template i n s e r t i o n . " ;
rdfs:domain t:Template ;
rdfs:range rdfs:Class .

t:name
a rdf:Property, owl:ObjectProperty ;
rdfs:comment "Property for specifying template name" ;
rdfs:domain t:Template .

t:path
a rdf:Property, owl:ObjectProperty ;
rdfs:comment "Property for specifying path from the editor executable

to the template RDF f i l e . " ;
rdfs:domain t:Template .

t:variable
a rdf:Property, owl:ObjectProperty ;
rdfs:comment "Property for specifying an RDF node which i s to be

replaced by selected node on template i n s e r t i o n . " ;
rdfs:domain t:Template .

36

http://www.w3.org/1999/02/22-rdf-syntax-ns*
http://www.w3.org/2001/XMLSchema*
http://www.w3.org/2000/01/rdf-schema*
http://www.w3.org/2002/07/owl*
http://mud.ez/sw/ed%23templates/

